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SUMMARY

Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using
generalizations of the Backus and the Schoenberg–Muir methods for analyzing layered systems whose
layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry
of the locally anisotropic compliance matrix for individual layers to differ from that of the layering
direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each
other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting,
fractured domains interact, and provides a direct (though approximate) means of predicting when and how
such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated
systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that
can all be analyzed, and provides a better understanding about which of these specific modes are expected
to be most important to the evolving failure process. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Natural fractures in geological systems have important consequences for the geomechanical and
seismic properties of rocks and reservoirs, as well as for the fluid flow through these fractured
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Figure 1. Field example of a fracture network having 90◦ intersection angles, commonly referred to as
‘orthogonal’ fracture sets.

Figure 2. Field example of a fracture network composed of two or more sets of intersecting fractures
having a dihedral (i.e. oblique or non-orthogonal) intersection angle between the fracture planes.

rock masses. Once rocks become highly fractured, it is often desirable to measure or estimate their
effective properties for various scientific and/or engineering purposes. One reason for this study
is therefore to describe a method to calculate such effective properties based on some commonly
observed fracture patterns.

Such natural fracture systems usually appear in one of two distinct types; so these networks can
be defined by two parameters: intersection angle and fracture lengths. Intersection angles may be
either right angles (Figure 1) or dihedral angles (Figure 2). Fracture patterns with right angles at
these intersections are usually called ‘orthogonal’ in geosciences with the assurance that both sets
are opening mode fractures [1], whereas fracture sets having dihedral intersection angles require
that the set formed first was later subjected to shearing [2]. Nevertheless, the sheared fracture set
may also be represented as multi-collinear opening mode fractures for our present purposes.
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When fracture systems in the earth become sufficiently dense, it is natural to study such systems
using purely numerical methods. However, to gain some additional insight into the behavior of
these systems, it should also be fruitful to have an analytical approach to study the elastic behavior
as the fracture density increases, but before the system becomes mechanically unstable. One goal of
the present work is to develop such analytical methods. To accomplish these goals, generalizations
of the Backus [3] and Schoenberg and Muir [4] approaches are used to analyze layered systems,
whose layers are intrinsically anisotropic due to any physical and/or mechanical mechanism. The
pertinent mechanism considered here is due entirely to locally aligned fractures. By permitting the
axis of symmetry of locally anisotropic compliance matrix/tensor for individual layers to differ
from that of the layering direction, we derive analytical formulas for interacting (i.e. neighboring,
but not intersecting) fractured regions with arbitrary orientations to each other. This procedure
provides a convenient analytical tool for studying how contiguous, but not yet overlapping, fractured
domains interact mechanically. The method also provides a straightforward means of predicting,
via extrapolation, when and how such interactions might lead to more dramatic weakening effects,
and ultimately to overall failure of these complicated systems.

Most of the detailed mathematical analysis of the paper is concentrated in the two Appendices
(A and B). Section 2 introduces a definition of the fracture density that will be used throughout
the paper. Section 3 provides further motivation for our chosen method of analysis. Section 4
gives a brief statement of the new method itself. Section 5 defines the crack-influence parameters
that provide the analytical means of introducing fracture effects into the elastic layers. Section 6
presents some examples of the direct application of the methods developed. Section 7 gives a
discussion of the main results. Section 8 makes use of these results to extrapolate to higher fracture
densities at which levels the system might be expected either to fail, or to have already failed at
some lower density due to more direct fracture–fracture interactions (such as intersections) not
included in our present analysis. Section 9 gives a concise summary of the overall method, since
it does include several fairly technically involved sub-steps of processing. Section 10 summarizes
our overall conclusions. Some additional details of the mathematical routines used in this work
are described in Appendices C and D.

2. FRACTURE DENSITY DEFINITIONS

It has been known since the paper of Bristow [5] that the pertinent fracture density that influences
physical properties of fractured media such as resistivity and elasticity is not the fracture volume
itself, but rather another related quantity that needs to be carefully defined. This fracture density
does depend on the shape of the fracture. But, assuming thin fractures as we do here, it does not
depend on this fracture thickness (or aspect ratio for ellipsoidal fractures) in a strong way.

Two terms commonly used to describe common geometries associated with cracks are: penny-
shaped and ribbon-shaped. Penny-shaped cracks are cracks that have the approximate shape of an
oblate (planetary) ellipsoidal hole in the material. Ribbon-shaped cracks are cracks that are more
or less rectangular-shaped holes, but possibly much longer in one dimension than the other of the
rectangle–hence the name ‘ribbon-shaped’. The third dimension in both cases is treated as small
compared with the other two, but surely not identically zero, as then there would be no crack at all.

The easiest way to understand the pertinent fracture density is to start by studying what it
is for ellipsoidal fractures, and for the physical property of resistivity. For an ellipsoid having
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equatorial radii a and b, and polar radius c, the volume of the ellipsoid differs from that of the
fitted rectangular box (which is Vr =2a×2b×2c), and is given by:

Ve= 4�

3
×abc. (1)

When a=b=c, the standard result for volume of a sphere is: 4�a3/3. But this volume differs
from that of a rectangular box in both cases (i.e. both for the general ellipsoid and for a sphere)
by a factor of 8/(4�/3)=6/��2, with the rectangle/square solid figure being always about the
same factor larger in volume than the ellipsoidal/sphere. Similarly, the area of the main face of
an oblate spheroid is �ab, whereas that for a rectangle is 4ab, and that for a circle (with a=b) is
�a2. So the area of the fitted rectangular face is always larger by the factor 4/�.

We will not go into more details here because they are spelled out perhaps with sufficient clarity
in another recent paper [6], where Bristow’s arguments were re-examined and updated somewhat
by using modern theories, including Hashin–Shtrikman bounds [7, 8] that did not yet exist at the
time of Bristow’s work. Of course, the Hashin–Shtrikman bounds for multiphase materials [7]
are not useful in the limit of thin cracks, since these bounds are typically based on inclusion
volume, and this volume becomes very small for thin cracks. Therefore, volume of the crack
itself is the wrong way to measure crack influence in many cracked systems, as has been shown
by many authors including Bristow [6, 9–12]. On the other hand, the Hashin–Shtrikman bounds
for polycrystals [8] do not suffer from the same limitations, since they are not based on volume
fractions, but rather on random orientations of anisotropic crystals. Nevertheless, these bounds
also have limitations since they implicitly require welded contacts between the crystalline grains
composing the polycrystal. For applications to cracked systems, such assumptions are likely to
be far from the reality of these fractured polycrystals, as the grain contacts are often precisely
where some of the fractures are localized. In both types of the Hashin–Shtrikman style results, the
bounds can typically be too narrow, and in particular we would always expect a rigorous lower
bound to be exactly zero—which, although also clearly a correct bound, is nevertheless not a
useful result. In particular, the paper by Berryman and Grechka [13] shows explicitly in the figures
that the Hashin–Shtrikman bounds are much too narrow for the range of fractured systems being
considered.

There has also been some recent controversy in the literature about the relative importance of
crack–crack interaction versus non-interaction in different modeling methods for fractured systems
[14–16]. These issues have not yet been resolved. So it is the purpose of the present paper to suggest
a middle ground that seems quite appropriate for the types of geological systems of interest here.
As we shall see, the present concept revolves around the idea that parallel cracks can be treated
successfully as mostly noninteracting, whereas nonparallel cracks need to be treated differently.
We establish this concept by introducing regions of parallel cracks contiguous to other regions of
parallel cracks, but the two types of contiguous regions interact in ways to be established here due
to the oblique angles between them—thus, leading to some significantly different interactions, as
we shall show directly.

2.1. Penny-shaped cracks

The main idea of our analysis is quite simple, therefore, and is essentially this: The problems that
concern us, whether resistivity or elasticity are basically at heart potential flow problems. Such
problems can be understood using a fluid analogy, as has been known since the early work of
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Lord Kelvin [17] (also see, for example, Den Hartog [18] and Mehrabadi and Cowin [19]). For
example, this ellipsoidal fracture is a nonconductive obstruction to the flow of current. In terms
of potential theory, this picture is completely analogous to the hydrodynamic flow of fluid around
an ellipsoidal solid obstruction. It is well-known that, if a thin disk oscillates in a fluid, it does so
with an effective mass that is very different from the mass of the disk itself. This effective mass
has to do with the fact that some of the surrounding fluid is entrained with the disk, and so the
disk plus the entrained fluid becomes the effective object that is actually oscillating (to a good first
approximation). We can look up results like this in Lamb’s [20] textbook on Hydrodynamics. For
a circular disk, the entrained fluid basically forms a sphere around the disk, and so the effective
density of the disk is proportional (×2/�) to the corresponding density of the fitted sphere of
volume (4�/3)×a3, when a is the radius of the circular disk. If the disk is not circular, but still
ellipsoidal, then it turns out that the longest dimension is not so important because the fluid tends
to flow around the disk by taking the path of least resistance—which involves significant potential
flow mainly over the long sides, thereby creating a virtual cylinder of entrained fluid having the
dimensions 2a×2a×2b, if b>a, and volume �(4�/3)a2b (approximately). This result is true
even if the third dimension c (parallel to the main direction of flow) is very, very small compared
with the other two dimensions, as it is for prolate spheroids or needles.

Analogous effects occur in both resistivity problems and elasticity problems, when fractures are
introduced. These obstructions result in the same mathematical consequences for current flow and
elastic potential flow in these geometrically related flow problems [17, 18, 20].

Thus, one convenient choice for effective fracture density in elasticity problems is given for a
set of ellipsoidal fractures by

�e=(N/V )
4�

3
a2b, (2)

assuming that c�a<b. The ratio N/V is the number density (i.e. number N per volume V ).
It is worth noting that, with the aspect ratio of the ellipsoids defined as �≡c/a, the total porosity
due to fractures alone in this system is

�e=(N/V )
4�

3
abc, (3)

while the fracture density is given conveniently (and intuitively) by the ratio of the two dimen-
sionless quantities, porosity, and aspect ratio, as:

�e=�e/�. (4)

Some illustrative numerical values for oblate spheroidal fractures are presented in Table I.

