

1 **Primary Production in the Southern Ocean, 1997-2006**

2 **Kevin R. Arrigo, Gert L. van Dijken, and Seth Bushinsky**

3 Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305

4

5 **Abstract**

6 Estimates of primary production in the Southern Ocean are difficult to obtain but are essential if
7 we are to understand its role in the global carbon cycle. Here we present a nine-year time series
8 of daily primary production calculated from remotely sensed ocean color, sea surface
9 temperature, and sea ice concentration using a primary production algorithm parameterized
10 specifically for use in Southern Ocean waters. Results suggest that total annual production in
11 waters south of 50°S averaged $1949 \pm 70.1 \text{ Tg C yr}^{-1}$ between 1998 and 2006, approximately half
12 that of previous estimates. The large but relatively unproductive pelagic province accounted for
13 ~90% of Southern Ocean production, while area-normalized rates of production were greatest on
14 the much smaller continental shelf ($109 \text{ g C m}^{-2} \text{ yr}^{-1}$). Surprisingly, production in the marginal
15 ice zone was only slightly higher than in the pelagic province. The Ross Sea was the most
16 productive sector of the Southern Ocean (mean= 503 Tg C yr^{-1}), followed closely by the Weddell
17 Sea (mean= 477 Tg C yr^{-1}). Unlike the Arctic Ocean, there was no secular trend in either sea ice
18 cover or annual primary production in the Southern Ocean during our nine-year study.

19 Interannual variability in annual production was most closely tied to changes in sea ice cover,
20 although changes in sea surface temperature also played a role. Only 31% of the variation in
21 annual production was explained by the Southern Annular Mode. Annual primary production
22 could increase in the future as stronger winds increase nutrient upwelling.

23

24 **1. Introduction**

25 The polar Southern Ocean (waters south of 50°S) is a critical component of global ocean
26 circulation and the biogeochemical cycles of nutrients and carbon. Despite the fact that it
27 represents only 10% of total ocean surface area, it accounts for approximately 25% of the

28 oceanic uptake of atmospheric CO₂ [Takahashi *et al.*, 2002]. Much of this CO₂ sink has been
29 attributed to cooling of southward flowing subtropical surface waters and the associated increase
30 in CO₂ solubility (i.e., the solubility pump). Some of the highest concentrations and deepest
31 penetration of anthropogenic carbon are found in the Southern Ocean [Lo Monaco *et al.*, 2005;
32 Waugh *et al.*, 2006], particularly in the northward moving Antarctic Bottom Water [Sabine *et al.*,
33 2002]. Because these bottom waters were recently in contact with the atmosphere, they are an
34 important water mass for the storage of anthropogenic CO₂ in the deep ocean [McNeil *et al.*,
35 2001].

36 Another key mechanism that facilitates the influx of atmospheric CO₂ into the Southern
37 Ocean is the biological pump, whereby phytoplankton photosynthesis reduces the surface water
38 partial pressure of CO₂ (pCO₂), creating a gradient between the ocean and atmosphere. When
39 this newly fixed organic carbon sinks out of the upper mixed layer, it may be stored within the
40 deep ocean circulation system for hundreds of years [Broecker, 1991]. Hence, Southern Ocean
41 regions with high rates of phytoplankton primary production and an active biological pump are
42 important sites mediating the ocean-atmosphere exchange of CO₂.

43 On average, the Southern Ocean is characterized by its abundant macronutrients coupled
44 with only modest rates of annual average net primary production [Arrigo *et al.*, 1998a; Moore
45 and Abbott, 2000]. Despite the generally low phytoplankton abundance, intense phytoplankton
46 blooms occasionally develop, making productivity in the Southern Ocean highly variable both
47 temporally and spatially. The lowest rates of production are generally associated with pelagic
48 waters north of the sea ice zone (SIZ), where rates range from 0.08-0.22 g C m⁻² d⁻¹ in June to
49 0.5-1.0 g C m⁻² d⁻¹ in December [Arrigo *et al.*, 1998a]. Low production rates in these waters are
50 the result of a variety of factors, including low sun angles, deep mixing of the upper water
51 column, and trace metal limitation [Martin, 1990; Mitchell and Holm-Hansen, 1991, Boyd *et al.*,
52 2000]. One exception to the usually low rates of production characterizing waters north of the
53 SIZ are found along oceanographic fronts, such as the Antarctic Polar Front, where divergence of
54 surface waters brings waters with high nutrient concentrations to the surface, fueling enhanced

55 phytoplankton growth [Moore and Abbott, 2000, Hense *et al.*, 2000]. Another exception is
56 found near offshore islands (e.g., the Balleny Islands, South Georgia Island), where current flow
57 past rough or shallowing topography also can increase the flux of nutrients into surface waters
58 [Korb and Whitehouse, 2004].

59 The highest rates of primary production in the Southern Ocean are generally associated with
60 coastal polynyas (regions of open water surrounded by sea ice) [Arrigo and Van Dijken, 2003;
61 Arrigo and Van Dijken, 2007], the marginal ice zone (MIZ) [Smith and Nelson, 1986], and the
62 continental shelf [Smith and Gordon, 1997; Sweeney, 2003; Arrigo and Van Dijken, 2004]. In
63 these environments, rates of CO₂ fixation frequently exceed 2 g C m⁻² d⁻¹, sufficient to maintain a
64 positive CO₂ gradient between the ocean surface and the atmosphere, facilitating the influx of
65 atmospheric CO₂ [e.g., Louanchi *et al.*, 1999a; Louanchi *et al.*, 1999b; Sweeney, 2003].

66 Much of what is currently known about large-scale patterns in primary productivity of the
67 Southern Ocean comes from a small number of studies using either satellite-based methods
68 [Arrigo *et al.*, 1998a; Moore and Abbott, 2000; Gabric *et al.*, 2002; Lovenduski and Gruber,
69 2005; Carr *et al.*, 2006] or numerical models [Fennel *et al.*, 2003; Sarmiento *et al.*, 2004].
70 However, for a variety of different reasons, these studies have been limited in their ability to
71 assess the spatial variability in Southern Ocean primary production over both short (weekly) and
72 long (interannual) timescales. Here we present an analysis of a nearly decade-long time series of
73 primary productivity determined from space-based measurements of sea ice distribution, sea
74 surface temperature, and chlorophyll *a* (Chl *a*) concentration, together with estimates of mixed
75 layer depth, cloud cover, and spectral irradiance. The algorithm used here to estimate depth-
76 integrated primary productivity is a modified version of that presented in Arrigo *et al.* [1998a].
77 The current algorithm has been more rigorously validated and benefits from the far superior
78 spatial and temporal Chl *a* coverage afforded by the Sea-viewing Wide Field of view Sensor
79 compared to the Coastal Zone Color Scanner (CZCS). The primary goal of this study was to
80 quantify spatial variability and interannual changes in primary production within the Southern

81 Ocean and relate the observed patterns to concurrent variability in environmental forcing and
82 climate state (e.g., the Southern Annular Mode, SAM).

83

84 **2. Methods**

85 **2.1. Primary Production Algorithm**

86 The algorithm (modified from *Arrigo et al.*, 1998a) calculates the rate of primary production
87 ($\text{mg C m}^{-3} \text{ hr}^{-1}$) as a function of diurnal changes in spectral downwelling irradiance, sea surface
88 temperature ($^{\circ}\text{C}$), and Chl a concentration (mg m^{-3}). Horizontal distributions of Chl a were
89 determined from 8-day mean SeaWiFS imagery (4 km resolution) for the period 1997 to 2006.
90 We assume that Chl a concentration is uniform within the upper mixed layer and decreases
91 exponentially at greater depths, according to the relationship

92
$$\text{Chl } a(z) = \text{Chl } a(0) \exp[0.033 (z - \text{MLD})] \quad (1)$$

93 where z is depth, Chl $a(0)$ is the surface Chl a concentration determined from SeaWiFS data, and
94 MLD is the depth of the mixed layer. This relationship was determined using a large number of
95 vertical Chl a profiles from the Southern Ocean [*Arrigo et al.*, 2000]. Because waters below the
96 mixed layer account for a small fraction of depth-integrated primary production, the algorithm is
97 relatively insensitive to this parameterization. Primary productivity at each SeaWiFS pixel
98 location is integrated over depth (0-100 m at 1 m intervals) and time (hourly for 24 hours) to
99 determine daily primary production ($\text{mg C m}^{-2} \text{ d}^{-1}$).

100 The radiative transfer model of *Gregg and Carder* [1990] is used to compute clear sky
101 downwelling irradiance (E_{dclear}) at hour t which is subsequently corrected for fractional cloud
102 cover (N) according to the equation of *Dobson and Smith* [1988]

103
$$E_d(\lambda, t) = E_{dclear}(\lambda, t) [1 - 0.53(N^{0.5})]. \quad (2)$$

104 where E_d is the cloud corrected downwelling irradiance, λ is wavelength (nm) and values for N
105 are based on NCEP/NCAR daily reanalysis data [*Kalnay et al.*, 1996]. Other inputs to the

106 radiative transfer model (sea level pressure, wind speed, precipitable water, air temperature, and
107 specific humidity) are also from the NCEP/NCAR Reanalysis project, except for ozone (NASA's
108 Total Ozone Mapping Spectrometer project).

109 Irradiance is propagated through the water column according to the equation

110
$$E_d(\lambda, z, t) = (1 - R) E_d(\lambda, t) \exp[-K_d(\lambda) z] \quad (3)$$

111 where z is depth (m), and R is the surface reflection [McClain *et al.*, 1996] and

112
$$K_d(\lambda) = \frac{a_w(\lambda) + a_d(\lambda) + a_s(\lambda) + a_{ph}^*(\lambda) Chl\ a + b_{bw}(\lambda) + b_{bp}(\lambda)}{\mu} \quad (4)$$

113 where μ is the mean cosine of the angular irradiance distribution, a is absorption, a_{ph}^* is the Chl
114 a -specific absorption by phytoplankton from Arrigo *et al.*, [1998b], and b_b is backscatter. The
115 subscripts w and p represent contributions by seawater and particles, respectively. The inherent
116 optical properties a_w , b_{bw} and b_{bp} are obtained from Pope and Fry [1997] and Smith and Baker
117 [1981]. Using data from the Ross Sea [Arrigo *et al.*, 1998b], detrital absorption is assumed to
118 vary spectrally and as a function of Chl a concentration according to the equation

119
$$a_d(\lambda) = 0.006 \text{ Chl } a * \exp(-0.0143(\lambda - 400)) \quad (5)$$

120 and soluble absorption by CDOM is estimated by

121
$$a_s(\lambda) = 0.025 \exp(-0.012(\lambda - 400)). \quad (6)$$

122 Daily primary production (PP , mg C m⁻² d⁻¹) integrated over the upper 100 m is calculated as

123
$$PP = \int_{z=0}^{100} \int_{hour=0}^{24} Chla(z) \frac{C}{Chla} G(z, t) dz dt \quad (7)$$

124 where $Chla(z)$ is the Chl a concentration at depth z , $C/Chla$ is the phytoplankton carbon to Chl a
125 ratio (88.5 g:g), and $G(z, t)$ is the net biomass-specific growth rate (hr⁻¹) at a given time t and
126 depth z .

127 G is calculated as a product of the temperature-dependent upper limit to net phytoplankton
 128 growth rate, G_{max} (hr⁻¹) and the irradiance limitation term, L (dimensionless), such that

$$129 \quad \quad \quad G(z,t) = G_{max}(t) \, L(z,t). \quad (8)$$

130 $G_{max}(t)$ is calculated according to the equation

$$G_{max}(t) = G_O \exp[rT(t)] \quad (9)$$

132 where G_o is the phytoplankton net growth rate at 0°C (0.59 d^{-1}) and r is a rate constant (0.0633
 133 $^\circ\text{C}^{-1}$) that determines the sensitivity of G_{max} to temperature, T ($^\circ\text{C}$) [Eppley, 1972]. The sea
 134 surface temperature at time t is obtained from version 2 of the NOAA optimum interpolation sea
 135 surface temperature, OISST V2 [Reynolds *et al.*, 2002], and assumed to be constant with depth.
 136 While not strictly true, depth-dependent variability in T in the upper ocean tends to be small in
 137 polar waters so the impact of this assumption is relatively minor.

138 The light limitation term, $L(z,t)$, is calculated for each depth and each time step as

$$139 \quad L(z,t) = 1 - \exp\left(-\frac{PUR(z,t)}{E_k'(z,t)}\right) \quad (10)$$

140 where $PUR(z,t)$ is the photosynthetically usable radiation and $Ek'(z,t)$ is the spectral
 141 photoadaptation parameter [Arrigo and Sullivan, 1994]. Both $PUR(z,t)$ and $Ek'(z,t)$ are in units
 142 of $\mu\text{Ein m}^{-2} \text{ s}^{-1}$. Phytoplankton growth is effectively light-saturated when $PUR \approx 3Ek'$. PUR is a
 143 function of the spectral irradiance and phytoplankton spectral absorption [Morel, 1978]

$$PUR(z,t) = \int_{\lambda=400}^{700} E_d(\lambda z, t) \frac{a^*(\lambda)}{a^*_{\max}} d\lambda \quad (11)$$

145 where a^*_{max} is the maximum value attained by the phytoplankton absorption coefficient, $a^*(\lambda)$,
 146 and $E_d(\lambda, z, t)$ is the spectral downwelling irradiance at depth z and time t . $PUR(z, t)$ is used to
 147 calculate PUR^* , a measure of the average amount of usable radiation available during the
 148 photoperiod, F , according to the equations

150

$$151 \quad \text{if } z \leq \text{MLD}, \text{PUR}^*(z) = \frac{\int_{\text{MLD}}^{z=0} \int_{t=12-F/2}^{12+F/2} \text{PUR}(z,t) dt}{F}. \quad (12a)$$

$$152 \quad \text{if } z > \text{MLD}, \text{PUR}^*(z) = \frac{\int_{z=0}^{12+F/2} \text{PUR}(z,t) dt}{F}. \quad (12b)$$

153 In this way, PUR^* represents a value averaged both over the photoperiod and over depth within
 154 the mixed layer (i.e., PUR^* will be uniform with depth within the mixed layer), while below the
 155 mixed layer, PUR^* represents a value averaged only over the photoperiod (i.e., PUR^* will vary
 156 with depth below the mixed layer).

157 $E_k'(z,t)$ in Eq. 10 varies as a function of PUR^* according to the equations [Arrigo and
 158 Sullivan, 1994]

$$159 \quad E_k'(z) = \frac{E_k'_{\max}}{1 + 2 \exp[-B \cdot \text{PUR}^*(z)]} \quad (13)$$

$$160 \quad B = \exp[1.089 - 2.12 \log(E_k'_{\max})] \quad (14)$$

161 where $E_k'_{\max}$ is the maximum observed value for E_k' . Arrigo et al. [1998a] compiled spectral
 162 irradiance data and corresponding values of E_k' for phytoplankton collected over a wide range of
 163 times, depths, and locations in the Southern Ocean and determined that $E_k'_{\max} \approx 80 \mu\text{Ein m}^{-2} \text{ s}^{-1}$.
 164 Equations 13 and 14 scale $E_k'(z)$ with depth to simulate photoacclimation such that $E_k'(z)$
 165 asymptotically approaches $E_k'_{\max}$ and $E_k'_{\min}$ ($= 26.4 \mu\text{Ein m}^{-2} \text{ s}^{-1}$ as defined in Eq. 13) toward
 166 the surface and base of the euphotic zone, respectively.

167

168 **2.2. Defining Regions of Interest**

169 For the purpose of this study, the Southern Ocean (defined as the area south of 50°S) is
170 divided into five geographic sectors (Fig. 1) and four ecological provinces (Fig. 2). Geographic
171 sectors are defined simply by longitude and include the Weddell Sea (60°W to 20°E), south
172 Indian Ocean (20°E to 90°E), southwestern Pacific Ocean (90°E to 160°E), Ross Sea (160°E to
173 130°W), and Bellingshausen-Amundsen Sea (130°W to 60°W). The four ecological provinces
174 (Fig. 2) are defined based on sea ice coverage and bathymetry and include the pelagic, the MIZ,
175 the continental shelf, and the MIZ-shelf (that part of the MIZ on the continental shelf). Their
176 size is quantified over time by the amount of open water in each (i.e. the size of the shelf
177 province is smaller in the winter than in the summer because it is mostly ice covered during the
178 winter).

179 Sea ice extent used to define boundaries of ecological provinces is determined from Special
180 Sensor Microwave Imager (SSM/I) data using the PSSM algorithm of *Markus and Burns* [1995].
181 In this approach, the boundary between sea ice and open water is approximately the 10% sea ice
182 concentration contour. The pelagic province is defined as waters south of 50°S that have been
183 ice-free for >14 days and where water depth is >1000 m. South of the pelagic province is the
184 SIZ which contains the MIZ, the shelf, and the MIZ-shelf provinces. The shelf province is
185 defined as waters with a depth of <1000 m that have been ice-free for >14 days. The MIZ
186 province is associated with the retreating sea ice edge and is defined operationally as any open
187 water pixel where sea ice was present some time in the last 14 days. Anywhere that the MIZ
188 extends onto the shelf is considered part of the MIZ-shelf province. Once a given MIZ or MIZ-
189 shelf pixel has been ice-free longer than the 14 day threshold, it is redefined as being part of the
190 pelagic or shelf province, respectively, depending on water depth. Because of the high temporal
191 variability in the extent of the sea ice cover, the size of all ecological provinces varies daily. The
192 portions of the Patagonian and New Zealand shelves which extend south of 50°S are excluded
193 from all analyses to avoid confusion with productivity on the Antarctic continental shelf.

194 The threshold for the MIZ of 14 days was calculated from observations of the horizontal
195 distance the surface meltwater layer extended perpendicularly from the ice edge and the number
196 of days taken for sea ice to retreat that distance. Based on three well-documented MIZs, we
197 calculate that low salinity surface waters persist for approximately 14 days after the sea ice has
198 retreated from a given region. After that time, advection and mixing by winds have weakened
199 surface stratification and the phytoplankton bloom collapses. For example, satellite imagery of
200 sea ice extent shows that the ice edge in the Weddell Sea where *Smith and Nelson* [1986]
201 conducted their study was retreating at a rate of 8.3 km d^{-1} (250 km of ice retreat in 30 days).
202 Given that the far edge of the phytoplankton bloom was located 170 km from the ice edge, this
203 suggests that the MIZ persisted for 20 days ($170 \text{ km} / 8.3 \text{ km d}^{-1} = 20 \text{ days}$). *Lancelot et al.* [1991]
204 transected the ice edge three times during their study in the spring of 1988. Between their
205 November 26-30 and December 20-24 transects, the ice edge had retreated 160 km, or 6.4 km d^{-1}
206 ¹. The far side of the phytoplankton bloom was 100 km from the ice edge, implying a MIZ
207 persistence time of 15 days. Between the December 20-24 and December 27-31 transect, ice
208 edge retreat had accelerated to a rate of 14 km d^{-1} (100 km in 7 days), resulting in a MIZ
209 persistence time of 10 days (the far side of the phytoplankton bloom was 140 km from the ice
210 edge; $140 \text{ km} / 14 \text{ km d}^{-1} = 10 \text{ days}$). Based on these three values (20, 15, and 10 days, we chose
211 the value of two weeks as a reasonable length of time a pixel should be considered as part of the
212 MIZ.

213 The primary productivity algorithm is forced with daily input, with the exception of
214 SeaWiFS Chl α and OISST, which are 8-eight day means to reduce data gaps due to cloud cover.
215 All model input fields are mapped to a common grid and each pixel is assigned to the appropriate
216 geographic sector (e.g. Weddell Sea, Ross Sea, etc.) and ecological province (e.g. pelagic, MIZ,
217 shelf).

218

219 **3. Algorithm Validation**

220 **3.1. Chlorophyll *a***

221 The primary productivity algorithm presented here was validated in two steps and consisted
222 of the evaluation of SeaWiFS Chl *a* retrievals using the OC4v4 algorithm [O'Reilly *et al.*, 1998]
223 and comparisons of Chl *a*-based primary production obtained *in situ* with those computed by our
224 primary productivity algorithm. Previous efforts to validate SeaWiFS Chl *a* in the Southern
225 Ocean have met with decidedly mixed results. *Barbini et al.* [2006] reported that in the
226 southwestern Ross Sea, the SeaWiFS OC4v4 algorithm overestimated Chl *a* at high
227 concentrations and underestimated them at low concentrations. This is the reverse of what is
228 found in the CCAMLR region of the WAP [Holm-Hansen *et al.*, 2004], where SeaWiFS slightly
229 overestimated Chl *a* at concentrations below 0.2 mg Chl *a* m⁻³ and underestimated *in situ* values
230 at higher Chl *a* concentrations. *Garcia et al.* [2005] reported similar underestimates by the
231 OC4v4 algorithm, particularly at concentrations above 0.2 mg Chl *a* m⁻³ for the nearby
232 Bransfield Strait region, with an overall Southern Ocean bias of -21.7%. *Korb et al.* [2004]
233 calculated that in waters around South Georgia Island in the Scotia Sea, SeaWiFS
234 underestimated Chl *a* by only 15% at concentrations below 1 mg Chl *a* m⁻³ but this
235 underestimate increased to 70% at Chl *a* concentrations above 5 mg Chl *a* m⁻³.

236 However, a recent analysis by *Marrari et al.* [2006], also for the western Antarctic Peninsula,
237 showed that if *in situ* Chl *a* is determined using high performance liquid chromatography
238 (HPLC), rather than fluorometry, the differences between SeaWiFS-derived Chl *a* and *in situ* Chl
239 *a* virtually disappear. Similarly, *Arrigo and Van Dijken* [2004] used HPLC-derived Chl *a* data
240 from the Ross Sea to show that over a Chl *a* range of 0.2-10 mg m⁻³, the SeaWiFS OC4v4
241 algorithm is within 10% of *in situ* values.

242 Because these validation exercises covered such a limited area of the Southern Ocean, we
243 conducted a larger-scale Chl *a* comparison, similar to that performed earlier by *Sullivan et al.*
244 [1993] for the CZCS. In evaluating SeaWiFS Chl *a* estimates, 5854 *in situ* surface Chl *a*
245 samples were obtained from the NASA SeaBASS bio-optical data archive and compared to Chl *a*

246 estimates derived from SeaWiFS for corresponding regions and time periods. This particular
247 analysis is complicated by three factors, 1) the Southern Ocean *in situ* Chl *a* data set from
248 SeaBASS is heavily biased toward high Chl *a* waters, 2) the data set consists mostly of
249 fluorometrically-derived Chl *a*, and 3) most *in situ* data were obtained before 1997, precluding
250 their direct comparison with SeaWiFS-derived Chl *a*. Nevertheless, we were interested in
251 confirming that the frequency distribution of Chl *a* for the Southern Ocean determined using
252 SeaWiFS is consistent with that generated from *in situ* data.

253 The bias towards high Chl *a* concentrations in the *in situ* data set is a consequence of the
254 historically high sampling effort in productive regions such as the Ross Sea continental shelf, the
255 Weddell/Scotia Sea, Prydz Bay, and most notably, the WAP, where a single station has been
256 sampled >500 times (Fig. 3). To reduce this high Chl *a* bias as much as possible, we divided the
257 Southern Ocean into five different geographic regions, each of which is analyzed separately.
258 These five regions included the Ross Sea continental shelf, the WAP, the Weddell/Scotia Sea,
259 Prydz Bay, and the “oceanic” Southern Ocean, which consists largely of low Chl *a* waters north
260 of the Antarctic continental shelf.

261 For all Southern Ocean waters south of 50°S, *in situ* and SeaWiFS estimates of Chl *a*
262 averaged 0.54 and 0.34 mg Chl *a* m⁻³, respectively (Table 1). Although both data sets exhibited
263 a maximum number of samples in the 0.10-0.15 mg Chl *a* m⁻³ range, there are substantially more
264 *in situ* samples with values above 0.20 mg Chl *a* m⁻³ (Fig. 4a). Many of these high Chl *a*
265 samples were collected in the WAP, which exhibited a relatively large difference between *in situ*
266 and SeaWiFS-derived Chl *a* (Table 1 and Fig. 4b, note the isolated peak at 2.3 mg Chl *a* m⁻³ here
267 and in Fig. 4a). As shown in Fig. 3, most of the *in situ* samples from the WAP were collected in
268 coastal waters while the SeaWiFS analysis included more offshore areas. This disparity resulted
269 in the mean Chl *a* concentration for the *in situ* WAP data (1.91 mg Chl *a* m⁻³) being almost 4-
270 fold higher than the SeaWiFS-derived estimates for the same region (0.53 mg Chl *a* m⁻³).

271 When the high productivity regions of the Southern Ocean are excluded from the analysis,
272 the frequency distributions for Chl *a* determined from *in situ* and from SeaWiFS data are in

273 much better agreement (Fig. 4c), averaging $0.36 \text{ mg Chl } a \text{ m}^{-3}$ and $0.28 \text{ mg Chl } a \text{ m}^{-3}$,
274 respectively. As discussed earlier, much of the remaining difference is likely attributable to the
275 fact that the historical *in situ* Chl *a* was determined primarily using fluorometric methods, which
276 overestimate Chl *a* relative to the HPLC method [Marrari *et al.*, 2006]. Similarly, frequency
277 plots of *in situ* Chl *a* for the Ross Sea (Fig. 4d), Weddell/Scotia Sea (Fig. 4e), and Prydz Bay
278 (Fig. 4f) are in good agreement with similar plots made from SeaWiFS-derived Chl *a*. These
279 three regions have much more widespread and uniform *in situ* data coverage than the WAP (Fig.
280 3) and are less heavily biased toward higher coastal values. Although the frequency plots are
281 similar, the mean *in situ* Chl *a* for the Weddell/Scotia Sea ($0.92 \text{ mg Chl } a \text{ m}^{-3}$) is about 50%
282 higher than the SeaWiFS-derived value ($0.62 \text{ mg Chl } a \text{ m}^{-3}$). This is due to the large number of
283 samples collected near the Scotia Ridge and South Georgia Island (Fig. 3). When these high Chl
284 *a* samples are excluded, the *in situ* mean drops to $0.61 \text{ mg Chl } a \text{ m}^{-3}$, in much better agreement
285 with SeaWiFS data (Table 1).

286 Consequently, based on our own and previous analyses of SeaWiFS Chl *a* in the Southern
287 Ocean, we conclude that the SeaWiFS OC4v4 algorithm performs adequately when compared to
288 *in situ* Chl *a*, assuming that Chl *a* is determined using HPLC, and when the *in situ* data set is
289 adjusted to account for its bias towards high values. Therefore, we elected to use the standard
290 SeaWiFS OC4v4 Chl *a* values as input to the primary productivity algorithm.

291

292 **3.2. Primary productivity**

293 Ideally, the primary production algorithm used here would be validated by comparing its
294 output for a specific day and location to measurements made *in situ* at the same time and
295 location. Unfortunately, because of the high degree of phytoplankton patchiness, the large
296 amount of cloud cover in the Southern Ocean, and the relatively few direct field observations
297 collected since 1997, there are too few coincident satellite-derived and *in situ* estimates of
298 production to perform a statistically valid comparison. Instead, we opted to validate our
299 algorithm by first assuming that the SeaWiFS surface Chl *a* retrievals are reliable and then

300 comparing regressions of primary production against surface Chl α produced by our algorithm to
301 similar regressions generated using *in situ* Chl α and primary production data from the Ross Sea
302 (165°E-165°W, 74°S-78°S) and the Antarctic Peninsula (64°W-73°W, 64°S-68°S). These two
303 locations were chosen because both have ample data from which to derive a statistically
304 significant relationship between Chl α and daily primary production and because the dynamic
305 range in both Chl α and primary production is large enough to represent the range of variability
306 characteristic of the Southern Ocean.

307 In the *in situ* primary productivity database for the Antarctic Peninsula, surface Chl α ranged
308 from 0.10 to 14.64 mg m⁻³ and primary production from 42.5 to 2466 mg C m⁻² d⁻¹ (n=134). The
309 regression of *in situ* primary production against *in situ* Chl α for the Antarctic Peninsula is
310 remarkably similar to a corresponding plot made by regressing SeaWiFS retrievals of Chl α
311 against primary production calculated from our primary productivity algorithm for the same
312 geographical region and time period (Fig. 5a). Both exhibit similar shapes and slopes and the
313 range of primary productivity values computed for a given Chl α concentration is similar in both
314 data sets. This range in algorithm-derived primary production for a given Chl α concentration is
315 due to the fact that regions with similar surface Chl α concentration are still likely differ in their
316 solar zenith angle, cloud cover, mixed layer depth, and sea surface temperature and thus will
317 yield different estimates of daily primary productivity.

318 In the Ross Sea data set, *in situ* Chl α ranges from 0.03 to 14.56 mg m⁻³ while the
319 corresponding measurements of primary production range from 156.1 to 2847 mg C m⁻² d⁻¹
320 (n=95). Again, there is a very good correspondence between the *in situ*- and algorithm-derived
321 regressions of daily primary production against surface Chl α (Fig. 5b). Whereas the Antarctic
322 Peninsula data set has a high proportion of observations at Chl α concentrations below 2 mg m⁻³,
323 the Ross Sea has substantially more observations at higher levels of phytoplankton biomass,
324 making it a more appropriate test for high productivity regions of the Southern Ocean. These
325 results suggest that, to the extent that Chl α retrievals from SeaWiFS are accurate, the primary

326 productivity algorithm used here produces results that are fully consistent with *in situ*
327 observations of primary production.

328

329 **4. Results**

330 **4.1. Open Water Area**

331 **4.1.1. All Southern Ocean Waters**

332 The extent of open water area in the Southern Ocean over an annual cycle varies slightly
333 from year to year between 1997 and 2006, averaging $34.14 \pm 0.23 \times 10^6 \text{ km}^2$ (Table 2). Open
334 water area exhibits a distinct seasonal cycle (Fig. 6c), increasing rapidly in size from its early
335 spring minimum ($27.5 \times 10^6 \text{ km}^2$) to its peak in early March ($42.5 \times 10^6 \text{ km}^2$). There is no
336 significant temporal trend with time between 1997 and 2006 in the amount of annual mean open
337 water area in the Southern Ocean (Table 3).

338

339 **4.1.2. Pelagic province**

340 The pelagic province is by far the largest of the four open-water ecological provinces in the
341 Southern Ocean, averaging $32.0 \pm 0.19 \times 10^6 \text{ km}^2$ over an annual cycle (Fig. 6b) and accounting
342 for an average of 94% of total open water area south of 50°S (Table 2). When considered over
343 the entire Southern Ocean, the pelagic province exhibits the smallest amount of interannual
344 variability of the four ecological provinces (Fig. 6b), with the coefficient of variation (CV = 100
345 • standard deviation/mean) of only 0.6% (Table 2). Surprisingly, the proportion of total Southern
346 Ocean area covered by the pelagic province is largest in the winter, despite a much higher sea ice
347 cover in the Southern Ocean during that season. This is because open water in the pelagic
348 province covers a relatively large area of at least $\sim 25 \times 10^6 \text{ km}^2$ in late winter/early spring (Fig.
349 6b) while the other ecological provinces remain either small (due to a trivial amount of sea ice
350 retreat in the MIZ and MIZ-shelf) or largely ice-covered (e.g., shelf) during the winter. Seasonal
351 changes in open water area are accompanied by a relatively small amount of high-frequency
352 variability compared to the other provinces, particularly the MIZ and MIZ-shelf. This is due to

353 the large size of the pelagic province and the fact that sea ice cover accounts for a much smaller
354 fraction of total area in this province than it does in any of the other three provinces.

355

356 **4.1.3. MIZ province**

357 The MIZ is the second largest ecological province, covering an annual average of 1.51 ± 0.07
358 $\times 10^6 \text{ km}^2$ of the Southern Ocean between 1997 and 2006, and attaining a summer (December)
359 maximum extent of $5.19 \pm 0.58 \times 10^6 \text{ km}^2$ (Table 2). The largest MIZ is found in the Weddell Sea
360 sector, where it averages $0.44 \pm 0.03 \times 10^6 \text{ km}^2$ throughout the year, twice as large as the MIZ of
361 the Southwest Pacific Ocean ($0.22 \pm 0.01 \times 10^6 \text{ km}^2$) and the Bellingshausen-Amundsen Sea
362 ($0.20 \pm 0.02 \times 10^6 \text{ km}^2$) sectors. When averaged over an annual cycle, the size of the MIZ
363 exhibits relatively little interannual variability, even when individual geographic sectors are
364 considered (Table 2). However, shorter-term variation in the size of the MIZ can be quite large,
365 particularly in the winter and spring (Fig. 6c). In the most extreme case, the size of the MIZ in
366 the Bellingshausen-Amundsen Sea can vary by as much as $0.6 \times 10^6 \text{ km}^2$ over weekly time
367 scales; however short-term variability in the Ross Sea, the Southwest Pacific Ocean, and the
368 Weddell Sea sectors is nearly as large.

369

370 **4.1.4. Shelf province**

371 The ice-free, non-MIZ, continental shelf is the next largest ecological province in the
372 Southern Ocean, averaging $0.39 \pm 0.04 \times 10^6 \text{ km}^2$ in area over an annual cycle, with a peak
373 summer open water area of $1.28 \pm 0.14 \times 10^6 \text{ km}^2$ (Fig. 6d, Table 2). This province is largest in
374 the Bellingshausen-Amundsen Sea (annual mean = $0.13 \pm 0.03 \times 10^6 \text{ km}^2$) and smallest in the
375 South Indian Ocean and Southwest Pacific Ocean sectors, where its mean annual extent is only
376 $0.04 \pm 0.01 \times 10^6 \text{ km}^2$. Over the entire Southern Ocean, the CV of the mean annual open water
377 area between 1997 and 2006 is $\sim 10\%$, much larger than that of any other ecological province
378 (Table 2).

379

380 **4.1.5. MIZ-shelf province**

381 Smallest of the four ecological provinces is the MIZ-shelf, averaging just $0.25 \pm 0.01 \times 10^6$
382 km² over an annual cycle between 1997 and 2006, with a peak summertime area over the entire
383 Southern Ocean averaging only 0.64×10^6 km² (Fig. 6e, Table 2). On average, the MIZ-shelf
384 accounts for approximately 40% of total continental shelf area in the Southern Ocean. Like the
385 MIZ, the size of the MIZ-shelf exhibits marked short-term variability. In addition, the amount of
386 open water area associated with the MIZ-shelf exhibits a great deal of interannual variability
387 with respect to both its magnitude and timing. Maximum open water area associated with the
388 MIZ-shelf is the most variable in the Southwest Pacific Ocean sector, ranging from as low as
389 0.10×10^6 km² in 2000-01 and 2004-05 to as high as 0.18×10^6 km² in 1999-00 and 2001-02.
390 Maximum open water area in this sector is usually reached in December or January, in contrast
391 to the Bellingshausen-Amundsen Sea sector, where maximum open water area is not attained
392 until February. In the Ross Sea and the Weddell Sea sectors, the size of the MIZ-shelf usually
393 peaks in December, but may be delayed until as late as February (e.g., 2002-03). In the South
394 Indian Ocean sector in 2004-05 and 2005-06, open water area in the MIZ-shelf did not reach its
395 annual maximum until well into March.

396

397 **4.2. Primary productivity**

398 **4.2.1. All Southern Ocean Waters**

399 Like open water area, daily primary production in the Southern Ocean exhibits a distinct
400 seasonal cycle, increasing exponentially from an average low of ~ 60 mg C m⁻² d⁻¹ in August to
401 an annual peak in December ranging from 325 to 425 mg C m⁻² d⁻¹, depending on the year (Fig.
402 6f). Thereafter, daily primary production exhibits a consistent and rapid decline between
403 January and March, dropping by 75% by the end of the austral summer. Over an annual cycle,
404 daily primary production across the Southern Ocean averages 156 mg C m⁻² d⁻¹ (Table 4), or 57.0
405 g C m⁻² yr⁻¹, (Table 4) between 1997 and 2006. The annual peak in primary production precedes
406 the peak in open water area by 2-3 months. Given that the seasonal decline in primary

407 production begins in early summer, prior to refreezing of the ice pack or the autumn increase in
408 wind speeds (and associated vertical mixing and decreased irradiance), the dramatic drop in
409 productivity is most likely attributable to inadequate nutrient supplies, most likely iron [*Arrigo et*
410 *al.*, 2000; *Gervais et al.*, 2002; *Coale et al.*, 2004], although an increase in grazer populations
411 cannot be discounted. Not surprisingly, interannual variability in primary production is greatest
412 during the spring and summer, when daily rates of production are highest (Fig. 6f).

413 Total annual primary production in Southern Ocean waters south of 50°S averaged
414 $1949 \pm 70.1 \text{ Tg C yr}^{-1}$ during the nine years of our study (Table 5). Interannual variability in total
415 production is relatively small, with all years falling within 6% of the mean for the 1997-2006
416 time period. Productivity is greatest during 1999-00 ($2051 \text{ Tg C yr}^{-1}$) and lowest the following
417 year, in 2000-01 ($1830 \text{ Tg C yr}^{-1}$), a difference of only 12%. In part, this small degree of
418 interannual variability likely reflects the fact that both the annual mean ($33.9 - 34.6 \times 10^6 \text{ km}^2$)
419 and maximum ($41.9 - 43.1 \times 10^6 \text{ km}^2$) open water area in the Southern Ocean vary by <2%
420 between 1997 and 2006 (Table 2).

421

422 **4.2.2. Pelagic Province**

423 Not surprisingly, the relatively low productivity of the Southern Ocean reflects the
424 dominance of the large pelagic province, where over an annual cycle, daily productivity averages
425 only $148 \text{ mg C m}^{-2} \text{ d}^{-1}$ (Table 4) ranging seasonally from $50-70 \text{ mg C m}^{-2} \text{ d}^{-1}$ in the austral winter
426 to $300-400 \text{ mg C m}^{-2} \text{ d}^{-1}$ at the peak of the spring bloom (Fig. 6g). Annual production in the
427 pelagic province is greatest in the Ross Sea sector of the Southern Ocean (Table 5), averaging
428 $428 \pm 29.8 \text{ Tg C yr}^{-1}$ between 1997 and 2006, followed closely by the Weddell Sea ($412 \pm 42.2 \text{ Tg}$
429 C yr^{-1}) and the Bellingshausen-Amundsen Sea ($357 \pm 14.5 \text{ Tg C yr}^{-1}$) sectors.

430 Approximately 90% of total annual primary production in the Southern Ocean between 1997
431 and 2006 is associated with the pelagic province (annual mean = $1729 \pm 60.7 \text{ Tg C yr}^{-1}$), due
432 principally to its large size relative to the other ecological provinces, but also to its longer ice-
433 free phytoplankton growing season. This proportion is attributable to the pelagic province is

434 somewhat less than might be expected, however, given that it accounts for an average of 94% of
435 the open water area south of 50°S (Table 2). The reason for this disparity is that the amount of
436 production per unit area (area-normalized production) is lower in the pelagic province than in
437 any of the other ecological provinces (Table 4). Much of the pelagic province remains ice-free
438 year round and thus includes winter months when both the incident irradiance and rates of
439 production are relatively low. In contrast, ecological provinces such as the shelf and MIZ-shelf
440 are ice-free only during the relatively productive spring and summer months, and consequently,
441 have much higher mean daily rates of production (ice-covered regions are not included in
442 calculations of either mean or time-integrated primary production). Like the Southern Ocean as
443 a whole, the pelagic province exhibits relatively little interannual variability in primary
444 productivity, with annual production exhibiting a CV of only 3.5% (Table 5).

445

446 **4.2.3. MIZ Province**

447 The second largest ecological province, the MIZ is also the second largest contributor to
448 annual primary production in the Southern Ocean, averaging $86.7 \pm 12.6 \text{ Tg C yr}^{-1}$. However,
449 because of its relatively small size throughout much of the year, the MIZ accounts for only an
450 average of 4.5% of total primary production in the Southern Ocean (Table 5). Productivity is
451 much more temporally variable in the MIZ than in the pelagic province. Averaged over the
452 Southern Ocean, peak production in the MIZ during the spring phytoplankton bloom ranges from
453 $300 \text{ mg C m}^{-2} \text{ d}^{-1}$ in 2003-04 to $>550 \text{ mg C m}^{-2} \text{ d}^{-1}$ in 2004-05 (Fig 6h). In general, daily
454 productivity peaks about a month later (January-February) in the MIZ than in the pelagic
455 province. As expected, peak productivity in the MIZ lags the maximum open water area in this
456 province by 1-2 months (Figs. 6c and 6h), reflecting the time it takes for phytoplankton blooms
457 to fully respond to the newly created ice-free waters associated with the MIZ.

458 The Weddell Sea sector contains the largest and most productive MIZ in the Southern Ocean,
459 averaging $32.6 \pm 5.37 \text{ Tg C yr}^{-1}$ (Table 5). This value is 25% greater than in the Ross Sea sector
460 ($24.3 \pm 3.98 \text{ Tg C yr}^{-1}$) and is at least 300% higher than in the other three geographic sectors.

461 Interannual variability in total annual primary production within the MIZ is greatest in the
462 Southwest Pacific Ocean sector, varying from $5.99 \text{ Tg C yr}^{-1}$ in 2000-01 to $14.4 \text{ Tg C yr}^{-1}$ in
463 1999-00 (Table 5).

464 Mean area-normalized production in the MIZ is somewhat higher than in the pelagic
465 province, averaging $158 \text{ mg C m}^{-2} \text{ d}^{-1}$ (Table 4), or $57.5 \text{ g C m}^{-2} \text{ yr}^{-1}$ (Table 4). However, given
466 that the MIZ has historically been considered to be a region of enhanced phytoplankton
467 productivity, the small difference in the mean daily rate of primary production between the
468 pelagic province and the MIZ is somewhat surprising. It should be noted that while the mean
469 rate of production over an annual cycle in the MIZ is not much greater than in the pelagic
470 province, the peak daily productivity values in most of the geographic sectors can be twice as
471 high in the MIZ. For example, in the Bellingshausen-Amundsen Sea sector, mean daily
472 production in the MIZ can exceed $1600 \text{ mg C m}^{-2} \text{ d}^{-1}$, a rate 3-fold higher than the corresponding
473 peak in the pelagic province. In the other geographic sectors, a 2-fold greater peak production in
474 the MIZ than in the pelagic province is not uncommon. These data suggest that while the MIZ
475 can be a very productive marine ecosystem, this is not always the case.

476

477 **4.2.4. Shelf Province**

478 Considering its small size (Fig. 6d), the continental shelf (non-MIZ) is responsible for a
479 disproportionately high fraction of primary production in the Southern Ocean, contributing
480 $66.1 \pm 12.2 \text{ Tg C yr}^{-1}$ to the annual total (Table 5). This value is equivalent to 76% of the
481 production of the MIZ despite the shelf being only approximately one quarter the size of the
482 MIZ. In total, the shelf province accounts for approximately 3.5% of total phytoplankton
483 primary production in the Southern Ocean. Mean daily primary production on the continental
484 shelf averages $460 \text{ mg C m}^{-2} \text{ d}^{-1}$, approximately 3-fold greater than rates in either the MIZ or the
485 pelagic provinces (Table 4). Similarly, mean annual production on the shelf is also relatively
486 high ($109 \text{ g C m}^{-2} \text{ yr}^{-1}$), equivalent to about twice that of the pelagic province.

487 Productivity on the continental shelf exhibits an annual cycle unlike that of either the pelagic
488 or the MIZ provinces. Daily rates of primary production on the shelf increase linearly and
489 relatively slowly between August and early December throughout the Southern Ocean (Fig. 6i),
490 reaching approximately $200 \text{ g C m}^{-2} \text{ d}^{-1}$ by early December. After that time, primary
491 productivity increases dramatically, with rates increasing 5-10-fold during the month of
492 December. This rapid rise is the result of coincident increases in phytoplankton biomass,
493 downwelling irradiance, and surface ocean stratification during late austral spring. Of particular
494 importance to these high rates of production are the elevated nutrients associated with the
495 Antarctic continental shelves that allow for the accumulation of unusually high concentrations of
496 phytoplankton biomass.

497 Interannual variability of primary production on the shelf is higher than that of any other
498 ecological province. With total annual production on the Southern Ocean continental shelf
499 ranging from $41.9 \text{ Tg C yr}^{-1}$ in 2002-03 to $83.1 \text{ Tg C yr}^{-1}$ in 2001-02 (Table 5), the CV is 20%
500 (the CV is only 3.5% for the pelagic province). Peak spring/summer production on the shelf
501 averaged over the Southern Ocean varies from approximately $900 \text{ mg C m}^{-2} \text{ d}^{-1}$ in 2000-01 to
502 $1600 \text{ mg C m}^{-2} \text{ d}^{-1}$ in 2004-05 (Fig. 6i), with the timing of the peak varying from December to
503 February in some sectors. Interannual variation is most extreme in the Ross Sea sector, where
504 maximum production during the spring-summer bloom ranges from a low of $500 \text{ mg C m}^{-2} \text{ d}^{-1}$ in
505 2002-03 to $>2000 \text{ mg C m}^{-2} \text{ d}^{-1}$ in 1998-99 and 1999-00 and total annual production varies >10 -
506 fold, from $2.97 \text{ Tg C yr}^{-1}$ in 2002-03 to $33.5 \text{ Tg C yr}^{-1}$ in 1999-00 (Table 5).

507 Although the Ross Sea is the most interannually variable, it is also the most productive
508 continental shelf ($23.4 \pm 9.98 \text{ Tg C yr}^{-1}$), accounting for more than one third of total shelf
509 production in the Southern Ocean (Table 5), despite comprising only 20% of ice-free shelf area
510 (Table 2). Next in importance are the Bellingshausen-Amundsen Sea ($14.9 \text{ Tg C yr}^{-1}$) and the
511 Weddell Sea ($13.7 \text{ Tg C yr}^{-1}$) sectors, each of which account for a little more than 20% of total
512 shelf production in the Southern Ocean. Although the South Indian Ocean and Southwest
513 Pacific Ocean sectors contain similar amounts of ice-free shelf area ($0.37-0.38 \times 10^6 \text{ km}^2$, Table

514 2), the shelf of the former sector is approximately twice as productive as that of the latter (Table
515 6), due to its much higher area-normalized rate of production (Tables 4 and 5). Together, these
516 two sectors account for a little less than 20% of total shelf production in the Southern Ocean

517

518 **4.2.5. MIZ-shelf Province**

519 Due in part to its minor amount of open water area, the MIZ-shelf is the smallest contributor
520 to annual production of the four ecological provinces, adding an average of $27.3 \pm 4.67 \text{ Tg C yr}^{-1}$
521 (1.4%) to total phytoplankton production in the Southern Ocean. The MIZ-shelf exhibits
522 enhanced mean daily rates of production relative to both the MIZ and pelagic provinces,
523 averaging $303 \text{ mg C m}^{-2} \text{ d}^{-1}$, but interestingly, this value is only about 66% of the average rate on
524 the non-MIZ continental shelf. Thus, the productivity of the MIZ-shelf is intermediate between
525 the MIZ province and the shelf province, at least in terms of both mean daily and mean annual
526 area-normalized production (Table 4).

