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Pitfalls

Artifacts such as multiples

Resolutional limits

Other, nonstratigraphic, seismically imageable phenomena (gas,
diagenetic boundaries) ' '

- |

20 HERTZ PULSE

50 HERTZ PULSE-
FIG. 17—Comparison of resolving power between 50-
Hz and 20-Hz pulse.
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SEQUENCE
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BOUNDARY DOWNLAP
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DOWNLAP SURFACE TRUNCATION

Figure 1. Diagram showing reflection termination patterns and types of discontinuities.
Discontinuity names are underlined.
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Figure 3. Diagram of seismic reflections, lithofacies, and major variables affecting stratig-
raphy.
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SEQUENCE-STRATIGRAPHY
an integrated approach to basin analysis

A discussion of the
Sequence Stratigraphic Conceptual Model

John M. Armentrout

Sequence Stratigraphy is the study of stratigraphic relationships within a time-strati graphic
framework. The mapping of depositional facies within each descret time-interval resuits in
paleogeographic maps suitable for predicting the distribution of reservoir, seal and petroleum
source rocks. This paper presents a very general overview of the fundamentals of sequence
stratigraphy.

Each depositional sequence consists of repetitive, genetically related strata bounded by
surfaces of erosion or non-deposition or their correlative conformities (Van Wagoner et al., 1987).
Figure D-1 illustrates the geometry of the unconformity-bounded depositional sequence, the basic
stratal unit of sequence stratigraphy as defined by the Vail-Exxon conceptual model. The Vail-
Exxon model has evolved significantly since it was first introducted in Patton (1977). Some of the
changes are most graphically illustrated by comparing the 1977 sequence diagram (Figure D-2)
with the 1987 sequence diagram (Figure D-1).

Although the Vail-Exxon model was developed for siliciclastic passive continental margins,
the concepts and methodology can be applied in any depositional setting if the interpreter takes care
to modify or redefine the generalized model based on the local data. The following discussion
focuses on siliciclastic systems (Figure D-3). Interpreters working carbonate systems can use the
general principles of this text, but should refer to Sarg (1988) for specifics on carbonate sequence
stratigraphy (Figure D-4).

A depositional sequence within the context of the Vail-Exxon model is a group of strata
deposited during one sea-level cycle (regression-transgression). The sequence is bounded by
regional (i.e. basin-wide) unconformities or their correlative conformities (Figure D-1). The
original diagram for the depositional sequence displays a very simple geometry (Figure
2)(Mitchum et al., 1977). This original diagram and subsequent revised drawings are here referred
to as the Vail-Exxon model, to acknowledge the primary role of Peter Vail in def; ining sequence
stratigraphy along with his many co-workers at Exxon Production Research. The integration of
geologic concepts with higher resolution seismic-reflection profiles has resulted in definition of
both a more holistic and geologically sound depositional sequence model including predictions of
possible lithofacies (Figure 3)(Vail, 1987).

This more holistic sequence stratigraphic depositional model is constructed of a hierarchy
of three-dimensional stratal packages, each of which has a specific spatial and temporal relation to
the others. These stratal packages and their bounding surfaces are illustrated on Fi gure D-6 and are
defined below. For a more complete discussion see Wil gus et al. (1988), and Van Wagoner et al.
(1990).

Since the original publication of the sequence stratigraphic model by Vail and associates
(1977), two other primary types of sequences have been introduced: the genetic sequence by
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Galloway (1990) following work by Frasier (1976); and the T/R (Transgressive/Regressive) cvcle
of Embry (1993). These models will be discussed later.

Throughout the definitions of the Vail-Exxon model, the phrase "genetically related" is
used. The phrase genetically related refers to an interval of conformable strata deposited with no
significant disruptions by hiatus or unconformity.

A second nomenclatural note concerns the depositional reference point against which
relative sealevel is measured. In the 1977 through 1989 literature the shelf -slope break is used to
separate the shelfal transgressive and highstand deposition versus the more basinal lowstand
deposition. In Van Wagner et al. (1990) the reference point became the depositional shore-line
break, a position which coincides approximately with the seaward end of the stream-mouth barina
delta or with the upper shoreface in a beach (see also Posamentier et al., 1988). The depositional
shore-line break has a relief of several feet to tens of feet, and is a useful reference point in outcrop
studies or high resolution reflection profiles, but it is below the resolution of most seismic
reflection profiles. Therefore, the reference datum for description of all sequence
stratigraphic patterns during this short course will be the shelf/slope break. Itis
essential that the reference datum used in each study be clearly identified for effective
communication of sequence scale.

Another general note concerning this short course is that all units of measure will be US
Standard (and not metric), as most of the data sets were originally collected using feet and miles.

ELEMENTS OF THE SEQUENCE STRATIGRAPHIC MODEL

The fundamental elements of the sequence strati graphic model are:

SEQUENCE: a relatively conformable succession of genetically related strata bounded by
unconformities and their correlative conformities (Mitchum et al., 1977). Sequence
implies regional to global significance and can range in duration from first-order sequences
with a duration of 100 to 200 million years to fourth-order sequences of approximately
100,000 years. The operational sequence of most seismic interpretations is the third-order
cycle of 1 to 10 million years duration. In tectonically active areas second-order sequences
of 10 to 80 million years duration are often the dominant sequence. Figure D-1 illustrates a
single depositional sequence between two unconformities. Figures D-10 through D-14
present different elements of the sequence hierarchy.

A depositional sequence is subdivided into specific subunits by the relationship of three
primary stratigraphic surfaces: the sequence boundary, transgressive surface and
maximum flooding surface. The subdivisions of the sequence consist of systems
tracts composed of depositional systems, and are recognized in outcrop, on wireline
logs, and on seismic reflection profiles by the stacking patterns of parasequences and
parasequence sets referenced to the shelf/slope break.

SHELF/SLOPE BREAK: the modem shelf/slope break is marked by the change in surface
gradient for the gently dipping shelf (commonly less than 1: 1000) to the more steeply
dipping continental slope (commonly greater than 1:40)(Heezen et al., 1959). Both shelf
and slope gradients vary from basin to basin but the inflection-point at the change in
gradients is a geometry frequently observable on seismic reflection profiles. This geometry
is imaged at the inflection from topset to foreset of large scale clinoforms (10s to 100s of
milliseconds)(Figures D-6 and D-20).
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SEQUENCE BOUNDARY: adepositional sequence is bounded by unconformities and their
correlative conformity. An unconformity is a surface separating younger strata from
older strata, along which there is evidence of subaerial erosional truncation or subaerial
exposure, with a significant hiatus [a break in the continuity of the stratigraphic record).
The rock eroded at the unconformity, and sediment that by-passes across a surface of
erosion or non-deposition, accumulates as a conformable succession of strata coeval with
the unconformity; the conformable surface (stratum) correlative with the most basinward
part of the unconformity is interpreted to be the correlative conformity. This relationship is
illustrated on Figure D-3. The unconformity is assigned the geologic age of this
correlative conformity.

TRANSGRESSIVE SURFACE: the first significant marine-flooding surface across the shelf
within the sequence is termed the transgressive surface. In the 1977 through 1989
publications of Vail and associates this suface was recognized at seismic reflection profile
scale and was identified by the first onlapping reflection shoreward of the shelf /slope
break. This relation is illustrated on Figure 1. In outcrop and on wireline logs, the first
landward stepping coarsening upward cycle (parasequence) in interpreted as the first
transgressive deposit (Figure D-21). Because the scale of outcrop and log data allows
recognition of transgressive deposits below the resolution of the seismic reflection profiles,
some initial transgressive deposits are identified as lying stratigraphically below the
regional transgressive surface, especially in areas of incised valleys and submarine canyons
(see Figure D-9).

MAXIMUM FLOODING SURFACE: the maximum flooding surface is defined by the
maximum landward onlap of marine strata on the basin margin and represents the
maximum relative rise of sea level.

SYSTEMS TRACT: asetof linked contemporaneous depositional systems that are transitional
into one another during a specific phase of a transgressive-regressive cycle (Brown and
Fisher, 1977). The systems tracts that make up a single depositional sequence are the
lowstand systems tract, the transgressive systems tract, the highstand
systems tract, and the shelf-margin systems tract (Van Wagoner et al., 1987).
Systems tracts are objectively identified on the basis of bounding surface types, their
position within the sequence, and the stacking-pattern of component parasequences and
parasequence sets indicative of specific depositional systems within the lowstand,
transgressive and highstand systems tracts. Systems tracts can often be identified on
seismic-reflection profiles.

DEPOSITIONAL SYSTEM: a three-dimensional assemblage of lithofacies (Fisher and
McGowan, 1967) such as the deltaic lithofacies package deposited by a fluvial system or a
submarine fan deposited from gravity-flow currents such as turbidity flows.
Contemporaneous depositional systems form systems tracts, for example, the alluvial fan-
fluvial plain-coastal delta-shelf-slope-basin floor depositional systems of the hi ghstand
systems tract. Depositional systems can often be identified from seismic-reflection profiles
by careful analysis of seismic-facies patterns calibrated with well data. On Figure D-1,
depositional systems are illustrated as separate compartments lateral to each other and
bounded by the time-significant surfaces of parasequences.

PARASEQUENCE: A relatively conformable succession of genetically related beds or bedsets
bounded by marine flooding surfaces and their correlative surfaces (Van Wagoner et al.,
1987). Beds, bedsets, laminasets and lamina are defined and illustrated in Van Wagoner et
al (1990). Parasequences are progradational, and therefore the beds within each
parasequence shoal upward and are capped by a marine-flooding surface indicating a
deepening of water depth. Thick parasequences can sometimes be imaged as single seismic
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reflections in areas of very high sediment-accumulation rates, but commonly they can only
be recognized on wireline-logs or in outcrops. On Figures D-1 through D-7, '
parasequences are represented as horizontal "time-slices" of laterally gradational and coeval
facies thinning in a basinward direction.

PARASEQUENCE SET: asuccession of genetically related parasequences forming a
distinctive stacking pattern and commonly bounded by major marine flooding surfaces and
their correlative surfaces (Van Wagoner et al., 1987). Stacked parasequences prograding
into the basin may define a highstand, shelf-margin or lowstand/prograding complex
systems tract, depending on the location of up-dip lapout. Stacked parasequences that step-
landward at both the proximal and distal ends define transgressive parasequence sets
(=transgressive systems tract). Parasequence sets and systems tracts are illustrated on
Figures D-1 through D-7. Parasequence sets may be imaged on seismic reflection sections
in areas of thick sediment accumulation, but often require collaborative wireline-log data.

CAVEATS IN USING THE VAIL-EXXON MODEL

Three caveats need to be considered when using the Vail-Exxon depositional model: 1)
geologic setting of the original model; 2) physiographic provinces to which the model applies; and
3) the scale of stratal elements within the diagrammed model.

