
Tetris: a training image generator for SGeMS

Alexandre Boucher∗, Rahul Gupta, Jef Caers, Addy Satija

Stanford University

Abstract

The recent developments of training image-based geostatistics have
allowed the creation of stochastic models with greater realism than be-
fore. These algorithms aim at reproducing spatial patterns, such as
connectivity, that are depicted in a training image. A training image
contains the possible spatial configurations for any given geological ob-
ject and relationships between objects. However, algorithms for gen-
erating training images are still incomplete and unsatisfactory. The
proposed design overcomes a major hurdle of rigidity of pre-defined
geological objects in the current training image generators. This pa-
per presents a plugin to the SGeMS software that allows modelers to
generate geological objects with complex geometries and the relevant
interactions between these objects.

First, a geological object is built either from pre-coded shapes, such
as ellipsoid, cuboid, kernels, or user defined. These basic shapes are
then assembled with geometrical operations (difference, union and in-
tersection) to create new complex shapes. For added flexibility, any
shape can be translated, rotated and sheared. A second set of pa-
rameters control the interactions between the geological objects. Each
parameter used in the training image construction (e.g. size, the rota-
tion angles, number of stacks) can vary in space. This locally varying
parametrization allows the representation of trends in geological body
geometry, interactions, and locations.

∗The auhors would like to thanks Marco Pontiggia, Sergio Nardon and Giuseppe Ser-

afini at Eni for their support and valuable suggestions.

1

1 Introduction

With the greater availability of training-image (TI) based algorithms the
need to generate 3D TIs is growing rapidly. At this time, object based algo-
rithms (Lantuejoul, 2002) are the best sources of 3D TIs. Training images
are easy to generate since they need not to be conditional to data, they
must only correctly represents the geo-objects and the spatial relationship
between the geo-objects. The challenge is to design a program with a clean
interface that can handle many types of geological morphology without re-
quiring the user to change the source code.

Most current object-based simulation programs are specific to a geolog-
ical environment (Tetzlaff and Harbaugh, 1989) with most of the develop-
ments targeted for fluvial systems such as fluvsim (Deutsch and Wang, 1996;
Deutsch and Tran, 2002), lobesim (Deutsch and Tran, 2004) or more recently
with event-based fluvial model (Pyrcz et al., 2009) which can reproduce a
wide variety of fluvial systems.

Maharaja (2008) took the generalist approach in writing the TiGenera-
tor plugin to SGeMS (TiGenerator is currently part of the SGeMS distribu-
tion). The program is an object-based program with four shapes (ellipsoid,
half-ellipsoid, cuboid and sinusoid) plus the capability to load user-defined
geometries. The program allows to control the level of overlap between
geo-objects to constraint the relative positions between geo-objects. The
important difference of that generalist approach versus the geology specific
approach is that the user must interpret the geological entitities into geo-
metrical shapes prior of creating a training image. The choice of shapes
available by TiGenerator plugin is too limited to mimic complex geological
objects and environments.

The Tetris plugin can be seen as the next generation of TiGenerator for
the SGeMS software. It is general at its roots but offer the possibility to
model complex geological objects such as channel-lobe-crevasse complex. By
providing a mechanism to combine different shapes the Tetris plugin can cre-
ate geo-objects with complex geometries. Furthermore, it contains a larger
library of shapes and can accomodate trends in location and geometries of

2

the geo-objects.
In Section 2 the design, structure and algorithms are detailed. Section 3

presents the graphical interfaces for the users to parameterize the geo-objects
and the simulation parameters. Some examples are shown in Section 4

1.1 Notation

Text written in the format formatForClass refers to C++ object of Tetris.
The term object refers to a instantiation of a C++ class. The term geo-
object refers to the modeling of a geological entity, it is the output of the
Tetris program.

1.2 About SGeMS

SGeMS (Remy et al., 2009) is free and open source. Open source software
gives the users access to the source code, which can be modified with or
without restrictions, depending on the license requirement. SGeMS is dis-
tributed under a GNU General Public license (GPL) and must be distributed
with its source code 1. Open source software gives flexibility to the users:
the source code can be modified to address complex problems that may not
have been easily handled from the traditional interface of geostatistical algo-
rithms. Access to the source code also allows the users to track and correct
bugs without waiting for an official release or patches from a vendor. More
importantly, the transparency permits the user to validate the algorithms
by inspecting the actual code instead of using them as black boxes.

