
MDSBI: Multi-Dimensional Spectral

Boundary Integral Code, Version 4.1.7

Eric M. Dunham
edunham@fas.harvard.edu

20 September 2008

1 Introduction

MDSBI is a Fortran 95 boundary integral equation code for solving elastody-
namic problems, specifically those dealing with shear ruptures or frictional
instabilities. The code handles both two- and three-dimensional problems,
as well as the response of a single spatial Fourier mode, and the case of
a spring-block system. The code handles the case of identical materials on
either side of the fault, as well as the more general bimaterial problem, includ-
ing its poroelastic correction. Various friction laws have been implemented,
including slip-weakening, rate-and-state (with flash heating), and thermal
pressurization.

The elastodynamic response is calculated by a convolution over space
and time of the slip or slip velocity history with appropriate kernels. The
spatial convolution is performed in the Fourier domain using FFTs. The
code was developed based on ideas from several papers, in particular, P. H.
Geubelle and J. R. Rice (A spectral method for three-dimensional elastody-
namic fracture problems, Journal of the Mechanics and Physics of Solids,
43, 1791–1824, 1995), P. H. Geubelle (A numerical method for elastic and
viscoelastic dynamic fracture problems in homogeneous and bimaterial sys-
tems, Computational Mechanics, 20, 20–25, 1997), M. S. Breitenfeld and P.
H. Geubelle (Numerical analysis of dynamic debonding under 2D in-plane
and 3D loading, International Journal of Fracture, 93, 13–38, 1998), and N.
Lapusta, J. R. Rice, Y. Ben-Zion, and G. Zheng (Elastodynamic analysis for
slow tectonic loading with spontaneous rupture episodes on faults with rate-

1



and state-dependent friction, Journal of Geophysical Research, 105, 23,765–
23,789, 2000). These papers are an excellent place to start if you wish to
read more about the method.

For details on the poroelastic fault zone model, see Dunham, E. M. and
J. R. Rice (2008), Earthquake slip between dissimilar poroelastic materials,
Journal of Geophysical Research, 113, B09304, doi:10.1029/2007JB005405.
A description of the numerical method used to solve the coupled flash heating
and thermal pressurization equations is in preparation by H. Noda, E. M.
Dunham, and J. R. Rice (2008). You can find these papers on my website.

The current version of MDSBI requires an MPI library (though you can
still run it on a single processor, of course). Memory and computational
work are distributed across the processors and the only interprocessor com-
munication occurs during the spatial FFT. I have included several options
for performing the FFT. Some use the distributed memory FFT in FFTW-
2.1.5; others gather all information to the master process, perform the FFT
there, and scatter the information back to the other processes. Efficiency
depends on the problem size and number of processors you are using. Data
output of the distributed memory arrays is also done in parallel using MPI
I/O routines.

2 Installation

1. Download the compressed and archived source code mdsbi-v4.1.7.tgz
from
http://www.people.fas.harvard.edu/~edunham/codes.html

to a chosen installation directory (taken to be INSTALL in this text).

2. Unzip and extract:
tar xvzf mdsbi-v4.1.7.tgz

or:
gunzip mdsbi-v4.1.7.tgz followed by tar xvf mdsbi-v4.1.7.tar

This will create a directory INSTALL/mdsbi/ that contains some files
and subdirectories. The subdirectories are

(a) analysis: routines to analyze the output data

(b) data: where the output data will be written (you may wish to
create a symbolic link of the same name if you want to store the
data elsewhere)

2



(c) kernel: convolution kernel tables

(d) problems: files configuring the problems to be solved

(e) src: source code

3. Download the kernel tables kernels.tgz from
http://www.people.fas.harvard.edu/~edunham/codes.html

to the kernel directory INSTALL/mdsbi/kernel.

4. Unzip and extract:
tar xvzf kernels.tgz

or:
gunzip kernels.tgz followed by tar xvf kernels.tar

This should produce two files containing the tabulated values of the
convolution kernel; make sure they are in the kernel directory.

5. The code uses two libraries that are not included in this package. They
are LAPACK, a package of linear algebra routines—see
www.netlib.org/lapack/ and FFTW, the Fastest Fourier Transform
in the West—see www.fftw.org. The FFTW routines can perform
FFTs on arrays of all sizes, not just powers of two.