527 Lending support for the notion that the MIZ-shelf behaves more like the shelf province than
528 like the MIZ is the fact that its annual cycle of daily production (Fig. 6j) closely resembles that
529 of the shelf province (Fig. 6i), increasing slowly between August and early December, then
530 rising rapidly before peaking in late December or January. This pattern is clearly discernable in
531 all geographic sectors, with the possible exception of the Ross Sea, where the typical pattern is
532 not as obvious due to unusually early and rapid increases in productivity during some years.
533 Peak production in the MIZ-shelf is nearly as high as in the shelf province, with mean daily
534 production exceeding $1000 \text{ mg C m}^{-2} \text{ d}^{-1}$ throughout most of the Southern Ocean, and
535 occasionally exceeding $1500 \text{ mg C m}^{-2} \text{ d}^{-1}$.

536 Interannual variability is also high in this ecological province, almost as high as that of the
537 continental shelf (Table 5). Much of this variability is associated with the rapid rise in
538 production observed after early December. This time period is characterized by rapid changes in
539 open water area (Fig. 6e), and consequently, daily-weekly changes in production can be large
540 and highly variable between years (Fig. 6j). Peak production during the spring/summer bloom

541 ranges from $<800 \text{ mg C m}^{-2} \text{ d}^{-1}$ in 2004-05 to $>1300 \text{ mg C m}^{-2} \text{ d}^{-1}$ in 2001-02. In the Ross Sea
542 sector, peak spring/summer production is particularly variable, ranging from $<400 \text{ mg C m}^{-2} \text{ d}^{-1}$
543 in 2002-03 to $\sim 2000 \text{ mg C m}^{-2} \text{ d}^{-1}$ in 2001-02. Like the shelf province, timing of the peak of the
544 bloom on the MIZ-shelf also varies markedly between years, ranging from early December to
545 mid-February in both the Weddell Sea and Ross Sea sectors.

546 As with the shelf province, production on the MIZ-shelf is greatest in the Ross Sea sector
547 ($7.84 \pm 2.24 \text{ Tg C yr}^{-1}$), although the inter-sector differences in this ecological province are not
548 nearly as large as on the shelf (Table 5). With a rate of $7.17 \pm 1.38 \text{ Tg C yr}^{-1}$, the MIZ-shelf of the
549 Bellingshausen-Amundsen Sea sector is similar to that of the Ross Sea sector, although the
550 amount of open water area on the MIZ-shelf is much lower in the Ross Sea sector (Table 2). The
551 Ross Sea sector compensates for its relatively smaller ice-free MIZ-shelf by having the highest
552 area-normalized rates of production ($485 \text{ mg C m}^{-2} \text{ d}^{-1}$ and $81.9 \text{ g C m}^{-2} \text{ yr}^{-1}$) of any of the
553 geographic sectors (Tables 4 and 5). Together, the Ross Sea and Bellingshausen-Amundsen Sea
554 sectors account for 55% of the total annual production in the Southern Ocean MIZ-shelf. The
555 Weddell Sea sector accounts for 22% of total MIZ-shelf production, while the Southwest Pacific
556 Ocean and the South Indian Ocean sectors account for 11% and 10%, respectively.

557

558 **4.3. Spatial patterns in primary production**

559 To determine the physical factors most responsible for spatial and temporal patterns in
560 annual primary production in the Southern Ocean, we calculated mean annual primary
561 production (Fig. 7a) and regressed annual production anomalies (Fig. 8) against anomalies of
562 mean annual Chl *a* concentration (Fig. 9), mean annual sea ice coverage (Fig. 10), and mean
563 annual sea surface temperature (Fig. 11). Not surprisingly, annual production anomalies are
564 highly positively correlated with Chl *a* anomalies throughout the Southern Ocean (Fig. 12a),
565 with annual variations in Chl *a* explaining from $\sim 50\%$ to almost 100% of the interannual
566 variability in mean annual production between 1997 and 2006. This high correlation is a
567 consequence of the fact that primary productivity is calculated as the product of surface Chl *a*

568 and the estimated phytoplankton growth rate (Eq. 7). Because Chl *a* can vary by four orders of
569 magnitude in the Southern Ocean, much more so than does the phytoplankton growth rate in
570 open water when the sun is above the horizon, variations in production are largely driven by
571 changes in surface Chl *a*. Of course, at a given Chl *a* concentration, phytoplankton growth rate
572 will still vary considerably depending on spatial and temporal differences in ambient irradiance
573 and water temperature. This environmental variability explains why there is a sizable range in
574 daily production computed by the primary production algorithm for a given Chl *a* concentration,
575 as shown in Fig. 5.

576 Within the SIZ of the Southern Ocean, annual production anomalies (Fig. 8) are also related
577 to anomalies in sea ice distributions (Fig. 10), with some locations exhibiting a positive
578 correlation and others a negative one (Fig. 12b). Negative correlations are strongest near the
579 coast where temperatures are lowest and sea ice persists for a longer period of time (Figs. 7c and
580 7d). In these regions, the presence of annual sea ice typically restricts the length of the
581 phytoplankton growth season and thus limits annual production. Consequently, the coastal zone
582 is particularly sensitive to changes in sea ice dynamics. This pattern is clearly evident in the
583 Southwestern Pacific Ocean sector where years with an anomalously short sea ice season, such
584 as in 2001-02 (Fig. 10), also exhibit anomalously high annual primary production in the coastal
585 zone (Fig. 8).

586 Farther offshore, the relationship between sea ice anomalies and annual primary production
587 anomalies becomes more complex. There are obvious instances where an anomalously long sea
588 ice season (Fig. 10) leads to the expected low annual production anomaly (Fig. 8), such as in
589 both the WAP and Scotia Sea in 1997-98. Conversely, some areas where the sea ice season is
590 anomalously short have anomalously high annual production. Good examples include the
591 western Weddell Sea sector in 1999-00 and 2001-02 and the Ross Sea sector in 2001-02 and
592 2005-06. In other regions, however, sea ice anomalies are positively correlated with annual
593 production anomalies. This counterintuitive result stems from annual production being either
594 higher during years when sea ice persists for a longer period of time or lower when sea ice

595 retreats earlier in the year. This pattern is particularly evident in the western Weddell Sea sector
596 in 1999-00 and 2005-06 (compare Figs. 8 and 10) but is also seen in the eastern Ross Sea sector
597 at approximately 70°S in 2001-02. Closer inspection reveals that positive correlations between
598 annual production anomalies and sea ice anomalies (Fig. 12b) are restricted predominantly to
599 waters where production in the MIZ province is important, such as in the Weddell Sea and
600 offshore waters of the Ross Seas (blue areas in Fig. 12d). In these waters, anomalously low sea
601 ice will reduce both the size of the MIZ and possibly the degree of surface water stratification
602 within any MIZ that does develop. Because the MIZ can be more productive than the pelagic
603 province, a loss of MIZ area will reduce annual primary production. Thus, there is generally a
604 high correspondence between regions that exhibit a high positive correlation between annual
605 primary production and sea ice anomalies (red areas in Fig. 12b) and the approximate position of
606 the MIZ, as can be seen clearly for the spring bloom of 1998-99 (blue areas in Fig. 12d).

607 A map of the correlation between annual primary production anomalies (Fig. 8) and annual
608 SST anomalies (Fig. 11) suggests that a complex relationship also exists between these two
609 quantities (Fig. 12c). This is likely due to the fact that SST can impact rates of production
610 directly, through the relationship between temperature and phytoplankton metabolic rate (Fig 4),
611 and indirectly, via its impact on surface ocean stratification and sea ice distributions. In general,
612 waters north of the SIZ tend to exhibit a positive correlation between SST anomalies and annual
613 production anomalies, with the highest correlation coefficients found in the Ross Sea,
614 Bellingshausen-Amundsen Sea, and South Indian Ocean sectors (Fig. 12c). SST anomalies in
615 these regions frequently exceed $\pm 1.2^{\circ}\text{C}$, although anomalies of $\pm 0.4^{\circ}\text{C}$ are more typical. The
616 positive correlation between anomalies of SST and annual production in these ice-free waters is
617 the result of increased phytoplankton growth rates at higher temperature. High positive
618 correlations are also apparent within the SIZ of the Weddell Sea, the Ross Sea, and the
619 Amundsen Sea sectors and in nearshore waters of the South Indian Ocean sector. In these
620 regions, positive SST anomalies are frequently associated with negative sea ice anomalies (e.g.,
621 the western Weddell Sea in 1998-99, the nearshore South Indian Ocean in 1997-98, the eastern

622 Ross Sea in 2003-04, Figs. 10 and 11). In these cases, the high positive correlation between
623 anomalies of SST and annual production are the result of reduced ice cover and increased light
624 availability. Whether the ice cover is reduced because of the anomalously SST or SST is high
625 due to reduced ice cover is not apparent.

626 Regions exhibiting a strong negative correlation between anomalies of SST and mean annual
627 production are predominantly restricted to the SIZ of the South Indian Ocean and a large fraction
628 of the Southwestern Pacific Ocean sector (Fig. 12c). In these waters, positive SST anomalies
629 (Fig. 11) are associated with negative mean annual production anomalies (Fig. 8). There is no
630 clear relationship between SST anomalies and sea ice anomalies in these waters, suggesting that
631 the negative correlation between anomalies of SST and mean annual production are the result of
632 reduced nutrient supply in waters stratified by higher temperatures, rather than by increased sea
633 ice melt.

634

635 **4.4. Temporal Trends in annual production**

636 **4.4.1. Secular trends**

637 Over the nine-year time frame of this study, there is no significant temporal increase or
638 decrease in total annual production within the Southern Ocean, with advancing year explaining
639 only 11% of the interannual variability (Table 3). However, the passage of time has more
640 explanatory power when the Southern Ocean is divided into geographic sectors. Both the Ross
641 Sea and the South Indian Ocean sectors exhibit statistically significant changes in annual
642 production between 1997 and 2006 (Table 3), with production in the Ross Sea increasing by
643 nearly $9 \text{ Tg C yr}^{-1} \text{ yr}^{-1}$ ($R^2 = 0.54$, $p=0.024$) and production in the South Indian Ocean dropping
644 by $>4 \text{ Tg C yr}^{-1} \text{ yr}^{-1}$ ($R^2 = 0.46$, $p=0.046$). Changes in annual production over time in both the
645 Ross Sea and the South Indian Ocean sectors are most pronounced (and statistically significant)
646 in the pelagic province (Fig. 13a). The relationship between primary production and year is
647 stronger in deep water, offshore environments than it is in the nearshore or coastal environments
648 of the Southern Ocean (Fig. 13a).

649 In general, interannual variability in annual production is more closely tied to changes in
650 open water area than to the passing of time. For the entire Southern Ocean, there appears at first
651 glance to be no relationship between annual primary production and mean annual open water
652 area ($R^2=0.004$, Table 3). However, within the Southern Ocean there is a statistically significant
653 relationship between annual primary production and open water area in all of the ecological
654 provinces except for the pelagic, with the relationship between these two quantities being
655 particularly strong in nearshore environments (Fig. 13b), such as on the continental shelf
656 ($R^2=0.76$, $p=0.002$). Furthermore, every geographic sector contains at least one ecological
657 province, and four out of the five contain two ecological provinces (South Indian Ocean is the
658 lone exception), that exhibit a statistically significant relationship between annual primary
659 production and open water area (Table 3). In all of these cases, as open water area increases, so
660 does annual production, at a rate of approximately 100-300 Tg C for every additional million
661 km^2 of open water area. For example, the shelf province exhibits a statistically significant
662 relationship between annual production and open water area in four out of five geographic
663 sectors, while the pelagic province varies significantly with open water area in only a single
664 geographic sector (the Ross Sea). Thus, it appears that the poor relationship between annual
665 primary production and advancing year is a consequence of the fact that open water area also
666 exhibits little evidence of a secular trend through time (Fig. 13c). Only the pelagic province of
667 the Ross Sea exhibits a statistically significant change ($R^2=0.46$, $p=0.045$) in open water area
668 through time (Table 3).

669

670 **4.4.2. The Southern Annular Mode**

671 The Southern Annular Mode (SAM) is the dominant climate pattern of the Southern Ocean
672 and is characterized by the north-south atmospheric pressure gradient and thus, the strength of
673 the westerly winds, with the positive phase of the SAM exhibiting stronger than normal winds.
674 Strong westerly wind anomalies associated with a positive SAM have been proposed to intensify
675 divergence near the Antarctic Polar Front zone and result in increased upwelling of cooler, deep

676 waters rich in nutrients, thus fueling the production of phytoplankton biomass [Lovenduski and
677 Gruber, 2005]. This proposed pattern is consistent with our results showing that a significant
678 relationship exists between the SAM and interannual changes in mean annual SST in the
679 Southern Ocean ($R^2=0.52$, $p=0.029$), with SST being lower during the high upwelling events
680 associated with a positive SAM (Table 6). The impact of the SAM on SST seems to be
681 particularly strong in the Ross Sea sector (slope= -0.371, $p=0.004$) and the adjacent Southwest
682 Pacific Ocean sector (slope= -0.400, $p=0.015$) and much weaker in the South Indian Ocean and
683 Weddell Sea sectors. Not surprisingly, this trend in Southern Ocean SST with SAM is most
684 pronounced in the pelagic province ($R^2=0.47$, $p=0.041$), which is the ecological province in
685 closest proximity to the Antarctic divergence zone.

686 Despite its correspondence with SST, the SAM explains a much smaller amount of the
687 interannual variability in mean surface Chl a in the Southern Ocean (Table 6). Only the shelf
688 province of the Ross Sea exhibited a strong and statistically significant relationship (slope =
689 0.826, $p=0.009$) between interannual changes in Chl a and the SAM (Table 6). Similarly, there
690 was no statistically significant relationship between total annual primary production in the
691 Southern Ocean and the annual mean SAM index ($R^2=0.31$, $p=0.123$). Although interannual
692 trends in annual production closely track year-to-year changes in the SAM index between 1999
693 and 2006 (Fig. 14), there were too few data points (only 9 years) for the relationship to be
694 significant.

695

696 **5. Discussion**

697 **5.1. Comparison with Previous Primary Production Estimates**

698 Annual primary production estimates reported here for all Southern Ocean waters south of
699 50°S are lower than previous satellite-based calculations made for this region. Using Chl a data
700 from SeaWiFS and the VPGM algorithm of Behrenfeld and Falkowski [1997], Moore and Abbott
701 [2000] estimated total production south of 50°S to be 2850 Tg C yr⁻¹, 46% higher than our
702 average for 1997-2006 of 1949 Tg C yr⁻¹. Considering that the VPGM algorithm was developed

703 for use with global data and was not parameterized specifically for use in the Southern Ocean,
704 this difference is not surprising. However, using monthly ocean color data from the CZCS and a
705 productivity algorithm very similar to that used here, *Arrigo et al.* [1998a] estimated that annual
706 production in the Southern Ocean varies from 3241 to 4414 Tg C yr⁻¹, values that are 66-126%
707 higher than our estimate. The higher estimates of production obtained by *Arrigo et al.* [1998a]
708 are attributable to the higher Chl *a* concentrations produced by the CZCS for the Southern
709 Ocean. Retrievals of Chl *a* by the CZCS were notoriously difficult in the Southern Ocean, a
710 region where long atmospheric path lengths coupled with phytoplankton having unique bio-
711 optical properties resulted in satellite-based Chl *a* estimates that were much less robust than
712 those obtained for other ocean basins [Sullivan *et al.*, 1993]. In addition, the CZCS algorithm
713 generated estimates of pigment concentration, rather than Chl *a*. Although attempts were made
714 by *Arrigo et al.* [1998a] to reconcile these two variables, there has been no reliable way to
715 convert Southern Ocean surface pigment concentration to Chl *a* over large spatial scales due to a
716 lack of *in situ* pigment data. Correction factors were applied to the CZCS data to force them to
717 conform to observations [Sullivan *et al.*, 1993], but the efficacy of these corrections was difficult
718 to evaluate, and likely resulted in overestimates of Chl *a*, particularly in mesotrophic offshore
719 waters [Moore and Abbott, 2000]. Therefore, although they are significantly lower, because the
720 estimates of annual primary production presented here are based on the more reliable Chl *a*
721 retrievals from SeaWiFS, they are likely to be more accurate than those presented in *Arrigo et al.*
722 [1998a].

723 Furthermore, a comparison of global output from 24 satellite-based primary production
724 algorithms (including ours) shows that agreement between algorithms is especially poor for the
725 Southern Ocean, with annual production ranging from 1100 to 4900 Tg C yr⁻¹ and averaging
726 2600 Tg C yr⁻¹ [Carr *et al.*, 2006]. The large divergence between algorithms was attributed
727 primarily to the differences in the way they formulated primary production as a function of
728 temperature. In some algorithms, production was assumed to vary independent of temperature,
729 while in others temperature exerted a strong influence on productivity. As a result, the extremely

730 low temperatures characteristic of many Southern Ocean waters (<0°C) resulted in estimates of
731 primary production by the 24 algorithms that varied over a range of 372% [Table 3 in *Carr et al.*,
732 2006]. Although the analysis by *Carr et al.* [2006] did not include an assessment of which of the
733 24 satellite-based estimates agreed best with *in situ* measurements of primary production, they
734 noted that only two of the 24 algorithms were parameterized specifically for the Southern Ocean
735 (ours was one) and only three of the 24 included any Southern Ocean data during model
736 parameterization. Hence, the use of algorithms not parameterized for the Southern Ocean is
737 likely to result in estimates of primary production that differ significantly from those presented
738 here.

739 Because of the increased abundance of high quality HPLC-derived pigment data from the
740 Southern Ocean, and the larger number of *in situ* estimates of daily primary production used to
741 parameterize our algorithm, we believe that the lowered estimates of annual production in the
742 Southern Ocean reported here are probably more realistic than past large-scale estimates. Based
743 on a relatively large number of Southern Ocean analyses of SeaWiFS data [*Arrigo and Van*
744 *Dijken*, 2004, *Korb et al.*, 2004; *Garcia et al.*, 2005; *Marrari et al.* 2006], it is unlikely that
745 surface Chl *a* in the Southern Ocean is being underestimated by more than 20%, and probably
746 much less than that, particularly in the open ocean where pigment concentrations are relatively
747 low and account for the bulk of production. Furthermore, rates of primary production for a given
748 concentration of Chl *a* calculated by our algorithm agree very well with a wide range of
749 observations made in the Southern Ocean (Fig. 5). If true, the Southern Ocean is considerably
750 less productive than has been assumed over much of the past decade, with annual production
751 rates equivalent to approximately 41-70% of previous estimates [*Longhurst et al.*, 1995, *Arrigo*
752 *et al.*, 1998a; *Moore and Abbott*, 2000; *Reuer et al.*, 2007]. Rather than representing
753 approximately 10% of global marine primary production [*Arrigo et al.*, 1998a], our results
754 suggest that the Southern Ocean accounts for less than 5% of this amount.

755

756 **5.2. The Productive MIZ?**

757 Given that the MIZ historically has been considered to be a region of enhanced primary
758 productivity, the small differences in both daily and annual area-normalized rates of production
759 between the generally low productivity pelagic province and the MIZ province are somewhat
760 surprising. Although some of this similarity may be attributable to the operational definition of a
761 MIZ used in the present study, this is not likely to be the primary reason. We defined the MIZ
762 province as consisting of those pixels that have been ice-free for no longer than 14 consecutive
763 days. Once this threshold has been reached, the pixel is redefined as either a pelagic or MIZ-
764 shelf pixel, depending upon water depth. If our 14 day threshold is much shorter than the
765 lifetime of a typical MIZ, any productivity that should be attributed to the MIZ will have been
766 associated with the pelagic or MIZ-shelf province. The seriousness of this underestimate of MIZ
767 production will depend on how long it takes for phytoplankton to bloom after the sea ice retreats.
768 If the MIZ phytoplankton bloom takes longer than 14 days to reach its peak, production in the
769 MIZ will be underestimated using a 14 day threshold. *Lancelot et al.* [1991] noted that in the
770 Weddell-Scotia Sea, the region of maximum water column Chl *a* in the MIZ was consistently
771 located within 0.5° (56 km) of the ice edge during the spring of 1988. Given a rate of sea ice
772 retreat of 6-14 km d⁻¹ (see section 2.2), peak Chl *a* concentrations must have been reached 4-9
773 days after sea ice retreat, well within our 14 day threshold. This conclusion is supported by the
774 large number of high productivity events associated with the MIZ during spring and summer in
775 our study (Fig. 6h), suggesting that phytoplankton are attaining high levels of biomass and rates
776 of production within the 14 day threshold used to define the MIZ.

777 In two previous studies of primary production in the Southern Ocean, the MIZ was defined as
778 the region of open water in a given month that had been ice-covered the previous month [*Arrigo*
779 *et al.*, 1998a; *Moore and Abbott*, 2000]. Both of these studies calculated productivity (and the
780 size of the MIZ) from monthly mean data, including both sea ice and Chl *a* data, and thus the
781 MIZ was assumed to persist for approximately 30 days, twice as long as was assumed in the
782 present study. In the investigation by *Arrigo et al.* [1998a], the MIZ accounted for 9.5% of total

783 primary production in the Southern Ocean, much higher than the 4.4% estimated for the MIZ in
784 the present study. It is unlikely however, that this difference can be attributed to the longer-lived
785 MIZ assumed by *Arrigo et al.* [1998a]. This is because *Moore and Abbott* [2000] also used a 30
786 day threshold for the MIZ and they estimated a mean rate of production within the MIZ of 54.2 g
787 $\text{C m}^{-2} \text{ yr}^{-1}$, very close to our estimate of 57.5 $\text{g C m}^{-2} \text{ yr}^{-1}$. Moreover, the MIZ in their study
788 accounted for 3.3% of total annual primary production, much less than the estimate of 9.5% by
789 *Arrigo et al.* [1998a] who used the same 30 day threshold, and even slightly lower than the
790 estimate of 4.4% made here using a 14 day threshold.

791 These results indicate that the calculated production of the MIZ is more closely tied to the
792 Chl *a* field used as algorithm input than it is to the assumed lifetime of the MIZ. The present
793 study and the study by *Moore and Abbott* [2000] both used SeaWiFS data to specify
794 phytoplankton distributions and obtained similar results for MIZ production (despite using MIZ
795 lifetimes of 14 days and 30 days, respectively) while *Arrigo et al.* [1998a] used CZCS data and
796 obtained much higher estimates of MIZ production (despite using the same MIZ lifetime as that
797 used in the present study). Chl *a* in regions of high sea ice cover were often overestimated by the
798 CZCS due to incomplete masking of sea ice contaminated pixels [*Arrigo and McClain*, 1995].
799 This problem would have been most serious in the MIZ where sea ice can be present at
800 concentrations low enough to be missed by the sea ice masking algorithm. Largely corrected in
801 the SeaWiFS data, overly high estimates of Chl *a* by the CZCS in the MIZ may explain why
802 estimates of MIZ production by *Arrigo et al.* [1998a] are so much higher than those presented
803 here and by *Moore and Abbott* [2000].