2 Design and algorithm

The design of the Tetris algorithm consists of two main steps: (a) build-
ing the geological objects (geo-objects) and (b) positioning them in a grid
given a set of constraints. The geo-objects can be build through a meta-
programming approach based on recursive composition technique (Gamma
et al., 1994),i.e. building increasingly complex elements from simpler ones.

1See http://www.gnu.org/copyleft/gpl.html for more details on the GPL license.

3

http://www.gnu.org/copyleft/gpl.html

The construction of the geo-objects is the responsibility of a geo-object man-
ager that store the relevant parameters in order to generate geo-object raster
on demand.

The defined geo-objects are then positioned on a grid given a set of
constraints through a simulation event that controls the target number of
geo-objects (stopping criterion), the interaction between geo-objects (inter-
actions rules) and potential preferential locations (positioning and spatial
intensity field).

The algorithm is summarized as follows:

1: Initialize the geo-object managers
2: Initialize the simulation events
3: for each simulation event do

4: while stopping criterion not met do

5: Get a location in the grid
6: Create a geo-object
7: if geo-object violates interaction rules then

8: Delete geo-object
9: else

10: Draw the geo-object
11: Update the stopping criterion
12: end if

13: end while

14: end for

2.1 Building Geological Object

A geo-object is the top level representation of a geological entity. It is
modeled with the class GeoObject. A geo-object is composed of elements,
modeled with the class Element, which are themselves an assemblage of
geometrical shapes (Shape). The geo-objects and the elements have ge-
ological meaning, for instance a channel complex would be a geo-object
and a crevasse of that system an element. The shapes (e.g. sphere, cylin-
der, cuboid, ...) are just the building blocks without geological significance.

4

This hierarchy gives flexibility in creating complex elements by assembling
any available shapes and then setting up these element together to create a
geological object. Each of these concepts are discussed in detail below.

Shape

The Tetris library currently has 10 geometrical shapes and 3 types of oper-
ations for these shapes. A shape operation aims at combining the existing
parametric shape into more complex shape. Currently available shape types
are:

Half ellipsoid Defined by the x, y and z directions radii.

Ellipsoid Defined by the x, y and z directions radii.

Kernel Shape Either a radial (Gaussian), exponential or spherical kernel.
Each is defined by the x, y radii and height.

Cuboid Defined by the x, y and z side dimensions.

Sphere Defined by its radius.

Cylinder Defined by its length and radius of the cross-section

Lobe Shape Partial implementation of the lobesim shape of Deutsch and
Tran (2004) It is defined by its length, width, thickness and the dis-
tances along the length where the width and the thickness are maxi-
mum.

Sinusoid A sine function defined by its thickness, width, wavelength and
amplitude.

Gaussian Sinusoid A shape generated by the convolution of a radial ker-
nel with a Gaussian process. The user can control the bandwidth of
the kernel, the amplitude, the thickness, and the length of the resulting
shape. The cross-section is an implementation of Deutsch and Tran
(2002).

5

User Defined A set of relative coordinates (i,j,k) defining a shape.

Each shape can be translated, rotated and sheared. The rotation is done
using a series of nine shear operations, see Chen and Kaufman (2000). The
shearing is a translation gradient in either the x or y direction along the
vertical axis.

The shapes can be combine through the following three shape operations:

Difference Return a shape which is composed of the difference between
the modifiable shape and a set of modifier shapes.

Union Return a shape made of the union of a set of shapes.

Intersection Return a shape made of the intersection of a set of shapes.

Each shape and shape operation is controlled by a manager ShapeManager.
The task of a ShapeManager is to create a rasterized shape with specified di-
mensions. The ShapeManager for the shape operation calls the ShapeManager
objects for each underlying shapes and performs the requested operations
on the generated Shape objects.

