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Abstract
We have developed a highly accurate 2D finite difference method to solve dynamic rupture problems in 
irregular geometries. Our objective is to connect properties of high frequency radiation produced during 
slip on rough faults to statistical measures of fault roughness (namely, the amplitude-to-wavelength 
ratio, γ, of self-similar fractal faults). We study differences between antiplane and in-plane propagation; 
while faults are rougher in the direction perpendicular to slip (γ = 10-2 vs. 10-3 in the slip direction), only 
in the in-plane case does slip on rough faults alter the normal stress. Antiplane propagation is only 
mildly perturbed at γ = 10-2, suggesting that it might be possible to construct approximate broadband 
seismograms as the sum of the wavefield from slip on a flat fault plus a first-order correction term to ac-
count for roughness. The changes in normal stress in the in-plane case can dramatically influence the 
rupture process; in some cases, conditions that permit propagation on flat faults are insufficient to host 
ruptures on rough faults. To handle irregular geometries, we transform the governing equations from a 
non-Cartesian coordinate system that conforms to the irregular boundaries of the physical domain to a 
Cartesian coordinate system in a rectangular computational domain, and solve the equations in the com-
putational domain. To accurately capture the high frequency wavefield, we use a numerical method that 
produces far smaller oscillations than those plaguing conventional finite difference/element methods. 
The governing equations (momentum conservation and Hooke's law) are written as a system of first-
order equations for velocity and stress, which are defined at a common set of grid points and time steps 
(i.e., there is no staggering in space or time). Time stepping is done using an explicit third-order Runge-
Kutta method. The equations are hyperbolic and the fields can be decomposed into a set of waves (with 
associated wave speeds). Spatial derivatives are computed with fifth-order WENO (weighted essentially 
non-oscillatory) finite differences in the upwind direction associated with each wave [Jiang and Shu, J. 
Comp. Phys., 126(1), 202-228, 1996]. Rather than using data from a single stencil (i.e., set of grid 
points) to calculate the derivative, a weighted combination of data from several candidate stencils is 
used. The weights are assigned based on solution smoothness within each stencil, and stencils in which 
the solution exhibits excessive variations are given minimal weight. Consequently, numerical oscilla-
tions are suppressed, even in the vicinity of the rupture front and at wavefronts.
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Motivation

Coordinate Mapping For Irregular Geometries
Irregular geometries are typically handled using finite element methods, 
which may suffer from numerical oscillations and often require special 
treatment of nonphysical hourglass modes. But finite difference methods 
(like WENO) can also be used via a global mapping between irregular 
physical domain and Cartesian (rectangular) computational domain. Gov-
erning equations are transformed and solved in computational domain.

Finite Difference Method with Coordinate Mapping
Governing Equations
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momentum conservation and Hooke’s law as (hyperbolic) system of first 
order PDEs (antiplane case with constant material properties for simplicity)
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WENO Reconstruction and Conservative Differencing

1. discretize in space, defining point values as qi(t)= q(xi,t) on mesh  {xi}={iΔx}

3. evaluate Fi=F(qi) (at grid points)

4. reconstruct (approximate) Fi+1/2
 and Fi−1/2

 using values of {Fi} as follows (for Fi+1/2
)

a. form three alternative reconstructions, using three different stencils

c. form weighted linear combination of alternative reconstructions

b. evaluate “smoothness indicator” for each stencil and assign weight ω to 
associated reconstruction (small weights for stencils crossing discontinuities 
or steep gradients in q, large weights if solution is smooth inside stencil) 

Strategy: Approximate spatial derivatives using nearby stencils (set of grid points) in 
which solution is smoothest. Avoid differentiation across discontinuitities (causes os-
cillations!). Consider 1D case (2D and 3D treated dimension by dimension):

Notice that stencils are biased to left, which is appropriate for waves 
travelling from left (upwind) to right (downwind). Similar treatment for 
waves travelling from right to left. But we have waves propagating in 
both directions, so we must decompose fields into these waves and iden-
tify associated wave speeds. Again consider 1D case.
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Diagonalize A: 

Eigenvalues are wave speeds, dot products of eigenvectors with q 
(Riemann invariants) transported by waves:

propagates to right at speed +c 

propagates to left at speed -c 

μ/c is shear impedence, and these are stress changes carried by plane S waves. 