The first caveat is that the original model was developed for a siliciclastic-dominated,
tectonically stable, passive, continental margin with a relatively wide continental shelf.
Subsequently, variations on that model have been developed. Sarg (1988) has published a
carbonate model based largely on the Permian strata of the Guadalupe Mountains of west Texas
(Figure D-4). Sangree et al. (1988) have published a model for a growth-fault modified
depositional sequence based on Gulf of Mexico Neogene examples (Figure D-5). Van Wagoner et
al. (1990) present examples of shelf and cratonic basin sequence analysis with a detailed
discussion of parasequence cycles (Figure D-6) and for a siliciclastic ramp margin (Figure D-7).
As the concept of systems tracts is applied more widely, we can expect many more models on
these local variations to be developed. Our task as interpreters is to honor the local data and to use
the most appropriate aspects of the published models in order 1o construct a depositional model that
best represents local observations.

The second caveat relates to the physiographic provinces encompassed by the Vail-Exxon
diagram. The Vail-Exxon diagram was drawn to convey the two dimensional geometry commonly
observed on seismic-reflection profiles across continental margins. The three dimensional
geometry has been compressed into a two dimensional display. Consequently, the diagram is
over-simplified. Additionally, the Vail-Exxon sequence-strati graphic diagram defining systems
tracts (Baum and Vail, 1987) is constructed to illustrate the stratal geometries observed along a
continental shelf-slope cross-section where a major river supplies sediment to deposit thick
systems tracts. The diagram traverses a passive margin from a river-fed delta across the
continental shelf and down a submarine canyon to an aggradational continental-slope submarine-
fan system (Figure D-8). Any adjacent parallel cross-section to the river-fed depositional thicks
will intersect a much thinner and geometrically different depositional pattern (Figure D-9). Thus,
systems tracts can only be uniquely identified by assembling observations throughout a
geographically significant area. Although intuitively obvious, these geomorphic relationships in
three-dimensions must be kept in mind when examining seismic-reflection profiles or regional
stratigraphic correlation cross-sections for systems tracts.

The third caveat for applying the Vail-Exxon sequence strati graphic model is one of scale.
The Vail-Exxon depositional diagram has no vertical or horizontal scale., Thus, it theoretically
allows the interpreter to adjust the scale to fit the geometries observed in each study. Van Wagoner
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etal. (1990) have presented a set of scales to "bracket" the temporal and spatial scales of
sequences, parasequence sets, parasequences, and smaller scale depositional units of beds and
laminae (Figure D-10). For example, a sequence has a lateral extent in excess of 1000 square
miles (Van Wagoner etal., 1990) Although only an approximation, this number indicates the
sequence is bounded by unconformities of regional extent that result from major basin wide, or
global, changes in tectonics and sea-level (see the base-level transit cycle of Wheeler, 1964).
Smaller scale, local "sequences" may be systems tracts within a sequence, higher-order (shorter
duration) cycle sequences, or local sequences related to the balance of sediment supply and
accomodation space.

It is important to note the change in the sequence stratigraphy diagrammatic section of 1977
versus 1987 (Figures D-2 and D-1). The geologically constrained model of 1987 (Baum and Vail,
1987) recognized depositional systems tracts, separated by downlap surfaces but each being part of
a genetically related depositional cycle bounded by a regional unconformity (Figure 1). The 1977
diagram (Mitchum et al, 1977) considered each depositional package separated by a lapout surface
to be a separate sequence (Figure 2). Thus, many 1977 sequences became 1987 systems tracts
which stack into sequences bounded by regionally significant unconformities. These relationships
help clarify the importance of clearly identifiying both the sequence boundary and the primary
downlap surface (the maximum flooding surface) for each depositional cycle.

The primary depositional sequences of the 1977 cycle chart were defined as third-order
cycles with a duration of 1 to 10 million years (Vail et al., 1977). Second-order cycles have
durations of 10 to 80 million years, and first-order cycles have durations of 100 to 200 million
years (Figure D-11). The third-order cycles were defined by those sequences most readily
interpretable on 1970 vintage seismic-reflection profiles. With improved acquisition and processing
itis now sometimes possible to recognize higher f requency cycles, referred to as fourth-order and
possibly fifth-order cycles (Mitchum and Van Wagoner, 1990). Vail and Wornardt (1990a)
provide a refinement of estimates for the duration of the dominant (third-order) cycles of the
Phanerozoic (Figure D-12). When conducting sequence-strati graphic analysis and correlating
sequences to the global cycle chart (Figure D-13)(Haq et al., 1988), we need to keep in mind the
scale of our observations and integrate biostratigraphic and chronostrati graphic data to calibrate the
temporal resolution of the sequences we are interpreting.

ELEMENTS OF THE VAIL-EXXON MODEL

The sequence is defined as a relatively conformable, genetically related succession
of strata bounded by unconformities or their correlative conformities (Mitchum,
1977)(Figure D-1). An unconformity is a surface of erosion or nondeposition that
separates younger strata from older rocks and represents a significant hiatus.
Unconformities are classified on the basis of the structural relations between the underlying
and overlying rocks. They represent breaks in the strati graphic sequence, that is, they
record periods of time that are not represented in the stratigraphic column. Unconformities
also record a fundamental change in the environment from one of deposition to one of
nondeposition and/or erosion, which often represents an important tectonic event.

The recognition and mapping of unconformities is one of the first steps in understanding
the geologic history of a basin or a geologic province. Unconformities are recognized in outcrop,
seismic and well data and are used as boundaries of stratigraphic units. They are best seen in a
vertical section exposed in a canyon wall, road cut, or quarry, where they appear as an irregular
line, often truncating underlying strata and being onlapped or downlapped by overlying strata..
Unconformities can be recognized on seismic dip and strike lines and on detailed well log
correlation charts. Major stratigraphic units that are bounded by regional unconformities form an
effective means of mapping the distribution in space and time of local and regional stratigraphic and
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tectonic events and reconstructing the changing framework of a geologic province or sedimentary
basin through time. These unconformity-bounded units have been treated as lithostrati graphic
units and referred to as sequences by Sloss (1963). Vail and others (1977) apply the term sequence
toa relatively conformable succession of genetically-related strata bounded at its top and base by
unconformities or their correlative conformities. These sequences are interpreted as depositional
sequences, which can be defined on seismic, well and outcrop data.

In sequence stratigraphy, two primary types of unconformity-bounded sequences are
recognized: Type-1 and Type-2 sequences (Van Wagoner et al., 1987). A Type-1 sequence is
bounded below by a Type-1 sequence boundary and above by either a Type-1 or Type-2 sequence
boundary. A Type-2 sequence is bounded below by a Type-2 sequence boundary and above
by either a Type-1 or a Type-2 sequence boundary. The stratal patterns of each of these sequence
types is illustrated in Figure D-6.

A Type-1 sequence boundary is a regional surface characterized by subaerial exposure
and concurrent subaerial erosion associated with stream rejuvenation and downward cutting, a
basinward shift of facies, a downward shift in coastal onlap, and onlap of overlying strata. A
Type-1 sequence boundary is interpreted to form when the rate of eustatic fall
exceeds the rate of basin subsidence at the depositional-shoreline break,
producing a relative fall in sea level at that position (Van Wagoner etal., 1987). The
depositional-shoreline break is a position on the shelf, landward of which the depositional
surface is at or near base level (usually sea level), and seaward of which the depositional surface is
below base level (Posamentier et al., 1988)(Figure D-6). This position coincides approximately
with the seaward end of the stream-mouth bar in a delta or with the upper shoreface in a beach.” In
pre-1987 publications (eg. Vail and Todd, 1981; Vail et al, 1984), the depositional-shoreline break
was considered to be the shelf edge. In many basins, the depositional-shoreline break may actually
be 100 miles or more landward of the actual shelf edge, which is marked by a change in dip from
the gently dipping shelf (commonly less than 1:1000) to the more steeply dipping continental slope
(commonly greater than 1:40) (Heezen et al., 1959). In other basins the depositional-shoreline
break may be coincident with the shelf edge (Van Wagoner et al., 1987). Because of these
relationships, most unconformities vary in type from basin to basin. The differentiation of Type-1
and Type-2 unconformities on the Mesozoic-Cenozoic Cycle Chart of Haq et al. (1988) is very
misleading. Type-1 unconformities may be a Type-2 if the local tectonic rate of subsidence
exceeds the rate of sea-level fall.

A Type-2 sequence boundary is a regional surface characterized by subaerial exposure
of preceding marine areas, and a downward shift in coastal onlap landward of the depositional-
shoreline break; however, it lacks both subaerial erosion associated with stream rejuvenation and a
basinward shift in facies (Van Wagoner et al., 1987). Onlap of overlying strata landward of the
depositional-shoreline break also marks a Type-2 sequence boundary. A Type-2 sequence
boundary is interpreted to form when the rate of eustatic fall is less than the rate
of basin subsidence at the depositional-shoreline break, so that no relative fall in
sea level occurs at this shoreline position.

The Mesozoic-Cenozoic Cycle Chart (Haq et al., 1988) illustrates the f: irst-, second- and
third-order sequences for the last 250 million years (Figures D-13 and D-14). The cycle
boundaries on that Mesozoic-Cenozoic chart are interpreted to be 48 Type-1 and 68 Type-2
sequence boundaries, but as mentioned above, the specific Type-1 versus Type-2 nature of an
unconformity will vary from basin to basin.

The interpretation of a Type-1 sequence boundary implies that a "basin-floor" submarine
fan should exist, and the chart is so annotated with an "F" in the systems tracts column where fans
have been observed or interpreted (Figure D-14). But again, because of the local variability of
depositional rates, tectonic rates and the effect of eustatic change, the chart cannot be used to
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predict sequence boundary type -- the local patterns must be interpreted, mapped and correlated to
generate a local chart. And itis that local chart that becomes the potentially "predictive" cycle chart.

A cycle chart offers the opportunity to compare local observations with the global synthesis
of the Vail-Exxon sequence-stratigraphy team's observations. Itis very important that each area be
interpreted using wireline-log-calibrated regional, seismic reflection-profile grids, and that the local
cycle chart be developed and then compared to the Mesozoic-Cenozoic Cycle Chart (Hagetal.,
1988) to check for the possibility that either new cycles are observed in the local data, or that some
of the cycles on the global chart are not observed locally. Either of these cases may reflect local
variations in tectonics or sediment supply and may lead to recognition of an additional exploration
play. Care must be taken to correlate the local data with the cycle chart using biostrati graphic
markers. The sequence chronostratigraphy of the Haq et al. (1988) chart has been tied to the
absolute age and magnetostratigraphic scales using fossil evidence (Figure D-13). Because the
numeric time scales of various authors differ, each sequence-stratigraphy study must involve
biostratigraphers to help calibrate and correlate local cycle patterns with the interpreted global
patterns. The average Mesozoic and Cenozoic third-order cycles have a duration of only 2.16
million years. Small errors in chronostratigraphy will result in miscorrelations.