Element

An element is simply the root of a shape construction. The Element object is
controlled by a manager of abstract type ElementManager. Only one imple-
mentation of ElementManager is currently available ElementFromShapesManager,
which in turns control the underlying ShapeManager objects.

Geo-object

A geo-object is the final product of the design. A manager abstract class,
called ObjectManager creates and manages each geo-object by creating in
turns each one of the elements. The ObjectManager can also operate on the
element by taking the difference or the intersection between elements.

Currently, three implementations of ObjectManager are available:

6

Using Element ObjectFromElementTreeManager object: Create geo-object
through shapes and shape operations. It offers the full flexibility of
the design.

Simple Carbonate Mound CarbonateMoundObjectManager object: Spe-
cialized geo-object manager to create carbonate mounds assembled
from up to three elements: the core, the shell and the debris. Each
of the element can either be a half-ellipsoid or a kernel shape. This
geo-object manager automatically performs the required operations on
these shapes. Only the shell element is required, the core and the de-
bris are optional. The operations on the elements are:

1: Intersect the core with the shell
core.intersection(shell)

2: Remove the core from the shell
shell.difference(core)

3: Remove the shell and the core from the debris
debris.difference(shell)

debris.difference(core)

The result is three elements that are self-consistent to create a geo-
object reprenting a carbonate mound.

Channel-Lobe-Crevasse ChannelLobeCrevasseObjectManager object:
This specialized geo-object manager constructs a channel system made
of the channel, the terminal lobe, crevasses and shale drapes around
the channel. Only the channel element is required. The manager
ensures that (1) the terminal lobe is attached at the end of the channel
with the proper initial thickness and width, and (2) that the crevasse
splays are located where the channel curvature is high. The steps to
create a geo-object are:

1: Create the channel element with a Gaussian Sinusoid shape
2: Add the drape element to the channel element
3: Create a terminal lobe element with lobeShape shape
4: Translate the lobe element to the end of the channel

7

5: Extract from the channel the high curvature locations
6: Randomly select a number of crevasse attachment from the high

curvature locations
7: for Each high curvature point selected do

8: Create a crevasse with proper rotation
9: Translate the crevasse such that its starting point coincides with

the selected location of high curvature
10: end for

The CarbonateMoundObjectManager manager can be fully implemented
using the ObjectFromElementTreeManager type of manager. This is not
the case with the channel-lobe-crevasse manager where special operations
are internally performed that could not be done with the available shape
or element operations. Additional specialized managers can be written to
facilitate the construction of specific training images such as fractures net-
works.

Geo-object examples

Figure 1 shows the resulting shape of a union between 6 kernels shapes and
one sphere. The kernel shapes have been translated and rotated to fit on
the surface of the sphere. This shape could mimic pore spaces for instance.

Figure 2 shows a geo-object representing a carbonate mound made of
three elements with ElementFromShapesManager. The steps to construct
that geo-object are:

1: Create the shape for the inner element with a half-ellipsoid with radius
10,25 and 40 units in the x,y and z direction respectively
inner = HalfEllipsoid(10, 25, 40)

2: Create the shape for the outer element with a half-ellipsoid
outer = HalfEllipsoid(30, 30, 35)

3: Perform a N-S shearing operation on both the inner and outer shapes
inner.shear(0,0.3)

outer.shear(0,0.5)

8

(a) Gaussian (radial) kernels (b) Exponential kernels

Figure 1: Complex shapes made from one sphere and 6 kernel shapes.

4: Create the drape element by taking the difference between two sheared
half-ellipsoid
drapes_top = HalfEllipsoid(40, 40, 15)

drapes_bot = HalfEllipsoid(35, 35, 9)

drapes.shear(0,0.5)

drapes_bot.shear(0,0.5)

drapes.difference(drapes_bot)

5: Take the intersection between the inner and the outer elements to confine
the top of the inner elements to the top of the outer elements
inner.intersection(outer)

6: Remove the shape of the inner element from the shape of the outer and
drape elements
outer.difference(inner)

drapes.difference(inner)

7: Remove the shape of the drape element from the shape of the outer
element
outer.difference(drapes)

