Sorry, you need to enable JavaScript to visit this website.

Skip to content Skip to navigation

Shared Analytical Facilities

Shared analytical facilities in the School of Earth, Energy & Environmental Sciences are labs that enable efficiencies of time, knowledge, and resources. They are school supported, funded, and staffed, and are shared by faculty, staff, and students across the university.

Environmental Measurement 1: Gas-Solution Analytical Center

The Environmental Measurement 1: Gas-Solution Analytical Center provides quantitative analysis and technical expertise to members of the Stanford community needing to conduct soil, gas, and water measurements.

Affiliated Faculty: 

Environmental Measurement 2: Stable Isotope Biogeochemistry Lab (SIBL)

The Stable Isotope Biogeochemistry Laboratory (SIBL) provides analytical facilities and technical expertise to members of the Stanford community who need to determine stable isotope ratios of a variety of organic and inorganic materials from both terrestrial and marine environments. The facility has the ability to measure C, N, O (including 17O), H, and S in plant and animal tissue, soils, minerals, and waters. Moreover, by the use of infrared lasers and micro-drill techniques it provides capabilities for high-spatial resolution isotopic measurements. The laboratory is also making investments in the development of Cavity Ring-Down Laser Spectroscopy for a variety of lab and field based innovations in stable isotopic analyses.

Affiliated Faculty: 

Fission Track Laboratory

Fission track thermochronology is a geochronologic method that yields the time when rock rose through the 2 to 5 km depth window or ~80°-120°C (for the mineral apatite). This low-temperature thermochronometer allows us to collect data at the regional scale to study uplift, mountain building and erosion or on detailed scales to understand the slip history of faults in the brittle crust. The best studies utilizing low temperature thermochronology involve careful integration of field-based mapping, structural studies and balanced cross-sections with laboratory-collected thermochronology data. (U-Th)/He thermochonology is a more recently developed and highly complimentary method for dating exhumation from even shallower depths (~40-85°C) intervals. The (U-Th)/He laboratory resides in our Noble Gas Laboratory. The two methods paired together provide a powerful means of solving many tectonic questions about the P-T path of the upper 10 km of the crust.

Geochronology Facility

We comprehensively examine the evolution of the Earth's crust using highly integrated geochronologic approaches conducted in a wide spectrum of analytical facilities that are all housed within the School of Earth, Energy & Environmental Sciences. Our highly collaborative research provides fundamental data to many disciplines throughout the geosciences, including tectonics, geodynamics, petrology, geochemistry, geomorphology, sedimentology, stratigraphy, paleontology, and paleoclimatology.

Affiliated Faculty: 

Geographical Information Systems Laboratory

GIS Packages and Geospatial Data
A Geographical Information Systems (GIS) lab is maintained in Branner Library, and is available for students and researchers. This includes GIS hardware, software and data sets as well as technical support and consultations.

Mineral Analysis Facility (EPMA, SEM, XRD)

This facility operates three analytical instruments with widespread applications in the Earth and Materials Sciences. The Electron Probe Microanalyzer (EPMA) provides highly accurate major and minor element compositional data on solid materials at the micron scale, and is housed in the Stanford Nanocharacterization Laboratory (www.stanford.edu/group/snl/). A user-friendly powder X-ray diffractometer (XRD) and scanning electron microscope (SEM) are located in the Green building, and provide ready access to mineral identification and imaging.

Affiliated Faculty: 

Noble Gas Lab

The Stanford Noble Gas Laboratory produces high-quality 40Ar/39Ar & (U-Th)/He data for geochronologic & thermochronologic applications in the Earth Sciences.  The laboratory is open to all Stanford researchers to perform their own analyses under the supervision of laboratory personnel.  Based upon time availability researchers from other institutions may also gain access to the laboratory. All potential users must submit a request form.

Affiliated Faculty: 

Rock Preparation and Mineral Separation Laboratories

These laboratories house a broad range of shared equipment for the initial steps of preparing rock samples. Numerous SES research groups use these labs, before completing more specialized procedures in their own facilities. Equipment is available for rock sawing, polishing, coring, crushing, grinding, powdering, sieving, washing, drying, separating, concentrating, etc.

Affiliated Faculty: 

Shared Field Measurement Facility

The Shared Field Measurement Facility's primary aim is to provide support, education, and technical expertise to members of the Stanford community interested in or needing to conduct field-based research or teaching. The facility houses a range of geophysical, GPS, and surveying equipment, as well as field computer options for data logging or mapping.

Affiliated Faculty: 

Spatial Analysis Center

The Spatial Analysis Center is a shared facility of the School of Earth, Energy & Environmental Sciences that supports research on environmental changes based on remote sensing and geographic information systems. It provides state-of-the-art equipment and expertise for Stanford researchers who conduct geospatial analyses. Ongoing research projects at SAC combine remote sensing data from optical sensors at high to coarse spatial resolutions with data from a variety of other datasources.

Affiliated Faculty: 

Stanford Center for Computational Earth and Environmental Science (CEES)

CEES integrates Earth science and computer science to build capacity in computational methods for the Earth and environmental sciences, and to enable new growth in areas where computational activities already exist. The three units of CEES—Research, HPTC, and Education—work together to fill the gap between applied mathematics and the Earth sciences. Combining a strong focus on scientific applications with state-of-the-art hardware and computational methods, CEES is pushing forward the frontiers of computational geoscience and engaging computer scientists and architects to design software and hardware better suited for Earth and environmental science problems.

Affiliated Faculty: 

Stanford ICP-MS/TIMS Facility

The ICPMS/TIMS Facility, also known as the Plasma Lab, is a state-of-the-art facility for the analysis of isotopes and trace elements using mass spectrometry. The array of equipment in the laboratory includes a Nu AttoM high-resolution inductively coupled plasma mass spectrometer (ICP-MS), a Nu Plasma HR multi-collector ICP-MS, a Thermal Ionization Mass Spectrometer (TIMS) and a specially designed Picotrace metal-free low particulate clean laboratory. The facility is open to collaboration with members of the Stanford community.

Affiliated Faculty: 

Stanford ICP-MS/TIMS Facility

The ICPMS/TIMS Facility within Stanford University's School of Earth, Energy & Environmental Sciences is a state-of-the-art facility for the analysis of isotopes and trace elements using mass spectrometry.

Affiliated Faculty: 

Stanford Rock Physics Lab (SRPL)

The research at the Stanford Rock Physics Laboratory focuses on experiments designed to understand the connections between geophysical properties measured at the surface of the Earth or within boreholes with the intrinsic properties of rocks – i.e., mineralogy, porosity, pore fluids, stress conditions, and the overall rock architecture such as laminations, fractures, and the intricate pore network.

Affiliated Faculty: 

Stanford-USGS Microanalytical Center (SUMAC)

The SHRIMP-RG (Sensitive High Resolution Ion Micro Probe-Reverse Geometry) laboratory is operated in a partnership between the Stanford University School of Earth, Energy & Environmental Sciences and the U.S. Geological Survey. The unique ion optic design of SHRIMP-RG permits simultaneous, high-spatial resolution measurement of U-Th-Pb ages and trace element compositions from nanogram-scale volumes to determine crystallization histories of crustal and surface materials. 

Affiliated Faculty: