

Seasoft V2: Seasave V7

CTD Real-Time Data Acquisition Software for Windows 2000 and later

User's Manual

Sea-Bird Electronics, Inc.
13431 NE 20th Street
Bellevue, Washington 98005 USA
Telephone: 425-643-9866
Fax: 425-643-9954
E-mail: seabird@seabird.com
Website: www.seabird.com

05/23/12
Software Release 7.21k and later

Limited Liability Statement

Extreme care should be exercised when using or servicing this equipment. It should be used or serviced only by personnel with knowledge of and training in the use and maintenance of oceanographic electronic equipment.

SEA-BIRD ELECTRONICS, INC. disclaims all product liability risks arising from the use or servicing of this system. SEA-BIRD ELECTRONICS, INC. has no way of controlling the use of this equipment or of choosing the personnel to operate it, and therefore cannot take steps to comply with laws pertaining to product liability, including laws which impose a duty to warn the user of any dangers involved in operating this equipment. Therefore, acceptance of this system by the customer shall be conclusively deemed to include a covenant by the customer to defend, indemnify, and hold SEA-BIRD ELECTRONICS, INC. harmless from all product liability claims arising from the use or servicing of this system.

Table of Contents

Section 1: Introduction	6
Summary	6
System Requirements	7
Instruments Supported	7
Differences from Seasave-Win32	7
Section 2: Installation and Use.....	8
Installation	8
Seasave Use	9
Seasave Window.....	9
Seasave Menus.....	11
Getting Started	13
Displaying Archived Data - Sea-Bird Demo Files.....	13
Acquiring and Displaying Real-Time Data	14
File Formats	15
Section 3: Configure Inputs, Part I - Instrument Configuration (.con or .xmlcon file)	17
Introduction.....	17
Instrument Configuration.....	17
Viewing, Modifying, or Creating .con or .xmlcon File	18
SBE 9 <i>plus</i> Configuration	20
SBE 16 Seacat C-T Recorder Configuration	22
SBE 16 <i>plus</i> Seacat C-T Recorder Configuration.....	23
SBE 16 <i>plus</i> V2 Seacat C-T Recorder Configuration	25
SBE 19 Seacat Profiler Configuration	27
SBE 19 <i>plus</i> Seacat Profiler Configuration.....	29
SBE 19 <i>plus</i> V2 Seacat Profiler Configuration.....	31
SBE 21 Thermosalinograph Configuration.....	33
SBE 25 Sealogger Configuration	35
SBE 25 <i>plus</i> Sealogger Configuration	37
SBE 45 MicroTSG Configuration	40
SBE 49 FastCAT Configuration	41
Section 4: Configure Inputs, Part II - Calibration Coefficients.....	42
Accessing Calibration Coefficients Dialog Boxes	42
Importing and Exporting Calibration Coefficients.....	43
Calibration Coefficients for Frequency Sensors	44
Temperature Calibration Coefficients.....	44
Conductivity Calibration Coefficients	45
Pressure (Paroscientific DigiQuartz) Calibration Coefficients	46
Bottles Closed (HB - IOW) Calibration Coefficients	46
Sound Velocity (IOW) Calibration Coefficients	46
Calibration Coefficients for A/D Count Sensors.....	47
Temperature Calibration Coefficients.....	47
Pressure (Strain Gauge) Calibration Coefficients	47
Calibration Coefficients for Voltage Sensors	48
Pressure (Strain Gauge) Calibration Coefficients	48
Altimeter Calibration Coefficients.....	48
Fluorometer Calibration Coefficients	48
Methane Sensor Calibration Coefficients	53
OBS/Nephelometer/Turbidity Calibration Coefficients	53
Oxidation Reduction Potential (ORP) Calibration Coefficients	54
Oxygen Calibration Coefficients	55
PAR/Irradiance Calibration Coefficients	56
pH Calibration Coefficients	56
Pressure/FGP (voltage output) Calibration Coefficients.....	56

Suspended Sediment Calibration Coefficients.....	57
Transmissometer Calibration Coefficients.....	57
User Polynomial (for user-defined sensor) Calibration Coefficients.....	59
Zaps Calibration Coefficients	59
Calibration Coefficients for RS-232 Sensors.....	60
SBE 38 Temperature Sensor and SBE 50 Pressure Sensor	
Calibration Coefficients	60
SBE 63 Optical Dissolved Oxygen Sensor Calibration Coefficients.....	60
WET Labs Sensor Calibration Coefficients.....	60
GTD Calibration Coefficients.....	61
Aanderaa Oxygen Optode Calibration Coefficients	61
Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control.....	62
Serial Ports.....	62
CTD Serial Port Baud Rate, Data Bits, and Parity.....	64
Water Sampler	65
Auto Fire.....	66
Remote Bottle Firing	68
TCP/IP Ports	69
Miscellaneous.....	70
Pump Control	71
Section 6: Configure Outputs.....	72
Serial Data Output	73
Serial Ports.....	74
Shared File Output	75
Remote Display	75
Notes on Viewing Shared File in XML Format.....	76
Notes on Converting Shared File in XML Format to	
Format Compatible with Spreadsheet Software.....	76
Mark Variables	77
TCP/IP Out	78
Data Format for TCP/IP Out.....	78
Remote Display	80
TCP/IP Ports	81
SBE 11 <i>plus</i> Alarms.....	82
SBE 14 Remote Display	83
PC Alarms.....	84
Header Form	85
Diagnostics	87
Section 7: Display - Setting Up Seasave Displays	88
Adding New Display Window.....	88
Importing Display Window	88
Editing Display Window.....	89
Exporting Display Window	89
Printing Display Window	89
Resizing Plot Display Window	89
Fixed Display.....	90
Scrolled Display.....	91
Plot Display.....	92
Plot Setup Tab.....	93
Axis Tabs.....	95
Print Options Tab.....	96
Save Options Tab.....	97
Copy Options Tab.....	98
Viewing Seasave Plots.....	99
Status Display	100
NMEA Display	100
Alarms Display	101
Remote Display.....	102

Section 8: Real-Time Data and Real-Time Control -	
Real-Time Data Acquisition	103
Starting and Stopping Real-Time Data Acquisition.....	104
Troubleshooting	106
Firing Bottles	107
Firing Bottles by Command from Seasave	107
Marking Scans	109
Adding NMEA Data to .nav File	109
Turning Pump On / Off.....	110
Resetting Control Positions.....	110
Section 9: Archived Data - Displaying Archived Data.....	111
Section 10: Processing Data	113
Appendix I: Command Line Operation.....	115
Running Seasave with Command Line Parameters (general instructions)	116
Running Seasave with Autostop Parameter	117
Appendix II: Configure (.con or .xmlcon) File Format	118
.xmlcon Configuration File Format	118
.con Configuration File Format.....	118
Appendix III: Software Problems	123
Known Bugs/Compatibility Issues.....	123
Appendix IV: Derived Parameter Formulas	124
Appendix V: Seasave Remote for Remote Display and Bottle Firing	135
Appendix VI: Java Applications for	
Remote Display and Bottle Firing	138
Remote Display.....	138
Firing Bottles via TCP/IP from a Remote Computer	140
Appendix VII: Seasave .hex Output Data Format	142
Index.....	143

Section 1: Introduction

This section includes a brief description of Seasoft V2 and its components, and a more detailed description of Seasave.

Sea-Bird welcomes suggestions for new features and enhancements of our products and/or documentation. Please contact us with any comments or suggestions (seabird@seabird.com or 425-643-9866). Our business hours are Monday through Friday, 0800 to 1700 Pacific Standard Time (1600 to 0100 Universal Time) in winter and 0800 to 1700 Pacific Daylight Time (1500 to 0000 Universal Time) the rest of the year.

Summary

Notes:

- Extensive testing has not shown any compatibility problems when using the software with a PC running Windows Vista.
- Limited testing has not shown any compatibility problems when using the software with Windows 7 -- the software installs and runs correctly. We do not anticipate any problems.

Seasoft V2 consists of modular, menu-driven routines for acquisition, display, processing, and archiving of oceanographic data acquired with Sea-Bird equipment. Seasoft V2 is designed to work with a PC running Windows 2000 or later.

Seasoft V2 is actually several stand-alone programs:

- SeatermV2 (a *launcher* for Seaterm232, Seaterm485, and SeatermIM), Seaterm and SeatermAF terminal programs that send commands for status, setup, data retrieval, and diagnostics to a wide variety of Sea-Bird instruments.

Note: SeatermV2 is used with our newest generation of instruments, which have the ability to output data in XML.

- Seasave V7** program that acquires and displays real-time and raw archived data for a variety of Sea-Bird instruments.
- SBE Data Processing program that converts, edits, processes, and plots data for a variety of Sea-Bird instruments
- Plot39 program for plotting SBE 39 and SBE 48 data

This manual covers only Seasave, which:

- acquires real-time, raw data (frequencies and voltages) and saves the **raw** data to the computer for later processing
- displays selected **raw and/or converted** (engineering units) real-time or archived data in text and plot displays

Additional Seasave features include the ability to:

- send commands to close water sampler bottles
- save user-input header information with the CTD data, providing information that is useful for identifying the data set
- output selected raw and converted (engineering units) data to a computer COM port or file on the computer
- set up pressure, altimeter, and bottom contact switch alarms in the computer running Seasave
- output data to and set up pressure, altimeter, and bottom contact switch alarms in an SBE 14 Remote Display
- set up pressure and altimeter alarms in an SBE 11*plus* Deck Unit
- mark real-time data to note significant events in a cast
- input commands from remote software via TCP/IP for controlling water sampler bottle firing
- output raw data and selected converted (engineering units) data to remote software via TCP/IP

System Requirements

Sea-Bird recommends the following minimum system requirements for Seasoft V2: Windows 2000 or later, 500 MHz processor, 256 MB RAM, and 90 MB free disk space for installation.

Instruments Supported

Seasave supports the following Sea-Bird instruments:

- SBE 911*plus* and 917*plus* CTD system
- SBE 16 Seacat C-T (optional pressure) Recorder
- SBE 16*plus* Seacat C-T (optional pressure) Recorder
- SBE 16*plus* V2 Seacat C-T (optional pressure) Recorder
- SBE 19 Seacat Profiler
- SBE 19*plus* Seacat Profiler
- SBE 19*plus* V2 Seacat Profiler
- SBE 21 Seacat Thermosalinograph
- SBE 25 Sealogger CTD
- SBE 25*plus* Sealogger CTD
- SBE 45 MicroTSG Thermosalinograph
- SBE 49 FastCAT CTD Sensor

Additionally, Seasave supports many other sensors / instruments interfacing with the instruments listed above, including Sea-Bird oxygen, pH, and ORP sensors; SBE 32 Carousel Water Sampler, SBE 55 ECO Water Sampler; and assorted equipment from third party manufacturers.

Differences from Seasave-Win32

Seasave was previously available as Seasave-Win32. Seasave V7 is an entirely new version of Seasave. Following are the improvements and changes:

1. More robust data acquisition and increased stability with a new architecture for data acquisition. Seasave V7 is actually two applications – Seasave.exe automatically launches SeasaveAcq.exe when data acquisition is commanded to start. Both programs run simultaneously on the same computer.
2. Easier-to-use and more intuitive user interface.
3. Support for transmission of data to a remote computer over TCP/IP, and remote bottle firing via TCP/IP.
4. Better graphics, including the ability to have different plot colors for downcast and upcast.
5. An unlimited number of displays can be active on the desktop at once (within the limitations of your computer's resources). Displays can be added, deleted, and modified without interrupting data acquisition.
6. Output from an SBE 9*plus* CTD integrated with an SBE 11*plus* Deck Unit (SBE 911*plus*) is now saved as a .hex file (was previously saved as a binary .dat file).
7. Support for pressure, altimeter, and bottom contact switch alarms in the computer running Seasave.

Section 2: Installation and Use

Seasoft V2 requires approximately 90 MB of disk space during installation.

Ensure there is room on your hard drive before proceeding.

Sea-Bird recommends the following minimum system requirements:

Windows 2000 or later, 500 MHz processor, and 256 MB RAM.

Installation

Note:

Sea-Bird supplies the current version of our software when you purchase an instrument. As software revisions occur, we post the revised software on our FTP site.

- You may not need the latest version. Our revisions often include improvements and new features related to one instrument, which may have little or no impact on your operation.

See our website (www.seabird.com) for the latest software version number, a description of the software changes, and instructions for downloading the software from the FTP site.

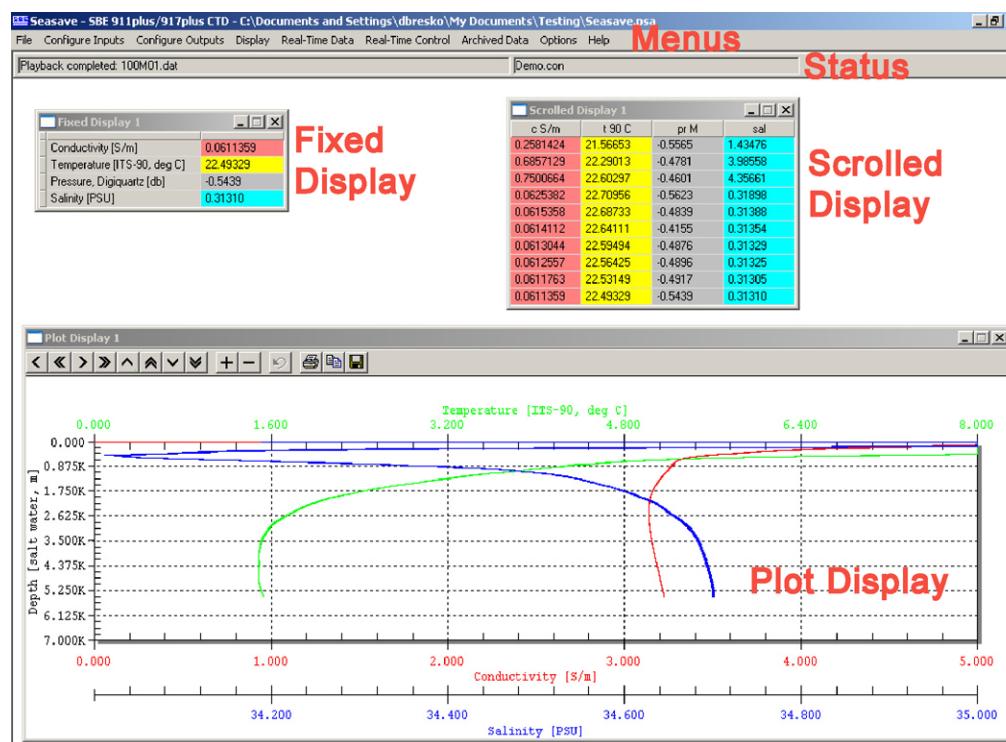
1. If not already installed, install Seasave and other Sea-Bird software programs on your computer using the supplied software CD:

- A. Insert the CD in your CD drive.
- B. Double click on **SeasoftV2_date.exe** (where *date* is the date the software release was created).
- C. Follow the dialog box directions to install the software.

The default location for the software is c:\Program Files\Sea-Bird. Within that folder is a sub-directory for each program. The installation program allows you to install the desired components. Install all the components, or just install Seasave.

Seasave Use

Notes:

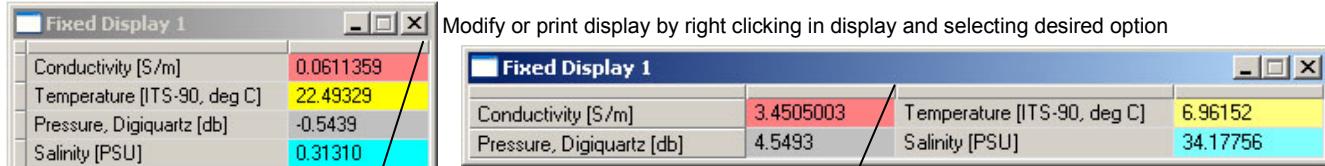

- When you start Seasave, you may get a message stating that Windows Firewall has blocked some features of this program to protect your computer, if TCP/IP output is enabled in the program setup (.psa) file. Click *Unblock* to permanently unblock the TCP/IP features of Seasave.
- Seasave can be run from the command line. See *Appendix I: Command Line Operation*.

Seasave Window

To start Seasave:

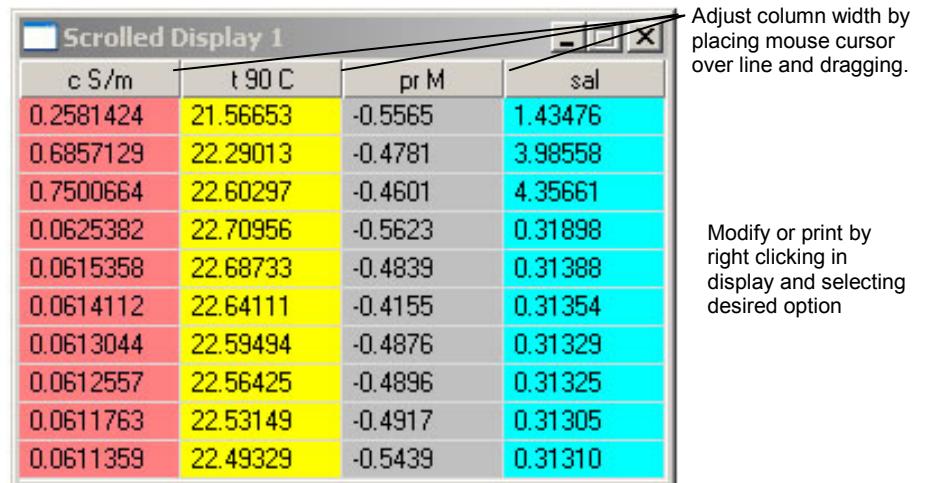
- Double click on *seasave.exe* (default location *c:/Program Files/Sea-Bird/SeasaveV7*), or
- Left click on Start and follow the path *Programs/Sea-Bird/SeasaveV7*

Seasave's main window looks like this:

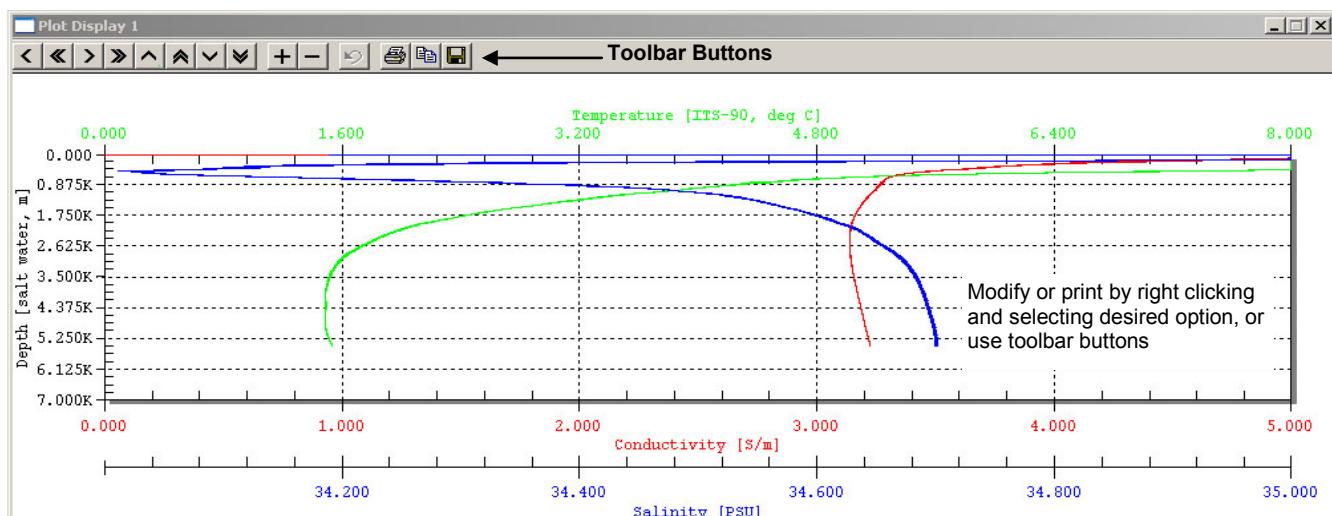

- Seasave title bar – The title bar shows the selected instrument type (SBE 911plus / 917plus CTD in the example above) and the path and file name for the program setup (.psa) file. The .psa file contains all information entered in Configure Inputs and Configure Outputs (instrument configuration file path and name, CTD serial port, water sampler, TCP/IP input and output ports, serial data output, etc.) as well as size, placement, and setup for each display window.
- Menus - The Menus contain options for setting up the instrument and the displays, as well as for starting data acquisition.
- Status display – The Status display provides the following information:
 - If Seasave is acquiring real-time data or playing archived data.
 - If Seasave is storing real-time data to a file; output data file name.
 - Instrument configuration (.con or .xmlcon) file name.
 To display or hide the Status, select Status in the Display menu.

Note:

Algorithms used to calculate derived parameters for output and/or display in Seasave are the same as used in SBE Data Processing's Derive and Data Conversion modules (with the exception of the oxygen, descent rate, & acceleration calculations). See *Appendix IV: Derived Parameter Formulas*.


- Data display windows - Seasave can display as many data windows as desired (within the limits of your computer's resources). The windows can be set up to display real-time data (conductivity, temperature, pressure, etc.) as well as calculated parameters such as salinity and sound velocity. The three windows types - fixed, scrolled, and plot - are briefly described below; their setup is described in detail in *Section 7: Display - Setting Up Seasave Displays*.

- The **Fixed Display** has a vertical list of the selected parameters to the left, and displays their current values to the right, and can be set up with one or two columns of data.



Adjust column width by placing mouse cursor over line at number column header and dragging.

- The **Scrolled Display** has a list of the selected parameters across the top, and displays the data in scrolling vertical columns.

- The **Plot Display** plots one parameter on the y-axis and up to four parameters on the x-axis, or one parameter on the x-axis and up to four parameters on the y-axis.

Seasave Menus

Notes:

- The .psa file contains all information entered in Configure Inputs and Configure Outputs (instrument .con or .xmlcon file path and name, CTD serial port, water sampler, TCP/IP input and output ports, serial data output, etc.) as well as size, placement, and setup for each display window.
- When you click OK in the Configure Inputs and Configure Outputs dialog boxes, and/or create/modify a display, Seasave saves the changes to a temporary location. **However, the changes are not saved to the program setup (.psa) file until you select Save Setup File or Save Setup File As in the File menu.**
- A display setup (.dsa) file defines the size, placement, and setup for a display window. The information in the .dsa file is also incorporated into the program setup (.psa) file. You can import and export .dsa files, allowing you to create the desired displays once and then reuse them later for other instruments / deployments. See *Section 7: Display – Setting Up Seasave Displays*.

A brief description of Seasave's menus follows:

- File –
 - Open Setup File – Select a setup (.psa) file. In the Open dialog box, if you select *Open as read only*, Seasave will prompt you to enter a new file name when you next try to save the .psa file (it will not allow you to overwrite the existing file).
 - Save Setup File – Save all the entered settings to the currently open .psa file.
 - Save Setup File As – Save all the entered settings to a new .psa file.
 - Restore Setup File – Discard all changes to settings (made in Configure Inputs, Configure Outputs, Display, and Options menus) since the last time you saved the .psa file.
 - Print – Print a fixed, scrolled, or plot display. The Select Display dialog box appears when Print is selected; this allows you to select the desired display for printing. Note that you can also print a display by right-clicking in the desired display and selecting Print.
 - Exit – Close Seasave.
 - Recent Setup Files – Provides a list of the 10 most recently used .psa files.
- Configure Inputs – setup of instrument configuration (.con or .xmlcon) file (defining sensors and sensor coefficients), serial ports, water sampler, TCP/IP ports, miscellaneous parameters, and pump control for a custom 9plus CTD (see *Sections 3, 4, and 5: Configure Inputs*).
- Configure Outputs – Set up of serial data output, serial ports, shared file output, mark variables, TCP/IP output and ports, SBE 11plus alarm, SBE 14 remote display and alarm, PC alarm, header form, and diagnostics (see *Section 6: Configure Outputs*).
- Display – Set up of fixed, scrolled, and plot displays, as well as displays to view status and NMEA data (see *Section 7: Display – Setting Up Seasave Displays*).
- Real-Time Data – Acquire, process, and display real-time data (see *Section 8: Real-Time Data and Real-Time Control – Real-Time Data Acquisition*).
- Real-Time Control – Control water sampler bottle firing, mark scans, NMEA scans to file, and (custom 9plus CTD only) turn the CTD pump on or off (see *Section 8: Real-Time Data and Real-Time Control – Real-Time Data Acquisition*).
- Archived Data – Process and display a previously acquired data file (see *Section 9: Archived Data*).

- Tools

- Convert shared file output .xml file to spreadsheet format – Convert an output .xml file (from Shared File Output) to a tab-delimited .txt format that can be opened in Microsoft Excel. If selected, a dialog box appears, allowing you to browse to the desired .xml file and to select the path and file name for the output .txt file. After you select the input .xml file and enter the name for the output .txt file, click the Convert button. The resulting .txt file can be opened in Excel.
- Display log file for Seasave – Display diagnostics output for Seasave.exe, which is the user-interface portion of the program.
- Display log file for Seasave Acq – Display diagnostics output for SeasaveAcq.exe, which is the data acquisition portion of the program.

Note:

The *Display log file* tools are available only if *Keep a diagnostics log* is selected on the Diagnostics tab in Configure Out. See *Diagnostics* in Section 6: *Configure Outputs*.

Notes:

- The program setup (.psa) file contains all information entered in Configure Inputs and Configure Outputs (instrument .con or .xmlcon file path and name, CTD serial port, water sampler, TCP/IP input and output ports, serial data output, etc.) as well as size, placement, and setup for each display window.
- The configuration (.con or .xmlcon) file defines the instrument – sensors, sensor channels, calibration coefficients, etc. Seasave uses this information to convert the raw data stream into engineering units for display during real-time data acquisition. Sea-Bird supplies a .con or .xmlcon file with each instrument. **The .con or .xmlcon file must match the existing instrument configuration and contain current sensor calibration information.**
- A display setup (.dsa) file defines the size, placement, and setup for a display window. The information in the .dsa file is also incorporated into the program setup (.psa) file. You can import and export .dsa files, allowing you to create the desired displays once and then reuse them later for other instruments / deployments. Even if you do not export the display setup to a separate .dsa file, the changes in the display are incorporated in the .psa file the next time you save the .psa file. See Section 7: *Display – Setting Up Seasave Displays*.

- Options

- Prompt to save program setup changes - If selected, when you exit Seasave (by selecting Exit in the File menu or clicking the close button in the upper right hand corner of the window), Seasave prompts you to save the program setup (.psa) file if desired.
- Automatically save program setup changes on exit – If selected, when you exit Seasave (by selecting Exit in the File menu or clicking the close button in the upper right hand corner of the window), Seasave automatically saves the program setup (.psa) file before exiting.

Note: If neither *Prompt to save program setup changes* or *Automatically save program setup changes on exit* is selected, Seasave will not provide a warning and will not save changes to the program setup file before exiting.

- Confirm Instrument Configuration Change – If selected, Save & Exit button in Configuration dialog box changes to Exit; when you click Exit, Seasave prompts you to save the configuration (.con or .xmlcon) file changes if desired. Otherwise, clicking Save & Exit automatically saves the configuration changes.
- Confirm Display Setup Change – If selected, when you close a Display window, Seasave prompts you to save the display setup (.dsa) file if desired. If not selected, Seasave will not save the display settings to a .dsa file.
- Confirm Output File Overwrite – If selected, Seasave provides a warning if you select an existing file name for a data output file and/or shared output file. Otherwise, Seasave does not provide a warning, and overwrites the data in the existing file.
- Check Scan Length – If selected, Seasave checks the data scan length against the expected length (based on setup of the .con or .xmlcon file) during real-time data acquisition and/or archived data playback; if the scan length does not match the .con or .xmlcon file, it provides a warning that there is an error. Otherwise, Seasave does not provide a warning. Regardless of whether Check Scan Length is selected, if there is a scan length error Seasave continues with real-time data acquisition (saving the raw data to a file), but does not show or plot data in the Seasave displays.
- Compare Serial Numbers – (*Applicable only to Archived Data playback*) If selected, Seasave checks the temperature and conductivity sensor serial numbers in the data file header against the serial numbers in the .con or .xmlcon file; if the serial numbers do not match, it provides a warning that there is an error, but continues with playback.
- Maximized plot may cover Seasave – If selected, when you maximize a plot display it fills the entire monitor screen, covering up the Seasave title bar, menus, and status bar. Otherwise, a maximized plot display remains within the Seasave window.

- Help – Help files contain much of the same information in this manual.

Getting Started

Displaying Archived Data - Sea-Bird Demo Files

Note:

.dat files were created by older versions of Seasave (Version < 6.0) from the real-time data stream from an SBE 911plus.

Seasave can be used to display archived raw data in a .hex or .dat file. Sea-Bird provides example files with the software to assist you in learning how to use Seasave. These files are automatically installed on your hard drive when you install Seasave; the default location is:

C:\Program Files\Sea-Bird\SeasaveV7-Demo

The demo files include:

- a data file - demo.hex
- an instrument configuration file - demo.con (defines instrument sensors, calibration coefficients, etc.)
- a program setup file – demo.psa. The .psa file defines all information entered in Configure Inputs and Configure Outputs (instrument .con or .xmlcon file path and name, CTD serial port, water sampler, TCP/IP input and output ports, serial data output, etc.) as well as the size, placement, and setup for each display window.

Follow these steps to use Seasave to display archived data:

1. In the File menu, select Open Setup File. The Open dialog box appears. Browse to the desired file (default location C:\Program Files\Sea-Bird\SeasaveV7-Demo), select demo.psa, and click OK. The display windows will now correspond to the selected .psa file.
2. In the Archived Data menu, select Start.
3. The Playback Archived Data dialog box appears (see *Section 9: Archived Data - Displaying Archived Data*):
 - A. On the File tab, click Select Data File. The Select Data File dialog box appears. Browse to the desired file (default location C:\Program Files\Sea-Bird\SeasaveV7-Demo\demo.hex) and click Open.
 - B. Click the Instrument Configuration tab. Click Open. The Select Instrument Configuration File dialog box appears. Browse to the desired file (default location C:\Program Files\Sea-Bird\SeasaveV7-Demo\demo.con) and click Open.
 - C. Click the File tab. Click Start. The example data will display.
4. As desired, modify and export the setup of the display windows (see *Section 7: Display - Setting Up Seasave Displays*). Save the modified .psa file, and repeat Steps 2 and 3.

Note:

When modifying and saving the program setup (.psa) file, use a new file name to avoid overwriting the demo file.

Acquiring and Displaying Real-Time Data

Follow these steps to use Seasave to acquire and display real-time data:

Note:

Serial ports and TCP/IP ports can be defined in *Configure Inputs* and/or *Configure Outputs*. If you make changes in one dialog box those changes will appear when you open the other dialog box.

1. Set up the instrument, and define input parameters (see *Sections 3, 4, and 5: Configure Inputs*):
 - Instrument Configuration – Set up the instrument configuration (.con or .xmlcon) file, defining what sensors are integrated with the instrument, each sensor's calibration coefficients, and what other data is integrated with the data stream from the instrument.
 - Serial Ports – Define COM ports and other communication parameters for CTD, water sampler and 9plus pump control, serial data output, and SBE 14 Remote Display.
 - Water Sampler - Enable and set up control of water sampler bottle firing.
 - TCP/IP Ports – Define ports for communication with remote display and remote bottle firing software.
 - Miscellaneous – Define miscellaneous parameters required for output of specific variables (depth, average sound velocity, descent rate, acceleration, oxygen, plume anomaly, potential temperature anomaly).
 - Pump Control – Enable user pump control for a custom SBE 9plus.
2. Define output parameters (see *Section 6: Configure Outputs*):
 - Serial Data Out - Enable and set up output of selected raw and/or converted data (engineering units) to a COM port on your computer.
 - Serial Ports – Define COM ports and other communication parameters for CTD, water sampler and 9plus pump control, serial data output, and SBE 14 Remote Display.
 - Shared File Out - Enable and set up output of selected raw and/or converted data (engineering units) to a *shared* file on your computer.
 - Mark Variables - Set up format for marking of selected data scans.
 - TCP/IP Out – Enable and set up output of raw or converted data to TCP/IP ports.
 - TCP/IP Ports – Define ports for communication with remote display and remote bottle firing software.
 - SBE 11plus Alarms – (for SBE 9plus / 11plus only) Enable and set up 11plus Deck Unit alarm (minimum and maximum pressure alarm, and altimeter alarm if altimeter integrated with 9plus CTD).
 - SBE 14 Remote Display - (if SBE 14 connected to a computer COM port) Enable and set up output of data to an SBE 14, and set up SBE 14 alarm (minimum and maximum pressure alarm, altimeter alarm if altimeter integrated with CTD, and bottom contact switch alarm if bottom contact switch integrated with CTD).
 - PC Alarms – Enable and set up alarm in the computer running Seasave (minimum and maximum pressure alarm, altimeter alarm if altimeter integrated with CTD, and bottom contact switch alarm if bottom contact switch integrated with CTD).
 - Header Form - Create a customized header for the data.
 - Diagnostics – Enable and set up diagnostic outputs, to assist in troubleshooting if you encounter difficulty running the program.
3. Define Seasave displays. Seasave can have an unlimited number of data displays (limited only by the resources of your computer). Three types of data displays are available: fixed, scrolled, and plot displays. Additionally, you can open a Status display and a NMEA display. See *Section 7: Display - Setting Up Seasave Displays*.
4. Start real-time data acquisition. If applicable (and if enabled in Steps 1 and 2), fire bottles, mark scans, and / or send Lat/Lon data to a file during acquisition. See *Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition*.

File Formats

File extensions are used by Seasoft to indicate the file type.

Input files:	
Extension	Description
.con or .xmlcon	<p>Notes:</p> <ul style="list-style-type: none"> Configuration files (.con or .xmlcon) can also be opened, viewed, and modified with <i>DisplayConFile.exe</i>, a utility that is installed in the same folder as SBE Data Processing. Right click on the desired configuration file, select <i>Open With</i>, and select <i>DisplayConFile</i>. This utility is often used at Sea-Bird to quickly open and view a configuration file for troubleshooting purposes, without needing to go through the additional steps of selecting the file in SBE Data Processing or Seasave. We recommend that you do not open .xmlcon files with a text editor (i.e., Notepad, Wordpad, etc.). <p>Instrument configuration - number and type of sensors, channel assigned to each sensor, and calibration coefficients. Seasave uses this information to interpret raw data from instrument. Latest version of configuration file for your instrument is supplied by Sea-Bird when instrument is purchased, upgraded, or calibrated. If you make changes to instrument (add or remove sensors, recalibrate, etc.), you must update configuration file. Can be viewed and/or modified in Seasave's Configure Inputs on Instrument Configuration tab (or in SBE Data Processing).</p> <ul style="list-style-type: none"> .xmlcon files, written in XML format, were introduced with SBE Data Processing and Seasave 7.20a. Instruments introduced after that are compatible only with .xmlcon files.
.dsa	<p>Seasave display setup file – defines size, placement, and setup for a display window. Information in .dsa file is also incorporated into program setup (.psa) file. You can import and export .dsa files, allowing you to create desired displays once and then reuse them for other instruments / deployments. Even if you do not save display setup in a separate .dsa file, display changes are incorporated in .psa file next time you save .psa file.</p>
.psa	<ul style="list-style-type: none"> Seasave program setup file - all information entered in Configure Inputs and Configure Outputs (instrument .con or .xmlcon file path and name, serial ports, water sampler, TCP/IP input and output ports, serial data output, etc.) as well as size, placement, and setup for each display window. The .psa file can be selected and saved in Seasave's File menu. Note that when you start Seasave, it always opens to most recently used .psa file. <p>Default location for Seasave .psa files is %USERPROFILE%\Application Data\Sea-Bird\Seasave\ (example c:\Documents and Settings\dbresko\ Application Data\Sea-Bird\Seasave\Seasave.psa).</p> <p>Seasave.ini contains a list of paths and file names for recently used .psa files. To view, click File and select Recent Setup Files. Seasave.ini is in %USERPROFILE%\Local Settings\Apps\Sea-Bird\ (example c:\Documents and Settings\dbresko\ Local Settings\Apps\Sea-Bird\Seasave.ini)</p> <ul style="list-style-type: none"> Seasave Remote program setup file, comparable to Seasave program setup file described above. <p>Default location for Seasave Remote .psa files is %USERPROFILE%\Application Data\Sea-Bird\SeasaveRem\ (example c:\Documents and Settings\dbresko\ Application Data\Sea-Bird\SeasaveRem\SeasaveRem.psa).</p> <p>SeasaveRem.ini contains a list of paths and file names for recently used .psa files. To view, click File and select Recent Setup Files. SeasaveRem.ini is in %USERPROFILE%\Local Settings\Apps\Sea-Bird\ (example c:\Documents and Settings\dbresko\ Local Settings\Apps\Sea-Bird\SeasaveRem.ini)</p>
.xml	<ul style="list-style-type: none"> Sensor calibration coefficient file. This file can be exported and/or imported from the dialog box for a sensor. This allows you to move a sensor from one instrument to another and update the instrument's .con or .xmlcon file while eliminating need for typing or resulting possibility of typographical errors. File written by Seaterm232 for data uploaded from SBE 25plus. This file can be played back in Seasave.
.xmlcon	See .con extension above.

Output files:

Extension	Description
.bl	Bottle log information - output bottle file, containing bottle firing sequence number and position, date, time, and beginning and ending scan numbers for each bottle closure. Scan numbers correspond to approximately 1.5-second duration for each bottle. Seasave writes information to file each time a bottle fire confirmation is received from SBE 32 Carousel, SBE 55 ECO Water Sampler, or (only when used with 911plus) G.O. 1016 Rosette. Can be used by SBE Data Processing's Data Conversion module.
.bmp	Bitmap graphic output from Plot display when you click Save to file icon in plot toolbar or right click in plot and select <i>Save as</i> .
.dat	Data - binary raw data file created by old versions (< 6.0) of Seasave from 911plus real-time data. File includes header information. Can be used by SBE Data Processing's Data Conversion module.
.hdr	Header – Includes same header information (software version, serial numbers, instrument configuration, etc.) as in data file.
.hex	Data: <ul style="list-style-type: none"> • Hex raw data file created by Seasave from real-time data from SBE 9plus, 16, 16plus, 16plus V2, 19, 19plus, 19plus V2, 21, 25, 25plus, or 49. • Data uploaded from memory of SBE 16, 16plus, 16plus-IM, 16plus V2, 16plus-IM V2, 17plus (used with SBE 9plus CTD) 19, 19plus, 19plus V2, 21, or 25. • Converted (engineering units) data file created by Seasave from real-time data stream from SBE 45. File includes header information. Can be used by SBE Data Processing's Data Conversion module.
.jpg	JPEG graphic output from Plot display when you click Save to file icon in plot toolbar or right click in plot and select <i>Save as</i> .
.mrk	Mark scan information - output marker file containing sequential mark number, system time, and data for selected variables. Seasave writes information to file when user clicks on Mark Scan during data acquisition to mark significant events in cast. Can be used by SBE Data Processing's Mark Scan module.
.nav	Navigation information - output navigation file (for system integrated with NMEA navigational device) containing latitude, longitude, time, scan number, and pressure. Seasave writes information to file when user clicks on Add to .nav File in NMEA Display during data acquisition to mark significant events in cast.
.txt	Text file: <ul style="list-style-type: none"> • Output file created if you configure Seasave to output data to a shared .txt file. • Program setup report file, which documents .psa file settings; created when you click Report in Configure Inputs or Configure Outputs dialog box. Seasave creates this as a <i>temporary</i> file; to save it to document your settings, select <i>Save and exit</i> and enter desired file name and location. • Configuration report file, which documents .con or .xmlcon file settings, created when you click Report in Configuration dialog box. Seasave creates this as a <i>temporary</i> file; to save it to document your settings, select <i>Save and exit</i> and enter desired file name and location. • Seasave Diagnostics log files (default SSLog.txt and SALog.txt), created if you enable diagnostic log(s) on Diagnostics tab in Configure Outputs. Default location %USERPROFILE%\Application Data\Sea-Bird\ (example c:\Documents and Settings\dbresko\Application Data\Sea-Bird\). • Seasave Remote Diagnostics log file (default SRLog.txt), created if you enable a diagnostic log in Seasave Remote (Options menu, Diagnostics). Default location %USERPROFILE%\Application Data\Sea-Bird\ (example c:\Documents and Settings\dbresko\Application Data\Sea-Bird\).
.wmf	Windows metafile graphic from Plot display when you click Save to file icon in plot toolbar or right click in plot and select <i>Save as</i> .
.xml	File in XML format: <ul style="list-style-type: none"> • Output file created if you configure Seasave to output data to a shared file, and select <i>XML format</i>. Note: You can later convert .xml file to a .txt file using the Tools menu. • Sensor calibration coefficient file. This file can be exported and/or imported from the dialog box for a sensor. This allows you to move a sensor from one instrument to another and update the instrument's .con or .xmlcon file while eliminating need for typing or resulting possibility of typographical errors.