Now split F=Aq into left- and right-going waves as F=F++F−, and perform 
upwind-biased reconstruction of F+ (biased to left) and F− (biased to right).

Split A into left- and right-going waves as A=A++A−, where 
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Stochastic rupture models (with heterogeneous stresses, for example) are widely used to decrease coherence of rupture process and 
generate high frequency ground motion. However, those models are applied on planar faults, and one often considers heteroge-
neous stress or strength on a flat fault as a proxy for unmodeled geometrical heterogeneities. With proper tools, we can investigate 
this problem more rigorously. Since high frequency radiation is of interest, numerical methods must accurately capture this part of 
the spectrum (which is often contaminated by spurious oscillations due to steep gradients in fields around rupture fronts and wave-
fronts).

Target Problem: Connect Fault Roughness to High Frequency Ground Motion

Boundary Conditions

How does roughness affect rupture propagation? What are characteristics of high frequency ground motion and how are they re-
lated to amplitude-to-wavlength ratio of roughness, γ? Can contribution from different roughness wavelengths be isolated?

We modeled plane strain ruptures on rough faults with rate-and-
state friction featuring strong dynamic weakening. (above), 
(below), and (right) Results from band-limited self-similar profile. 
Note large changes in normal and shear stress on fault. Changes 
will be even more extreme when shorter wavelength roughness is 
modeled. 
Caution: While these figures show only minor perturbations to 
rupture process at γ=10−3, this may change when using smaller 
cut-off wavelength!

We use similar wave decomposition when applying boundary conditions. Use 
one-sided reconstructions near boundaries (and faults). Preserve Riemann in-
variants (as calculated by finite difference solution of PDEs) propagating from 
medium into boundary, set amplitudes of outward propagating waves to satisfy 
boundary conditions. For example, consider 1D case with fault at x=0. 
1. update all fields with finite difference solution of PDEs
2. preserve value of Riemann invariants propagating into fault

3. solve together with friction law:
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Transform governing equation using chain rule:
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1D Test: Incident S wave 
(boxcar shape) on rate-
and-state fault, comparing 
nonlinear WENO recon-
struction (adaptive weight-
ing of stencils) and upwind 
central reconstruction (all 
stencils have constant 
weights): (top) prior to 
wave reaching fault, 
(bottom) after wave reaches 
fault and induces slip.

(above) Example of strong motion record at 2 km from fault in 1992 Land-
ers earthquake (Lucerne Valley, N component). Fourier spectrum of accel-
eration is flat between 1 and 10 Hz, suggesting a process that excites 
waves over a broad range of frequencies. (right) LiDAR and profilometer 
measurements of fault surface roughness, showing how faults are rough at 
all scales [Power and Tullis, 1991; Renard et al., 2006; Sagy et al., 2007] 
in a self-similar manner: amplitude-to-wavelength ratio of roughness, γ, is 
independent of scale of observation. Faults are rougher in direction per-
pendicular to slip (γ=10−2) than parallel to slip (γ=10−3).
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(left) and (above) Results from single Fourier mode profile, to 
separate effects of amplitude-to-wavelength ratio, γ, and wave-
length, λ. A single roughness wavelength does not manifest as a 
distinct peak in the Fourier spectrum of ground motion due to di-
rectivity. 

γ primarily influences 
amplitude (not period) of 
high frequency motion

λ primarily influences 
period of high frequency 
motion (but note directivity 
causes increase in period 
with time) 

directivity helps excite 
range of frequencies, 
even for single λ
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