Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite

Jessica L. Hinojosa, Shaun T. Brown, Jun Chen, Donald J. DePaolo, Adina Paytan, Shu-zhong Shen and Jonathan L. Payne

Geology published online 8 June 2012; doi: 10.1130/G33048.1
Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite

Jessica L. Hinojosa*, Shaun T. Brown, Jun Chen, Donald J. DePaolo, Adina Paytan, Shu-zhong Shen, and Jonathan L. Payne

1Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA
2Center for Isotope Geochemistry, Earth Science Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
4Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
5Institute of Marine Sciences, University of California, Santa Cruz, California 95064, USA
6State Key Laboratory of Palaeontology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing 210008, China

ABSTRACT

End-Permian (ca. 252 Ma) carbon isotope, paleobiological, and sedimentary data suggest that changes in ocean carbonate chemistry were directly linked to the mass extinction of marine organisms. Calcium isotopes provide a geochemical means to constrain the nature of these changes. The δ^{44/40}Ca of carbonate rocks from southern China exhibits a negative excursion across the end-Permian extinction horizon, consistent with either a negative shift in the δ^{44/40}Ca of seawater or a change in the calcite/aragonite ratio of carbonate sediments at the time of deposition. To test between these possibilities, we measured the δ^{44/40}Ca of hydroxylapatite conodont microfossils from the global stratotype section and point (GSSP) for the Permian-Triassic boundary at Meishan, China. The conodont δ^{44/40}Ca record shows a negative excursion similar in stratigraphic position and magnitude to that previously observed in carbonate rocks. Parallel negative excursions in the δ^{44/40}Ca of carbonate rocks and conodont microfossils cannot be accounted for by a change in carbonate mineralogy, but are consistent with a negative shift in the δ^{44/40}Ca of seawater. Such a shift is best accounted for by an episode of ocean acidification, pointing toward strong similarities between the greatest catastrophe in the history of animal life and anticipated global change during the twenty-first century.

INTRODUCTION

Paleobiological, geochemical, and sedimentary records from strata spanning the end-Permian mass extinction indicate a link between the biotic crisis and perturbation of seawater carbonate chemistry. Evidence includes preferential extinction of heavily calcified marine organisms (Knoll et al., 1996, 2007; Kiessling and Simpson, 2011; Clapham and Payne, 2011), negative excursions in the δ^{13}C of carbonate rocks and organic carbon across the boundary (reviewed in Korte and Kozur, 2010), and an abrupt transition on carbonate platforms from skeletal to microbial and abiotic carbonate factories (reviewed in Kershaw et al., 2011).

Several scenarios have been proposed to account for these observations, including upwelling of anoxic and sulfidic waters in a physically or chemically stratified ocean (Knoll et al., 1996; Kump et al., 2005), carbon release from sediments resulting in accelerated weathering and ocean acidification (Payne et al., 2007; Erwin, 2006), or a drastic reduction in marine primary productivity following the mass extinction (Rampino and Caldeira, 2005). Because each of the above hypotheses can account for the abrupt negative excursion in the δ^{13}C record of carbonate rocks (δ^{13}C_{\text{carb}}), for the selective extinction of heavily calcified marine animals, and for the abrupt transition in carbonate facies across the extinction horizon, an additional proxy is necessary to distinguish among these options.

Calcium isotopes hold promise for differentiating between suggested scenarios for change in seawater carbonate chemistry linked with the end-Permian extinction. The calcium cycle is linked to the carbon cycle through the weathering of limestone and the deposition of calcium carbonate sediments. Calcium isotope fractionate by ~0.6‰ and ~1.3‰ in calcite and aragonite, respectively, during the precipitation of modern carbonate minerals, meaning carbonate sediments are enriched in the lighter isotope relative to the seawater from which they precipitated (Skulan et al., 1997; Tang et al., 2008). Imbalances between calcium delivery and burial fluxes and changes in the magnitude of fractionation during carbonate deposition will result in changes in the δ^{44/40}Ca of seawater and will be recorded in marine sediments (DePaolo, 2004; Farkaš et al., 2007). Therefore, variation in the δ^{44/40}Ca of seawater can provide an additional constraint on temporal variation in seawater carbonate chemistry.