2.2. Ribbon-shaped cracks

For rectangular or ribbon fractures, the ideas leading to an appropriate fracture density are very
similar, but the final results take a different form. If a typical ribbon fracture has dimensions
h×�×t , where h is height, � is length, and t is effective thickness (of the resulting thin, flat
hole), then the porosity of a set of such fractures is given—in a manner very similar to the earlier
arguments—by:

�r =(N/V )h�t. (5)
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Table I. Induced mass factors k⊥ and k‖ for oblate (planetary) spheroids of
aspect ratio � translating or oscillating in an ideal fluid (following Lamb

[12, pp. 144–146, 700–701]).
�=c/a k⊥ k‖�

1 1
2

1
2

0.950 0.485 0.505
0.900 0.469 0.510
0.800 0.434 0.521
0.700 0.397 0.533
0.600 0.355 0.545
0.500 0.310 0.558
0.400 0.259 0.571
0.300 0.204 0.586
0.250 0.174 0.594
0.200 0.143 0.602
0.150 0.110 0.610
0.100 0.075 0.618
0.010 0.008 0.6347
0.001 0.001 0.6364
0 0 2/�

The last column is presented as the product k‖×� because this is the physical
quantity that remains finite as �→0.

But the number density N/V is now measured in a different way: For ribbon fractures, we typically
think in terms of spacing distance s between fractures. This distance might sometimes be taken
to be an average spacing 〈s〉. Then, the spacing volume vr =V/N associated with each ribbon
fracture (on average) is just vr ≡h×�×〈s〉. So the porosity is simply

�r = t/〈s〉, (6)

which is another intuitive result, since t/〈s〉 is the fraction of the spacing distance occupied by
the pores. The fracture density in this case is given now (since h is a diameter of the pertinent
hydrodynamic cylinder, instead of being related to any fracture radius) by:

�r =(N/V )
�h2

4
×�=�h/4〈s〉=��r/(4t/h). (7)

Noting that this factor �/4 is of order unity, we can choose to ignore it, or not, as a matter of
personal preference when defining the fracture density. Except for such factors of order unity, this
result agrees (for example) with the lecture notes of Thomsen [21], and both qualitatively and semi-
quantitatively with very similar discussions of fracture density by Budiansky and O’Connell [9].

3. MOTIVATION FOR THIS APPROACH

Now our primary purpose is to produce semi-analytical estimates of quasi-static elastic moduli
for slowly evolving fractured systems. The basic idea is therefore to find means of obtaining
quantitative measures that are valid up to a point just prior to that at which significant qualitative
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changes take place—an example of which is the coalesence of smaller fractures into larger fractures
(which may in turn result in significant nonlinear behavior, up to and including system failure,
by which we mean here that one or more of the system stiffness eigenvalues vanish). Achieving
this goal will require somewhat delicate analysis, and so we are careful not to attempt to push it
beyond the realm where it is obviously still valid.

To implement the quasi-static averaging method, we make use of the early work of Backus
[3], as well as more recent work of Schoenberg and Muir [4]. (Also see Milton [22]). Both of
the primary works have similar goals: in particular, the use of their two formalisms to describe
elastic moduli pertinent to long wavelength seismic waves. Our present goal differs somewhat
from theirs, since we intend to apply very similar means to the study of quasi-statics and slow
fracture evolution in a structural geology setting.

Whether studying stiffness or compliance, we typically use a well-known [19, 23, 24] prescription
for transforming back and forth between tensor and matrix notation. (At a later point in the analysis,
we must also introduce the Kelvin form [17, 19] of the elastic matrix—see Appendix C for a
definition—for reasons that will become apparent). For studies of wave propagation, it is usually
preferable to study stiffnesses, which in the seismological community are typically represented
by coefficients Ci j of the 6×6 stiffness matrix C (which is just the Voigt simplification of the
corresponding fourth-rank tensor). We will also use this Voigt 6×6 matrix approach, but instead of
concentrating on the stiffness, we consider its inverse Si j , which is the 6×6 compliance matrix S.

There are two important reasons for using the compliance version of the method, instead of the
stiffness version: (1) The system we choose to study has uniform background material, perhaps
isotropic (although this is not an essential feature of the method), to which oriented fractures are
added. Once added, these oriented fractures cause the system to become locally anisotropic, which
is exactly what we want to study. Adding fractures is most easily and naturally done throughout
our analysis by adding the effects of such holes/fractures via the compliance moduli Si j . Holes
introduce increased compliance through a linear mechanism [25, 26] in the compliance matrix
(or tensor), but the same holes would instead provide a nonlinear decrease in the stiffness matrix
(or tensor). (2) The second reason for studying the analysis from the compliance point of view
is that we can save some steps later in our analysis, because the quantities that appear naturally
this way are Young’s moduli (E), Poisson’s ratios (�), and shear moduli (G). Young’s moduli
and shear moduli will appear as inverse moduli along the matrix diagonal of the final results,
whereas Poisson’s ratios are also most easily obtained from the off-diagonal components once
Young’s moduli along the diagonal have been determined. Thus, we may sometimes avoid one
comparatively tedious step of matrix (tensor) inversion by the present choice of formulation. There
is nothing else fundamentally different in our chosen technical approach from that of Backus [3]
and/or Schoenberg and Muir [4], but our goals—and therefore our desired results—take us in
somewhat different directions.

4. QUASI-STATIC MODULI FOR COMPLICATED CRACKED SYSTEMS

We study systems that have fairly high densities of oriented (by which we mean here ‘aligned’
or ‘parallel’) fractures, and that have two (or more if desired) such systems that are differently
oriented, but nevertheless contiguous, but also nonintersecting. One semi-analytical way of dealing
with such systems is to treat them as if they are locally layered (see Figure 3). Each layer may
be considered homogeneous (though still anisotropic), because it contains only fractures having
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Figure 3. Example of a side view of the main type of layered medium considered in the text. The
layers are stacked top to bottom with only two of these types of layers being shown. Individual
layers being fractured, both have the same fracture density but not necessarily exactly the same
fracture distribution. For the example shown, the planes of the flat fractures are all at either ±30◦
from the planes of intersection. All fractures in a given layer have the same angular orientation.

Cracks are seen here edge on.

just one and the same orientation. So each layer can be ‘homogenized’ to produce effective
elastic constants for that layer. These constants will be determined to some extent by the axis
of symmetry, but this axis will not necessarily (and for the present analysis usually will not) be
aligned with the direction of the layering itself. Figure 3 shows one example of the type of layered
systems we have in mind. The angle between the oriented fractures in the two layers shown can
be considered arbitrary, but we purposely design the layered system itself for this analysis so
that we can take advantage of the symmetry gained by aligning the fractures. Then, the angular
difference between the two layers is split exactly evenly between the two layers. This approach
takes maximal advantage of the symmetry, and also of the fact that the layer-averaging method
treats the boundaries between layers in a special way: namely, that these boundaries are ‘welded’.
This term means that, after the rotations, fractures in this model do not ever appear parallel to
these boundaries, and especially (and most importantly) not aligned right along the boundaries
between the layers.

The layer-averaging scheme assumes that the strains at these boundaries and in the planes of the
boundaries (i.e. �11, �22, and �12) are continuous, and also that the corresponding stresses are also
continuous for components such as normal stress (say �33) and torsional shear stresses (say �13
and �23) perpendicular to the in-plane directions 2 and 1, respectively. Continuity of the remaining
components of stress and strain is not guaranteed, but also not prohibited. But these particular
jumps across the boundaries are physically and mechanically correct in all cases.

The formulation of the mathematical problem for elastic layers themselves is somewhat different
from previous treatments (for compliance rather than stiffness), but basically obtained using a
rather minor modification of earlier work by Backus [3] and also by Schoenberg and Muir [4]. So
this method is summarized here as review material in Appendices A and B.

One clearly artificial aspect of this approach is the assumption that the crack densities in the
layers are all identical in magnitude. We make this restrictive choice to simplify the modeling in
a first treatment. Certainly this constraint can be relaxed, as there is no such requirement imposed
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by the layer-averaging method itself, which is general and therefore can handle any combination
of different types of layers.

5. DEFINITION OF THE CRACK-INFLUENCE PARAMETERS

The main idea we use in order to quantify the effects of cracks distributed either randomly or in
an organized way in an otherwise elastic material is based on the work of Kachanov [25]. This
work introduced an elastic potential energy that is quadratic in the stress tensor and that can be
expressed in terms of invariants of the stress tensor in various combinations involving the ‘crack
density tensor’. This method results in a fairly complicated energy potential function involving
nine distinct terms, seven of which characterize the influence of a dense crack distribution on
an isotropic (background or host) elastic medium. But this function has the advantage that, upon
linearization in the crack density, it reduces to only four terms. Two of these terms are the standard
ones for the pure (uncracked) medium and the remaining two terms contain the linear contributions
(increases in compliance) due to the cracks. Sayers and Kachanov [26] introduced a very useful
scheme based on these ideas that enables the calculation of constants for anisotropic cracked media
from estimates of the behavior for the isotropic case. This approach is a great simplification of
a difficult technical problem. Now it is also not obvious that linearization is permissible in all
the crack density ranges of interest, but Sayers and Kachanov [27] showed in later work that the
remaining contributions from the fourth-rank crack-density tensor are often small—and therefore
negligible in many situations of practical interest. The neglect of these terms nevertheless implies
a certain amount of error in any calculation made based on their absence. But—if this error is of
the size of our measurement error or less—it should not be a serious impediment to studies and
analysis of these systems.

We make use of standard Voigt definition of the compliance matrix S as displayed in Appendix A,
Equation (A1).

A simple example shows that the first-order corrections to the compliance tensor—using the
Voigt 6×6 matrix notation Si j—due to the presence of a low crack density �c and an isotropic
distribution of similarly shaped small cracks take the form:

�S(1)
i j =�c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(	1+	2)/3 2	1/3 2	1/3

2	1/3 2(	1+	2)/3 2	1/3

2	1/3 2	1/3 2(	1+	2)/3

4	2/3

4	2/3

4	2/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where 	1 and 	2 are the first two coefficients appearing at lowest order in �c for the Sayers and
Kachanov [26] theory. For example, �c=Nb3/V is the crack density (here N/V is the number
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density and b is the radius of the flat cracks when they are penny-shaped). These two coefficients
can be determined for any crack density by computing the analytical form of the bulk and shear
moduli from the compliance matrix S∗

i j = Si j +�Si j , and then comparing the results one-to-one
with the results from any effective medium theory one trusts. For these purposes, the differential
scheme is the one that Sayers and Kachanov [26] chose to use, but other choices can also be made.
It is known that the value of the magnitude |	1| is generally much smaller than that of 	2. In
particular, |	1/	2|�0.01 is typical of the results obtained from the most commonly used effective
medium theories.