PRIMARY MAPPING DATUMS

The primary horizons-utilized in sequence stratigraphy are the sequence boundary (SB)
and the maximum flooding surface (mfs) (Figure D-1). These represent two important time-
datums in the history of a sequence: the maximum relative lowstand of sea level (SB) and
maximum relative highstand of sea level (mfs), respectively. Additionally, downlap surfaces are
used to separate systems tracts within the sequence. The sequence boundary and maximum
flooding surface are used for regional correlation and subdivision of the depositional sequence as
observed on seismic data. These surfaces are recognized on the seismic profile by specific patterns
of reflection terminations and reflection configurations, and can be correlated to electric logs, and
lithologic and biostratigraphic data through specific combinations of observations.

The recognition of depositional sequences is dependent on the resolution of the data used.
Thin sequences may be recognized in outcrop or on wireline logs, but may be below the resolution
of the seismic data. Only by careful integration of all data sets can all si gnificant sequences be
recognized. Figure D-1 shows the conceptual diagram for a sequence-strati graphic depositional
model and Figure D-15 shows an interpreted seismic profile for comparison to the conceptual
model. Once all faults and lapouts have been mapped and the sequence boundaries and maximum
flooding surfaces have been identified and correlated, the depositional package within each
sequence can be interpreted in terms of candidates for systems tracts. Each of these systems tracts
can subsequently be interpreted for seismic facies analysis to define possible depositional systems
and exploration plays within each systems tract (see Armentrout el al, 1993).

The mapped patterns of the systems-tracts candidates provide a test of the initial
interpretation. Lowstand systems tracts are thickest basinward of the shelf/slope inflection point of
the preceding depositional sequence; whereas, transgressive and highstand systems tracts are
generally thickest at or landward of the shelf/slope inflection point. The shelf/slope inflection
point (also termed shelf-break, shelf-edge, or shelf/slope transition) represents the physiographic
break in gradient between the shelf and slope of the basin, and can often be recognized on the
seismic profile by the topset/foreset inflection point of clinoforms. In areas of growth-faults, this
inflection point is often masked by the expanded depositional section and the growth-fault itself
approximates the location of the shelf/slope inflection point because these faults generally develop
at or near that point (Winker and Edwards, 1983).




'SEQUENCE BOUNDARY

The sequence boundary is an unconformity that extends laterally into correlative
conformities (Figure D-1). Unconformities of regional significance are most extensively
developed during times when the rate of sea-level fall is at a maximum. Relative sea-level fall
causes a basinward shift of deposition and consequent erosion of the area emerging above base
level, defined as the surface above which erosion occurs and below which deposition occurs
(Wheeler, 1964). The area of erosion will be marked by an unconformity above base level and a
correlative conformity with local erosion (submarine canyons, slump scars, basin floor channels or
scour) in those areas below regional base level. Lacking recognizable erosion because of sediment
bypass, an unconformity may be inferred from depositional onlap or basinward shift in
depositional facies.

Unconformities are easily recognized where they remove large thicknesses of strata. This
most often occurs at major changes in relief, such as along mountain fronts or the outer shelf and
upper slope of a basin. The unconformity is best (but not uniquely) observed on seismic sections
parallel to depositional-strike and perpendicular to depositional dip-oriented streams, where rivers
or submarine canyons have incised the underlying strata. The erosion surface is recognized by the
erosional truncation (termination) of strata (Fi gure D-16). The subsequent interval of deposition
that overlies the unconformity is recognized by depositional onlap of younger strata onto the
unconformity (erosion surface) at that location (Figure D-16). Chronostratigraphic data from wells
correlated to the seismic profile should be used to confirm the occurrence of a hiatus associated
with an unconformity.

Candidates fora sequence boundary can be recognized on wireline logs and
biostratigraphic checklists. These local candidates must be correlated with regionally significant
data sets before they can correctly be called sequence boundaries. Where the sequence boundary is
an unconformity, there may be a very marked change in facies across the boundary. Forexample,
on a marine shelf the unconformity will have eroded down into the underlying facies and will be
onlapped by deposition of the overlying sequence. The onlapping facies will be a shallow-water
transgressive facies or coastal-plain facies, possibly with a basal sand, and will probably overlie
either transgressive facies or shallower water to nonmarine progradational facies of the preceding
sequence. The change in facies types, reflected by a change in stacking patterns on wireline-log
profiles (electrofacies) from progradational funnel-shaped to retrogradational funnel- to bell-shaped
patterns, suggests the occurrence of a sequence-boundary candidate (see Van Wagoneretal.,
1987). Commonly this change occurs at the base of a very sharp increase in spontaneous potential
(?sand) and gamma-ray minimum (?sand). On a basin shelf, this pattern may indicate a lowstand
incised valley at the sequence boundary which is filled with sand during late lowstand or early
transgressive sytems tract deposition (Figure D-17). In deep-water basinal settings far removed
from the active erosion along the basin margin, the sequence boundary is sometimes marked by the
rapid influx of coarser sediment resulting in a spontaneous potential maximum and gamma-ray
minimum (Figure D-5). This influx of gravity-flow sand and mud into the basin depocenter results
from bypass of the shelf and slope caused by a rapid basinward shift of falling base level resulting
in the development of an unconformity. These sediments usually occur within basin-floor thicks
and may be interpreted as debris-flow or turbidity-flow deposits.

Biostratigraphic data facilitate identification of sequence-strati graphic boundaries (Figure D-
18). The sequence boundary is often associated with a shift in the biofacies assemblage for the
same reasons that a shift occurs in the stacking pattern of the wireline-log profiles. The biofacies
shift is likely to be very dramatic in shallow marine waters where the nentic (0 to 600 foot)
biofacies zones are quite restricted and change rapidly as a result of relatively minor changes in
water depth, and accordingly dramatic changes in biofacies occur with as little as 50 to 100 feet of
change in water depth. In deeper environments, the bathyal (greater than 600 feet) biofacies zones
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are more expansive, encompassing a water-depth range of hundreds of feet. In bathyal
environments, a change in water depth of more than 1000 feet is usually needed in order to be
reflected by a change in the biofacies assemblages (see Armentrout, 1991 for further discussion).

The near base-level environments, associated with erosion at the sequence boundary, are
inhospitable to many organisms because of rapid changes in sediment accumulation rates,
temperature changes, availability of fresh versus salt water, and other environmental factors.
Consequently, there tends to be a low-diversity assemblage (few species of organisms), despite
high abundances (number of individual organisms) of a few very hardy species that flourish in
these stressful environments. Near base-level environments include rivers, beaches, and
submarine valleys and canyons. Additionally, the rapid accumulation of sediment within the often
sandy, transgressive onlapping facies immediately overlying basin margin and shelf
unconformities, or gravity-flow-deposited basinal sands, will result in a relative dilution of the
fossils preserved.

Fossil dilution events, plus the low diversity in the assemblage, can be identified on faunal
or floral checklists as abundance and diversity minima (Figure D-19). Therefore, abundance and
diversity minima may mark candidates for sequence boundaries, with the sequence boundary most
likely positioned somewhat above the next downhole major increase in fossil abundance (see
Figures D-18 and D-19). However, rapid sediment accumulation resulting in fossil dilution also
occurs within channel complexes on the slope, and in sand-prone facies of the prograding
lowstand wedge, and within sand-prone topset intervals of both lowstand and highstand systems
tracts. Careful analysis of the local stratigraphic position and regional correlation of each faunal
dilution event must be considered before interpreting the event as a sequence boundary.
Additionally, fossil-occurrence information in wells is based on well-cutting samples collected
from regular intervals. The observed patterns are therefore for an interval, and the selection of the
sequence boundary can be more precisely picked from wireline log patterns within the interval
associated with the marked decrease in fossil abundance. The use of biostrati graphy in the context
of sequence stratigraphy is further discussed in Armentrout (1991).

In using borehole data, a sequence boundary candidate may be suggested by the (1) fossil
abundance and diversity minima, (2) the sharp-based, spontaneous-potential profiles, and (3) a
change from progradational to aggradational/retrogradational stacking patterns of wireline-log
profiles (Figure D-17). The sequence boundary candidate must correlate through a regionally
significant area. Only those sequence-boundary candidates that correlate and map as regionally
significant surfaces between stratal intervals are true sequence boundaries in the context of the Vail-
Exxon conceptual model.

Dating the sequence boundary is often difficult. Inspection of Figure D-1 illustrates the
problem. The unconformity surface represents that interval of geologic time not recorded in the
stratal record. This time interval consists of both the hiatus (non-deposition) and the degradational
vacuity (removed deposits) (see Wheeler, 1963). Only strata above and below the unconformity
can be dated, and the duration of the missing interval will vary across the unconformable surface.
By the Vail-Exxon convention, the sequence boundary is dated at the correlative conformity. On
Figure D-1 this is that point where the underlying sequence is overlain by the basin-floor fan.
Finding this precise location within outcrops or wells correlated to seismic reflection profiles is
often difficult, and age-diagnostic fossils often do not occur within the rocks of this interval.
Consequently, most sequence boundaries are dated by superposition of diagnostic fossil
assemblages from strata some distance above and below the unconformity and interpolated using
assumptions of relative rates of sediment accumulation (see Figures D-13 and D-14 for ages
assigned to sequence boundaries and maximum flooding surfaces).
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MAXIMUM FLOODING SURFACE and CONDENSED SECTION -

The maximum flooding surface (mfs) is defined by the maximum landward onlap of
marine strata on the basin margin and represents the maximum relative rise of sea level. The
maximum flooding surface is downlapped by the overlying progradational strata, but the downlap
surface will be progressively younger in a seaward direction as each cycle of prograding-downlap
sediment occurs above the bottomset beds of the preceding progradational unit (Figure D-20). The
maximum flooding surface represents the maximum marine transgression, and can commonly be
traced basinward where it occurs within the laterally continuous layer of sediment deposited by
hemipelagic and pelagic processes. These hemipelagic and pelagic sediments form the
condensed section, an interval of fine-grained sediment accumulating at very slow rates during
times of late transgression and early highstand of sea level (Loutit et al., 1988). During
transgression most of the sediment entering the basin will be trapped within river valleys, coastal
embayments and estuaries. When those areas become filled, the sediment will begin prograding
basinward and downlap onto the maximum flooding surface or, in more basinward areas, the
upper surface of the condensed section within which the maximum flooding surface occurs.
Downlap surfaces also occur between other stratal units, but are less regionally extensive. These
subordinate downlap surfaces occur at the top of the basin floor thicks and slope thicks.
Identification of the maximum flooding surface on a seismic-reflection profile for a depositional
cycle requires the recognition of a major onlapping package capped by a downlap surface, and
correlated throughout the basin.

It is important to note that the maximum flooding surface may not represent
the time of deepest water in the basin, nor the maximum landward coastal onlap
of nonmarine deposits. This is because the relative rise in sea level can continue
after local progradation initiates coastal regression and continued aggradation of
the coastal plain which onlaps the basin margin. This relationship is illustrated on the
Hagq et al. (1988) cycle chart where the apex of the maximum flooding surface and associated
condensed section are shown slightly below the maximum highstand of the short-term (third-order)
eustatic curve (Figure D-14). As a consequence of local controls on the age of the maximum
flooding surface, this surface will not be precisely the same age everywhere (i.e. diachronous),
but may appear to be of uniform age within the resolution of most geochronostratigraphic tools.

Because the maximum flooding surface forms during maximum effective transgression at a
relative high stand of sea level, the basin receives sediment only through hemipelagic and pelagic
processes. These hemipelagic and pelagic sediments are termed a condensed section, because
they were deposited at relatively low sedimentation rates, and represent relatively long intervals of
time compressed into relatively thin intervals of strata (Loutit et al., 1988). Insiliciclastic
depositional systems, these sediments are dominated by clays and biogenic materials, are usually
thin, often drape the basin topography, and frequently contain authi genic minerals which reflect the
slow rates of terrigenous clastic sedimentation, such as glauconite, siderite, and phosphorite. In
carbonate depositional systems, condensed sections are commonly characterized by hardgrounds,
bored surfaces and phosphate nodules. Organic matter may be abundant.

Stratigraphic sections with intervals of time missing due to erosion or nondeposition are
unconformities, not condensed sections. Definitive rates of sediment accumulation for condensed
sections cannot be stated because they vary from basin to basin. Therefore, the condensed section
as used in sequence stratigraphy is a relative term. Operationally, much of the transgressive
systems tract and some of the more basinward highstand systems tract are included in the
condensed section and are represented on the seismic reflection profiles by relatively thin intervals
of seldom more than two or three reflections.



-~ The condensed section associated with the maximum flooding surface is a regionally
correlative datum. Additional intervals of local condensed sedimentation occur when areas of hi gh
sediment accumulation rates switch to low sediment accumulation rates. These local condensed
intervals occur at downlap surfaces on the top of basin floor and slope gravity-flow systems
(Figure D-1), and at the top of abandoned prograding lobes within both hi ghstand and lowstand
prograding deltaic systems. These local condensed intervals may have some of the same lithologic
characteristics of the condensed section, but will only correlate across local areas. It is very
important not to confuse these local condensed intervals with the condensed section associated with
the maximum flooding surface. Careful analysis of the local context of these intervals (eg., at the
top of a basin floor gravity-flow system within a lowstand systems tract), the lateral distribution of
the surface within a data set, and correlation with a regional depositional cycle chart, should help
separate local condensed intervals from the regionally significant condensed section between the
transgressive and highstand systems tracts (see Armentrout et al.,1990; Schaffer, 1990; and Vail
and Wornardt, 1990b for discussions of condensed sections).

The condensed section can be identified in outcrop, core and well cuttings by the lithologic
components listed above, and may be recognizable on wireline logs by the maximum-value
gamma-ray excursion within a depositional cycle (Figure D-17). The condensed section may be
identified in fossil assemblages by zones of maximum faunal abundance which occur as a
consequence of relatively low terrigenous-sediment dilution, and by the association of biofacies
assemblages which commoniy reflect the deepest water of the depositional cycle. As used here,
the condensed section is, in reality, an interval of late transgressive and early highstand systems
tract deposits that accumulate very slowly. Their mineralogic and biologic content is a
consequence of this slow rate of sediment accumulation.

The seismic reflection associated with the condensed section is generally best imaged in
basin margin areas where the most landward prograding clinoforms of the hi ghstand systems tract
downlap onto it. The late stage of the highstand systems tract progradation may downlap onto
distal deposits of the early part of the highstand systems tract, and this downlap surface can be
confused with the maximum flooding surface (Figure D-20). On seismic reflection profiles,
condensed sections correlate with regionally extensive reflections, commonly parallel high-
amplitude reflections formed by the impedence contrasts at the top and bottom of the condensed
section. These reflections are conformable to the underlying topography in areas of outer shelves,
slopes and basin plains, where sedimentation is dominated by hemipelagic drape.

Reflections from condensed sections almost always exhibit a more uniform amplitude and
greater continuity than other reflections. In general, this is because of the regional uniformity of
their depositional environment. However, the seismic signature of the condensed section changes
both in shoreward and basinward directions. Shoreward, the input of terrigenous sediment dilutes
the condensed interval and it is displaced by the oldest downlapping clinoform. Basinward, the
reflection thickens in areas of maximum sediment accumulation from hemipelagic sources such as
seaward of major rivers, and then thins where only pelagic deposition occurs (Fi gure D-9). The
seismic signature of these changes will be reflected in lateral changes in the maximum flooding
surface reflection(s), with lateral changes in amplitude and reflection thickness and overall
thickness of the transgressive systems tract. Despite these lateral variations, the seismic
signature of the condensed section and associated maximum flooding surface is
generally the most regionally correlatable reflection and often a good correlation
interval on wireline logs where it is recognized by ghe highest gamma-ray values
within a depositional cycle.

When basin-margin progradation or regression occurs, the input of terrigenous sediment
dilutes the biogenic supply and prevents development of many of the authigenic minerals which
characterize the condensed section. This initiation of increased terrigenous sedimentation may be
recognized by decreased gamma-ray response, decrease in fossil abundance, and progradation with
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SEISMIC STRATIGRAPHIC ANALYSIS TECHNIQUES

Seismic (depositional sequence identification)
Seismic facies identification
Definition of 'Depositional Sequence' (as per Exxon):
'A seismic stratigraphic unit is composed of a relatively conformable
succession of genetically related strata bounded above and below by

unconformities (or their equivalent conformities).’

Value as_an approach: Objective, depends only on geometry of strata
(within limit of resolution) and so is not inferential.

Defining sequences

-Boundaries are unconformities, detected by geometric
discordance above and below

-Problem of paraconformities

-Nature of discordance:
Structural (angular unconformity)=> truncation
Depositional

Lapout: lateral termination that is original
depositional limit

Truncation: lateral termination that is result of
erosional cut off from original
depositional limit

T UNCONFORMITY .. .. 4 CONFORMITY_
ISURFACE OF NONDEPOSITION) _ _ T (NO HIATUS)

I8

? \'p 71

DEPTH
(Meters)
>

+ 1000

UNCONFORMITY CONFORMITY " UNCONFORMITY

(SURFACE OF EROSION N y (SURFACE OF NONDEPOSITION
AND NONDEPOSITION} (NO HIATUS) )




Upper and lower sequence boundaries exhibit certain distinctive
geometrical relations .

Lower Boundary

Baselap: Onlap horizontal or low angle lapout onto
slope of greater angle
Downlap inclined lapout onto a gentler
slope

Concordance

LOWER BOUNDARY

1. ONLAP 2. DOWNLAP 3. CONCORDANCE

B. Relations of strata to lower boundary surface of a sequence. B1. Onlap: at base of sequence initially horizontal strata
terminate progressively against initially inclined surface, or initially inclined strata terminate updip progressively against
surface of greater initial inclination. B2. Downlap: at base of sequence initially inclined strata terminate downdip progres-
sively against initially horizontal or inclined surface (e.g., initially inclined strata terminating against underlying initially
borizontal suiface). B3. Base-concordance: strata at base of sequence do not terminate against lower boundary.

Upper Boundary

Toplap: initial slope of strata at upper boundary, like
foresets of dunes (evidence of lateral -
transport and topset nondeposition

Truncation: obscures original depositional limits
(evidence of erosion)

Concordance
UPPER BOUNDARY

>>>

_———_/_\_———_
1. EROSIONAL TRUNCATION 2 TOPLAP 3. CONCORDANCE

A.

A. Relations of strata to upper boundary of a sequence. Al. Erosional truncation: strata at top of given sequence
terminate against upper boundary mainly as result of erosion (¢.g., tilted strata terminating against overlying horizontal
erosion surface, or horiz.ontal strata terminating against later channel surface). A2. Toplap: initially inclined strata at top
of given sequence terminate against upper boundary mainly as result of nondeposition {e.g., foreset strata terminating
against overlying horizontal surface at base-level equilibrium where no erosion or deposition took place). A3. Top-concor-
dance: relation in which strata at top of given sequence do not terminate against upper boundary.
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; F1G. 1—Basic concepts of depositional sequence. A depositional sequence is a stratigraphic unit composed of relatively
conformable successions of genetically related strata and bounded at its top and base by unconformitics or their correla-
tive conformities. :

A. Generalized stratigraphic section of a sequence. Boundaries defined by surfaces A and B which pass laterally from
unconformities to correlative conformities. Individual units of strata 1 through 25 are traced by Jollowing stratification
surfaces, and assumed conformable where successive strata are present. Where units of strata are missing, hiatuses are
evident ’

B. Generalized chronostratigraphic section of a sequence. Stratigraphic relations shown in A are replotted here in
chronostratigraphic section (geologic time is the ordinate). Geologic-time ranges of all individual units of strata given as

" equal. Geologic-time range of sequence between surfaces A and B varies from place to place, but variation is confined
within synchronous limits. These limits determined by those parts of sequence boundaries which are conformities, Here,
limits occur at beginning of unit 11 and end of unit 19. A sechron is defined as maximum geologic-time range of a

| sequence)
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Figure 6.15. Reflections from reflectors of limited dimensions. (a)
Cross section of model; vertical lines are spaced by the Fresnel-zone size

(specific dimensions are not in
(b) Seismic section resulting
amplitude of the four reflections are,

cluded because the effect is dimensionless).
from traverse over the model. The peak

respectively, 100%, 87%, 55%, and

40%. (After Meckel and Nath, 1977; reprinted by permission of The Amer-
ican Association of Petroleum Geologists) J A e /7[ 80

10

15

Figure 6.17. Reflection from a reflector containing a hole whose
width is three trace intervals (indicated by arrow at top). (From Sheriff,
1977a; reprinted by permission of The American Association of Petro-

leum Geologists) j /75)7" H[“‘ 50
/
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Figure 6.14. Fresnel zone. (a) The first energy to reach a geophone
from a plane reflector is from the point where a wavefront is first tangent
to the reflector; the area of the reflector from which energy can reach
the geophone within the next half-cycle is limited by the circle that the
wavefront a %-wavelength later makes with the reflector. (b) The Fresnel
zone is larger for low-frequency components than for high-frequency
ones. (From Sheriff, 1977a; reprinted by permission of The American
Association of Petroleum Geologists) o -



Table 1-1. Typical Limits of Visibility and Separabjlity for a range of geologic situations.

Broum, s f AA(Pﬁf:'{:Z} 42 Age(of rocks (RY YOUNG MEDUM  OLD  'gip
Depth oftarget gl SN Mo ox

Formation Velocity (m/s) 1600 2000 3500 5000 6000
Predominant Frequency (Hz) 70 50 35 25 20

Wavelength (m) A 23 40 100 200 300

LIMIT OF SEPARABILITY % 6 10 25 50 75

L 1’ Poor S/N e.0. \[l)\(l)agfrdz?:d ~% 3 5 13 25 38
h;l : Moderate S/N e.g. gﬁ;rg%ro gildsaetlgd ~1% 2 3 | 8 17 25
; High S/N 60, coo it ~% 1 2 5 10 15
F ; Outstanding S/N  e.g. ngeﬁigs data ~30 <1 1 3 7 10

units are meters
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{ O0TCROP (IODELS AS TESTS OF RESOLUTION)

PS

THICKNESS km

0.5

TRIASSIC
CARMAN

SCHLERN CARBONATES

1.0 2.0 3.0
DISTANCE km

Figure 2—Stratigraphic terminology used in this study for the Picco di Vallandro area. PV = Picco di Vallandro,
PS = Punta di Serla, RC = Rocce della Chiesa. The Raibl Group shown at the top of the diagram overlies the Diirrenstein
Formation, but is not exposed due to erosion at Picco di Vallandro. Line and plane of section shown in Figure 6.

Biddle etl , 1992, AtPh Ol

PICCO DI VALLANDRO
{OURRENSTEIN)

DURRENSTEIN DCOLOMITE

PUNTA DI SERLA
{SARLKOQFELE)

TRE CIME LAVAREDO
{DAEI ZINNE)

% OURRENSTEIN »
PRATO PIAZZA
y (PLATIWIESE)

COVERED

COVERED

- CASS{AN 8EDS

E MIDDLE AND UPPER TRIASSIC CARBONATES
OF 5TUDY AREA

Figure 3—Line drawing of Picco di Vallandro looking toward the east (see Figure 4) showing distribution of, and
relationships between, the stratigraphic units discussed in the text.
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Figure 13—Detailed impedance-reflection plot, trace 75. Trace location is

shown on Figures 10-11. Interval

velocity is in km/s. Abbreviations as in Figure 12. See text for discussion.
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Figure 7—Sonic velocity vs. bulk density for Picco di
Vallandro samples (Rudolph et al. 1989). Samples are
plotted by stratigraphic unit or lithotype. Enclosed
areas represent the field covered by each stratigraphic
or lithologic unit. Mean values were calculated for each
field, with three means calculated for the Cassian
Formation: one for bedded limestones, one for all
marls, and one for argillaceous marl. Contours in the
Cassian Formation field represent percent noncar-
bonate material (see Table 1). Velocity and density of
mineral calcite and dolomite are given for reference
(from Simmons and Wang, 1971; Sumino and Ander-
son, 1984).
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Figure 2—Photomosaic of Big Rock Quarry face (location of profile shown on Figure 1).
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Figure 3—(A) Correlation
diagram from quarry photo
mosaic {original scalar
distortion) (from Bouma
and Cook, 1994, used by
permission). (B) Correlation
diagram from quarry photo
mosaic (differentially
“squeezed” to approximate
photomosaic and seismic
aspect ratio and scale)
(simplified from Bouma
and Cook, 1994).
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Figure 4—Line drawing from photomosaic of Big Rock Quarry face, with outcrop gamma-ray logs from

Jordan et al. (1991).



VELOGTVGRADIENT  Figure 5—Seismic velocity
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2B Quarry face.
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Figure 6—A 300-Hz synthetic seismic line, Big Rock Quarry face, with location of ARCO’s outcrop gamma-ray
logs from Jordan et al. (1991).
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Figure 8—(A) Selected portion of a seismic line in Green Canyon Block 136 illustrating seismic facies char-
acter of a profile across a submarine channel/levee complex (modified from Geitgy, 1990, reproduced with
permission of the Gulf Coast Sections Society of Economic Paleotologists and Mineralogists Foundation).
(B) A 300-Hz synthetic seismic line of Big Rock Quarry face (Figure 6) displayed at approximately the same
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Figure 5. Example well showing seismic to well tie and sedimentological sequence stratigraphic analysis. Note the 1:1 correspon-
dence between coarsening-upward shoreface parasequences at 500-520 m on the gamma-ray log and black, negative acoustic
impedance events. Also note the distinctive fuzzy seismic character of the tidal-estuarine complex. See text for full discussion.
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Figure 6.10: Seismic section intersecting the southern Grane fan. We observe seismic
signatures of vertical and lateral stacking of separate channelized depositional units.
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Figure 6.15: Gamma ray, Vp, and porosity in well #2 (location, see Figure 5.2). Cross
plot of Vp versus porosity is shown to the right. The lower zone of the reservoir
sands has higher velocities and lower porosities than the upper zone. This textural
change is related to sorting/packing (c.f., Chapter 2), and explains the internal
reflector observed in the seismic section in Figure 6.19.

Avsetl, Stanfd PhD Hesis, 2000
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Figure 6.16:; Geologic model showing lateral migration/stacking of channel sands.
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Figure 6.17: Velocity and density models of a laterally stacked channel-complex.
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Figure 6.18: Synthetic seismic sections, one with a 35 Hz wavelet (upper) and one with a
50 Hz wavelet (lower). The results show that internal reflectors” can occur due to
sandstone texture in the studied turbidite system, even at 35 Hz. The top sand
reflector is in general a strong positive amplitude, whereas the erosive base causes a
strong negative amplitude.
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SEISMIC FACIES (Exxon concepts and approaches)

«Erect sequences as packages of concordant reflectors (defined by

reflectors terminated at sequence boundaries)

«Note internal character of sequence
-configuration of reflectors
-continuity of reflectors
-amplitude of reflectors
-frequency
-interval velocity

+External form of sequence

REFLECTION TERMINATIONS
(AT SEQUENCE BOUNDARIES)

LAPOUT
BASELAP
ONLAP
DOWNLAP
TOPLAP
TRUNCATION
EROSIONAL
STRUCTURAL __ .~
CONCORDANCE
(NO TERMINATION)

In practice:

PRINCIPAL STRATAL CONFIGURATION

REFLECTION CONFIGURATIONS
(WITHIN SEQUENCES)

EXTERNAL FORMS
{OF SEOUENCES AND
SEISMIC FACIES UNITS)

PARALLEL
SUBPARALLEL

DIVERGENT
PROGRADING CLINOFORMS
SIGMOID
OBLIOUE
COMPLEX SIGMOID-OBLIQUE
SHINGLED
HUMMOCKY CLINOFORM
CHAOTIC
REFLECTION-FREE

MODIFYING TERMS

EVEN HUMMOCKY
WAVY LENTICULAR
REGULAR DISRUPTED
IRREGULAR CONTORTED
UNIFORM

VARIABLE _ .

SHEET
SHEET DRAPE
WEDGE

Single line (2-D) analysis => Grid analysis => Full interpretation



Table 1. Geologic Interpretation of Seismic Facies Parameters.

. EXTERNAL FORMS
REFLECTION TERMINATIONS REFLECTION CONFIGURATIONS {OF SLQUENCES AND

(AT SEOUENCE BOUNDARIES} ~ {(WITHIN SEQUENCES) SEISMIC FACIES UNITS)
LAPOUT PRINCIPAL STRATAL CONFIGURATION
BASELAP PARALLEL SHEET
.——ONLAP SUBPARALLEL SHEET DRAPE
DOWNLAP DIVERGENT !\!_?EQ_E_
TOPLAP PROGRADING CLINOFORMS BANK
TRUNCATION SIGMOID LENS
EROSIONAL OBLIOUE MOUND
STRUCTURAL i COMPLEX SIGMOID-OBLIQUE FitL
CONCORDANCE SHINGLED
{NO TERMINATION) HUMMOCKY CLINOFORM
CHAOTIC

REFLECTION-FREE
MODIFYING TERMS

EVEN HUMMOCKY
WAVY LENTICULAR
REGULAR DISRUPTED
IRREGULAR CONTORTED
UNIFORM

- . VARIABLE :

Table 2. Seismic Reflection Parameters Used in Seismic Stratigraphy,
and Their Geologic Significance.

SEISMIC FACIES PARAMETERS GEOLOGIC INTERPRETATION w

REFLECTION CONFIGURATION e BEDDING PATTERNS
e DEPOSITIONAL PROCESSES
e EROSION AND PALEOTOPOGRAPHY
e FLUID CONTACTS

REFLECTION CONTINUITY e BEDDING CONTINUITY
e DEPOSITIONAL PROCESSES

REFLECTION AMPLITUDE e VELOCITY-DENSITY CONTRAST
e BED SPACING
e FLUIDCONTENT

REFLECTION FREQUENCY e BED THICKNESS
e FLUIDCONTENT

INTERVAL VELOCITY e ESTIMATION OF LITHOLQOGY

e ESTIMATION OF POROSITY
e FLUIDCONTENT

EXTERNAL FORM & AREAL ASSOCIATIdN e GROSS DEPOSITIONAL ENVIRONMENT
OF SEISMIC FACIES UNITS e SEDIMENT SOURCE
e "GEOLOGIC SETTING
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FIG. 5—Parallel, subparallel, and divergent seismic reflection configurations: 2 is a parallel configuration with
good continuity and high to medium amplitude; b is subparallel configuration with good to fair continuity and high

to medium amplitude; ¢ and d are divergent configurations, with thickening of individual reflection cycles in
direction of divergence. Nonsystematic reflection terminations occur in direction of thinning,.




THIS PROGRADATIONAL REFLECTION CONFIGURA- FORESET SEGMENTS OF STRATA BUILD ALMOST EN-

. TION IS INTERPRETED AS A PROGRADING CLINO- TIRELY LATERALLY IN A DEPOSITIONALLY DOWN-
OB|,|QUE FORM PATTERN, CONSISTING IDEALLY OF A NUM- DIP DIRECTION. THEY BUILD OUT FROM A RELA-
BER OF STEEP-DIPPING STRATA TERMINATED UPDIP TIVELY CONSTANT UPPER SURFACE DUE TO THE
(FIGURE 14) BY TOPLAP AT OR NEAR A BASICALLY FLAT UPPER LACK OF TOPSET STRATA BUT ARE CHARACTERIZED
SURFACE, AND DOWNDIP BY DOWNLAP AGAINST BY PRONOUNCED TOPLAP TERMINATIONS OF FORE-
THE LOWER SURFACE. SUCCESSIVELY YOUNGER SET STRATA.
&8

THIS IS AN EXAMPLE OF OBLIQUE SEISMIC REFLEC- SLOW TO NO BASIN SUBSIDENCE, AND A STILLSTAND HGURE ]5

TION CONFIGURATION. THIS CONFIGURATION IM- OF SEA LEVEL TO ALLOW RAPID BASIN INFILL AND

PLIES DEPOSITIONAL CONDITIONS WITH SOME COM- SEDIMENTARY BYPASS WITH.SOME EROSION OF THE

BINATION OF RELATIVELY HIGH SEDIMENT SUPPLY, UPPER DEPOSITIONAL SURFACE. 7
Abbol 79

THIS FIGURE IS ANOTHER EXAMPLE OF AN OBLIQUE FIGURE ]6
SEISMIC REFLECTION CONFIGURATION PATTERN.



203

THIS PROGRADATIONAL CONFIGURATION IS A PRO-
SlGMOlD GRADING CLINOFORM FORMED BY SUPERPOSED STRATA APPROACH THE LOWER SURFACE OF THE
(FIGU RE 9) “S" SHAPED REFLECTIONS INTERPRETED AS STRATA FACIES UNIT AT VERY LOW ANGLES, AND THE SE!S-
WITH THIN, GENTLY DIPPING UPPER AND LOWER MIC REFLECTIONS SHOW DOWNLAP TERMINATIONS
SEGMENTS, AND THICKER, MORE STEEPLY DIPPING AS THE STRATA TERMINATE OR BECOME TOO THIN
& MIDDLE SEGMENTS. THE LOWER SEGMENTS OF THE TO BE RECOGNIZED ON SEISMIC SECTIONS.

THIS FIGURE IS AN EXAMPLE OF SIGMOID SEISMIC OR RAPID RISE IN SEA LEVEL TO ALLOW DEPOSI- |:|GURE ]0
REFLECTION CONFIGURATION. THIS CONFIGURA- TION AND PRESERVATION OF THE TOPSET BEDS.

TION IMPLIES RELATIVELY LOW SEDIMENT SUPPLY Aé‘ 4{77

WITH RELATIVELY RAPID BASIN SUBSIDENCE AND/ FROM GROEN, 1972, [

Wit

THIS FIGURE 1S AN EXAMPLE OF SIGMOID SEISMIC

REFLECTION CONFIGURATIO HGURE "
WENTS OF COMPLEXSIGMOID-(;‘BL‘:\(,;I)’;. SO sea:
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FIG. 10—Examples of chaotic and reflection-free seismic configuration. In a refiections may be interpreted as
contorted stratal surfaces; in b no stratal patterns may be reliably interpreted; c is largely reflection-free, where no

or very few reflections occur in seismically homogeneous shale.
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F1G. 9—Diagrams of chaotic and reflection-free seis-
mic reflection patterns. a represents a chaotic pattern
which may be interpreted as original stratal features still
recognizable after penecontemporaneous deformation;
in b reflections may not be interpreted in any recogniz-
able stratal patiern; ¢ represents a reflection-free area.
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MOUND TYPES

Table 1. Geologic Interpretation of Seismic Facies Parameters.

EXTERNAL FORMS

REFLECTION TERMINATIONS REFLECTION CONFIGURATIONS {OF SEOUENCES AND

{AT SEQUENCE BOUNDARIES) ~ (WITHIN SEOUENCES) SEISMIC FACIES UNITS)
LAPOUT PRINCIPAL STRATAL CONFIGURATION
BASELAP PARALLEL SHEET
ONLAP SUBPARALLEL - SHEET DRAPE
DOWNLAP DIVERGENT WEDGE
TOPLAP PROGRADING CLINOF ORMS BANK
TRUNCATION SIGMOID LENS
EROSIONAL OBLIQUE MOUND
STRUCTURAL . COMPLEX SIGMOID - OBLIQUE FiLL
CONCORDANCE SHINGLED
{NO TERMINATION) HUMMOCKY CLINOFORM
CHAOTIC ’

REFLECTION-FREE ' ]
MODIFYING TERMS :

EVEN HUMMOCKY
WAVY LENTICULAR
REGULAR DISRUPTED

IRREGULAR CONTORTED

UNIFORM

VARIABLE

TROUGH FILL
BASIN FILL

FILL TYPES

CHANNEL
FILL

- e e

LENS

SHEET DRAPE

FRONT FILL

FIG. 12-—Exiernal ‘forms of some seismic facies units.
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CONTOURITE MOUND

VOLCANIC MOUND
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CARBONATE MOUNDS

PINNACLE WITH VELOCITY
PULL-UP

BANK EDGE WITH VELOCITY SAG

FIG. 13—Some mounded scismic facies units.
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2] FILL CONFIGURATIONS

FILL CONFiGURATION PATTERNS ARE INTERPRETED AS
STRATA FILLING NEGATIVE-RELIEF FEATURES iN THE UN-
DERLYING STRATA. THE INCISED OR UNDERLYING REFLEC-
TIONS GENERALLY SHOW EROSIONAL TRUNCATION ALONG
THE BASAL SURFACE OF THE FILL. FiLL FORMS OR UNITS

HAVE BEEN CLASSIFIED BY THEIR EXTERNAL FORM SUCH ,
CHANNEL FILL, TROUGH FILL, BASIN FILL OR SLOPE-FRO!
FILL. THEY ALSO SHOW A VARIETY OF INTERNAL REFLE
TION CONFIGURATIONS, SOME OF WHICH ARE ILLUSTRATE
IN FIGURES 28 THROUGH 30.

Abbst 19

=3 A

200 H"f: R e S R IS SR o e ST A

FILL SEISMIC REFLECTION CONFIGURATION — THIS FILL
REFLECTION CONFIGURATION PATTERN IS INTERPRETED TO
BE A DISTRIBUTARY CHANNEL COMPLEX INCISED INTO
DELTA FRINGE SILTS AND CLAYS. THE DEPOSITIONAL CYCLE
OCCURRING WITHIN THIS DISTRIBUTARY CHANNEL IS AN
ACTIVE CHANNEL SEDIMENTATION PHASE AT THE BASE
FOLLOWED BY AN ABANDONED CHANNEL FILL AT THE TOP.
THE CHANNEL CONTACT IS SHARP {CONTINUOUS HIGH AM-
PLITUDE REFLECTION) AND EROSIONAL AGAINST THE AD-
JOINING “BED ROCK.” SEDIMENTS ARE SAND IN THE BOTTOM
OF THE CHANNEL AND IN THE PROGRADING CLINOFORM

PATTERN ON THE LEFT. THE MIDDLE AND UPPER PART,
WHICH REPRESENTS THE ABANDONED FILL STAGE, CONSISTS
MAINLY OF THIN-BEDDED CLAY. THE ACOUSTIC RESPONSE
FROM THE SAND IS A RANDOM, DISORGANIZED PATTERN
SIMILAR TO A NOISE PATTERN. THE CLAY APPEARS TO
CAUSE A SONIC RESPONSE WHICH IS MORE CONTINUOUS AND
CRISP. THE FRINGE SILTS AND CLAY EVENTS REPRESENT
FLAT-LYING STRATA THAT GENERALLY EXTEND ACROSS
LONG SEGMENTS OF THE SPARKER LINE.

FROM KING, 1973. FlGURE 2‘

FIGURE 30(d
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FIGURE 30 (c)

FIG. 15—Some fill seismic facies units.
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Fig. 1-9. Improved
structural continuity of an
unconformity reflection
resulting from 2-D and
3-D migration.

Brown, 1229,
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Fig. 1-15. Areal coverage
of a 3-D survey compared
to the coverage of a grid
of five 2-D lines, and the
ability of each to delineate
a meandering channel.

Brown , 1999,
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Fig. 4-21. Horizontal
section from Matagorda
Block 668, offshore
Texas, showing prominent
channel. It is a useful and
interesting challenge to
locate the channel
intersection on the vertical
section of Figure 4-22.
(Courtesy ARCO Oil and
Gas Company.)

TIME (SECONDS)

Fig. 4-22. Vertical section
from Matagorda Block
668, offshore Texas.
(Courtesy ARCO Oil and
Gas Company.)
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Fig. 8-30. Coherence time
slice at 1250ms from Gulf
of Mexico showing chan-
nels and faults (after
Bahorich and Farmer,
1995). Note the channels
indicated by the red
arrows, how the channels
are cut by faults, and also
the point bars where one
of the channels changes
direction. (Courtesy
Amoco Corporation. Data
courtesy Geco-Prakla.)

61’0&077/ ,999)
AAps Men- 412
(s ed)

Fig. 8-31. Time slice at
1250ms from Guif of Mexi-
co for comparison with
Figure 8-30 (after Bahorich
and Farmer, 1995). (Cour-
tesy Amoco Corporation.
Data courtesy Geco-Prak-
la.)
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Fig. 4-19. Horizontal
section at 104 ms from
Nubi 3-D survey
recorded in the
Mahakam delta off-
shore Kalimantan,
Indonesia. Note the
dendritic patterns of
incised canyons.
(Courtesy Total
Indonesie.)

- brwn, 1999,
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Fig. 14. Co-displayed coherence (in plan view, i.e. time slice) and reflection amplitude (in cross section view).

Posamentier et al, 2007




Y Cal braton ¢5 3-D 1masdes

Fig. 4-17. Horizontal sec-
tion at 100 ms from
Peciko 3-D survey record-
ed in the Mahakam delta
offshore Kalimantan,
Indonesia. The deltaic
features seen here are
about 18,000 years old.
(Courtesy Total Indone-
sie.)

Fig. 4-18. Satellite photo-
graph of part of present
Mahakam delta for com-
parison with Figure 4-17.
(Courtesy Total Indone-
sie.)
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One Kilometer

One Mile

Stacking Multiplicity: 24

Number of Channels Recorded: 48
Interval between Input Channels: 110’
Minimum Offset Distance: 330°
Maximum Offset Distance: 2860°
Static Corrections: Adaptive & Elevation
Deconvolution: 25-90 Hz

Frequency Filtering: 25-80 Hz

Other:

Migration: No

Bally 12:4-3C

Source of Velocities for Processing: Data
Derived
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Btown J /5‘95; AA P4
Mem 42 (5thed)

Fig. 8-32. Coherence horizon slice covering time range
1100 ms to 1400 ms using small analysis window to further
emphasize stratigraphic features seen in Figure 8-30. Scale
is same as Figure 8-30 and its outline is here in red. Horizon
slice is calculated over +8 ms window around smoothed
picked horizon. (Courtesy Amoco Corporation. Data cour-
tesy Geco-Prakla.)
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Fig. 6. Model geometry and velocity-
layer distribution, Model 1.
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FIG. 22—Seismic section in southern Sacramento Valley, California, showing seismic character and interpretation of seismic

sequences of Upper Cretaceous Starkey sandstone, Delta shale, and Winters sandstone. See F igure 21 for approximate location of
section.
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FIG. 23—Subsurface section illustrating stratigraphy of Starkey sandstone, Delta shale, and Winters sandstone and their relation
to each other. Section also shows stratigraphic trap in turbidite sands of Putah Sink gas field (modified from Drummond et al,
1976). See Figure 21 for approximate location of section.
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(HIGH ENERGY)

SIGMOID PROGRADATIONAL
(LOW ENERGY)

FIG. 5—Shelf-margin and prograded-slope seismic fa-
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FIG. 6—Oblique-progradational seismic facies, Miocene example. Upper Miocene deposits form prominent, basinward-thinning, oblique-prograding facies unit. Two
wells Jocated along line contain abundant reservoir quality sandstone in facies.
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FIG. 8—Sigmoid-progradational seismic facies, offshore eastern Canada. Section shows striking sequence boundary at about 1.8 sec (on right) separating parallel

reflections below from sigmoid-prograding reflections above.
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Rg. 4-11. Schematic diagram
of delta prograding across
the Gulf of Thailand 3-D
survey area between
mid-Miocene and Pleisto-
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130w
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CONSTRYCTS

Figure 12. Figure 12a shows a location
map for the Eurekan megasequence in
the-Beaufort-Sea and-the seismic line
locations of figures shown elsewhere in
the text. Figure 12b is a chronostrati-
graphic diagram of the Eurekan megase-
quence within the deltaic depocenter
shown on Figure 11a and on Figure 4 of
Hubbard, Pape, and Roberts (1985; this
volume). Three Eurekan hydrocarbon
play fairways are distinguished on the
basis of dominant depositional environ-
ment. Delta top depositional environ-
ments are shown in green, delta front
depositional environments are shown in
yellow and pro-delta depositional envi-
ronments in brown. Oil accumulations
are restricted to the deeper stratigraphic
levels and are trapped in turbidite and
delta front sands of Sequences 1 and 2.
Gas accumulations are trapped at shal-
lower stratigraphic levels, primarily in
the delta top and delta front environ-
ments of Sequences 2 and 3. Note that
Sequences 1 and 4 equate more to deposi-
tional environments in a linear prograd-
ing shelf system rather than to the lobate
delta environments of Sequences 2 and 3.
To the west and east of the major deltaic
depocenter all sequences equate more to
the prograding shelf system (Figures 1 1b
and 13).
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STRATIGRAPHIL SEQUENCES oN THE SHELF
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Figure 4—Uninterpreted
(top) and interpreted
(bottom) seismic section
illustrating the principal
unconformities and
associated reflection
terminations. Each
regional unconformity
17, 2", 3" etc.) is polygenetic
and separates locally into
two surfaces (1, 2, 3, etc.,
and 1, 2, 3/, etc.).

The seismic units are of
two types: regional
prograding units (RPU)
and intercalated units (TU),
each exhibiting specific
external shape and
internal configuration
(see text for further
discussion and Figure 2
for location).
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Figure 15—Seismic section (uninterpreted and interpreted) illustrating the external and internal geometry of a
proximal intercalated unit (pIU ¢"). This stratigraphic unit is characterized by oblique to oblique-tangential
reflections. The reflections dip seaward with a2 moderate to strong angle (up to 5-7°). On the interpreted section
(bottom) the lower boundary (3) is an erosional and subhorizontal surface (dashed line). The upper boundary (3")

is convex upward.

Figure 16—Schematic
pattern of late
Pleistocene lithology.
Interpretation is
inferred from seismic
facies analysis and
calibrated with core
data from the
uppermost units.
Location of samples
for C,, dating of the
uppermost regressive
progradational unit
(RPU f) (Kullenberg
core K-89-16) is given
in Table 1.

Tesson etal 2000, AAPGBull, v 8 pI]2-I5D.

Inner Sheif Shelfbreak

Kuilenberg coring

Depth
= = Late-Pleistocens upper boundary

= Unconformity
SN Facies boundary

Bl High energy deposits (coastal sands)
Mid energy deposits (mid to lower shoreface sands and silty-muds)
Low energy deposits (offshore sity-muds and shelf muds)
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THE SLOPE ENVIRONMENT
SHELF 1O BASIN TRANSITION .

CANYON 4 NON-CAWYON EXMPLES

Figure 4—Shaded bathy-
metric map of the entire
study area (Figure 1) dis-
played to emphasize linear
trends. The featureless plain
at the north is the shelf.
Shaded relief accentuates
the shelf edge, counter-
regional growth faults,
growth faults, transtensional
fault zones along the mar-
gins of the megaslide,
small-scale sea-floor craters,
mud volcanoes, piggyback
basins, and the toe-thrust
zone. The bold outline
locates the turbidite system,
shown in Figure 6A, within
the sea-floor “slide valley.”

Atmentrout ¢t ab) 2000
A4P& Mew 72, p3-108
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86 THE SEISMIC SIGNATURES OF TYPICAL SANDSTONE RESERVOIRS

FIGURE 3.5.3-5
(After Farr, 1976)
(Courtesy Western)
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Figure 2. 3.5 kHz seismic profiles across (A) Vitznau and (B) Chriitztrichter subbasins of Lake Lucerne. For
exact location of profiles, see Figure 3A. Discussed event horizons with related siump deposits and megatur-
bidites (t) are outlined. in color. Ages: BP ‘is calendar yr B.P. Vertical black lines indicate position of piston.
cores.
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upward fan-fringe sequence. An increase in transit time with an increase in gamma value and decrease in dip suggest a
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SEI1SMIC STRATIGRAPHK. INTERPRETATION OF
ERAMCWORK." (MON DETRITAL) CARBONATE BUILD-UPS

—

SIMPLIEIED GENETIC TNPES:
| ). "REEF " - posTWE RELIEF FRAMEWORK FEATURE
2 * BANKY — PILE-UP (NOT EXTENSWELY BOUND 18 FRAMEWORK.)
OF SKELETAL REMANS @ (& RELATED SEDIMENT)
0F COMMUNITY OF GREGARIOVS QRGANISMS .

FPROBLEM: CANT TELL THESE QPART SEISMICALLY - AT
BEST CAN oWLY DETECT PosITIVE REUIEF & CARBONATE
CompOs 1T100 . HENCE | MoRE USEFLL ApPrOACH )

- FIG. 1—Types of carbonate buildups most easily recognized from seismic interpretation.
Conventional classification of reefs and banks, although preferred, is not easily applicable to

seismic data.
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" TRANSPORT BY
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Corbmafe
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FIG. 20—Seismic profile 30 (Fig. 2A) illustrates progress of shallow-water sands carried to deep
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Figure 2—Stratigraphic terminology used in this study for the Picco di Vallandro area. PV = Picco di Vallandro,
PS = Punta di Serla, RC = Rocce della Chiesa. The Raibl Group shown at the top of the diagram overlies the Diirrenstein
Formation, but is not exposed due to erosion at Picco di Vallandro. Line and plane of section shown in Figure 6.
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Figure 3—Line drawing of Picco di Vallandro looking toward the east (see Figure 4) showing distribution of, and
relationships between, the stratigraphic units discussed in the text.
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LEXAMPLES OF CRRBONATE MARSIN
SYSTEMS -~ ~~

Multichannel Seismic Reflection Data
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FIG. 4—Structural cross section scross edge of Blake Platean and Blake-Bahama Basin based on depth conversion of lines MC
ggland IV:,C 90. Seismic interval velocities used for depth-section conversion are given in km/sec. Correlations with DSDP Site
1 are shown. '



Seismic Recognition of Carbonate Bulldups e

SECONDS

2 MILES
{A) ORIGINAL DATA

SECONDS

2MILES

{B} INTERPRETED STRATIGRAPHY

FIG. 6—Offshore West Africa(12-fold CDP Aquapulse® data). Shelf-margin carbonate buildup can be seen by (1)
reflection from top and front of buildup, (2) onlap of cycles onto buildup, (3) change from continuous, parallel
reflectors into discontinuous reflectors, (4) numerous diffractions, (5) drape over buildup, and (6) abrupt change in
dip of reflectors.

Wells encountered series of Mesozoic shelf-margin buildups along eastern Atlantic continental margin off Africa.
Buildup displayed on this line is interpreted as Late Jurassic.
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{B) INTERPRETED STRATIGRAPHY

FIG. 9—Central basin platform, Lea County, New Mexico (I12-fold CDP Vibroseis® data). Shelf-margin carbon-
ate-bank buildup on this line is indicated by (1) abrupt change in dip at shelf edge, and (2) seismic facies change
from high-amplitude, continuous reflections to low-amplitude to nearly reflection-free zone at shelf edge.

Leonardian and Guadalupian shelf-margin banks, composed mainly of dolomitized skeletal limestones of the
Abo, Victorio Peak, Goat Seep, Getaway, and Capitan Formations, are documented by wells in this part of Permian
basin. Basinward of shallow-water banks are siltstones, shales, and micritic limestones of Dean, Bone Spring,
Brushy Canyon, and Cherry Canyon Formations; shelfward of banks are thin-bedded, dolomitized micritic and
dolomitized algal-laminated limestones and sandstones of the Yates, Seven Rivers, Queen, Grayburg, San Andres,
San Angelo, and Yeso Formations.

a-.‘!.)'-h'r: s -d’b -\“r‘»a- x-.h_..'f.'

2MILES












NOLLYAVHOOHd (N 9°S) W 6 "XOHddV

(W 08I+) 010'%: AL
R
ocowl.mhow at W 0002- — e —— s3IV TYNISVE INFO0 m_m—mms IJ‘ o0ooe- VMW oooe-
ST aNE03 — - ——— anzooono | € ‘ONo ¥IMOT |5
T SaOVA = B0 Y3ddn| = |-
) 1SN 3N =]
000% 1] anz009M0 23HS SHovd TYNISVE SNIoOW | © m__,_,_.mpwﬁ\, INDOR R
= W 0001~ — HIALVM MOTIVHS — [~ W000- ANV “THYN ‘OW H3ddn| = [P 0001-
SAIVNOBHYD /w SSYI ‘INOLSANW ‘Ofid HIMO] —=—
i S3OVS 3N . —
0002 anNzoom ;om__m__wu a3aa3s . TOVA — SvoLsdnw TVNISYE 3N3oolsiEd-ond | b WAIVM 4330 ond- ISl
4] - ond H T HILYM
I P < SIONINOIS ,
0 p3 Z ; T T T S 0
1334 ov 002 oov 009 008 096
Q- <—— Wi sE S 3NIT JINSIES ————— (STUNSSH WA GZ X Wy oph —————>%-
IN } - 3NOA SY3SONV 1-0% 1 ODOWY MS
ﬁ\\ ‘% .ﬂ\_\.- s tmu. 4 \\ A4 \M\\ A Ul ‘UONIN AN ANSUDP AGEHEA INEIGUOU-ISIMYINOG “T 3N
ST E 0
1 S | .
. . ; — F0D "G0d OJONV 5861 TOVA
.y 1 SIAVa®'y

TITHHAL' MM T3AT1 VIS WNUva

.A INI. NOLLO3S JNIL
ALISN3Q IN1EGVIHVA 3N -~ MS

= VISINOON! VIS SIHO1H-Tva
NIOHYW $13HS

JIYNOg

s I
S e e

(0as) 3w : R
AVM- e o g g < g e ot oo o poe g e
e s S S I Sy e NI S T Wy Wk S SR S Sy SN BT RN S S S minut Y Sl Sl S TR Shal Sy Sy So S S Sessy Genty B B S FH s S S e o N 0
T d d E il Y v s o2 o8 3 8oz oto¥oyororo:oforo: oz o8 o%oTo:ozo oo f %ot ofoifofozogrivg
IN + - - ax - - " - w “ - - n - ... w u r M




SECONDS

Vo Y Ao,
; '-'..o‘_:.?é"\"'_‘:
" s'll . ".‘, yped 1.' "
ety et e M-‘f‘f"‘" b e by
; "'f"-‘-vs'-»-“lﬁ:lwﬂndﬂfwﬁwmu:nsﬁ o
O e T W 1 'rsﬁﬂmmam“:wm
y R to by ol tem R L P " P rpIOSyPe
s T e e e e
- e e T Tt T Y T

e nol-1 reseiustie onpeguyire g
bt o ' , o8 (] :"'DE‘APE e (T %3 ‘e
P Rty e X R o ML A e e ot lamin s ave PonT
o .