Section 3: Configure Inputs, Part I - Instrument Configuration (.con or .xmlcon file)

Note:

Setup of all parameters in Configure Inputs, including the **name and location** of the selected .con or .xmlcon file, is included in the Seasave program setup (.psa) file. To save the setup, you must save the .psa file (File menu / Save Setup File) before exiting Seasave.

This section describes the setup of the instrument configuration (.con or .xmlcon) file in Configure Inputs.

For setup of other items in Configure Inputs, see *Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control*.

Introduction

Notes:

- Sea-Bird supplies a .con or .xmlcon file with each instrument. **The .con or .xmlcon file must match the existing instrument configuration and contain current sensor calibration information.**
- *Appendix II: Configure (.con or .xmlcon) File Format* contains a line-by-line description of the contents of the file.

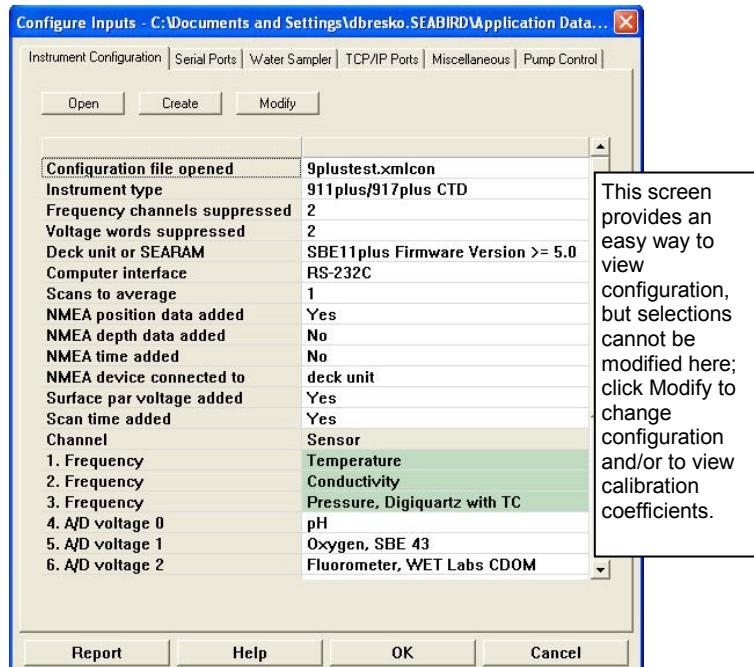
The instrument configuration (.con or .xmlcon) file defines the instrument configuration (what sensors are integrated with the instrument and what channels are used by the sensors) and the sensor calibration coefficients. Seasave uses this information to convert the raw data stream into engineering units for display during real-time data acquisition or archived data playback.

The configuration file discussion is in two parts:

- *Instrument Configuration* (in this section): Configuration dialog box for each instrument (SBE 911/917plus, 16, 16plus, 16plus V2, 19, 19plus, 19plus V2, 21, 25, 45, and 49).
- *Section 4: Configure Inputs, Part II - Calibration Coefficients*: calculation of calibration coefficients for each type of frequency, A/D count, voltage, and RS-232 sensor.

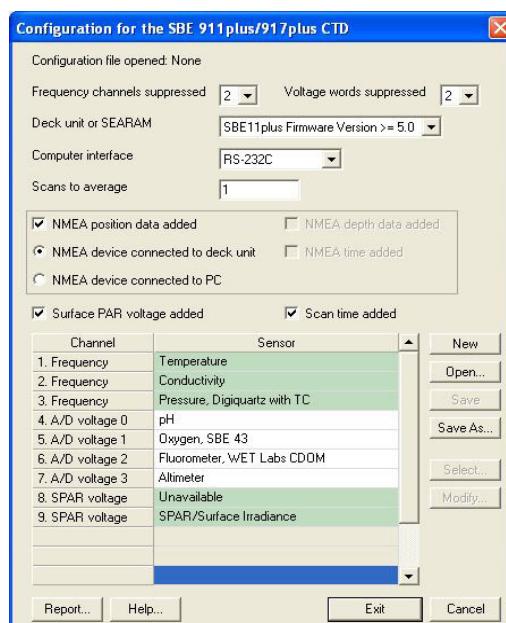
Instrument Configuration

Note:


Unless noted otherwise, Seasave supports only one of each auxiliary sensor model on a CTD (for example, you cannot specify two Chelsea Minitracka fluorometers, but you can specify a Chelsea Minitracka and a Chelsea UV Aquatracka fluorometer. See the sensor descriptions in *Section 4: Configure Inputs, Part II – Calibration Coefficients* for those sensors that Seasave supports in a redundant configuration (two or more of the same model interfacing with the CTD).

The discussion of instrument configuration is in two parts:

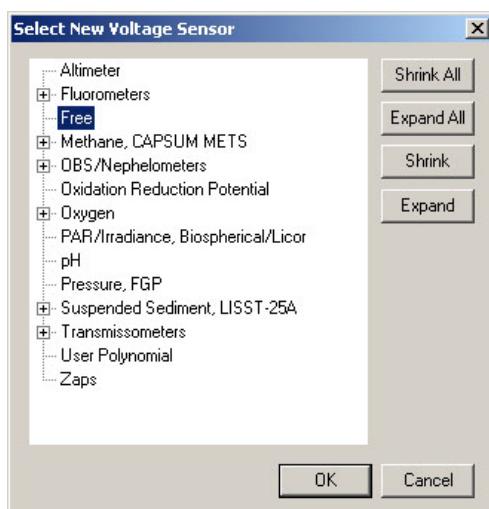
- General description of how to view, modify, or create a .con or .xmlcon file
- Detailed description of the Configuration dialog box for each instrument


Viewing, Modifying, or Creating .con or .xmlcon File

1. **To create a new .con or .xmlcon file:** Click Configure Inputs. In the Configure Inputs dialog box, click the Instrument Configuration tab. Click Create. In the Select an Instrument dialog box, select the desired instrument and click OK. Go to Step 3.
2. **To select and view or modify an existing .con or .xmlcon file:** Click Configure Inputs. In the Configure Inputs dialog box, click the Instrument Configuration tab. Click Open. In the Select Instrument Configuration File dialog box, browse to the desired file and click Open. The configuration information appears on the Instrument Configuration tab. An example is shown for the SBE 9plus.

Click Modify to bring up a dialog box to change the configuration and/or view calibration coefficients.

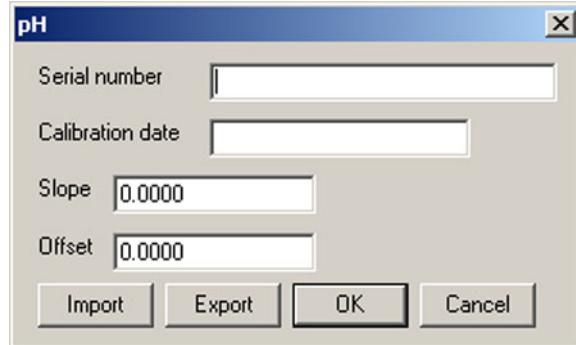
3. The Configuration dialog box appears. Selections at the top are different for each instrument. An example is shown for the SBE 9plus.



All Instrument Configuration dialog boxes include:

- List of instrument configuration options at the top (instrument-specific), such as number of auxiliary channels, pressure sensor type, and addition of Surface PAR and NMEA to the CTD data string.
- Channel/Sensor Table: This table reflects the options selected at the top (for example, the number of voltage sensors listed in the table agrees with the user-selection for External voltage channels). Shaded sensors cannot be removed or changed to another type of sensor. All others are optional.

➤ **To change a sensor type and input its calibration coefficients:**


After you specify the number of frequency and/or voltage channels at the top of the dialog box, click a (non-shaded) sensor and click **Select** to pick a different sensor for that channel (or right click on the sensor and select *Select New . . . Sensor*). A dialog box with a list of sensors appears.

Double click on the desired sensor. The Calibration Coefficients dialog box appears. An example is shown below for a pH sensor:

Note:

For details on using the Import and Export buttons in the sensor dialog box, see *Importing and Exporting Calibration Coefficients* in *Section 4: Configure Inputs, Part II – Calibration Coefficients*.

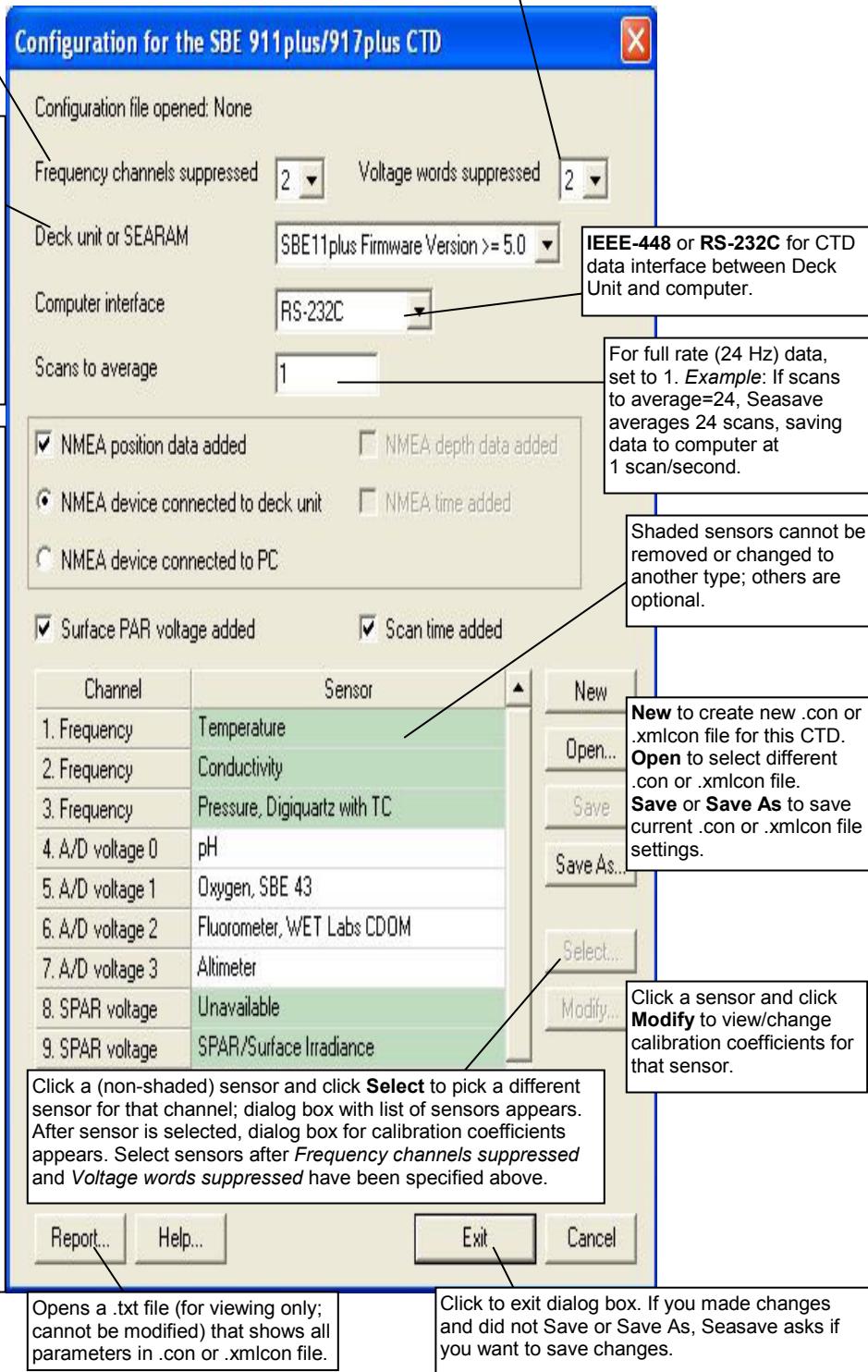
Enter the desired values and click OK.

➤ **To change a sensor's calibration coefficients:**

In the Configuration dialog box, click a sensor and click **Modify** to change the calibration coefficients for that sensor (or right click on the sensor and select *Modify . . . Calibration*, or double click on the sensor). The Calibration Coefficients dialog box appears (example shown above). See *Section 4: Configure Inputs, Part II – Calibration Coefficients* for calculation of coefficients.

SBE 9plus Configuration

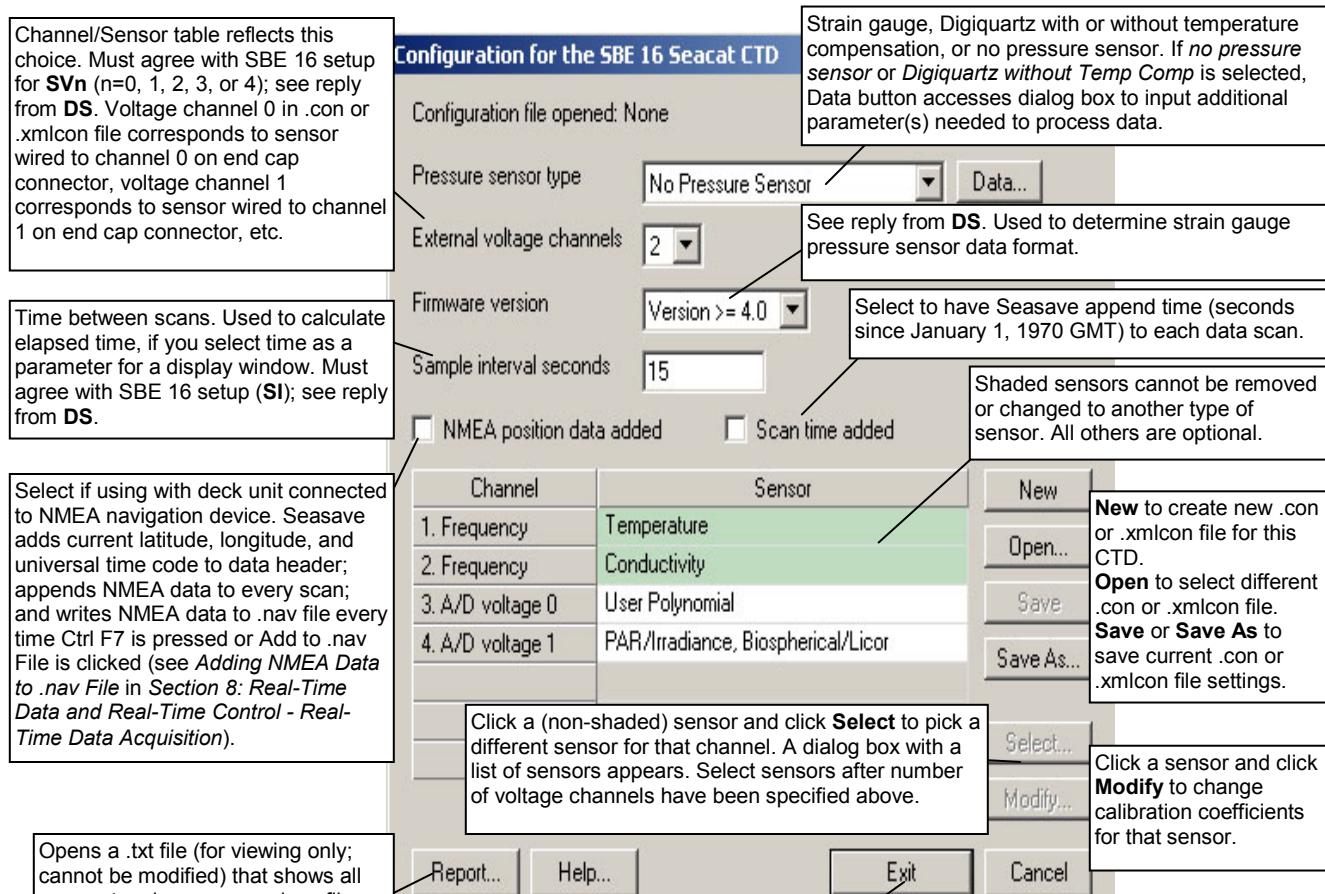
Channel/Sensor table reflects this choice. Typically:


- **0** = SBE 3 or 4 plugged into JB5 on 9plus (dual redundant sensor configuration)
- **1** = SBE 3 or 4 plugged into JB4 on 9plus and not using JB5 (single redundant sensor configuration)
- **2** = no redundant T or C sensors

11plus ≥ 5.0: Seasave sends **AddSPAR**= command to Deck Unit, consistent with configuration file selection for Surface PAR.
11plus < 5.0: Surface PAR acquisition is set in Deck Unit with dip switch.
17plus: Real-time data acquisition not available, only playback of archived data.
None: Not using 11plus or 17plus; see –nodeck unit in *Appendix I: Command Line Operation*.

- **NMEA** - Select if NMEA navigation device used, **and** select whether device is connected directly to 11plus Deck Unit **or** to computer (if connected to computer, define serial port and baud rate on Configure Inputs' Serial Ports tab). If device connected to computer, you can also append NMEA depth data (3 bytes) and NMEA time data (4 bytes) after Lat/Lon data. Seasave adds current latitude, longitude, and universal time code to data header; appends NMEA data to every scan; and writes NMEA data to .nav file every time Ctrl F7 is pressed or Add to .nav File is clicked (see *Adding NMEA Data to .nav File* in Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition).
- **Surface PAR** - Select if Surface PAR sensor used; must agree with Deck Unit setup if 11plus firmware < 5.0. Seasave appends Surface PAR data to every scan. Adds 2 channels to Channel/Sensor table. Do not decrease *Voltage words suppressed* to reflect this; *Voltage words suppressed* reflects only external voltages going directly to 9plus from auxiliary sensors. See Application Note 11S.
- **Scan time** - Select to have Seasave append time (seconds since January 1, 1970 GMT) to each data scan.

Channel/Sensor table reflects this choice. Voltage 0 in .con or .xmlcon file corresponds to sensor wired to channel 0 on end cap connector, voltage 1 to sensor wired to channel 1 on end cap connector, etc. Total voltage words = 4; each word contains data from two 12-bit A/D channels. Deck Unit suppresses words above highest numbered voltage word used. Words to suppress = 4 - Words to Keep


External Voltage (not spare) Connector	0 or 1	2 or 3	4 or 5	6 or 7
	JT2: AUX1	JT3: AUX2	JT5: AUX3	JT6: AUX4
Words to Keep	1	2	3	4

Shown below is an example status (DS) response **in Seaterm** that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in Seaterm to modify the setup of parameters critical to use of the *9plus* and *11plus* with Seasave, as well as any explanatory information.

```
SBE 11plus V 5.1f
Number of scans to average = 1
(11plus reads this from .con or .xmlcon file in Seasave when data acquisition is started.)
pressure baud rate = 9600
NMEA baud rate = 4800
surface PAR voltage added to scan
(11plus reads this from .con or .xmlcon file in Seasave when data acquisition is started.)
A/D offset = 0
GPIB address = 1
(GPIB address must be 1 [GPIB=1] to use Seasave, if Computer interface is IEEE-488 (GPIB) in .con or .xmlcon file.)
advance primary conductivity 0.073 seconds
advance secondary conductivity 0.073 seconds
autorun on power up is disabled
```

SBE 16 Seacat C-T Recorder Configuration

Shown below is an example status (**DS**) response **in Seaterm** that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in Seaterm to modify the setup of parameters critical to use of the SBE 16 with Seasave, as well as any explanatory information.

SEACAT V4.0h SERIAL NO. 1814 07/14/95 09:52:52.082

(If pressure sensor installed, pressure sensor information appears here in status response; must match Pressure sensor type in .con or .xmlcon file.)

clk = 32767.789, iop = 103, vmain = 8.9, vlith = 5.9

sample interval = 15 sec

(Sample interval [SI] must match Sample interval seconds in .con or .xmlcon file.)

delay before measuring volts = 4 seconds

samples = 0, free = 173880, lwait = 0 msec

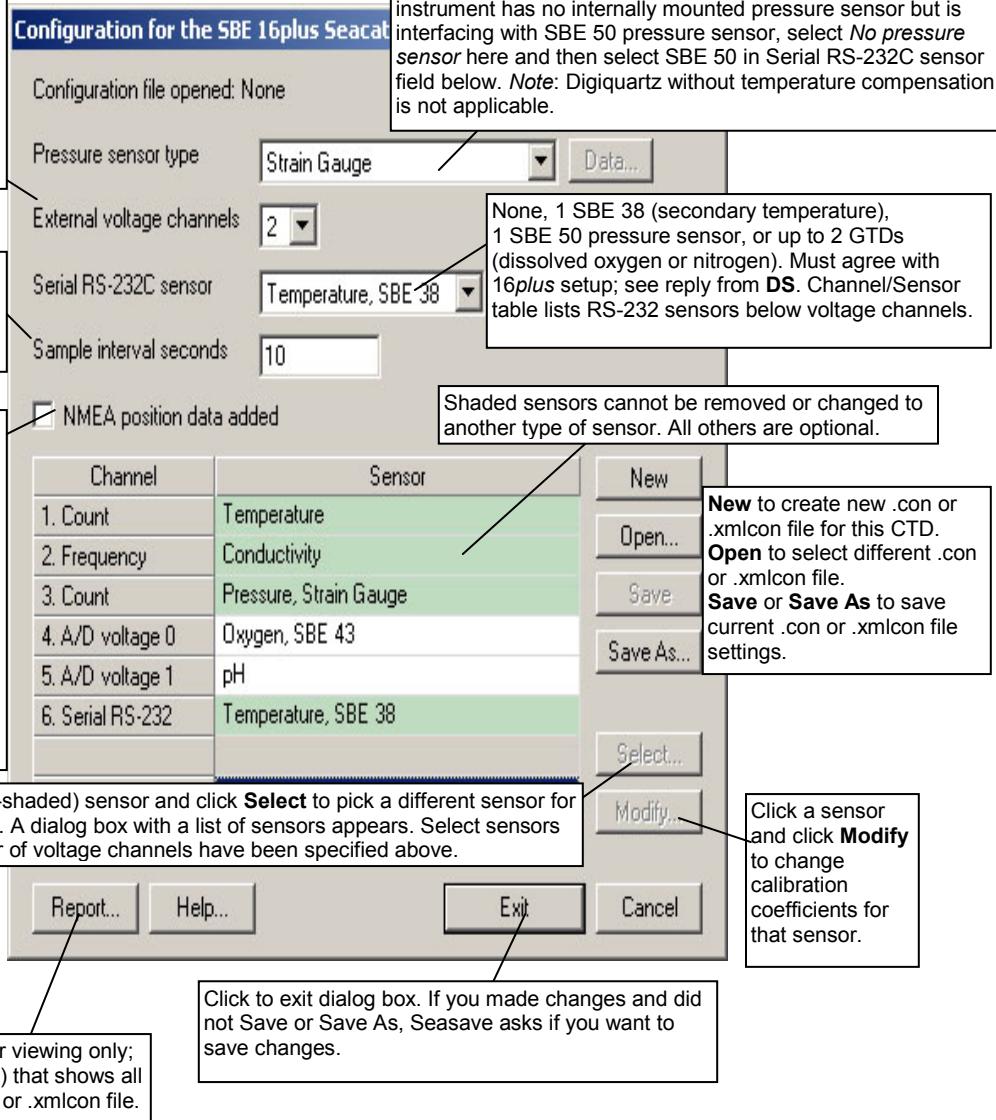
SW1 = C2H, battery cutoff = 5.6 volts

no. of volts sampled = 2

(Number of auxiliary voltage sensors enabled [SVn] must match External voltage channels in .con or .xmlcon file.)

mode = normal

logdata = NO


SBE 16plus Seacat C-T Recorder Configuration

The SBE 16*plus* can interface with one SBE 38 secondary temperature sensor, one SBE 50 pressure sensor, or up to two Pro-Oceanus Gas Tension Devices (GTDs) through the SBE 16*plus* optional RS-232 connector. Data from an SBE 50 pressure sensor is appended to the data stream, and does not replace the (optional) internally mounted pressure sensor data.

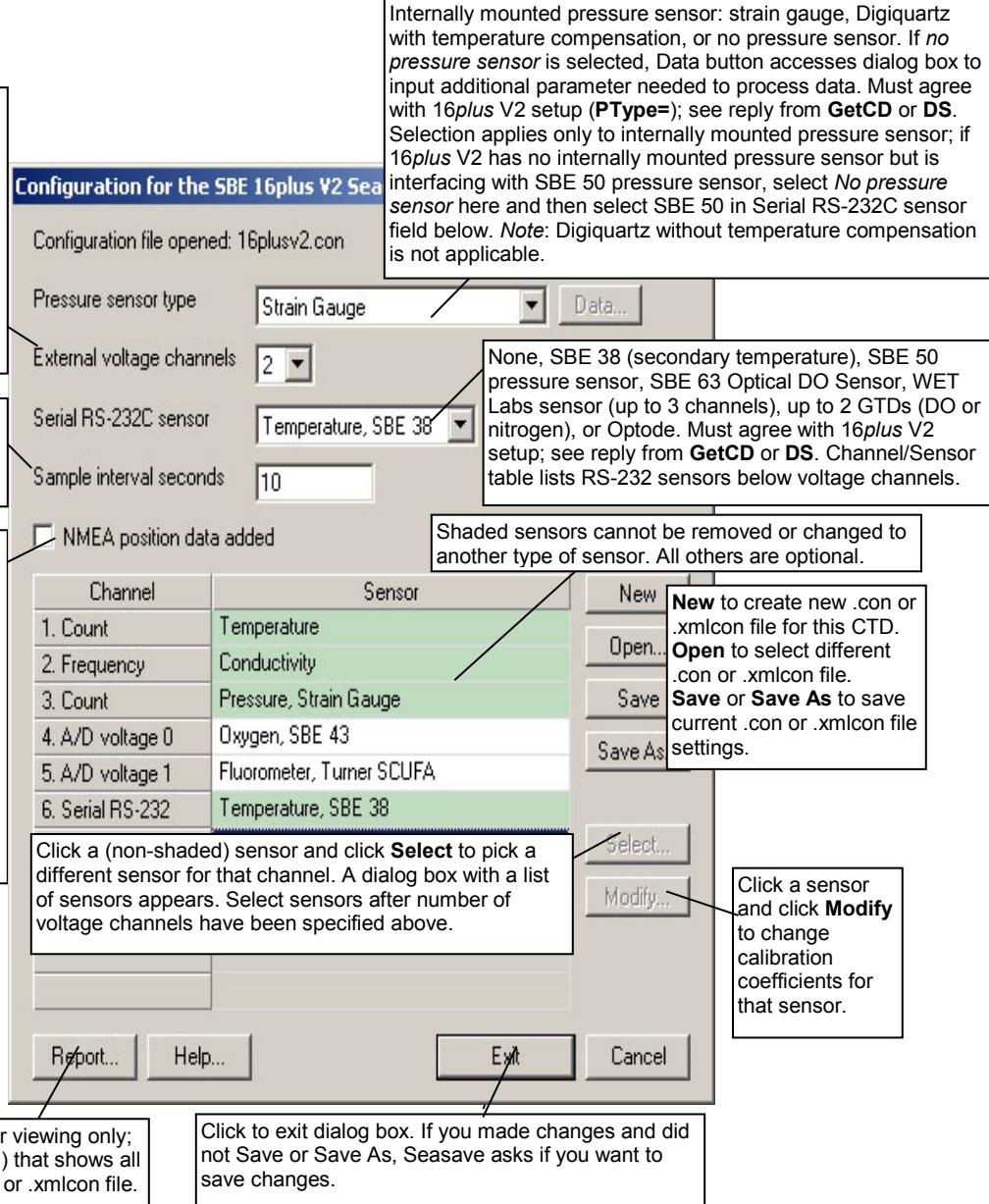
Channel/Sensor table reflects this choice (0, 1, 2, 3, or 4). Must agree with 16*plus* setup for **VoltN=** (N=0, 1, 2, and 3); see reply from **DS**. Voltage channel 0 in .con or .xmlcon file corresponds to first external voltage in data stream, voltage channel 1 to second external voltage in data stream, etc.

Time between scans. Must agree 16*plus* setup (**SampleInterval=**); see reply from **DS**.

Select if using with deck unit connected to NMEA navigation device. Seasave adds current latitude, longitude, and universal time code to data header; appends NMEA data to every scan; and writes NMEA data to .nav file every time Ctrl F7 is pressed or Add to .nav File is clicked (see *Adding NMEA Data to .nav File in Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition*).

Shown below is an example status (DS) response **in Seaterm** that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in Seaterm to modify the setup of parameters critical to use of the SBE 16plus with Seasave, as well as any explanatory information.

```
SBE 16plus V 1.6e SERIAL NO. 4300 03 Mar 2005 14:11:48
vbatt = 10.3, vlith = 8.5, ioper = 62.5 ma,
ipump = 21.6 ma, iext01 = 76.2 ma, iserial = 48.2 ma
status = not logging
sample interval = 10 seconds, number of measurements
per sample = 2
(Sample interval [SampleInterval=] must match Sample interval seconds in .con or .xmlcon file.)
samples = 823, free = 465210
run pump during sample, delay before sampling =
2.0 seconds
transmit real-time = yes
(Real-time data transmission must be enabled [TxRealTime=Y] to acquire data in Seasave.)
battery cutoff = 7.5 volts
pressure sensor = strain gauge, range = 1000.0
(Internal pressure sensor [PType=] must match Pressure sensor type in .con or .xmlcon file.)
SBE 38 = yes, SBE 50 = no, Gas Tension Device = no
(Selection/enabling of RS-232 sensors [SBE38=, SBE50=, GTD=, DualGTD=] must match Serial RS-232C sensor in .con or .xmlcon file.)
Ext Volt 0 = yes, Ext Volt 1 = yes, Ext Volt 2 = no, Ext
Volt 3 = no
(Number of external voltage sensors enabled [Volt0= through Volt3=] must match External voltage channels in .con or .xmlcon file.)
echo commands = yes
output format = raw HEX
(Output format must be set to raw Hex [OutputFormat=0] to acquire data in Seasave.)
serial sync mode disabled
(Serial sync mode must be disabled [SyncMode=N] to acquire data in Seasave.)
```


SBE 16plus V2 Seacat C-T Recorder Configuration

Through the SBE 16*plus* RS-232 sensor connector, the SBE 16*plus* V2 can interface with an SBE 38 secondary temperature sensor, SBE 50 pressure sensor, SBE 63 Optical Dissolved Oxygen Sensor, WET Labs sensor [single, dual, or triple channel ECO; WETStar; or C-Star], Optode, or up to two Pro-Oceanus Gas Tension Devices (GTDs). This data is appended to the data stream; SBE 38 and SBE 50 data does not replace the internal CTD data

Channel/Sensor table reflects this choice (0, 1, 2, 3, 4, 5, or 6). Must agree with 16*plus* V2 setup for **VoltN=** (N=0, 1, 2, 3, 4, and 5); see reply from **GetCD** or **DS**. Voltage channel 0 in .con or .xmlcon file corresponds to first external voltage in data stream, voltage channel 1 to second external voltage in data stream, etc.

Time between scans. Must agree with 16*plus* V2 setup (**SampleInterval=**); see reply from **GetCD** or **DS**.

Select if using with deck unit connected to NMEA navigation device. Seasave adds current latitude, longitude, and universal time code to data header; appends NMEA data to every scan; and writes NMEA data to .nav file every time Ctrl F7 is pressed or Add to .nav File is clicked (see *Adding NMEA Data to .nav File in Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition*).

Shown below is an example status (DS) response *in a terminal program* that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in the terminal program to modify the setup of parameters critical to use of the SBE 16plus V2 with Seasave, as well as any explanatory information.

```
SBE 16plus V 2.0 SERIAL NO. 6001 24 Oct 2007 14:11:48
vbatt = 10.3, vlith = 8.5, ioper = 62.5 ma,
ipump = 21.6 ma, iext01 = 76.2 ma, iserial = 48.2 ma
status = not logging
samples = 0, free = 3463060
sample interval = 10 seconds, number of measurements
per sample = 1
(Sample interval [SampleInterval=] must match Sample interval seconds in .con or .xmlcon file.)
pump = run pump during sample, delay before sampling =
2.0 seconds
transmit real-time = yes
(Real-time data transmission must be enabled [TxRealTime=Y] to acquire data in Seasave.)
battery cutoff = 7.5 volts
pressure sensor = strain gauge, range = 1000.0
(Internal pressure sensor [PType=] must match Pressure sensor type in .con or .xmlcon file.)
SBE 38 = yes, SBE 50 = no, WETLABS = no, OPTODE = no, SBE63 =
no, Gas Tension Device = no
(Selection/enabling of RS-232 sensors [SBE38=, SBE50=, WetLabs=, Optode=,
SBE63=, GTD=, DualGTD=] must match Serial RS-232C sensor in .con or .xmlcon file.)
Ext Volt 0 = yes, Ext Volt 1 = yes,
Ext Volt 2 = no, Ext Volt 3 = no,
Ext Volt 4 = no, Ext Volt 5 = no
(Number of external voltage sensors enabled [Volt0= through Volt5=] must match External voltage channels in .con or .xmlcon file.)
echo characters = yes
output format = raw HEX
(Output format must be set to raw Hex [OutputFormat=0] to acquire data in Seasave.)
serial sync mode disabled
(Serial sync mode must be disabled [SyncMode=N] to acquire data in Seasave.)
```

SBE 19 Seacat Profiler Configuration

Seasave always treats the SBE 19 as if it is a Profiling instrument (i.e., it is in Profiling mode). If your SBE 19 is in Moored Mode, you must treat it like an SBE 16 (when setting up the .con or .xmlcon file, select the SBE 16).

Channel/Sensor table reflects this choice. Must agree with SBE 19 setup for **SVn** (n=0, 2, or 4); see reply from **DS**. Voltage channel 0 in .con or .xmlcon file corresponds to sensor wired to channel 0 on end cap connector, voltage channel 1 corresponds to sensor wired to channel 1 on end cap connector, etc.

- NMEA** - Select if NMEA navigation device used, **and** select whether device is connected directly to Deck Unit **or** to computer (if connected to computer, define serial port and baud rate on Configure Inputs' Serial Ports tab). You can also append NMEA depth data (3 bytes) and NMEA time data (4 bytes) after Lat/Lon data. Seasave adds current latitude, longitude, and universal time code to data header; appends NMEA data to every scan; and writes NMEA data to .nav file every time Ctrl F7 is pressed or Add to .nav File is clicked (see *Adding NMEA Data to .nav File in Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition*).

Notes:

1. NMEA time can only be appended if NMEA device connected to computer.
2. NMEA depth can only be appended if NMEA device connected to computer **or** if using SBE 19 with SBE 33 or 36 Deck Unit (firmware ≥ 3.0) or PN 90488 or 90545 Interface Box.

- Surface PAR** - Select if using with deck unit connected to Surface PAR sensor. Seasave appends Surface PAR data to every scan. Adds 2 channels to Channel/Sensor table. Do not increase *External voltage channels* to reflect this; *External voltage channels* reflects only external voltages going directly to SBE 19 from auxiliary sensors. See Application Note 47.
- Scan time added** - Select to have Seasave append time (seconds since January 1, 1970 GMT) to each data scan.

Configuration for the SBE 19 Seacat CTD

Configuration file opened: None

Pressure sensor type: Strain Gauge

External voltage channels: 2

Firmware version: Version ≥ 3.0

0.5 second intervals: 1

NMEA position data added NMEA depth data added

NMEA device connected to deck unit NMEA time added

NMEA device connected to PC

Surface PAR voltage added Scan time added

Channel	Sensor
1. Frequency	Temperature
2. Frequency	Conductivity
3. A/D voltage 0	pH
4. A/D voltage 1	Transmissometer, Chelsea/Seatech/Wetlab
5. Pressure voltage	Pressure, Strain Gauge
6. SPAR voltage	Unavailable
7. SPAR voltage	SPAR/Surface Irradiance

Buttons: New, Open..., Save, Save As, Select..., Modify..., Exit, Cancel

Report... Help... Click a (non-shaded) sensor and click **Select** to pick a different sensor for that channel. A dialog box with a list of sensors appears. Select sensors after number of voltage channels have been specified above.

Click to exit dialog box. If you made changes and did not Save or Save As, Seasave asks if you want to save changes.

Shown below is an example status (DS) response *in Seaterm* that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in Seaterm to modify the setup of parameters critical to use of the SBE 19 with Seasave, as well as any explanatory information.

```
SEACAT PROFILER V3.1B SN 936 02/10/94 13:33:23.989
strain gauge pressure sensor: S/N = 12345,
range = 1000 psia, tc = 240
(Pressure sensor (strain gauge or Digiquartz) must match Pressure sensor type in .con or .xmlcon file.)
clk = 32767.766 iop = 172 vmain = 8.1 vlith = 5.8
mode = PROFILE ncasts = 0
(Mode must be profile [MP] if setting up .con or .xmlcon file for SBE 19; create .con or .xmlcon file for SBE 16 for SBE 19 in moored mode [MM].)
sample rate = 1 scan every 0.5 seconds
(Sample rate [SR] must match 0.5 second intervals in .con or .xmlcon file.)
minimum raw conductivity frequency for pump turn on =
3206 hertz
pump delay = 40 seconds
samples = 0 free = 174126 lwait = 0 msec
battery cutoff = 7.2 volts
number of voltages sampled = 2
(Number of auxiliary voltage sensors enabled [SVn] must match External voltage channels in .con or .xmlcon file.)
logdata = NO
```

SBE 19plus Seacat Profiler Configuration

Channel/Sensor table reflects this choice (0, 1, 2, 3, or 4). Must agree with 19plus setup for **VoltN=** (N= 0, 1, 2, and 3); see reply from **DS**. Voltage channel 0 in .con or .xmlcon file corresponds to first external voltage in data stream, voltage channel 1 to second external voltage in data stream, etc.

Interval between scans in **Moored** mode. Seasave uses this to calculate elapsed time, if you select time as a parameter for a display window. Must agree with 19plus setup (**SampleInterval=**); see reply from **DS**.

- **NMEA** - Select if NMEA navigation device used, **and** select whether device is connected directly to Deck Unit **or** to computer (if connected to computer, define serial port and baud rate on Configure Inputs' Serial Ports tab). You can also append NMEA depth data (3 bytes) and NMEA time data (4 bytes) after Lat/Lon data. Seasave adds current latitude, longitude, and universal time code to data header; appends NMEA data to every scan; and writes NMEA data to .nav file every time Ctrl F7 is pressed or Add to .nav File is clicked (see *Adding NMEA Data to .nav File in Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition*).
- Notes:
 1. NMEA time can only be appended if NMEA device connected to computer.
 2. NMEA depth can only be appended if NMEA device connected to computer or if using 19plus with SBE 33 or 36 Deck Unit (firmware \geq 3.0) or PN 90488 or 90545 Interface Box.
- **Surface PAR** - Select if using with deck unit connected to Surface PAR sensor. Seasave appends Surface PAR data to every scan. Adds 2 channels to Channel/Sensor table. Do not increase **External voltage channels** to reflect this; **External voltage channels** reflects only external voltages going directly to 19plus from auxiliary sensor. See Application Note 47.
- **Scan time added** - Select to have Seasave append time (seconds since January 1, 1970 GMT) to each data scan.