The advantage of this approach can now be demonstrated very simply by considering a pertinent
example. If all the cracks in the system have the same vertical (z-)axis of symmetry, then the
cracked/fractured system is not isotropic, and we have the first-order compliance correction matrix
for horizontal fractures is:

�S(1)
i j =�c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 	1
0 0 	1
	1 	1 2(	1+	2)

2	2
2	2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

It is not difficult to see that, if the cracks were oriented instead so that all their normals were
pointed horizontally along the x-axis, then we have one permutation of this matrix and, if instead
they were all pointed horizontally along the y-axis, then we have a third permutation of the matrix.
If we then want to understand the isotropic correction matrix in (8), we can just average these three
permutations: i.e. simply add the three �S’s together and then divide by three. Having done that,
we exactly recover the isotropic compliance corrections matrix displayed in (8). This construction
shows in part both the power and the simplicity of the Sayers and Kachanov [26] approach, and
how the neglect of small nonlinear terms leads naturally to useful linearization techniques.

6. SOME EXAMPLES USING THE METHOD

For our present application, we need estimates first of the effects of fractures on the compliances
S of the elastic systems of interest. Using the methods of Sayers and Kachanov [26], the paper of
Berryman and Grechka [13] shows how to obtain such estimates of fracture effects, together with
a specially designed fitting method for the numerical simulation results of Grechka and Kachanov
[14]. These results provide the values that we need to use in the explicit model analysis that follows.

6.1. An explicit example

For final results, we also need a broad range of values from our fracture density simulations.
Such results are readily available for fracture densities up to �=0.2 in the paper by Berryman
and Grechka [13]. We illustrate the approach with just one explicit example (but many more were
treated while developing the figures that follow). The results of Berryman and Grechka [13] lead
to the conclusion that the effective compliance matrix for oriented fractures at the fracture density
�=0.10, when the fractures are imbedded in a sandstone-like medium such as the one studied in
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that paper having Poisson’s ratio ��0.4375, should be given approximately in units of GPa−1 by

S=

⎛
⎜⎜⎜⎜⎜⎝

0.15810 −0.06917 −0.07109
−0.06917 0.15810 −0.07109
−0.07109 −0.07109 0.21764

0.50549
0.50549

0.45455

⎞
⎟⎟⎟⎟⎟⎠ , (10)

based on extensive numerical simulations (hundreds of examples of interacting cracks were studied)
by Grechka and Kachanov [14]. This case corresponds to an elastic system having Young’s
moduli E11=E22=6.3251, E33=4.5947GPa, and torsional shear moduli G44=G55=1.9783,
G66=2.2000GPa. Blanks in the matrix are zeroes.

The fracture influence parameters (in units of GPa−1) used to arrive at (10) are: 	1(0)=−0.0192, 	2(0)=0.3994, 	3(0)=−1.3750, 	4(0)=0.0000, and 	5(0)=0.5500. Coefficients 	1
and 	2 contribute to the compliance results after multiplication by � to the first power. Coefficients
	3 and 	5 contribute to the compliance results after multiplication by � to the second power. Coef-
ficient 	4 was found not to influence the results in any significant way, so its value is neglected.
Higher powers of � than the second power were not treated in Berryman and Grechka [13], as
the numerical data used in the fitting procedure stopped at �=0.20, and fitting higher-order coef-
ficients to a satisfactory level of accuracy requires numerical data at � values higher than 0.20,
which were unfortunately not available at that time.

Now we want to study the effects when at least two sets of fractures are present; these fractures
are locally oriented, but contiguous groupings of fractures (in different layers in our model) have
different orientations, with angles of near-intersection at either dihedral or right angles as shown
previously in the photographs of natural fractures in Figures 1 and 2. We treat this aspect of the
problem by rotating the fracture orientation in five distinct cases, so that two sets of fractures have
orientations that differ by �F =15◦, 30◦, 45◦, 60◦, and 90◦. We accomplish this by rotating one
set by half the total angle in one direction, and the other set by half the total angle in the opposite
direction: ±7.5◦, ±15◦, 22.5◦, ±30◦, ±45◦ (See Figure 3).

To perform the actual matrix rotation, we use methods and codes supplied online by Dellinger
[28]. These codes assume input of stiffness matrices and then provide output also in the form of
stiffness matrices. So we first invert the compliance matrices shown into stiffness matrices, and
then—after the rotation—we invert them back into our desired compliance form. [Technical Note:
We need to perform these extra steps because the eigenvalue structure of the stiffness matrices is
preserved correctly in Dellinger’s codes for the stiffnesses, but—because of differences in Voigt
matrix structures for stiffness and compliance matrices (see Nye [24])—the eigenvalue structure
for compliances is unfortunately not preserved].

For example, after the unrotated stiffness matrix is known from the inversion step, we can use
the rotation code, and find that the rotated stiffness matrix for a rotation angle (for example) of
+15◦ around the x-axis (or 1-axis or x1-axis) is:

C′ =

⎛
⎜⎜⎜⎜⎝

13.97 9.442 7.814 −0.47
9.442 13.66 7.706 −0.576
7.814 7.706 9.89 −0.512

−0.47 −0.576 −0.512 1.997
1.993 −0.055

−0.055 2.185

⎞
⎟⎟⎟⎟⎠ . (11)
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Table II. Values of three eigenvalues of stiffness and their sum for the layered system as a function of
fracture density � and rotation angle �F .

� �F 3qK (GPa) 2qGp (GPa) 2qGu (GPa) Sum (GPa)

0.00 all 50.60 4.40 4.40 59.40

0.05 0◦ 34.86 4.40 3.97 43.22
15◦ 34.79 4.40 3.97 43.16
30◦ 34.61 4.38 4.01 43.00
45◦ 34.38 4.37 4.05 42.80
60◦ 34.15 4.33 4.11 42.59
90◦ 33.92 4.28 4.19 42.39

0.10 0◦ 29.49 4.40 3.67 37.55
15◦ 29.36 4.39 3.68 37.44
30◦ 29.02 4.37 3.72 37.11
45◦ 28.57 4.32 3.78 36.67
60◦ 28.12 4.27 3.85 36.24
90◦ 27.69 3.96 4.19 35.84

0.20 0◦ 26.75 4.40 3.38 34.53
15◦ 26.55 4.38 3.39 34.31
30◦ 26.00 4.32 3.40 33.72
45◦ 25.32 4.25 3.41 32.98
60◦ 24.69 4.17 3.43 32.29
90◦ 24.11 3.45 4.08 31.65

For comparison purposes, consider that the sum c11+c22+c33=37.52GPa and note that for
the unrotated case, the corresponding trace value (≡ Sum) in Table II is 37.55GPa. Since the
layer-average result for the pertinent rotation value of 30◦ is c11+c22+c33=37.11GPa, we see
that there is a decline in overall stiffness due to these combined rotations and layer-averages, but
this decline is really quite small.

Then, after using the results of Appendix C again to invert this matrix back to compliance form,
the resulting rotated compliance matrix is:

S′ =

⎛
⎜⎜⎜⎜⎜⎝

0.15805 −0.06926 −0.07096
−0.06926 0.25340 −0.07029
−0.07096 −0.07029 0.21285

0.50855
0.50211 0.01274
0.01274 0.45799

⎞
⎟⎟⎟⎟⎟⎠ . (12)

This result corresponds to an elastic system having Young’s moduli E11=6.3272, E22=6.2019,
E33=4.6981GPa, and torsional shear moduli G44=1.9664, G55=1.9916, G66=2.1835GPa.
When the rotation is performed in the opposite direction (i.e. −15◦), the only difference in the
resulting compliance matrix is that the off-diagonal terms S56= S65 have opposite signs. All the
other coefficients remain exactly the same. This exact type of symmetric behavior was observed
to be characteristic of all the examples considered here, and shows explicitly why orthorhombic
systems are important and ubiquitous in fractured media.
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Figure 4 shows the results for effective Young’s moduli E11, E22, E33, and shear moduli G44,
G55, G66, for �=0.05, 0.10, and 0.20. Angles considered form a subset in the range �F =0–90◦.
One general characteristic we observe is that, for �F =0◦, E11=E22 and G44=G55—behavior
corresponding to transversely isotropic (TI) media with symmetry axis x3= z. Similarly, for
�F =90◦, E22=E33 and G55=G66—corresponding to TI media having symmetry axis x1= x .
This transition is entirely expected, since the rotations are all performed around the x-axis.

Figure 5 shows that the weakening of the system for Young’s moduli E11, E22, E33 and also
for the torsional shear modes G44, G55, G66 ranges from an 11 to 20% effect for G44 and G55,
while the effect on G66 ranges from being negligible up to about 11%.

The effect of rotations on Young’s modulus E11 is zero at all angles and all fracture densities,
since the rotations are all performed around the x-axis. The changes in the modulus E22 carry it
from the values of E11 to those of E33, as the rotation angle changes from 0◦ to 90◦. E33 is the
most interesting case, having lost from 24 to 33% of its initial value, depending on the magnitude
of the rotation angle.

Figure 6 displays the results for the three ‘quasi-modes’ (this term is defined carefully in
the following three paragraphs) of elastic response: qK , qGp, and qGu. These modes are true
eigenvalues [11] of the layer-averaged system, but they are nevertheless not so easily identified in
terms of bulk and shear modulus, or compressional and torsional behavior. Relating the symbols
to the actual eigenvalues 
1, 
2, 
3, we can express these three quasi-moduli as qK =1/3
1 for
the quasi-bulk modulus, qGp=1/2
2 for the quasi-pure shear modulus, and qGu=1/2
3 for the
quasi-uniaxial shear modulus. The values 
1, 
2, 
3 are the three eigenvalues of the 3×3 matrix
in the upper left corner of the compliance matrix Si j for the layered system. As a rule, we found
it was not at all difficult to determine which of these modes was which in the cases considered
in our examples. The only problematic region is that around �F �75◦, where the values of qGp
and qGu become comparable and then crossover. These two eigenvalue branches actually change
character form pure to uniaxial shear in this region. This region is therefore more difficult to treat
carefully than the rest of those treated in the paper, so we are not showing these details in the
present work.

6.2. Motivating the quasi-modes

For comparison, it is common in the seismic wave and acoustic wave propagation literatures to
call the three wave modes that are actually dependent on these same moduli, respectively, the
quasi-compressional or quasi-P wave, the quasi-SV wave (meaning shear wave with vertical plane
of polarization), and the SH wave (for the shear wave having horizontal plane of polarization).
For present purposes, these designations are not directly pertinent. But we can nevertheless define
three quasi-modes having these effective moduli: the quasi-bulk modulus qK, the quasi-pure shear
modulus qGp, and the quasi-uniaxial shear modulus qGu. The quasi-compressional mode having
eigenvalue qK is found to be the only one of the three modes having all three components in
the corresponding eigenvector of the same sign. A true bulk modulus mode would have all three
components of the eigenvector equal in magnitude and also of the same sign. However, this
hydrostatic state is usually not an eigenmode for most anisotropic elastic media. (Cubic symmetry
media provide one anisotropic counter-example to this otherwise general statement).

The quasi-pure shear modulus qGp corresponds to a mode with one eigenvector component
significantly smaller than the other two, and these two are comparable in magnitude, but opposite
in sign. A true pure-shear mode would have one component exactly zero, and the other two of
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Figure 4. Effective Young’s moduli and torsional shear moduli, respectively, overall for the layered systems
considered: (a) and (b) are for �=0.05; (c) and (d) are for �=0.10; and (e) and (f) are for �=0.20
fracture densities. Note that these results indicate transversely isotropic symmetry, but having different

(and orthogonal) axes of symmetry at �F =0◦ and 90◦.
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Figure 5. Effective Young’s moduli E and torsional shear moduli G, respectively, for the layered
systems considered to a fracture density of �=0.2: (a) E11; (b) G44; (c) E22; (d) G55; (e) E33; and
(f) G66. Relative orientations of the fractures in different layers for the five cases are: �F =15◦,
30◦, 45◦, 60◦, and 90◦. For the orthorhombic systems considered, these torsional shear moduli
are three of the six eigenvalues for the elastic response. The other three eigenvalues are presented

separately in Figures 6 and 7.
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Figure 6. Quasi-bulk moduli, qK and KR, and quasi-shear moduli, qGp and qGu, or the layered systems
considered: (a) and (b) are for �=0.05; (c) and (d) are for �=0.10; and (e) and (f) are for �=0.2 fracture
densities. Note the change of character in the qGp and qGu, which results in the crossing of these curves

in (b), (d), and (f) for large �F .
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Table III. Compliance eigenvalues x2≡1/(2(qGp)) and normalized eigenvectors (�,�,�) for the quasi-pure
shear mode at various values of the fracture density � and rotation angle �F .

� �F (deg.) x2 (GPa−1) (�,�,�)

0.05 0 0.22727 (0.70711, −0.70711,0.00000)
15 0.22751 (0.70551, −0.70870, 0.00147)
45 0.22905 (0.69996, −0.71418, −0.00240)
60 0.23069 (0.70712, −0.70638, −0.03181)
90 0.23849 (0.00000, −0.70711, 0.70711)

0.10 0 0.22727 (0.70711, −0.70711, 0.00000)
15 0.22763 (0.70656, −0.70764, −0.00307)
45 0.22245 (0.66009, −0.74663, 0.08262)
60 0.23411 (0.71692, −0.69136, −0.08969)
90 0.25263 (−0.00082, −0.70655, 0.70766)

0.20 0 0.22727 (0.70711, −0.70711, 0.00000)
15 0.22838 (0.70801, −0.70612, −0.01045)
45 0.23553 (0.72207, −0.68251, −0.11310)
60 0.23999 (0.73577, −0.64484, −0.20697)
90 0.28952 (0.00000, −0.70711, 0.70711)

equal magnitude, but opposite sign. Table III presents some examples of the observed results for
this mode. In particular, it is seen here that this mode is exactly of the pure-shear type, having
eigenvectors (1,−1,0)/

√
2 and (0,−1,1)/

√
2, respectively, for �F =0◦ and �F =90◦.

The remaining mode has eigenvalue qGu, and is termed the quasi-uniaxial shear mode. A true
uniaxial shear mode [29, 30] is the eigenmode remaining when an applied uniaxial compression
(or tension) is decomposed into a pure hydrostatic compression (or tension), and a shear mode.
Thus, in pure uniaxial-shear, the stresses satisfy �33=−2�11=−2�22, or the equivalent statement
for strain, and/or any appropriate permutations of the indices 1,2,3. The quasi-uniaxial mode is
therefore the only one having two components of comparable magnitude and also the same sign,
whereas the third component is of opposite sign, and approximately twice the magnitude of the
other two.

In general, we have also found that both the Reuss average KR and the Voigt average KV
bulk moduli were nearly constant, as a function of the rotation angle �F [30] for fixed fracture
density �. Hill [31] has shown that these effective moduli are lower and upper bounds, respectively,
on the true effective bulk modulus that can be defined for such anisotropic systems. Hill’s average
is either the arithmetic or the geometric mean of KR and KV, although experience shows that the
arithmetic mean usually fits the rock data better.

The quasi-uniaxial shear modulus qGu is the smaller of the two quasi-shear modes, but it
also tends to increase with rotation angle. The quasi-bulk modulus qK and the quasi-pure shear
modulus qGp were both variable, and showed qualitatively very similar behavior over the range
of values considered. However, the quantitative behavior of these two modes was quite different,
as the quasi-bulk modulus declined from 5 to 10% in value, whereas the quasi-pure shear modulus
lost from 5 to 25% of its initial value as the rotation range varied from 0◦ to 90◦, depending on
the fracture density value. The quasi-pure shear mode is therefore the one that is most strongly
influenced by the angle between the fracture sets in the two types of layers considered in our
modeling.
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Both the torsional shear moduli G44 and G55 behave similar to qGu, whereas G66 behaves
similar to qGp. Overall decrease in modulus magnitude as � increases (see Figure 7) is about the
same in all the shear modes, although G66 and some of the smaller rotation angles for qGp result
in slower fall off in these shear modulus values.

7. DISCUSSION

Figure 3 shows the concept being used in the sets of examples in Figures 4–7. The results from
Appendices A and B were used to generate numerical estimates of six effective layer-averaged
compliances (specifically, the diagonal components of S): 1/E11, 1/E22, 1/E33, 1/G44, 1/G55,
and 1/G66. The results in (a) and (b) were generated for rotations of the fractures to angles ±15◦,
so the total angle �F between the fractures in the layers is 30◦. Similarly, for (c) and (d), the
angles were ±30◦ of rotation and �F =60◦ relative to each other; and, for (e) and (f), the angles
were ±45◦ of rotation and, therefore, relative fracture angle �F =90◦.

[Technical Note: We have only used available numerical data at the four fracture densities:
�=0.0,0.05,0.10, and 0.20. That is why the curves shown typically have breaks in curvature at
these particular values of fracture density in Figures 5 and 7].

The changes in Young’s moduli (E) are relatively straightforward to explain: For each Young’s
modulus, the main issue is how much the presence of one fracture, or one set of similarly oriented
fractures, changes the compliance in the given direction. The situation for E11 is very simple, as
it does not ever change as the angle between these fractures change. This modulus depends on �,
but otherwise is clearly independent of the presence of the fracture-angle changes as it should be,
since the fracture rotations are all being performed around the x-axis.

So 1/E11 is the compliance directly into the diagram in Figure 3, i.e. normal to the printed
page. The presence of the fractures has minimal (actually negligible) effect in this direction on
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Figure 7. Quasi-bulk moduli, qK, KR, and KV, are displayed in (a) and the quasi-shear moduli, qGp
and qGu, are displayed in (b), for the rotation angles considered in the text. The Reuss average KR is
a rigorous lower bound on effective bulk modulus, whereas the Voigt average KV is a rigorous upper
bound. Although the quasi-bulk modulus qK is a rigorous eigenvalue of the elastic system under study,

it is not necessarily simply related to an overall effective bulk modulus of the composite system.
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Young’s modulus E . On the other hand, it has its greatest effect on E33, since this is the modulus
pertinent to the layering direction in Figure 3. The effect is already quite large at �F =30◦, and
only increases slightly as the angle continues increasing up to �F =90◦. In contrast, the effect
of the increasing angle on E22 is intermediate between the effects on E11 and E33, until the
angle reaches �F =90◦, at which point it is clear that E22≡E33 is a requirement (as observed),
since the two oppositely rotated fracture sets are now exactly orthogonal to each other at this
point (producing a distinctly different TI medium from the one for �F =0◦, in which case all
the fractures are still parallel to each other). So stresses in the z-direction or in the y-direction
both experience exactly the same environment, and therefore we must also see the same elastic
response.

8. SUMMARY OF MAIN METHOD

Since the methods of analysis presented so far have multiple steps, each of which has its own
inherent complications and associated questions, it seems appropriate to reprise these steps and
attempt to summarize what has been accomplished at this point.

First, we applied the Sayers and Kachanov [26] method, using fracture-influence coefficients
obtained previously in the work of Berryman and Grechka [13], and based upon results from
numerical simulations by Grechka and Kachanov [14]. This step is the only one that introduces
fractures into our effective medium model system. So this is the only step that explicitly makes
use of fractures to weaken the elastic matrix, while simultaneously introducing anisotropy—due
to the fact that the fractures introduced are all locally aligned within a layer—into the otherwise
isotropic elastic background medium.

Second, we rotate the axes of the system of aligned fractures twice: each time the rotation is
about the x-axis (for a system originally having z-axis of symmetry). One of these rotations is
positive (+
), and the other negative (−
)—both being of exactly the same magnitude. These
two rotations do nothing in themselves to weaken or strengthen the previously fractured systems
that become the layers of the model. Because the rotations of the axes do not change either the
trace or the determinant of a matrix, taking these actions leaves the eigenvalues of each rotated
matrix completely unchanged. It is observed however that the positive and negative rotations do
change the values in the matrices in the upper left 3×3 corner of the matrix, and also along the
diagonal of the lower right 3×3 submatrix. Furthermore, these rotations produce nearly identical
matrices overall, the only differences being in certain off-diagonal components, nonzero values
not previously present in the unrotated matrices. Furthermore, these new matrix elements all have
opposite signs, by which we mean that the ones that have ± signs for the positive rotation have
∓ signs for the negative rotation. (This particular result is special for equal angular rotations
combined with equal crack densities. The current method can certainly be generalized in this
regard, but the results then become cumbersome to tabulate—i.e. the multidimensional results for
different angles and/or different crack densities. So this extension was beyond our current scope).

The third step then involves stacking these two rotated systems and using the Backus [3]
or Schoenberg–Muir [4] layer-averaging methods to determine the effective properties of the
resulting composite system. One remarkable fact discovered is that those new off-diagonal terms
(and this would also be true even for off-off-diagonal terms if they occurred at a non-negligible
magnitude) introduced in the second step exactly cancel out in the layer-averaging process, i.e. they
layer-average exactly to zero. Therefore, we are always left with an orthorhombic system having
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fractures located relative to each other at twice the magnitude of the original rotation angles
[2×
=�F ].

