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Summary

The Surprise Valley Fault (SVF) separates the Warner Range and the Surprise
Valley basin at the intersection of the NV-CA-OR borders and forms the
western margin of the Basin and Range extensional province at this latitude.

The SVF i1s a single, east-dipping, large-offset normal fault that developed within
essentially unfaulted volcanic plateau sequences to the south, east and west (Figure
1). Much of the slip on the SVF may post-date the youngest lavas mapped east and
west of the SVF dated at 8-4 Ma (Carmichael et al., 2006). Cross-sections show 5
km of vertical throw (3 km tilted strata exposed in the Warner Range, 2 km of basin
fill imaged here) yielding a time-averaged slip-rate of 1-2 mm/yr. Large-magnitude
Holocene rupture, modern seismicity, local geothermal activity and overpressured
basin strata are all consistent with a high present-day slip rate.

Our September 2004 EARTHSCOPE-supported active and passive seismic experi-
ment across the northwestern margin of the Basin-and-Range province (Lerch et
al., 2007) included a relatively high-resolution vibrator-source profile (20-m CMP
spacing) that extended from the surface trace of the SVF for 16 km to the east
across Surprise Valley (Figure 1) as well as an 1100-kg shot-point on the east side
of Surprise Valley recorded at 300-m spacing across the SVF (Figure 2).

Our explosive-source recording shows a reverse-moveout reflection modeled as
from the SVF fault plane dipping 35 to 40° to >7 km depth (Figure 2).

The SVF is the most significant reflector on our vibroseis profile (Figure 3)
dipping 35°+3° basinward and visibly truncating intra-basin stratigraphy.
Because our 2-D profile has a 35° intersection with the strike of the SVF, geometric

correction for this obliquity steepens the observed migrated dip of 20°+2° to a true
dip for the SVF of only 35°+3°.

We image a separate fault-splay above the main SVF with a true dip of 30°£5°.

Uplifted Cenozoic volcanic strata in the Warner Range dip 20° to the west, due
to footwall block rotation during evolution of the SVF.

Restoring this rotation, the orientation of the SVF at its formation was 55°+3°,
compatible with laboratory experiments.

Trenching for paleoseismic studies constrains the near-surface dip of the active
SVF to be ~65° (S. Personius, pers. comm.), too steep to be the fault-plane that pro-
duced the ~20°-dipping Cenozoic stratigraphy in the Warner Range. This active
fault trace 1s likely an extremely young feature in the Surprise Valley-Warner
Range evolution, though 1t 1s not yet known whether it soles into, or cuts and off-
sets the less-favorable, now-shallow geometry (30°-35°) of the main SVF.

Surprise Valley may provide the chance to study the process of abandonment of a
major active low-angle fault in favor of a new high-angle fault; the developing
EARTHSCOPE FlexArray facility, now with triple the recording capability avail-
able to our 2004 experiment, offers the means to do so.

Active strand of the SVF
exposed 1n the USGS trench
(Figure 1) midway between our
seismic 1images Figures 2 and 3.
This fault 1s too steep to be the
large-offset normal fault imaged
on our reflection section, and
too steep to have produced the
rotated tilt-block of the Warner
Range.

http://earthquake.usgs.gov/regional/imw/
images/figure3.php

Reflection imaging the 35°-dipping normal fault that bounds the Basin & Range Province
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Vibroseis reflection profile 1s white line approximately 5 km north of the 2004
Stanford refraction line along Highway 299. Common midpoint (CMP) locations
are spaced at 20 m. SVF: Surprise Valley Fault.

SP4: Shotpoint 4 from the 2004 Stanford refraction line (data in Figure 2).
Line A -A’: location of geologic cross -section (Figure 3, top).

White rectangle across the SVF ~2km north of Cedarville 1s the USGS trenching
project (S. Personious, pers. comm.).

Dash-dot lines are commercial vibroseis velocity profiles that indicate a basin-
basement contact dipping 30° east (D. Benoit, pers. comm.).
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Shot-gather from Shotpoint 4 (2500 Ibs explosive) recorded along Hwy 299 (Figure
1), and displayed with no move-out (no velocity corrections), shows first arrivals
across Surprise Valley, and a reflection at ~4.5 s with “reverse move—out”.

Reverse move-out 1s defined by the reflection on far-offset traces (left-hand side)
arriving earlier than the same reflection on near-offset traces (right-hand side), and
geometrically requires a reflector that dips steeply back to the east, 1.e. the SVF.

White circles superimposed on the data are modeled arrivals corresponding to an
SVF that dips 30° or 45°, and arrive earlier and later than the observed phase. The
observed phase, enclosed by a dashed black line, therefore corresponds to a dip of
35°-40° (precise dip depends on near-surface velocities, 2+0.2 km/s).

Schematic velocity model used in modeling 1s shown 1n inset, velocities are given
in km/s, depths given in kilometers below sea level (no vertical exaggeration).
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Figure 3 Geologic and seismic cross-sections of Surprise Valley
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A: geologic cross-section, corresponding to line A-A’ on Figure 1, showing pertinent
Cenozoic units and major structures. Dashed grey outline: region contained in B and C.

B: unmigrated CMP stack of the Surprise Valley basin.

C: migrated image of the Surprise Valley basin.

(a) SVF appears as a continuous, moderate-amplitude east-dipping reflection that
bounds the western side of the basin.

(b) prominent west-dipping reflectors on the eastern edge of Surprise Valley correspond
to 10°-15° dipping 8-3 Ma volcanic strata.

(¢) reflection-free region above the SVF 1s alluvium deposited along the range-front.
(d) fault splay of the SVF truncating west-dipping reflectors near CMP 100.

A, B & C: No vertical exaggeration based on basin-fill Vp=2 km/s.
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Appendix

Utility of the NEES T-Rex vibrator and Earthscope
Texan pool for active-source seismic profiling

In September 2004, Stanford University and UT-Austin collected crustal reflection
and refraction data with the Network for Earthquake Engineering Simulation
(NEES) tri-axial (T-Rex) vibrator in two separate surveys: (1) a 40-km crustal
-scale profile in the Black Rock Desert and Black Rock Range, NV; and (2) a
16-km “high -resolution’ basin imaging profile in Surprise Valley, CA (Figure A1).
Both experiments were completed within the framework of our larger, 300-km
wide-angle refraction line recorded by IRIS-PASSCAL Texans as a prototype for
the FlexArray 1n the first EARTHSCOPE active-source experiment.

T-Rex (below), acquired by NEES-UT Austin in 2002, 1s a 29,000 kg buggy-
mounted vibrator with a tri-axial mass, capable of generating P, SV, and SH waves.
Given its relatively large mass, and hence its high peak force output of 267 kN,
T-Rex is a potentially viable source for single-vibrator crustal profiling.

The integration of T-Rex 1nto our crustal-scale (Lerch et al., 2007) and ‘high-res’
profiles (this poster) revealed its strengths and limitations, as well as the logistical
and quality-control problems associated with recording continuous vibrator data
with stand-alone Texan seismographs.

Single 60-sec sweeps with T-Rex consistently produced coherent reflected energy
to 1-2 sec two-way time (Figure A2), and into the lower crust on our best data with
high fold stacking (Figure A3). Refracted energy from single sweeps consistently
reached offsets >10 km, and with stacking of 10 to 30 sweeps, up to 50 km (Figure
A3). These propagation distances afforded a useful reflection image of the Surprise
Valley basin (Figure 3), and an upper-crustal velocity model of the Black Rock
Desert and Black Rock Range (Lerch et al., 2007), illustrating the value of this new
addition to the crustal-seismology community.

The 16-km “high-res” profile required 4 days, with about 200 one-minute sweeps
(the longest then possible with T-Rex) recorded in each 4-hour recording window.
Two 4-hour profiling windows were recorded each day, and T-Rex was re-fuelled
by hand on-site each mid-day and evening. The profile was shot through a fixed
spread, with 400 Texans maintained on the line. Because of limited Texan memory
(32 Mb in most instruments), three times a day (before, between and after the pro-
filing sessions) 60 Texans were retrieved for downloading, and replaced by 60 fresh
Texans 1n their places. In this manner the entire profile could have been maintained
indefinitely by a small crew.

Notwithstanding the success of our shallow reflection profile, our attempts to
record lower-crustal reflectivity were only marginally useful.

Our attempts to record useful shear-wave energy, whether using vertical phones on
Texans or using 3-component 4.5 Hz phones with 3-channel Refteks, were more
disppointing, so that our hopes of studying mid-to-lower-crustal anisotropy, and of
producing a basin Vs model, were not realised.

Figure A1l: Location of our experiments in the northwestern Basin and Range.
Black circles: 2004 Stanford seismic refraction geophone locations (appears as a
solid line west of the Santa Rosa Range due to dense instrument spacing).

Thin line labeled RP in Surprise Valley corresponds to the reflection profile de-
scribed in this poster. Arrows surrounding BRRP correspond to the extent of our
crustal-scale reflection profile across the Black Rock Desert and Black Rock
Range.

Inset photos: (A) T-Rex; (B) indentation in road surface from pad cones (pen for
scale); (C) plywood pad added to baseplate to protect paved road surfaces.

Figure A2: Source gather from Surprise Valley ‘hi-res’ profile. Four one-minute
5-80 Hz sweeps (at 10-m spacing) stacked to create a single, 40-m source array.
First-breaks have been muted, and a 10-14-36-42 Hz bandpass filter applied.

Figure A3: Source gather from crustal profile (stack of ten coincident one-minute
sweeps, bandpass-filtered 4-6-36-42 Hz, with predictive deconvolution. Coherent
arrivals are clearly visible to offsets of 20 km, with discontinuous energy visible to
50 km. Weak reflections visible between 8 and 9 s at offsets > 20 km.
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T-Rex and its theoretical force output  http:/nees.utexas.edu/Equipment-T-Rex.shtml
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