To set up these libraries, you need to make a few changes in the
INSTALL/mdsbi/src/ directory:

(a) Install the LAPACK library. This library is often pre-installed on
Linux distributions, and is included in recent OS/X distributions
(in the vecLib framework), so you might want to check if you
already have it before installing. One option is to download it
from www.netlib.org/lapack/. You can actually get by with
only a subset of the complete LAPACK library known as ATLAS
(also available on netlib).

(b) Edit Makefile to link to the appropriate LAPACK library (a few
examples are given in the makefile).

(c) Set up the FFT routines. All FFT calls will be contained in
fft_routines.f90. I’ve provided three implementations of this:
two that use FFTW-2.1.5 and one that uses FFTW-3.x. FFTW
3.x routines (in file fft_routines_fftw3.f90) are for a single
processor only, so I gather data from all processes to the master,

3



perform a serial FFT on the master, and then distribute the data
out to all processes. In my experience, this is the most efficient
method unless you use more than about 32 processors. Also, in
the current version of the code, I have only implemented 2D trans-
forms (for 3D elasticity problems) using FFTW-3.x. The FFTW-
2.1.5 library has distributed memory parallel transforms; I in-
clude two implementations of this (but only for 1D transforms for
2D elasticity problems). The 1D transform is only a complex-to-
complex transform, but we have real data. In one implementation
(in file fft_routines_fftw2.f90), I pack a real vector of length
N into a complex vector of length N/2, perform the distributed
memory parallel FFT on this complex vector, and then unpack the
resulting complex vector to yield only the non-negative wavenum-
bers. However, this requires additional interprocessor communi-
cation. The other option (in file fft_routines_fftw2c.f90) is
to pack the real vector of length N into a complex vector of length
N (setting the complex part equal to zero). After taking a dis-
tributed memory parallel transform, the code works with both
positive and negative wavenumbers. Despite the fact that this
means sacrificing a factor of 2 in terms of memory and computa-
tional time, it eliminates the extra interprocessor communication
step. Which routine is fastest depends on your system so exper-
iment with all of them. If you want to use another library, then
you can use any of these files as a template. If you choose FFTW,
then download and install the library from www.fftw.org, making
sure that Fortran libraries are created. To use FFTW 3.x:

i. Make a symbolic link (or rename) the file:
ln -s fft_routines_fftw3.f90 fft_routines.f90

ii. Edit Makefile to link to the FFTW3 library: -lfftw3.

and to use FFTW 2.1.5:

i. Make a symbolic link (or rename) the file:
ln -s fft_routines_fftw2.f90 fft_routines.f90 or
ln -s fft_routines_fftw2c.f90 fft_routines.f90

ii. Edit Makefile to link to the FFTW2 libraries: -lrfftw -lfftw.

6. Set your compiler options in Makefile. I have a few options in the
makefile; basically uncomment your compiler or add it and do likewise

4



with the flags. The program (well, at least previous versions—I haven’t
checked for this version) successfully compiles and runs with the Intel
compiler ifort, the Sun compiler f90, IBM’S compiler xlf95, and the
G95 compiler g95 (available at www.g95.org). Please let me know if
you experience any errors with yours.

One item of note concerns the use of non-Fortran 95 intrinsic subrou-
tines.I have made use of only one such subroutine: flush. The flush

subroutine forces the program to automatically write all queued out-
put to a specific file. This option is nice when you want to look at the
contents of the output files (or the status file, discussed later, that
tells you which time step you are on or any error messages), before the
program is finished running. For certain compilers or optimization lev-
els, this data is not output immediately when the program is directed
to write output. The flush subroutine causes this to occur. If you
experience problems with this non-intrinsic, simply comment out the
appropriate line in the source code. The specific subroutine is flush_io
in io.f90 in the INSTALL/mdsbi/src/ directory.

7. Choose the precision with which you would like the calculations to be
performed. The default installation of the FFTW library includes only
double precision routines. For single precision routines, you will need to
change the FFTW installation options. Within the program, edit the
file INSTALL/mdsbi/src/constants.f90. Specifically set pr = real4

for single precision or pr = real8 for double precision. The default is
double precision. You will also have to modify the appropriate routines
in INSTALL/mdsbi/src/fft_routines.f90. Sometimes the solution
degrades when using single precision; other times it seems fine. Use it
at your own risk!

8. Compile by typing make in the source directory. This generates the exe-
cutable mdsbi (or something similar, depending on what you’ve chosen
in the makefile) in the main directory INSTALL/mdsbi/.

3 Configuration

Specific problems are found in the problems directory: INSTALL/mdsbi/problems/.
All options are configured in a file named problem_name.in, where problem_name

5



is the name of the problem (e.g., slipweak.in). Input is primarily accom-
plished using Fortran namelists. Several input files are included that il-
lustrate different problems (which are described under Included Problems).
These files are not extensively commented (except for tpv3.in, which has a
number of comments), and the best place to find out more about the options
is within the source code itself, which is extensively commented. If you wish
to create your own problem, copy one of the existing problem files, giving it
a different name (e.g., new_problem.in), and modify it as needed.

4 Running

The program has the ability to solve several problems in succession (with each
defined in a separate input file in the INSTALL/mdsbi/problems/ directory).
The code reads the file INSTALL/mdsbi/input.in to obtain the name of the
problem list file, the name of the status file, and the name of the error file.

The problem list file contains a list of all the problems to be solved. By
default, this is INSTALL/mdsbi/problems/list.in. However, you may use
a different list located elsewhere. This is useful when you wish to run several
instances of the program simultaneously. Your problem list file must have
the extension .in.

Most messages from the program (such as the current problem name,
current time step, etc.) are written to the status file, which will appear in
the main directory. The default name is status, though you can change this
as well in the file INSTALL/mdsbi/input.in.

Error and warning messages from the program are written to the error
file, which will appear in the main directory. The default name is error,
though you can change this as well in the file INSTALL/mdsbi/input.in.

1. Edit the problem list file, either INSTALL/mdsbi/problems/list.in

or your chosen file, to include the names of all of the problems to be
solved. Specify this list and the name of the status and error files to
which messages will be written in INSTALL/mdsbi/input.in.

2. Switch to the main directory: cd INSTALL/mdsbi/. Run the exe-
cutable by typing: mpirun -np 2 mdsbi (or the equivalent for your
MPI library). This will read the file input.in to determine which
problem list and status file to use. Data files are written within the

6



INSTALL/mdsbi/data/ directory, which you can link to your favorite
storage location.

3. Check the status of the running program by examining the status file
(e.g., type cat status).

4. Check for error and warning messages by examining the error file (e.g.,
type cat error).

5 Analysis of Data

The data is output to the directory INSTALL/mdsbi/data/. There are two
ways to output the fields, each of which is configured in the problem_name.in
configuration file:

1. mesh: Output the fields on a mesh. The spatial mesh can be 2D, 1D (a
line), or 0D (a point). Each field component is saved as a binary data
file containing the field values on the mesh at specified time steps.

2. front: Output the time at which the rupture front (defined as when
the value of a particular field exceeds a specified value) passes each
point.

A Matlab script, analyze.m, is provided as an example in the analysis di-
rectory INSTALL/mdsbi/analysis/. Cut and paste the commands into the
Matlab window (run Matlab in that same directory) and several figures will
be created. The comments in the file explain what you are seeing.

6 Included Problems

Several problems are included as examples:

1. slipweak: Two-dimensional rupture with slip-weakening friction law
for a fault between identical materials.

2. rs_ageing: Two-dimensional rupture with rate-and-state friction, age-
ing law.

3. rs_slip: Two-dimensional rupture with rate-and-state friction, slip
law.

7



4. rs_flash: Two-dimensional rupture with rate-and-state friction, slip
law with flash heating.

5. poro1a and related: Two-dimensional rupture with regularized slip-
weakening friction between dissimilar poroelastic materials. These are
the six cases from Dunham, E. M. and J. R. Rice (2008), Earthquake
slip between dissimilar poroelastic materials, Journal of Geophysical
Research, 113, B09304, doi:10.1029/2007JB005405.

6. thermal_crack.in and thermal_pulse.in: Two-dimensional crack-
like and pulse-like ruptures with thermal pressurization and flash heat-
ing (in slip law framework). These are the input files for the Blue-
Gene/L runs shown in H. Noda, E. M. Dunham, and J. R. Rice (in
preparation, 2008). These require 100+ GB of memory.