This final orthorhombic anisotropic elastic system compliance matrix is relatively easy to
analyze, and the results show that there is one mode (out of six) of this system that is always the
weakest one. This mode is the one we have termed the quasi-pure shear mode, having effective
eigenvalue qGp. This mode has the characteristic that, of the three eigenmodes in the upper left
3×3 of the matrix, it is the one closest to that of a pure shear (i.e. �11=−�22, whereas �33=0).
The other two quasi-modes are a quasi-bulk mode closest to �11=�22=�33, and a quasi-uniaxial
shear mode closest to �33=−2�11=−2�22. Both of the other two quasi-modes have modest
changes in modulus values as rotation angle changes from 0◦ to 90◦.

Because the resulting effective medium system (for the special choices made here) is generally
orthorhombic, there are three more shear modes, and these correspond to the three torsional shear
modes of the system. These modes are the ones associated specifically with the torsional shear
moduli G44, G55, and G66. Of these three moduli, the shear modulus G44 changes least with
rotation angle. The two shear moduli G55 and G66 do change more substantially, however, with G55
generally increasing in value while G66 decreases. The observed increase seen in G55 is essentially
required for this system of equations, because of the fact that both the trace and determinant of
the rotated matrices in the second step must have (because of the invariance of these quantities for
all matrices) constant values before and after the rotations.

So, if any of the eigenvalues goes down due to the rotations (which is seen to be true for
both qGp and G66 in Figures 4 and 6), then at least one of others (i.e. G44, G55, and/or qGu)
must necessarily go up at this stage of the calculation. Thus, we find that qGu and G55 always
go up with rotation angle, while shear modulus G44 has more complicated behavior depending
also on the fracture density value. Table IV shows explicitly how this works out in the trace and
determinant values for the cases covered in our examples. The traces and determinants displayed
here should be completely invariant (constant) as a function of rotation—except for the fact that
these values are computed after the layer-averaging step, which causes some off-off-diagonal terms
to average to zero. That they have a small (apparently random) deviation from perfect invariance
provides a measure of the accuracy of our computational methods, for which it is believed that
the largest numerical errors actually occur in the rotation step itself. Another test of the accuracy
of the methods used is the fact that the Reuss and Voigt averages for the bulk modulus should
both also remain invariant under these rotations [30]. This invariance (to numerical accuracy) is
also demonstrated in Figure 6, and provides another measure of the accuracy of the numerical
procedures we used.

A fourth step in our analysis, which will be presented in the next section, is an attempt to
estimate via extrapolation what happens at higher fracture densities, i.e. beyond the region where
the numerical results of Grechka and Kachanov [14] were available to help with quantification of
the fracture influence parameters. This step uses a simple straight-line extrapolation method based
on the best information currently available.

9. ESTIMATING FAILURE POINT VIA EXTRAPOLATION

One long-term goal of the work presented is to provide insight into modes of failure for fractured
systems of the type considered. However, so far we have limited our discussion to fracture densities
only up to �=0.2, as this is the highest value considered in the numerical experiments of Grechka

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2010; 34:1687–1724
DOI: 10.1002/nag



QUASI-STATIC ANALYSIS OF ELASTIC BEHAVIOR 1707

Table IV. Trace Tr(S) and determinant Det(S) of the effective compliance matrix S (in the Kelvin form)
for the layered system as a function of fracture density � and rotation angle �F .

� �F Tr(S) (GPa−1) Det(S) (GPa−6)

0.00 all 1.156127 1.1984×10−5

0.05 15◦ 1.2129 2.130×10−5

30◦ 1.2128 2.144×10−5

45◦ 1.2128 2.129×10−5

60◦ 1.2130 2.174×10−5

90◦ 1.2128 2.128×10−5

0.10 15◦ 1.2666 3.064×10−5

30◦ 1.2665 3.099×10−5

45◦ 1.2665 3.150×10−5

60◦ 1.2663 3.201×10−5

90◦ 1.2665 3.249×10−5

0.20 15◦ 1.3662 4.809×10−5

30◦ 1.3665 4.842×10−5

45◦ 1.3662 4.965×10−5

60◦ 1.3661 5.099×10−5

90◦ 1.3668 5.382×10−5

This quantitative information provides a useful check on the matrix rotation processing step of the calculation.

and Kachanov [14] that were subsequently used as the basis of the fitting techniques of Berryman
and Grechka [13]. To do any more analysis, we need to come up with another approach.

One way to go beyond the available data would require extensive additional numerical modeling
of the types discussed already. An alternative approach (but clearly one to be treated with
special caution) is to develop an extrapolation method based on those numerical results already
in hand. We present the results of such an extrapolation method in the present section of
the paper.

9.1. Extrapolation technique

As already mentioned, a method of obtaining estimates beyond the range of our more certain
knowledge is to use an extrapolation technique. One such approach would be to extrapolate simply
by using the same expansion in powers of � that we have been using; but unfortunately this
approach will surely give misleading results, since it is clear that higher-order fracture influence
coefficients (those multiplying higher powers of fracture density �) should come into play, and at
the moment we have no way of knowing appropriate values for these purposes.

Another way of extrapolating is simply to extend the last line segment connecting certain values
(say two of our fracture density values at �=0.1 and 0.2) of the computed moduli to higher
fracture density until the resulting line crosses zero (so the extrapolated modulus value is predicted
to vanish approximately at that fracture density by implication). Various effective moduli can be
used for this purpose, including qGp, G55, G66, and E33, which are the smallest moduli and the
ones that will clearly extrapolate to zero at the smallest values of �.
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Using such an approach presumably does not give a very accurate value for the critical fracture
density �crit. However, since it is most likely that, as true critical values are approached, stronger
fracture–fracture interactions will come into play (see [32–34])—which have clearly been neglected
here and which will necessarily cause the failure to happen even more quickly than our simple
extrapolation procedure would predict. It seems plausible, therefore, that the extrapolated values
obtained this way should prove to be reasonably reliable upper bounds on the true zero-modulus
or failure point.

To summarize the details of the extrapolation method, consider M to be any modulus, and fit
its changing value with � to a straight line according to:

M(�)= A+B�. (13)

Then, if M(�1)=M1 and M(�2)=M2, it is not difficult to show that

A= �2M1−�1M2

�2−�1
and B=−M1−M2

�2−�1
. (14)

The extrapolated value for the critical fracture density is therefore:

�crit=−A/B. (15)

Table V presents the results obtained by extrapolating the curves for qGp, G44, G55, G66, E33,
E22, and KR to zero according to the ideas just outlined. These results seem to give reasonable
predictions, since the best (i.e. lowest) extrapolated values are in the range �crit�0.8–1.0. We
view these numbers as likely upper bounds on the true critical fracture density. So the results are
showing us that the values in the range �crit�0.5−1.0 are reasonable predictions, based on our
extrapolations. These values are also consistent with the field results of Wu and Pollard [35] on the
Fracture Spacing Index, among many others. The technical implications of this point are discussed
in detail in the next subsection.

9.2. Comparisons with field observations

It turns out that the numerical estimates obtained using this procedure are nevertheless (perhaps
surprisingly) consistent with the field data on joint spacing in outcrops. Wu and Pollard [35] show
that a typical relationship between joint spacing and layering thickness is given by

�i =D/T, (16)

where D is the mean joint spacing and T is the bed thickness. The proportionality between the
two is therefore the straight line (with zero intercept): D=�i T .

It is typically believed that these lines do not change with bed thickness, and that they are in
fact functions of both lithology and mechanical properties. The so-called Fracture Spacing Index
(FSI ≡1/�i ) has been observed by these and other authors to lie typically in the range
0.1�1/�i�0.5, with some observed FSI values being as high as 1.3. Note that, in Equation (7),
we defined the crack density for flat and ribbon-shaped fractures to be �r =�h/4s�h/s, where h
was height, and s was spacing of fractures. But, if we compare these definitions to those of Wu
and Pollard [35], we find that h=T and s=D. So, except for the numerical factor �/4 of order
unity, we have:

�r �FSI=1/�i =T/D=h/s. (17)
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Table V. Extrapolated values of the critical crack density �crit for failure (i.e. being defined for present
purposes as any elastic modulus M going to zero), using the procedure outlined in the main text.

M A B �crit

qGp(90◦) 2.231 −2.522 0.885
E33(45

◦) 5.101 −5.758 0.886
G55(15

◦) 2.228 −2.463 0.904
E33(60

◦) 5.601 −6.105 0.917
G44(15

◦) 2.215 −2.403 0.922
E22 and E33(90

◦) 6.041 −6.269 0.964
E33(30

◦) 5.201 −5.376 0.968
E33(15

◦) 5.130 −5.091 1.008
qGu(60◦) 2.136 −2.095 1.020
KR 9.967 −9.652 1.033
G44(45

◦) 2.133 −1.793 1.190
G55 & G66(90

◦) 2.231 −1.474 1.513
G44(90

◦) 2.037 −1.067 1.909

Values of various moduli at �=0.10 and =0.20 are extrapolated to zero for various angles (most often for
angles of either 15◦ or 90◦, and a few other examples for intermediate angles are also presented) between
fractures in adjacent layers. Examples are listed in order of increasing values of their computed �crit.

We find therefore that the predictions of the relatively simple effective medium theory presented
here are giving reasonable numbers for these fractured systems up to, but not all the way into,
the complicated region of failure and rubblization. In particular, the methods employed have all
been deterministic, and it is clear that important effects in geological, and other systems as well,
involve randomness of fracture occurrence, orientation, and relative placement, none of which has
been treated directly in the preceding analysis.

It is believed that the most appropriate view to take of these extrapolated values is that they are
likely (though possibly quite crude) upper bounds on the true critical fracture density for failure of
the systems studied. No more rigorous interpretation of these results is possible at the present time.

10. CONCLUSIONS

The method developed here uses some fairly standard methods from effective medium theories
to treat complicated fracture systems and thus quantify their elastic behavior when fractures at
moderately high densities are contiguous, but not intersecting. We find that one of the weakest
modes of the system studied is a quasi-pure shear mode that is an exact eigenmode of the constructed
system, but not a true pure shear mode in the usual sense. Table V shows these results. Other shear
modes, including those corresponding to shear moduli G44 and G55 at a rotation angle of about
15◦, also lead to similar conclusions, and these modes are true torsional shear modes, as well as
also being true eigenvalues of the system.

The results therefore indicate that the approach has some promise for enabling prediction of
system failure (as a function of fracture density) and also prediction of which specific modes of
failure are most likely to be active.

It may also be worth noting that, while we have phrased the problem here in terms of fractures in
a field setting, the same ideas apply with equal validity to smaller-scale systems such as laboratory
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scale rock deformation studies [36]. Indeed, the types of failure modes seen in the laboratory fall
equally well within the general framework discussed here, and the analysis may prove useful for
analyzing specific laboratory test data sets. Such directions for data analysis will provide a further
motivation for future efforts along these, and similar related, lines of inquiry.