Configuration for the SBE 19plus Seacat CTD

Configuration file opened: None

Pressure sensor type: Strain Gauge

External voltage channels: 4

Mode: Profile

Sample interval seconds: 10

Scans to average: 1

NMEA position data added (checked)

NMEA device connected to deck unit (radio button checked)

Surface PAR voltage added (unchecked)

Strain gauge (only selection applicable to 19plus).

Must agree with 19plus setup (MP for Profiling mode, MM for Moored mode); see reply from DS.

Number of samples to average (samples at 4 Hz) in Profiling mode. Used to calculate elapsed time, if you select time as an output parameter. Must agree with 19plus setup (NAvg=); see reply from DS.

Channel	Sensor	New
1. Count	Temperature	Shaded sensors cannot be removed or changed to another type of sensor. All others are optional.
2. Frequency	Conductivity	
3. Count	Pressure, Strain Gauge	
4. A/D voltage 0	Oxygen, SBE 43	
5. A/D voltage 1	pH	
6. A/D voltage 2	Transmissometer, Chelsea/Seatech/Wetlab	
7. A/D voltage 3	Altimeter	

New to create new .con or .xmlcon file for this CTD.

Open to select different .con or .xmlcon file.

Save or Save As to save current .con or .xmlcon file settings.

Click a sensor and click Modify to change calibration coefficients for that sensor.

Click a (non-shaded) sensor and click Select to pick a different sensor for that channel. Dialog box with a list of sensors appears. Select sensors after number of voltage channels have been specified above.

Report... Help... Exit Cancel

Opens a .txt file (for viewing only; cannot be modified) that shows all parameters in .con or .xmlcon file.

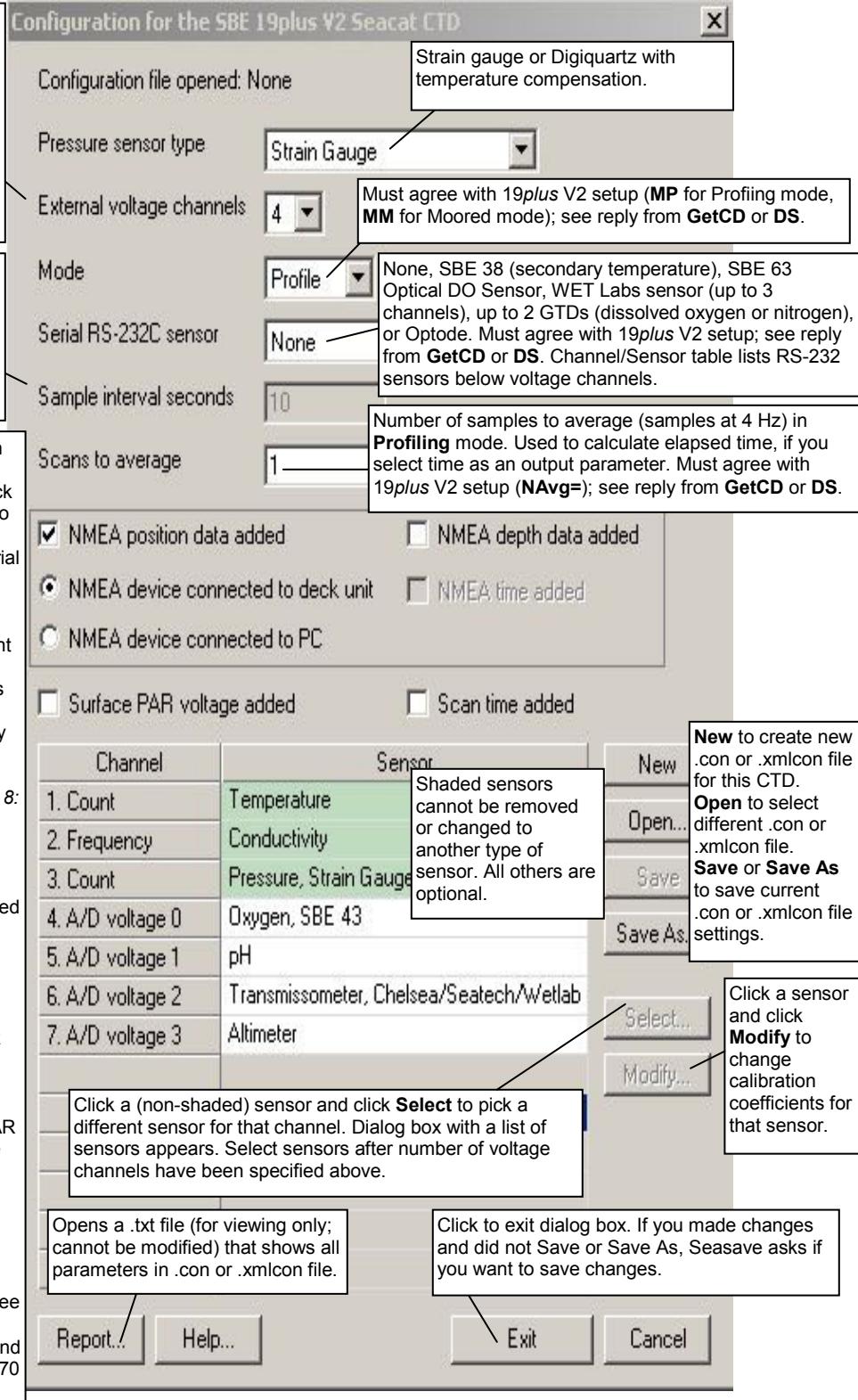
Click to exit dialog box. If you made changes and did not Save or Save As, Seasave asks if you want to save changes.

Shown below is an example status (DS) response *in Seaterm* that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in Seaterm to modify the setup of parameters critical to use of the instrument with Seasave, as well as any explanatory information.

```
SeacatPlus V 1.5 SERIAL NO. 4000 22 May 2005 14:02:13
vbatt = 9.6, vlith = 8.6, ioper = 61.2 ma,
ipump = 25.5 ma, iext01 = 76.2 ma, iext23 = 65.1 ma
status = not logging
number of scans to average = 1
(Scans to average [NAvg=] must match Scans to Average in .con or .xmlcon file.)
samples = 0, free = 381300, casts = 0
mode = profile, minimum cond freq = 3000,
pump delay = 60 sec
(Mode [MP for profile or MM for moored] must match Mode in .con or .xmlcon file.)
autorun = no, ignore magnetic switch = no
battery type = ALKALINE, battery cutoff = 7.3 volts
pressure sensor = strain gauge, range = 1000.0
(Pressure sensor [PType=] must match Pressure sensor type in .con or .xmlcon file.)
SBE 38 = no, Gas Tension Device = no
(RS-232 sensors (which are used for custom applications only) must be disabled to use Seasave.)
Ext Volt 0 = yes, Ext Volt 1 = yes, Ext Volt 2 = yes,
Ext Volt 3 = yes
(Number of external voltage sensors enabled [Volt0= through Volt3=] must match External voltage channels in .con or .xmlcon file.)
echo commands = yes
output format = raw Hex
(Output format must be set to raw Hex [OutputFormat=0] to acquire data in Seasave.)
```

SBE 19plus V2 Seacat Profiler Configuration

Through the CTD's RS-232 sensor connector, the SBE 19*plus* V2 can interface with an SBE 38 secondary temperature sensor, SBE 63 Optical Dissolved Oxygen sensor, WET Labs sensor [single, dual, or triple channel ECO; WETStar; or C-Star], Optode, or up to two Pro-Oceanus Gas Tension Devices (GTDs). This data is appended to the data stream; SBE 38 data does not replace the internal 19*plus* V2 temperature data.

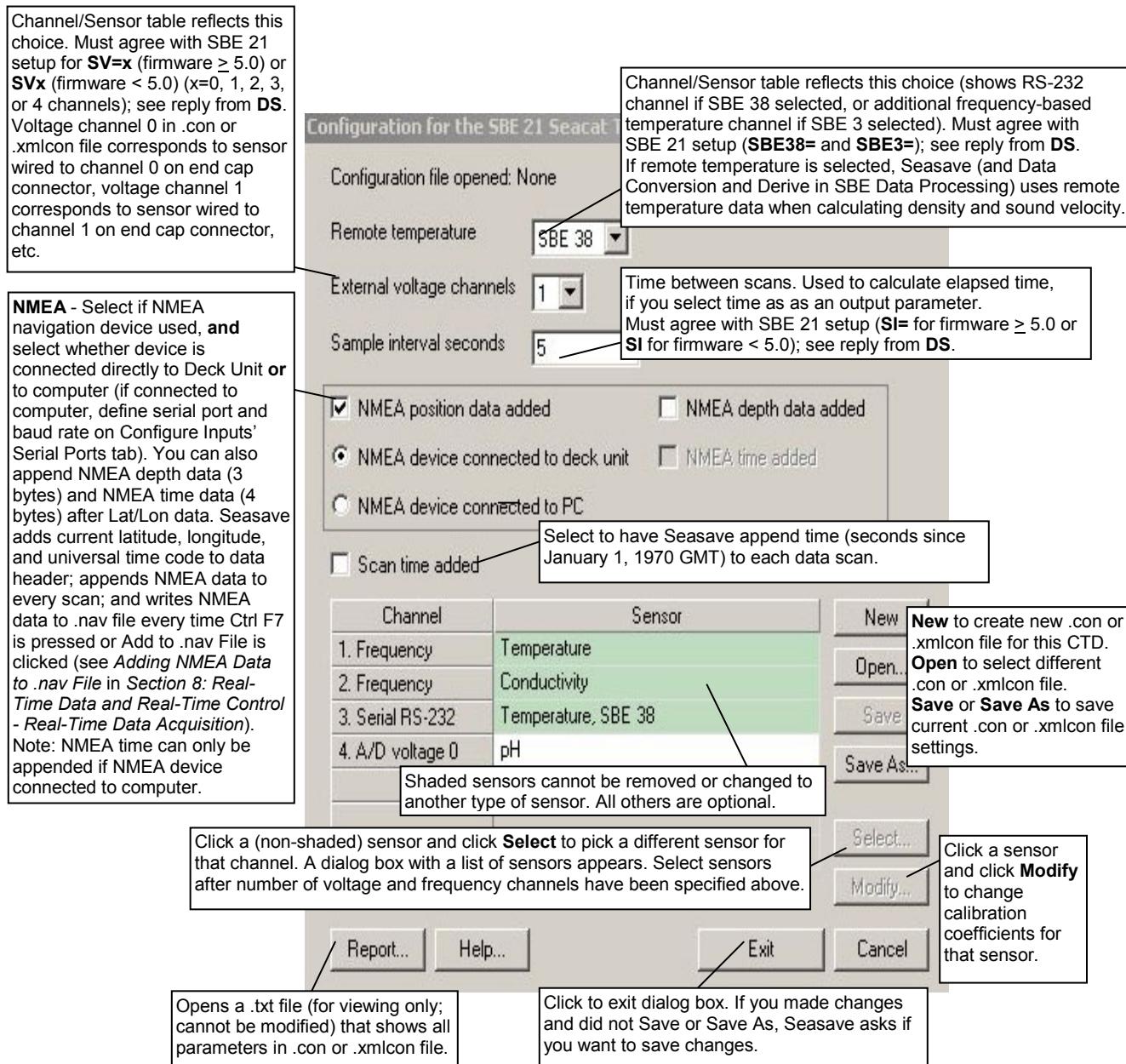

Channel/Sensor table reflects this choice (0, 1, 2, 3, 4, 5, or 6). Must agree with 19*plus* V2 setup for **VoltN=** (N=0, 1, 2, 3, 4, and 5); see reply from **GetCD** or **DS**. Voltage channel 0 in .con or .xmlcon file corresponds to first external voltage in data stream, voltage channel 1 to second external voltage in data stream, etc.

Interval between scans in **Moored** mode. Seasave uses this to calculate elapsed time, if you select time as a parameter for a display window. Must agree with 19*plus* V2 setup (**SampleInterval=**); see reply from **GetCD** or **DS**.

- NMEA** - Select if NMEA navigation device used, and select whether device is connected directly to Deck Unit or to computer (if connected to computer, define serial port and baud rate on Configure Inputs' Serial Ports tab). You can also append NMEA depth data (3 bytes) and NMEA time data (4 bytes) after Lat/Lon data. Seasave adds current latitude, longitude, and universal time code to data header; appends NMEA data to every scan; and writes NMEA data to .nav file every time Ctrl F7 is pressed or Add to .nav File is clicked (see *Adding NMEA Data to .nav File* in Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition).

Notes:

1. NMEA time can only be appended if NMEA device connected to computer.
2. NMEA depth can only be appended if NMEA device connected to computer or if using 19*plus* V2 with SBE 33 or 36 Deck Unit (firmware ≥ 3.0) or PN 90488 or 90545 Interface Box.
- Surface PAR** - Select if using with deck unit connected to Surface PAR sensor. Seasave appends Surface PAR data to every scan. Adds 2 channels to Channel/Sensor table. Do not increase *External voltage channels* to reflect this; *External voltage channels* reflects only external voltages going directly to 19*plus* V2 from auxiliary sensor. See Application Note 47.
- Scan time added** - Select to append time (seconds since January 1, 1970 GMT) to each data scan.


Shown below is an example status (DS) response *in a terminal program* that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in the terminal program to modify the setup of parameters critical to use of the instrument with Seasave, as well as any explanatory information.

```
SBE 19plus V 2.2 SERIAL NO. 4000 05 Jun 2009 14:02:13
vbatt = 9.6, vlith = 8.6, ioper = 61.2 ma,
ipump = 25.5 ma, iext01 = 76.2 ma, iext2345 = 65.1 ma
status = not logging
number of scans to average = 1
(Scans to average [NAvg=] must match Scans to Average in .con or .xmlcon file.)
samples = 0, free = 4386532, casts = 0
mode = profile, minimum cond freq = 3000,
pump delay = 60 sec
(Mode [MP for profile or MM for moored] must match Mode in .con or .xmlcon file.)
autorun = no, ignore magnetic switch = no
battery type = ALKALINE, battery cutoff = 7.5 volts
pressure sensor = strain gauge, range = 1000.0
(Pressure sensor [PType=] must match Pressure sensor type in .con or .xmlcon file.)
SBE 38 = no, WETLABS = no, OPTODE = no, SBE63 = no,
Gas Tension Device = no
(Selection/enabling of RS-232 sensors [SBE38=, WetLabs=, Optode=, SBE63=, GTD=, DualGTD=] must match Serial RS-232C sensor in .con or .xmlcon file.)
Ext Volt 0 = yes, Ext Volt 1 = yes,
Ext Volt 2 = yes, Ext Volt 3 = yes,
Ext Volt 4 = no, Ext Volt 5 = no
(Number of external voltage sensors enabled [Volt0= through Volt5=] must match External voltage channels in .con or .xmlcon file.)
echo characters = yes
output format = raw Hex
(Output format must be set to raw Hex [OutputFormat=0] to acquire data in Seasave.)
```

SBE 21 Thermosalinograph Configuration

In July 2009, Sea-Bird updated the SBE 21 electronics and firmware. As a result, there were some changes in capabilities and in commands.

- **Firmware version < 5.0** – Depending on serial number, these SBE 21s may be integrated with an SBE 38 remote temperature sensor (if SBE 21 equipped with 4-pin remote temperature connector) or an SBE 3 remote temperature sensor (if SBE 21 equipped with 3-pin remote temperature connector).
- **Firmware version ≥ 5.0** – These SBE 21s are compatible with an SBE 38 remote temperature sensor, and are **not** compatible with an SBE 3 remote temperature sensor.

Shown below is an example status (DS) response *in Seaterm* that corresponds to the setup shown in the Configuration dialog box above.

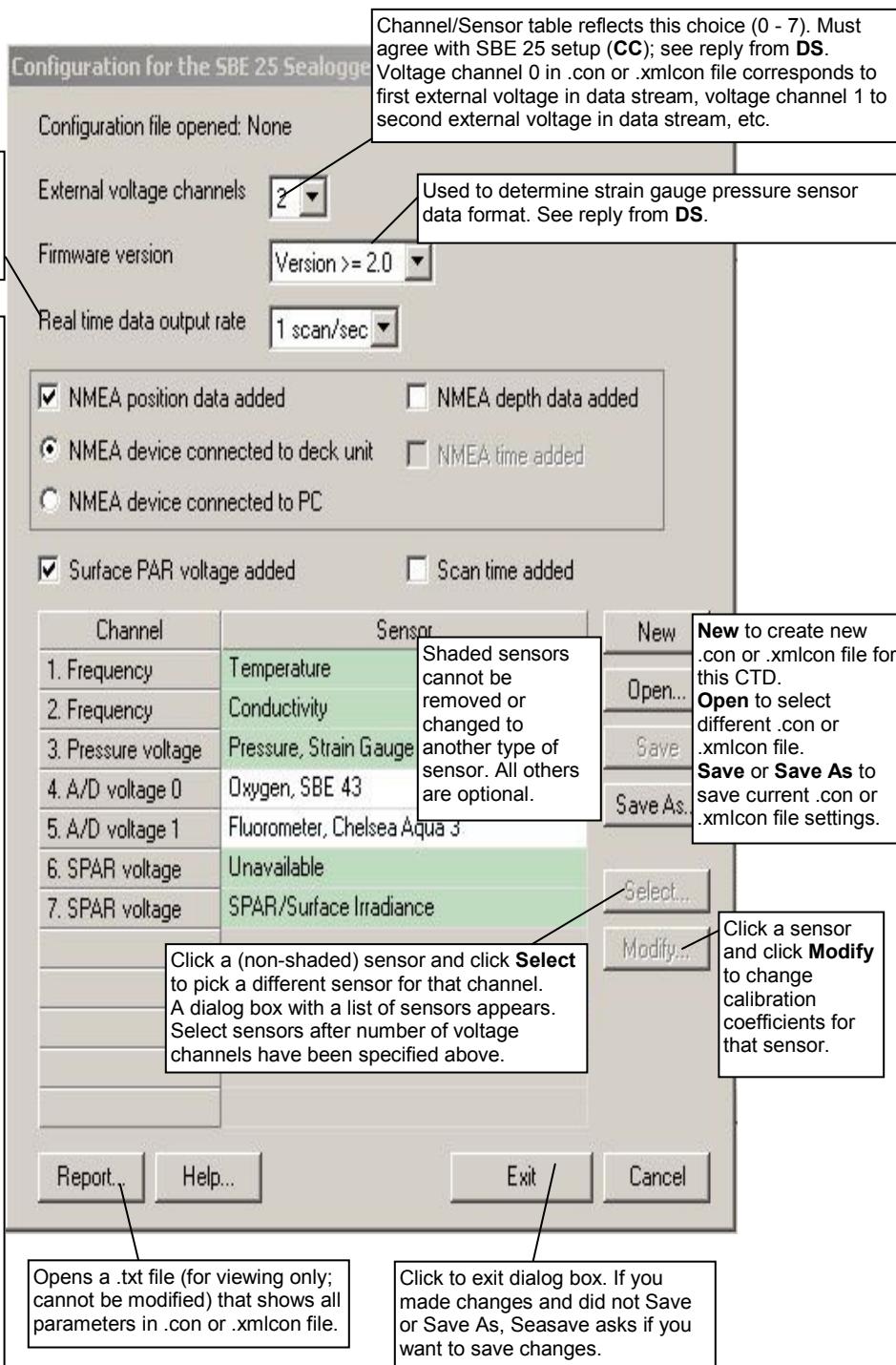
Shown below the appropriate lines are the commands used in Seaterm to modify the setup of parameters critical to use of the SBE 21 with Seasave, as well as any explanatory information.

Note:

The status response shown is for an SBE 21 with firmware \geq 5.0. The response, and the commands used to change the sample interval and the number of auxiliary voltage sensors, differs for older firmware.

```
SEACAT THERMOSALINOGRAPH V5.0 SERIAL NO. 4300 07/15/2009
14:23:14
ioper = 50.7 ma, vmain = 11.4, vlith = 8.8
samples = 0, free = 5981649
sample interval = 5 seconds, no. of volts sampled = 1
(Sample interval [SI=] must match Sample interval seconds in .con or .xmlcon file.
Number of auxiliary voltage sensors enabled [SV=] must match External voltage channels in .con or .xmlcon file.)
sample external SBE 38 temperature sensor
(External temperature sensor [SBE38=] must match Remote temperature in .con or .xmlcon file; this line appears only if SBE 38 is enabled [SBE38=Y])
output format = SBE21
(Output format must be set to SBE 21 [F1] to acquire data in Seasave.)
start sampling when power on = yes
average data during sample interval = yes
logging data = no
voltage cutoff = 7.5 volts
```

SBE 25 Sealogger Configuration

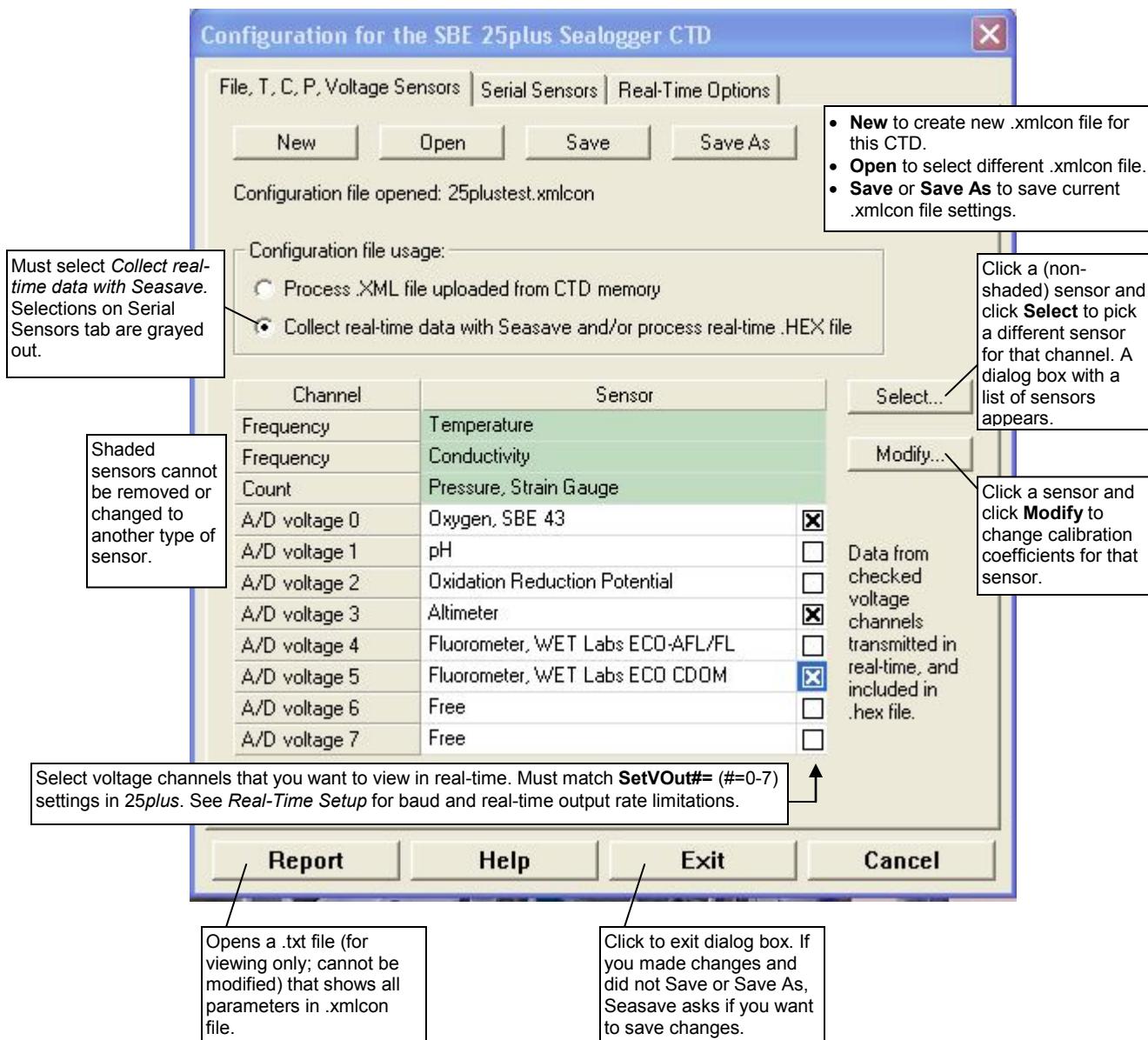

1, 2, 4, or 8 scans/second. Used to calculate elapsed time, if you select time as a parameter for a display window. Must agree with SBE 25 setup (CC); see reply from DS.

- NMEA** - Select if NMEA navigation device used, **and** select whether device is connected directly to Deck Unit **or** to computer (if connected to computer, define serial port and baud rate on Configure Inputs' Serial Ports tab). You can also append NMEA depth data (3 bytes) and NMEA time data (4 bytes) after Lat/Lon data. Seasave adds current latitude, longitude, and universal time code to data header; appends NMEA data to every scan; and writes NMEA data to .nav file every time Ctrl F7 is pressed or Add to .nav File is clicked (see *Adding NMEA Data to .nav File* in Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition).

Notes:

1. NMEA time can only be appended if NMEA device connected to computer.
2. NMEA depth can only be appended if NMEA device connected to computer **or** if using SBE 25 with SBE 33 or 36 Deck Unit (firmware ≥ 3.0) or PN 90488 or 90545 Interface Box.

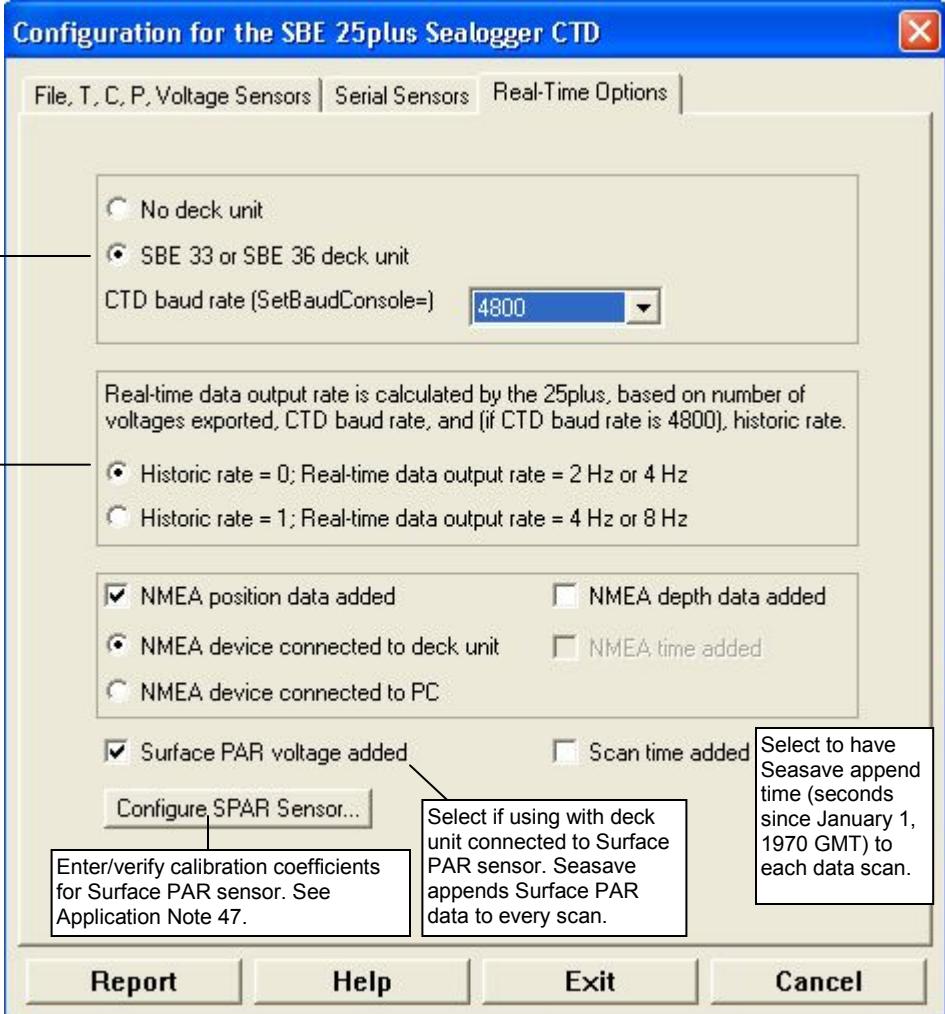
- Surface PAR** - Select if using with deck unit connected to Surface PAR sensor. Seasave appends Surface PAR data to every scan. Adds 2 channels to Channel/Sensor table. Do not increase *External voltage channels* to reflect this; *External voltage channels* reflects only external voltages going directly to SBE 25 from auxiliary sensor. See Application Note 47.
- Scan time** - Select to have Seasave append time (seconds since January 1, 1970 GMT) to each data scan.



Shown below is an example status (DS) response **in Seaterm** that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in Seaterm to modify the setup of parameters critical to use of the SBE 25 with Seasave, as well as any explanatory information.

```
SBE 25 CTD V 4.1a SN 323 04/26/02 14:02:13
external pressure sensor, range = 5076 psia, tcval = -55
xtal=9437363 clk=32767.107 vmain=10.1 iop=175 vlith=5.6
ncasts=0 samples=0 free = 54980 lwait = 0 msec
stop upcast when CTD ascends 30 % of full scale pressure
sensor range (2301 counts)

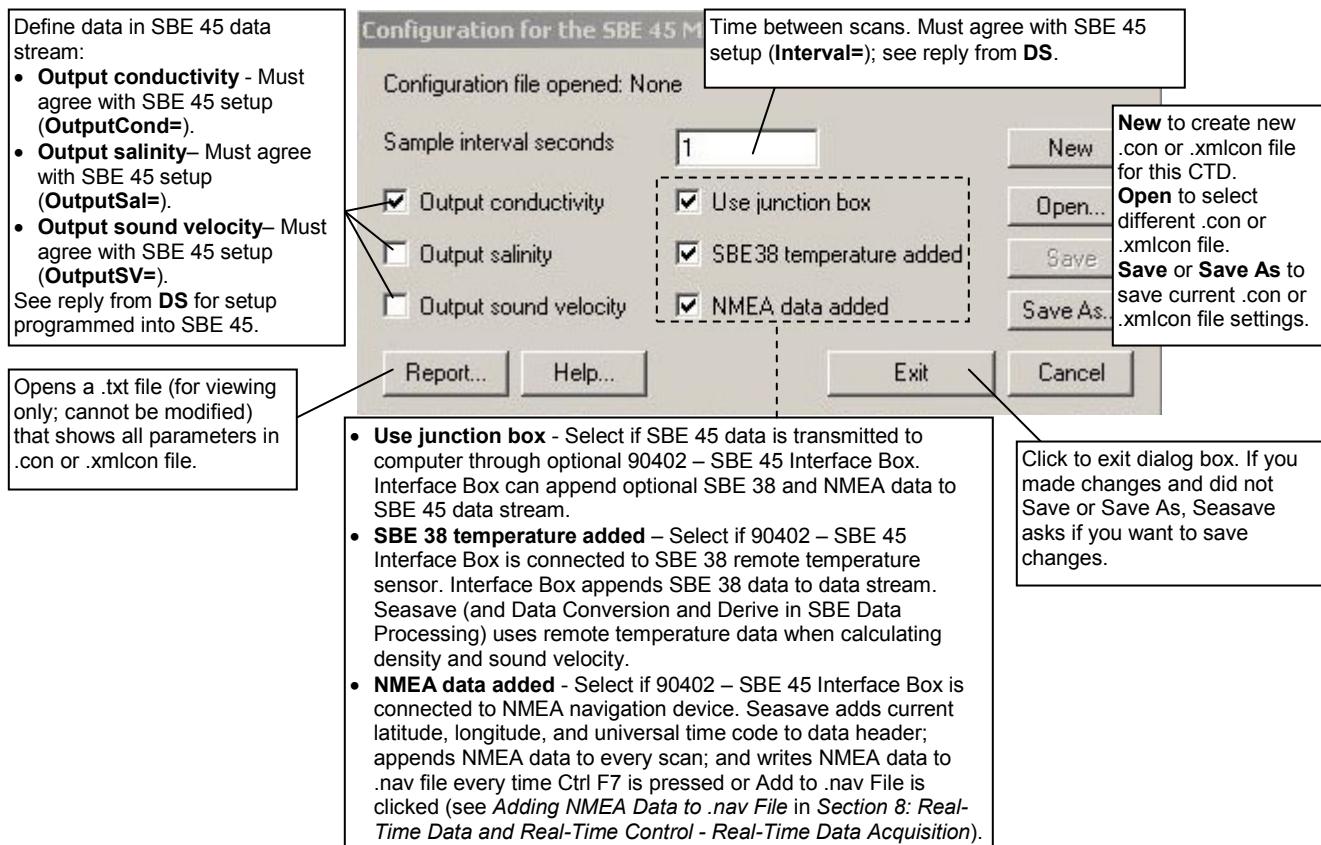
CTD configuration:
number of scans averaged=1, data stored at 8 scans
per second
real time data transmitted at 1 scans per second
(real-time data transmission [CC] must match Real time data output rate in
.con or .xmlcon file.)
minimum conductivity frequency for pump turn on = 2950
pump delay = 45 seconds
battery type = ALKALINE
2 external voltages sampled
(Number of auxiliary voltage sensors enabled [CC] must match External voltage
channels in .con or .xmlcon file.)
stored voltage #0 = external voltage 0
stored voltage #1 = external voltage 1
```


SBE 25plus Sealogger Configuration

Note:

This tab is grayed out if you selected Process .XML file uploaded from CTD memory on the first tab, because data is memory is always saved at 16 Hz, and NMEA, Surface PAR, and scan time data is not available in an uploaded file.

Click the Real-Time Options tab.

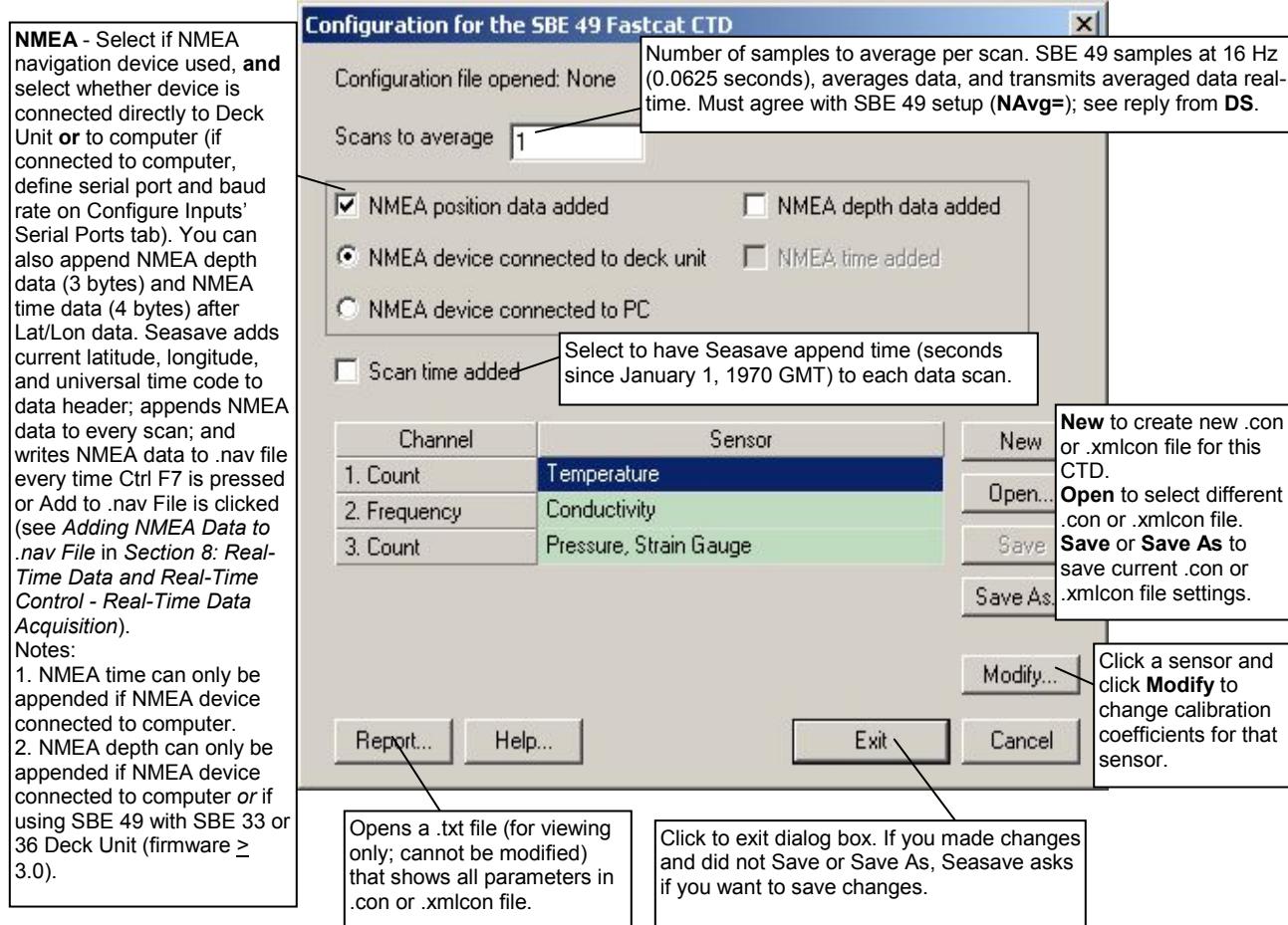

Shown below is an example status (**GetCD**) response **in Seaterm232** that corresponds to the setup shown in the Configuration dialog box above.

Shown below the appropriate lines are the commands used in Seaterm 232 to modify the setup of parameters critical to use of the SBE 25*plus* with Seasave, as well as any explanatory information.

```
S>getcd
<ConfigurationData DeviceType='SBE25plus' SerialNumber='0250003'>
  <Serial>
    <SerialPort0>
      <baudconsole>4800</baudconsole>
      <echoconsole>1</echoconsole>
    </SerialPort0>
    <SerialPort1>
      (serial sensor 1 setup data)
      </SerialPort1>
    <SerialPort2>
      (serial sensor 2 setup data)
      </SerialPort2>
    </Serial>
    <Settings>
      (assorted settings)
      </Settings>
    <RealTimeOutput>
      <outputformat>0</outputformat>
      <historicrate>1</historicrate>
      <vout0>1</vout0>
      <vout1>0</vout1>
      <vout2>0</vout2>
      <vout3>1</vout3>
      <vout4>0</vout4>
      <vout5>1</vout5>
      <vout6>0</vout6>
      <vout7>0</vout7>
      <outputrate>2</outputrate>
    </RealTimeOutput>
  </ConfigurationData>
<Executed/>
(Number of auxiliary voltage sensors enabled [SetVOut#=] must match real-time output selection in .xmlcon file.)
```

SBE 45 MicroTSG Configuration

The SBE 45 transmits ASCII converted data in engineering units. It converts the raw data internally to engineering units, based on the programmed calibration coefficients. See the SBE 45 manual.