7. thermal_crack-small.in and thermal_pulse-small.in: Small ver-
sions of the BlueGene/L runs (lower resolution and shorter propagation
distance and calculation time) that demonstrate crack-like and pulse-
like rupture modes.

8. tpv3: Three-dimensional rupture with slip-weakening friction. Based
on SCEC TPV3, but additional heterogeneity is added.

9. tpv101: Three-dimensional rupture with rate-and-state friction, age-
ing law. This is SCEC TPV101. In contrast to other problems, het-
erogeneities in initial conditions and friction law parameters are read
in from data files (which permit arbitrary heterogeneity, not just the
simple types that are covered by the asperity list input feature in the
input files. To set up the parameters for this problem, you must run
input_tpv101.m in the INSTALL/mdsbi/problems directory.

7 Miscellaneous Notes

7.1 Field Names and Sign Conventions

Let me comment on the names of the fields, which appear both in the code
itself and in the .in problem files and the Matlab analysis scripts. I use
similar names for the identical materials version and the bimaterial version,
which might lead to confusion. For both the identical materials version and

8



the bimaterial version, Ux and Uy refer to slip in the x and y directions, Vx
and Vy refer to slip velocity, sx and sy refer to stress, sx0 and sy0 refer to
loads. For the identical materials version, fx and fy refer to stress transfer
functionals. For the bimaterial version, the response of the two half-spaces
is computed separately before boundary conditions are applied that couple
them. So there are fields for each side, the upper (or “plus”) side denoted
by a “p”, and the lower (or “minus”) side denoted by an “m”. Hence, the
displacements are uxm, uxp, etc., the particle velocities are vxm, vxp, etc., and
the stress transfer functionals are fxm, fxp, etc. The stresses are continuous
so they remain the same as in the identical materials case.

The code keeps track of the stress components of traction, instead of the
tractions direction (which have different signs on the different sides of the
fault). Slip is right lateral. Compression is negative and tension is positive
for stresses (and opposite for pore pressure).

7.2 Units

The program performs no conversion of units, so you are free to use any self-
consistent system (e.g., SI units). In several of the examples, units relevant
to large-scale earthquakes are used. These are not SI units; instead I use
a mixture of units for different fields that keep fields of order unity. (The
code performs no rescaling of fields to prevent round-off error. This is your
responsibility.) In these examples, stresses are in MPa, shear modulus is in
GPA; the extra factor of 103 is canceled by measuring displacements in m,
but distances in km.

8 Program Details

The program is organized into a set of modules, typically one per file, con-
taining the main data types and associated subroutines and functions. In
alphabetical order, the modules are

1. asperity: Linked-list routines for adding heterogeneity to fields

2. constants: Constants and precision definitions

3. convolution: Convolution variables

9



4. convolution_routines_bm: Routines to perform convolution, bima-
terial version

5. convolution_routines_im: Routines to perform convolution, identi-
cal materials version

6. fault: Fields on the fault

7. fft_routines_fftw2: FFT routines using FFTW2.x

8. fft_routines_fftw3: FFT routines using FFTW3.x

9. fields: Routines related to fields

10. fourier: Fourier-domain fields

11. friction: Friction laws

12. friction_routines: Routines for friction laws

13. friction_solver: Solver for friction laws

14. front: Output timing of rupture front

15. history: History of Fourier coefficients of slip or slip velocity

16. init: Routines to initialize problems

17. integration: Routines for integrating fields in time

18. io: Input/output routines

19. kernel: Convolution kernel

20. linalg: Linear algebra routines

21. load: Time-dependent loads

22. main: Main program routines

23. mesh: Output history of fields on a mesh

24. model: Basic model parameters

25. mpi_routines: MPI routines

10



26. problem: Main problem data type

27. problem_routines: Routines to solve a single problem

28. rates: Routines to set rates (time-derivatives of fields)

29. ratestate: Rate-and-state friction

30. rk: Runge-Kutta coefficients

31. slipweak: Slip-weakening friction

32. substep: Routines for substepping

33. thermpres: Thermal pressurization

34. timestep: Routines for time steps

35. utilities: Assorted useful routines

Each of these modules comes in its own file, module_name.f90. The code
has more features that I haven’t discussed in this guide, and other modules.
You are, of course, welcome to use these, but (as with everything else) I urge
you to test them extensively before trusting the results.

11