O e A e YL L T n sy g
Do e "'-l’b-.'?'."':"l'b.l;h-..‘:"” ':;:.ﬂ"'-

he I

G R NG P Rl Tl AN "
» o . N N

:1 » e Rt """""‘:L"ﬁ'?:‘:’.’!’ksl P'Igi‘;'-;' i .

SECONDS
g
1

a e e
oy ' — e Pt se » "
- W. A PINNACLE BUILDUPS COLD LAKE SALT
b eyttt porli bl o ove o
Riatracemmrtion.slomcsommetor lusturs Wy .._.—-'-I.‘i. sk e

TMILE

(B} INTERPRETEDN STRATIGRAPHY

FIG. 10—Rainbow-Zama area, Alberta (6-fold CDP dynamite data, section datumed on Cold Lake salt reflec-
tion—a near-basement horizon). Presence of two small pinnacle reefs is indicated by small amount of drape in

reflectors above reefs and by one cycle of onlap (7). x
Buildups indicated on section are Middle Devonian Keg River Formation pinnacle reefs. Drape seen in overlying

Sulphur Point and Slave Point Formations is probably due both to differential compaction and to subsequent
removal of Muskeg salt deposited in interreef areas. Recoverable reserves in Rainbow-Zama area are estimated at
800 million bbl of oil. Pool size is variable; some are smaller than 8 ha., others are larger than 2 sq km, but average

is 20 to 30 ha. Pay thickness is variable.
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VELOCITY AS A

Figure 8. (A) Geologic model A

used in seismic modeling of )
Figure 7 and (B) seismic section NW SE
of the structure at Appleton

field (modified from Balch and

Hart, 2000). Geologic model Haynesville
and seismic section correspond
to structure cross section AA’ in
Figure 3. See Table 1 for physi-
cal properties of rocks.
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Smackover

blue = positive reflection (peak)
red = negative reflection (trough)

Table 1. Average Smackover and Associated Rock Physical

Properties*

Velocity  Density
Horizon (ft/sec) (g/cm3)
Haynesville siliciclastics 14,925 2.53
Buckner anhydrite 19,354 2.96
Upper nonporous Smackover carbonates 20,513 2.80
Porous Smackover carbonates 16,160 2.65
Norphlet siliciclastics 13,000 2.60
Paleozoic basement (igneous) 19,802 2.77

*Modified from Hart and Balch (2000).
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Relationships between Structure and Stratigraphy

In a variety of circumstances, structure may control
sedimentation (and resulting stratigraphy) and vice versa.
On the scale of most seismic studies, though, it is structure
which influences sedimentation. This sort of thing occurs in
all structural settings. The message to interpreters: Never
interpret structure without attention to stratigraphy, and
never interpret stratigraphy without attention to
structure........ to do so is to invite poor interpretations.

A few examples follow........
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COAST RANGES SACRAMENTO VALLEY

Blue Capay Rumsey  Madison Dunnigan
< Ridge \$Va ey s Hills Syncline Hi]l§

sea
ievel
Great Valley Group and
Tertiary Strata, Undifferentiated
sd NS T e N N
- Thrust
squen€e, TR e e
“'OM -----
o
101 Lower Great Valley Group
Coast Range Ophialite? ,
Underthrust Franciscan Wedge? (Deep Seismicity}
5 ge
15km - — A

Fig. 7. Schematic model lor the blind thrust system bencath the southwestern Sacramento Valley based
on tectonic-geomorphic development, patterns of microseismicity, and analysis of seismic reflection data.
Uplift of the eastern Coast Ranges and homoclinal custward tilting at the mountain front is auributed to
the growth and propagation of a tianglc zonc. Folding cast of the mountain [ront is due (o movement on
an east-vergent out-of-scquence thrust and movement on west-vergent backthrusts that root in the out-of-
sequence thrust. The modet also speculatively atuributes decp microscismicity (10-13 km) to thrusting
within an underthrust wedge of Franciscan assemblage, as proposed for the western San Joaquin Valley by
Wentworth ct al. [1984] and Wenuworth and Zoback [1989].

Unruh and Moores: Qualcrnary Blind Thrusting 199

West Western Sacramento Valley East

Madison Syncline Dunnigan Hills 0000

L
Cenozoic Strata, =
sundivided 222
T i e, pentt gt 7

Seconds, two-way travel time

- : ) . 0. 1km

Fig. 6b. Interpretation of the major structures in the ARCO profile (Figure 6a). The blind east-vergent
thrust bencath the casiern Rumscy Hills visible in the Chevron profile (Figurc 5) extends castward beneath
the Dunnigan Hills. A west-vergent thrust roots in the blind casl-vergent mrpsl and ramps up 1o the west.
Fault-bend folding in the hanging wall of the west-vergent thrust is apparcnt from the dcfo_rrnalxo_n ofa
high-amplitude seismic marker at approximately 2.7-2.8 s df_:plh beneath the eastern Dunnlgz}n Hills, zmq
by folding of the angular unconformity between the Mesozoic Great Valley strata and overlying Cenozoic

straia.
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SEISMIC STRATIGRAPHY IN THE LARGEST SENSE .

2

— Draw TOGETHER- LOCAL SEQ & STRUCTLRE TO
PRODUCE™ REGIONAL SETTING & HisToRY

— DRAW TOGETHER- MANY SUCH REGONAL STUDIES
To DETECT GLOBAL PATTEENS IN SEQULENCES
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» ] NONDEPOSITIONAL 22
E 20 F L L P ‘ HIATUS l' L L L L L | 2%
2 [T [ dhaatantundhaids —5 = 8
B ——18 1 e
I pi 15_17 '&’_ {Synchronous _
S{z 15jT————— —___SEQUENCE ~15 T 7T, imits ) A
5l A 7 12_13—‘4 Ti)lnl?aposmﬁr\?_l 3
O[E NONDEPOSITIONAL HIATUS i HIATUS %
81 oMM T ==
9 4 EROSIONAL HIATUS 8
o J —7 T ————— e L
= —6 —
[} 8 3—4_‘5 == © Cortre!
- poC ——— S
A1 —!——'1-—2'—q’
e — — — - — — — - — —— — 10Km — — — — — - — — ————— — — —— -
Al UNCONFORMITY CONFORMIT UNCONFORMITY
¥ T T J| A
"~ FIG. 1—Basic concepts of depositional sequence. A depositional sequence is a stratigraphic unit composed of relatively

conformable successions of genetically related strata and bounded at its top and base by unconformities or their correla-
tive conformities.

A. Generalized stratigraphic section of a sequence. Boundaries defined by surfaces A and B which pass laterally from
unconformities to correlative conformities. Individual units of strata 1 through 25 are traced by following stratification
surfaces, and assumed conformable where successive strata are present. Where units of strata are missing, hiatuses are

" evident.

B. Generalized chronostratigraphic section of a sequence. Stratigraphic relations shown in A are replotted here in
chronostratigraphic section (geologic time is the ordinate). Geologic-time ranges of all individual units of strata given as
equal. Geologic-time range of sequence between surfaces A and B varies from place to place, but variation is confined
within synchronous limits. These limits determined by those parts of sequence boundaries which are conformities. Here,
limits occur at beginning of unit 11 and end of unit 19. A sechron is defined as maximum geologic-time range of a

sequence.)
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TERRIGENOUS INFLUX —-
NONMARINE

FIG. 6—Coastal toplap indicates relative stillstand of sea level. With no relative
rise of base level, nonmarine coastal and/or littoral deposits cannot aggrade, so no
onlap is produced; instead, by-passing produces toplap.

a) DOWNWARD SHIFT IN COASTAL ONLAP INDICATES RAPID FALL

3 NONMARINE COASTAL DEPOSTTS 42, )
EZILITTORAL DEPOSITS
EIMARINE DEPOSTTS

b} DOWNWARD SHIFT IN CLINOFORM PATTERN INDICATES GRADUAL FALL
TERRIGENOUS INFLUX ——

ERDSIONAL TRUNCATION INTIAL
Rt Nt I V.11
Sy FALL OF

*SEA LEVEL

FIG. 8—Downward shift of coastal onlap indicates relative fall of sea level. With relative fall of base level,
erosion is likely: deposition is resumed with coastal onlap during subsequent rise; (a) Downward shift in ‘coastal
onlap indicates rapid fall observed in all cases studied so far. (b)) Downward shift in clinoform pattern (after Weller,
1960), indicates gradual fall; but has not been observed on seismic data.
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Stratigréphjc sequences occur in a scaled hierarchy.
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Fig. 2.9 Hierarchy of stratigraphic cycles (after Duval et al., 1992)
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- MORE ON SECTION ANALYSIS AT A LEGONAL @
LEVEL THRU AN EXAMPLE FROM THE WEST
| AERANCAN) COVTINEANTAL MARGIN),

LATE
or AGE 9.8 29__CRET AGE _,

- '"

T— g

KILOMETERS

TIME — SECONDS

WB = WATER BOTTOM MULTIPLE

Fig.2. Seismic section from offshore northwest Africa showing sequences defined by seismic reflections. Systematic reflection

termination patterns are used to determine downlap, onlap, truncation, and toplap of strata at sequence boundaries. Geologic

ages of sequences determined from wells on section and in surrounding area. Sequence and sequence boundary notations, e.g.
J2.3 and 131, and the ages they represent are listed in Fig. 1 and explained in the text.
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SHELF/SLOPE BREAK = ~=§/S———
OFF — OFFLAP PC — PARALLEL CONTINUOUS
SF - SLOPE-FRONT FILL PD — PARALLEL DISCONTINUOUS
SD — SHEET DRAPE HA — HIGH AMPLITUDE
C - CHAOTIC RF — REFLECTION FREE

Fig. 3. Seismic section, same as Fig. 2, showing seismic facies units.



TIME — SECONDS

LATE

SHELF/SLOPE BREAK SCA — SHELF CARBONATES
BASINAL MARINE SHALE SSH - SHELF MARINE SHALE
BASINAL LIMESTONE AND SHALE RF — REEF

SHELF SANDSTONE AND SHALE RB — CONTINENTAL RED BEDS

Fig. 4. Seismic section, same as Fig. 2, showing geologic facies.
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WITH THESE CONCEPTS N MIND ) YOU CAN SET
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FIG. 13—Procedure for constructing reéjona.] chart of cycles of relative changes of sea level.
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