Shown below is an example status (**DS**) response **in Seaterm** that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in Seaterm to modify the setup of parameters critical to use of the SBE 45 with Seasave, as well as any explanatory information.

```

SBE45 V 1.1 SERIAL NO. 1258
logging data
sample interval = 1 seconds
(Sample interval [Interval=] must match Sample interval seconds in .con or .xmlcon file.)
output conductivity with each sample
(Enabling of conductivity output [OutputCond=] must match Output conductivity in .con or .xmlcon file.)
do not output salinity with each sample
(Enabling of salinity output [OutputSal=] must match Output salinity in .con or .xmlcon file.)
do not output sound velocity with each sample
(Enabling of sound velocity output [OutputSV=] must match Output sound velocity in .con or .xmlcon file.)
start sampling when power on
do not power off after taking a single sample
(Power off after taking a single sample must be disabled [SingleSample=N] to acquire data in Seasave.)
do not power off after two minutes of inactivity
A/D cycles to average = 2

```

SBE 49 FastCAT Configuration

Shown below is an example status (**DS**) response *in Seaterm* that corresponds to the setup shown in the Configuration dialog box above. Shown below the appropriate lines are the commands used in Seaterm to modify the setup of parameters critical to use of the SBE 49 with Seasave, as well as any explanatory information.

```

SBE 49 FastCAT V 1.2 SERIAL NO. 0055
number of scans to average = 1
(Scans to average [NAvg=] must match Scans to average in .con or .xmlcon file.)

pressure sensor = strain gauge, range = 1000.0
minimum cond freq = 3000, pump delay = 30 sec
start sampling on power up = yes
output format = raw HEX
(Output format must be set to raw Hex [OutputFormat=0] to acquire data in Seasave.)

temperature advance = 0.0625 seconds
celltm alpha = 0.03
celltm tau = 7.0
real-time temperature and conductivity correction disabled

```

Section 4: Configure Inputs, Part II - Calibration Coefficients

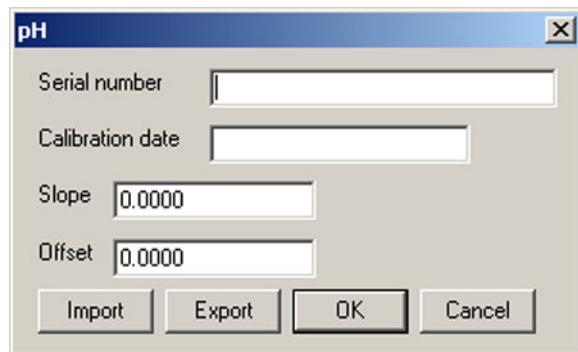
Note:

Setup of all parameters in Configure Inputs, including the **name and location** of the selected .con or .xmlcon file, is included in the Seasave program setup (.psa) file. To save the setup, you must save the .psa file (File menu / Save Setup File) before exiting Seasave.

This section describes the calculation and/or source of the calibration coefficients for the configuration (.con or .xmlcon) file, for each type of sensor supported by Sea-Bird CTDs. Seasave uses the sensor calibration coefficients to convert the raw data stream into engineering units for display during real-time data acquisition. This section covers:

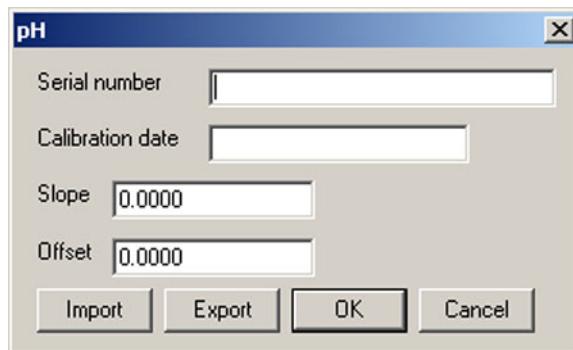
- Accessing calibration coefficient dialog boxes
- Using the Import and Export buttons in the calibration coefficient dialog boxes
- Calibration coefficients for frequency sensors
- Calibration coefficients for A/D count sensors
- Calibration coefficients for voltage sensors
- Calibration coefficients for RS-232 sensors

For all other details on the setup of the .con or .xmlcon file, see *Section 3: Configure Inputs, Part I – Instrument Configuration (.con or .xmlcon file)*.


For setup of the other items in Configure Inputs, see *Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control*.

Accessing Calibration Coefficients Dialog Boxes

Note:


Steps 1 through 4 are detailed in *Section 3: Configure Inputs, Part I – Instrument Configuration (.con or .xmlcon File)*.

1. Click Configure Inputs.
2. In the dialog box, click the Instrument Configuration tab and click Open.
3. In the Select Instrument Configuration File dialog box, browse to the desired file and click Open.
4. The configuration information appears on the Instrument Configuration tab. Click Modify.
5. In the Configuration dialog box, click a sensor and click **Modify** to change the calibration coefficients for that sensor (or right click on the sensor and select *Modify . . . Calibration*, or double click on the sensor); the calibration coefficients dialog box for the sensor appears (example is shown for a pH sensor).

Importing and Exporting Calibration Coefficients

Calibration coefficient dialog boxes contain Import and Export buttons, which can be used to simplify entering calibration coefficients. These buttons are particularly useful when swapping sensors from one instrument to another, allowing you to enter calibration coefficients without the need for typing or the resulting possibility of typographical errors. An example dialog box is shown for a pH sensor.

The **Export** button allows you to export coefficients for the selected sensor to an .XML file. If you move that sensor onto another instrument, you can then import the coefficients from the .XML file when setting up the .con or .xmlcon file for that instrument.

The **Import** button allows you to import coefficients for the selected sensor from another .con or .xmlcon file or from an .XML file. When you click the Import button, a dialog box appears. Select the desired file type, and then browse to and select the file:

- **.con or .xmlcon configuration file** – opens a .con or .xmlcon file, retrieves the calibration coefficients from the file for the type of sensor you selected, and enters the coefficients in the calibration coefficients dialog box. If the .con or .xmlcon file contains more than one of that type of sensor (for example, Seasave can process data for an instrument interfacing with up to two SBE 43 oxygen sensors, so the .con or .xmlcon file could contain coefficients for two SBE 43 sensors), a dialog box allows you to select the desired sensor by serial number. If the .con or .xmlcon file does not contain any of that type of sensor, Seasave responds with an error message.
- **.XML file** – imports an .XML file that contains calibration coefficients for one sensor. If the .XML file you select is not compatible with the selected sensor type, Seasave responds with an error message.

Calibration Coefficients for Frequency Sensors

For all calibration dialog boxes, enter the sensor serial number and calibration date. Many sensor calibration equations contain an *offset* term. Unless noted otherwise, use the offset (default = 0.0) to make small corrections for sensor drift between calibrations.

Calibration coefficients are discussed below for each type of sensor. Temperature, conductivity, and Digiquartz pressure sensors are covered first, followed by the remaining frequency sensor types in alphabetical order.

Temperature Calibration Coefficients

Notes:

- Coefficients g, h, i, j, and f0 provide ITS-90 (T_{90}) temperature; a, b, c, d, and f0 provide IPTS-68 (T_{68}) temperature. The relationship between them is:
 $T_{68} = 1.00024 T_{90}$
- See Application Note 31 for computation of slope and offset correction coefficients from pre- and post-cruise calibrations supplied by Sea-Bird.
- See *Calibration Coefficients for A/D Count Sensors* below for information on temperature sensors used in the SBE 16plus, 16plus V2, 19plus, 19plus V2, and 49.

Enter g, h, i, j (or a, b, c, d), and f0 from the calibration sheet.

Enter values for slope (default = 1.0) and offset (default = 0.0) to make small corrections for temperature sensor drift between calibrations:

Corrected temperature = (slope * computed temperature) + offset
where

slope = true temperature span / instrument temperature span

offset = (true temperature – instrument reading) * slope; measured at 0 °C

Temperature Slope and Offset Correction Example

At true temperature = 0.0 °C, instrument reading = 0.0015 °C

At true temperature = 25.0 °C, instrument reading = 25.0005 °C

Calculating the slope and offset:

Slope = $(25.0 - 0.0) / (25.0005 - 0.0015) = +1.000040002$

Offset = $(0.0 - 0.0015) * 1.000040002 = -0.001500060$

Sea-Bird temperature sensors usually drift by changing offset, typically resulting in higher temperature readings over time for sensors with serial number less than 1050 and lower temperature readings over time for sensors with serial number greater than 1050. Sea-Bird's data indicates that the drift is smooth and uniform with time, allowing users to make very accurate corrections based only on pre- and post-cruise laboratory calibrations. Calibration checks at sea are advisable to ensure against sensor malfunction; however, data from reversing thermometers is rarely accurate enough to make calibration corrections that are better than those possible from shore-based laboratory calibrations.

Sea-Bird temperature sensors rarely exhibit span errors larger than ± 0.005 °C over the range –5 to +35 °C (0.005 °C/ $(35 - [-5])$ °C/year = 0.000125 °C/C/year), even after years of drift. A span error that increases more than ± 0.0002 °C/C/year may be a symptom of sensor malfunction.

Note:

Use coefficients g, h, i, j, Ctcor, and Cpcor (if available on calibration sheet) for most accurate results; conductivity for older sensors was calculated based on a, b, c, d, m, and Cpcor.

Conductivity Calibration Coefficients

Enter g, h, i, j, Ctcor (or a, b, c, d, m) and Cpcor from the calibration sheet.

- Cpcor makes a correction for the highly consistent change in dimensions of the conductivity cell under pressure. The default is the compressibility coefficient for borosilicate glass (-9.57e-08). Some sensors fabricated between 1992 and 1995 (serial numbers between 1100 and 1500) exhibit a compression that is slightly less than pure borosilicate glass. For these sensors, the (hermetic) epoxy jacket on the glass cell is unintentionally strong, creating a composite pressure effect of borosilicate and epoxy. For sensors tested to date, this composite pressure coefficient ranges from -9.57e-08 to -6.90e-08, with the latter value producing a correction to deep ocean salinity of 0.0057 PSU in 5000 dbars pressure (approximately 0.001 PSU per 1000 dbars). Before modifying Cpcor, confirm that the sensor behaves differently from pure borosilicate glass. Sea-Bird can test your cell and calculate Cpcor. Alternatively, test the cell by comparing computed salinity to the salinity of water samples from a range of depths, calculated using an AutoSal.

Enter values for slope (default = 1.0) and offset (default = 0.0) to make small corrections for conductivity sensor drift between calibrations:

Corrected conductivity = (slope * computed conductivity) + offset

where

slope = true conductivity span / instrument conductivity span

offset = (true conductivity – instrument reading) * slope; measured at 0 S/m

Conductivity Slope and Offset Correction Example

At true conductivity = 0.0 S/m, instrument reading = -0.00007 S/m

At true conductivity = 3.5 S/m, instrument reading = 3.49965 S/m

Calculating the slope and offset:

Slope = $(3.5 - 0.0) / (3.49965 - [-0.00007]) = +1.000080006$

Offset = $(0.0 - [-0.00007]) * 1.000080006 = +0.000070006$

Note:

See Application Note 31 for computation of slope and offset correction coefficients from pre- and post-cruise calibrations supplied by Sea-Bird or from salinity bottle samples taken at sea during profiling.

The sensor usually drifts by changing span (slope of the calibration curve), typically resulting in lower conductivity readings over time. Offset error (error at 0 S/m) is usually due to electronics drift, and is typically less than ± 0.0001 S/m per year. Because offsets greater than ± 0.0002 S/m are a symptom of sensor malfunction, Sea-Bird recommends that drift corrections be made by assuming no offset error, unless there is strong evidence to the contrary or a special need.

Wide Range Conductivity Sensors

A wide range conductivity sensor has been modified to provide conductivity readings to 15 Siemens/meter by inserting a precision resistor in series with the conductivity cell. Therefore, the equation used to fit the calibration data is different from the standard equation. The sensor's High Range Conductivity Calibration sheet includes the equation as well as the cell constant and series resistance to be entered in the program.

If the conductivity sensor serial number includes a **w** (an indication that it is a wide range sensor):

1. After you enter the calibration coefficients and click OK, the Wide Range Conductivity dialog box appears.
2. Enter the cell constant and series resistance (from the High Range Conductivity Calibration sheet) in the dialog box, and click OK.

Note:

See *Calibration Coefficients for A/D Count Sensors* below for information on strain gauge pressure sensors used on the SBE 16*plus*, 16*plus* V2, 19*plus*, 19*plus* V2, and 49.

See *Calibration Coefficients for Voltage Sensors* below for information on strain gauge pressure sensors used on other instruments.

Pressure (Paroscientific Digiquartz) Calibration Coefficients

Enter the sets of C, D, and T coefficients from the calibration sheet. Enter zero for any higher-order coefficients that are not listed on the calibration sheet. Enter values for slope (default = 1.0; do not change unless sensor has been recalibrated) and offset (default = 0.0) to make small corrections for sensor drift.

- For the SBE 9*plus*, also enter AD590M and AD590B coefficients from the configuration sheet.

Bottles Closed (HB - IOW) Calibration Coefficients

No calibration coefficients are entered for this parameter.

The number of bottles closed is calculated by SBE Data Processing's Data Conversion module based on frequency range.

Sound Velocity (IOW) Calibration Coefficients

Enter coefficients a0, a1, and a2.

Value = $a0 + a1 * \text{frequency} + a2 * \text{frequency}^2$

Calibration Coefficients for A/D Count Sensors

For all calibration dialog boxes, enter the sensor serial number and calibration date. Many sensor calibration equations contain an *offset* term. Unless noted otherwise, use the offset (default = 0.0) to make small corrections for sensor drift between calibrations.

Calibration coefficients are discussed below for each type of sensor: temperature and strain gauge pressure sensor.

Temperature Calibration Coefficients

Notes:

- These coefficients provide ITS-90 (T_{90}) temperature.
- See Application Note 31 for computation of slope and offset correction coefficients from pre- and post-cruise calibrations supplied by Sea-Bird.

For SBE 16*plus*, 16*plus* V2, 19*plus*, 19*plus* V2, and 49:

Enter a0, a1, a2, and a3 from the calibration sheet.

Enter values for slope (default = 1.0) and offset (default = 0.0) to make small corrections for temperature sensor drift between calibrations:

Corrected temperature = (slope * computed temperature) + offset
where

slope = true temperature span / instrument temperature span

offset = (true temperature – instrument reading) * slope; measured at 0 °C

Temperature Slope and Offset Correction Example

At true temperature = 0.0 °C, instrument reading = 0.0015 °C

At true temperature = 25.0 °C, instrument reading = 25.0005 °C

Calculating the slope and offset:

Slope = $(25.0 - 0.0) / (25.0005 - 0.0015) = + 1.000040002$

Offset = $(0.0 - 0.0015) * 1.000040002 = - 0.001500060$

Sea-Bird temperature sensors usually drift by changing offset, typically resulting in lower temperature readings over time. Sea-Bird's data indicates that the drift is smooth and uniform with time, allowing users to make very accurate corrections based only on pre- and post-cruise laboratory calibrations. Calibration checks at sea are advisable to ensure against sensor malfunction; however, data from reversing thermometers is rarely accurate enough to make calibration corrections that are better than those possible from shore-based laboratory calibrations.

Sea-Bird temperature sensors rarely exhibit span errors larger than ± 0.005 °C over the range –5 to +35 °C (0.005 °C/ $(35 - [-5])$ year = 0.000125 °C/C/year), even after years of drift. A span error that increases more than ± 0.0002 °C/C/year may be a symptom of sensor malfunction.

Pressure (Strain Gauge) Calibration Coefficients

Note:

See *Calibration Coefficients for Voltage Sensors* below for information on strain gauge pressure sensors used on other instruments. See *Calibration Coefficients for Frequency Sensors* above for information on Paroscientific Digiquartz pressure sensors.

For SBE 16*plus*, 16*plus* V2, 19*plus*, and 19*plus* V2 configured with a strain gauge pressure sensor, and for all SBE 49s: Enter pA0, pA1, pA2, ptempA0, ptempA1, ptempA2, pTCA0, pTCA1, pTCA2, pTCB0, pTCB1, and pTCB2 from the calibration sheet. Offset is normally zero, but may be changed for non-zero sea-surface condition. For example, if the in-air pressure reading is negative, enter an equal positive value.

Calibration Coefficients for Voltage Sensors

Note:

Unless noted otherwise, Seasave supports only one of each auxiliary sensor model on a CTD (for example, you cannot specify two Chelsea Minitracks, but you can specify a Chelsea Minitrack and a Chelsea UV Aquatracka fluorometer. See the sensor descriptions below for those sensors that Seasave supports in a redundant configuration (two or more of the same model interfacing with the CTD).

For all calibration dialog boxes, enter the sensor serial number and calibration date. Many sensor calibration equations contain an *offset* term. Unless noted otherwise, use the offset (default = 0.0) to make small corrections for sensor drift between calibrations.

Calibration coefficients are discussed below for each type of sensor. Strain gauge pressure sensors are covered first, followed by the remaining voltage sensor types in alphabetical order.

Pressure (Strain Gauge) Calibration Coefficients

Enter coefficients:

- Pressure sensor without temperature compensation
 - Enter A0, A1, and A2 coefficients from the calibration sheet
 - For older units with a linear fit pressure calibration, enter M (A1) and B (A0) from the calibration sheet, and set A2 to zero.
 - For all units, offset is normally zero, but may be changed for non-zero sea-surface condition. For example, if the in-air pressure reading is negative, enter an equal positive value.
- Pressure sensor with temperature compensation

Enter ptempA0, ptempA1, ptempA2, pTCA0, pTCA1, pTCA2, pTCB0, pTCB1, pTCB2, pA0, pA1, and pA2 from the calibration sheet.

Note:

See *Calibration Coefficients for A/D Count Sensors* above for information on strain gauge pressure sensors used on the SBE 16plus, 16plus V2, 19plus, 19plus V2, and 49. See *Calibration Coefficients for Frequency Sensors* above for information on Paroscientific Digiquartz pressure sensors.

Note:

To enter the altimeter alarm set point, alarm hysteresis, and minimum pressure to enable alarm, click the PC Alarms, SBE 11plus Alarms, and/or SBE 14 Remote Display tabs, as applicable, in Seasave's Configure Outputs.

Altimeter Calibration Coefficients

Enter the scale factor and offset.

altimeter height = [300 * voltage / scale factor] + offset

where

scale factor = full scale voltage * 300/full scale range

full scale range is dependent on the sensor (e.g., 50m, 100m, etc.)

full scale voltage is from calibration sheet (typically 5V)

Fluorometer Calibration Coefficients

- **Biospherical Natural Fluorometer**

Enter Cfn (natural fluorescence calibration coefficient), A1, A2, and B from calibration sheet.

natural fluorescence Fn = Cfn * 10^V

production = A1 * Fn / (A2 + PAR)

chlorophyll concentration Chl = Fn / (B * PAR)

where

V is voltage from natural fluorescence sensor

Note:

See Application Note 39 for complete description of calculation of Chelsea Aqua 3 calibration coefficients.

- **Chelsea Aqua 3**

Enter VB, V1, Vacetone, slope, offset, and SF.

$$\text{Concentration } (\mu\text{g/l}) = \text{slope} * [(10.0^{(\text{SF})} - 10.0^{\text{VB}}) / (10.0^{\text{V1}} - 10.0^{\text{Vacetone}})] + \text{offset}$$

where

VB, V1, and Vacetone are from calibration sheet

Slope (default 1.0) and offset (default 0.0) adjust readings to conform to measured concentrations

Scale factor SF = 1.0 if CTD gain is 1; SF = 2 if CTD gain is 2.0

V is output voltage measured by CTD

Note: Seasave can process data for an instrument interfacing with up to two Chelsea Aqua 3 sensors.

Chelsea Aqua 3 Example - Calculation of Slope and Offset

Current slope = 1.0 and offset = 0.0

Two in-situ samples:

Sample 1 Concentration –

from Seasave = 0.390, from water sample = 0.450

Sample 2 Concentration –

from Seasave = 0.028, from water sample = 0.020

Linear regression to this data yields slope = 1.188 and offset = - 0.013

Note:

See Application Note 61 for complete description of calculation of Chelsea Minitracka calibration coefficients.

- **Chelsea Minitracka**

Enter Vacetone, Vacetone100, and offset.

$$\text{Concentration} = (100 * [V - \text{Vacetone}]) / [\text{Vacetone100} - \text{Vacetone}] + \text{offset}$$

where

Vacetone (voltage with 0 $\mu\text{g/l}$ chlorophyll) and Vacetone100 (voltage with 100 $\mu\text{g/l}$ chlorophyll) are from calibration sheet

- **Chelsea UV Aquatracka**

Enter A and B.

$$\text{Concentration } (\mu\text{g/l}) = A * 10.0^V - B$$

where

A and B are from calibration sheet

V is output voltage measured by CTD

Note: Seasave can process data for an instrument interfacing with up to two Chelsea UV Aquatracka sensors.

- **Dr Haardt Fluorometer - Chlorophyll a, Phycoerythrin, or Yellow Substance**

Enter A0, A1, B0, and B1.

These instruments may have automatic switching between high and low gains. Select the gain range switch:

- *Output Voltage Level* if the instrument indicates gain by output voltage level (< 2.5 volts is low gain, > 2.5 volts is high gain)
 - Low gain: value = A0 + (A1 * V)
 - High gain: value = B0 + (B1 * V)
- *Modulo Bit* if the instrument has control lines custom-wired to bits in the SBE 9plus modulo word
 - Bit not set: value = A0 + (A1 * V)
 - Bit set: value = B0 + (B1 * V)
- *None* if the instrument does not change gain
 - value = A0 + (A1 * V)

where

V = voltage from sensor

Dr Haardt Voltage Level Switching Examples

Example: Chlorophyll a

Low range scale = 10 mg/l and Gain = 10/2.5 = 4 mg/l/volt

A0 = 0.0 A1 = 4.0

High range scale = 100 mg/l and Gain = 100/2.5 = 40 mg/l/volt

B0 = -100 B1 = 40.0

Note:

See Application Note 54 for complete description of calculation of Seapoint fluorometer calibration coefficients.

- **Seapoint**

Enter gain and offset.

$$\text{Concentration} = (V * 30/\text{gain}) + \text{offset}$$

where

Gain is dependent on cable used (see cable drawing, pins 5 and 6)

Note: Seasave can process data for an instrument interfacing with up to two Seapoint fluorometers.

- **Seapoint Rhodamine**

Enter gain and offset.

$$\text{Concentration} = (V * 30/\text{gain}) + \text{offset}$$

where

Gain is dependent on cable used (see cable drawing, pins 5 and 6)

- **Seapoint Ultraviolet**

Enter range and offset.

$$\text{Concentration} = (V * \text{range} / 5) + \text{offset}$$

Note: Seasave can process data for an instrument interfacing with up to two Seapoint ultraviolet fluorometers.

Note:

See Application Note 77 for complete description of calculation of Seapoint ultraviolet fluorometer calibration coefficients.

Notes:

- See Application Note 9 for complete description of calculation of WET Labs FLF and Sea Tech fluorometer calibration coefficients.
- Offset and scale factor may be adjusted to fit a linear regression of fluorometer responses to known chlorophyll a concentrations.

- **Sea Tech and WET Labs Flash Lamp Fluorometer (FLF)**

Enter scale factor and offset.

$$\text{Concentration} = (\text{voltage} * \text{scale factor} / 5) + \text{offset}$$

where

Scale factor is dependent on fluorometer range

Fluorometer	Switch-Selectable Range (milligrams/m ³ or micrograms/liter)	Scale Factor
Sea Tech	0 – 3	3
	0 – 10 (default)	10
	0 - 30	30
	0-100	100
	0-300	300
	0-1000	1000
WET Labs FLF	0 – 100	100
	0 – 300 (default)	300
	0 - 1000	1000

Offset is calculated by measuring voltage output when the light sensor is completely blocked from the strobe light with an opaque substance such as heavy black rubber: offset = - (scale factor * voltage) / 5

- **Turner 10-005**

This sensor requires two channels - one for the fluorescence voltage and the other for the range voltage. Make sure to select both when configuring the instrument.

For the fluorescence voltage channel, enter scale factor and offset.

$$\text{concentration} = [\text{fluorescence voltage} * \text{scale factor} / (\text{range} * 5)] + \text{offset}$$

where

range is defined in the following table

Range Voltage	Range
< 0.2 volts	1.0
≥ 0.2 volts and < 0.55 volts	3.16
≥ 0.55 volts and < 0.85 volts	10.0
≥ 0.85 volts	31.0

- **Turner 10-AU-005**

Enter full scale voltage, zero point concentration, and full scale concentration from the calibration sheet.

$$\text{concentration} = [(1.195 * \text{voltage} * (\text{FSC} - \text{ZPC})) / \text{FSV}] + \text{ZPC}$$

where

voltage = measured output voltage from fluorometer

FSV = full scale voltage; typically 5.0 volts

FSC = full scale concentration

ZPC = zero point concentration

- **Turner Cyclops**

Enter scale factor and offset, and select measured parameter (chlorophyll, rhodamine, fluorescein, phycocyanin, phycoerythrin, CDOM, crude oil, optical brighteners, or turbidity)

$$\text{concentration} = (\text{scale factor} * \text{voltage}) + \text{offset}$$

where

scale factor = range / 5 volts

offset = - scale factor * blank voltage

Range and blank voltage are from calibration sheet.

Output units are dependent on selected measured parameter.

Note: Seasave can process data for an instrument interfacing with up to two Turner Cyclops fluorometers.

Note:

See Application Note 74 for complete description of calculation of Turner Cyclops fluorometer calibration coefficients.

Notes:

- To enable entry of the mx, my, and b coefficients, you must first select the Turner SCUFA (OBS/Nephelometer/Turbidity).
- See Application Note 63 for complete description of calculation of Turner SCUFA calibration coefficients.

- **Turner SCUFA**

Enter scale factor, offset, units, mx, my, and b from the calibration sheet.

$$\text{chlorophyll} = (\text{scale factor} * \text{voltage}) + \text{offset}$$

$$\text{corrected chlorophyll} = (\text{mx} * \text{chlorophyll}) + (\text{my} * \text{NTU}) + \text{b}$$

where

NTU = results from optional turbidity channel in SCUFA (see Turner SCUFA in OBS equations below)

Note: Seasave can process data for an instrument interfacing with up to two Turner SCUFA sensors.

- **WET Labs AC3**

This sensor requires two channels - one for fluorometer voltage (listed under fluorometers in the dialog box) and the other for transmissometer voltage (listed under transmissometers). Make sure to select both when configuring the instrument.

Enter kv, Vh2o, and A^X.

$$\text{concentration (mg/m}^3\text{)} = \text{kv} * (\text{Vout} - \text{Vh20}) / \text{A}^{\text{X}}$$

where

Vout = measured output voltage

kv = absorption voltage scaling constant (inverse meters/volt)

Vh20 = measured voltage using pure water

A^X = chlorophyll specific absorption coefficient

Notes:

- Units are dependent on the substance measured by the fluorometer. For example, units are $\mu\text{g/l}$ for chlorophyll, ppb for Rhodamine, ppt for Phycocyanin, etc.
- For complete description of calibration coefficient calculation, see Application Note 62.
- For ECO-FL-NTU, a second channel is required for turbidity. Set up the second channel as a WET Labs ECO-NTU, as described below for OBS/Nephelometer/Turbidity sensors.

• WET Labs ECO-AFL and ECO-FL

Enter Dark Output and scale factor.

Concentration (units) = $(V - \text{Dark Output}) * \text{scale factor}$

where

V = in situ voltage output

Dark Output = clean water voltage output with black tape on detector

Scale factor = multiplier (units/Volt)

The calibration sheet lists either:

- Dark Output and scale factor, **OR**
- Vblank (old terminology for Dark Output) and Scale Factor, **OR**
- Vblank (old terminology for Dark Output) and Vcopro (voltage output measured with known concentration of coproporphyrin tetramethyl ester). Determine an initial value for the scale factor by using the chlorophyll concentration corresponding to Vcopro:
scale factor = chlorophyll concentration / $(Vcopro - Vblank)$

Perform calibrations using seawater with phytoplankton populations that are similar to what is expected in situ.

Note: Seasave can process data for an instrument interfacing with up to five ECO-AFL (or ECO-FL) sensors.

• WET Labs ECO CDOM (Colored Dissolved Organic Matter)

Enter Dark Output and scale factor.

Concentration (ppb) = $(V - \text{Dark Output}) * \text{Scale Factor}$

where

V = in situ voltage output

Dark Output = clean water voltage output with black tape on detector

Scale Factor = multiplier (ppb/Volt)

Calibration sheet lists Dark Output and Vcdom (voltage output measured with known concentration of colored dissolved organic matter).

Determine an initial scale factor value by using colored dissolved organic matter concentration corresponding to Vcdom:

scale factor = cdom concentration / $(Vcdom - \text{Dark Output})$

Perform calibrations using seawater with CDOM types similar to what is expected in situ.

Note: Seasave can process data for an instrument interfacing with up to five ECO CDOM sensors.

Notes:

- Units are dependent on the substance measured by the fluorometer. For example, units are $\mu\text{g/l}$ for chlorophyll, ppb for Rhodamine, ppt for Phycocyanin, etc.
- For complete description of calibration coefficient calculation, see Application Note 41 for WETStar.

• WET Labs WETStar

Enter Blank Output and Scale Factor.

Concentration (units) = $(V - \text{Blank Output}) * \text{Scale Factor}$

where

V = in situ voltage output

Blank Output = clean water blank voltage output

Scale Factor = multiplier (units/Volt)

The calibration sheet lists either:

- Blank Output and Scale Factor, **OR**
- Vblank (old terminology for Blank Output) and Scale Factor, **OR**
- Vblank (old terminology for Blank Output) and Vcopro (voltage output measured with known concentration of coproporphyrin tetramethyl ester). Determine an initial value for the scale factor by using the chlorophyll concentration corresponding to Vcopro:
scale factor = chlorophyll concentration / $(Vcopro - Vblank)$

Perform calibrations using seawater with phytoplankton populations that are similar to what is expected in situ.

Note: Seasave can process data for an instrument interfacing with up to five WET Labs WETStar sensors.

Methane Sensor Calibration Coefficients

The **Capsum METS** sensor requires two channels – one for the methane concentration and the other for the temperature measured by the sensor. Make sure to select both when configuring the instrument.

For the concentration channel, enter D, A0, A1, B0, B1, and B2.

Methane concentration

$$= \exp \left\{ D \ln \left[\left(B0 + B1 \exp \frac{-Vt}{B2} \right) * \left(\frac{1}{Vm} - \frac{1}{A0 - A1 * Vt} \right) \right] \right\} \quad [\mu\text{mol/l}]$$

Where

Vt = temperature voltage

Vm = methane concentration voltage

For the temperature channel, enter T1 and T2.

$$\text{Gas temperature} = (Vt * T1) + T2 \quad [\text{°C}]$$

OBS/Nephelometer/Turbidity Calibration Coefficients

In general, turbidity sensors are calibrated to a standard (formazin). However, particle size, shape, refraction, etc. in seawater varies. These variations affect the results unless field calibrations are performed on typical water samples.

Note:

See Application Note 16 for complete description of OBS-3 calibration coefficients.

Note:

- See Application Note 81 for complete description of calculation of OBS-3+ calibration coefficients.
- You can interface to two OBS-3+ sensors, or to both the 1X and 4X ranges on one OBS-3+ sensor, providing two channels of OBS-3+ data.

- **Downing & Associates [D&A] OBS-3 Backscatterance**

Enter gain and offset.

$$\text{output} = (\text{volts} * \text{gain}) + \text{offset}$$

where

gain = range/5; see calibration sheet for range

Note: Seasave can process data for an instrument interfacing with up to two OBS-3 sensors.

- **Downing & Associates [D & A] OBS-3+**

Enter A0, A1, and A2.

$$\text{output} = A0 + (A1 * V) + (A2 * V^2)$$

where

V = voltage from sensor (millivolts)

A0, A1, and A2 = calibration coefficients from D & A calibration sheet

Note: Seasave can process data for an instrument interfacing with up to two OBS-3+ sensors.

- **Chelsea**

Enter clear water value and scale factor.

$$\text{turbidity [F.T.U.]} = (10.0^V - C) / \text{scale factor}$$

where

V = voltage from sensor

See calibration sheet for C (clear water value) and scale factor

- **Dr. Haardt Turbidity**

Enter A0, A1, B0, and B1. Select the gain range switch:

➤ *Output Voltage Level* if the instrument indicates gain by output voltage level (< 2.5 volts is low gain, > 2.5 volts is high gain)

Low gain: value = A0 + (A1 * V)

High gain: value = B0 + (B1 * V)

➤ *Modulo Bit* if the instrument has control lines custom-wired to bits in the SBE 9plus modulo word

Bit not set: value = A0 + (A1 * V) Bit set: value = B0 + (B1 * V)

➤ *None* if the instrument does not change gain value = A0 + (A1 * V)

where

V = voltage from sensor

- **IFREMER**

This sensor requires two channels - one for direct voltage and the other for measured voltage. Make sure to select both when configuring the CTD.

For the direct voltage channel, enter $vm0$, $vd0$, $d0$, and k .

$$\text{diffusion} = [k * (vm - vm0) / (vd - vd0)] - d0$$

where

k = scale factor

vm = measured voltage

$vm0$ = measured voltage offset

vd = direct voltage

$vd0$ = direct voltage offset

$d0$ = diffusion offset

- **Seapoint Turbidity**

Enter gain setting and scale factor.

$$\text{output} = (\text{volts} * 500 * \text{scale factor}) / \text{gain}$$

where

Scale factor is from calibration sheet

Gain is dependent on cable used (see cable drawing)

Note: Seasave can process data for an instrument interfacing with up to two Seapoint Turbidity sensors.

- **Seatech LS6000 and WET Labs LBSS**

Enter gain setting, slope, and offset.

$$\text{Output} = [\text{volts} * (\text{range} / 5) * \text{slope}] + \text{offset}$$

where

Slope is from calibration sheet.

Range is based on sensor ordered (see calibration sheet) and cable-dependent gain (see cable drawing to determine if low or high gain):

High Gain: 2.25, 7.5, 75, 225, 33; Low Gain: 7.5, 25, 250, 750, 100

Note: Seasave can process data for an instrument interfacing with up to two Seatech LS6000 or WET Labs LBSS sensors.

- **Turner SCUFA**

Enter scale factor and offset.

$$\text{NTU} = (\text{scale factor} * \text{voltage}) + \text{offset}$$

$$\text{corrected chlorophyll} = (\text{mx} * \text{chlorophyll}) + (\text{my} * \text{NTU}) + \text{b}$$

where

mx , my , and b = coefficients entered for Turner SCUFA fluorometer

chlorophyll = results from fluorometer channel in SCUFA (see Turner SCUFA in fluorometer equations above)

Note: Seasave can process data for an instrument interfacing with up to two Turner SCUFA sensors.

- **WET Labs ECO-BB**

Enter Scale Factor and Dark Output.

$$\beta(\Theta c) [\text{m}^{-1} \text{sr}^{-1}] = (\text{V} - \text{Dark Output}) * \text{Scale Factor}$$

where

V = voltage from sensor

Scale Factor and Dark Output are from calibration sheet.

Note: Seasave can process data for an instrument interfacing with up to five WET Labs ECO-BB sensors.

- **WET Labs ECO-NTU**

Enter scale factor and Dark Output.

$$\text{NTU} = (\text{V} - \text{Dark Output}) * \text{Scale Factor}$$

where

V = voltage from sensor

Scale Factor and Dark Output are from calibration sheet.

Note: Seasave can process data for an instrument interfacing with up to five WET Labs ECO-NTU sensors.

Notes:

- To enable entry of the mx , my , and b coefficients for the SCUFA fluorometer, you must first select the Turner SCUFA (OBS/Nephelometer/Turbidity).
- See Application Note 63 for complete description of calculation of Turner SCUFA calibration coefficients.

Note:

See Application Note 87 for complete description of calculation of WET Labs ECO-BB calibration coefficients.

Note:

See Application Note 62 for complete description of calculation of WET Labs ECO-NTU calibration coefficients.

Note:

See Application Note 19 for complete description of calculation of ORP calibration coefficients.

Oxidation Reduction Potential (ORP) Calibration Coefficients

Enter M, B, and offset (mV).

$$\text{Oxidation reduction potential} = [(M * \text{voltage}) + B] + \text{offset}$$

Enter M and B from calibration sheet.

Oxygen Calibration Coefficients

Notes:

- See Application Notes 13-1 and 13-3 for complete description of calibration coefficients for Beckman- or YSI-type sensors.
- See Application Notes 64 and 64-2 for complete description of SBE 43 calibration coefficients.
- The Tau correction ($[\tau(T,P) * \delta V/\delta t]$ in the SBE 43 or $[\tau * \text{d}V/\text{d}t]$ in the SBE 13 or 23) improves response of the measured signal in regions of large oxygen gradients. However, this term also amplifies residual noise in the signal (especially in deep water), and in some situations this negative consequence overshadows the gains in signal responsiveness. To perform this correction, select *Apply Tau correction* on Configure Inputs' Miscellaneous tab in Seasave.
- If the Tau correction is enabled, oxygen computed by Seasave and SBE Data Processing's Data Conversion module differ from values computed by SBE Data Processing's Derive module. Both algorithms compute the derivative of the oxygen signal with respect to time, and require a user-input window size:
 - Quick estimate - Seasave and Data Conversion compute the derivative looking back in time, because they share common code and Seasave cannot use future values while acquiring real-time data.
 - Most accurate results - Derive uses a centered window (equal number of points before and after scan) to compute the derivative.
 The window size is input on Configure Inputs' Miscellaneous tab in Seasave.
- A hysteresis correction can be applied for the SBE 43. To perform this correction, select *Apply hysteresis correction* on Configure Inputs' Miscellaneous tab in Seasave. H1, H2, and H3 coefficients for hysteresis correction (entered in the .con or .xmlcon file) are available on calibration sheets for SBE 43s calibrated after October 2008.
- Raw oxygen voltage data saved in the output .hex file is not corrected for Tau or hysteresis; these corrections can be applied in post-processing, using SBE Data Processing's Data Conversion module.
- See *Calibration Coefficients for RS-232 Sensors* below for the SBE 63 Optical Dissolved Oxygen Sensor and Aanderaa Optode Oxygen sensor.

Enter the coefficients, which vary depending on the type of oxygen sensor, from the calibration sheet:

- **Beckman- or YSI-type sensor (manufactured by Sea-Bird or other manufacturer)** - These sensors require two channels - one for oxygen current (enter m, b, soc, boc, tcov, pcov, tau, and wt) and the other for oxygen temperature (enter k and c). Make sure to select both when configuring the instrument.
Note: Seasave can process data for an instrument interfacing with up to two Beckman- or YSI-type oxygen sensors.
- **IOW sensor** - These sensors require two channels - one for oxygen current (enter b0 and b1) and the other for oxygen temperature (enter a0, a1, a2, and a3). Make sure to select both when configuring the instrument.
Value = $b0 + [b1 * (a0 + a1 * T + a2 * T^2 + a3 * T^3) * C]$
where T is oxygen temperature voltage, C is oxygen current voltage
- **Sea-Bird sensor (SBE 43)** - This sensor requires only one channel. In Spring of 2008, Sea-Bird began using a new equation, the *Sea-Bird* equation, for calibrating the SBE 43. Calibration sheets for SBE 43s calibrated after this date will only include coefficients for the *Sea-Bird* equation, but our software (Seasave-Win32, Seasave V7, and SBE Data Processing) supports both equations. **We recommend that you use the *Sea-Bird* equation for best results.**

Sea-Bird: Enter Soc, Voffset, A, B, C, E, Tau20, D1, D2, H1, H2, and H3.
OX =

$$\text{Soc} * [V + \text{Voffset} + \tau(T,P) * \delta V/\delta t] * \text{OxSOL}(T,S) * (1.0 + A*T + B*T^2 + C*T^3) * e^{(E*P/K)}$$

where

- OX = dissolved oxygen concentration (ml/l)
- T, P = measured temperature (°C) and pressure (decibars) from CTD
- S = calculated salinity from CTD (PSU)
- V = temperature-compensated oxygen signal (volts)
- Soc = linear scaling calibration coefficient
- Voffset = voltage at zero oxygen signal
- $\tau(T,P)$ = sensor time constant at temperature and pressure
- τ_{20} = sensor time constant $\tau(T,P)$ at 20 C, 1 atmosphere, 0 PSU; slope term in calculation of $\tau(T,P)$
- D1, D2 = calibration terms used in calculation of $\tau(T,P)$
- $\delta V/\delta t$ = time derivative of oxygen signal (volts/sec)
- H1, H2, H3 = calibration terms used for hysteresis correction
- K = absolute temperature (Kelvin)
- Oxsol(T,S) = oxygen saturation (ml/l); a parameterization from Garcia and Gordon (1992)

OR

Owens-Millard: Enter Soc, Boc, Voffset, tcov, pcov, and tau.

OX =

$$[\text{Soc} * \{(V + \text{Voffset}) + (\tau * \text{d}V/\text{d}t)\} + \text{Boc} * \exp(-0.03T)] * \exp(\text{tcov} * T + \text{pcov} * P) * \text{Oxsat}(T,S)$$

where

- OX = dissolved oxygen concentration (ml/l)
- Soc = linear scaling calibration coefficient
- T, P = measured temperature (°C) and pressure (decibars) from CTD
- S = calculated salinity from CTD (PSU)
- V = temperature-compensated oxygen signal (volts)
- $\text{d}V/\text{d}t$ = derivative of oxygen signal (volts/sec)
- Oxsat(T,S) = oxygen saturation (ml/l), from Weiss

Note: Seasave can process data for an instrument interfacing with up to two SBE 43 oxygen sensors.