804 Why then is the MIZ only slightly more productive than the pelagic province? If not an
805 artifact of our analyses, then the lower than expected productivity of much of the MIZ must be
806 attributable to conditions not always being conducive for intense phytoplankton blooms. While
807 it is true that maximum rates of daily primary production are much higher in the MIZ (Fig. 6h)
808 than in the pelagic province (Fig. 6g), it is also true that the minimum values in the MIZ are
809 substantially lower than in the pelagic. This trend applies to all geographic sectors as well as

810 during the peak spring-summer phytoplankton bloom season. For example, while maximum
811 rates of primary production in the MIZ of the Bellingshausen-Amundsen Sea often exceed 600
812 $\text{mg C m}^{-2} \text{ d}^{-1}$ for short periods of time, more often, rates of production during the peak of the
813 spring bloom (December-January) are in the range of $200\text{-}250 \text{ mg C m}^{-2} \text{ d}^{-1}$. In contrast,
814 although there were not as many high productivity bloom events in the pelagic province of the
815 Bellingshausen-Amundsen Sea, primary production in late December-early January exceeded
816 $300 \text{ mg C m}^{-2} \text{ d}^{-1}$ during each of the nine years of our study. Thus, although the MIZ province
817 experiences more high productivity blooms than the pelagic, it is also characterized by lower
818 non-bloom rates of production.

819 One explanation for this is that much of the MIZ of the Southern Ocean either never develops
820 a well-stratified upper mixed layer or the mixed layer is destroyed by wind-driven turbulent
821 mixing before a phytoplankton bloom can form [Fitch and Moore, 2007]. By definition, the
822 MIZ is an area of open water within the SIZ that has recently been covered with sea ice. While
823 still ice covered, there is little chance of appreciable phytoplankton growth due to low light
824 transmission through the snow, sea ice, and associated particulate material [Arrigo *et al.*, 1991],
825 and phytoplankton abundance will be low. Once the sea ice has left an area due to advection
826 and/or melting, phytoplankton can grow, given sufficient light and nutrients, although initial Chl
827 *a* concentrations will be low unless there is an appreciable contribution of algal cells from
828 melting sea ice. In the absence of a well-stratified mixed layer, phytoplankton biomass and rates
829 of primary production in the MIZ will remain low. Similarly, even when a stratified mixed layer
830 does develop, if it does so in offshore waters that are low in micronutrients such as Fe
831 (macronutrients are in ample supply over most of our study region), nutrients will be rapidly
832 exhausted and primary production also will be low. As can be seen from the small fraction of
833 total SIZ area exhibiting a strong positive correlation between primary production and sea ice
834 distributions (Fig. 12b, sea ice and primary production are only positively correlated in the MIZ),
835 conditions favoring phytoplankton blooms in the MIZ are relatively uncommon and account for
836 a small fraction of total MIZ area. Thus, while the MIZ is large and has the potential to be

837 biologically productive, physical conditions there are seldom conducive to the development of
838 intense, longer-lived phytoplankton blooms.

839 In addition to daily rates of primary production in much of the MIZ that are relatively low
840 due to unfavorable growth conditions, annual rates are also low. This is due in part to the modest
841 daily rates, which are, on average, only 7% higher than in the pelagic province, but also to the
842 shorter growing season characteristic of the MIZ. The impact of growing season can be seen
843 most clearly by comparing distributions of Chl *a* (Fig. 7b) and annual primary production (Fig.
844 7a). Despite the fact that the SIZ and MIZ have mean Chl *a* concentrations that are higher than
845 in pelagic waters north of the SIZ, annual production in the MIZ and the pelagic province are
846 similar in magnitude (57.5 and 54.0 g C m⁻² yr⁻¹, respectively). The high Chl *a* concentrations in
847 the SIZ are somewhat misleading because they only reflect values when waters have become ice-
848 free; they do not include concentrations below the sea ice that would undoubtedly reduce the
849 annual mean substantially. Nevertheless, the length of the growing season, which can be
850 inferred from Fig. 7c by subtracting a given pixel value from the number 365 (or 366 for leap
851 years), is substantially shorter in the SIZ and MIZ than it is throughout much of the pelagic; most
852 of the SIZ and MIZ have growing seasons that are less than half as long as those north of the
853 SIZ. Consequently, rates of annual production in the MIZ differ little from corresponding values
854 in the pelagic province. Similarly, a reduced growing season in the MIZ also explains much of
855 why productivity in the MIZ-shelf province is so much lower than in the (non-MIZ) shelf
856 (Tables 4 and 5).

857

858 **5.3. Interannual Variability in Primary Productivity**

859 Annual primary production in the Southern Ocean exhibited a surprisingly small amount of
860 interannual variability between 1997 and 2006, varying by only $\pm 11\%$ (computed as [maximum-
861 minimum]/mean). This is significantly less interannual variability than has been measured in
862 other ocean basins. For example, annual net primary production varied by 30% or more over
863 large stretches of the tropical Pacific Ocean between 1999 and 2004 [Behrenfeld *et al.*, 2006].

864 Much of this variability is attributable to ENSO-driven changes in upper ocean temperature and
865 stratification, changes that are not manifested nearly so severely in the Southern Ocean. *Lomas*
866 and *Bates* (2004) documented an extremely high degree of interannual variability in primary
867 production (121%) in the western north Atlantic tropical gyre from 1992 to 2000. This large
868 variability derives primarily from interannual changes in nutrient input via deep convective
869 mixing driven by the passage of storms [Steinberg *et al.*, 2001]. Because nutrient inventories in
870 the relatively shallow upper mixed layer of the tropical gyres are so low, phytoplankton growth
871 rates in these waters are particularly sensitive to changes in nutrient input. This sensitivity to
872 nutrient supply is in stark contrast to the Southern Ocean where mixed layers are deep, relative
873 changes in nutrient inventories of the upper ocean are modest, and variability in production is
874 attributable primarily to changes in light environment (via variations in sea ice extent). A good
875 example of this is the WAP where the observed order of magnitude changes in primary
876 production from year-to-year are related to the amount of open water within the annual ice pack
877 [Ducklow *et al.*, 2006].

878 Interannual variability in annual production in the Southern Ocean also is lower than in other
879 polar and sub-polar waters. For instance, interannual variability of primary production in the
880 North Sea is around 15% [Skogen and Moll, 2000], slightly higher than the 11% reported here.
881 More significantly, estimates of annual primary production in the Arctic Ocean (all waters north
882 of the Arctic Circle) made over the same nine-year period as the present study varied from 375 to
883 483 Tg C yr⁻¹, an interannual range of 26% [Pabi and Arrigo, submitted]. These interannual
884 differences in Arctic primary production are attributable primarily to the dramatic changes in ice-
885 free area over the past decade, which has increased by ~75,000 km² yr⁻¹ since 1998. As was
886 observed in the present study of the Southern Ocean, interannual changes in Arctic waters are
887 most dramatic on the continental shelves, which make up a much larger fraction of total area in
888 the Arctic (53%) than they do in the Antarctic.

889 Although interannual changes in the amount of open water in the Southern Ocean were not
890 significantly correlated with annual rates of primary production (Table 3), a strong relationship

exists between the degree of interannual variability in open water area in a given region and interannual variability in annual primary production (interannual variability is quantified as the ratio of the maximum to the minimum mean annual value for each geographic sector and ecological province, Fig. 15). Not surprisingly, regions exhibiting the greatest interannual range in open water area (e.g., the Ross Sea shelf) also exhibited the largest range in annual primary production. What is surprising is that the data from all of the geographic sectors and ecological provinces can be explained by a single relationship $Y = 0.45 \exp(0.9543X)$, $R^2=0.85$, $p<0.001$), despite the fact that each region exhibits a very different relationship between annual primary production and mean annual open water area (Table 3). Two important conclusions can be drawn from this relationship. First, interannual variations in production are driven primarily by changes in sea ice cover, although changes in nutrient delivery (most likely iron) to surface waters induced by processes associated with atmospheric variability (e.g., SAM) also likely play a role. Second, the relationship between min:max open water area and min:max annual production (integrated over the Southern Ocean) is not linear, with annual primary production changing more rapidly than the change in open water area. This reflects the fact that when open water increases, both the total area suitable for phytoplankton growth and the area-normalized rates of production increase.

Open water in the Arctic has increased dramatically since 2002, with an associated increase in annual primary production [*Pabi and Arrigo, submitted*]. Similar secular trends have not been observed in the Antarctic, with the exception of the Bellingshausen-Amundsen Sea, where increasing temperatures between 1957 and 1998 are associated with a substantial loss of sea ice [*Turner et al., 2007*]. Increases in temperature in the Antarctic Peninsula region and a slight cooling within much of the Antarctic interior have been attributed to a shift toward a positive phase of the SAM that began in 1957, the result of decreased stratospheric ozone concentrations. This loss of ozone has generated colder tropospheric temperatures over the Antarctic continent, a larger meridional pressure gradient, and increased westerly winds near 60°S [*Thompson and Solomon, 2002*]. These more intense westerlies are thought to warm the Antarctic Peninsula by

918 decreasing the incidence of cold air outbreaks from the Antarctic interior, leading to increased
919 advection of warmer air from the Southern Ocean [*Thompson and Solomon, 2002*]. However,
920 this proposed scenario is complicated by the fact that the climate of the Antarctic Peninsula also
921 is strongly affected by teleconnections with the tropics [*Turner et al., 2007*]. During El Niño,
922 higher mean sea level pressure over the Bellingshausen Sea results in a cooling of the Antarctic
923 Peninsula. Furthermore, recent El Niño events have been more intense and more frequent, which
924 would be expected to result in cooling trend in the region, rather than the rapid warming that has
925 been measured over the past few decades [*Turner et al., 2007*]. It is clear that the causes of the
926 warming in the Antarctic Peninsula region have not yet been fully elucidated.

927 The lack of a secular trend in both sea ice extent and phytoplankton productivity likely can
928 be attributed to the lack of a warming trend over much of the Antarctic due to the shift to a
929 positive phase of the SAM over the last half century. This shift has resulted in little or no change
930 in temperature over much of the Antarctic, with the exception of the Antarctic Peninsula, and no
931 long-term trend in sea ice concentration. Because the recent long-term shift to a positive SAM
932 has been tied to reductions in stratospheric ozone resulting from increased CFC production, it is
933 possible that warming and loss of sea ice in the Southern Ocean would have been more extreme
934 in recent decades had the Antarctic ozone hole not developed [*Thompson and Solomon, 2002*].

935

936 **5.4. Future Changes in Southern Ocean Primary Production**

937 Changes in Southern Ocean circulation and biogeochemistry have proven to be difficult to
938 predict due to a limited observational database and an inability of many large-scale models to
939 accurately represent important physical, chemical, and biological processes. In a comparison of
940 18 coupled climate models included in the IPCC Fourth Assessment Report, *Russell et al.*
941 [2006a] noted the wide range in model predictions of water mass transformations and the
942 strength and position of the westerly wind belt, key components in the ability to predict
943 anthropogenic CO₂ uptake and changes in biological productivity. One area of general
944 agreement among models is that stratification of the surface Southern Ocean is likely to increase

945 over the next century in response to changes in atmospheric CO₂ and temperature [Sarmiento *et*
946 *al.*, 1998; Caldeira and Duffy, 2000; LeQuere *et al.*, 2007]. This increase in stratification will
947 reduce both the ability of the surface ocean to remove atmospheric CO₂ and the flux of nutrients
948 from the deep ocean, thereby reducing phytoplankton growth and productivity. In a recent
949 model that was better able to simulate the poleward intensification of the westerly winds [Russell
950 *et al.*, 2006b], it was predicted that storage of heat and anthropogenic CO₂ would actually
951 increase in the future due to a larger outcrop area of the dense waters around Antarctica and
952 more intense divergence, thereby counteracting the effect of increased stratification of most of
953 the Southern Ocean.

954 This predicted increase in divergence could increase the flux of micronutrients into the Polar
955 Front zone and into waters further south, thereby increasing phytoplankton growth and
956 productivity. Although the magnitudes of Chl *a* concentrations and primary production have
957 been shown here to respond weakly, but positively, to increased divergence associated with the
958 SAM (Table 6), these effects might be much larger under conditions of increased divergence in
959 the future. On the other hand, the meridional pressure gradient that has intensified in recent
960 decades due to the stratospheric cooling associated with the Antarctic ozone hole [Thompson and
961 Solomon, 2002] may diminish in coming years as stratospheric CFC concentrations drop and the
962 Antarctic ozone hole dissipates. How the balance between these two large global perturbations
963 will impact biogeochemistry in the Southern Ocean has yet to be determined.

964 Finally, in addition to aforementioned changes in the Southern Ocean predicted for the
965 upcoming century (increased westerly winds, stronger Antarctic divergence, increased surface
966 ocean stratification) is a 17-31% reduction in sea ice extent, assuming a doubling of atmospheric
967 CO₂ by 2100 [Rind *et al.*, 1997; Meehl *et al.*, 2000]. Arrigo and Thomas [2004] predicted that a
968 25% decrease in sea ice would result in a 10% increase in total primary production, with
969 increases in production north of the ice edge outpacing losses in the diminished areas of the MIZ
970 and SIZ. However, their analysis assumed that rates of production in the MIZ were substantially
971 higher than those in the pelagic province. Our results (and similar results in Moore and Abbott,

972 2007), suggest that this is not the case, that average rates of daily primary production in the MIZ
973 are very similar to those in the pelagic province. Thus, the predicted losses of production due to
974 a diminished size of the MIZ will not be as large as those assumed by *Arrigo and Thomas*
975 [2004]. Consequently, the net increase in total production in the Southern Ocean in response to a
976 reduced sea ice cover should be a few percent larger than the 10% predicted by *Arrigo and*
977 *Thomas* [2004].

978

979 **References**

980 Arrigo, K. R. and C. W. Sullivan (1994), A high resolution bio-optical model of microalgal
981 growth: Tests using sea ice algal community time series data, *Limnol. Oceanogr.*, 39, 609-
982 631.

983 Arrigo, K.R. and C.R. McClain (1995), Cloud and ice detection at high latitudes for processing
984 of CZCS imagery. NASA Technical Memorandum 104566, Vol. 28, SeaWiFS Technical
985 Report Series.

986 Arrigo, K. R. and D. Thomas (2004), Large scale importance of sea ice biology in the Southern
987 Ocean, *Ant. Sci.*, 16(4), 471-486.

988 Arrigo, K. R. and G. L. van Dijken (2003), Phytoplankton dynamics within 37 Antarctic coastal
989 polynyas, *J. Geophys. Res.*, 108(C8), 3271, 10.1029/2002JC001739.

990 Arrigo, K. R. and G. L. van Dijken (2004), Annual changes in sea ice, chlorophyll *a*, and
991 primary production in the Ross Sea, Antarctica, *Deep-Sea Res., Part II*, 51, 117-138.

992 Arrigo, K. R., and G. L. Van Dijken (2007), Interannual variation in air-sea CO₂ flux in the Ross
993 Sea, Antarctica: A model analysis, *J. Geophys. Res.*, 112, C03020,
994 doi:10.1029/2006JC003492.

995 Arrigo, K. R., C. W. Sullivan, and J. N. Kremer (1991), A bio-optical model of Antarctic sea ice,
996 *J. Geophys. Res.*, 96, 10581-10592.

997 Arrigo, K. R., D. L. Worthen, A. Schnell, and M. P. Lizotte (1998a), Primary production in
998 Southern Ocean waters, *J. Geophys. Res.*, 103, 15,587-15,600.

999 Arrigo, K. R., D. H. Robinson, M. P. Lizotte, D. L. Worthen, and B. Schieber (1998b), Bio-
1000 optical properties of the southwestern Ross Sea, *J. Geophys. Res.*, *103*, 21,683-21,695.

1001 Arrigo, K. R., G. R. DiTullio, R. B. Dunbar, M. P. Lizotte, D. H. Robinson, M. VanWoert, and
1002 D. L. Worthen (2000), Phytoplankton taxonomic variability and nutrient utilization and
1003 primary production in the Ross Sea, *J. Geophys. Res.*, *105*, 8827-8846.

1004 Arrigo, K. R., D. H. Robinson, R. B. Dunbar, A. R. Leventer, and M. P. Lizotte (2003) Physical
1005 control of chlorophyll *a*, POC, and PON distributions in the pack ice of the Ross Sea,
1006 Antarctica, *J. Geophys. Res.*, *108*(C10), 3316, 10.1029/2001JC001138.

1007 Barbini, R., F. Colao, R. Fantoni, L. Fiorani, N. V. Kolodnikova, and A. Palucci (2006), A Laser
1008 remote sensing calibration of ocean color satellite data, *Annals Geophys.*, *49*(1), 35-43.

1009 Becquevort, S., and W. O. Smith, Jr. (2001), Aggregation, sedimentation and biodegradability of
1010 phytoplankton-derived material during spring in the Ross Sea, Antarctica, *Deep-Sea Res., Part II*, *48*, 4155-4178.

1011 Behrenfeld, M. J. and P. G. Falkowski (1997), Photosynthetic rates derived from satellite-based
1012 chlorophyll concentration, *Limnol. Oceanogr.*, *42*(1), 1-20.

1013 Behrenfeld, M. J., R. T. O'Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman,
1014 A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss. (2006), Climate-driven trends
1015 in contemporary ocean productivity, *Nature*, *444*(7120), 752-755.

1016 Boyd, P.W., A.J. Watson, C.S. Law, E.R. Abraham, T. Trull, R. Murdoch, D.C. E. Bakker,
1017 A.R. Bowie, K.O. Buessler, H. Chang, M.A. Charette, P. Croot, K. Downing, R.D. Frew, M.
1018 Gall, M. Hadfield, J.A. Hall, M. Harvey, G. Jameson, J. La Roche, M.I. Liddicoat, R. Ling,
1019 M. Maldonado, R.M. McKay, S.D. Nodder, S. Pickmere, R. Pridmore, S. Rintoul, K. Safi,
1020 P. Sutton, R. Strzepek, K. Tanneberger, S.M. Turner, A. Waite, and J. Zeldis (2000), A
1021 mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization,
1022 *Nature*, *407*, 695-702.

1023 Broecker, W. S. (1991), The great ocean conveyor, *Oceanography*, *4*, 79-89.

1025 Caldeira, K, and P.B. Duffy (2000), The role of the Southern Ocean in uptake and storage of
1026 anthropogenic carbon dioxide, *Science*, 287, 620-622.

1027 Carr, M.-E., M. A. M. Friedrichs, M. Schmeltz, M. N. Aita, D. Antoine, K. R. Arrigo, I.
1028 Asanuma, O. Aumont, R. Barber, M. Behrenfeld, R. Bidigare, E. Bustenhuis, J. Campbell, A.
1029 Ciotti, H. Dierssen, M. Dowell, J. Dunne, W. Esaias, B. Gentili, S. Grom, N. Hoepffner, J.
1030 Ishizaka, T. Kameda, C. LeQuére, S. Lohrenz, J. Marra, F. Mélin, K. Moore, A. Morel, T.
1031 Reddy, J. Ryan, M. Scardi, T. Smyth, K. Turpie, G. Tilstone, K. Waters, and Y. Yamanaka
1032 (2006), A comparison of global estimates of marine primary production from ocean color,
1033 *Deep-Sea Res., Part II*, 53(5-7), 741-770.

1034 Coale, K. H., K. S. Johnson, F. P. Chavez, K. O. Buesseler, R. T. Barber, M. A. Brzezinski, W.
1035 P. Cochlan, F. J. Millero, P. G. Falkowski, J. E. Bauer, et. al. (2002), Southern Ocean iron
1036 enrichment experiment: carbon cycling in high- and low-Si waters, *Science*, 304(5669), 408-
1037 414.

1038 Cochlan, W. P., D. A. Bronk, and K. H. Coale (2002), Trace metals and nitrogenous nutrition of
1039 Antarctic phytoplankton: experimental observations in the Ross Sea, *Deep-Sea Res., Part II*,
1040 49, 3365-3390.

1041 Dennett, M. R., S. Mathot, D. A. Caron, W. O. Smith, Jr., and D. J. Lonsdale (2001), Abundance
1042 and distribution of phototrophic and heterotrophic nano- and microplankton in the southern
1043 Ross Sea, *Deep-Sea Res., Part II*, 48, 4019-4037.

1044 Dobson, F. W. and S. D. Smith (1988), Bulk models of solar radiation at sea, *Q. J. R. Meteorol.
1045 Soc.*, 114, 165-182.

1046 Ducklow, H. W., W. Fraser, D. M. Karl, L. B. Quetin, R. M. Ross, R. C. Smith, S. E.
1047 Stammerjohn, M. Vernet, and R. M. Daniels (2006), Water-column processes in the West
1048 Antarctic Peninsula and the Ross Sea: Interannual variations and foodweb structure, *Deep-
1049 Sea Res., Part II*, 53(8-10) 834-852.

1050 Eppley, R.W. (1972), Temperature and phytoplankton growth in the sea, *Fish. Bull.*, 70, 1063-
1051 1085.

1052 Fennel, K., M. R. Abbott, Y. H. Spitz, J. G. Richman, and D. M. Nelson (2003), Impacts of iron
1053 control on phytoplankton production in the modern and glacial Southern Ocean, *Deep-Sea*
1054 *Res., Part II*, 50(3-4), 833-851.

1055 Fitch, D. T, and J. K. Moore (2007), Wind speed influence on phytoplankton bloom dynamics in
1056 the Southern Ocean Marginal Ice Zone, *J. Geophys. Res.*, 112, XXXXX,
1057 doi:10.1029/2006JC004061.

1058 Gabric, A. J., R. Cropp, G. P. Ayers, G. McTainsh, and R. Braddock (2002), Coupling between
1059 cycles of phytoplankton biomass and aerosol optical depth as derived from SeaWiFS time
1060 series in the Subantarctic Southern Ocean, *Geophys. Res. Lett.*, 29(7), 16-1-4.

1061 Garcia, C. A. E., V. M. T. Garcia, and C. R. McClain (2005), Evaluation of SeaWiFS
1062 chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans, *Remote Sens.*
1063 *Env.*, 95(1), 125-137.

1064 Gervais, F., U. Riebesell, and M. Y. Gorbunov (2002), Changes in primary productivity and
1065 chlorophyll *a* in response to iron fertilization in the Southern Polar Frontal Zone, *Limnol.*
1066 *Oceanogr.*, 47(5), 1324-1335.

1067 Gibson, J. A. E. and T. W. Trull (1999), Annual cycle of fCO₂ under sea-ice and in open water in
1068 Prydz Bay, East Antarctica, *Mar. Chem.*, 66(3-4), 187-200.

1069 Gowing, M. M., D. L. Garrison, H. B. Kunze, and C. J. Winchell (2001), Biological components
1070 of Ross Sea short-term particle fluxes in the austral summer of 1995-1996, *Deep-Sea Res.*,
1071 *Part II*, 48, 2645-2671.

1072 Gradinger, R. R., and M. E. M. Baumann (1991), Distribution of phytoplankton communities in
1073 relation to the large-scale hydrographical regime in the Fram Strait, *Mar. Biol.*, 111, 311-321.

1074 Gregg, W. W., and K. L. Carder (1990), A simple spectral solar irradiance model for cloudless
1075 maritime atmospheres, *Limnol. Oceanogr.*, 35, 1657-1675.