Figure 3 shows a geo-object representing a carbonate mound with a com-
plex internal structure built with eight elements 4 half ellipsoids (the core
part) and 4 radial kernels (the debris) and twelve operations (intersections

9

(a) EW-view (b) Bottom view

(c) EW and NS cross-
sections

(d) EW and plan cross-
section

Figure 2: View of a carbonate mound build with three elements, the inner
core (orange), the drape (green) and the outer shell (grey).

and differences). Figure 4 shows a carbonate mound with a displacement
due to fault for instance. The steps in building thiscomplex geo-object are:

1: Create the shape for the inner element with a half-ellipsoid
inner = HalfEllipsoid(10, 25, 40)

2: Create the shape for the outer element with a half-ellipsoid
outer = HalfEllipsoid(30, 30, 35)

3: Perform a shearing operation on both the inner and outer shapes
inner.shear(-0.2,-0.5)

outer.shear(-0.2,-0.5)

4: Create two cuboids to cut the inner and outer shapes
innerFaulted = Cuboid(40, 40, 40)

outerFaulted = Cuboid(40, 40, 40)

5: Translate the cuboids to overlap with the portion that needs to be split
innerFaulted.translate(25, 0, 20)

10

outerFaulted.translate(25, 0, 20)

6: Take the intersection between cuboid and the half-ellipsoids
innerFaulted.intersection(inner)

outerFaulted.intersection(outer)

The result is that innerFaulted and outerFaulted now take the shape
of a quarter ellipsoid.

7: Remove the faulted inner and outer from the original hald-ellipsoids
inner.difference(innerFaulted)

outer.difference(outerFaulted)

8: Rotate and translate the faulted section to mimic displacement
innerFaulted.rotate(0,20,0)

outerFaulted.rotate(0,20,0)

innerFaulted.translate(0,7,5)

outerFaulted.translate(0,7,5)

Finally, Figure 5 shows the results of the specialized object manager
ChannelLobeCrevasseObjectManager to represent channels with terminal
lobes, crevasses and drapes. It would be impossible to build such a geo-
object with the ObjectFromElementTreeManager since it would not have
been possible to correctly place the lobe at the end of the channel, and each
crevasse where the curvature is high.

2.2 Simulating geo-objects with simulation event

Once the geo-objects have been defined, the next step is to position them
on the grid. The locations and number of geo-objects depend on how many
are needed (stopping criterion), the stacking options, preferential locations
(trends) and the intended interactions between geo-objects. A simulation
event controls these parameters.

The basic algorithm of a simulation event is to select a voxel in the
grid; check if that location is admissible; and if so draw a geo-object at that
location.

11

(a) EW-view (b) Bottom view

(c) EW and NS cross-
sections

(d) EW and plan cross-
section

Figure 3: View of carbonate mound build with eight elements and twelve
operations.

Stopping criterion

There are currently two available criteria to stop the simulation process:
(a) the desired number of geo-objects have been reached or (b) the desired
proportion of the grid has been filled with the a specific type of geo-object.

Stacking

A geo-object defined in Section 2.1 can be stacked by defining the number
of geo-objects to stack and the distance in the x, y and z directions between
each of the geo-object in the stack.

Two types of stacking are available. The first type is the single geo-
object stack defined by the manager SingleObjectStackerManager, which
consist of stacking the same type of geo-object. The second type of stacking
of type ObjectSequenceStackerManager allows to define a sequence of geo-
objects (not necessarily the same type) to be stacked. That sequence can

12

(a) EW-view (b) Bottom view

(c) EW and NS cross-
sections

(d) EW and plan cross-
section

Figure 4: View of faulted carbonate mound with displacement.

be repeated.

Positioning

The positioning partly controls where the geo-objects are rasterized on the
grid. Currently, three type of positioning options are available and each one
can also be used with an intensity field:

Random Selection of random locations on the grid

BottomToTop Choose a random location in the plane (x,y) and place the
object as low as possible until it either touches an already drawn geo-
object or reaches the bottom of the grid. This positioning fills the
grid with geo-objects from the bottom up. This positioning does not

13

(a) EW-view (b) Bottom view

(c) EW and NS cross-sections (d) EW and plan cross-section

Figure 5: Geo-objects generated with the manager.

deform the geo-objects. Figure 6 shows an example of three-element
geo-objects with the BottomToTop positioning option.

BottomToTopDrape This object is similar to the BottomToTop but the geo-
objects are deformed to drape over the existing geo-objects in the grid.
This is to mimic a geo-objectfalling from the top to the bottom of the
grid and conforming itself to the existing topology.

Each of these positionings can also be coupled with an intensity field which
consists of a grid property with values between zero and one. The intensity
values correspond to the probability of acceptance if that location is ran-

14

domly selected. Given an intensity field I(vi), i = 1, ..., N , with N the size
of the grid, the probability of a location vi being selected is

Pr (vi being chosen) =
I (vi)∑N
j=1 I(vj)

(1)

The intensity field for the BottomToTop and BottomToTopDrape only con-
cerns the (x,y) location in the plane as the z-position of the object is function
of the already drawn geo-objects.

Figure 6: Geo-objects generated with the BottomToTop positioning option.

2.2.1 Interaction rules

Finally the exact location of a geo-object can also be partially controlled
by the interaction rules between geo-objects. For instance, geo-object A
may never overlap geo-object B. There are currently three interaction rules
available:

No overlap Indicates that two geo-object types never overlaps. It is pos-
sible for a geo-object to not overlap with its own type.

Attachment Indicates that two geo-object types should always touch one
another. Geo-object B is said to be attached to geo-object A if at least
one voxel but less than 25% of the volume of geo-object B overlaps
with geo-object A. One geo-object may be attached with its own type.

15

Full overlap Geo-object B is said to fully overlaps with geo-object A if
100% of the volume of geo-object B overlaps with geo-object A. A
geo-object cannot fully overlaps with its own type.

Note that the interactions may not be consistent with the BottomToTop and
BottomToTopDrape positioning options.

2.2.2 Algorihm for a simulation event

The algorithm for positioning a geo-object under constraint is:

1: Initialize a random path
2: while not found a valid location do

3: Get a location vi

4: if using an intensity field then

5: if location vi is refused with a probability 1− I(vi) then

6: Try next location along the random path
7: end if

8: end if

9: Create the geo-object centered at vi

10: for each interaction rule do

11: Check if the current geo-object is valid considering the previously
simulated geo-objects.

12: end for

13: if geo-object violates at least one interaction rule then

14: Delete geo-object
15: else

16: Draw the geo-object
17: Update the stopping criterion
18: end if

19: if Not a found a potential location having visited three times all the
voxels then

20: Stop and exit: convergence failed
21: end if

22: end while

16

Note that this is a greedy algorithm and may generate inconsistencies when
many criteria are combined, see Lantuejoul (2002) for more details on boolean
models.

2.3 Parameterization

A flexible parameterization of the simulation process (positioning, stacking
and interactions) and the geo-object geometry is key in having a program
that can build training images for a wide variety of geological environments.

All geo-object parameters such as the dimension of the shapes and the
rotation angles can either be constant or be drawn from a triangular, expo-
nential or uniform distribution. Any value, be it a constant or a parameter
of a distribution, can either be constant or vary in space. A parameter that
can vary in space is termed a locally varying parameter (LVP). A LVP is
provided through a grid property. See Section 4 for an example of locally
varying properties.

3 Interfaces

The various Tetris user interfaces shield the user from most of the algorithm
and design complexities by providing intuitive and easy to use widgets to
build the geo-objects. The main interfaces are designed such that each part
of the algorithm, be the geo-objects, the elements or the simulation events,
can be saved and loaded from a file. Once a complex geo-object or element
structure has been build, it can be saved and stored in a database to be
used again when needed.

The interface is shown in Figure 7. The parameters associated with the
numbered bullets in Figure 7 are:

1. Number of geo-objects to parameterize.

2. Remove the geo-object from the list.

3. Save the geo-object to a file.

4. Load a geo-object from a file.

17

5. Button to parameterize the geo-object. When pressed a new dialog
window (see Figure 8) appears to enter the geo-object parameters.