PAR/Irradiance Calibration Coefficients

Underwater PAR Sensor

Enter M, B, calibration constant, multiplier, and offset.

PAR = [multiplier * $(10^9 * 10^{(V-B)/M})$ / calibration constant] + offset

where

calibration constant, M, and B are dependent on sensor type;
multiplier = 1.0 for output units of μ Einstens/m² sec

- **Biospherical PAR sensor**

- PAR sensor with built-in log amplifier (QSP-200L, QCP-200L, QSP-2300L, QCP-2300L, or MCP-2300):

Typically, M = 1.0 and B = 0.0.

Calibration constant

= 10^5 / wet calibration factor from Biospherical calibration sheet.

- PAR sensor without built-in log amplifier (QSP-200PD, QSP-2200 (PD), or QCP 2200 (PD)):

M and B are taken from Sea-Bird calibration sheet.

Calibration constant

= C_s calibration coefficient from Sea-Bird calibration sheet

= $6.022 \times 10^{13} / C_w$ from Biospherical calibration sheet

- **LI-COR PAR sensor**

Calibration constant is *in water* calibration constant (in units of μ amps/1000 μ moles/m² sec) from Licor or Sea-Bird calibration sheet.

M and B are taken from Sea-Bird calibration sheet.

- **Chelsea PAR sensor**

Calibration constant = $10^9 / 0.046$

M = $1.0 / (\log e * A1 * 1000) = 1.0 / (0.43429448 * A1 * 1000)$

B = $-M * \log e * A0 = -A0 / (A1 * 1000)$

where A0 and A1 are constants from Chelsea calibration sheet with an equation of form: PAR = A0 + (A1 * mV)

Note: Seasave can process data for an instrument interfacing with up to two underwater PAR/irradiance sensors.

Biospherical Surface PAR Sensor

A surface PAR sensor is selected by clicking *Surface PAR voltage added* in the Configure dialog box. Enter conversion factor and ratio multiplier.

Notes:

- See Application Note 11General for multiplier values for output units other than μ Einstens/m² sec.
- See Application Notes 11QSP-L (Biospherical sensor with built-in log amplifier), 11QSP-PD (Biospherical sensor without built-in log amplifier), 11Licor (LI-COR sensor), and 11Chelsea for complete description of calculation of calibration coefficients for underwater PAR sensors.
- Selection of *Par / Irradiance, Biospherical / Licor* as the voltage sensor is also applicable to the Chelsea PAR sensor.
- For complete description of calculation of calibration coefficients for surface PAR, see Application Note 11S (SBE 11plus Deck Unit) or 47 (SBE 33 or 36 Deck Unit).

Notes:

- See Application Notes 18-1, 18-2, and 18-4 for complete description of calculation of pH calibration coefficients.
- Seasoft-DOS < version 4.008 ignored temperature compensation of a pH electrode. The relationship between the two methods is:
pH = pH old + (7 - 2087/°K)
For older sensors, run pHfit version 2.0 (in Seasoft-DOS) using Vout, pH, and temperature values from the original calibration sheet to compute the new values for offset and slope.

pH Calibration Coefficients

Enter the slope and offset from the calibration sheet:

pH = $7 + (Vout - offset) / (°K * 1.98416e-4 * slope)$

where

°K = temperature in degrees Kelvin

Pressure/FGP (voltage output) Calibration Coefficients

Enter scale factor and offset.

output [Kpa] = (volts * scale factor) + offset

where:

scale factor = $100 * \text{pressure sensor range [bar]} / \text{voltage range [volts]}$

Note: Seasave can process data for an instrument interfacing with up to eight pressure/fgp sensors.

Suspended Sediment Calibration Coefficients

The **Sequoia LISST-25** sensor requires two channels – one for scattering output and the other for transmission output. Make sure to select both when configuring the instrument.

For the scattering channel, enter Total volume concentration constant (Cal), Sauter mean diameter calibration (α), Clean H₂O scattering output (V_{S0}), and Clean H₂O transmission output (V_{T0}) from the calibration sheet. For the transmission channel, no additional coefficients are required; they are all defined for the scattering channel.

Optical transmission = $\tau = V_T / V_{T0}$

Beam C = $- \ln(\tau) / 0.025$ [1 / meters]

Total Volume Concentration = $TV = Cal * [(V_S / \tau) - V_{S0}]$ [μ liters / liter]

Sauter Mean Diameter = $SMD = \alpha * [TV / (-\ln(\tau))]$ [microns]

where

V_T = transmission channel voltage output

V_S = scattering channel voltage output

The calibration coefficients supplied by Sequoia are based on water containing spherical particles. Perform calibrations using seawater with particle shapes that are similar to what is expected in situ.

Transmissometer Calibration Coefficients

Note:

See Application Note 7 for complete description of computation of M and B.

- **Sea Tech and Chelsea (Alphatracka)**

Enter M, B, and path length (in meters)

Path length (distance between lenses) is based on sensor size (for example, 25 cm transmissometer = 0.25m path length, etc.).

light transmission (%) = $M * \text{volts} + B$

where

$M = (Tw / [W0 - Y0]) (A0 - Y0) / (A1 - Y1)$ $B = -M * Y1$

and

$A0$ = factory voltage output in **air** (manufacturer factory calibration)

$A1$ = current (most recent) voltage output in **air**

$Y0$ = factory **dark or zero** (blocked path) voltage (manufacturer factory calibration)

$Y1$ = current (most recent) **dark or zero** (blocked path) voltage

$W0$ = factory voltage output in pure **water** (manufacturer factory calibration)

Tw = % transmission in pure water

(for transmission **relative to water**, $Tw = 100\%$; **or**

for transmission **relative to air**, Tw is defined by table below.

	Tw = % Transmission in Pure Water (relative to AIR)	
Wavelength	10 cm Path Length	25 cm Path Length
488 nm (blue)	99.8%	99.6%
532 nm (green)	99.5%	98.8%
660 nm (red)	96.0 - 96.4%	90.2 - 91.3%

Transmissometer Example

(from calibration sheet) $A0 = 4.743$ V, $Y0 = 0.002$ V, $W0 = 4.565$ Volts

$Tw = 100\%$ (for transmission **relative to water**)

(from current calibration) $A1 = 4.719$ volts and $Y1 = 0.006$ volts

$M = 22.046$ $B = -0.132$

Note: Seasave can process data for an instrument interfacing with up to two transmissometers in any combination of Sea Tech and Chelsea Alphatracka.

- **WET Labs AC3**

This sensor requires two channels - one for fluorometer voltage (listed under fluorometers in the dialog box) and the other for transmissometer voltage (listed under transmissometers). Make sure to select both when configuring the instrument.

Enter Ch2o, Vh2o, VDark, and X from calibration sheet.

Beam attenuation = $\{[\log (Vh2o - VDark) - \log (V - VDark)] / X\} + Ch2o$
 Beam transmission (%) = $\exp (-\text{beam attenuation} * X) * 100$

- **WET Labs C-Star**

Enter M, B, and path length (in meters)

Path length (distance between lenses) is based on sensor size
 (for example, 25 cm transmissometer = 0.25m path length, etc.).

light transmission (%) = $M * \text{volts} + B$

beam attenuation coefficient (c) = $-(1/z) * \ln (\text{light transmission [decimal]})$
where

$M = (Tw / [W0 - Y0]) (A0 - Y0) / (A1 - Y1)$ $B = -M * Y1$

$A0 = Vair$ = factory voltage output in **air** (manufacturer factory calibration)

$A1 = \text{current (most recent) voltage output in air}$

$Y0 = Vd$ = factory **dark or zero** (blocked path) voltage (manufacturer factory calibration)

$Y1 = \text{current (most recent) dark or zero (blocked path) voltage}$

$W0 = Vref$ = factory voltage output in pure **water** (manufacturer factory calibration)

$Tw = \text{\% transmission in pure water}$

(for transmission **relative to water**, $Tw = 100\%$; **or**

for transmission **relative to air**, Tw is defined by table below.

	Tw = % Transmission in Pure Water (relative to AIR)	
Wavelength	10 cm Path Length	25 cm Path Length
488 nm (blue)	99.8%	99.6%
532 nm (green)	99.5%	98.8%
660 nm (red)	96.0 - 96.4%	90.2 - 91.3%

Transmissometer Example

(from calibration sheet) $Vair = 4.743$ V, $Vd = 0.002$ V, $Vref = 4.565$ V

$Tw = 100\%$ (for transmission **relative to water**)

(from current calibration) $A1 = 4.719$ volts and $Y1 = 0.006$ volts

$M = 22.046$ $B = -0.132$

Note: Seasave can process data for an instrument interfacing with up to five WET Labs C-Stars.

User Polynomial (for user-defined sensor) Calibration Coefficients

The user polynomial allows you to define an equation to relate the sensor output voltage to calculated engineering units, if your sensor is not pre-defined in Sea-Bird software.

Enter a0, a1, a2, and a3.

Value = $a0 + (a1 * V) + (a2 * V^2) + (a3 * V^3)$

where:

V = voltage from sensor

a0, a1, a2, and a3 = user-defined sensor polynomial coefficients

If desired, enter the sensor name. This name will appear in the data file header.

Note: Seasave can process data for an instrument interfacing with up to three sensors defined with user polynomials.

Example

A manufacturer defines the output of their sensor as:

NTU = $(Vsamp - Vblank) * \text{scale factor}$

Set this equal to user polynomial equation and calculate a0, a1, a2, and a3.

$(Vsamp - Vblank) * \text{scale factor} = a0 + (a1 * V) + (a2 * V^2) + (a3 * V^3)$

Expanding left side of equation and using consistent notation ($Vsample = V$):

$\text{scale factor} * V - \text{scale factor} * Vblank = a0 + (a1 * V) + (a2 * V^2) + (a3 * V^3)$

Left side of equation has no V^2 or V^3 terms, so a2 and a3 are 0; rearranging:

$(-\text{scale factor} * Vblank) + (\text{scale factor} * V) = a0 + (a1 * V)$

$a0 = -\text{scale factor} * Vblank \quad a1 = \text{scale factor} \quad a2 = a3 = 0$

Zaps Calibration Coefficients

Enter M and B from calibration sheet.

$z = (M * \text{volts}) + B \text{ [nmoles]}$

Calibration Coefficients for RS-232 Sensors

Notes:

- The SBE 38 is compatible only with the SBE 16plus V2 and 19plus V2.
- The SBE 50 is compatible only with the SBE 16plus V2.

See the CTD manual for required setup for the SBE 38 and SBE 50.

Unless otherwise noted, Seasave supports only one of each auxiliary sensor model (for example, you cannot specify two Aanderaa Optodes).

SBE 38 Temperature Sensor and SBE 50 Pressure Sensor Calibration Coefficients

The SBE 38 must be set up to output converted data (°C) when integrated with a CTD. The SBE 50 must be set up to output converted data (psia) when integrated with a CTD. Therefore, calibration coefficients are not required in Seasave; just enter the serial number and calibration date.

Note:

The SBE 63 is compatible only with the SBE 16plus V2 and 19plus V2. See the CTD manual for required setup for the SBE 63.

SBE 63 Optical Dissolved Oxygen Sensor Calibration Coefficients

The SBE 63 must be set up to output data in a format compatible with Sea-Bird CTDs (**SetFormat=1**). The SBE 63 manual lists the equation for calculating dissolved oxygen and the calibration coefficients (see the manual on our website). Enter the serial number, calibration date, and calibration coefficients.

Note:

WET Labs sensors are compatible only with the SBE 16plus V2 and 19plus V2. See the CTD manual for required setup for the WET Labs sensor.

WET Labs Sensor Calibration Coefficients

If you select the WET Labs RS-232 sensor, Seasave adds three lines to the Channel/Sensor table. If integrating an ECO Triplet, select sensors for all three channels. If integrating a dual ECO sensor (such as the FLNTU), select sensors for the first two channels, and leave the third channel *Free*. If integrating a single sensor, select the sensor for the first channel, and leave the second and third channels *Free*.

The following WET Labs sensors are available as RS-232 output sensors:

- Fluorometers – ECO CDOM, ECO-AFL/FL, and WETStar
- Transmissometers – C-Star
- Turbidity Meters – ECO-BB and ECO NTU

These sensors are also available as voltage sensors; calibration coefficient information for these sensors is detailed above in *Calibration Coefficients for Voltage Sensors*. Values for the calibration coefficients are listed on the WET Labs calibration sheets in terms of both analog output (voltage) and digital output (counts); use the digital output values when calculating / entering calibration coefficients for the RS-232 sensors. Seasave calculates the converted sensor output based on the counts output (instead of the voltage output) by the sensor. For all sensors, enter the serial number, calibration date, and calibration coefficients.

GTD Calibration Coefficients

Notes:

- The GTD is compatible only with the SBE 16plus V2 and 19plus V2. See the CTD manual for required setup for the GTD.
- Seasave supports single or dual GTDs.

The GTD must be set up to output converted data (millibars) when integrated with a CTD. Therefore, calibration coefficients are not required in Seasave; just enter the serial number and calibration date.

Aanderaa Oxygen Optode Calibration Coefficients

Notes:

- The Optode is compatible only with the SBE 16plus V2 and 19plus V2. See the CTD manual for required setup for the Optode.
- See *Calibration Coefficients for Voltage Sensors* above for voltage-output Oxygen sensors, including the SBE 43.

Enter the serial number, calibration date, and information required for salinity and depth corrections. The *internal salinity* must match the value you programmed into the Optode (the value is ignored if you do not enable the *Salinity correction*). If you enable *Salinity correction*, Seasave corrects the oxygen output from the Optode based on the actual salinity (calculated from the CTD data). If you enable *Depth correction*, Seasave corrects the oxygen output from the Optode based on the depth (calculated from the CTD data).

Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control

Note:

Setup of all parameters in Configure Inputs is included in the Seasave program setup (.psa) file. To save the setup, you must save the .psa file (File menu / Save Setup File) before exiting Seasave.

This section describes the setup of the following in Configure Inputs:

- Serial ports
- Water sampler
- TCP/IP ports
- Miscellaneous – parameters required for output of specific variables (depth, average sound velocity, descent rate, acceleration, oxygen, plume anomaly, and potential temperature anomaly).
- Pump control (only applicable for a custom SBE 9*plus* CTD)

For setup of the instrument configuration (.con or .xmlcon) file, see *Section 3: Configure Inputs, Part I - Instrument Configuration (.con or .xmlcon file)*, and *Section 4: Configure Inputs, Part II – Calibration Coefficients*.

Serial Ports

The Serial Ports tab defines serial ports and other communication parameters for:

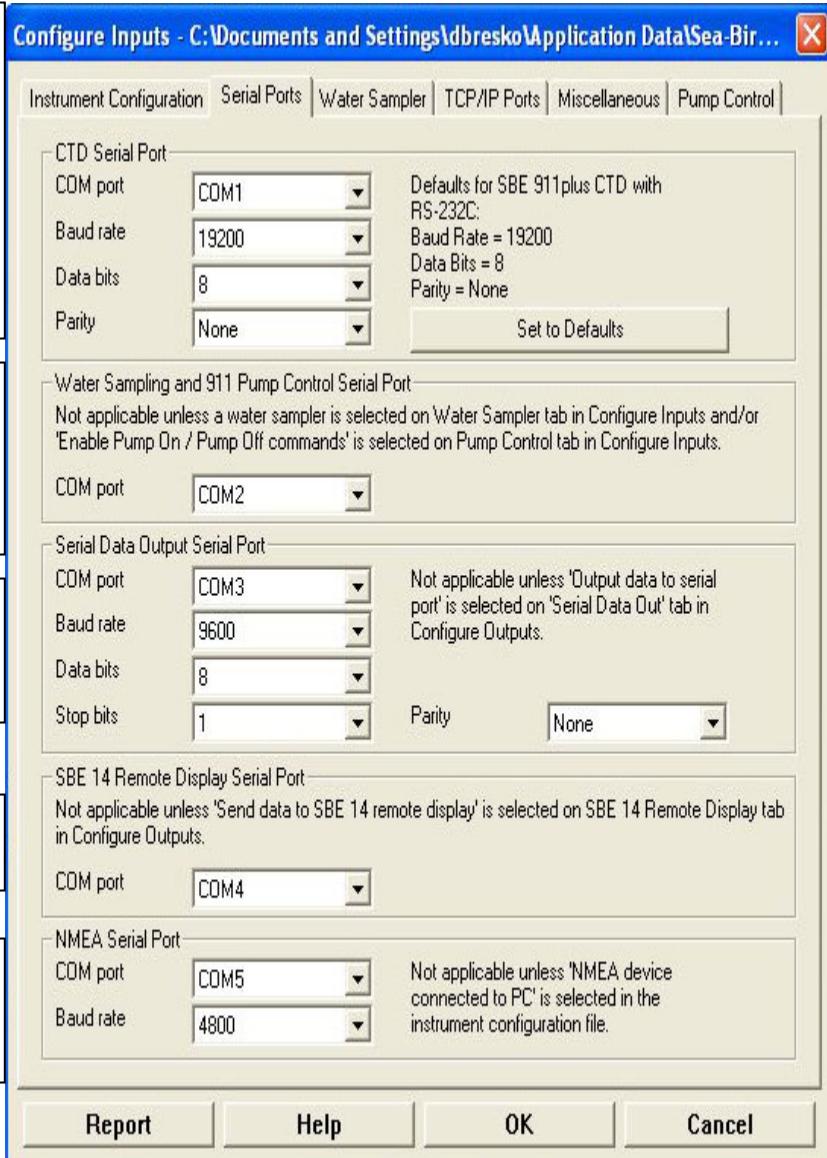
- Sending commands to and receiving replies from the CTD
- Sending commands to and receiving replies from a water sampler, through the SBE 11*plus* Deck Unit *Modem Channel* connector or SBE 33 Deck Unit *Carousel Data* connector
- Sending pump control commands to a custom SBE 9*plus* through the SBE 11*plus* Deck Unit *Modem Channel* connector
- Outputting data to a serial port for user-defined purposes
- Outputting converted data through a serial port to an SBE 14 Remote Display

Serial port parameters can be defined in Configure Inputs or Configure Outputs; if you make changes in one dialog box, those changes will appear when you open the other dialog box.

Click Configure Inputs. In the Configure Inputs dialog box, click the Serial Ports tab:

Defaults are shown for instrument selected on Instrument Configuration tab, and are typical settings for that instrument. If your instrument will not communicate at settings shown:

- Many instruments have a user-programmable baud rate; your instrument may have been programmed to communicate at a different baud (consult manual for baud command). **AND/OR**
- Your instrument may have a custom modification that affects baud rate, data bits, and/or parity; consult manual that was shipped with instrument for settings.


COM port connected to SBE 11plus Deck Unit *Modem Channel* connector or SBE 33 Deck Unit *Carousel Data* connector to send commands to and receive replies from water sampler.

Note: Same COM port is used to send pump control commands to a custom 9plus; this does not interfere with water sampler operation.

COM port, baud rate, data bits, stop bits, and parity for output data. **Typical values for use with most computers: 9600 baud, 8 data bits, 1 stop bit, no parity.** See Section 6: Configure Outputs for setup of serial data output.

COM port connected to SBE 14 Remote Display. See Section 6: Configure Outputs for setup of data output to SBE 14.

COM port and baud rate for NMEA device connected directly to computer. See Section 3: Configure Inputs, Part I – Instrument Configuration (.con or .xmlcon file) for selection of NMEA device connection.

Make the desired selections. Click OK or click another tab in Configure Inputs.

Descriptions follow for the CTD Serial Port baud rate, data bits, and parity entries for each instrument.

CTD Serial Port Baud Rate, Data Bits, and Parity

- **SBE 9*plus* with SBE 11*plus* V2 Deck Unit (with or without Water Sampler) –**
 - COM port - connected to Deck Unit *SBE 11 Interface* connector
 - Baud rate - between Deck Unit and computer; must agree with Deck Unit setting (19200 baud)
 - Parity and data bits – between Deck Unit and computer; must agree with Deck Unit setting (8 data bits, no parity)
- **SBE 19, 19*plus*, 19*plus* V2, or 25 with Water Sampler and SBE 33 Deck Unit or with PDIM and SBE 33 Deck Unit –**
 - COM port - connected to Deck Unit *Serial Data* connector (sends commands to and receives replies from the CTD through the Water Sampler)
 - Baud rate - between Deck Unit and computer; must agree with Deck Unit setting (4800, 9600, or 19200)
 - Parity and data bits – between Deck Unit and computer; must agree with Deck Unit setting (7 or 8 data bits, even or no parity)
- **SBE 19, 19*plus*, 19*plus* V2, 25, or 49 with PDIM and 36 Deck Unit –**
 - COM port - connected to Deck Unit *Serial Data* connector (sends commands to and receives replies from the CTD through the PDIM)
 - Baud rate - between Deck Unit and computer; must agree with Deck Unit setting (9600 or 19200)
 - Parity and data bits – between Deck Unit and computer; must agree with Deck Unit setting (7 or 8 data bits, even or no parity)
- **SBE 16, 16*plus*, 16*plus* V2, 19, 19*plus*, 19*plus* V2, 25, 45, or 49 connected directly to computer –**
 - COM port - connected to instrument
 - Baud rate - between instrument and computer; must agree with instrument setup (user-programmed)
 - Parity and data bits – between instrument and computer; must agree with instrument setting
(SBE 16, 19, or 25: 7 data bits, even parity;
SBE 16*plus*, 16*plus* V2, 19*plus*, 19*plus* V2, 45, or 49: 8 data bits, no parity)
- **SBE 21 with Interface Box –**
 - COM port - connected to Interface Box *RS-232C* connector
 - Baud rate - between Interface Box and computer; must be greater than or equal to baud rate between SBE 21 and Interface Box, and must agree with Interface Box setup (user-programmed to 1200, 2400, 4800, 9600, or 19200)
 - Parity and data bits – between SBE 21 and Interface Box and between Interface Box and computer; must agree with SBE 21 and Interface Box setting (user-programmed to 7 data bits, even parity)
- **SBE 45 with optional Interface Box –**
 - COM port - connected to Interface Box *PC* connector
 - Baud rate - between Interface Box and computer; must agree with Interface Box and SBE 45 setup (user-programmed to 4800, 9600, or 19200 in both Interface Box and in SBE 45)
 - Parity and data bits – between SBE 45 and Interface Box and between Interface Box and computer ; must agree with SBE 45 and Interface Box setting (8 data bits, no parity)

Water Sampler

Note:

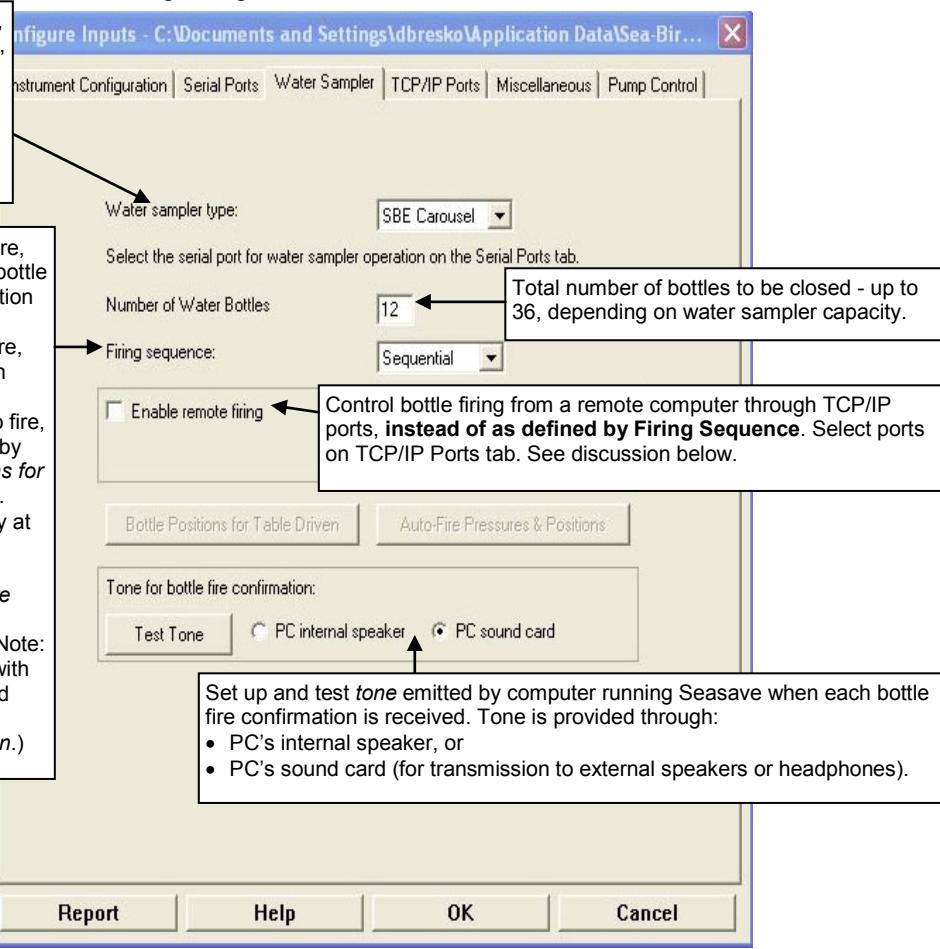
See *Firing Bottles* in *Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition* for details on firing bottles.

Note:

When using the SBE 49 CTD with the SBE 33 and a water sampler, Seasave does not allow acquisition of Surface PAR data.

A Sea-Bird CTD can be integrated with a water sampler when used with a deck unit (SBE 11plus or SBE 33 as applicable). Water sampler bottles can be fired by command from Seasave, autonomously (based on user-input, pre-defined pressures or depths), a mix of by command and autonomously, or from a remote computer via a TCP/IP port.

Bottle firings can be recorded in the data in several ways:


- 911plus with SBE 32 Carousel Water Sampler or G.O. 1016 Rosette, or SBE 19, 19plus, 19plus V2, 25, or 49 with SBE 33 Carousel Deck Unit and SBE 32 Carousel Water Sampler or SBE 55 ECO Water Sampler: Seasave automatically writes bottle sequence number, bottle position, date, time, and beginning and ending scan numbers to a bottle log (.bl) file each time a bottle fire confirmation is received from the water sampler. The beginning and ending scan numbers correspond to approximately a 1.5-second duration for each bottle.
- 911plus with G.O. 1015 Rosette: Seasave automatically sets the bottle confirm bit in the data (.hex) file for all scans within a 1.5-second period after a bottle firing confirmation is received from the Rosette.
- If desired, you can use Seasave's Mark Scan feature to manually note when bottles are fired, creating a .mrk file.

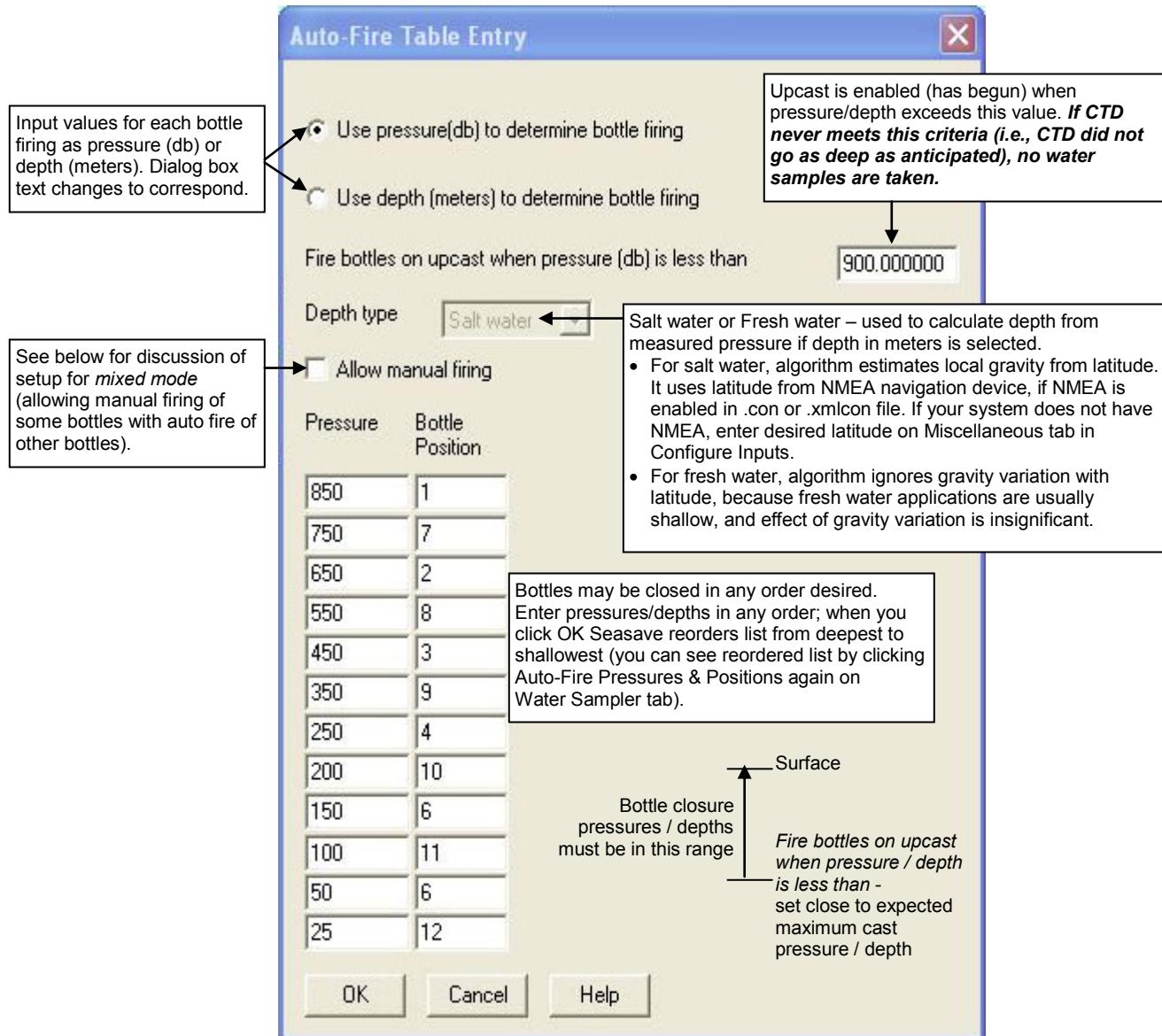
SBE Data Processing can use the bottle firing information, in any of these forms, to assist you in processing water bottle data.

To enable and set up the water sampler, click Configure Inputs. In the Configure Inputs dialog box, click the Water Sampler tab:
Make the desired selections. Click OK or click another tab in Configure Inputs.

SBE Carousel (SBE 32, 32C, or 32SC), SBE ECO (SBE 55), G.O.1015 or 1016, Hydro-Bios, IOW, or None.
Define serial port for water sampler operation on Serial Ports tab.
Note: Hydro-Bios and IOS for custom applications only.

- **Sequential** - When commanded to fire, bottles are fired in order of position (bottle in position #1 fired first, bottle in position #2 fired second, etc.).
- **User Input** - When commanded to fire, Seasave prompts you to select which bottle to fire.
- **Table Driven** - When commanded to fire, bottles are fired in order pre-defined by user-input table. Click *Bottle Positions for Table Driven* to input bottle positions.
- **Auto Fire** – Fire bottles automatically at user-input, pre-defined pressures or depths (can also fire some bottles manually), **on upcast**. Click *Auto-Fire Pressures & Positions* to input parameters; see discussion below. (Note: Auto Fire on **downcast** is available with use of -autofireondowncast command line parameter. See *Appendix I: Command Line Operation*.)

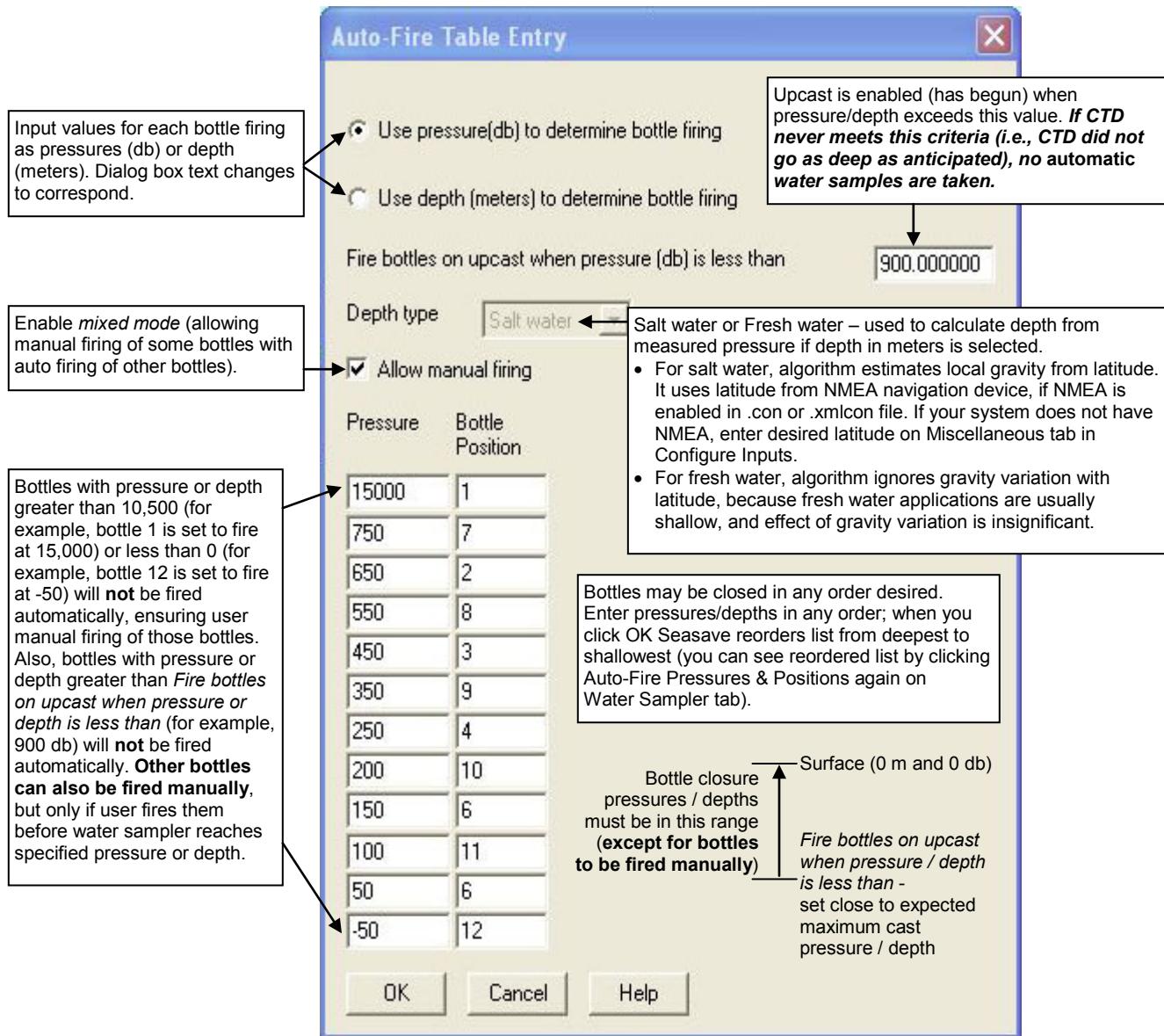
Note:


If G.O. 1016 is selected, there is an entry for Arm offset in the dialog box.

Auto Fire

Note:

Auto fire can be set up to fire on downcast instead of upcast, with the use of the `-autofireondowncast` command line parameter. See [Appendix I: Command Line Operation](#).


If you select Auto Fire on the Water Sampler tab, and click Auto Fire Pressures & Positions, the Auto-Fire Table Entry dialog box appears (to define the closure order and closure pressures or depths):

Make the desired selections. Click OK.

Mixed Mode setup (auto bottle fire, but also allowing manual bottle fire)

Seasave allows manual firing of some bottles along with auto firing of other bottles, referred to as *mixed mode* firing. This is often used to obtain a water sample at one or more points with the water sampler held in a stationary position. Typical positions for manual firing are at the actual bottom of the cast (because the bottom of the cast cannot be predicted with certainty beforehand), and at the top of the cast. Looking at the Auto Fire dialog again, and reviewing the setup for *mixed mode* firing:

Make the desired selections. Click OK.

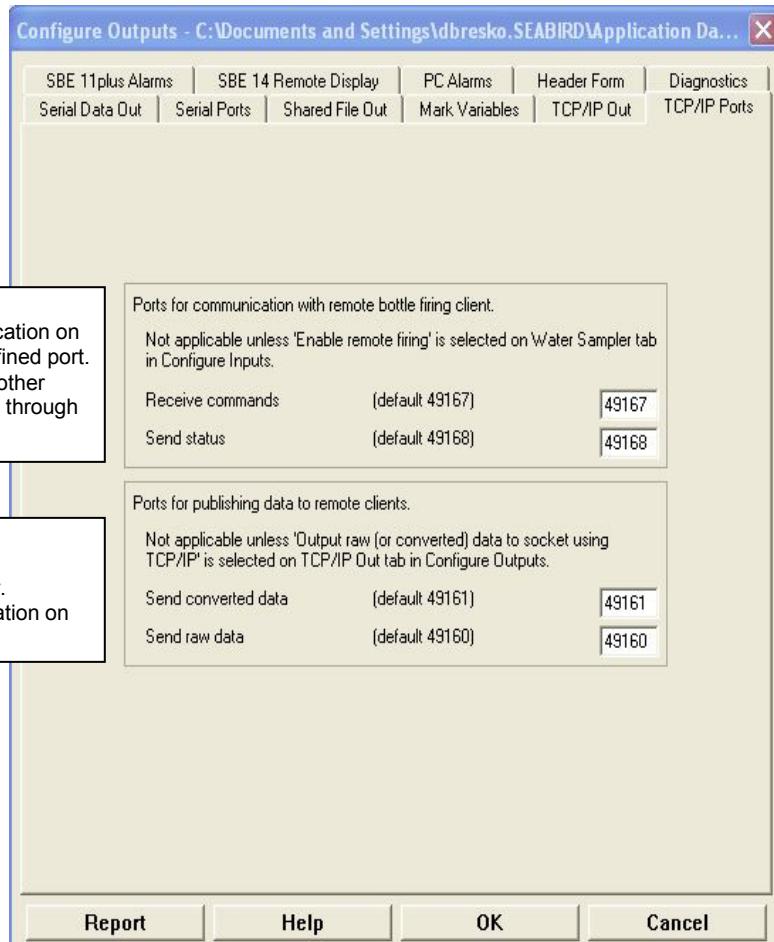
Remote Bottle Firing

If you select *Enable remote firing* on the Water Sampler tab, bottle firing is controlled from a remote computer connected via TCP/IP ports to the computer that is running Seasave.

Software on the remote computer is required to control bottle firing via TCP/IP. Sea-Bird provides two methods for performing this function:

- **Seasave Remote** has many of the same display and plotting capabilities as Seasave. It can be used to display data on a remote computer that is transmitted in XML format (via TCP/IP or to a shared file), and to fire bottles from a remote computer. See *Appendix V: Seasave Remote for Remote Display and Bottle Firing* or Seasave Remote's Help files.
- **FixedDisplay.jar** and **FireBottles.jar** are sample Java applications. FixedDisplay.jar allows you to view a Fixed display on a remote computer, to display data that is transmitted via TCP/IP in XML format. FireBottles.jar allows you to fire bottles from a remote computer. You can use the provided sample applications or modify them as desired. See *Appendix VI: Java Applications for Remote Display and Bottle Firing*.

Note:


As an alternative to using the software provided by Sea-Bird, you can develop your own application for remote bottle firing using your desired software.

TCP/IP Ports

TCP/IP is **Transmission Control Protocol/Internet Protocol**, a communication protocol used to connect hosts on the internet and/or over networks. TCP/IP allows you to connect your CTD to a computer on deck while receiving data and firing bottles at a remote location elsewhere on the ship.