1076 Hense, I., U.V. Bathmann, and R. Timmermann (2000), Plankton dynamics in frontal systems of
1077 the Southern Ocean, *J. Mar. Sys.*, 27(1-3), 235-252.

1078 Holm-Hansen, O., M. Kahru, C. D. Hewes, S. Kawaguchi, T. Kameda, V. A. Sushin, I.
1079 Krasovski, J. Priddle, R. Korb, R. P. Hewitt, and B. G. Mitchell (2004), Temporal and spatial
1080 distribution of chlorophyll-a in surface waters of the Scotia Sea as determined by both
1081 shipboard measurements and satellite data, *Deep-Sea Res., Part II*, 51(12-13), 1323-1331.
1082 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S Saha, G.
1083 White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo,
1084 C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph (1996), The
1085 NCEP/NCAR 40-year reanalysis project, *Bull. Amer. Meteor. Soc.*, 77(3), 437-471.
1086 Kattner, G., and G. Budeus (1997), Nutrient status of the Northeast Water Polynya, *J. Mar. Sys.*,
1087 10, 185-197.
1088 Kopczynska, E. E., L. Goeyens, M. Semeneh, and F. Dehairs (1995), Phytoplankton composition
1089 and cell carbon distribution in Prydz Bay, Antarctica: Relation to organic particulate matter
1090 and its delta-C-13 values, *J. Plankt. Res.*, 17, 685-707.
1091 Korb, R. E. and M. Whitehouse (2004), Contrasting primary production regimes around South
1092 Georgia, Southern Ocean: Large blooms versus high nutrient, low chlorophyll waters, *Deep-
1093 Sea Res., Part I*, 51(5), 721-738.
1094 Korb, R. E., M. J. Whitehouse, and P. Ward (2004), SeaWiFS in the Southern Ocean: Spatial and
1095 temporal variability in phytoplankton biomass around South Georgia, *Deep-Sea Res., Part II*,
1096 51(1-3), 99-116.
1097 Lancelot, C. C. Veth, and S. Mathot (1991), Modelling ice-edge phytoplankton bloom in the
1098 Scotia-Weddell sea sector of the Southern Ocean during spring 1998, *J. Mar. Sys.*, 2, 333-
1099 346.
1100 Le Quéré, C., C. Rödenbeck, E.T. Buitenhuis, T. J. Conway, R. Langenfelds, A. Gomez, C.
1101 Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, and N. Gillett, and M. Heimann (2007),
1102 Saturation of the Southern Ocean CO₂ sink due to recent climate change, *Science*, 316(5832),
1103 1735-1738.

1104 Lo Monaco, C., N. Metzl, A. Poisson, C. Brunet, and B. Schauer (2005), Anthropogenic CO₂ in
1105 the Southern Ocean: Distribution and inventory at the Indian-Atlantic boundary (World
1106 Ocean Circulation Experiment line I6), *J. Geophys Res.*, *110*, C06010,
1107 doi:10.1029/2004JC002643.

1108 Lomas, M. W. and N. R. Bates (2004), Potential controls on interannual partitioning of organic
1109 carbon during the winter/spring phytoplankton bloom at the Bermuda Atlantic Time-series
1110 Study (BATS) site, *Deep-Sea Res., Part I*, *51*(11), 1619-1636.

1111 Longhurst, A., S. Sathyendranath, T. Platt and C. Caverhill (1995), An estimate of global
1112 primary production in the ocean from satellite radiometer data, *J. Plankton Res.*, *17*, 1245-
1113 1271.

1114 Louanchi, F., M. Hoppema, D. C. E. Bakker, A. Poisson, M. H. C. Stoll, H. J. W. De Baar, B.
1115 Schauer, D. P. Ruiz-Pino, and D. Wolf-Gladrow (1999a), Modelled and observed sea surface
1116 fCO₂ in the southern ocean: a comparative study, *Tellus Series B*, *51*(2), 541-559.

1117 Louanchi, F., D. P. Ruiz-Pino, and A. Poisson (1999b), Temporal variations of mixed-layer
1118 oceanic CO₂ at JGOFS-KERFIX time-series station: Physical versus biogeochemical
1119 processes, *J. Mar. Res.*, *57*(1), 165-187.

1120 Lovenduski, N S. and N. Gruber (2005), Impact of the Southern Annular Mode on Southern
1121 Ocean circulation and biology, *Geophys. Res. Lett.*, *32*(11), 1-4.

1122 Markus, T. and B. A. Burns (1995), A method to estimate subpixel-scale coastal polynyas with
1123 satellite passive microwave data, *J. Geophys. Res.*, *100*, 4473-4487.

1124 Marrari, M., C.M. Hu, K. Daly (2006), Validation of SeaWiFS chlorophyll *a* concentrations in
1125 the Southern Ocean: A revisit, *Remote Sens. Env.* *105*(4), 367-375.

1126 Martin, J. H. (1990), Glacial-interglacial CO₂ change: The iron hypothesis, *Paleoceanogr.*, *5*, 1-
1127 13.

1128 McClain, C. R., K. R., Arrigo, K.-S. Tai, and D. Turk (1996), Observations and simulations of
1129 physical and biological processes at OWS P, 1951-1980, *J. Geophys. Res.*, *101*, 3697-3713.

1130 McNeil, B. I., B. Tilbrook, R. J. Matear (2001), Accumulation and uptake of anthropogenic CO₂
1131 in the Southern Ocean, south of Australia between 1968 and 1996, *J. Geophys. Res.*,
1132 *106*(C12), 31431-31445.

1133 Meehl, G.A., W.D. Collins, B.A. Boville, J.T. Kiehl, T.M.L. Wigley, and J.M. Arblaster (2000),
1134 Response of the NCAR climate system model to increased CO₂ and the role of physical
1135 processes, *J. Climate*, *13*(11), 1879-1898.

1136 Mitchell, B.G. and O. Holm-Hansen (1991), Bio-optical properties of Antarctic Peninsula
1137 waters: differentiation from temperate ocean models, *Deep-Sea Res., Part A*, *38*, 1009-1028.

1138 Moore, J. K. and M. R. Abbott (2000), Phytoplankton chlorophyll distributions and primary
1139 production in the Southern Ocean, *J. Geophys. Res.*, *105*(C12), 28709-28722.

1140 Morel, A. (1978), Available, usable, and stored radiant energy in relation to marine
1141 photosynthesis, *Deep-Sea Res.*, *25*, 673-688.

1142 O'Reilly, J., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, M. Kahru, S. A. Garver,
1143 and C. R. McClain (1998), Ocean color algorithms for SeaWiFS. *J. Geophys. Res.*, *103*,
1144 24,937-24,953.

1145 Pope, R.M. and E.S. Fry (1997), Absorption spectrum (380-700 nm) of pure water. II.
1146 Integrating cavity measurements, *Appl. Opt.*, *36*, 8710-8723.

1147 Reuer, M. K., B. A. Barnett, M. L. Bender, P. G. Falkowski, M. B. Hendriks (2007), New
1148 estimates of Southern Ocean biological production rates from O₂/Ar ratios and the triple
1149 isotope composition of O₂, *Deep-Sea Res., Part I*, *54*, 951-974.

1150 Rey, F., T. T. Noji, and L. A. Miller (2000), Seasonal phytoplankton development and new
1151 production in the central Greenland Sea, *Sarsia*, *85*, 329-344.

1152 Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang (2002), An improved in
1153 situ and satellite SST analysis for climate. *J. Climate*, *15*, 1609-1625.

1154 Rind, D., R. Healy, C. Parkinson, and D. Martinson (1997), The role of sea ice in 2xCO₂ climate
1155 model sensitivity. 2. Hemispheric dependencies, *Geophys. Res. Lett.*, *24*(12), 491-1494.

1156 Russell, J.L., R.J. Souffer, and K.W. Dixon (2006a), Intercomparison of the Southern Ocean
1157 Circulations in the IPCC Coupled Model Control Simulations, *J. Climate*, 19(18), 4560-
1158 4575.

1159 Russell, J.L., K.W. Dixon, A. Gnanadesikan, R.J. Stouffer, and J.R. Toggweiler (2006b), The
1160 Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep
1161 Ocean, *J. Climate*, 19(24), 6382-6390.

1162 Sabine, C. L., R. A. Feely, R. M. Key, J. L. Bullister, F. J. Millero, K. Lee, T. H. Peng, B.
1163 Tilbrook, T. Ono, and C. S. Wong (2002), Distribution of anthropogenic CO₂ in the Pacific
1164 Ocean, *Global Biogeochem. Cycles*, 16(4), 1083-1083.

1165 Sarmiento, J.L., T.M.C. Hughes, R.J. Stouffer, and S. Manabe (1998). Simulated response of the
1166 ocean carbon cycle to anthropogenic climate warming, *Nature*, 393, 245-249.

1167 Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne (2004), High-latitude controls of
1168 thermocline nutrients and low latitude biological productivity, *Nature*, 427, 56-60.

1169 Skogen, M. D. and A. Moll (2000), Interannual variability of the North Sea primary production:
1170 comparison from two model studies, *Cont. Shelf Res.*, 20(2), 129-151.

1171 Smith, R.C. and K.S. Baker (1981), Optical properties of the clearest natural waters (200-800
1172 nm), *Appl Opt.*, 20(2), 177-184.

1173 Smith, W. O. Jr. (1995), Primary productivity and new production in the Northeast Water
1174 (Greenland) polynya during summer-1992, *J. Geophys. Res.*, 100, 4357-4370.

1175 Smith Jr., W. O., Jr. and D. M. Nelson (1986), Importance of ice-edge phytoplankton production
1176 in the Southern Ocean, *BioScience*, 36, 251-256.

1177 Smith, W. O., Jr. and L. I. Gordon (1997), Hyperproductivity of the Ross Sea (Antarctica)
1178 polynya during austral spring, *Geophys. Res. Lett.*, 24, 233-236.

1179 Steinberg, D.K., C.A. Carlson, N.R. Bates, R.J. Johnson, A.F. Michaels, and A. H. Knap (2001),
1180 Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale
1181 look at ocean biology and biogeochemistry, *Deep-Sea Res., Part II*, 48, 1405-1447.

1182 Sullivan, C. W., K. R. Arrigo, C. R. McClain, J. C. Comiso, J. Firestone (1993), Distributions of
1183 phytoplankton blooms in the Southern Ocean, *Science*, 262, 1832-1837.

1184 Sweeney, C. (2003), The annual cycle of surface water CO₂ and O₂ in the Ross Sea: A model for
1185 gas exchange on the continental shelves of Antarctica, in *Biogeochemistry of the Ross Sea*, R.
1186 Dunbar and G. DiTullio (Eds), *Ant. Res. Ser.*, 78, 295-312.

1187 Takahashi, T., S. C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R.
1188 Wanninkhof, R. A. Feely, C. Sabine, J. Olafsson, and Y. Nojiri (2002), Global sea-air CO₂
1189 flux based on climatological surface ocean pCO₂, and seasonal biological and temperature
1190 effects, *Deep-Sea Res., Part II*, 49(9-10), 601-1622.

1191 Thompson D. W. J. and S. Solomon (2002), Interpretation of recent Southern Hemisphere
1192 climate change, *Science*, 296, 895-899.

1193 Turner, J., J. E. Overland, and J. E. Walsh (2007), An Arctic and Antarctic perspective on recent
1194 climate change, *Int. J. Clim.*, 27(3), 277-293.

1195 von Quillfeldt, C. H. (1997), Distribution of diatoms in the Northeast Water Polynya, Greenland,
1196 *J. Mar. Sys.*, 10, 211-240.

1197 Waugh, D. W., T. M. Hall, B. I. McNeil, R. Key, R. J. Matear (2006), Anthropogenic CO₂ in the
1198 oceans estimated using transit time distributions, *Tellus Series B*, 58(5), 376-389.

1199

1200 **Figure legends**

1201 Figure 1. Map of the study area showing the location of the five geographic sectors.

1202 Figure 2. Maps showing how the four ecological provinces (pelagic, MIZ, shelf, and MIZ-shelf)
1203 used in the present study vary in size and location over time during the major
1204 phytoplankton growing season.

1205 Figure 3. Locations in the Southern Ocean where Chl *a* samples used to validate the SeaWiFS
1206 OC4v4 algorithm were collected. The number of samples in a given location is given
1207 by the size and color of the triangles. Separate analyses were carried out for each of

1208 the delineated regions. W/S = Weddell/Scotia Sea, RS = Ross Sea, PB = Prydz Bay,
1209 WAP = Western Antarctic Peninsula.

1210 Figure 4. Relative frequency distributions for Chl *a* measured *in situ* and from SeaWiFS for a)
1211 all waters south of 50°S, b) the Western Antarctic Peninsula (WAP), c) deep waters of
1212 the Southern Ocean, d) the Ross Sea, e) the Weddell/Scotia Sea, and f) Prydz Bay.
1213 The boundaries of each region is given in Fig. 3.

1214 Figure 5. Plots of primary production versus Chl *a* derived by the primary production algorithm
1215 and measured *in situ* at discrete stations near the a) Antarctic Peninsula (64°W-73°W,
1216 64°S-68°S) and b) in the Ross Sea (165°E-165°W, 74°S-78°S). Algorithm output
1217 used in this analysis was restricted to those times and locations for which *in situ* data
1218 were available.

1219 Figure 6. Annual cycles of open water area and spatially averaged daily primary production in
1220 the different ecological provinces of the Southern Ocean between 1997 and 2006.

1221 Figure 7. Annual climatologies (1997-2006) used to calculate anomalies for a) sea ice cover, b)
1222 sea surface temperature, c) Chl *a*, and d) primary production.

1223 Figure 8. Anomaly maps of annual primary production for each of the nine years of our study.
1224 Colors represent change from climatological mean shown in Fig. 16a.

1225 Figure 9. Anomaly maps of Chl *a* for each of the nine years of our study. Colors represent
1226 change from climatological mean shown in Fig. 16b.

1227 Figure 10. Anomaly maps of sea ice cover for each of the nine years of our study. Colors
1228 represent change from climatological mean shown in Fig. 16c.

1229 Figure 11. Anomaly maps of sea surface temperature for each of the nine years of our study.
1230 Colors represent change from climatological mean shown in Fig. 16d.

1231 Figure 12. Maps of the correlation coefficient between mean annual primary production and a)
1232 mean annual Chl *a*, b) mean annual sea ice cover, and c) mean annual sea surface
1233 temperature for the nine years of our study. Only pixel locations where data from all
1234 nine years are shown in color. Grey areas denote pixels where one or more years of

1235 data are unavailable. Also shown (d) is a map of the ecological provinces on 11
1236 December 1998 to illustrate that the position of the MIZ corresponds well with areas
1237 exhibiting a high positive correlation between mean annual sea ice cover and mean
1238 annual primary production (Fig. 21b).

1239 Figure 13. Schematic representation of the variation by ecological province in the strength of the
1240 correlation between a) mean annual primary production and year, b) mean annual
1241 primary production and mean annual open water area, c) mean annual open water area
1242 and year, and d) mean annual primary production and the Southern Annular Mode.
1243 The locations of the ecological provinces shown in each panel (and defined in (a)) are
1244 highly idealized representations of their proximity to the coast.

1245 Figure 14. Total annual primary production in the Southern Ocean between 1997 and 2006
1246 plotted along with variability in the Southern Annular Mode (SAM) Index. Monthly
1247 SAM data were obtained from the NOAA Climate Prediction Center
1248 (http://www.cpc.noaa.gov/products/precip/CWlink/daily_ao_index/ao_index.htm
1249 l) and smoothed using a 3-month moving average. Although the relationship between
1250 SAM and annual primary production is not significant ($R^2=0.31$, $p=0.12$), changes in
1251 both variables are quite similar.

1252 Figure 15. Ratio of the maximum to the minimum open water area during 1997-2006 regressed
1253 against the ratio of the maximum to minimum annual production for each geographic
1254 sector and ecological province.

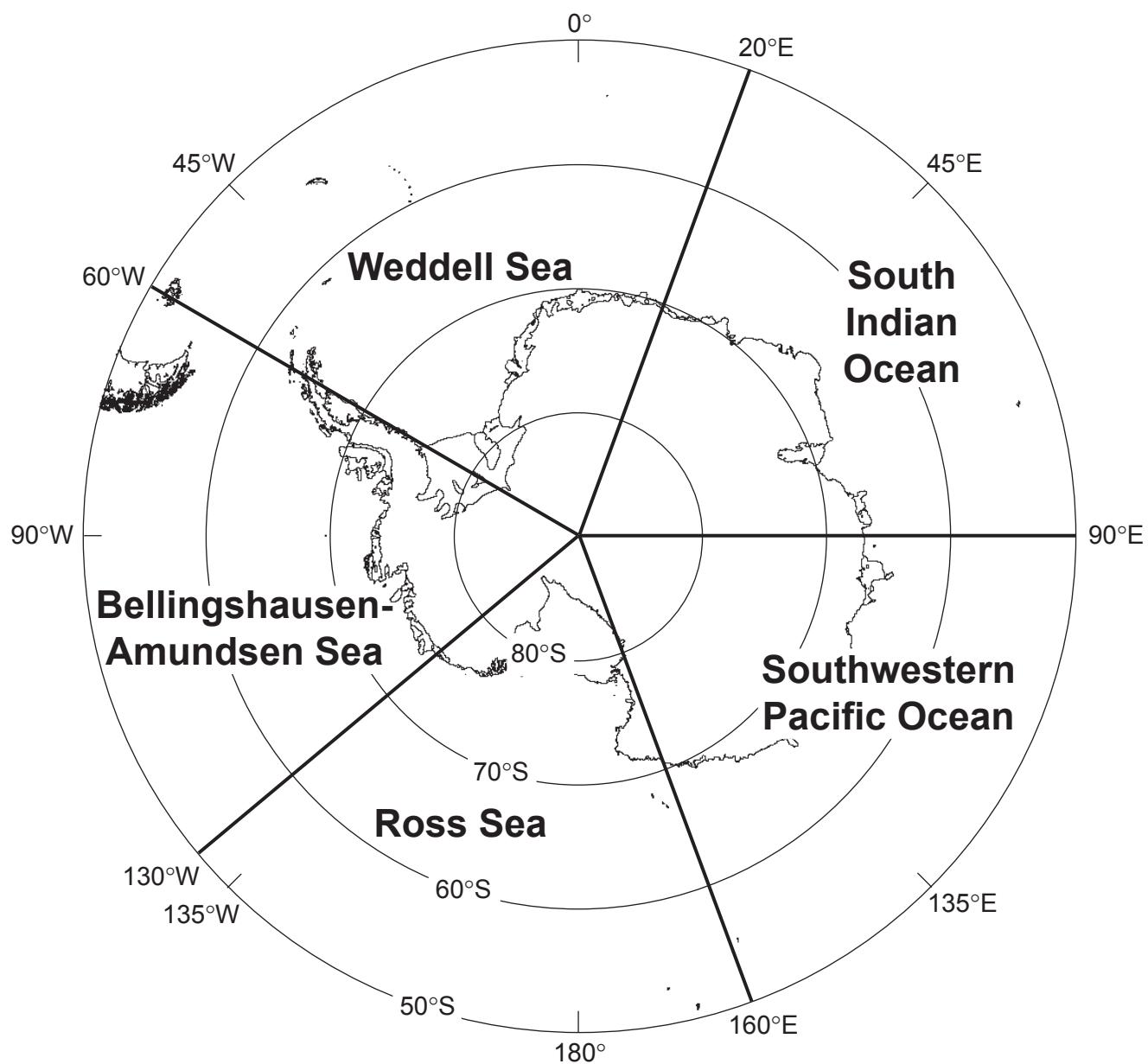


Figure 1

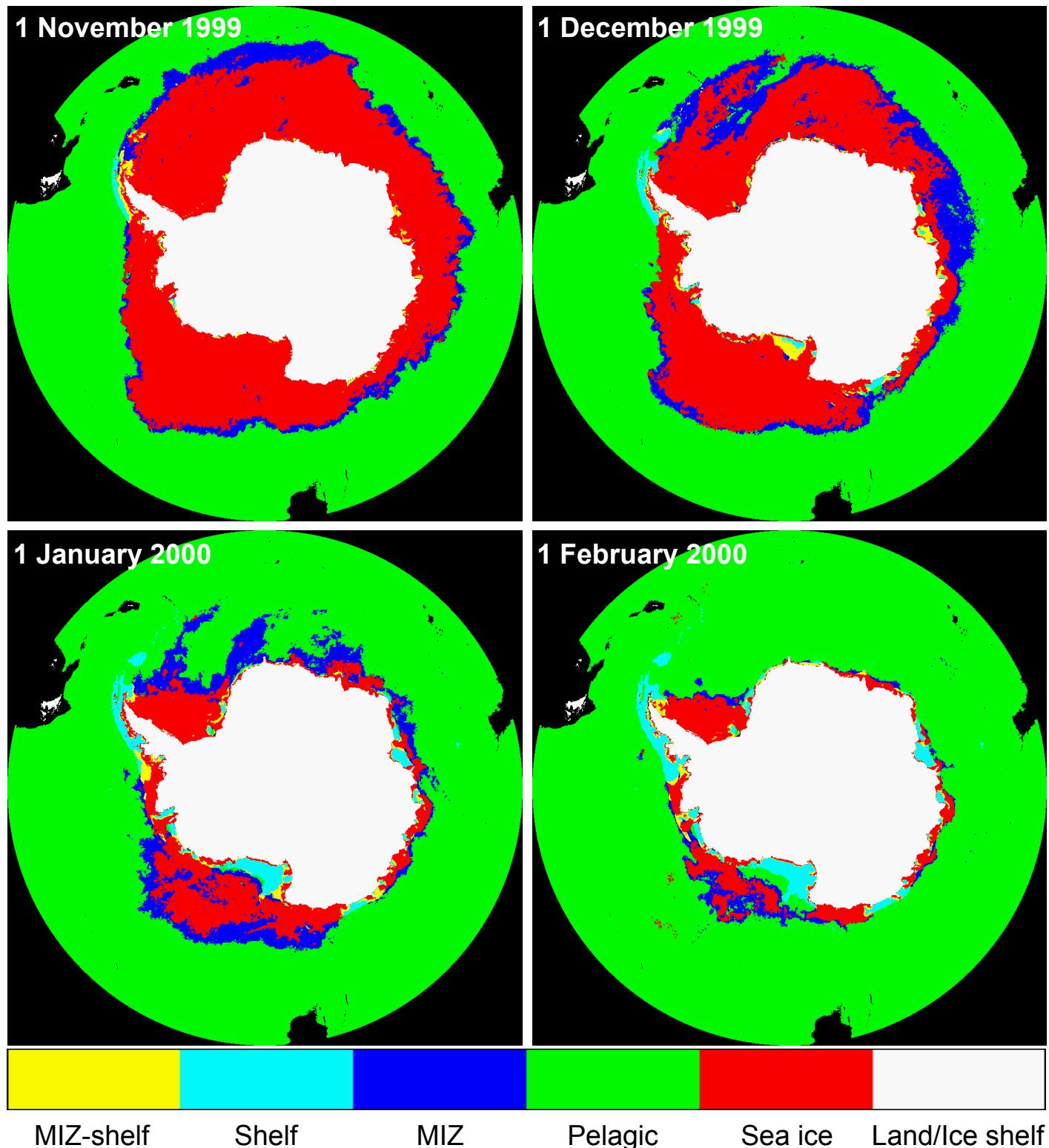


Figure 2

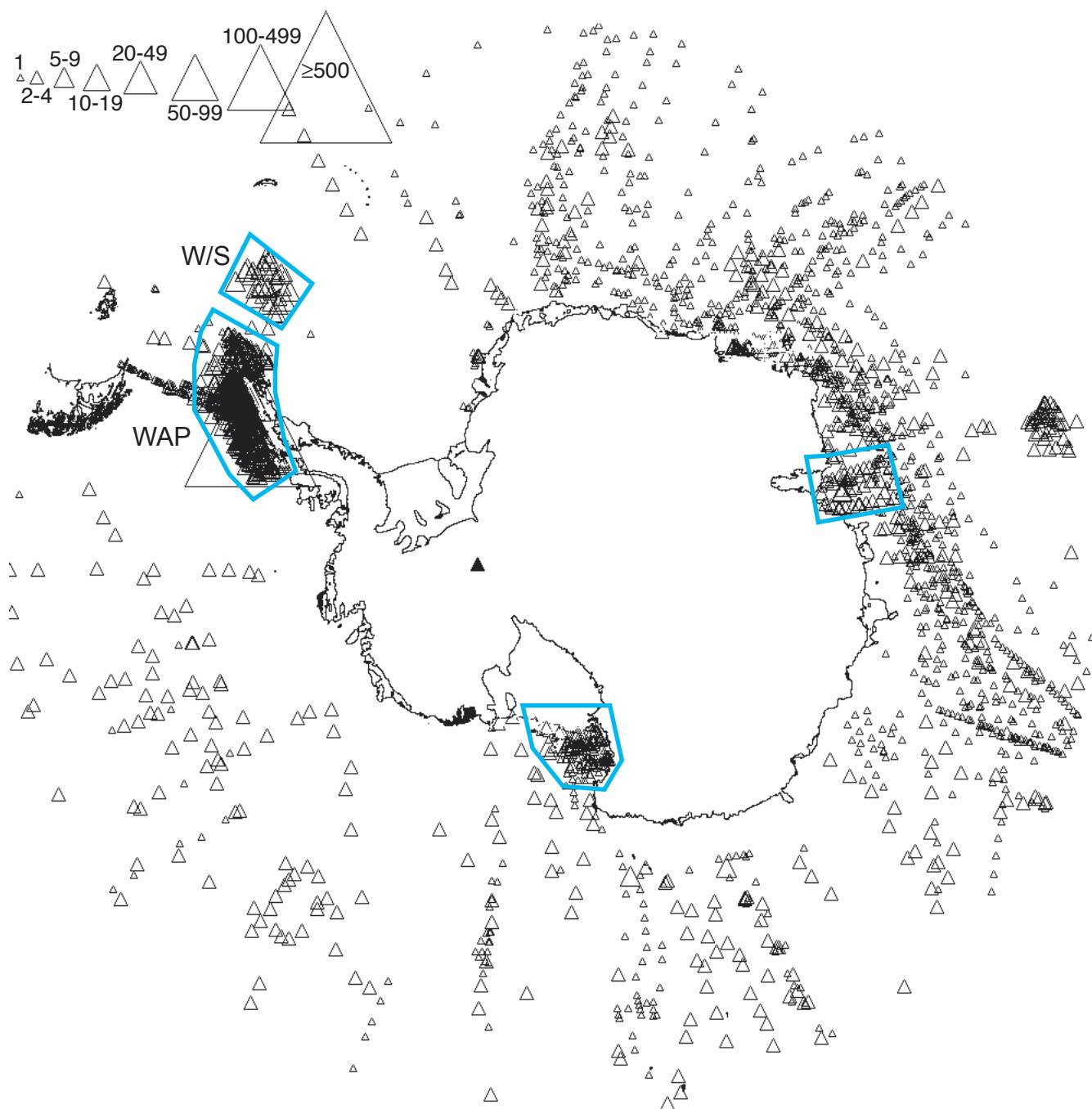


Figure 3

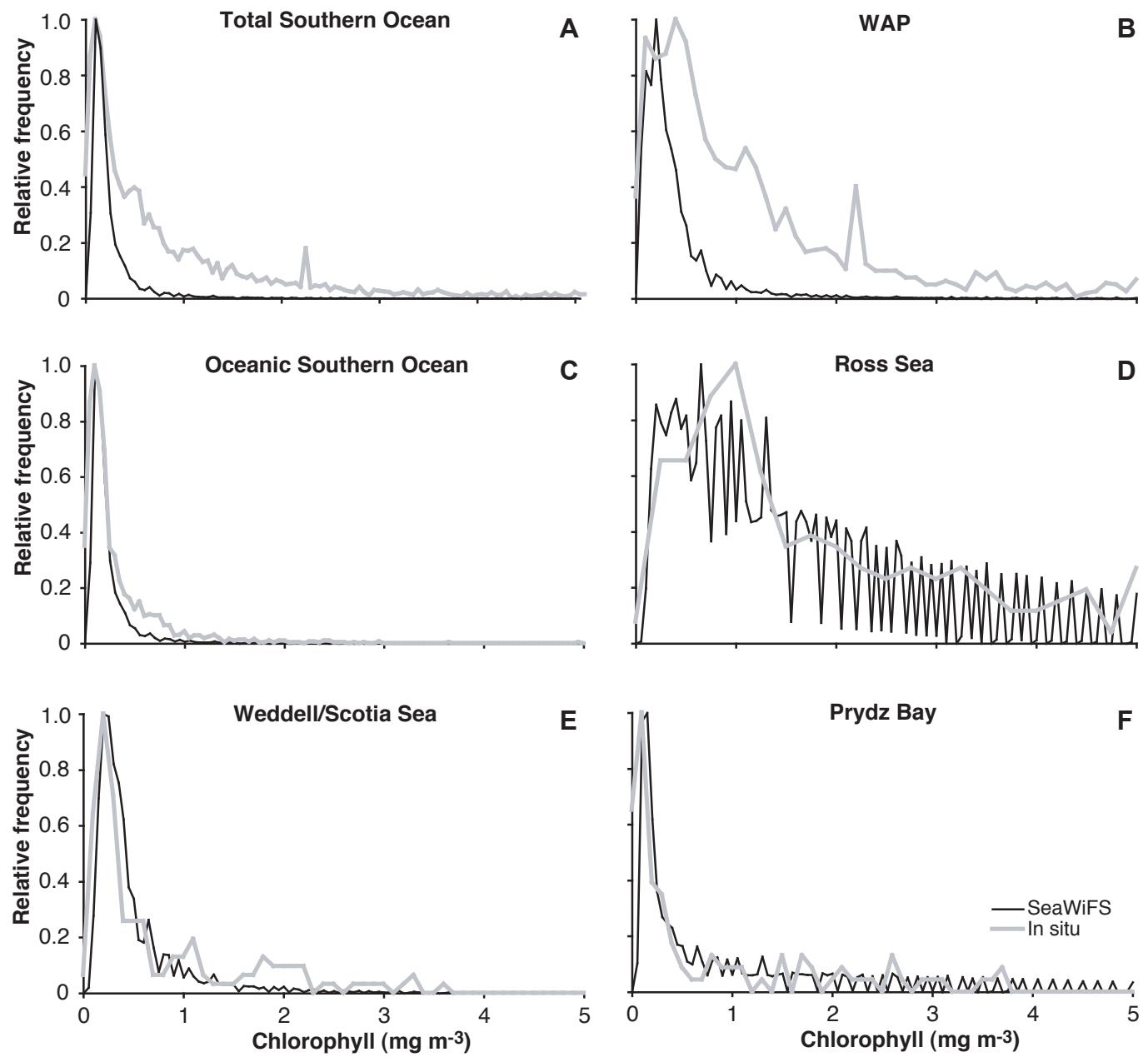


Figure 4

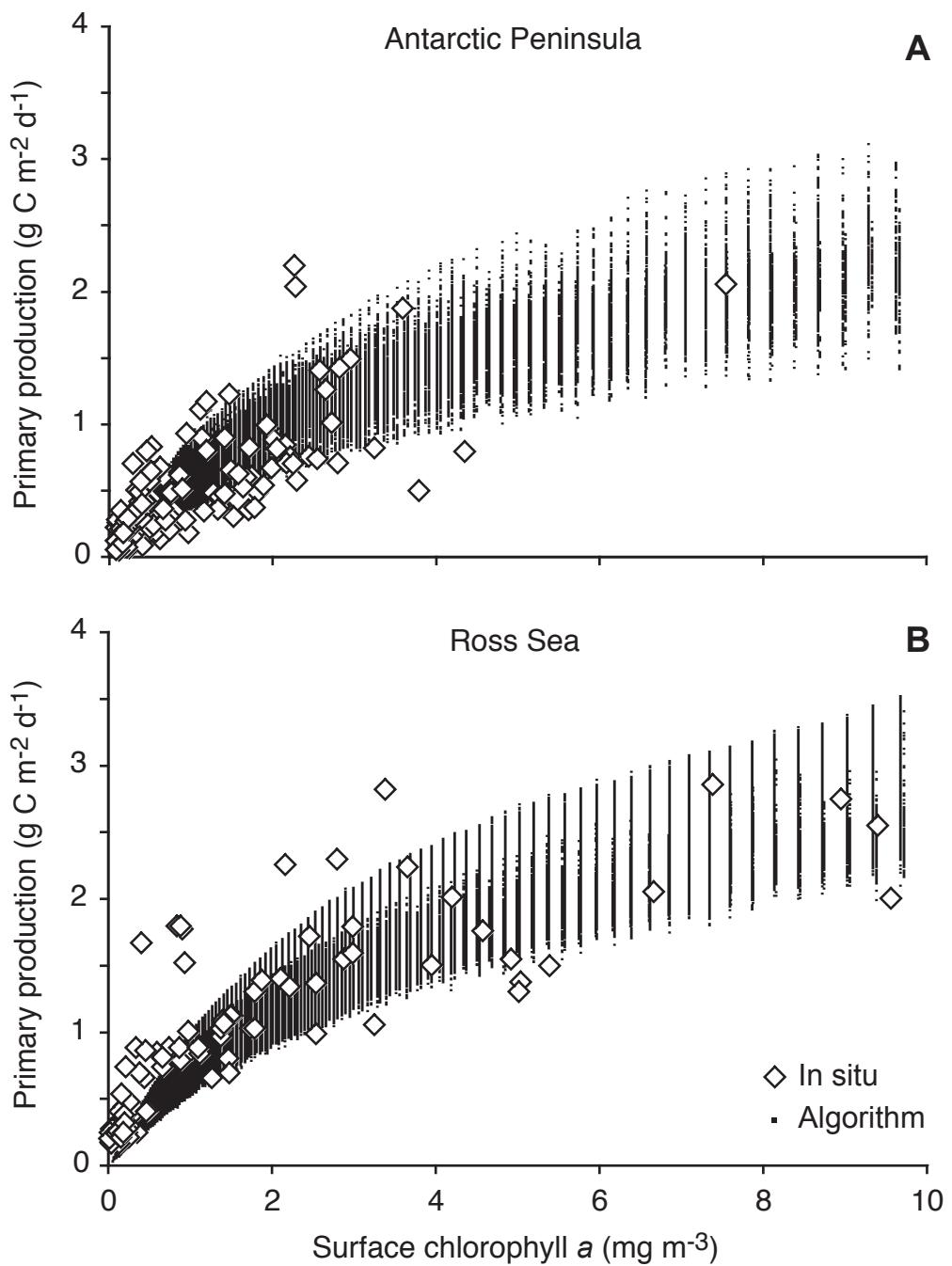
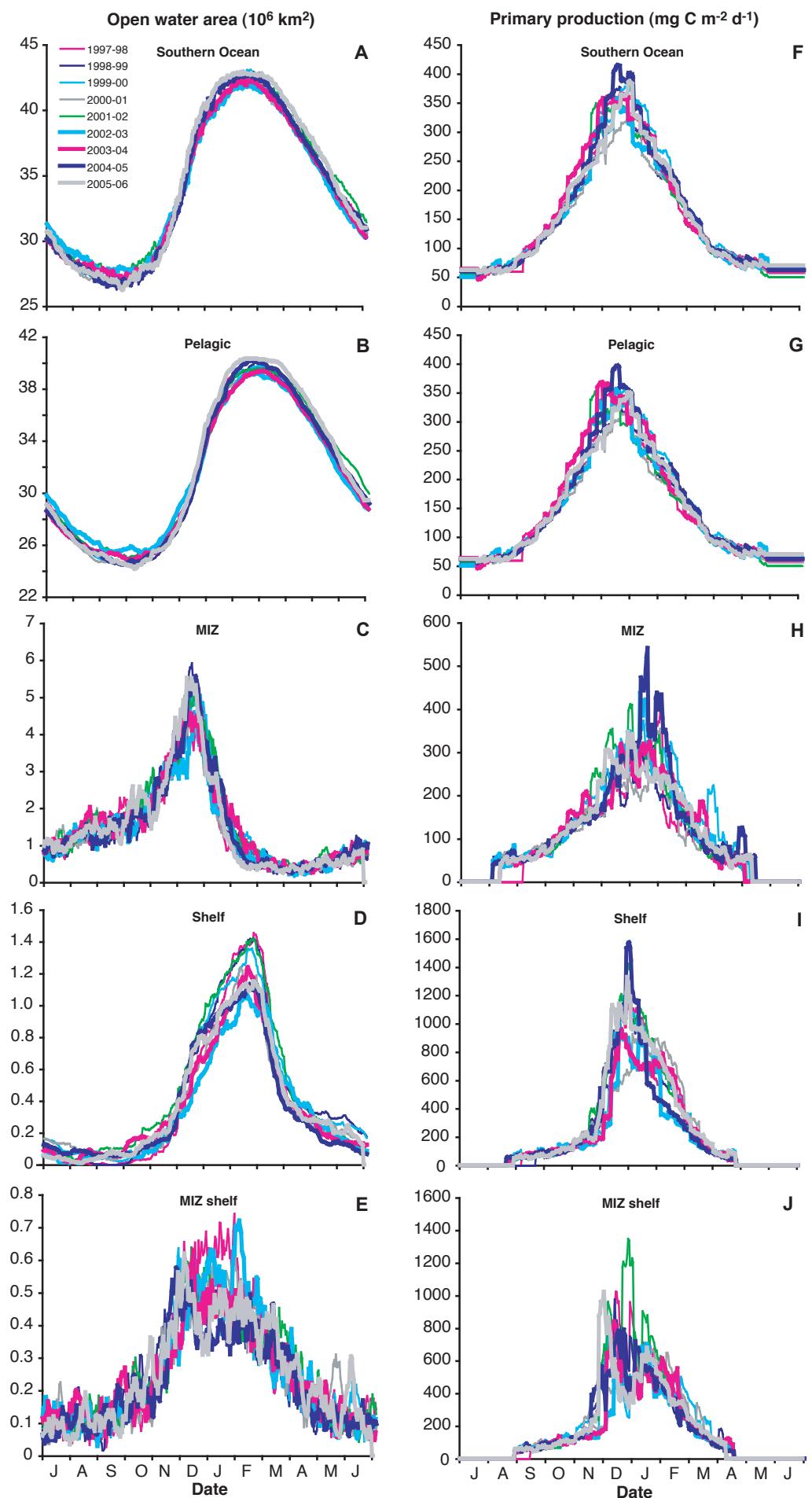
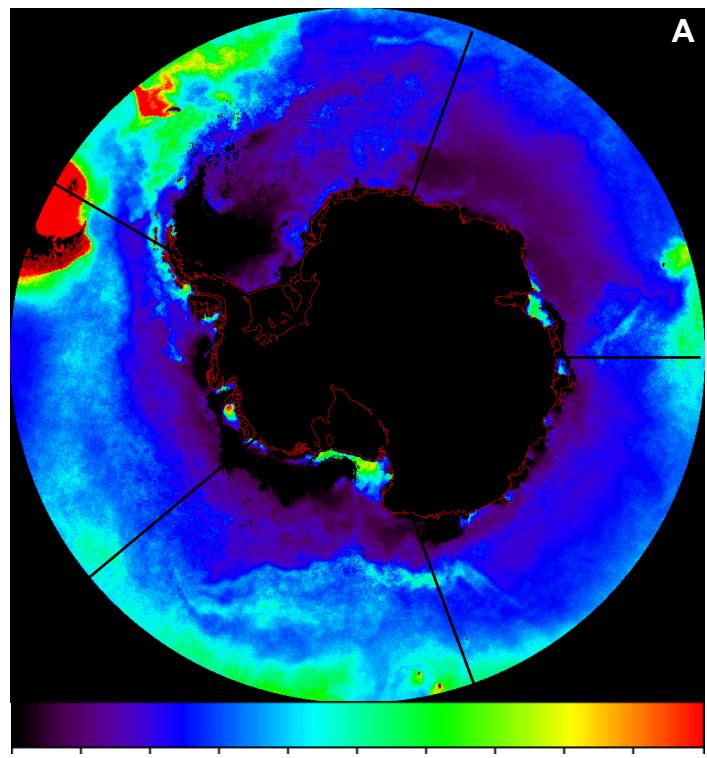
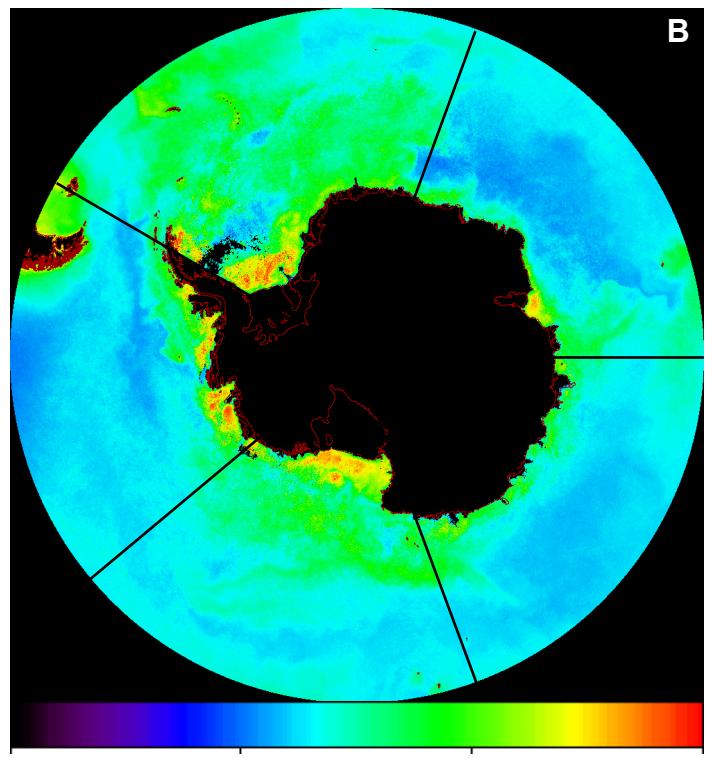
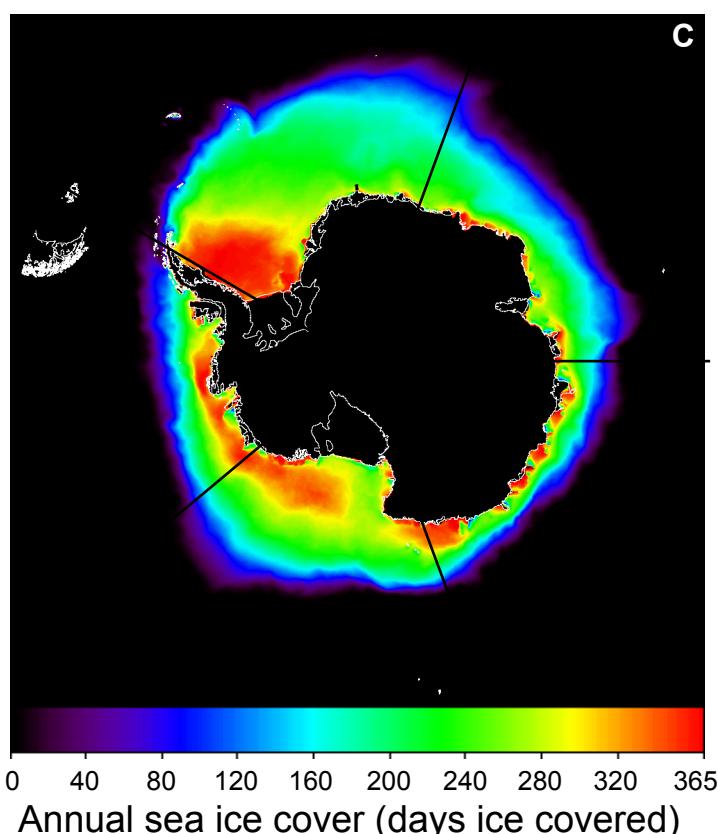
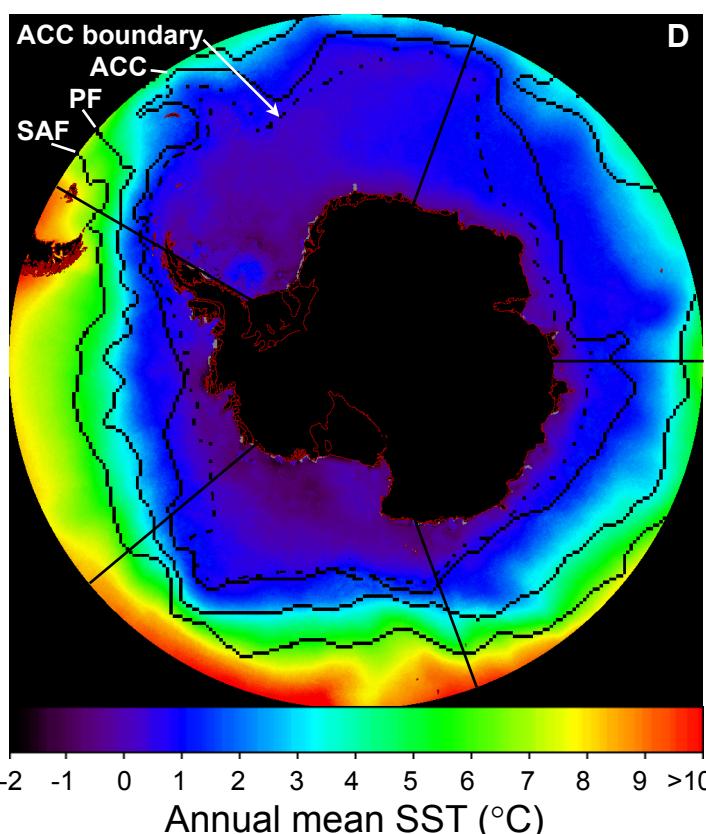


Figure 5


Figure 6


Annual primary production ($\text{g C m}^{-2} \text{ yr}^{-1}$)

Annual mean chlorophyll a (mg m^{-3})

Annual sea ice cover (days ice covered)

Annual mean SST ($^{\circ}\text{C}$)

