

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Stanford Women's Club of San Francisco

Sally M. Benson Director, Global Climate and Energy Project Stanford University

April 2, 2012

GLOBAL CHALLENGES – GLOBAL SOLUTIONS – GLOBAL OPPORTUNITIES

Over 80% of Greenhouse Gas Emissions Come from Energy Use

Million metric tons carbon dioxide equivalent

Source: EIA GHG Emissions Report, 2011

Energy Related CO₂ Emissions Come From Oil, Coal, and Natural Gas

Source: EIA GHG Emissions Report, 2011

Limiting Climate Change Requires Dramatic Reduction in Greenhouse Gas Emissions

50-80% by 2050

Near zero by the end of the century

This Can Only Be Achieved with a Major Overhaul of Our Energy System

Renewable Energy Resources are Large

What Can We Do?

- Energy conservation
- Energy efficiency improvements
- Switching to fuel with lower emissions
- No and low-carbon energy sources
 - Renewable energy (particularly solar and wind energy)
 - Nuclear energy
 - Geothermal energy
- Carbon dioxide capture and sequestration (CCS)

Major Short Term Opportunities

- 1. Energy Efficiency and Demand-Side Management
 - Reduce energy use in buildings zero net energy
 - Transportation high mpg cars (e.g. hybrids)
- 2. Wind Energy
 - Larger turbines produce low cost electricity
 - ➢ Growing at 20-30%/year
- 3. Solar Photovoltaics (PV)
 - Dramatic cost reductions in PV manufacturing
 - Growing at 40-70%/year
- 4. Shale Gas
 - Large new reserves
 - Application in power generation and transportation

What's Coming Next?

Low-Cost Flywheel Storage

Robert Hebner, Richard Thompson, Ray Baughman, et al., UT-Austin and UT-Dallas

- Application of novel flywheel designs
 - Based on pendulums and hubless rings
 - Composed of nanotubes and nanofibers spun into yarns
- Could lead to deployable ultra-low loss, efficient, multi-day energy storage technology

A Novel Solid Oxide Flow Battery

Scott Barnett, Robert Kee, and Robert Braun, Northwestern U and Colorado School of Mines

- Development of a device that bridges solid oxide fuel cells and flow batteries.
 - Operates reversibly using gaseous fluids in tanks.
- Could be used to store large amounts of energy due to their high roundtrip efficiency and minimal leakage.

©2011 GCEP, Stanford University

GCEP RESEARCH TOWARDS RENEWABLES STORAGE AND BIOFUELS PRODUCTION

GCEP

CATHODIC BIOFUEL REACTORS Alfred M. Spormann, Stanford University **Electricity Power** (Day) CH4, H2 Liquid **Biofuels Biomass** Sludge Cathode Anode • Fundamental research of microbes Ν₂ coupled to electricity **Biocathode** 0. • Studies of redox **CO**₂ pathways and • biofuel production • Could enable biofuel production directly from electricity Hydrogenases, **Combustion/** Gasification H₂ CH₄ Plant **Electricity Biomass** (Night) + Liquid Fuel +Acetate, CH4 ©2010 GCEP, Stanford University

GCEP RESEARCH IN ADVANCED COMBUSTION

GCEP CO₂ Capture and Sequestration Stops Emissions from Power Generation and Industrial Sources

Changing our Energy System is Hard: But, There's Lot's We Can Do

- Concerted action is needed on a number of fronts
 - Energy Conservation
 - Energy Efficiency improvements
 - Fuel switching
 - Low carbon electricity
 - Carbon capture and sequestration
- Let's get started...
- And keep it up... for a long time