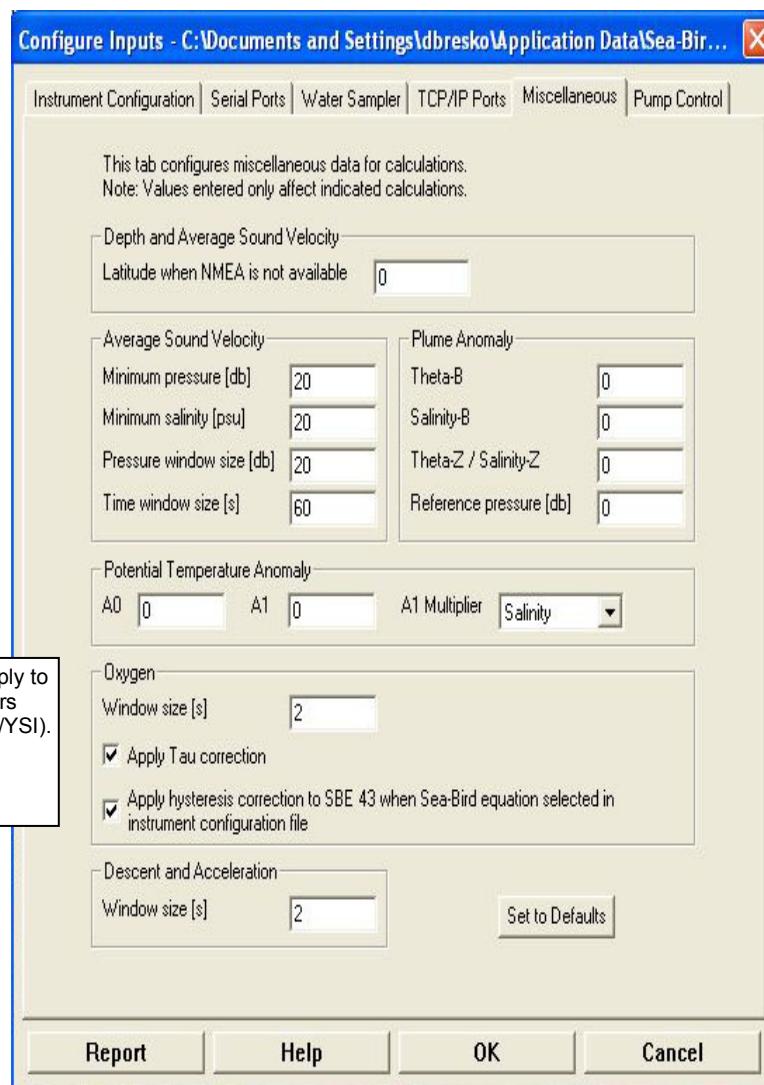
TCP/IP ports can be defined in Configure Inputs or Configure Outputs; if you make changes in one dialog box those changes will appear when you open the other dialog box.

Click Configure Inputs. In the Configure Inputs dialog box, click the TCP/IP Ports tab:

Note:

Appendix V: Seasave Remote for Remote Display and Bottle Firing and *Appendix VI: Java Applications for Remote Display and Bottle Firing* provide information on Sea-Bird software that can be installed on a remote computer for viewing data and firing bottles.

Enter the desired values. Click OK or click another tab in Configure Inputs.

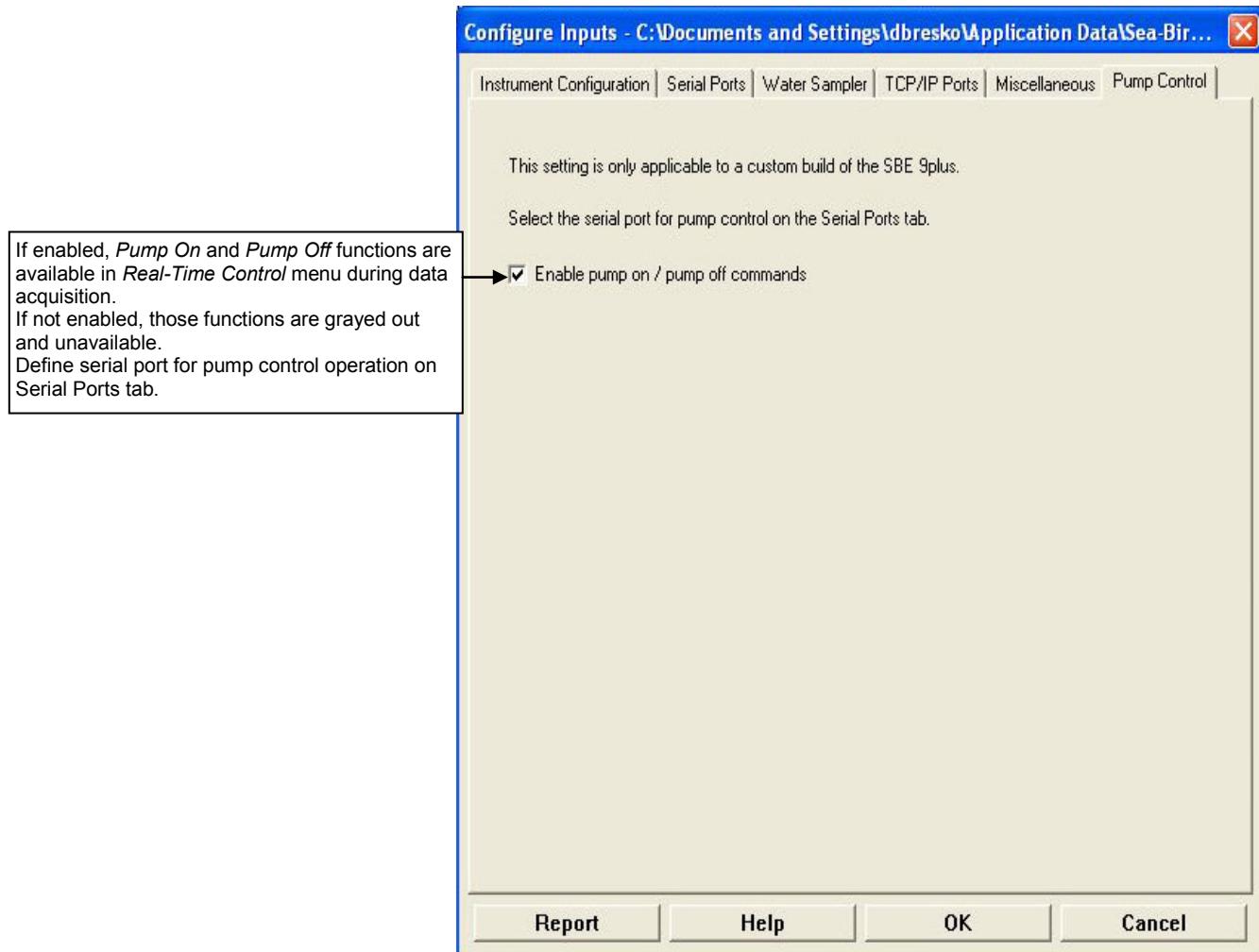

Miscellaneous

Note:

See *Appendix IV: Derived Parameter Formulas* for details on how the values entered on the Miscellaneous tab are used in the calculations.

The Miscellaneous tab defines parameters required for output of specific variables (depth, average sound velocity, plume anomaly, potential temperature anomaly, oxygen, descent rate, and acceleration.). **Entries on this tab are used only if you are outputting the associated variable to a display window, shared file, remote device, TCP/IP port, etc.** For example, if you do not select data from a voltage Oxygen sensor as an output variable for a display window or on any tab in the Configure Outputs dialog box, Seasave ignores the value entered for Oxygen window size and the enabling of hysteresis and Tau corrections on the Miscellaneous tab.

Click Configure Inputs. In the Configure Inputs dialog box, click the Miscellaneous tab:



Enter the desired values. Click OK or click another tab in Configure Inputs.

Pump Control

The Pump Control tab allows you to enable / disable user pump control for an **SBE 9plus with custom modifications**. Pump control commands are sent through the SBE 11plus Deck Unit *Modem Channel* connector (COM port is defined on Serial Ports tab); pump control does not interfere with water sampler operation.

Click Configure Inputs. In the Configure Inputs dialog box, click the Pump Control tab:

Make the desired selection. Click OK or click another tab in Configure Inputs.

Section 6: Configure Outputs

Notes:

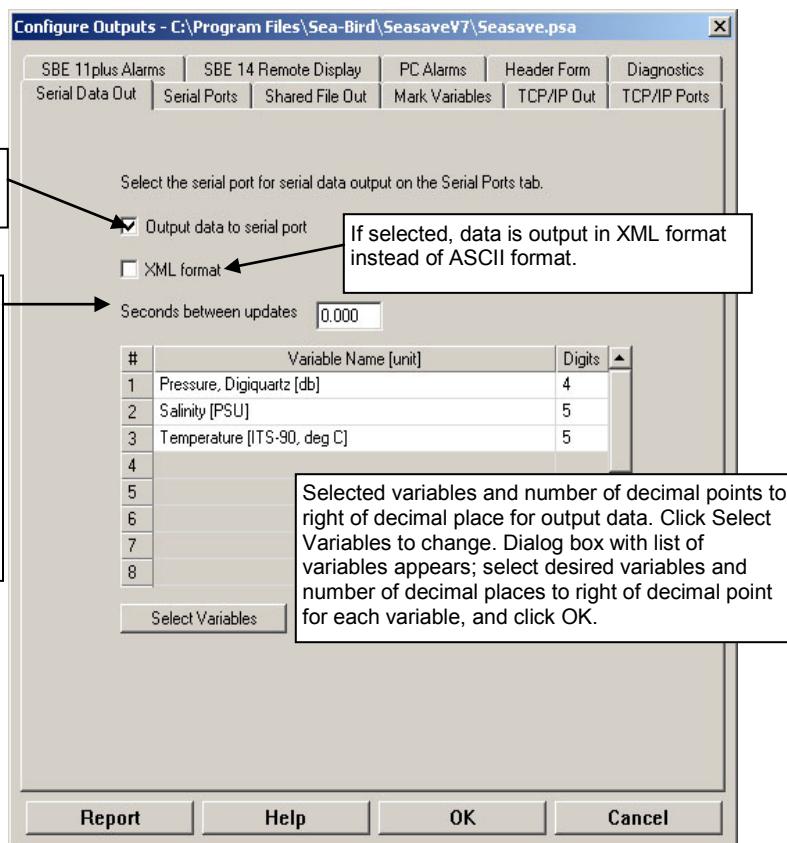
- Setup of all parameters (except Diagnostics) in Configure Outputs is included in the Seasave program setup (.psa) file. To save the setup, you must save the .psa file (File menu / Save Setup File) before exiting Seasave.
- Algorithms used to calculate derived parameters for output and/or display in Seasave are the same as used in SBE Data Processing's Derive and Data Conversion modules (with the exception of the oxygen, descent rate, & acceleration calculations). See *Appendix IV: Derived Parameter Formulas*.

This section describes the setup of the following in Configure Outputs:

- Serial data output
- Serial ports
- Shared file output
- Mark variables
- TCP/IP output
- TCP/IP ports
- SBE 11*plus* alarms (only applicable if instrument configuration [.con or .xmlcon] file is for 911plus/917plus CTD)
- SBE 14 Remote Display
- PC alarms
- Header form
- Diagnostics

Some outputs – serial data out, shared file out, SBE 11*plus* alarms, and remote display, and PC alarms - can be reconfigured during data acquisition without interrupting data acquisition. For example, if you start a cast and realize that you forgot to set up the serial data output, you can select Configure Outputs, and make and save the desired changes, all without interrupting the data acquisition. Once the desired changes are saved, the serial data will begin to output to the desired COM port (of course, any data that was acquired before you modified the setup will not be output in the serial data stream).

For setup of the inputs, see *Section 3: Configure Inputs, Part I - Instrument Configuration (.con or .xmlcon file)*, *Section 4: Configure Inputs, Part II – Calibration Coefficients*, and *Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control*.


Serial Data Output

Note:

Your computer could *crash* if data is presented to the COM port faster than the COM port can transmit it at the selected baud rate. Note that outputting in XML transmits a much larger number of characters than outputting in ASCII. Because COM port capabilities vary from one computer to another, always test the setup *with the computer you will be using at sea* to ensure proper operation.

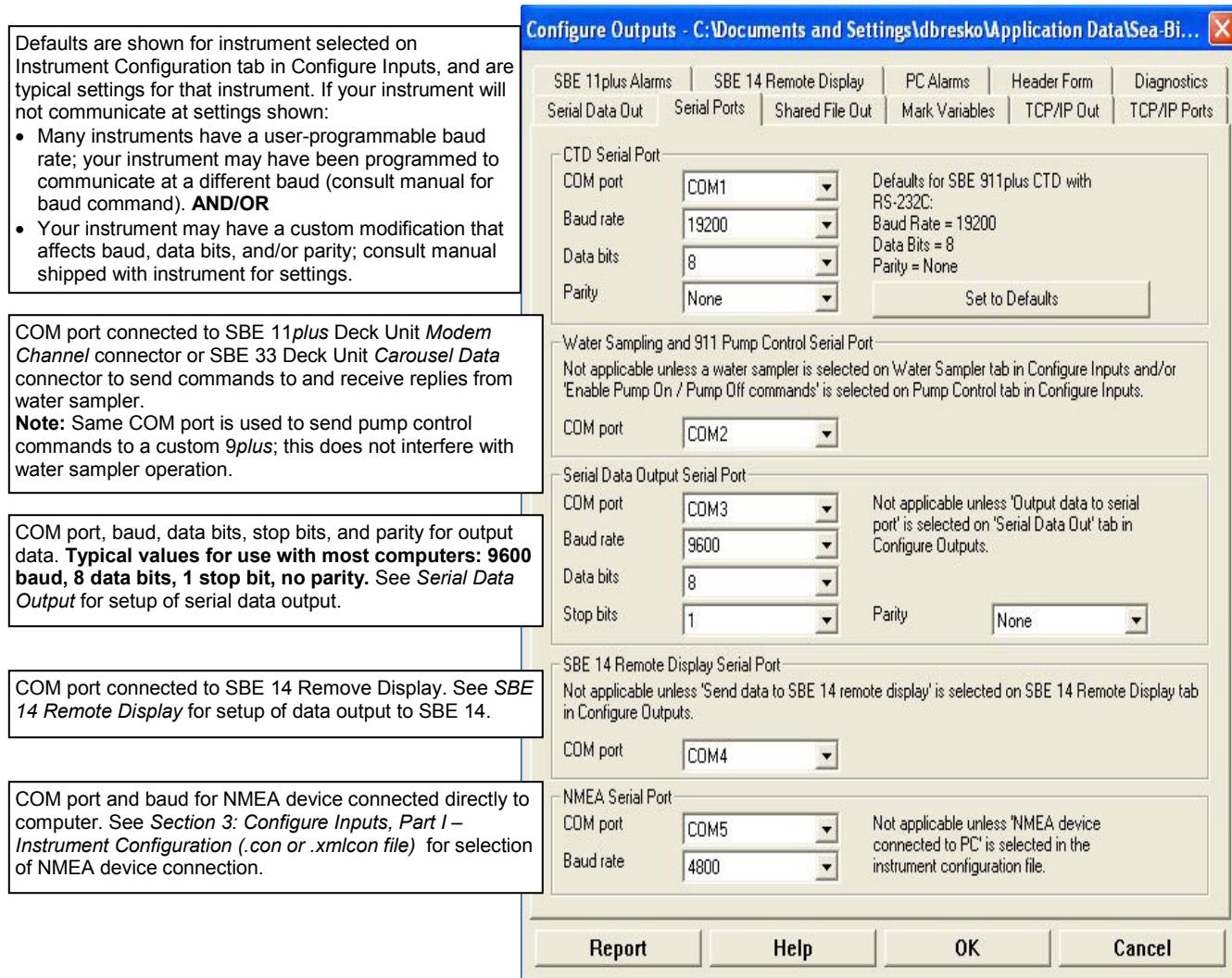
Seasave can output selected raw data (frequencies, voltages, and/or A/D counts as applicable) and converted data, in ASCII or XML format, to a serial port on your computer. For converted data, Seasave applies calibration coefficients to the raw data to calculate converted data in engineering units.

To enable and set up serial data output, click Configure Outputs. In the Configure Outputs dialog box, click the Serial Data Out tab:

Make the desired selections. Click OK or click another tab in Configure Outputs.

Serial Ports

The Serial Ports tab defines serial ports and other communication parameters for:

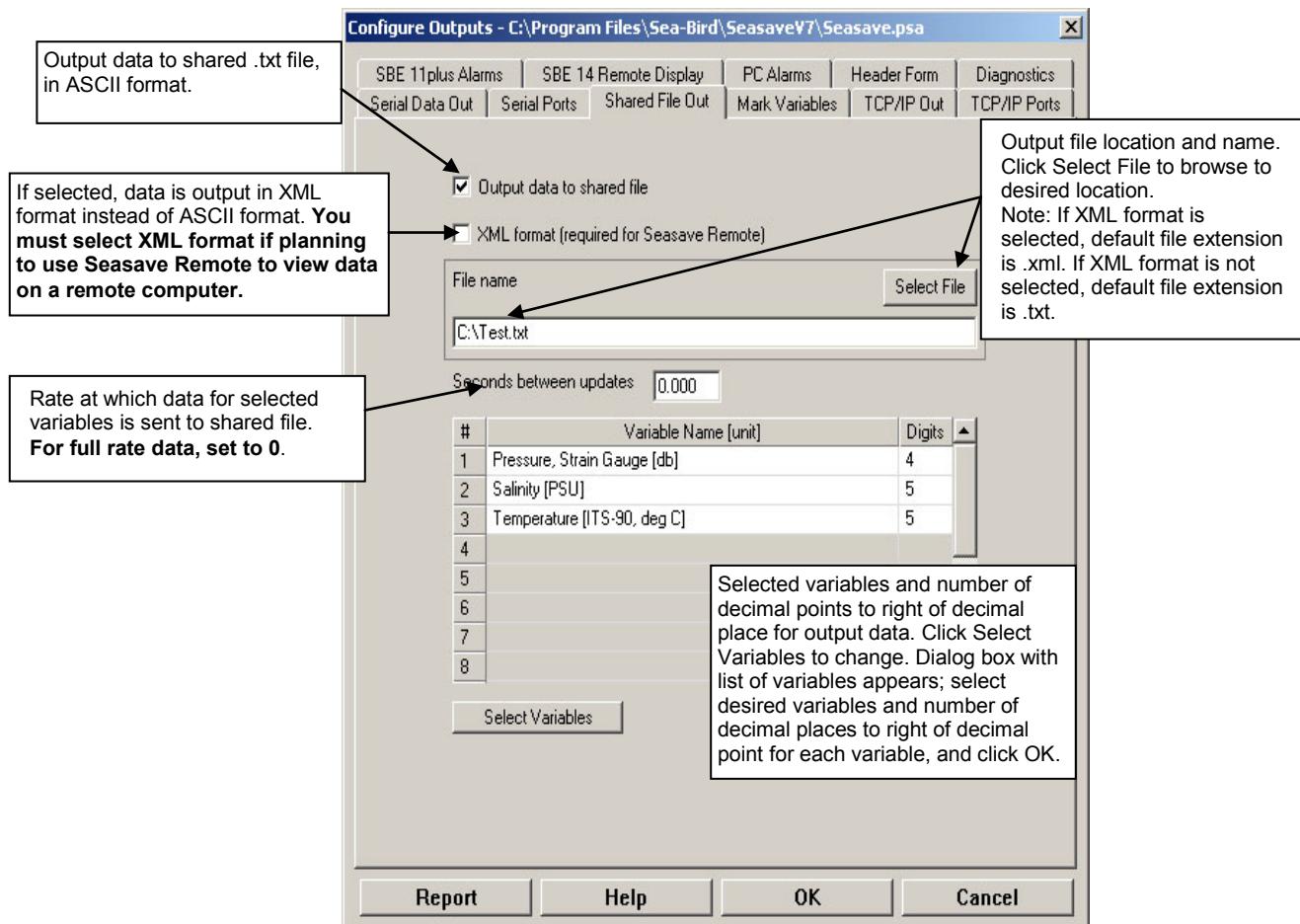

- Sending commands to and receiving replies from the CTD
- Sending commands to and receiving replies from a water sampler, through the SBE 11plus Deck Unit *Modem Channel* connector or SBE 33 Deck Unit *Carousel Data* connector
- Sending pump control commands to a custom 9plus through the SBE 11plus Deck Unit *Modem Channel* connector
- Outputting data to a serial port for user-defined purposes
- Outputting converted data through a serial port to an SBE 14 Remote Display

Note:

For details on the CTD communication settings, see *Serial Ports in Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control*.

Serial port parameters can be defined in Configure Inputs or Configure Outputs; if you make changes in one dialog box, those changes will appear when you open the other dialog box.

Click Configure Outputs. In the Configure Outputs dialog box, click the Serial Ports tab:



Make the desired selections. Click OK or click another tab in Configure Outputs.

Shared File Output

Seasave can output selected raw data (frequencies, voltages, and/or A/D counts as applicable) and converted data to a *shared* ASCII .txt file or XML .xml file on your computer. For converted data, Seasave applies calibration coefficients to the raw data to calculate converted data in engineering units.

To enable and set up shared file output, click Configure Outputs. In the Configure Outputs dialog box, click the Shared File Out tab:

Make the desired selections. Click OK or click another tab in Configure Outputs.

Remote Display

To view data output to a shared file on a remote computer on a network **while Seasave continues to acquire more data**:

- **Seasave Remote** has many of the same display and plotting capabilities as Seasave. It can be used to display data on a remote computer that is transmitted in **XML format** (via TCP/IP or to a shared file), and to fire bottles from a remote computer. See *Appendix V: Seasave Remote for Remote Display and Bottle Firing* or see Seasave Remote's Help files.
- Alternatively, other software such as Microsoft *Notepad* can be used to open and look at data in the shared file. However, the data you are viewing will not *refresh* while the file is open; in other words, you must close the file and reopen it to view the latest data.

Note:

As an alternative to using the software provided by Sea-Bird, you can develop your own application using your desired software.

Notes on Viewing Shared File in XML Format

If you select XML format for the output shared file, the resulting .xml file cannot be opened with a web browser (such as Internet Explorer 7 or FireFox). For example, if you try to open the .xml file with Internet Explorer 7, the error message looks like this:

Only one top level element is allowed in an XML document. Error processing resource . . .

The output contains a top level tag for the settings, and a top level tag for each scan of data, making it incompatible with these browsers.

The .xml file **can** be viewed using any of the following:

- Microsoft *Notepad*
- Symbol Click *XML Marker*
- Seasave Remote (see *Remote Display* above)

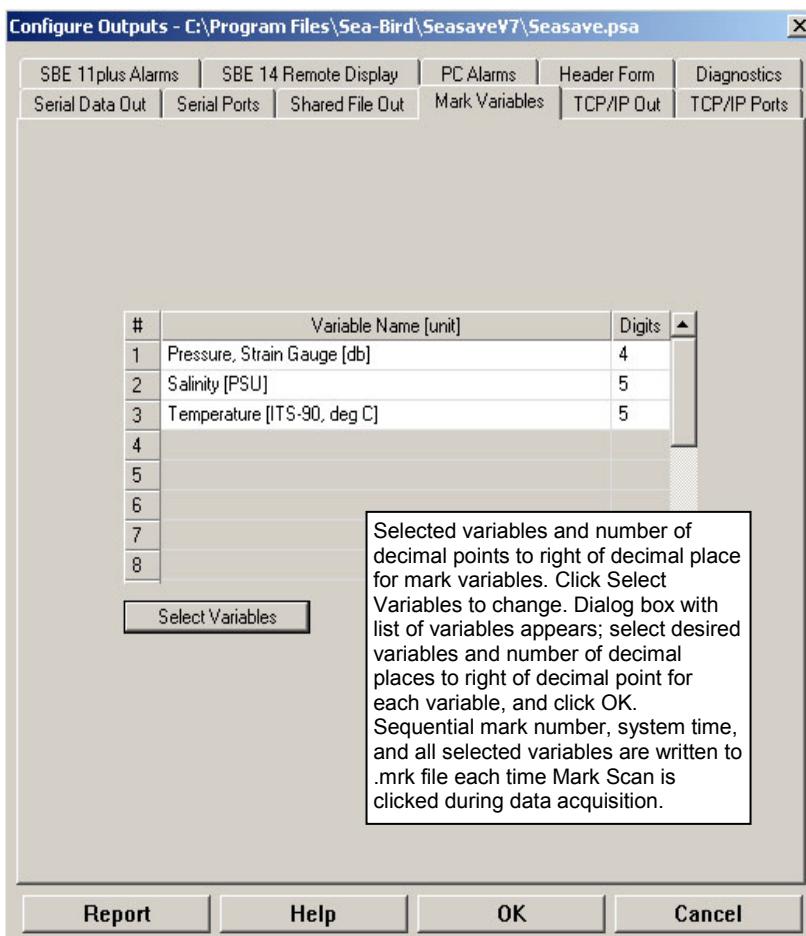
Notes on Converting Shared File in XML Format to Format Compatible with Spreadsheet Software

After data acquisition is complete, you can convert an output .xml file to a tab-delimited .txt format that can be opened in Microsoft Excel.

To convert the file:

1. In the Tools menu, select *Convert shared file output .xml file to spreadsheet format*.
2. A dialog box appears. Browse to the desired .xml input file and select the path and file name for the output .txt file, and then click the Convert button.
3. The resulting .txt file can be opened in Excel.

Mark Variables


Note:

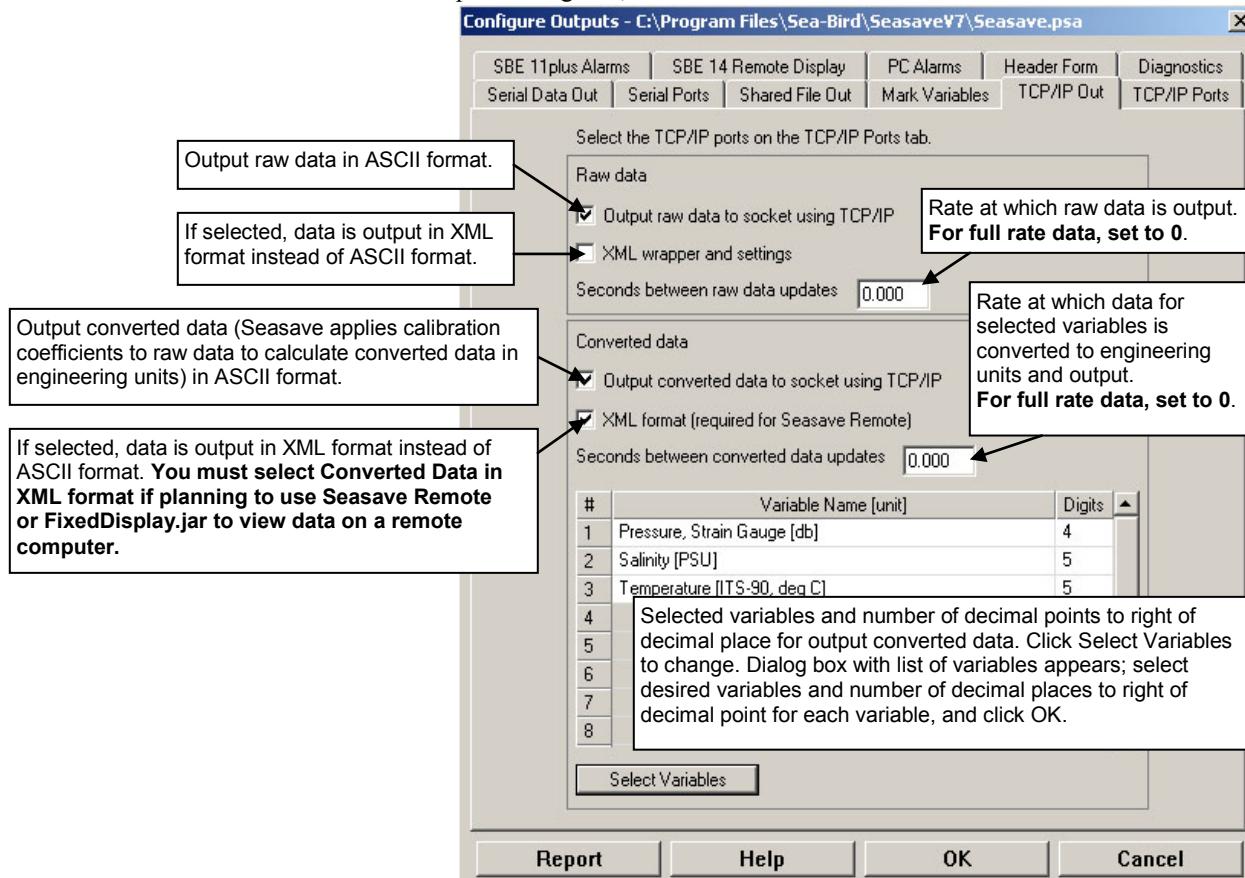
The .mrk file has the same path and file name as the data file. For example, if the data file is test1.hex, the .mrk file is test1.mrk.

Mark Variables allows you set up Seasave to copy the most recent scan of data to a mark (.mrk) file as desired during real-time data acquisition. Seasave writes the sequential mark number, system time, and all selected variables to a .mrk file each time Mark Scan is clicked during data acquisition. If a plot display is set up to show mark lines, Seasave also draws a horizontal line in the plot each time Mark Scan is clicked during data acquisition.

The .mrk file can be used to manually note water sampler bottle firings, compare CTD data with data acquired at the same time from a Thermosalinograph, or mark significant events in the cast (winch problems, large waves causing ship heave, etc.) for later review and analysis of the data.

To enable and set up Mark Variables, click Configure Outputs. In the Configure Outputs dialog box, click the Mark Variables tab:

Make the desired selections. Click OK or click another tab in Configure Outputs.


To set up a plot display to show mark lines (lines can be labeled with the sequential mark number and/or pressure) - Right click in the desired plot window. In the Plot Display dialog box, select Show Mark Lines. Change other settings as desired, and click OK (see *Plot Display* in *Section 7: Display – Setting Up Seasave Displays*).

See *Marking Scans* in *Section 8: Real-Time Data and Real-Time Control – Real-Time Data Acquisition* to mark the scans during data acquisition.

TCP/IP Out

TCP/IP is Transmission Control Protocol/Internet Protocol, a communication protocol used to connect hosts on the internet and/or over networks. TCP/IP allows you to connect a CTD to a computer on deck while receiving data and firing bottles at a remote location elsewhere on the ship. TCP/IP also allows multiple applications running on the same computer to communicate. Seasave can output raw **and** converted data through separate TCP/IP ports.

To enable and set up TCP/IP output, click Configure Outputs. In the Configure Outputs dialog box, click the TCP/IP Out tab:

Make the desired selections. Click OK or click another tab in Configure Outputs.

Data Format for TCP/IP Out

If outputting *Converted data* using TCP/IP, the format is identical to data output to a shared file (Shared File Out tab). You can view the format by enabling *Output data to shared file* on the Shared File Out tab and playing back any archived data file (*Archived Data* menu).

If outputting *Raw data* using TCP/IP, the format varies depending on whether you enable *XML wrapper and settings*.

- **XML wrapper and settings not enabled:** Data is output in hex, in the same format as the output .hex file. Scans are skipped, based on your selection of *Seconds between raw data updates*. No header information is output.
- **XML wrapper and settings is enabled:** Data is preceded by configuration information in XML, and each data scan is *wrapped* in a sequential XML scan index tag.

An example of the raw data output with *XML wrapper and settings* enabled is shown below for an SBE 19plus with several auxiliary sensors.

Note:

XML scan index tags are numbered 0, 1, 2, etc., regardless of *Seconds between raw data updates*. For example, if *Seconds between raw data updates* is 1.0 and you are using a 19plus (4 scans/second sampling), scan 0 corresponds to the 1st scan in the .hex file, scan 1 corresponds to the 5th scan in the .hex file, etc. If the scan index tags skip any numbers, Seasave is unable to process the data fast enough; increase the *Seconds between raw data updates*.

```

<?xml version="1.0" encoding="UTF-8" ?>
<SBE_InstrumentConfiguration SB_ConfigCTD_FileVersion="7.18.0.3">
<Instrument Type="3">
<Name>SBE 19plus Seacat CTD</Name>
<PressureSensorType>1</PressureSensorType>
<ExternalVoltageChannels>4</ExternalVoltageChannels>
<Mode>0</Mode>
<SampleIntervalSeconds>60</SampleIntervalSeconds>
<ScansToAverage>1</ScansToAverage>
<SurfaceParVoltageAdded>0</SurfaceParVoltageAdded>
<ScanTimeAdded>0</ScanTimeAdded>
<NmeaPositionDataAdded>0</NmeaPositionDataAdded>
<NmeaDepthDataAdded>0</NmeaDepthDataAdded>
<NmeaTimeAdded>0</NmeaTimeAdded>
<NmeaDeviceConnectedToPC>0</NmeaDeviceConnectedToPC>
<SensorArray Size="7">
<Sensor index="0" SensorID="58">
<TemperatureSensor SensorID="58">
<SerialNumber>4216</SerialNumber>
<CalibrationDate>21-May-02</CalibrationDate>
<A0>1.23634100e-003</A0>
...
</TemperatureSensor>
</Sensor>
<Sensor index="1" SensorID="3">
<ConductivitySensor SensorID="3">
<SerialNumber>4216</SerialNumber>
<CalibrationDate>21-May-02</CalibrationDate>
...
</ConductivitySensor>
</Sensor>
<Sensor index="2" SensorID="46">
<PressureSensor SensorID="46">
<SerialNumber>4216</SerialNumber>
<CalibrationDate>08-Apr-02</CalibrationDate>
...
</PressureSensor>
</Sensor>
<Sensor index="3" SensorID="38">
<OxygenSensor SensorID="38">
<SerialNumber>0274</SerialNumber>
<CalibrationDate>5/22/02</CalibrationDate>
...
</CalibrationCoefficients>
</OxygenSensor>
</Sensor>
<Sensor index="4" SensorID="43">
<pH_Sensor SensorID="43">
<SerialNumber>0403</SerialNumber>
<CalibrationDate>4/12/02</CalibrationDate>
...
</pH_Sensor>
</Sensor>
<Sensor index="5" SensorID="33">
<OBS_SeapointTurbiditySensor SensorID="33">
<SerialNumber>1955</SerialNumber>
<CalibrationDate>5/30/02</CalibrationDate>
...
</OBS_SeapointTurbiditySensor>
</Sensor>
<Sensor index="6" SensorID="21">
<FluoroWetlabWetstarSensor SensorID="21">
<SerialNumber>WS3S-835P</SerialNumber>
<CalibrationDate>4/12/02</CalibrationDate>
...
</FluoroWetlabWetstarSensor>
</Sensor>
</SensorArray>
</Instrument>
</SBE_InstrumentConfiguration>                                (end of configuration information)
<SecondsBetweenUpdates>0.0</SecondsBetweenUpdates>          (input on TCP/IP Out tab)
<scan index='0'>03EA4709F0A0080202777B93DC52E100030952</scan> (start of hex data)
<scan index='1'>03EA4909F0A0080203777A93EC52C900010949</scan>
...

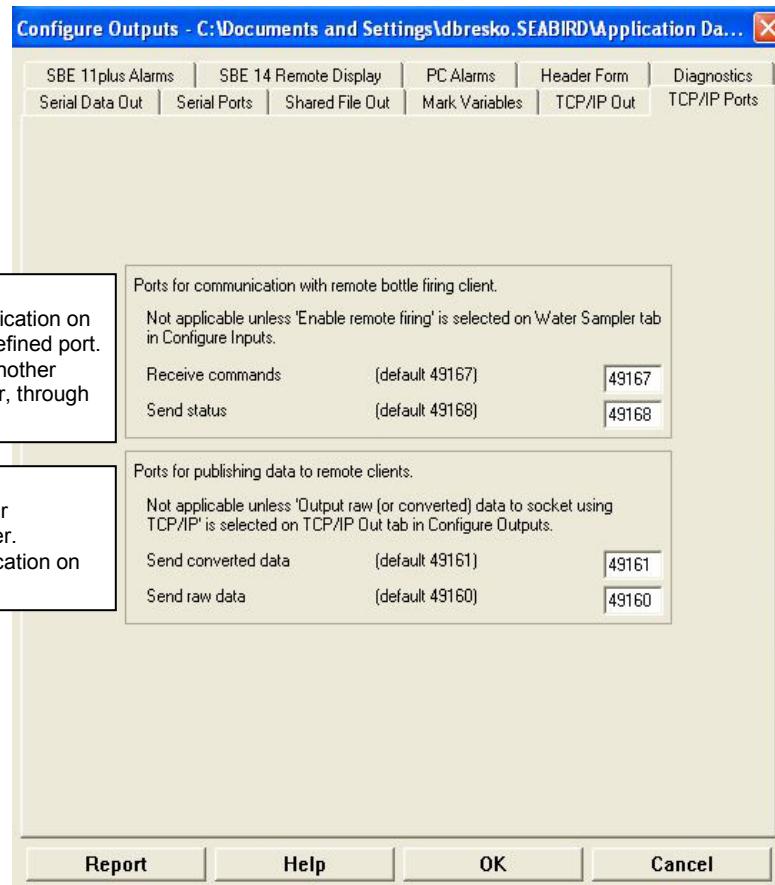
```

Remote Display

Software on the remote computer is required to view data output via TCP/IP. Sea-Bird provides two methods for performing this function if outputting **converted data in XML format**:

Note:

As an alternative to using the software provided by Sea-Bird, you can develop your own application using your desired software.


- **Seasave Remote** has many of the same display and plotting capabilities as Seasave. It can be used to display data on a remote computer that is transmitted (via TCP/IP or to a shared file), and to fire bottles from a remote computer. See *Appendix V: Seasave Remote for Remote Display and Bottle Firing* or Seasave Remote's Help files.
- **FixedDisplay.jar** and **FireBottles.jar** are sample Java applications. FixedDisplay.jar allows you to view a Fixed display on a remote computer, to display data transmitted via TCP/IP. FireBottles.jar allows you to fire bottles from a remote computer. You can use the provided sample applications or modify them as desired. See *Appendix VI: Java Applications for Remote Display and Bottle Firing*.

TCP/IP Ports

TCP/IP is **Transmission Control Protocol/Internet Protocol**, a communication protocol used to connect hosts on the internet and/or over networks. TCP/IP allows you to connect your CTD to a computer on deck while receiving data and firing bottles at a remote location elsewhere on the ship.

TCP/IP ports can be defined in Configure Inputs or Configure Outputs; if you make changes in one dialog box those changes will appear when you open the other dialog box.

Click Configure Outputs. In the Configure Outputs dialog box, click the TCP/IP Ports tab:

Define TCP/IP ports to use for remote bottle firing:

- **Receive commands** to fire bottles from another application on same computer or from another computer, through defined port.
- **Send status** response (bottle fire confirmations) to another application on same computer or to another computer, through defined port.