Figure 7

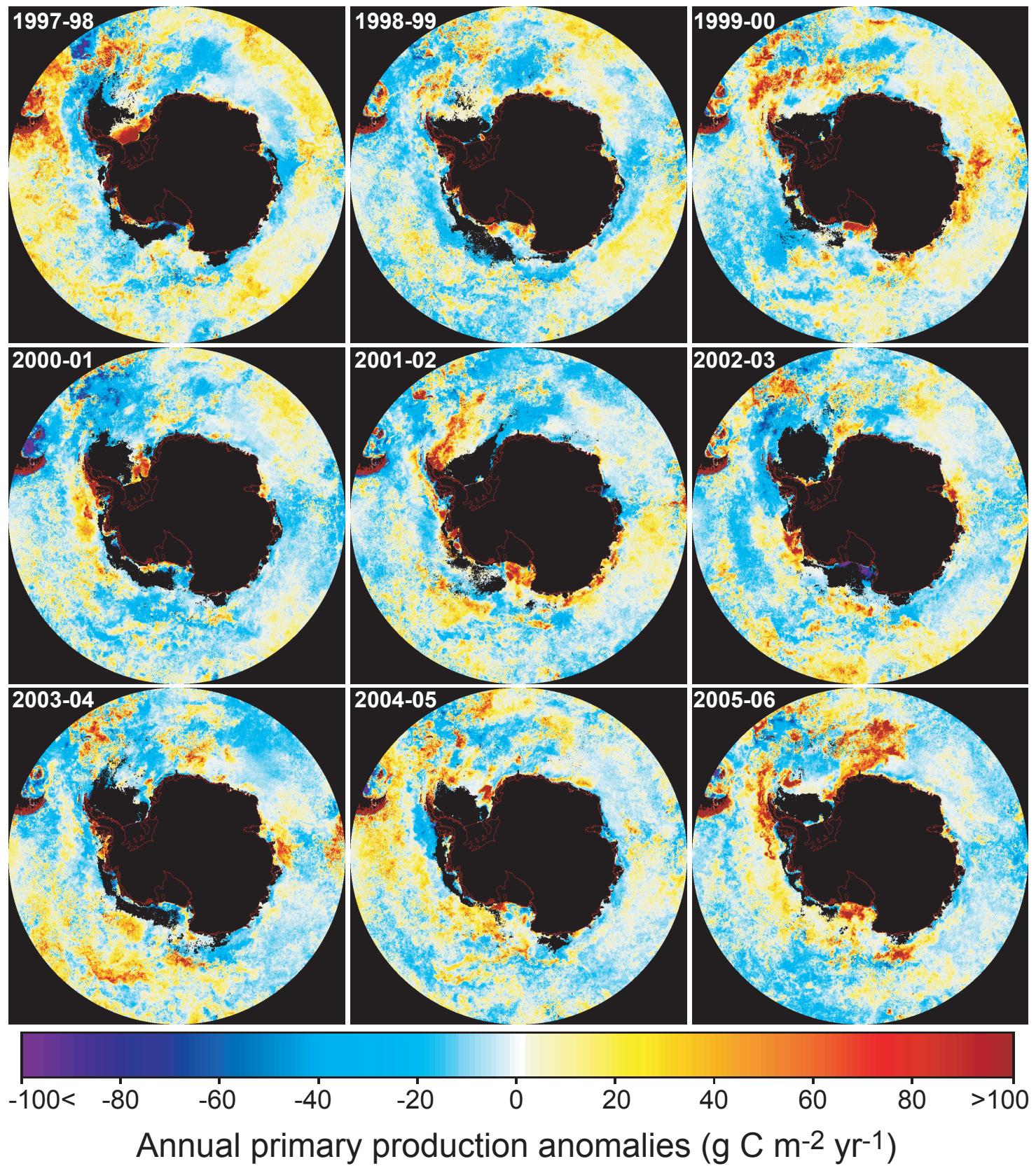


Figure 8

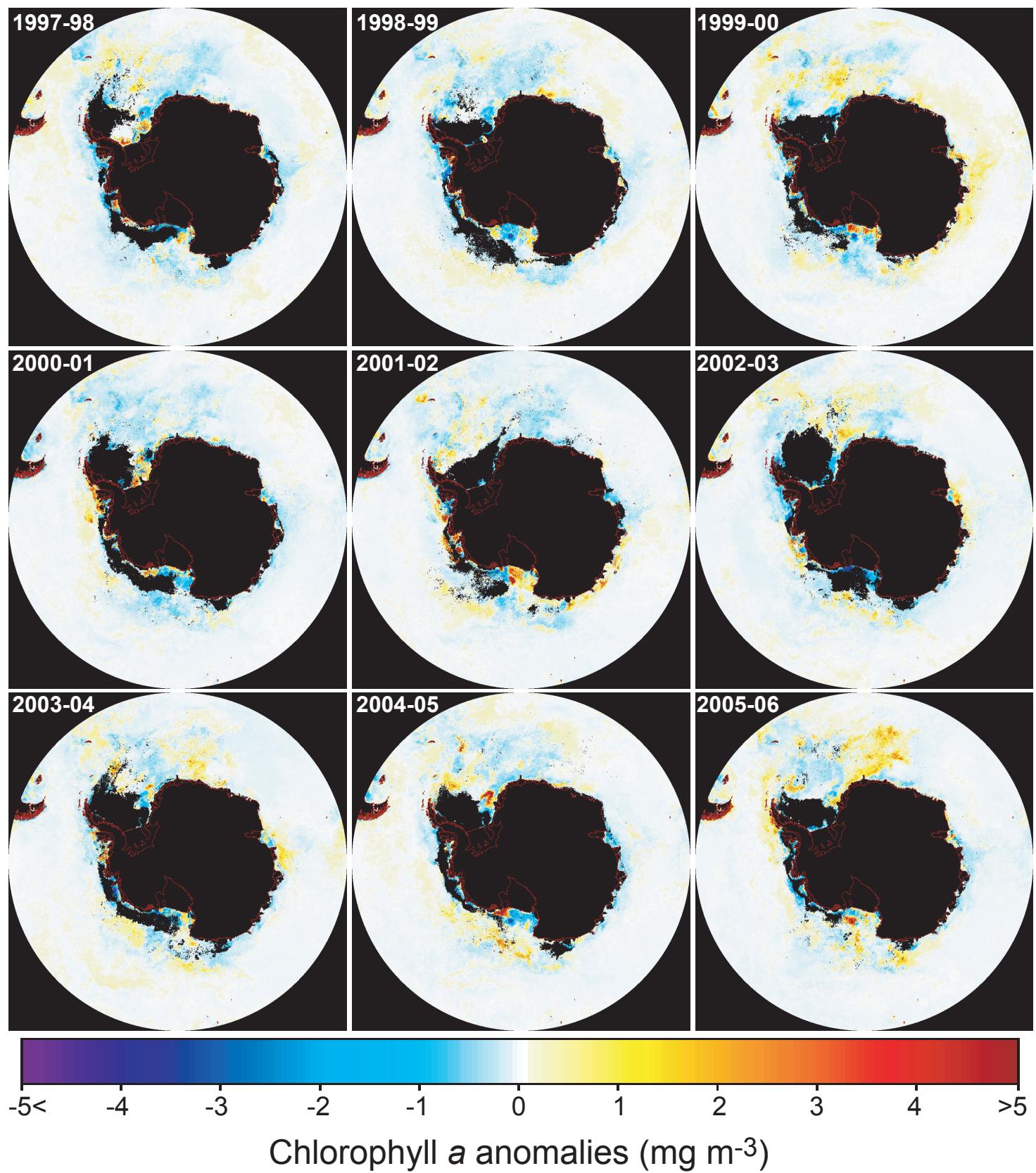


Figure 9

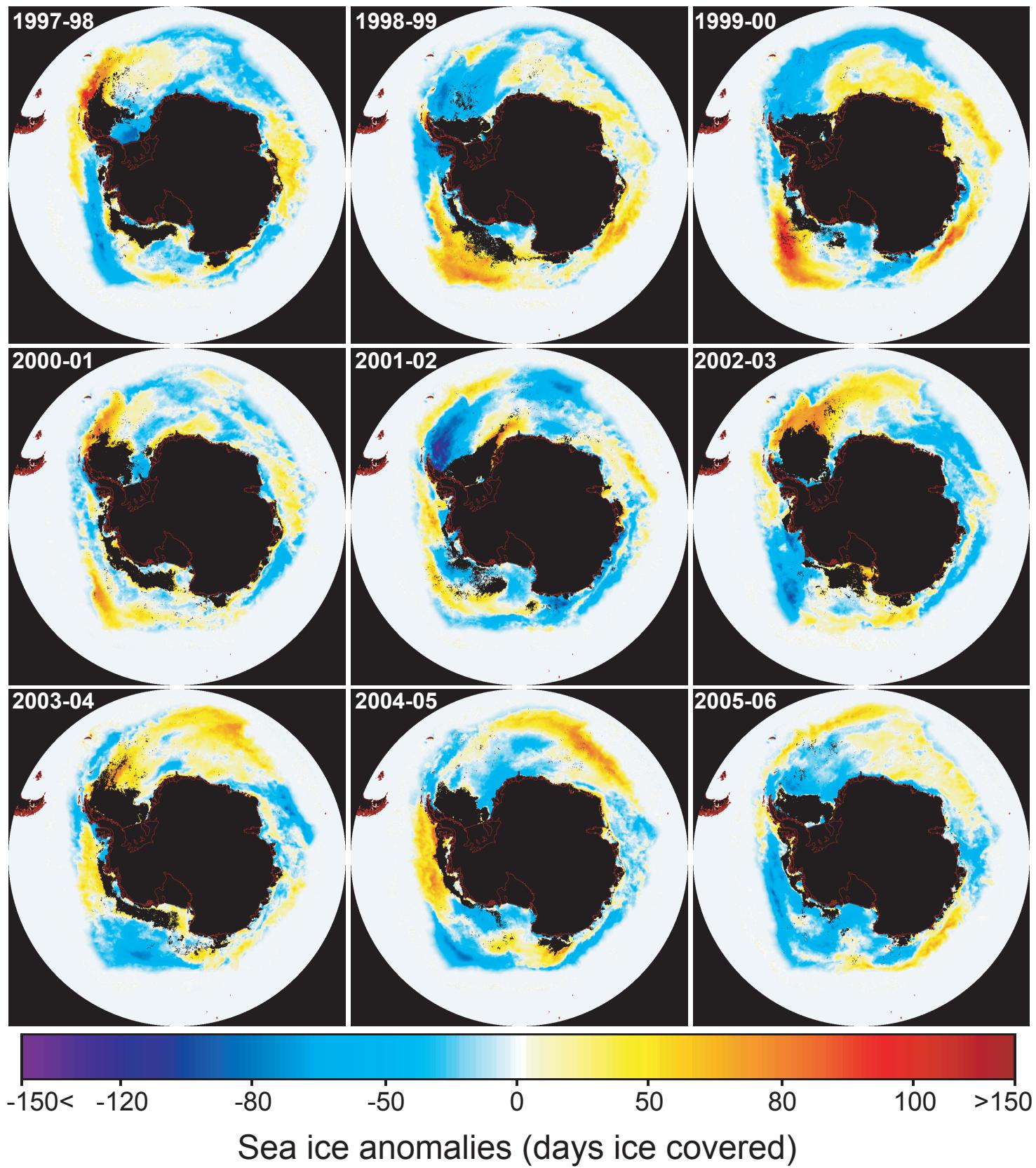


Figure 10

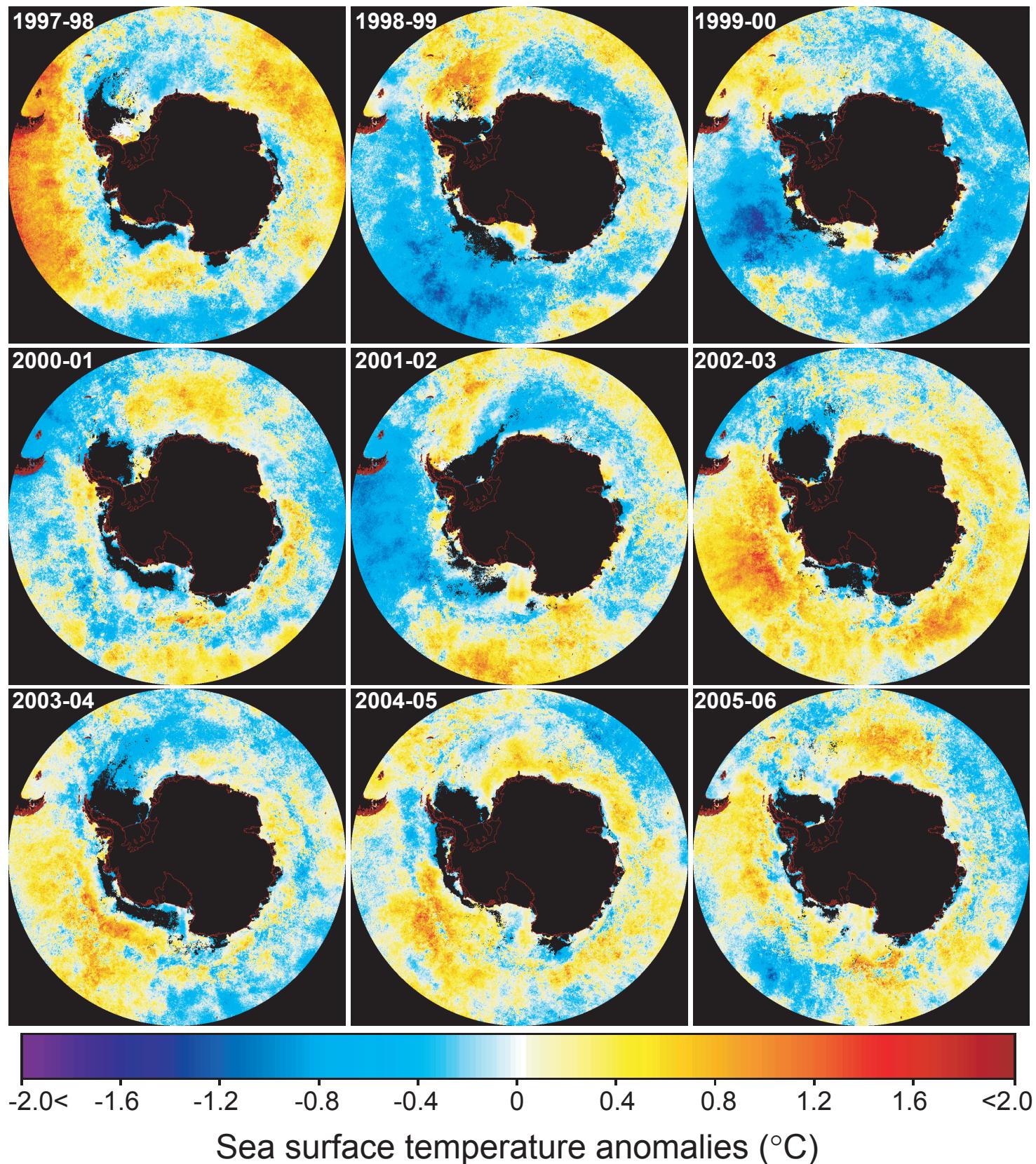


Figure 11

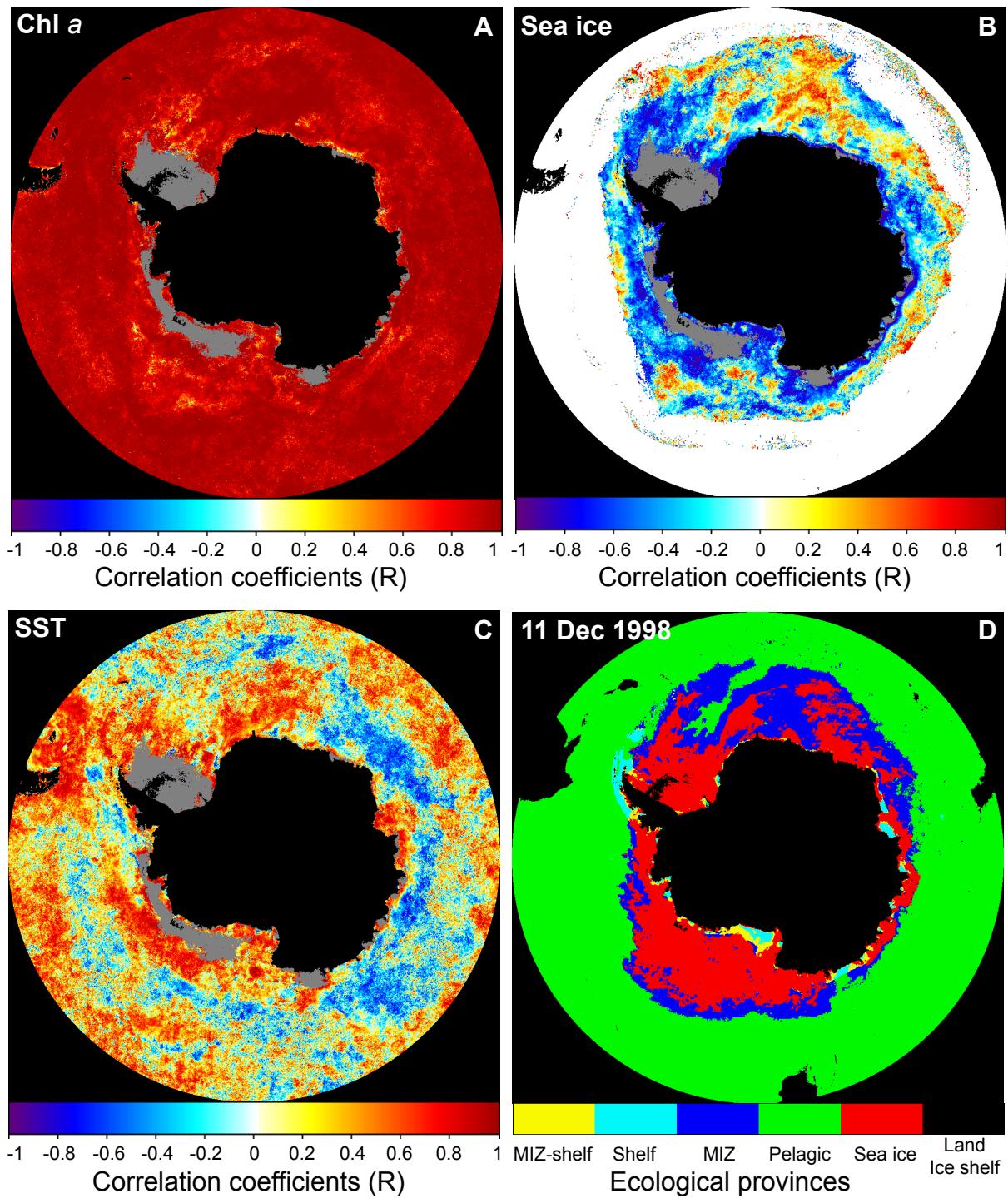


Figure 12

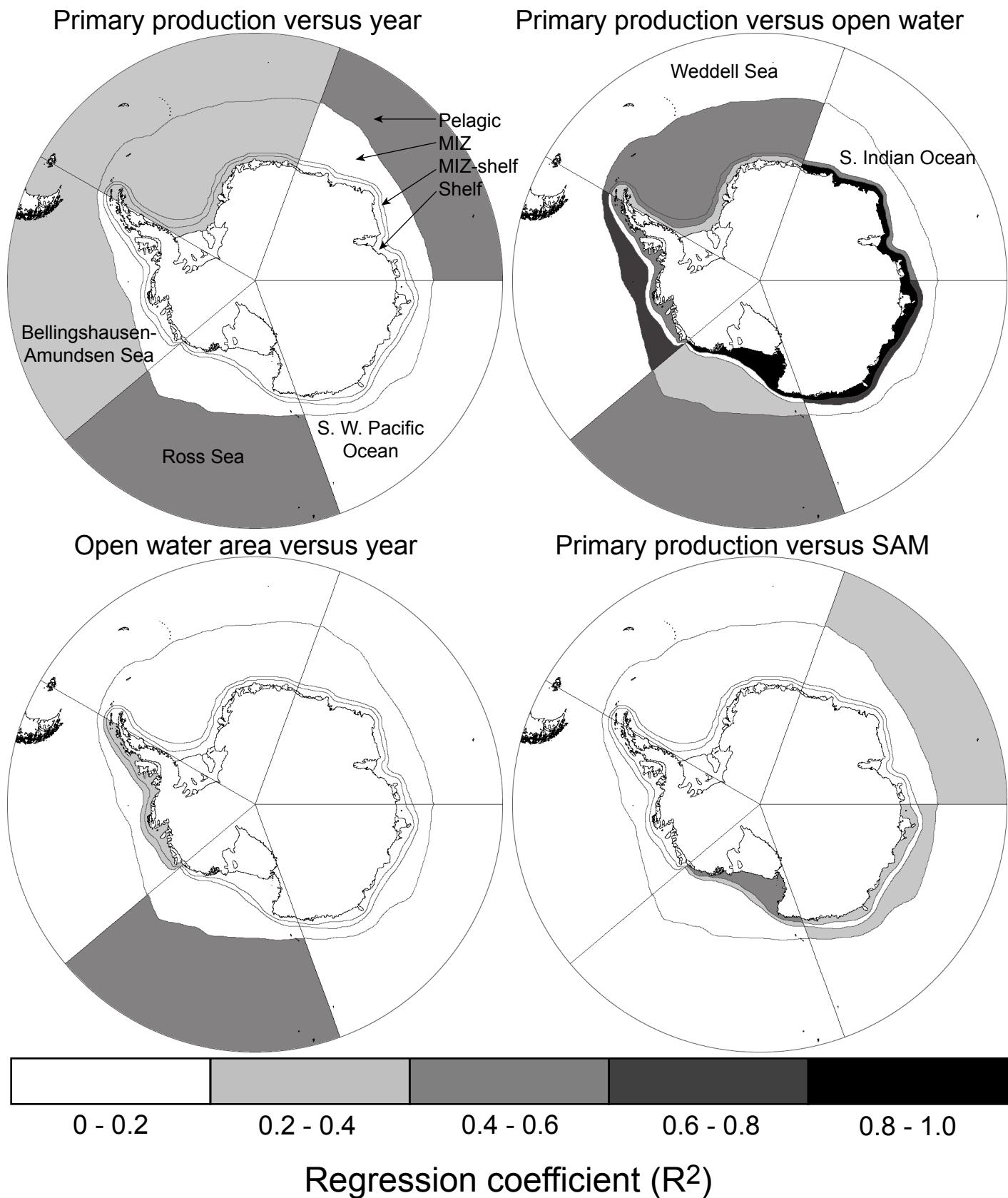


Figure 13

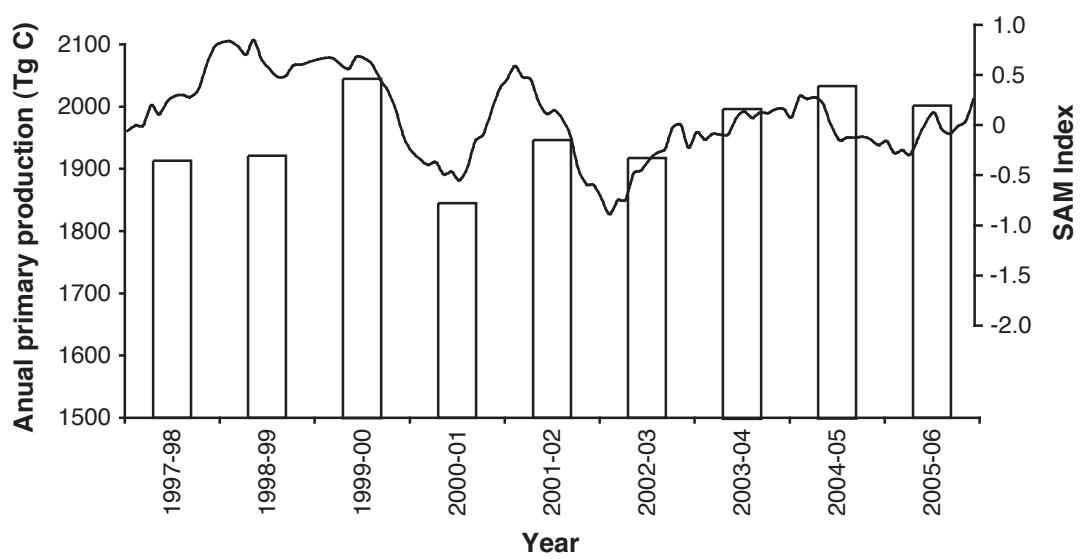


Figure 14

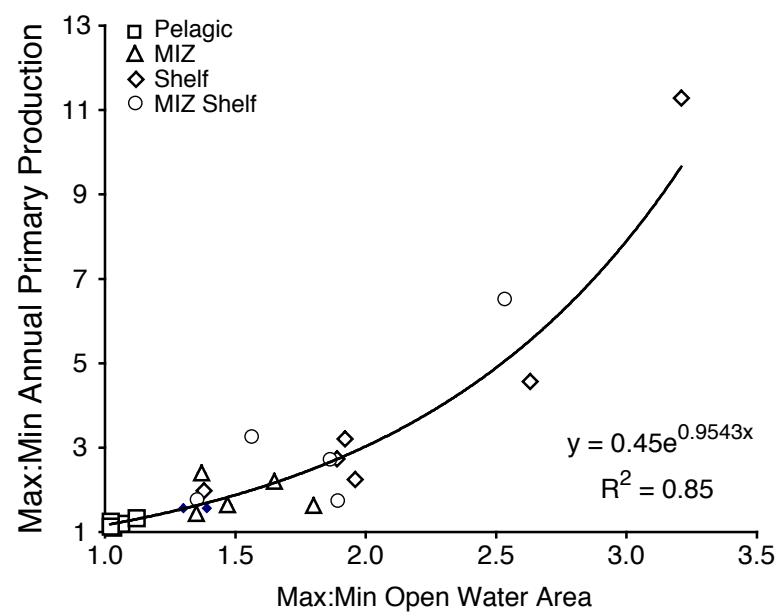


Figure 15

Table 1. Mean Chlorophyll *a* (mg m⁻³) in the Southern Ocean derived *in situ* and using SeaWiFS

	SeaWiFS	<i>In situ</i>
Southern Ocean	0.34	0.54
Southern Ocean (offshore waters only)	0.28	0.36
West Antarctic Peninsula (WAP)	0.53	1.91
Ross Sea	2.18	2.53
Weddell/Scotia Sea	0.62	0.92
Weddell/Scotia Sea (minus Scotia Ridge)	0.62	0.61
Prydz Bay	1.06	0.92

Table 2. Mean (Maximum) Open Water Area (10^6 km^2) by Geographic Sector and Ecological Province.