Changes in the oceanic δ^{44/40}Ca resulting from the various proposed scenarios for end-Permian global change are expected to differ: collapse of the biological pump would cause a very minor negative δ^{44/40}Ca excursion; an ocean overtum scenario associated with an increased carbonate depositional flux (Knoll et al., 1996) would cause a positive δ^{44/40}Ca excursion; and ocean acidification would cause a potentially large negative δ^{44/40}Ca excursion by reducing the carbonate depositional flux and increasing the calcium weathering flux (Fig. 1) (Payne et al., 2010). Calcium has a residence time in the ocean of ~1 m.y., which is long enough for it to be isotopically homogeneous, both globally and with depth (Farkaš et al., 2007), and there is no measurable spatial variation in δ^{44/40}Ca in the modern ocean (De La Rocha and DePaolo, 2000). Fluid inclusion data indicate that [Ca] during the Late Permian to Early Triassic was similar to modern [Ca] (~10 mM) (Horita et al., 2002).

Existing calcium isotope data from marine carbonates spanning the Phanerozoic have low temporal resolution (Farkaš et al., 2007), but a higher-resolution record exists for the Permian-Triassic (P-Tr) boundary from a stratigraphic section at Dajiang in southern China. The high-resolution δ^{44/40}Ca of carbonate rocks (δ^{44/40}Ca_{\text{carb}}) exhibits a negative excursion of ~0.3‰ across the end-Permian extinction horizon, consistent with the ocean acidification hypothesis (Payne et al., 2010). However, a change in the dominant carbonate mineralogy at the time of deposition could also explain this observation because aragonite and calcite differ in calcium isotope fractionation relative to seawater by up to 0.6‰ (Gussone et al., 2005).

The three scenarios compatible with the δ^{44/40}Ca_{\text{carb}} record make differing predictions for stratigraphic variation in δ^{44/40}Ca of seawater (δ^{44/40}Ca_{\text{sw}}), which would be recorded in biogenic apatite (δ^{44/40}Ca_{\text{apatite}}) (Fig. 1). If the δ^{44/40}Ca_{\text{carb}} reflects a change in the isotope composition of seawater, then the δ^{44/40}Ca_{\text{apatite}} record should also exhibit a negative shift of similar magnitude at the same stratigraphic position. If the δ^{44/40}Ca_{\text{carb}} excursion results from a local shift in carbonate mineralogy, there would be no change in δ^{44/40}Ca_{\text{apatite}} and, therefore, no change in the δ^{44/40}Ca of conodonts. If the δ^{44/40}Ca_{\text{apatite}} shift were the result of a global change in the calcite/aragonite ratio (also expressed locally) and

δ44/40Ca were a global event, the oceanic reservoir of calcium would become depleted in 40Ca, causing conodonts would remain unchanged because the global isotopic value of seawater would not lead to a brief initial decrease in carbonate deposition observed in all three δ44/40Ca records.

RESULTS AND DISCUSSION

Biostratigraphic correlation between Meishan and Dajiang shows strong congruence of the δ13C and δ44/40Ca records. Figure 2 illustrates the conodont δ44/40Ca record from Meishan alongside previous results for the same interval from bulk carbonate rock at Dajiang. The most prominent feature of the conodont record is a negative excursion of 0.2‰–0.3‰ that occurs directly above the main extinction horizon at Bed 25. The Early Triassic samples trend toward heavier δ44/40Ca values. The negative shifts in the δ44/40Ca records are broadly coincident with similar shifts in the δ13C records from bulk carbonate rock, δ44/40Caconodont values from Meishan are ~0.3‰–0.6‰ lighter than δ44/40Cacarb from Dajiang, which we interpret to reflect differences in fractionation factors between seawater and carbonate versus biogenic phosphate minerals (Skulan et al., 1997). The carbon and calcium isotope data show excursions and recoveries over similar stratigraphic intervals in both study sections. This similarity in response times despite differences in residence times may result from the complex coupling of the carbon and calcium cycles through shared weathering and burial fluxes and other feedbacks, or from limitations in the data to resolve response times beyond a factor of two or three.