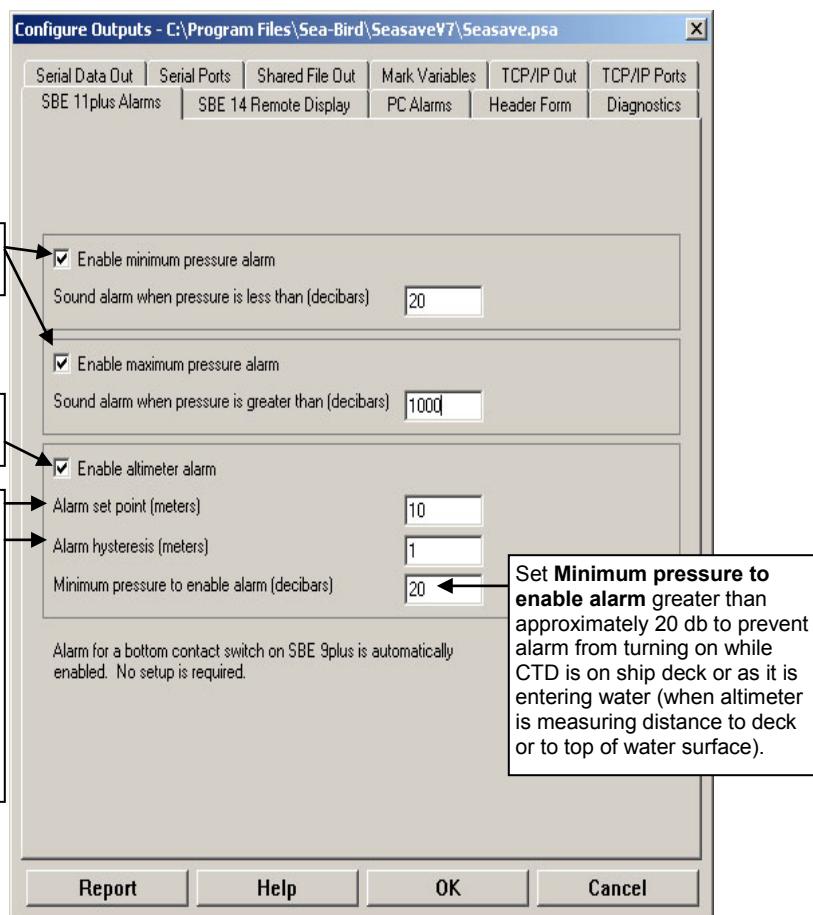
Define TCP/IP ports to send data:

- **Send converted data** through defined port to another application on same computer, or to another computer.
- **Send raw data** through defined port to another application on same computer, or to another computer.

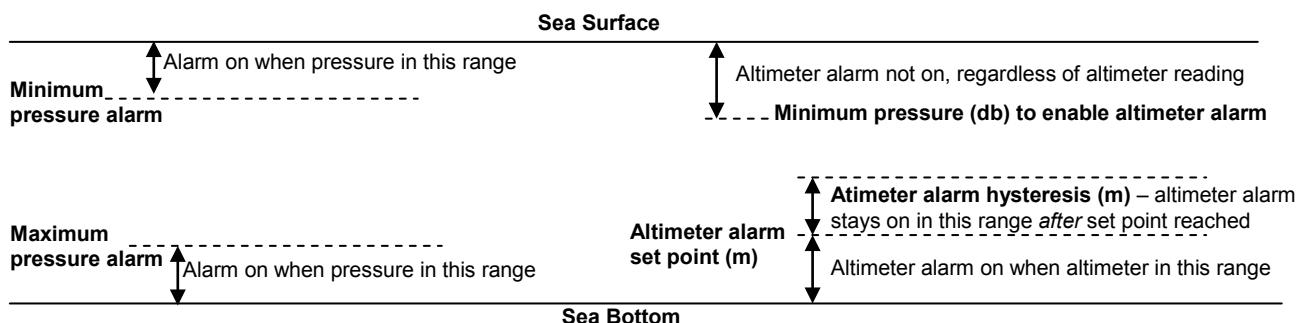
Make the desired selections. Click OK or click another tab in Configure Outputs.

Note:

Appendix V: Seasave Remote for Remote Display and Bottle Firing and *Appendix VI: Java Applications for Remote Display and Bottle Firing* provide information on Sea-Bird software that can be installed on a remote computer for viewing data and firing bottles.


SBE 11plus Alarms

Notes:


- Altimeter alarm is available only if selected configuration (.con or .xmlcon) file has a 9plus CTD with altimeter.
- The 11plus alarm also operates on input from a bottom contact switch on the 9plus. No setup is required in Seasave for the bottom contact switch.

Seasave can set up an alarm in the SBE 11plus Deck Unit based on minimum and maximum pressures, and/or for an altimeter integrated with the SBE 9plus CTD.

Click Configure Outputs. In the Configure Outputs dialog box, click the SBE 11plus Alarms tab.

Enter the desired values. Click OK or click another tab in Configure Outputs.

SBE 14 Remote Display

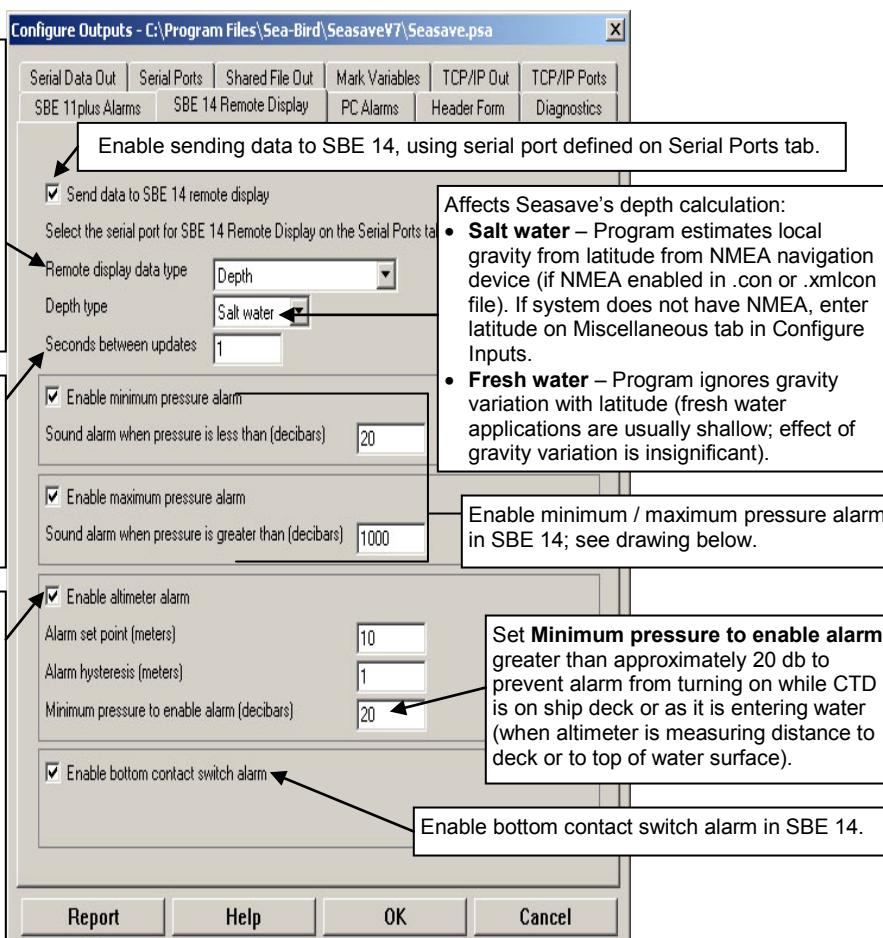
Notes:

- SBE 14 setup in Seasave applies if **SBE 14 is connected to a COM port**. If SBE 14 is connected to 11plus Deck Unit, SBE 14 setup is done by sending commands to the 11plus in Seaterm.
- Altimeter alarm is available only if selected configuration (.con or .xmlcon) file has a CTD with altimeter.
- Bottom contact switch alarm - **SBE 9plus**: Always available. **All other CTDs**: Available only if selected configuration (.con or .xmlcon) file has a CTD with bottom contact switch.

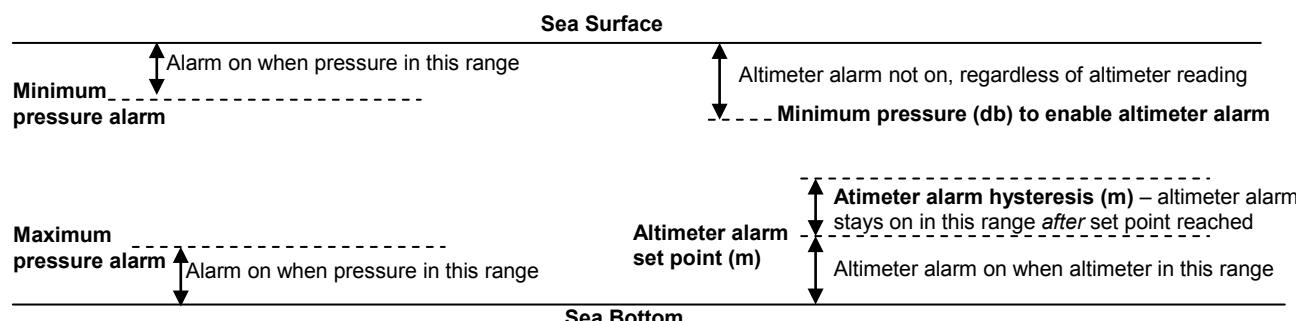
The SBE 14 Remote Display can display depth, pressure, and/or altimeter height for a CTD system, and can be set up to turn on an alarm based on minimum and maximum pressures, an altimeter integrated with the CTD, and/or a bottom contact switch integrated with the CTD.

To enable and set up the SBE 14, click Configure Outputs. In the Configure Outputs dialog box, click the SBE 14 Remote Display tab:

Select converted data to display:


- **Altimeter Height** (3 digits)
- **Depth** (4 digits)
- **Pressure** (4 digits)
- **Altimeter Height + Depth** - altimeter height and depth alternate on display
- **Altimeter Height + Pressure** - altimeter height and pressure alternate on display

Note: Altimeter height available only if altimeter included in configuration (.con or .xmlcon) file.


Updates at very fast rate make display hard to read. Also, time between updates interacts with data output baud (set in SBE 14 to 300 baud; cannot be changed) and number of variables transmitted. Seasave will not work properly if data is presented to COM port faster than port can transmit it to SBE 14.

Enable altimeter alarm in SBE 14. Set **Alarm set point** at altimeter reading where you want alarm to sound. Set **Alarm hysteresis** greater than expected ship heave (swell) to prevent on-off-on-off sounding of alarm caused by ship heave. See drawing below.

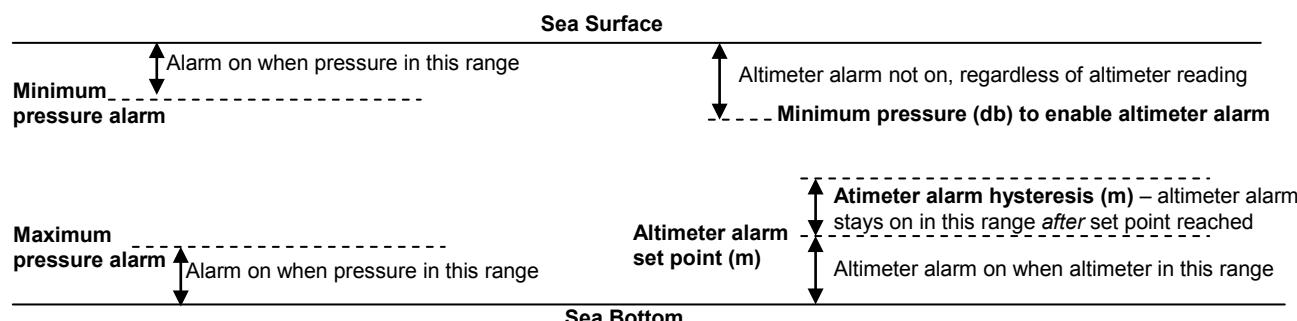
Example: You want alarm to turn on at 10 m; set set point = 10 m. There is a 0.5 m swell; set hysteresis = 1 m, which should be sufficient to account for possible 0.5 m upward movement due to ship heave. Alarm sounds at 10 m above sea bottom and stays on until altimeter goes above 11 m, when it shuts off until it falls to 10 m again.

Make the desired selections. Click OK or click another tab in Configure Outputs.

PC Alarms

Notes:

- After you enable one or more alarms on the PC Alarms tab, you can enable a *visual* alarm in Seasave, in addition to the sound alarm, by selecting Alarms in the Display menu. See *Alarms Display* in Section 7: Display – Setting Up Seasave Displays.
- Altimeter alarm is available only if the selected configuration (.con or .xmlcon) file has a CTD with altimeter.
- Bottom contact switch alarm - **SBE 9plus**: Always available.
All other CTDs: Available only if the selected configuration (.con or .xmlcon) file has a CTD with bottom contact switch.

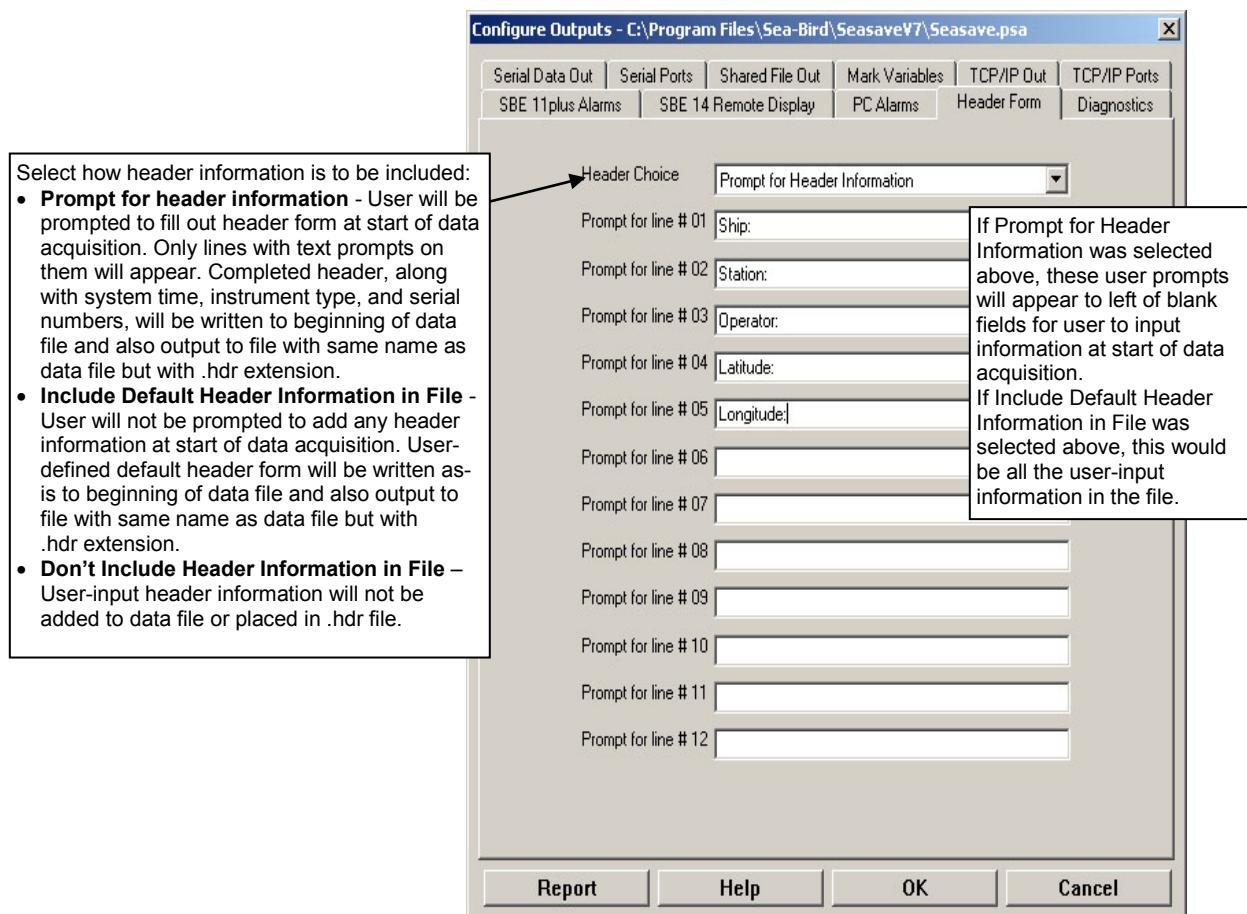

Seasave can set up an alarm in the personal computer (PC) that is running Seasave, based on minimum and maximum pressures, an altimeter integrated with the CTD, and/or a bottom contact switch integrated with the CTD.

To enable and set up the alarms in the computer, click Configure Outputs. In the Configure Outputs dialog box, click the PC Alarms tab:

Report Help OK Cancel

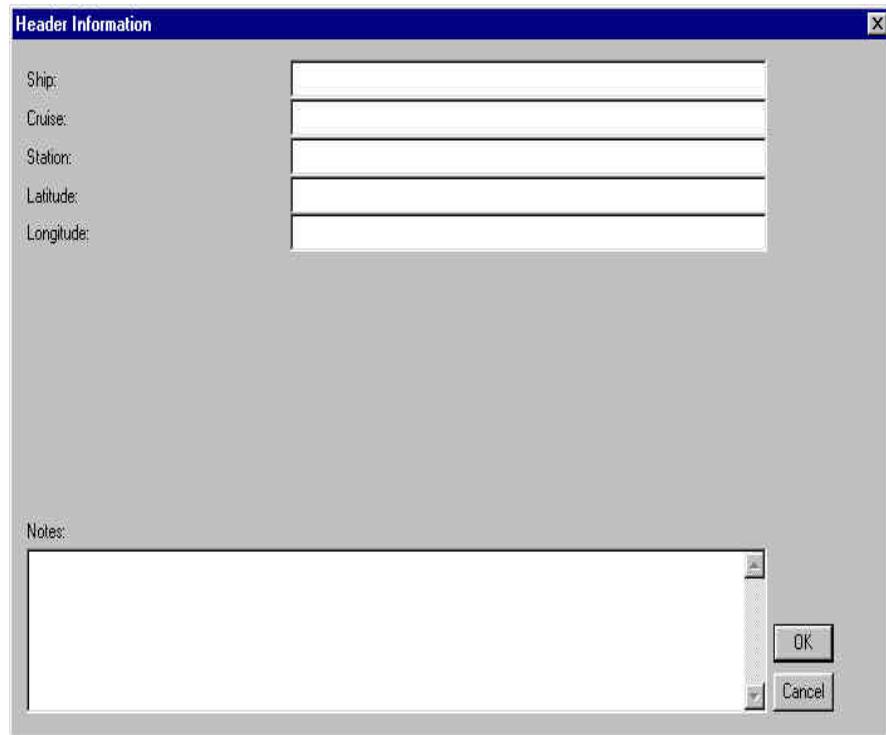
Make the desired selections. Click OK or click another tab in Configure Outputs.

Header Form


Notes:

- A header is **automatically** included in the data (.hex) file and in the header (.hdr) file. The header includes software version, sensor serial numbers, instrument configuration, date and time of start of data acquisition, etc. There can be up to two date/time listings in the header. The first, *System Upload Time*, is always the date and time from the computer. The second, *UTC Time*, is the date and time from an optional NMEA navigation device.
- The .hdr file has the same path and file name as the data file. For example, if the data file is test.hex, the header file is test.hdr.

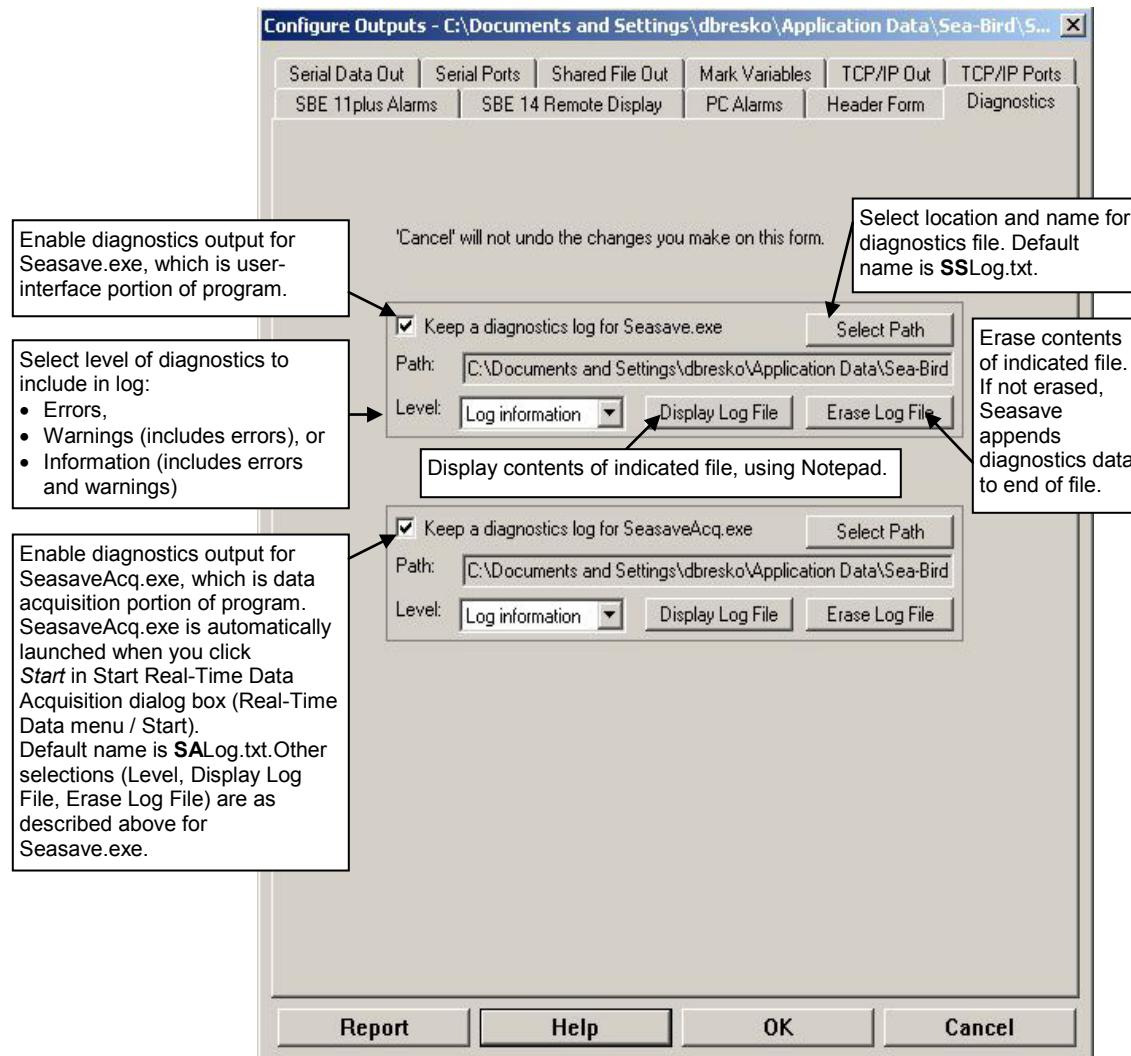
Seasave can write a user-input descriptive header to the data file, which is useful in identifying the data set.


To set up the header, click Configure Outputs. In the Configure Outputs dialog box, click the Header Form tab.

Select the desired Header Choice and enter the header or header prompts.

Click OK or click another tab in Configure Outputs.

If you selected Prompt for Header Information on the Header Form tab, when you begin data acquisition, (if you chose to store the data on disk) the header form appears for you to fill in. The user-selected prompts from the Header Form tab (Ship, Cruise, Station, Latitude, and Longitude) appear to the left of the blank fields.


Diagnostics

Notes:

- Unlike all other information in Configure Inputs and Outputs, diagnostic selections are not included in the program setup (.psa) file. Seasave.ini indicates whether diagnostics are enabled (log=0 if not enabled, log=1 if enabled) and the path for the diagnostics file(s). See *File Formats* in *Section 2: Installation and Use* for Seasave.ini location.
- For default location of the .txt diagnostics files, see *File Formats* in *Section 2: Installation and Use*. You can also view the .txt files from Seasave's Tools menu.
- Changes made on the Diagnostics tab take effect immediately; if you make a change and then click Cancel at the bottom of the dialog, you have not cancelled the change.

Seasave can output diagnostics, to assist in troubleshooting if you encounter difficulty running the program.

To enable and set up diagnostic output, click Configure Outputs. In the Configure Outputs dialog box, click the Diagnostics tab:

Make the desired selections. Click OK or click another tab in Configure Outputs.

Section 7: Display - Setting Up Seasave Displays

Notes:

- Setup of all display windows in Display is included in the Seasave program setup (.psa) file. To save the setup, you must save the .psa file (File menu / Save Setup File) before exiting Seasave.
- The number of display windows in Seasave is limited only by your computer's resources and other simultaneous demands on your computer (i.e., other programs running at the same time). If too many windows are open, the displays may not update properly.
- Algorithms used to calculate derived parameters for output and/or display in Seasave are the same as used in SBE Data Processing's Derive and Data Conversion modules (with the exception of the oxygen, descent rate, & acceleration calculations). See *Appendix IV: Derived Parameter Formulas*.

This section describes how to set up and arrange Seasave display windows.

There is no limit to the number of displays. Edit a display to select desired parameters, number of digits for data display, and plot characteristics (labels, grids, etc.). This information is saved in the program setup (.psa) file. In addition, you can export the display setup to a display setup (.dsa) file for use with another instrument or for another deployment.

Displays can be added and/or reconfigured during data acquisition without interrupting data acquisition. For example, if you start a cast and realize that you forgot to select some desired variables in a display, you can right click in the display to modify it, select the desired variables, and save the changes without interrupting data acquisition. Once the desired changes are saved, the display will show the additional variables (of course, any data that was acquired before you modified the display will not appear in the display).

Adding New Display Window

1. Click Display, and select Add New (Fixed, Scrolled, or Plot) Display Window.
2. The display dialog box appears. The selections in the dialog box vary, depending on the display type (see *Fixed Display*, *Scrolled Display*, and *Plot Display* below).

Importing Display Window

Note:

Seasave display setup (.dsa) file defines the size, placement, and setup for a display window. The information in the .dsa file is also incorporated into the program setup (.psa) file. You can import and export .dsa files, allowing you to create the desired displays once and then reuse them later for other instruments / deployments.

1. Click Display, and select Import Display Settings (.dsa file).
2. The Open dialog box appears. Select the desired .dsa file and click OK.

Editing Display Window

1. To change the content of a display:
 - A. Right click in the desired window and select Modify.
 - B. The display dialog box appears. The selections in the dialog box vary, depending on the display type (see *Fixed Display*, *Scrolled Display*, and *Plot Display*). Make the desired selections and click OK.
2. To change the display window size and/or location:
 - Click Display, and select the arrangement type - horizontal tiles, vertical tiles, or cascade. Seasave automatically sizes and arranges all the windows. **OR**
 - Use standard Windows click-and-drag methods to resize and move the window(s) as desired.

Exporting Display Window

Note:

Seasave display setup (.dsa) file defines the size, placement, and setup for a display window. The information in the .dsa file is also incorporated into the program setup (.psa) file. You can import and export .dsa files, allowing you to create the desired displays once and then reuse them later for other instruments / deployments.

You can export the *setup* of a display window, for reuse later for another instrument and/or deployment.

1. Right click in the desired window and select Export Display Settings (.dsa file).
2. The Save As dialog box appears. Enter the desired path and file name for the .dsa file and click OK.

Printing Display Window

You can print a display window to provide a hard copy of the data in the display (most often used with a Plot Display).

1. Right click in the desired window and select Print.
2. The Printing dialog box appears; set up the print job as desired and click OK.

Resizing Plot Display Window

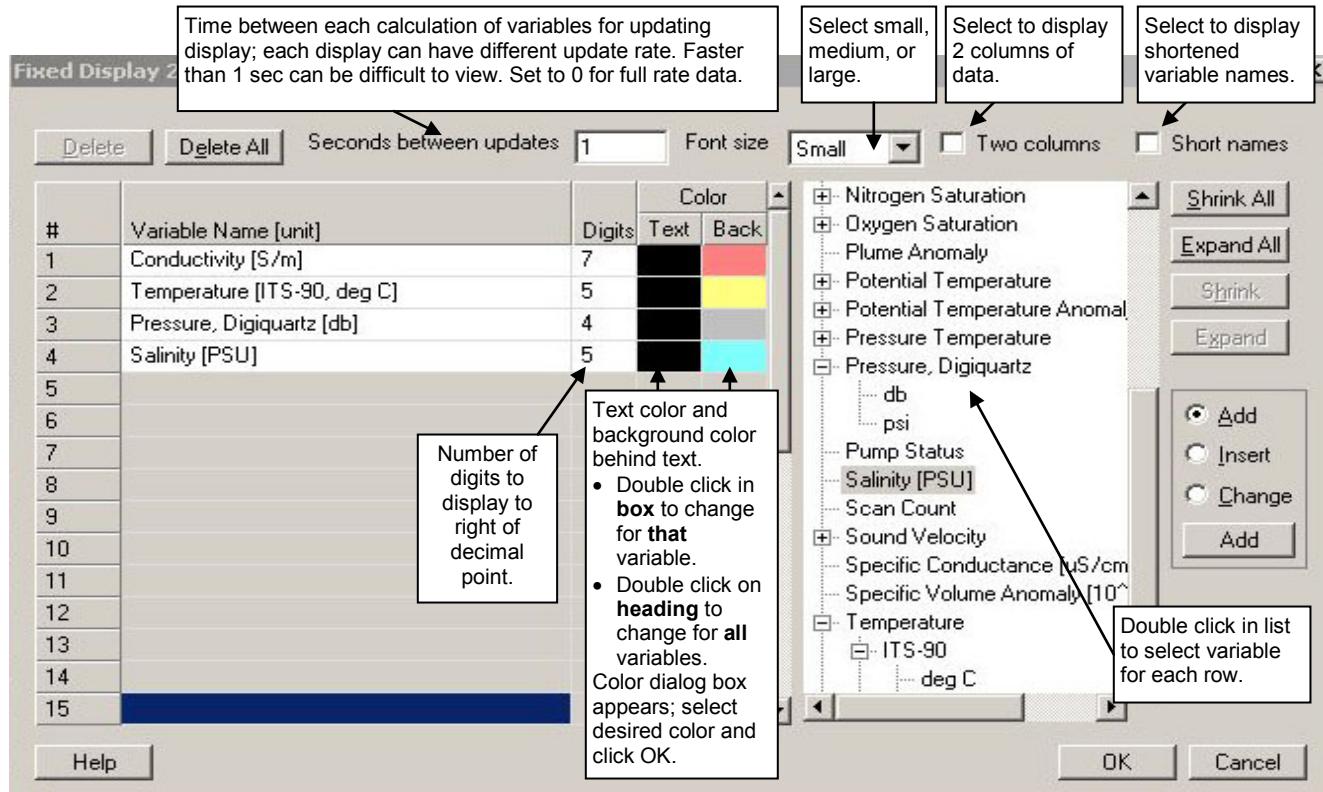
To enlarge a plot display to full screen:

- Click Display and select Maximize All Plots. **OR**
- Right click in a plot window and select Maximize. **OR**
- Click on the standard Windows Maximize button at the top right of the plot display.

With a plot display maximized, use the Tab key to view other displays.

To return a plot display to its previous size:

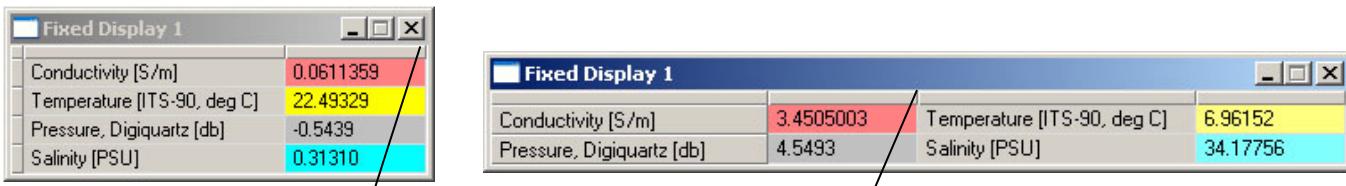
- Click Display and select Restore All. **OR**
- Right click in a plot window and select Restore. **OR**
- Click on the standard Windows Restore button at the top right of the plot display.


Fixed Display

A Fixed Display has a vertical list of the selected parameters to the left, and displays their current values to the right.

To set up a Fixed Display:

- Click Display, and select Add New Fixed Display Window. **OR**
- Click Display, and select Import Display Settings (.dsa file). **OR**
- Right click in an existing Fixed Display and click Modify.


The Fixed Display dialog box looks like this:

When done, click OK.

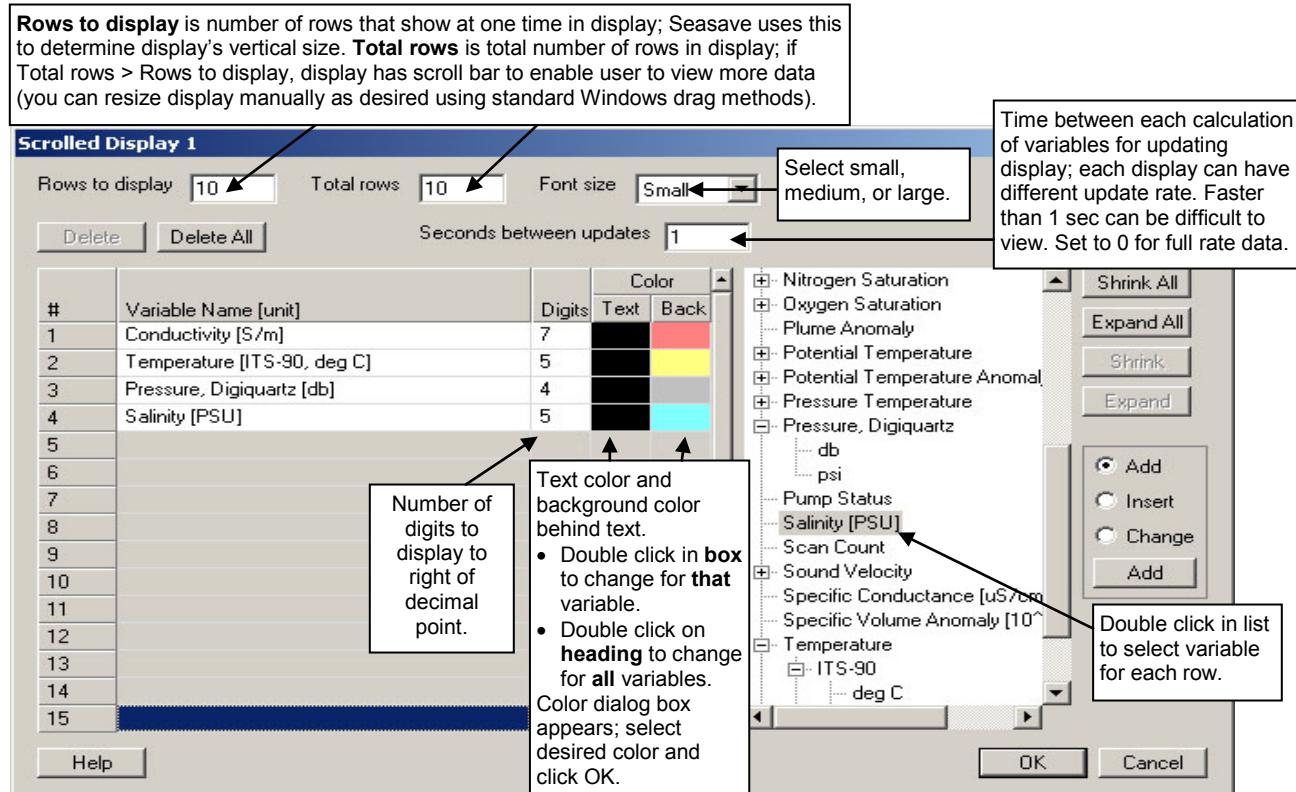
Viewing Seasave Fixed Display

Shown below are example one-column and two-column Fixed Displays:

Adjust column width by placing mouse cursor over line at number column header and dragging.

Right click in the display to:

- Modify – change setup; Fixed Display dialog box appears.
- Export Display Settings (.dsa file) – export setup to .dsa file; Save As dialog box appears.
- Print – print display; printing dialog box appears. Set up the print job as desired and click OK.


Scrolled Display

A Scrolled Display has a list of the selected parameters across the top, and displays the data in scrolling vertical columns.

To set up a Scrolled Display:

- Click Display, and select Add New Scrolled Display Window. **OR**
- Click Display, and select Import Display Settings (.dsa file). **OR**
- Right click in an existing Scrolled Display and click Modify.

The Scrolled Display dialog box looks like this:

When done, click OK.

Viewing Seasave Scrolled Display

Note:

To minimize column width, Seasave uses abbreviations for the Scrolled Display headings. For example, Temperature [ITS-90, deg C] is abbreviated as t 90 C.

Shown below is an example Scrolled Display:

c S/m	t 90 C	pr M	sal
0.2581424	21.56653	-0.5565	1.43476
0.6857129	22.29013	-0.4781	3.98558
0.7500664	22.60297	-0.4601	4.35661
0.0625382	22.70956	-0.5623	0.31898
0.0615358	22.68733	-0.4839	0.31388
0.0614112	22.64111	-0.4155	0.31354
0.0613044	22.59494	-0.4876	0.31329
0.0612557	22.56425	-0.4896	0.31325
0.0611763	22.53149	-0.4917	0.31305
0.0611359	22.49329	-0.5439	0.31310

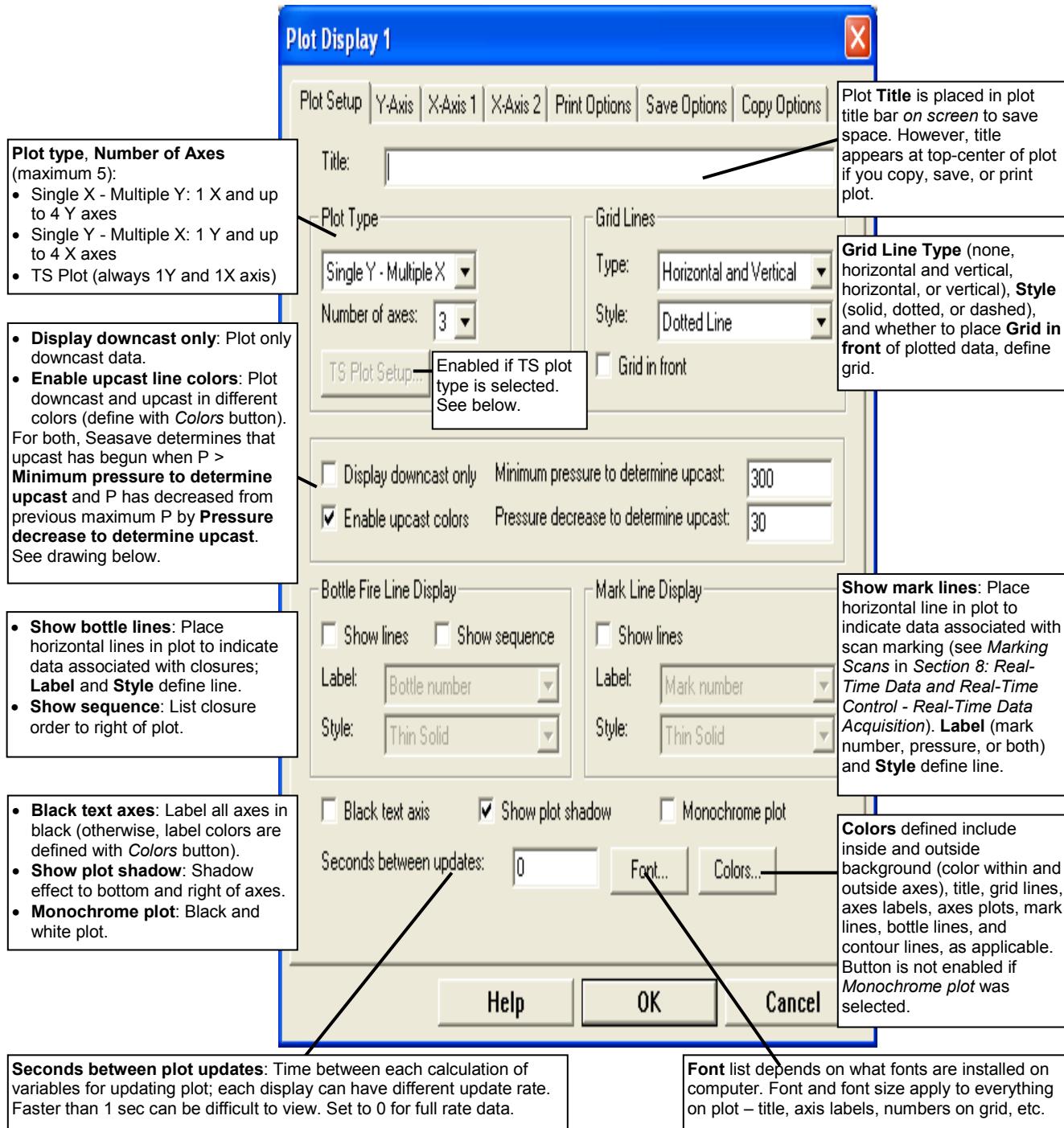
Adjust column width by placing mouse cursor over line and dragging.