	Pelagic	MIZ	Shelf	MIZ shelf	Total
Bellingshausen-Amundsen Sea					
1997-98	7.02 (7.73)	0.19 (0.84)	0.114 (0.35)	0.074 (0.25)	7.40 (8.28)
1998-99	7.05 (7.77)	0.17 (0.63)	0.169 (0.45)	0.080 (0.21)	7.46 (8.41)
1999-00	6.86 (7.67)	0.25 (0.79)	0.136 (0.37)	0.077 (0.20)	7.32 (8.39)
2000-01	6.97 (7.70)	0.20 (0.69)	0.141 (0.33)	0.067 (0.19)	7.38 (8.22)
2001-02	6.92 (7.77)	0.22 (0.95)	0.131 (0.34)	0.074 (0.21)	7.35 (8.37)
2002-03	7.08 (7.89)	0.20 (0.68)	0.141 (0.45)	0.076 (0.20)	7.49 (8.45)
2003-04	6.94 (7.74)	0.18 (0.57)	0.145 (0.41)	0.072 (0.18)	7.34 (8.34)
2004-05	6.80 (7.74)	0.20 (0.64)	0.085 (0.23)	0.057 (0.22)	7.15 (8.24)
2005-06	7.14 (7.83)	0.18 (0.60)	0.098 (0.26)	0.068 (0.20)	7.49 (8.25)
Mean	6.97 (7.76)	0.20 (0.71)	0.129 (0.35)	0.072 (0.21)	7.37 (8.33)
SD	0.11 (0.07)	0.02 (0.12)	0.026 (0.08)	0.007 (0.02)	0.11 (0.08)
Ross Sea					
1997-98	6.91 (8.75)	0.30 (1.24)	0.060 (0.34)	0.052 (0.22)	7.32 (9.39)
1998-99	6.43 (8.73)	0.39 (1.82)	0.096 (0.45)	0.041 (0.19)	6.96 (9.60)
1999-00	6.62 (8.94)	0.38 (1.48)	0.102 (0.42)	0.042 (0.29)	7.14 (9.77)
2000-01	6.71 (8.72)	0.31 (1.16)	0.068 (0.36)	0.046 (0.19)	7.13 (9.49)
2001-02	6.81 (8.77)	0.41 (1.66)	0.099 (0.44)	0.042 (0.23)	7.36 (9.78)
2002-03	6.91 (8.86)	0.30 (1.04)	0.021 (0.14)	0.041 (0.25)	7.27 (9.36)
2003-04	7.00 (8.80)	0.34 (1.01)	0.055 (0.37)	0.050 (0.27)	7.44 (9.57)
2004-05	6.99 (9.22)	0.34 (1.52)	0.103 (0.42)	0.040 (0.21)	7.48 (9.82)
2005-06	6.98 (9.15)	0.35 (1.40)	0.105 (0.42)	0.045 (0.27)	7.48 (9.83)
Mean	6.82 (8.88)	0.35 (1.37)	0.079 (0.37)	0.044 (0.23)	7.29 (9.62)
SD	0.20 (0.19)	0.04 (0.28)	0.029 (0.10)	0.004 (0.04)	0.18 (0.18)
S. Indian					
1997-98	5.85 (7.52)	0.30 (1.65)	0.049 (0.20)	0.035 (0.13)	6.23 (7.80)
1998-99	5.76 (7.52)	0.31 (1.58)	0.032 (0.15)	0.027 (0.09)	6.14 (7.77)
1999-00	5.70 (7.45)	0.30 (1.22)	0.026 (0.14)	0.028 (0.09)	6.05 (7.72)
2000-01	5.85 (7.55)	0.28 (1.45)	0.044 (0.18)	0.031 (0.09)	6.20 (7.80)
2001-02	5.82 (7.43)	0.31 (1.46)	0.029 (0.15)	0.036 (0.10)	6.20 (7.71)
2002-03	5.96 (7.56)	0.29 (1.34)	0.048 (0.19)	0.032 (0.08)	6.33 (7.82)
2003-04	5.80 (7.56)	0.30 (1.38)	0.043 (0.19)	0.035 (0.09)	6.17 (7.83)
2004-05	5.65 (7.50)	0.30 (1.48)	0.025 (0.11)	0.031 (0.15)	6.01 (7.74)
2005-06	5.76 (7.57)	0.30 (1.60)	0.039 (0.18)	0.035 (0.12)	6.13 (7.82)
Mean	5.79 (7.52)	0.30 (1.46)	0.037 (0.16)	0.032 (0.10)	6.16 (7.78)
SD	0.09 (0.05)	0.01 (0.14)	0.010 (0.03)	0.003 (0.02)	0.10 (0.05)

Table 2. Continued.

S. W. Pacific

1997-98	6.23 (7.01)	0.22 (0.66)	0.033 (0.15)	0.040 (0.11)	6.52 (7.30)
1998-99	6.10 (6.99)	0.23 (0.77)	0.033 (0.15)	0.039 (0.11)	6.40 (7.28)
1999-00	6.14 (7.12)	0.23 (0.70)	0.054 (0.22)	0.047 (0.18)	6.47 (7.44)
2000-01	6.27 (6.98)	0.22 (0.79)	0.026 (0.12)	0.039 (0.10)	6.55 (7.25)
2001-02	6.35 (7.15)	0.21 (0.66)	0.057 (0.24)	0.058 (0.18)	6.68 (7.50)
2002-03	6.31 (7.02)	0.19 (0.57)	0.037 (0.14)	0.042 (0.12)	6.58 (7.30)
2003-04	6.19 (7.02)	0.25 (0.66)	0.034 (0.15)	0.043 (0.10)	6.51 (7.33)
2004-05	6.28 (6.98)	0.22 (0.63)	0.035 (0.16)	0.046 (0.12)	6.58 (7.33)
2005-06	6.21 (6.99)	0.21 (0.62)	0.032 (0.13)	0.039 (0.12)	6.49 (7.28)
Mean	6.23 (7.03)	0.22 (0.67)	0.038 (0.16)	0.044 (0.12)	6.53 (7.33)
SD	0.08 (0.06)	0.01 (0.07)	0.010 (0.04)	0.006 (0.03)	0.08 (0.08)

Weddell Sea

1997-98	6.06 (9.28)	0.46 (2.57)	0.131 (0.52)	0.067 (0.24)	6.72 (10.16)
1998-99	6.52 (9.61)	0.42 (2.50)	0.113 (0.25)	0.048 (0.15)	7.10 (10.08)
1999-00	6.47 (9.41)	0.41 (2.45)	0.115 (0.25)	0.047 (0.17)	7.04 (9.96)
2000-01	6.10 (9.07)	0.41 (1.93)	0.092 (0.31)	0.061 (0.22)	6.66 (9.73)
2001-02	6.38 (9.16)	0.48 (2.18)	0.144 (0.28)	0.045 (0.11)	7.05 (9.69)
2002-03	5.77 (8.58)	0.40 (1.94)	0.095 (0.27)	0.069 (0.27)	6.34 (9.23)
2003-04	5.88 (8.80)	0.49 (2.04)	0.092 (0.20)	0.045 (0.11)	6.50 (9.46)
2004-05	6.24 (9.27)	0.45 (2.54)	0.117 (0.26)	0.052 (0.11)	6.85 (9.77)
2005-06	6.19 (9.35)	0.46 (2.84)	0.109 (0.26)	0.061 (0.17)	6.81 (9.92)
Mean	6.18 (9.17)	0.44 (2.33)	0.112 (0.29)	0.055 (0.17)	6.79 (9.78)
SD	0.26 (0.32)	0.03 (0.32)	0.018 (0.09)	0.010 (0.06)	0.26 (0.30)

Total

1997-98	32.07 (40.13)	1.48 (4.88)	0.39 (1.46)	0.27 (0.74)	34.20 (42.75)
1998-99	31.87 (40.56)	1.52 (5.93)	0.44 (1.42)	0.24 (0.53)	34.06 (43.05)
1999-00	31.78 (40.30)	1.57 (5.09)	0.43 (1.36)	0.24 (0.64)	34.02 (43.12)
2000-01	31.89 (39.97)	1.42 (4.57)	0.37 (1.24)	0.24 (0.62)	33.93 (42.24)
2001-02	32.28 (40.10)	1.63 (5.54)	0.46 (1.42)	0.25 (0.64)	34.63 (42.91)
2002-03	32.02 (39.67)	1.39 (4.59)	0.34 (1.06)	0.26 (0.72)	34.02 (41.89)
2003-04	31.80 (39.86)	1.55 (4.98)	0.37 (1.24)	0.24 (0.63)	33.96 (42.35)
2004-05	31.97 (40.66)	1.51 (5.57)	0.36 (1.13)	0.23 (0.58)	34.07 (42.71)
2005-06	32.27 (40.84)	1.49 (5.52)	0.38 (1.15)	0.25 (0.62)	34.40 (42.93)
Mean	31.99 (40.23)	1.51 (5.19)	0.39 (1.28)	0.25 (0.64)	34.14 (42.66)
SD	0.19 (0.39)	0.07 (0.48)	0.04 (0.14)	0.01 (0.06)	0.23 (0.41)

Table 3. Regression Coefficients for Annual Primary Production (Tg C yr⁻¹) Versus Mean Open Water Area (10⁶ km²), Annual Primary Production Versus Year, and Mean Open Water Area Versus Year by Geographic Sector and Ecological Province.

	Production vs Open water			Production vs Year			Open water vs Year		
	R ²	p-value	Slope	R ²	p-value	Slope	R ²	p-value	Slope
South Indian Ocean									
Pelagic	0.002	0.915	-7.683	0.520	0.028	-0.118	0.035	0.627	-0.006
MIZ	0.179	0.257	78.75	0.056	0.539	0.142	0.061	0.520	-0.001
Shelf	0.687	0.006	191.8	0.002	0.905	0.038	0.011	0.786	0.000
MIZ-shelf	0.537	0.025	108.1	0.005	0.861	-0.012	0.169	0.272	0.000
Total	0.005	0.859	12.33	0.456	0.046	-4.236	0.038	0.615	-0.007
Bellingshausen-Amundsen Sea									
Pelagic	0.064	0.512	-34.44	0.221	0.201	2.493	0.000	1.000	0.000
MIZ	0.770	0.002	87.26	0.005	0.863	-0.057	0.027	0.670	-0.001
Shelf	0.542	0.024	97.22	0.050	0.564	-0.276	0.272	0.150	-0.005
MIZ-shelf	0.096	0.418	60.89	0.007	0.832	-0.042	0.396	0.070	-0.002
Total	0.314	0.117	-65.44	0.208	0.217	2.100	0.038	0.617	-0.008
Ross Sea									
Pelagic	0.556	0.021	112.9	0.491	0.036	7.612	0.457	0.045	0.049
MIZ	0.369	0.083	62.67	0.085	0.447	0.424	0.002	0.906	-0.001
Shelf	0.960	0.000	333.2	0.002	0.906	0.169	0.010	0.795	0.001
MIZ-shelf	0.020	0.717	78.43	0.004	0.876	-0.050	0.048	0.573	0.000
Total	0.413	0.062	116.7	0.540	0.024	8.761	0.552	0.022	0.049

Table 3. Continued.

Southwest Pacific Ocean									
Pelagic	0.006	0.848	-11.73	0.079	0.463	-1.289	0.112	0.378	0.010
MIZ	0.064	0.510	52.10	0.001	0.949	-0.026	0.017	0.736	-0.001
Shelf	0.925	0.000	208.8	0.026	0.681	-0.132	0.014	0.766	0.000
MIZ-shelf	0.756	0.002	168.9	0.014	0.762	-0.052	0.016	0.747	0.000
Total	0.003	0.893	11.52	0.058	0.532	-1.519	0.103	0.399	0.009
Weddell Sea									
Pelagic	0.180	0.255	69.98	0.234	0.187	7.454	0.109	0.385	-0.031
MIZ	0.454	0.047	112.0	0.396	0.069	1.235	0.070	0.492	0.003
Shelf	0.334	0.103	230.4	0.248	0.173	-1.287	0.095	0.420	-0.002
MIZ-shelf	0.543	0.024	283.4	0.271	0.151	-0.699	0.002	0.916	0.000
Total	0.192	0.239	71.19	0.149	0.306	5.968	0.099	0.409	-0.030
Southern Ocean									
Pelagic	0.096	0.418	-100.8	0.193	0.236	9.747	0.097	0.414	0.021
MIZ	0.635	0.010	133.6	0.124	0.353	1.607	0.001	0.945	-0.001
Shelf	0.755	0.002	267.3	0.125	0.351	-1.570	0.201	0.227	-0.006
MIZ-shelf	0.443	0.050	248.8	0.229	0.193	-0.816	0.091	0.431	-0.001
Total	0.004	0.866	19.91	0.112	0.379	8.555	0.026	0.681	0.014

Bold denotes statistical significance at the 95% confidence level. In all cases, n=9.

Table 5. Annual Primary Production (Tg C yr⁻¹) by Geographic Sector and Ecological Province.

Bellingshausen-Amundsen Sea

	Pelagic	MIZ	Shelf	MIZ shelf	Total
1997-98	367	7.22	12.0	6.88	396
1998-99	336	5.96	16.1	5.62	367
1999-00	349	11.0	14.0	7.06	386
2000-01	357	8.57	17.3	8.12	396
2001-02	341	13.1	20.3	9.45	387
2002-03	348	8.68	16.6	7.87	384
2003-04	374	7.66	16.5	8.26	411
2004-05	376	8.55	9.08	5.27	403
2005-06	364	6.09	12.1	5.98	391
Mean	357	8.54	14.9	7.17	391
SD	14.5	2.31	3.40	1.38	12.6

Ross Sea

	Pelagic	MIZ	Shelf	MIZ shelf	Total
1997-98	410	21.1	17.0	8.78	462
1998-99	399	27.4	28.3	8.85	492
1999-00	398	24.3	33.5	7.34	486
2000-01	410	19.7	19.2	5.51	465
2001-02	417	26.4	32.5	11.3	523
2002-03	452	20.1	2.97	3.45	483
2003-04	483	22.7	18.1	8.74	548
2004-05	459	32.1	28.3	8.27	548
2005-06	426	24.6	31.2	8.28	516
Mean	428	24.3	23.4	7.84	503
SD	29.8	3.98	9.98	2.24	32.6

S. Indian

	Pelagic	MIZ	Shelf	MIZ shelf	Total
1997-98	257	11.3	8.01	3.46	288
1998-99	243	13.0	8.10	2.31	278
1999-00	273	15.8	5.36	2.37	301
2000-01	239	11.0	8.22	2.52	270
2001-02	225	12.9	3.88	2.68	252
2002-03	240	13.2	10.6	2.62	277
2003-04	241	15.3	8.64	3.03	279
2004-05	229	14.3	4.72	1.97	258
2005-06	217	12.3	8.88	3.18	249
Mean	240	13.2	7.38	2.68	272
SD	16.8	1.65	2.21	0.47	17.2

Table 6. Continued

S. W. Pacific

	Pelagic	MIZ	Shelf	MIZ shelf	Total
1997-98	288	7.14	3.12	2.06	304
1998-99	292	7.53	4.35	2.69	311
1999-00	320	14.4	8.88	4.63	352
2000-01	285	5.99	2.77	1.93	299
2001-02	298	13.0	8.38	5.29	327
2002-03	309	7.14	3.73	2.70	326
2003-04	288	9.79	3.47	2.07	307
2004-05	289	7.68	3.92	2.59	308
2005-06	281	8.64	3.93	2.45	299
Mean	295	9.03	4.73	2.94	315
SD	12.5	2.86	2.26	1.20	17.3

Weddell Sea

	Pelagic	MIZ	Shelf	MIZ shelf	Total
1997-98	364	31.1	30.3	14.9	464
1998-99	421	27.2	9.05	4.44	473
1999-00	459	31.5	12.0	4.21	519
2000-01	357	24.8	16.1	7.38	414
2001-02	390	39.1	15.7	3.46	457
2002-03	395	29.3	7.57	6.41	446
2003-04	397	33.0	6.63	2.28	451
2004-05	448	36.2	14.6	4.75	517
2005-06	477	41.0	11.6	5.33	546
Mean	412	32.6	13.7	5.90	477
SD	42.2	5.37	7.08	3.68	42.4

Total

	Pelagic	MIZ	Shelf	MIZ shelf	Total
1997-98	1704	71.9	71.0	35.8	1922
1998-99	1691	81.8	70.7	25.3	1914
1999-00	1804	98.8	77.1	26.7	2051
2000-01	1637	68.5	63.6	25.1	1830
2001-02	1665	107	83.1	34.6	1933
2002-03	1722	81.1	41.9	23.7	1890
2003-04	1781	86.9	55.9	24.5	1989
2004-05	1807	95.9	61.5	23.0	2029
2005-06	1754	88.2	70.3	26.7	1980
Mean	1729	86.7	66.1	27.3	1949
SD	60.7	12.5	12.2	4.67	70.1

Table 6. Regression Coefficients for Annual Primary Production (Tg C yr⁻¹) Versus SAM, Chl *a* versus SAM, and SST versus SAM.

	Production vs SAM			Chl <i>a</i> vs SAM			SST vs SAM		
	R ²	p-value	Slope	R ²	p-value	Slope	R ²	p-value	Slope
South Indian Ocean									
Pelagic	0.233	0.187	20.12	0.350	0.092	0.022	0.016	0.749	-0.051
MIZ	0.193	0.236	1.794	0.051	0.557	0.029	0.272	0.149	-0.118
Shelf	0.162	0.282	-2.205	0.010	0.795	-0.058	0.001	0.951	0.004
MIZ-shelf	0.007	0.828	-0.098	0.103	0.398	-0.041	0.476	0.040	-0.108
Total	0.176	0.260	17.88	0.217	0.205	0.017	0.020	0.714	-0.056
Bellingshausen-Amundsen Sea									
Pelagic	0.083	0.450	-10.40	0.002	0.918	0.001	0.187	0.245	-0.360
MIZ	0.000	0.987	0.034	0.071	0.488	-0.101	0.208	0.217	-0.066
Shelf	0.024	0.690	-1.307	0.319	0.112	-0.240	0.008	0.824	-0.023
MIZ-shelf	0.126	0.348	-1.218	0.134	0.332	-0.144	0.028	0.665	-0.026
Total	0.065	0.277	-12.70	0.016	0.743	-0.003	0.195	0.235	-0.361
Ross Sea									
Pelagic	0.198	0.230	-32.83	0.022	0.700	0.004	0.495	0.021	-0.308
MIZ	0.179	0.255	4.187	0.108	0.387	-0.053	0.297	0.129	-0.096
Shelf	0.409	0.063	15.82	0.644	0.009	0.826	0.256	0.164	-0.308
MIZ-shelf	0.320	0.111	3.144	0.236	0.185	0.387	0.209	0.215	0.059
Total	0.002	0.909	3.607	0.310	0.119	0.035	0.726	0.004	-0.371
Southwest Pacific Ocean									
Pelagic	0.087	0.439	9.185	0.421	0.058	0.020	0.594	0.015	-0.393
MIZ	0.295	0.130	3.855	0.202	0.225	0.133	0.278	0.144	-0.094
Shelf	0.284	0.139	2.995	0.268	0.153	0.202	0.020	0.714	-0.026
MIZ-shelf	0.165	0.276	1.206	0.232	0.189	0.130	0.144	0.313	-0.049
Total	0.167	0.274	17.50	0.385	0.074	0.025	0.564	0.012	-0.400
Weddell Sea									
Pelagic	0.183	0.250	44.80	0.005	0.854	0.006	0.032	0.111	0.057
MIZ	0.008	0.812	1.235	0.320	0.112	0.069	0.562	0.020	0.110
Shelf	0.002	0.915	0.701	0.016	0.741	0.091	0.549	0.022	0.182
MIZ-shelf	0.016	0.745	-1.154	0.032	0.642	0.118	0.023	0.697	0.214
Total	0.220	0.201	49.40	0.017	0.733	0.011	0.429	0.055	0.067
Southern Ocean									
Pelagic	0.102	0.401	48.14	0.308	0.120	0.014	0.472	0.041	-0.247
MIZ	0.139	0.322	11.58	0.039	0.607	0.013	0.244	0.177	-0.060
Shelf	0.408	0.064	19.29	0.343	0.096	0.155	0.103	0.399	0.023
MIZ-shelf	0.057	0.532	2.788	0.224	0.197	0.130	0.010	0.798	0.005
Total	0.305	0.123	95.98	0.428	0.055	0.020	0.516	0.029	-0.252

Bold denotes statistical significance at the 95% confidence level.