Numerical modeling of seismic airguns and low-pressure sources
Leighton M. Watson, Eric M. Dunham, and Shuki Ronen

SUMMARY
There is significant interest in understanding the dynamics of seismic airguns and the coupling between the bubble produced when the airgun discharges and the pressure waves excited in the water. It is desirable to increase the low frequency content of the signal, which is beneficial for imaging, especially for sub-salt and sub-basalt exploration, and to reduce the high frequency content, which is not useful as seismic signal, yet is thought to adversely impact marine life. It has been argued that a new style of airgun, with drastically lower pressure and larger volume than conventional airguns, will achieve these improvements. We develop a numerical model of a seismic airgun and compare the simulation results to experimental data for validation. We perform numerical simulations for a range of airgun firing parameters and demonstrate that the proposed low pressure source (4000 in3, 600 psi) is able to reduce the high frequency noise by 6 dB at 150 Hz compared to a 1000 in3 airgun at 2000 psi, while maintaining the low frequency content. Therefore, the low pressure source is more environmentally friendly without compromising survey quality.

INTRODUCTION
Seismic airguns are the predominant source used in marine seismic surveys. They function by discharging highly pressurized air forming a bubble that expands and contracts in the water, exciting pressure waves over a wide range of frequencies. The low frequency waves are used to image targets of interest. Several studies have emphasized the need for improved low frequency content (below 30 Hz) for sub-salt and sub-basalt imaging (Ziolkowski et al., 2003). The high frequency energy (above 150 Hz) is generally useless for seismic imaging as it is attenuated before it reaches the target or scattered by the heterogeneous overburden. In addition, current seismic acquisition and processing techniques sample at 2 ms and only utilize frequencies up to ~220 Hz. Thus, reducing the proportion of high frequency energy generated would improve the efficiency of the airgun. Furthermore, ocean noise from marine seismic surveys is thought to have a significant impact on marine life (Weilgart, 2007; Nowacek et al., 2015). The specific impact of marine seismic surveys on the plethora of different marine species is complicated and understanding is hampered by limited data (Weilgart, 2013). However, it is likely that reducing the high frequency noise that is not used for seismic imaging will have environmental benefits without compromising survey quality.

Chelminski et al. (2016) proposed a low-pressure source (LPS) with radically reduced pressure and increased volume. They argue that the LPS will be more efficient and have lower high frequency content, alleviating environmental concerns. To investigate this idea, Chelminski Technology and Dolphin Geophysical conducted field tests of a LPS prototype in June 2015. Due to experimental limitations, the field measurements were restricted to a limited range of airgun parameters. Furthermore, the prototype tested had a much smaller volume than that of the proposed LPS.

In this work we develop a numerical model for seismic airguns, based on the work by Ziolkowski (1970). We validate the model against data from the field tests of the LPS prototype. Previous authors (e.g., Landró and Sollie, 1992; Li et al., 2014; de Graaf et al., 2014) have developed more complicated models and performed sophisticated inversions to find the best fitting model parameters. Here, we focus on the predictive capability of forward modeling. We perform numerical simulations to investigate airgun configurations that were not tested in the lake and to predict whether the full scale LPS will be more efficient and produce less high frequency than a conventional airgun.

DATA
Data was collected over two days at Lake Seneca, a ~200 m deep lake in upstate New York. The LPS prototype was suspended at variable depth from a crane over the side of the boat. Two airgun volumes, 598 in3 and 50 in3, were tested at a range of depths (5, 7.5, 10, 15, and 25 m measured depth) and pressures (135 psi to 1320 psi for the 598 in3 airgun and 510 psi to 1850 psi for the 50 in3 airgun). Observations were made with a 24 channel downhole array in the far-field, 75 m below the airgun, with a spacing of 2 m between the channels. The observations are recorded at 32 kHz, a much higher temporal resolution than in industry seismic surveys, where 0.5 kHz is the standard sampling rate.

\[f = k \frac{(1 + D/10)^{5/6}}{(p_{a}V_g)^{1/3}}, \]
(1)

Figure 1: The Rayleigh-Willis equation (dashed) accurately predicts the dominant frequency of the far-field data (solid) across a range of different firing parameters.

The Rayleigh-Willis equation is a well known formula used in the exploration industry to estimate the dominant frequency of a seismic airgun (Rayleigh, 1917; Willis, 1941; Cole, 1948).
Numerical modeling of seismic airguns

where D is the depth of the airgun in meters, p_a and V_a are the pressure and volume of the airgun, respectively, and k is a constant. We are interested in how the high and low frequency components of the signal change when the airgun parameters are varied. Therefore, we need to develop a numerical model of the system that can capture all of the frequency information, rather than just the dominant frequency.