6. Type of geo-object (see Section 2.1).

7. Number of simulation event to parameterize.

8. Remove the simulation event from the list.

9. Save the simulation event to a file.

10. Load a simulation event from a file.

11. Button to parameterize the simulation event. When pressed a new
dialog window (see Figure 9) appears to enter the simulation event
parameter.

Figure 7: Tetris main interface to parameterize the geo-objects and the
simulation events

The interface to build a geo-object from a set of elements is shown in
Figure 8. The parameters are:

1. Name of the geo-object.

2. Number of elements to build the geo-object.

18

3. Remove the element from the list.

4. Save the element to a file.

5. Load an element from a file.

6. Button to parameterize the element. When pressed a new dialog win-
dow appears to enter the shape(s) parameters.

7. Number of element operations to parameterize.

8. Remove the element operation from the list.

9. Move the element operation up the execution order.

10. Move the element operation down the execution order.

11. Parameterize the operation (difference or intersection).

Figure 8: Tetris element interface to build object from the ObjectFromEle-
mentTreeManager geo-object manager.

The interface to simulate a geo-object is shown in Figure 9. The param-
eters are:

19

1. Name of the simulation event.

2. Name of the geo-object to be simulated.

3. Stacking option.

4. Stopping criterion (count or proportion).

5. Positioning option

6. Option to use an intensity field for the preferential location of the
geo-objects.

7. Number of interaction rules.

8. Type of interaction rule (No Overlap, Attach, Full Overlap).

9. Geo-object type to apply the interaction rule.

4 Examples

4.1 Cross-correlated parameters

By using multiple cross-correlated LVPs it is possible to build training im-
ages depicting complex morphological behaviors. Take for instance Figure 10
representing a series of mound geo-objects with dependent size, shear inten-
sity and rotation angles. Whereas steeper angles correlate with increasing
shearing, decreasing outer envelope sizes and rapidly decreasing core sizes.
First, four LVP properties are created (Figure 10(a) - (d)); the relationships
between these geo-object properties are clearly visible. The shear inten-
sity follows the rotation angles trend, while the sizes of both elements are
inversely proportional to the absolute value of the rotation angles.

The resulting realization shows larger mounds in the center and smaller
mounds toward the extremities. As the mounds are tilted, the length of the
tails (created by shearing) increases in the direction of the tilt mimicking
the deposition of sediment downslope.

20

Figure 9: Tetris simulation event interface to simulate a geo-object.

4.2 Geo-objects interactions

Figure 11 shows an example of three geo-objects with specific attachment
interactions. It consists of two sets of fractures, North-South (blue) and
East-West (yellow) and faults (red). All geo-objects are modeled with the
cuboid shape. The planes and the N-S fractures systematicaly intersect the
E-W set of fractures. That simulation was performed using three simulation
events: (1) simulate the E-W fractures, (2) simulate the N-S fractures with
an attachment rule with the E-W fractures and (3) simulate the plane also
with an attachment rule with the E-W fractures.

21

(a) Rotation an-
gles (plan view)

(b) Vertical shear
intensity (plan
view)

(c) Size of the
outer shell (plan
view)

(d) Size of the
inner core (plan
view)

(e) One simulation of the training image
(side view)

(f) View of the simulated inner core (side
view)

Figure 10: Carbonate mound simulated with cross-correlated spatially vary-
ing parameters.

5 Conclusion

The Tetris plugin is a flexible boolean simulation tool to generate training
images. It can generate complex geo-objects with complex trends. However,
generating an image with the program does not guarantee good reproduction
when used with a multiple-point simulation algorithm. Not all realizations
from the Tetris SGeMS plugin can systematically be used as training images.
The readily available version of snesim (Strebelle, 2002), or filtersim (Zhang
et al., 2006; Wu et al., 2008) available on SGeMS or Petrel cannot (and
should not) be used with training images containing trends. However, the
new generation of training image-based algorithms (de Vries et al., 2008;

22

(a) East-West cross section (b) North-south cross section

(c) Plan view (d) Global view

Figure 11: Fractures and fault representation. The N-S fracures (blue)
always intersect the E-W fracures (yellow). The planes (red) also systemat-
icaly intersect the E-W set of fractures (blue).