Both δ44/40Ca records exhibit minima above the extinction horizon in the Hindeodus paradox zone, which is indicative of a negative shift in δ44/40Ca in the same zone. Mineralogical shifts or diagenetic effects may contribute to small-scale fluctuations in the δ44/40Ca record, but the lack of a correlated positive shift in δ44/40Caconodont indicates no major effect of a change in the relative ratio of calcite versus aragonite precipitation on δ44/40Caconodont. To be explained by carbonate mineralogy, our data would require a temporary global shift toward calcite deposition across the P-Tr boundary that was not expressed at Dajiang. Given (1) the petrographic similarity of the strata at Dajiang to localities across the globe (Payne et al., 2007; Kershaw et al., 2011), (2) the fact that this was a time of aragonite seas, and (3) the observed increase in the proportional abundance of aragonitic skeletal animals across the P-Tr boundary (Kiessling et al., 2008), such a scenario appears highly unlikely. The Late Permian baseline values for the δ44/40Caconodont record show more scatter than the δ44/40Cacarb record, which may be due to diagenetic alteration or contributions from multiple carbonate phases that were variably fractionated.

Although it is conceivable that other factors could influence the δ44/40Caconodont record, it appears unlikely that any actually do account for the observed trends throughout the entire record. Processes that may impact δ44/40Caconodont include (1) postdepositional exchange of Ca, (2) vital effects, and (3) impurities included in samples. Diagenetic alteration appears unlikely to have differentially affected samples immediately above the extinction horizon. Due to the highly condensed nature of the Meishan section, particularly the beds sampled in this study,
influence of meteoric water would likely affect all samples similarly.

Strontium isotope data indicate that the calcium isotope composition of the conodonts and carbonate samples have not been substantially altered during diagenesis. Five conodont samples from Meishan were tested for \(^{87}\text{Sr}/^{86}\text{Sr}\), and all fell between 0.7071 and 0.7072, matching published values from other sites for the same time period (Korte et al., 2003, 2004, 2006; Martin and MacDougall, 1995), and most carbonate samples from Dajiang also appear to retain near-primary Sr isotope compositions (see the GSA Data Repository\(^I\) for values). The preservation of a primary strontium isotope record is best interpreted to reflect an imbalance of CO\(_2\) to the atmosphere and decrease carbonate saturation, leading to the flux imbalances observed in the \(^{84}\text{Sr}/^{86}\text{Sr}\) records. Eruption of the Siberian Traps provides a mechanism for inducing the rapid release of CO\(_2\) and other acid volatiles to the atmosphere and oceans (Svensen et al., 2009; Sobolev et al., 2011). This geological trigger can explain the combined observations of negative excursions in \(^{13}\text{C}\) and \(^{84}\text{Sr}/^{86}\text{Sr}\) shifts in carbonate sedimentation, and preferential extinction of massively calcifying marine organisms.

CONCLUSIONS

The \(^{84}\text{Sr}/^{86}\text{Sr}\) trends seen in the combined carbonate rocks and conodont microfossils at the P-Tr boundary are best explained by an excursion in the \(^{84}\text{Sr}/^{86}\text{Sr}\) of seawater. Paleontological evidence for selective extinction of heavily calcified marine animals (e.g., Knoll et al., 1996; Clapham and Payne, 2011) and a negative excursion in \(^{13}\text{C}\) likely to reflect the rapid input of \(^1\text{C}\)-depleted carbon (Korte and Kozur, 2010) together suggest that the calcium isotope record is best interpreted to reflect an imbalance between calcium weathering and burial fluxes triggered by ocean acidification.
These findings suggest that the end-Permian mass extinction can serve as a useful case study for the long-term response of marine ecosystems to severe ocean acidification.

ACKNOWLEDGMENTS
This work was supported by the National Aeronautics and Space Administration (NNX09AN767 to Payne and Paytan); the American Chemical Society Petroleum Research Fund (49237-NBD to Paytan); the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DEAC02-05CH11231 to Brown and DePaolo); the National Natural Science Foundation of China (Shen); and a grant of the basic research program of Jiangsu Province (BK2010022 to Shen). We thank A. Bachan, T. Hildreth, A. Jost, D. Lehrmann, K. Meyer, and E. Schaal for assistance with this project.

REFERENCES CITED