MODEL

Since the seminal paper by Ziolkowski (1970) there has been extensive work on numerical modeling of seismic airguns (e.g., Schulze-Gattermann, 1972; Safar, 1976; Ziolkowski, 1982; Li et al., 2010; de Graaf et al., 2014). We follow a similar treatment, assuming that the internal properties of the airgun and bubble are spatially uniform and that the bubble is approximately spherical. The first assumption poses a restriction on the temporal resolution of our model, limiting the model resolution to time scales long compared to the time it takes for a sound wave to propagate across the airgun and bubble. The resolution will vary depending upon the size and physical properties of the bubble. For the bubble at equilibrium the upper bound on the resolution is approximately 1 ms, corresponding to a frequency limit of 1 kHz. The second assumption is well satisfied as the bubble radius (\sim1 m) is far smaller than the wavelengths that we are interested in (>10 m). Therefore, it is appropriate to treat the bubble as a point source.

We solve the Euler equations governing the motion of a compressible fluid and evaluate the solution on the bubble wall to get a nonlinear ordinary differential equation for the bubble dynamics. Our work differs from previous studies (e.g., Ziolkowski, 1970; de Graaf et al., 2014) as we use the modified Herring equation (Herring, 1941; Cole, 1948; Volurka, 1986) rather than the Gilmore (1952) equation to describe the bubble motions. The modified Herring equation is

$$
RR + \frac{3}{2} \frac{d}{dt} R^2 = \frac{p_b - p_\infty}{\rho_\infty} + \frac{R}{\rho_\infty c_\infty} p_b,
$$

where R and $\dot{R} = dR/dt$ are the radius and velocity of the bubble wall, respectively, p_b is the pressure inside the bubble, and p_∞, ρ_∞ and c_∞ are the pressure, density, and speed of sound, respectively, in the water infinitely far from the bubble. Without the p_b term, equation 2 is the Rayleigh equation (Rayleigh, 1917) which is a statement of conservation of momentum for an incompressible fluid. The p_b term is a correction for compressibility that allows for energy loss through acoustic radiation. The Herring equation assumes a constant, rather than pressure dependent, speed of sound, which is well justified as $R/c \ll 1$. The modified version of the Herring equation neglects the $(1 - R/c_\infty)$ type correction factors (Vokurka, 1986).

The bubble is coupled to the airgun by mass conservation. We solve for the exit velocity of the flow out of the airgun at each time step rather than assuming choked flow. The airgun is assumed to discharge adiabatically. The temperature of the bubble is governed by the first law of thermodynamics for an open system. This allows for heat conduction across the bubble wall and accounts for the energy associated with the advection of mass from the airgun into the bubble. The air inside the airgun and the bubble is treated as an ideal gas with a heat capacity ratio of $\gamma = 1.4$. Combined with the modified Herring equation, this gives a system of nonlinear ordinary differential equations for the coupled bubble and airgun system. We solve this using an explicit Runge-Kutta solver with adaptive time-stepping.

The pressure perturbation in the water is related to the bubble dynamics by (Keller and Kolodner, 1956)

$$
\Delta p(r,t) = \rho_\infty \left[\frac{V(t - r/c_\infty)}{4\pi r} - \frac{V(t - r/c_\infty)^2}{32\pi^2 r^4} \right],
$$

where Δp is the pressure perturbation in the water, r is the distance from the center of the bubble, and $V = \frac{4}{3} \pi R^3$ is the volume of the bubble. The second term on the right side is a near-field term that decays rapidly with distance and is negligible in the far-field. For the parameter space relevant to seismic airguns, equations (2) and (3) give identical results to the equivalent Gilmore (1952) formulations.

Figure 2: Bubble radius (top) and near-field pressure perturbation in the water, $\Delta p = p_b - p_\infty$, (bottom) as computed by the Gilmore (1952) equations and with the analogous equations from Herring (1941) and Keller and Kolodner (1956), which are used in this work. The bubble radius from the modified Herring equation is used as an input to the Keller and Kolodner (1956) pressure equation. The bubble radius and pressure perturbation are normalized by the maximum of the Gilmore (1952) solutions. The initial conditions of Ziolkowski (1970) are used where the initial volume of the bubble is equal to the volume of the airgun. The discontinuity in the derivative of the radius and pressure is due to the airgun port opening instantaneously.