Finally, we have not yet discussed the influences that fluids in the fractures might have on the
preceding analysis. Berryman [37] shows how Skempton’s coefficient B [38, 39] may be used to
introduce fluid effects simply into the Sayers and Kachanov [26] fractured systems analysis scheme
that we also used here. This approach automatically makes the equations for fractured systems
Gassmann consistent [37]. The mathematical approach presented here can be easily modified to
account for these effects in the same way as in Reference [37]. The main conclusion will follow
that, due to the very slow changes inherent in the geological processes, these systems will typically
(especially for rock outcrops) act as drained systems, and therefore will be largely unaffected
mechanically by the presence of pore fluids. This story would change, however, if any liquid is
trapped, so it is an undrained fluid with a significant bulk modulus (i.e. a liquid). Such a confined
fluid would then tend to stiffen the system, and the corrections in [37] could be applied to account
for these changes. We will say no more about these interesting effects here, as further elaboration
of this story will need to be continued in another contribution.

APPENDIX A: SCHOENBERG–MUIR METHOD

The compliance form of the quasi-static equations of elasticity is typically written in the following
way when the Voigt 6×6 matrix notation is being used:⎛

⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠≡S

⎛
⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠ , (A1)

where S is the symmetric 6×6 compliance matrix. The numbers 1,2,3 always indicate Cartesian
axes (say, x , y, z, respectively). In many geological and geophysical applications, the 3-axis (or
z-axis) is taken to be vertical, but we do NOT typically use this convention here. Instead, the
z-direction is usually the layering direction, which can be oriented any direction in the earth. The
principal stresses are �11, �22, �33, in the directions 1,2,3, respectively. Similarly, the principal
strains are �11, �22, �33. The stresses �23, �31, �12 are called the torsional shear stresses, associated
with rotation-based strains around the 1, 2, or 3 axes. Again, the corresponding torsional strains
are �23, �31, and �12, where the torsional motion is a rotational straining motion around the 1,
2, or 3 axis, respectively. The compliance matrix is symmetric, so Si j = S ji , and this fact could
have been used when writing out this matrix. However, there will be some advantages for our
later analysis to leave the notation in this form for now. The axis pairs in the subscripts 11, 22,
33, 23, 31, and 12, are often labelled (following the conventions of Voigt [16, 17]) as 1, 2, 3, 4,
5, 6, respectively. This choice of notation also clarifies the significance of the remaining pairs of
subscripts appearing in the compliance matrix in (A1).

The important contribution made by Backus [3] (also see Postma [40]) is the observation that,
in a horizontally layered system, there are certain strains �i j and stresses �i j that are necessarily
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continuous across boundaries between layers, whereas the others are not necessarily continuous.
We have been implicitly (and now explicitly by calling this fact out) assuming that the interfaces
between layers are in welded contact, which means practically that the in-plane strains are always
continuous: so if axis 3 (or z) is the symmetry axis (as is most often chosen for our layering
problem), we have that �11, �12=�21, and �22 are all continuous. Similarly, in welded contact, we
must have continuity of all the stresses involving the 3 (or z) direction: so �33, �13=�31, and
�23=�32 must all be continuous.

Then, following Backus [3] and/or Schoenberg and Muir [4], but now considering instead the
compliance (inverse of stiffness) matrix, we have rearranged the statement of the problem so that:⎛

⎜⎜⎜⎜⎜⎝

�11
�22
�12
�33
�32
�31

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

S11 S12 S16 S13 S14 S15
S21 S22 S26 S23 S24 S25
S61 S62 S66 S63 S64 S65
S31 S32 S36 S33 S34 S35
S41 S42 S46 S43 S44 S45
S51 S52 S56 S35 S54 S55

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�11
�22
�12
�33
�32
�31

⎞
⎟⎟⎟⎟⎟⎠ . (A2)

Note that this equation, although similar to (A1) is quite different because of the rearrangement
of the matrix elements and the reordering of the strains and stresses. Expression of this equation
can be made more compact by writing it as(

XT
XN

)
=
(
STT ST N
SNT SNN

)(
�T
�N

)
, (A3)

where

STT ≡
⎛
⎝S11 S12 S16
S21 S22 S26
S61 S62 S66

⎞
⎠ , (A4)

SNN ≡
⎛
⎝S33 S34 S35
S43 S44 S45
S53 S54 S55

⎞
⎠ , (A5)

and

SNT ≡
⎛
⎝S31 S32 S36
S41 S42 S46
S51 S52 S56

⎞
⎠ , (A6)

with ST N = STNT (with T superscript indicating the matrix transpose), and also where

XT ≡
⎛
⎝�11

�22
�12

⎞
⎠ and XN ≡

⎛
⎝�33

�32
�31

⎞
⎠ , (A7)

and

�T ≡
⎛
⎝�11

�22
�12

⎞
⎠ and �N ≡

⎛
⎝�33

�32
�31

⎞
⎠ . (A8)
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It is most helpful to distinguish between ‘slow’ and ‘fast’ variables in this analysis, since this
distinction makes it easy to decide when and how averaging should be performed. The ‘slow’
variables, that are those continuous across the boundaries and also essentially constant for the
present quasi-static application, are those contained in XT and �N . So, after averaging 〈·〉 along
the layering direction, we will have:(

XT

〈XN 〉

)
=
(
S∗
T T S∗

T N

S∗
NT S∗

NN

)(〈�T 〉
�N

)
, (A9)

where S∗
T N =(S∗

NT

)T, and all the starred quantities are the nontrivial average compliances we
seek. They are defined in terms of layer-average quantities where the symbol 〈·〉 indicates a simple
volume average of all the layers. By this we mean that a quantity Q that takes on different values
in different layers has the layer-average 〈Q〉≡ xaQa+xbQb+·· ·. The definition is general and
applies to an arbitrary number of different layers where the fraction of the total volume occupied
by layer a is xa , etc. Total fractional volume is xa+xb+·· ·≡1. In our present application, we
will treat only two types of layers, and each occupies half the volume, so 〈Q〉= 1

2 (Qa+Qb).
The method is, however, immediately generalized to an arbitrary number of different layers, and
any relative weighting, when needed. Specific results presented here are, however, limited to the
two-layer case.

Of the three final results, the easiest ones to compute are these two:

S∗
T T = 〈S−1

T T 〉−1, (A10)

S∗
T N = (S∗

NT )T=〈S−1
T T 〉−1〈S−1

T T ST N 〉= S∗
T T 〈S−1

T T ST N 〉, (A11)

where 〈·〉 is the layer average of some quantity. These results follow from the following equation:

〈S−1
T T 〉XT =〈�T 〉+〈S−1

T T ST N 〉�N , (A12)

which followed immediately from the formula

XT = STT�T +ST N�N (A13)

multiplying through first by the inverse of STT , and then performing the layer average. [Note
that STT and SNN are both normally square and invertible matrices, whereas there will be many
systems for which the off-diagonal matrix SNT is not invertible. But, this fact is not an issue,
because we do not need to invert SNT in order to solve the averaging problem at hand.] These
averages are meaningful because when the matrix equations presented are multiplied out, we never
have any cross products of two quantities that are both unknown. [From this view point, Equation
(A12) is an equation for 〈�T 〉, just as the unaveraged version of (A12) is an equation for �T in
each layer.] So simple layer-averaging suffices (thereby providing the main motivation and value
of this method). Multiplying (A12) through by 〈S−1

T T 〉−1 then gives the results (A10) and (A11).
The remaining result needed here requires more steps to compute, but the final result is given by:

S∗
NN =〈SNN 〉−〈SNT S

−1
T T ST N 〉+S∗

NT (S∗
T T )−1S∗

T N . (A14)

To provide some clues to the derivation, again consider:

�T = S−1
T T XT −S−1

T T ST N�N , (A15)
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which is just a rearrangement of (A13). The point is that 〈�T 〉 is then given immediately in terms
of the quantities XT and �N , which are both ‘slow’ variables and therefore essentially constant.
An intermediate result that helps to explain the form of this relation (A14) is:

S∗
NT (S∗

T T )−1S∗
T N =〈SNT S

−1
T T 〉〈S−1

T T 〉−1〈S−1
T T ST N 〉=〈SNT S

−1
T T 〉S∗

T N . (A16)

Substituting for �T from (A15) into

XN = SNT�T +SNN�N (A17)

and then averaging, we find that

〈XN 〉=〈SNT S
−1
T T 〉XT +〈SNN −SNT S

−1
T T ST N 〉�N , (A18)

which completely determines all the remaining coefficients. After some more algebra, we find that
the formula determining the final result is actually given explicitly by:

〈XN 〉 = 〈SNT S
−1
T T 〉〈S−1

T T 〉−1[〈�T 〉+〈S−1
T T ST N 〉�N ]+(〈SNN 〉−〈SNT S

−1
T T ST N 〉)�N

= S∗
NT 〈�T 〉+S∗

NN�N . (A19)

Equation (A19) contains all the information needed to produce the third and final result found in
(A14).

Another way to check these formulas is to compare them with those found in Schoenberg
and Muir [4]. Direct comparison is not trivial; their analysis treats the stiffness version of the
equations, while we are considering the compliance version here. Nevertheless, the symmetries of
the equations are almost identical, so these useful comparisons and cross-checks will be left to the
motivated reader.

APPENDIX B: BACKUS METHOD

Appendix A presented one method (that of Schoenberg and Muir [4]) for applying the general
approach of Backus [3] to layer averaging in elasticity. Another method will be adopted in this
Appendix B. The point of the second method is to make the details visible, and show in partic-
ular that the method does result in the appropriate stress/strain continuity relations at the layer
boundaries. These details are suppressed in the preceding method, but—as will be shown explicitly
here—the desired conditions are nevertheless being automatically satisfied.

The key idea that is used in the Backus method is to note that certain subsets of the elastic stress
and strain variables are necessarily continuous across the layer interfaces, for if they were not
continuous then the layers could not be considered to be in welded contact. If—as is commonly
assumed—the layering direction is the z (or 3) direction, then welded contact implies continuity
of the transverse strains XT

T =(�11,�22,�12) and also the longitudinal stresses �T
N =(�33,�32,�31).

This choice of layering direction is completely arbitrary, and (as we will show here) other choices
of layering direction are also equally valid. This concept leads to the idea of ‘slow’ and ‘fast’
stresses and strains. For quasi-statics, ‘slow’ implies constant, and ‘fast’ implies varying from layer
to layer. For seismic wave propagation (being the subject of Backus’s original work), ‘slow’ and
‘fast’ have slightly different interpretations, because the applied stresses and strains are varying
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locally as the seismic wave passes through the layered medium. We are treating only the quasi-
static problem in this paper, but will nevertheless continue to use the fast/slow terminology. To
emphasize the ‘slow’ (or constant) character of certain sets of variables, we will put bars over the
variables or vectors of variables as appropriate. Thus, the ‘slow’-ness of vectors just discussed

above will be emphasized by using the notations: X
T
T and �

T
N . The remaining variables without

overbars are all ‘fast’ variables, and determine the desired quantities at the end of our calculations
by performing the layer average, so, for example, XN is a ‘fast’ variable, but 〈XN 〉 is its layer
average. The layer average itself has exactly the same meaning here as in Appendix A.

B.1. Schoenberg–Muir revisited

To show quickly how this approach works, we can start from Equation (A3):(
XT

XN

)
=
(
STT ST N

SNT SNN

)(
�T

�N

)
. (B1)

However, this time we will rearrange Equation (B1) in a different manner, so that the slow variables
form a vector multiplying a matrix that, when multiplied by this vector, gives the corresponding
vector of the fast variables:(

�T

XN

)
=
(

S−1
T T S−1

T T ST N

SNT S
−1
T T [SNT S

−1
T T ST N −SNN ]

)(
XT

−�N

)
. (B2)

We are not showing the algebra required to arrive at this equation, as it was already implicit in
the work of the previous Appendix A.

One advantage of the Backus [3] method is that once we have our equation in the form shown
in (B2), the layer-averaging step is conceptually trivial:( 〈�T 〉

〈XN 〉
)

=
(

〈S−1
T T 〉 〈S−1

T T ST N 〉
〈SNT S

−1
T T 〉 〈SNT S

−1
T T ST N −SNN 〉

)(
XT

−�N

)
. (B3)

It is straightforward to check that these results for the effective coefficients are identical to the
ones obtained using the original Schoenberg–Muir [4] approach. This is not at all surprising, but it
is nevertheless useful in order to check that the boundary conditions are being applied consistently
and correctly in both cases.

For simple elasticity problems, there is no particular advantage of one of these implementation
methods over the other. However, for generalizations to more complex problems such as poroe-
lasticity and thermoelasticity having additional stresses (such as pore pressure) and strain-related
quantities such as the increment of fluid content (see Berryman [41]), and/or temperature variables
and thermal expansion responses, the original method of Backus [3] continues to be straightforward
for such applications and extensions.

B.2. Averaging along the z-direction

Because the Schoenberg–Muir [4] approach is a top-down method, we do not see explicitly what
is happening within the details. In particular, it is important to emphasize here that it is possible to
construct our layered medium in more than one way from the same building blocks of fractured
layers that we are describing here. To make this point more concretely, we will show now in
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Figure B1. Example of a top view of another type of layered medium that can also be treated by
the methods presented in the text. The layers are stacked top to bottom with only two types of these
layers being shown. Individual layers are fractured/fractured, each having the same fracture density
but not necessarily the same spatial distribution of fractures. For this example, the planes of the flat
fractures shown are all at either ±30◦ from the planes of intersection. All fractures in a given layer
have the same angular orientation. Solid lines are the fractures in the layer nearer to the viewer. The
dashed lines (also in blue) are for the fractures in the hidden layer below the nearer layer. As in

Figure 5, all fractures are seen edge on.

some detail how to do the actual averaging in two orthogonal directions. We emphasize that the
results are then for two distinct final composites. The first will have the structure as seen from
a side view in Figure 3. The second will have the structure as seen from a top-down view in
Figure B1. Both are perfectly valid applications of the methods considered, but Figure 3 is probably
the more interesting case for the geologically motivated problems of most interest to the authors
at the present time.

Using the overline notation to designate the ‘slow’ variables, we now explicitly treat the problem
of layering as seen in Figure 3, where the rotations of the fractures have been performed around
the 1- or x-axis. The compliance matrix has the form shown in (12) after the rotations of the
fractures from the 12- or xy-plane. The general form is⎛

⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

S11 S12 S13 S14
S12 S22 S23 S24
S13 S23 S33 S34
S14 S24 S34 S44

S55 S56
S56 S66

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠ , (B4)

where blank entries in the matrix are zeroes.
To produce the desired result, we need to rearrange these equations so that the ‘fast’ variables

are on the left, the ‘slow’ variables are on the far right. Then, the matrix is adjusted accordingly.
The steps in this procedure are somewhat tedious, but otherwise straightforward. The final result is⎛

⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

X11 X12 X13 X14
X12 X22 X23 X24
X13 X23 X33 X34
X14 X24 X34 X44

X55 −S56/S66
−S56/S66 −1/S66

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
−�12

⎞
⎟⎟⎟⎟⎟⎠ , (B5)

where D is the determinant

D= S11S22−S212, (B6)
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of the 2×2 submatrix, and with the X -component definitions:(
X11 X12

X12 X22

)
= 1

D

(
S22 −S12

−S12 S11

)
, (B7)

(
X13 X14

X23 X24

)
= − 1

D

(
S22 −S12

−S12 S11

)(
S13 S14

S23 S24

)
, (B8)

and (
X33 X34

X34 X44

)
=

(
S33 S34

S34 S44

)
− 1

D

(
S13 S23

S14 S24

)(
S22 −S12

−S12 S11

)(
S13 S14

S23 S24

)
. (B9)

The final X -component needed is

X55= S55−S256/S66. (B10)

Once we have the equations rewritten in the form (B5), the final layer-averaging step is imme-
diate. All the displayed matrix coefficients can be averaged directly, and the results for the averaged
stresses and strains in terms of the boundary interface quantities are easily found. For example,
〈�33〉=〈X13〉�11+〈X23〉�22+〈X33〉�33+〈X43〉�23 gives the relationships between the averaged
strain 〈�33〉 (recall that the averaged strain/stress is also the macroscopic strain/stress in such a
layered medium), and the boundary values of those stresses and strains are continuous across the
layer boundaries. For this case, the averaging is along the z (or 3) direction. A similar calculation
will be performed in Section B.3 for averaging along the x (or 1) direction. In general, the aver-
aging can be performed in any arbitrary direction, but, the farther this direction is from a symmetry
axis of the elastic matrix (tensor), the fuller is the elastic matrix and the harder it is to write down
the details explicitly, as is being done here.

One immediately useful observation about these coefficients is this: The coefficients S14, S24,
S34, and S56 are the only coefficients in the matrix of (B4) that prevent the matrix symmetry from
being orthorhombic. But these four possibly nonzero components off-off-diagonal coefficients have
been shown to have opposite signs in the two layers we are considering for the averaging step of
this calculation. Thus, 〈S14〉=〈S24〉=〈S34〉=〈S56〉≡0, after the indicated layer averaging. Since
all the remaining elastic coefficients in the two layers are identical [i.e. having Sa12= Sb12, etc.], then
all averages must vanish when they have one of these three changeable coefficients either standing
alone, or multiplying other coefficients that do not change sign between layers; thus, for example,
〈S56/S66〉=〈S56〉/S66=0. [Obviously, squares or cross-products of the coefficients having this
symmetry property do NOT average to zero, but such terms appear mostly along the diagonal
of the elastic matrix, and therefore do not affect our main arguments]. This observation shows
that the final degree of symmetry of the layer-averaged system will not be any more complicated
than orthorhombic. [A small amount of additional mathematics is required to prove this, but these
details will be left as an exercise for the reader]. The authors had also tried the Schoenberg–Muir
[4] version of the averaging scheme first, and discovered that this orthorhombic symmetry was in
fact always obtained. But, unfortunately, the explanation for the behavior was not so obvious from
this alternate point of view. The argument just given shows, in a relatively simple way, why this
must always happen for the choices of layer symmetry that we have made here.
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B.3. Averaging along the x-direction

In this subsection, we repeat the calculations of the preceding subsection in order to illustrate how
the results of the method can differ when the layering (and therefore averaging) direction is chosen
along another orthogonal direction. The starting point is exactly the same as in the preceding
subsection, namely Equation (B4), except that now the choices of continuous stresses and strains
(as indicated by the overlines) are different:⎛

⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

S11 S12 S13 S14
S12 S22 S23 S24
S13 S23 S33 S34
S14 S24 S34 S44

S55 S56
S56 S66

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠ . (B11)

In this case, the lower 2×2 submatrix problem is already in the form we want, so we need only
to deal with the upper 4×4 submatrix problem. Using the same types of manipulations displayed
in the previous subsection, we find:⎛

⎜⎜⎜⎜⎜⎝

�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

Y11−S11 Y12 Y13 Y14
Y12 Z22 Z23 Z24
Y13 Z23 Z33 Z34
Y14 Z24 Z34 Z44

S55 S56
S56 S66

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

−�11
�22
�33
�23
�31
�12

⎞
⎟⎟⎟⎟⎟⎠ , (B12)

where ⎛
⎝Z22 Z23 Z24
Z23 Z33 Z34
Z24 Z34 Z44

⎞
⎠≡

⎛
⎝S22 S23 S24
S23 S33 S34
S24 S34 S44

⎞
⎠

−1

, (B13)

⎛
⎝Y12
Y13
Y14

⎞
⎠=

⎛
⎝Z22 Z23 Z24
Z23 Z33 Z34
Z24 Z34 Z44

⎞
⎠
⎛
⎝S12
S13
S14

⎞
⎠ , (B14)

and

Y11 ≡ (S12 S13 S14 )

⎛
⎝Y12
Y13
Y14

⎞
⎠. (B15)

Finally, it is not difficult to show that the layer-averaged terms 〈Y14〉, 〈Z24〉, 〈Z34〉, and 〈S56〉 all
vanish, for the same reasons as discussed in the previous subsection. So once again, the symmetry
of the layer-averaged problem is generally no more complicated than orthorhombic for the types
of problems under consideration.

Although the x-averaging method just presented may prove useful is some contexts, our main
interest in this paper concerns the z-averaging method—as this is the one that most closely mimics
the behavior of fracture patterns observed in the field (see Figures 1 and 2). So examples of the
application of formulas (B12)–(B15) will not be included among our examples at the present time.
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APPENDIX C: INVERTING THE 6×6 ELASTIC MATRICES

The elastic matrices for compliance and stiffness have very particular forms that make them
relatively easy to invert. This fact is useful since we need to move back and forth between the two
forms in the analysis of this paper.

Let A, B, and C be three 3×3 matrices, where A and C are invertible and symmetric, whereas
B is, usually, neither invertible nor symmetric. Then, if the matrix(

A B

BT C

)
(C1)

is one of the 6×6 elastic matrices, either compliance or stiffness, and(
X Y

YT Z

)
(C2)

is the inverse of (C1), then we have(
AX+BYT AY+BZ

BTX+CYT BTY+CZ

)
=
(
I 0

0 I

)
, (C3)

where I is the 3×3 identity matrix, and 0 a 3×3 matrix of zeroes. Then, we make use of the facts
that A and C are invertible matrices, whereas B is usually not invertible, to obtain:

Y=−A−1BZ and YT=−C−1BTX, (C4)

and so we have

X=[A−BC−1BT]−1 and Z=[C−BTA−1B]−1. (C5)

If (C1) is the stiffness matrix in Voigt form, then it can be translated easily into the Kelvin form
[9, 11] as (

A
√
2B√

2BT 2C

)
(C6)

while the Kelvin form [9, 11] of the compliance matrix is then⎛
⎜⎜⎝

X
1√
2
Y

1√
2
YT 1

2
Z

⎞
⎟⎟⎠ . (C7)

It is easy to see that these transformations result in the same inverse relationships as shown
previously in (C4) and (C5).
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APPENDIX D: NUMERICAL PROCEDURE FOR OBTAINING ELASTIC
EIGENVALUES AND EIGENVECTORS

Because the compliance matrix is 6×6, no matter what the symmetry of this matrix happens to be,
it will have exactly six eigenvalues. For the cases that are well-approximated as being orthorhombic
considered here, three of these eigenvalues may be correctly identified as shear moduli associated
with torsional (twisting) shear. The remaining three eigenvalues however may or may not have
simple physical interpretations, as it is commonly recognized that these other three eigenvalues can
involve coupling between pure shear and pure compression. One of these modes may generally be
characterized as a quasi-compressional mode having an effective bulk modulus (really a multiple
of its inverse since we are considering the compliance matrix here) value associated with it. The
other two modes may be characterized as quasi-shear modes.

D.1. Eigenvalues

If we suppose that this 3×3 submatrix of the elastic matrix can be written as⎛
⎜⎜⎜⎜⎜⎝

1

E11
S12 S13

S12
1

E22
S23

S13 S23
1

E33

⎞
⎟⎟⎟⎟⎟⎠ , (D1)

where the matrix elements shown all have their standard meanings (although in the present context
this is also assumed to be true for the effective behavior of the homogenized/averaged medium),
then it is always possible to compute the Reuss averages [42] for an effective bulk modulus and
also for one effective shear modulus using this matrix. These averages turn out to be rigorous
lower bounds on the bulk and shear moduli (alternatively, the inverse results correspond to upper
bounds on the bulk and shear compliances) for isotropic polycrystals composed of a jumble of
such single crystals, and they are pertinent to the stresses �11, �22, and �33, and the strains �11,
�22, and �33 of such a composite mixture of locally orthorhombic constituents.

Of these Reuss averages, the one for the bulk modulus has the further advantage that, even
though it is usually not an actual eigenvalue of the matrix, it is nevertheless truly the bulk modulus
of the locally anisotropic constituents. To see that this is so, apply a constant hydrostatic stress
(pressure if you like) to the system having �=�11=�22=�33. Then, the volumetric strain is

�=�11+�22+�33= �

KR
, (D2)

where

1

KR
≡ 1

E11
+ 1

E22
+ 1

E33
+2(S12+S13+S23). (D3)

We see that this prescription clearly gives the correct value for the bulk modulus in the isotropic
case, where 1/3K =(1−2�)/E and S12= S13= S23=−�/E , with � being Poisson’s ratio. Our
point is that a single crystal of any anisotropic elastic material has a meaningful bulk modulus that
can be experimentally determined in exactly this way (e.g. through immersion in a pressurized
water bath).
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One reason for stressing this point now is that we need to obtain three meaningful and easily
interpretable constants from our computed anisotropic elastic tensor/matrix (D1) as efficiently
as possible. The eigenvalue equation for this 3×3 submatrix is cubic. Cubic equations with real
coefficients can be solved analytically as described in standard references [43, 44], or they can also
be solved starting with a Newton–Raphson iteration scheme [45] to find a single eigenvalue. The
eigenvalue associated with the Reuss estimate of the bulk modulus is clearly a good choice for
starting such a numerical iteration procedure. So, after iterating to convergence and having thus
presumably found the eigenvalue most closely associated with compression and/or tension, we can
subsequently deflate the cubic eigenvalue problem [45] to a quadratic equation, which can then be
solved analytically with no further difficulty, using the very well-known quadratic formula.

The approach works well as has been described previously in a different physical context by
Berryman and Wang [46]. Our cubic polynomial equation is

P(x)=
3∑

n=0
Pn(−x)n =(x1−x)(x2−x)(x3−x)=0, (D4)

where P3=1, P2=(x1+x2+x3), P1=(x1x2+x2x3+x3x1), and P0= x1x2x3. And also we have
from (D1), the determinant

det

⎛
⎜⎜⎜⎜⎜⎝

1

E11
−x S12 S13

S12
1

E22
−x S23

S13 S23
1

E33
−x

⎞
⎟⎟⎟⎟⎟⎠=0, (D5)

which implies that

P0 = 1

E11E22E33
+2S12S23S13− S223

E11
− S213

E22
− S212

E33
,

P1 = 1

E11E22
+ 1

E22E33
+ 1

E33E11
+S212+S223+S213,

P2 = 1

E11
+ 1

E22
+ 1

E33
,

P3 = 1.

(D6)

Using the linear independence of the terms in powers of x in (D4), we also have the following
three equations showing that

x1= P2−x2−x3= P1−x2x3
x2+x3

= P0
x2x3

. (D7)

But, in this form, (D7) is only useful if we have already found two of the three solutions.
Instead we shall start with a guess based on the Reuss average for the system bulk modulus

(as already discussed here), and then iterate according to

X (i) = X (i−1)−P(X (i−1))/P ′(X (i−1)) for i=1,2, . . . ,Nc, (D8)
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where P ′ is the first derivative of the polynomial P(x). Iteration continues until some choice of
convergence criterion has been satisfied when i=Nc. Since we are proposing to start the iteration
with X (0) =1/3KR, which is a rigorous upper bound on the value sought, we expect this iteration to
proceed smoothly to the right root. The result of this process is x1� X (Nc), with a small numerical
error based on our choice of convergence criterion.

Once such an approximation to the first root x1 has been obtained, then the other two roots are
found by deflation of the cubic to a quadratic equation. One formula for doing this is based on
(D7), and given by:

x2,3= 1
2 [(P2−x1)±

√
(P2−x1)2−4P0/x1]. (D9)

This result follows from the observation that the desired quadratic formula has the form:

(x−x2)(x−x3)= x2−(x2+x3)x+x2x3=0, (D10)

while (D7) shows that

(x2+x3)= P2−x1 and x2x3= P0
x1

. (D11)

Equation (D9) follows after substituting (D11) into (D10) and solving for x2 and x3. Thus, we
find both the quasi-shear effective moduli simultaneously and consistently, based on the previously
computed value of compliance associated with the initial guess 1/3KR, which is expected to
produce the compliance associated with quasi-compression/quasi-tension.

It is also possible to solve the cubic equation (D4) semi-analytically using either the Cardan or
the trigonometric solutions [43, 44]. However, the other method proposed here is actually easier
to implement numerically. Both methods were used in this work, and found useful for purposes
of cross-checking and code debugging.

D.2. Eigenvectors

One technical point still remaining is how these three compliances (i.e. the eigenvalues 
= x1, x2,
and x3) should be interpreted. While the diagonal components of the compliance 1/E11, 1/E22,
and 1/E33 all have easy interpretations in terms of directionality, the three eigenvalues are more
fundamental quantities, yet they also require further work before they can be precisely interpreted.

For a 3×3 system, the hardest step is finding the first eigenvalue. Then, as shown in the
preceding subsection, the other two eigenvalues are easy to find. Similarly, once we have all three
eigenvalues, the three corresponding eigenvectors are also very easy to compute. In general [46],
if 
= x1, x2, or x3, then an eigenvector associated with one of these 
 values is proportional to:

⎛
⎝�

�
�

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S12S23−S13

(
1

E22
−


)

S13S12−S23

(
1

E11
−


)
(

1

E11
−


)(
1

E22
−


)
−S212

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D12)

It is straightforward to verify that (D12) is an eigenvector of (D1) whenever 
 is any one of the
eigenvalues. The verification step for the first two entries (i.e. a and b) is simple algebra. The
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third entry needs a bit of extra work to verify; this work involves the equation for the eigenvalues
themselves, which can be rewritten as

S13

[
S12S23−S13(

1

E22
−
)

]
+S23

[
S13S12−S23

(
1

E11
−


)]

+
(

1

E33
−


)[(
1

E11
−


)(
1

E22
−


)
−S212

]
=0, (D13)

which is seen to be identical to the statements that

S13�+S23�+
(

1

E33
−


)
�=0, (D14)

or, equivalently, that

S13�+S23�+ 1

E33
�=
�. (D15)

This step is the final one needed in the proof that vector (�,�,�)T is an eigenvector of (D1), when
the value of 
 is chosen to be one of the three eigenvalues.

One caveat that is worth noting concerns the special case when S12≡0, while simultaneously
E11≡E22. Then, the analysis degenerates, and the proposed form of the eigenvector in (D12) will
produce all zeroes. This degeneracy of the proposed form also occurs in the other very special
case of perfect isotropy. Neither of these special cases is expected to play any role in the systems
of interest to us in this paper, but the reader should be aware of these potential pitfalls associated
with the formulas if an attempt were made to apply them to systems other than the ones we are
considering here.

Another special case (although not so special that it is not pertinent to the cases actually
considered here) is when the axes are perfectly aligned with the symmetry axes of the elastic
matrix, in which case the resulting compliance matrix can be diagonal. This means that all the
off-diagonal values satisfy S12= S23= S13=0. The formulas (D12) are again degenerate as written
in this case, since they always give �=�=0 if the off-diagonal components vanish. But having
a truly diagonal system makes life very simple for such calculations, as it is then quite obvious
what eigenvector corresponds to each eigenvalue. So this issue will play no role in the following
analysis.

Figure 6 shows the results we obtained for the quasi-bulk modulus and the quasi-shear moduli.
In addition, we have also plotted the Reuss average of the bulk modulus KR, defined by

1

3KR
= 1

3

∑
i, j=1,3

Si j , (D16)

which is well-known not to be an eigenvalue either for orthorhombic elastic media. Instead KR
is a rigorous lower bound on the effective bulk modulus of any anisotropic elastic system [24].
Figure 6 shows in particular that the Reuss average KR is indeed proportional to a lower bound on
the computed quasi-bulk modulus of these systems, and furthermore that KR is also approximately
constant for fixed fracture density �.
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