Boucher, 2009; Chugunova and Hu, 2008; Mariethoz, 2009) can handle very
complex training images by considering trends.

The flexible design also allows to extend the plugin by adding new shapes,
geo-object managers, distribution types, stopping criteria and positioning
options. Adding these features requires writing C++ classes derived from
the proper base class and new widgets for the user interface. The library Qt
is used for the interface.

Finally, the plugin can be used for boolean simulation when soft data
are available and no hard data conditioning is required. Enabling hard data
conditioning would require new stopping criterion and positioning classes.

23

References

Boucher, A., 2009. Considering complex training images with search tree
partitioning. Computers & Geosciences 35 (6), 1151 – 1158.

Chen, B., Kaufman, A., 2000. 3d volume rotation using shear transforma-
tions. Graphical Models 62, 308322.

Chugunova, T. L., Hu, L. Y., 2008. Multiple-point simulations constrained
by continuous auxiliary data. Mathematical Geosciences 40, 133–146.

de Vries, L. M., Carrera, J., Falivene, O., Gratacs, O., Slooten, L. J.,
2008. Application of multiple point geostatistics to non-stationary images.
Mathematical Geosciences 41 (1), 29–42.

Deutsch, C. V., Tran, T. T., 2002. Fluvsim: a program for object-based
stochastic modeling of fluvial depositional system. Computers & Geo-
sciences, 525–535.

Deutsch, C. V., Tran, T. T., 2004. Simulation of deepwater lobe geometries
with object based modelling: Lobesim. Tech. rep., University of Alberta.
URL http://www.uofaweb.ualberta.ca/ccg//pdfs/1999%

2004-LobeModeling1.pdf

Deutsch, C. V., Wang, L., 1996. Hierarchical object-based stochastic mod-
eling of fluvial reservoirs. Mathematical Geology 28 (7), 857–880.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. M., 1994. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional.

Lantuejoul, C., 2002. Geostatistical Simulation: Models and Algorithms.
Springer-Verlag, Berlin, Germany.

Maharaja, A., 2008. Tigenerator: Object-based training image generator.
Computers & Geosciences 34 (12), 1753 – 1761.

24

http://www.uofaweb.ualberta.ca/ccg//pdfs/1999%2004-LobeModeling1.pdf
http://www.uofaweb.ualberta.ca/ccg//pdfs/1999%2004-LobeModeling1.pdf

Mariethoz, G., 2009. Geological stochastic imaging for aquifer characteriza-
tion. Ph.d. dissertation, University of Neuchtel, Switzerland.

Pyrcz, M., Boisvert, J., Deutsch, C., 2009. Alluvsim: A program for event-
based stochastic modeling of fluvial depositional systems. Computers &
Geosciences 35 (8), 1671 – 1685.

Remy, N., Boucher, A., Wulf, J., 2009. Applied Geostatistics with SGeMS:
A User’s Guide. Cambridge University Press.

Strebelle, S., 2002. Conditional simulation of complex geological structures
using multiple-point statistics. Mathematical Geology 34 (1), 1–21.

Tetzlaff, D. M., Harbaugh, J. W., 1989. Simulating Clastic Sedimentation.
Van Nostrand Rheinhold, New York.

Wu, J., Boucher, A., Zhan, T., 2008. A sgems code for pattern simulation of
continuous and categorical variables: Filtersim. Computers & Geosciences
34 (12), 1863–1876.

Zhang, T., Journel, A. G., Switzer, P., 2006. Filter-based classification
of training image patterns for spatial simulation. Mathematical Geology
38 (1), 63–80.

25

	Introduction
	Notation
	About SGeMS

	Design and algorithm
	Building Geological Object
	Simulating geo-objects with simulation event
	Interaction rules
	Algorihm for a simulation event

	Parameterization

	Interfaces
	Examples
	Cross-correlated parameters
	Geo-objects interactions

	Conclusion