The observed pressure perturbation in the water is a superposition of the direct arrival and the ghost, which is a wave that is reflected from the surface of the water and arrives at the receiver at a later time. In the near-field, the amplitude of the ghost is much smaller than that of the direct arrival as the ghost travels along a much longer path, reducing the amplitude by geometrical spreading. In the far-field, the path length for the
Numerical modeling of seismic airguns

The observed pressure perturbation, Δp_{obs}, is a superposition of the direct arrival and the ghost. For a vertically down-going direct wave, as is the case for our acquisition geometry, the observed pressure perturbation in the water is computed by

$$\Delta p_{\text{obs}}(r,t) = \Delta p_d(r,t) - \Delta p_g(r + 2D, t),$$

(4)

where Δp_d and Δp_g are the pressure perturbations from the direct arrival and the ghost, respectively. Equation 4 assumes linearity and is only valid when the pressure perturbation is dominated by the first term in equation 3, as is the situation for the work shown here.

MODEL VALIDATION

In order to validate our model, we compare our simulation results to the lake data. The model has several tunable parameters. We tune these parameters so that the model fits the far-field data for one airgun firing configuration (Figure 3). We can then match the measurements from the other firing configurations by varying the airgun properties (Figure 4). This is done without any further tuning of the model parameters.

The magnitude of the pressure perturbation depends upon the location of the receiver relative to the airgun. To remove this dependency, we normalize all observations and simulations by multiplying the pressure perturbation by r, the distance from the airgun to the receiver, and state the result in bar m. The sea surface is typically flat during data acquisition and we found that -1 was an appropriate choice for this work.

LOW PRESSURE SOURCE

Conventional airguns typically have volumes of less than 1000 in3 and are pressurized to 2000 psi. Chelminski et al. (2016) proposed a low pressure source (LPS) with a volume of up to 6000 in3 and pressure of 600 psi to 1000 psi. The LPS will have a much larger port area than conventional airguns, 62 in2 compared to 16 in2.

Figure 6 shows a comparison between the simulated pressure signal for a typical conventional airgun and for the proposed LPS with the same PV value. This ensures that, according to the Rayleigh-Willis equation, they will have the same dominant frequency. The LPS reduces the high frequency noise by 5 dB at 150 Hz. However, with the same PV as the conventional airgun, the LPS is unsuccessful at improving the low frequency content, with a reduction of 1.5 dB at 3Hz.

Larger volume conventional airguns (2000 in3) have been proposed as a solution to improve the low frequency content (Ziolkowski et al., 2003). However, the larger volume airguns are heavy and have maintenance issues because of the high pres-
Numerical modeling of seismic airguns

Figure 5: Simulation results are in agreement with the Rayleigh-Willis equation. The corresponding spectra for the data is shown in Figure 1.

Figure 6: Comparison between simulations of the near-field (r = 1 m) pressure perturbation generated by a conventional airgun and a LPS fired at a depth of 7.5 m. This LPS reduces the high frequency noise but also decreases the low frequency content compared to a conventional airgun.

The peak-to-bubble ratio (the amplitude of the initial pressure pulse compared to the amplitude of the second pulse, which is due to the oscillation of the bubble) is reduced from 1.92 for the conventional airgun to 1.79 for the 3333 in3 LPS and 1.76 for the 4000 in3 LPS. This will not degrade the quality of the data as processing can extract useful signal from the bubble as well as from the initial pulse (Ronen et al., 2015).

Figure 7: Comparison between simulations for a conventional airgun and a larger LPS fired at a depth of 7.5 m. The low frequency content is the same for the two designs but the LPS produces less high frequency noise.

CONCLUSION

There is significant interest in reducing the high frequency noise that is produced by seismic airguns as this is thought to adversely impact marine life. In addition, it is desirable to improve their imaging capabilities and efficiency. The low-pressure source has been proposed as an improvement to conventional seismic airguns that will achieve these goals.

We present a numerical model for seismic airguns and low-pressure sources that we validate against high resolution far-field data from a lake. Numerical simulations show that the proposed low pressure source can reduce the high frequency noise without compromising the usable low frequency content compared to a conventional airgun and is thus more efficient and environmentally friendly. Furthermore, the low-pressure source can be manufactured and operated at far larger volumes than conventional airguns enabling the low frequency content to be improved resulting in better sub-salt and sub-basalt imaging capabilities.

ACKNOWLEDGMENTS

We thank Chelminski Technology and Dolphin Geophysical for providing us access to the data from Lake Seneca. We acknowledge the Stanford Exploration Project and their sponsors for financial support.
EDITED REFERENCES
Note: This reference list is a copyedited version of the reference list submitted by the author. Reference lists for the 2016 SEG Technical Program Expanded Abstracts have been copyedited so that references provided with the online metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web.

REFERENCES