Right click in the display to:

- Modify – change setup; Scrolled Display dialog box appears.
- Export Display Settings (.dsa file) – export setup to .dsa file; Save As dialog box appears.
- Print – print display. Printing dialog box appears. Set up the print job as desired and click OK.

Plot Display

A Plot Display can:


- Plot up to 5 variables on one plot, with a single X axis and up to four Y axes or a single Y axis and up to four X axes.
- Plot any variable on a linear or logarithmic scale (logarithmic scale not applicable to TS plots). For linear scale, values can be increasing or decreasing with distance from the axis.
- Create contour plots, generating density (sigma-t or sigma-theta) or thermosteric anomaly contours on temperature-salinity (TS) plots.
- Send plots to a printer, save plots to the clipboard for insertion in another program (such as Microsoft Word), or save plots as graphic files in bitmap, metafile, or JPEG format.

To set up a Plot Display:

- Click Display, and select Add New Plot Display Window. **OR**
- Click Display, and select Import Display Settings (.dsa file). **OR**
- Right click in an existing plot display and select Modify.

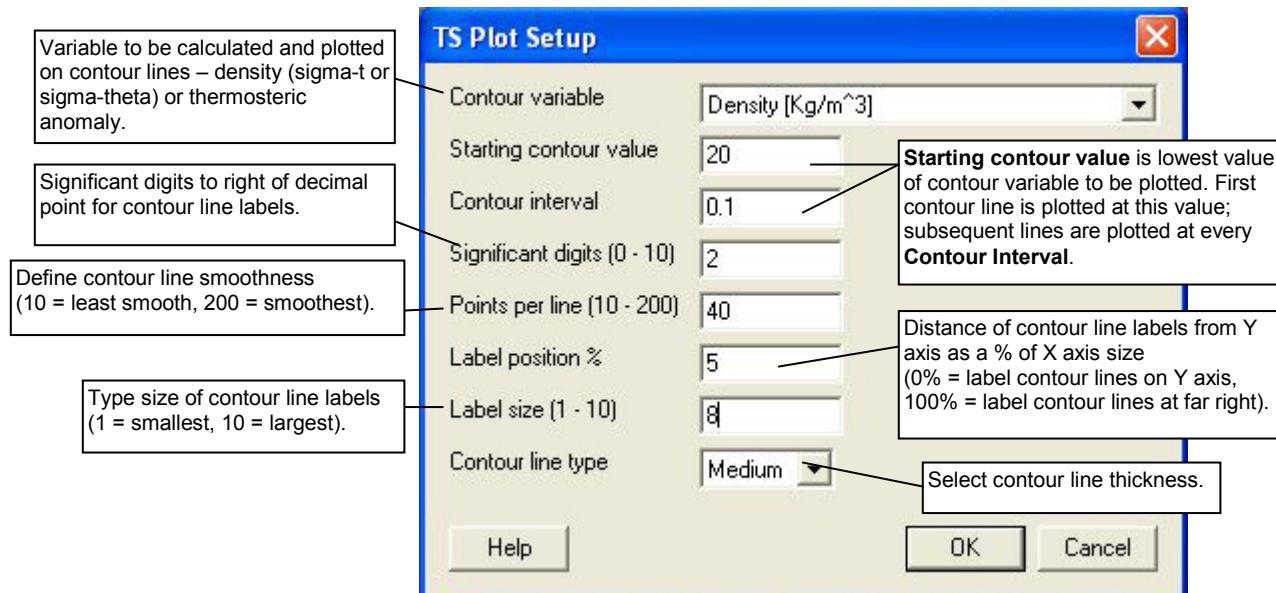
Plot Setup Tab

The Plot Setup tab defines the overall plot characteristics - number of axes, plot layout (title, color, font, grid lines, etc.), bottle firing display, mark line display, etc. The Plot Setup tab looks like this:

For Display downcast only or Enable upcast line colors:

Pressure decrease to determine upcast - upcast enabled if pressure decrease exceeds this. Set greater than peak-to-peak ship heave, to avoid Seasave calculating that upcast has begun because of pressure change associated with ship heave.

Sea surface
 ↑
Minimum pressure to determine upcast - set close to expected maximum cast depth

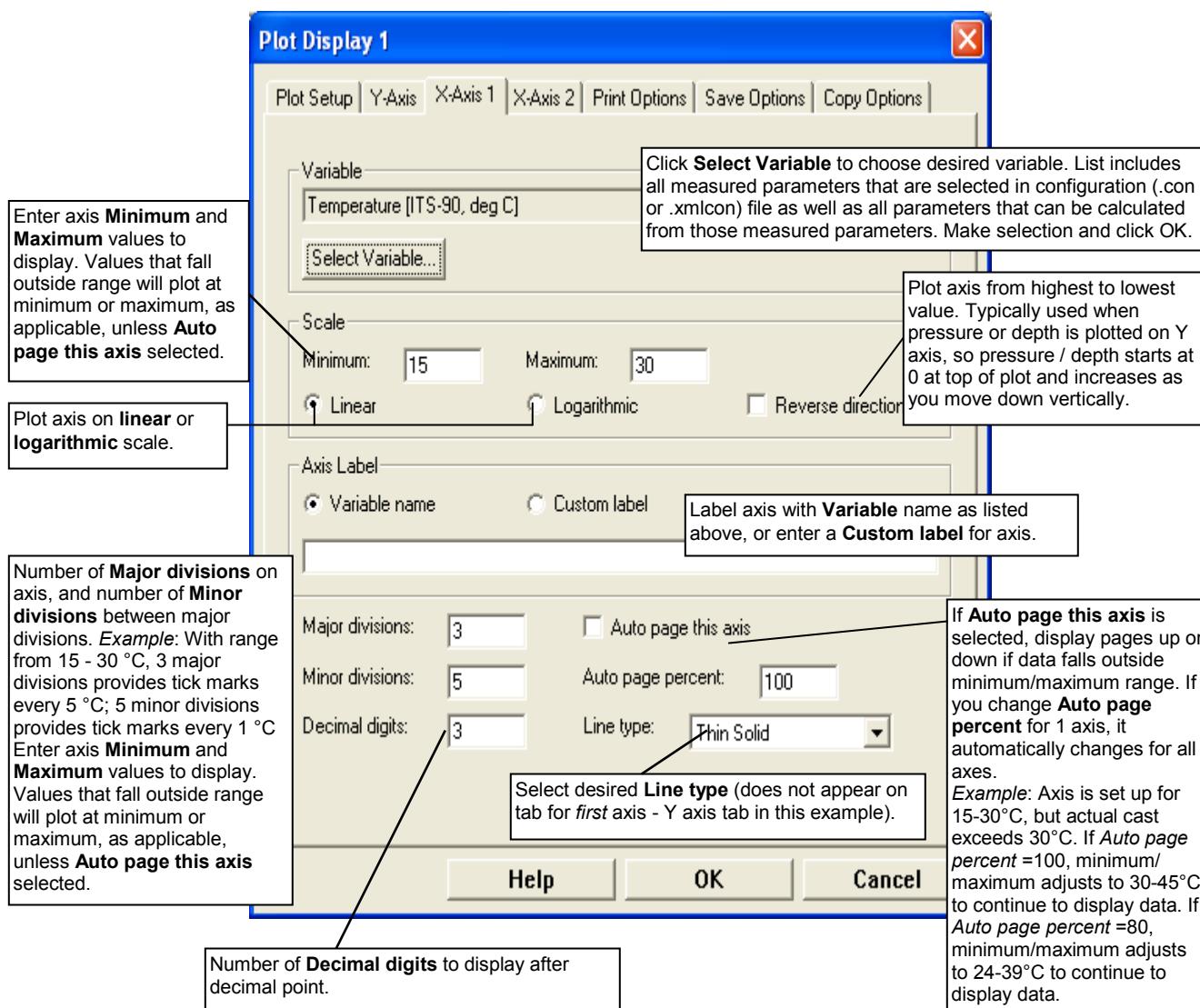

For TS Plot Setup:

If a TS plot type is selected on the Plot Setup tab, the **TS Plot Setup** button is enabled. The TS Plot Setup defines the contour lines for the plot; the user selects from the following contour types:

- Density contours – Seasave calculates and plots sigma-t contours if temperature is plotted, or sigma-theta contours if potential temperature is plotted (see *Axis Tabs* below for selection of temperature parameter).
- Thermosteric anomaly contours.

The units for the parameters in the input data file do not affect the contour calculations. For example, temperature could be in °C or °F, ITS-90 or ITS-68; Seasave performs the required conversions to calculate the contours.

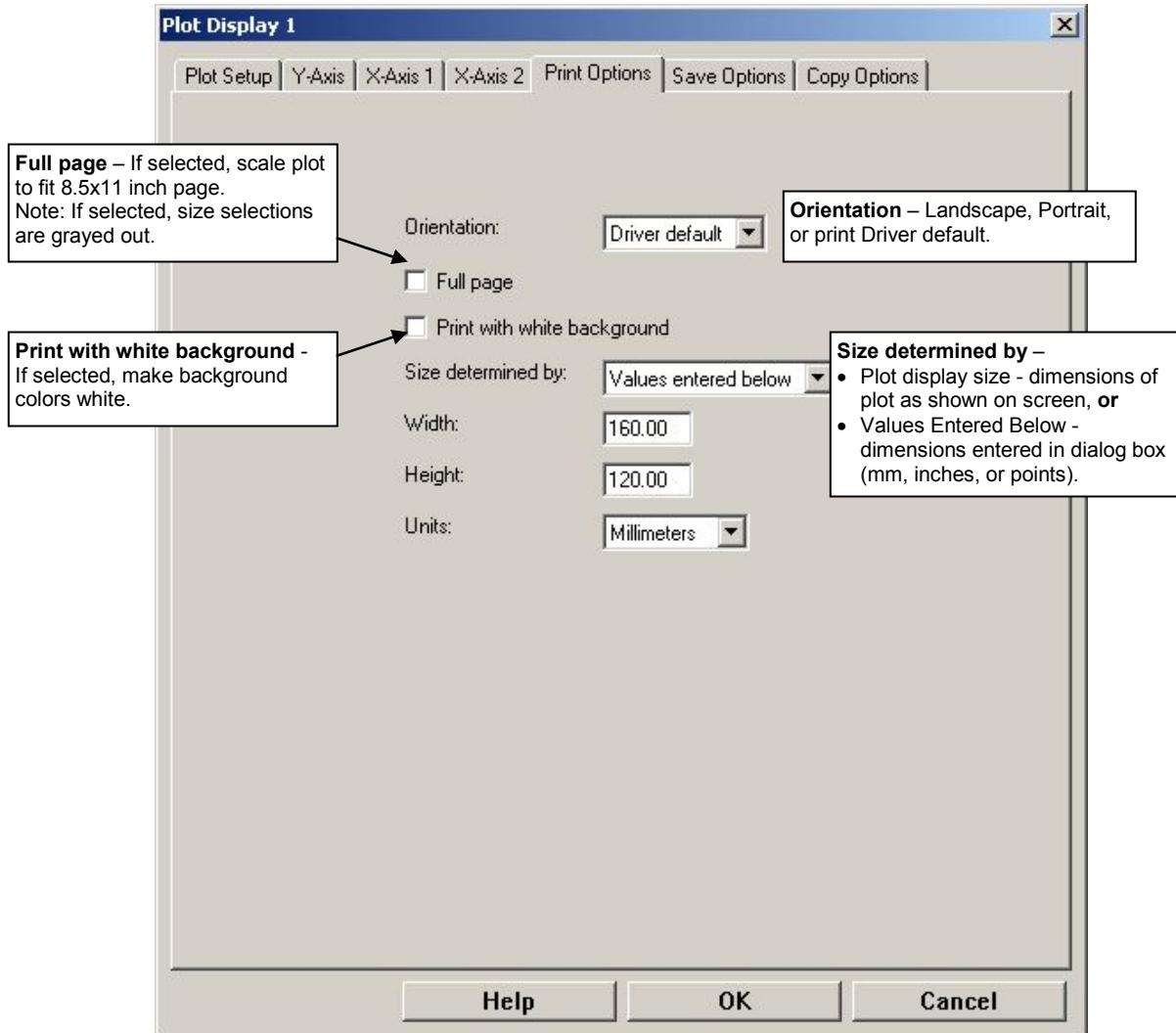
If the TS Plot Setup button is clicked, the following dialog box appears:



Axis Tabs

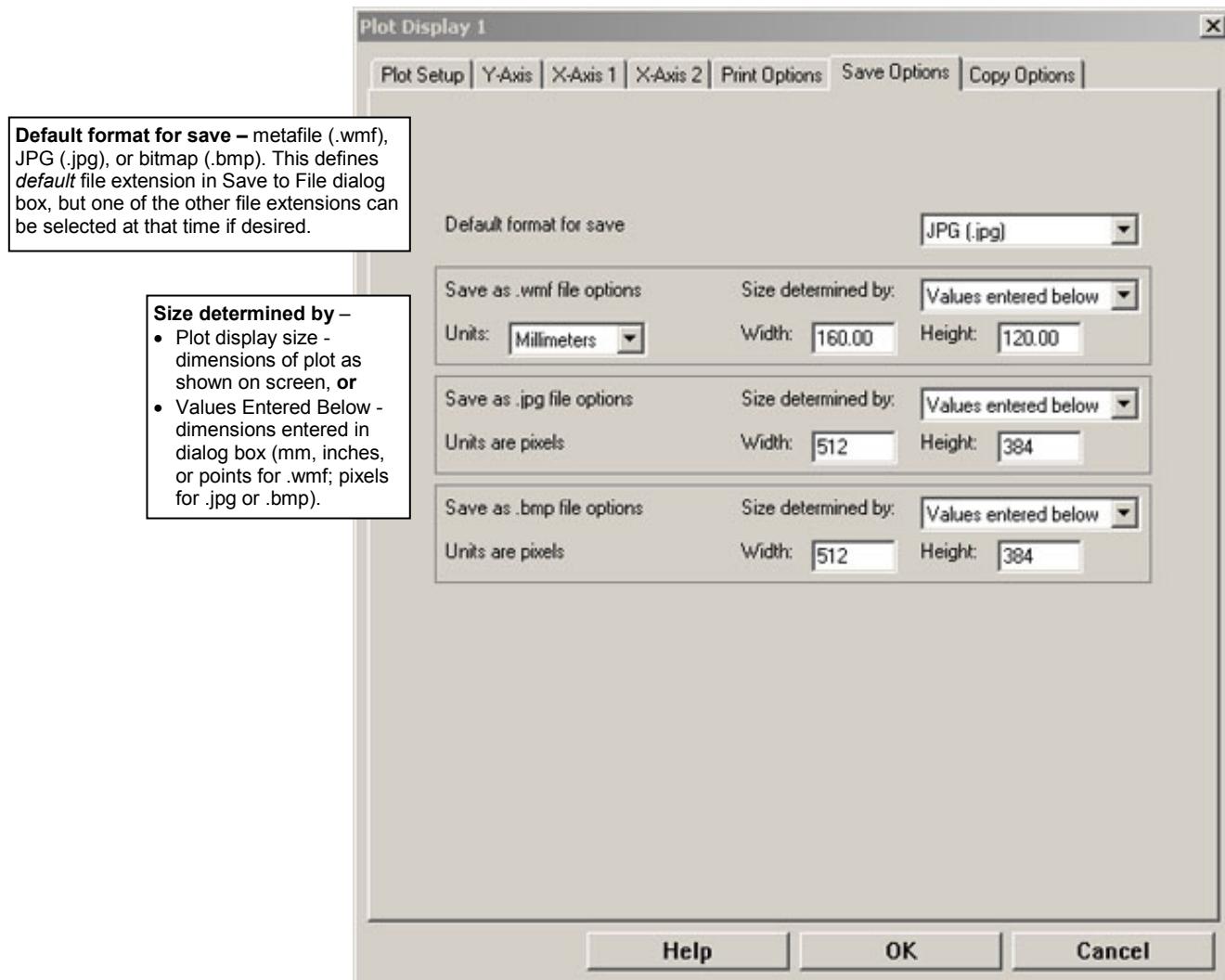
Note:

Line colors are defined by clicking the Colors button on the Plot Setup tab.


Each Axis tab defines a plot variable, scale, and line type. An Axis tab looks like this (but the first axis tab does not include **Line type**):

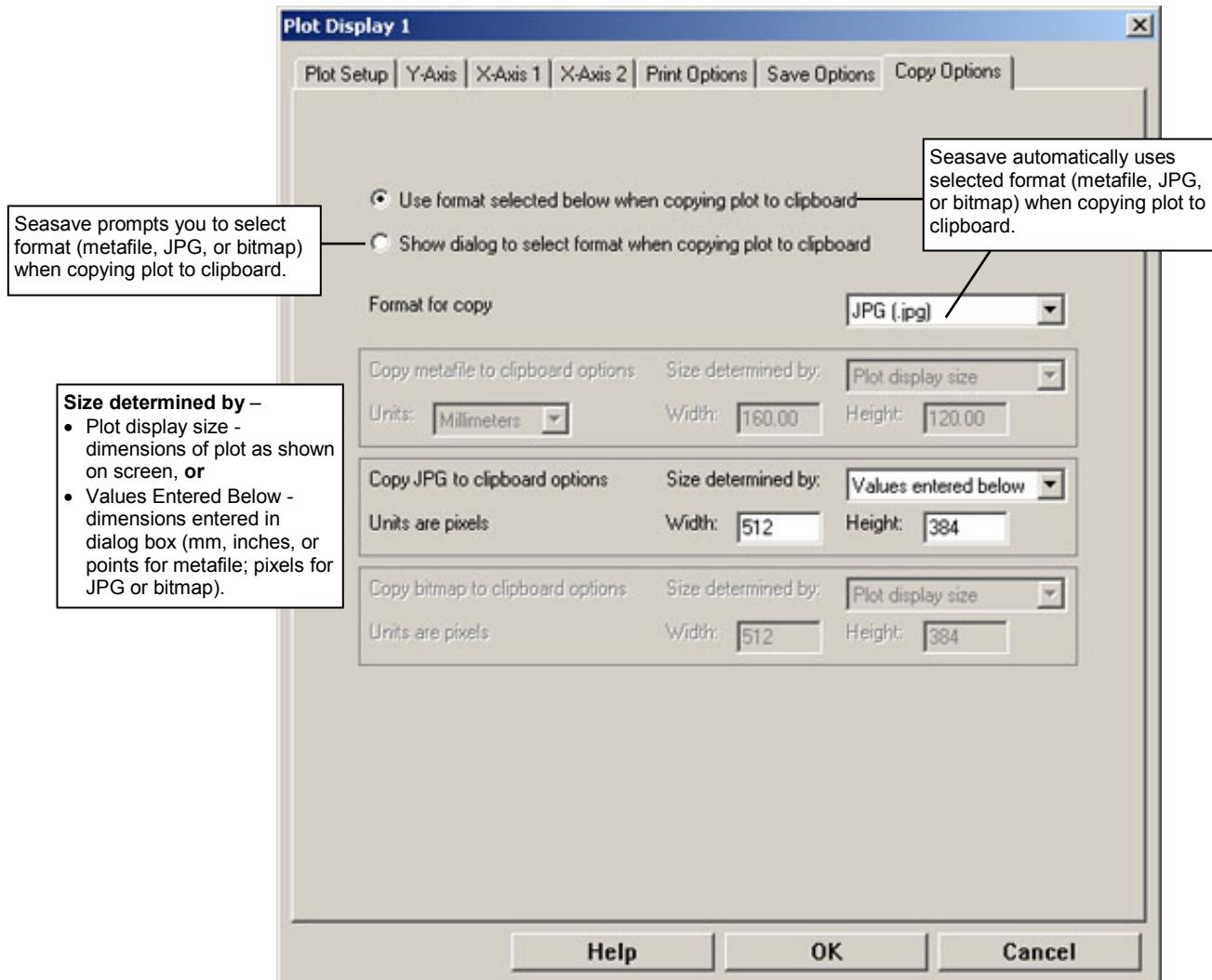
Print Options Tab

The print options tab defines the size and orientation for when the plot is output to the printer.

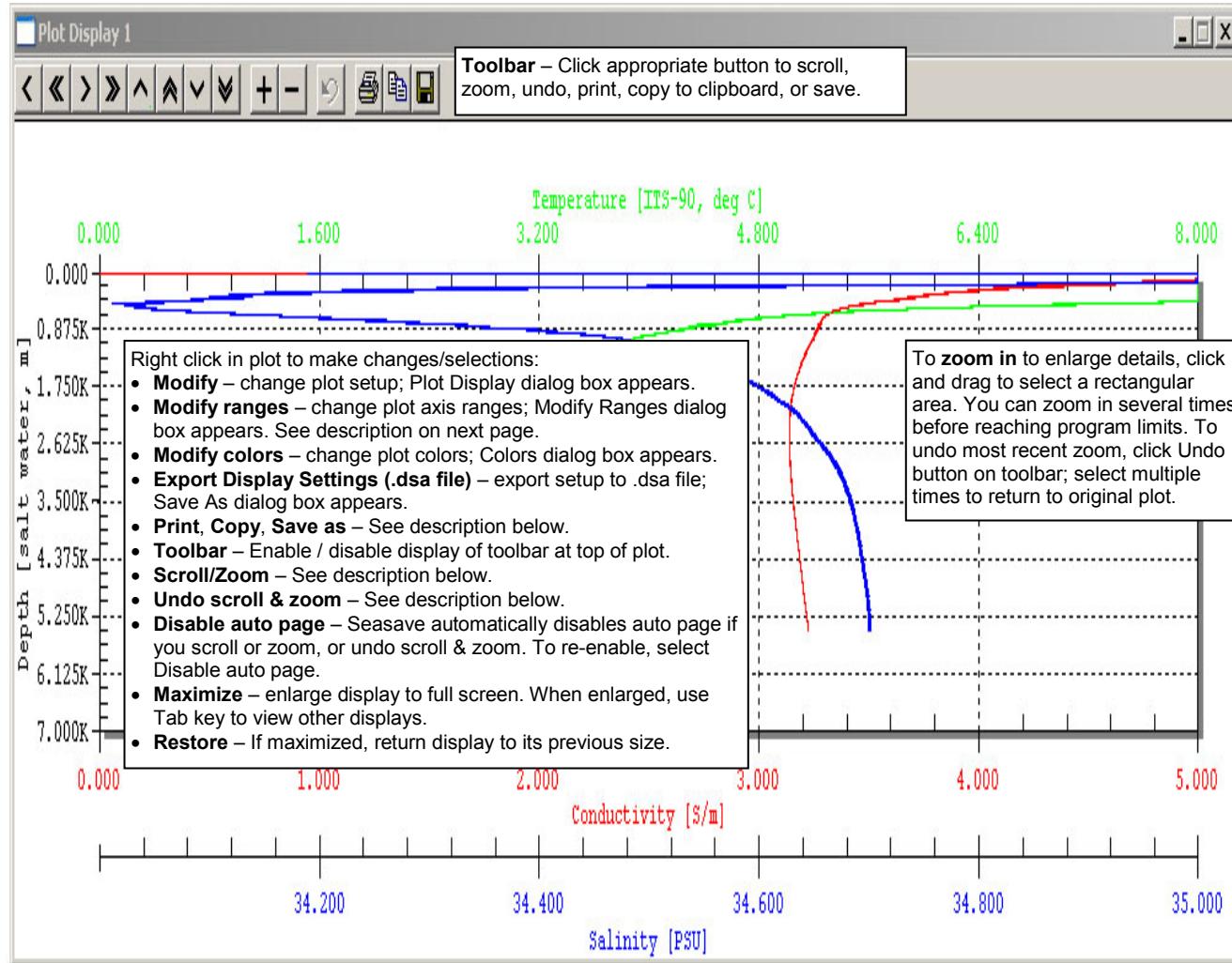

The Print Options tab looks like this:

Save Options Tab

The save options tab defines output file type and size for when the plot is saved to a file (as a .wmf, .jpg, or .bmp).

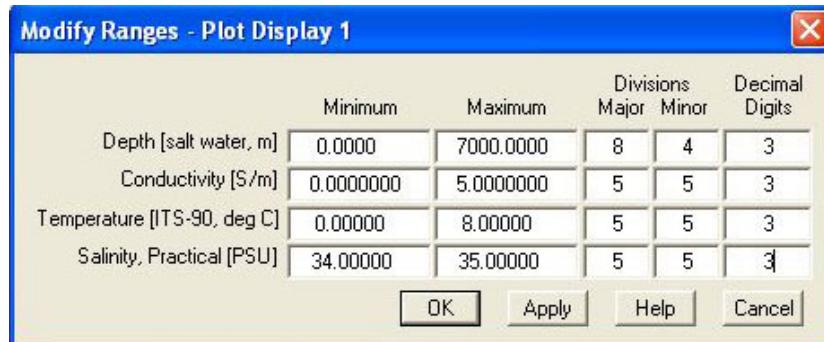

The Save Options tab looks like this:

Copy Options Tab


The copy options tab defines the plot type and size for copying to the clipboard (as a Windows metafile, JPG, or bitmap).

The Copy Options tab looks like this:

Viewing Seasave Plots


Shown below is an example plot:

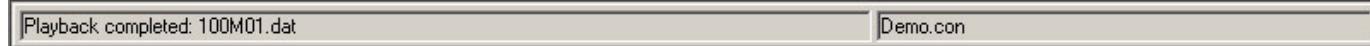
Change the plot using the toolbar buttons **or** by right clicking in the plot:

Toolbar Button	Right click in plot	Description
Single (<) arrows	Scroll/zoom – 10%	Move center of plot by 10% of range in direction indicated.
Double (<<) arrows	Scroll/zoom – 80%	Move center of plot by 80% of range in direction indicated.
+ zoom and - zoom	Scroll/zoom – in and out	Increase size 200% (decrease range 50%) or decrease size 50% (increase range 200%). Before zooming, scroll to area of plot you want to enlarge; Seasave zooms in at center of plot. You can zoom several times before reaching limits. You can also zoom in by clicking and dragging to select a rectangular area in plot.
Undo (Undo)	Undo scroll & zoom	Undo most recent scroll or zoom. Select multiple times to return to original plot. To return to original plot in 1 step, right click in plot and select Modify, and then click OK in Plot Display dialog box.
Print	Print	Bring up Print dialog box. Default plot size and orientation was defined on Print Options tab. However, you can change these by clicking Preferences in Print dialog box.
Copy	Copy	Copy to Clipboard. Plot size and format was defined on Copy Options tab. If you selected <i>Show dialog to select format when copying plot to clipboard</i> on Copy Options tab, Seasave prompts you to select format (metafile, JPG, or bitmap).
Save	Save Picture as	Bring up Save to File dialog box. Plot size and default type (jpg, .bmp, or .wmf) was defined on Save Options tab. However, you can change file type in Save to File dialog box.

The Modify Ranges dialog box (right click on the Plot Display and select *Modify Ranges*) looks like this:

This allows you to easily and quickly modify the range for each axis. Click **Apply** to see how any changes look. Click **OK** to exit the dialog box; all changes will be retained (but you can undo the changes if desired, using the **Undo** button on the plot toolbar).

Status Display


Note:

Seasave's title bar shows the selected instrument type and the path and file name for the program setup (.psa) file.

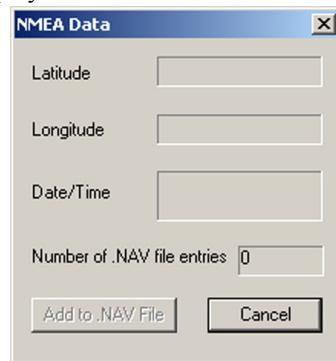
The Status display provides the following information:

- If Seasave is acquiring real-time data or playing archived data.
- If Seasave is storing real-time data to a file; output data file name.
- Instrument configuration (.con or .xmlcon) file name.

In the Display menu, select Status. The Status Display appears just below Seasave's title bar and menus, and looks like this:

NMEA Display

Notes:


- System Upload Time in the data file header is always the *computer* time and date, regardless of whether a NMEA navigation device is transmitting data.
- The Add to .NAV File button in the NMEA Data dialog box is inaccessible until you start saving data to a file. So, if you did not select *Begin archiving data immediately* (or selected *Begin archiving data when 'Start Archiving' command is sent* and did not yet send the Start Archiving command), the Add to .NAV File button is grayed out.
- The .nav file has the same path and file name as the data file. For example, if the data file is c:\test1.hex, the .nav file is c:\test1.nav.

If your system includes a NMEA navigational device, and NMEA has been selected in the instrument configuration (.con or .xmlcon) file, NMEA Display allows you to view the latitude, longitude, and time during data acquisition, and to select scans to be written to a .nav file. Each scan written to the .nav file contains latitude, longitude, time, scan number, and pressure.

The source of the date and time information in the NMEA Display and in the output data file header varies, depending on your NMEA navigational system:

- NMEA data includes both time and date - both the NMEA Display and the NMEA UTC Time in the output data file header show the NMEA date and time.
- NMEA data includes time but not date - the NMEA Display shows the NMEA time and the date from the computer, while the NMEA UTC Time in the output data file header shows just the NMEA time.
- NMEA data does not include date or time - both the NMEA Display and the NMEA UTC Time in the output data file header contain no date or time information.

In the Display menu or the Real-Time Control menu, select NMEA Display. The Display looks like this:

See *Adding NMEA Data to .nav File* in Section 8: Real-Time Data and Real-Time Control – Real-Time Data Acquisition.

Alarms Display

Note:

See *PC Alarms* in Section 6: Configure Outputs.

After you enable one or more alarms on **Configure Output's PC Alarms tab**, you can enable a **visual** alarm in Seasave, in addition to the sound alarm.

In the Display menu, select Alarms. If Seasave is not currently collecting data or playing back archived data, the Alarms display looks like this:

If no alarm is on when Seasave is collecting data or playing back archived data, the Alarms display looks like this:

If an alarm is on when Seasave is collecting data or playing back archived data, the display looks like this, with the two icons alternating every 0.5 seconds:

Remote Display

Note:

As an alternative to using the software provided by Sea-Bird, you can develop your own application using your desired software.

Software on the remote computer is required to view data output from Seasave. Sea-Bird provides two methods for performing this function:

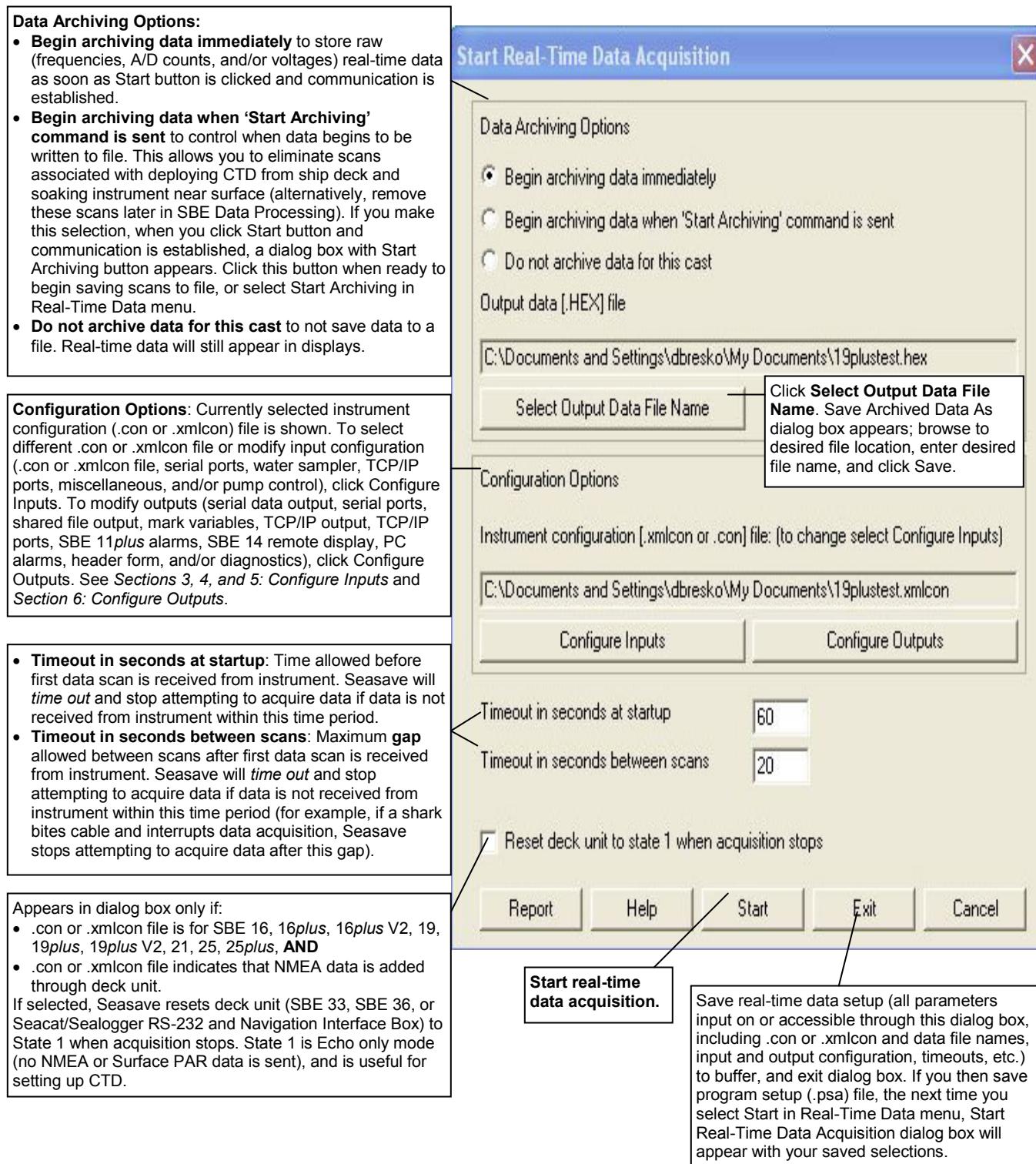
- **Seasave Remote** has many of the same display and plotting capabilities as Seasave. It can be used to display data on a remote computer that is transmitted via TCP/IP or to a shared file. **Data transmitted via TCP/IP must be converted data in XML format; data transmitted to a shared file must be in XML format.** Seasave Remote can also be used to fire bottles from a remote computer. See *Appendix V: Seasave Remote for Remote Display and Bottle Firing*.
- **FixedDisplay.jar** and **FireBottles.jar** are sample Java applications. FixedDisplay.jar allows you to view a Fixed display on a remote computer, to display data transmitted via TCP/IP (**must be converted data in XML format**). FireBottles.jar allows you to fire bottles from a remote computer. You can use the provided sample applications or modify them as desired. See *Appendix VI: Java Applications for Remote Display and Bottle Firing*.

Section 8: Real-Time Data and Real-Time Control - Real-Time Data Acquisition

Note:

To start acquisition without a mouse: With the cursor in the main Seasave window, press the Alt key to show the keyboard shortcuts (underlines) on menus. Press the appropriate letter (for example, *R* for Real-Time Data menu) and use the arrow and Enter keys to navigate.

This section covers:


- Starting and stopping real-time data acquisition
- Firing bottles
- Marking scans
- Adding NMEA navigation data to a .nav file
- Manually turning an SBE 9*plus* pump on and off

Note:

For SBE 16*plus*, 16*plus* V2, 19*plus*, 19*plus* V2, and 49: Instrument must be set up to output raw hex data (**OutputFormat=0**) for Seasave to interpret the data. See the instrument user manual.

Starting and Stopping Real-Time Data Acquisition

1. In the Real-Time Data menu, select Start. The Start Real-Time Data Acquisition dialog box appears:

Notes:

- If you get an error message *Data acquisition is canceled – timed out* while trying to acquire data, see *Troubleshooting* below for suggestions on possible causes and solutions.
- **Outputs and displays can be reconfigured without interrupting data acquisition.** For example:
 - If you start a cast and realize that you forgot to set up serial data output, you can select Configure Outputs and make and save the desired changes, without interrupting data acquisition. Once the changes are saved, serial data will output to the desired COM port.
 - Similarly, if you forgot to select some variables for a display, you can right click in the display to modify it, select the desired variables, and save the changes without interrupting data acquisition. Once the changes are saved, the display will show the additional variables.

Of course, any data that was acquired before you modified the setup will not be output / displayed.

2. Click Start to begin processing and displaying data:
 - A. If you selected *Begin archiving data immediately* or *Begin archiving data when 'Start Archiving' command is sent* above, and selected *Prompt for Header Information* in the Header Form setup (Configure Outputs), the Header Information dialog box appears. Fill in the desired header and click OK.
 - B. If you set up a water sampler in Configure Inputs, Seasave sends a Reset command to the water sampler, and waits up to 60 seconds for confirmation.
 - C. If you selected *NMEA position data added* in the .con or .xmlcon file, Seasave initializes NMEA communications.
 - D. If you selected *Check Scan Length* in the Options menu, Seasave checks the .con or .xmlcon file to verify that the scan length defined by the .con or .xmlcon file matches the instrument (i.e., number of sensors, inclusion of NMEA and/or Surface PAR is as defined in the .con or .xmlcon file). If a *Scan length error* appears, verify that:
 - You are using the correct .con or .xmlcon file.
 - The .con or .xmlcon file has been updated as necessary if you added or deleted sensors, added or deleted NMEA or Surface PAR inputs, etc.
 - E. A message similar to one of the following appears (message dependent on the instrument):

For an instrument that is started by movement of a switch (such as SBE 19, 19plus, 19plus V2, 25, or 25plus) -

Seasave allows *Timeout in seconds at startup* after you click Start for you to turn on the CTD switch. Seasave will *time out* if data is not received from the instrument within this time.

For other instruments (such as an SBE 16, 16plus, 16plus V2, 21, 45, 49, or 911plus) -

Seasave will *time out* if data is not received from the instrument within *Timeout in seconds at startup*.

3. To stop data acquisition:

- A. For an instrument that is started by movement of a switch (such as SBE 19, 19plus, 19plus V2, 25, or 25plus), move the switch to the off position.
- B. In the Real-Time Data menu, select Stop.

Notes:

- Fire Bottle Control and Mark Scan Control in the Real-Time Control menu are inaccessible until you start saving data to a file. So, if you did not select *Begin archiving data immediately* (or selected *Begin archiving data when 'Start Archiving' command is sent* and did not yet send the Start Archiving command), these items are grayed out in the Real-Time Control menu.
- The Add to .NAV File button in the NMEA Data dialog box is inaccessible until you start saving data to a file. So, if you did not select *Begin archiving data immediately* (or selected *Begin archiving data when 'Start Archiving' command is sent* and did not yet send the Start Archiving command), the Add to .NAV File button is grayed out.

Troubleshooting

Note:

Not all causes listed may be applicable to your instrument configuration. For example, a 9*plus* CTD does not have a magnetic switch, or you may be using an instrument with a direct connection to the computer (no Deck Unit).

Listed below are possible causes for receiving a *Data acquisition is canceled – timed out* error message at the start of real-time data acquisition:

- **Cause:** The CTD's switch is not in the On position.
Solution: Move the switch to the On position.
- **Cause:** (SBE 19 and 25 only) The CTD was not asleep when the magnetic switch was put in the On position.
Solution: Slide the switch to the Off position, wait at least 2 minutes for the CTD to go to sleep, and then slide the switch to the On position again.
- **Cause:** Deck Unit power is not on.
Solution: Verify that the Deck Unit is connected to a power source, and that the power switch is on.
- **Cause:** Loose or missing connections between equipment.
Solution: Check all cable connections between the CTD, Deck Unit, and computer port(s).
- **Cause:** Incorrect communication settings.
Solution: Check that communication settings and COM Ports selected on the Serial Ports tab in Configure Inputs are correct.
- **Cause:** Selection of *Surface PAR voltage added* in the instrument configuration file does not match the Deck Unit setup.
Solution: See the Deck Unit manual for setup details.

Firing Bottles

Note:

For water sampler setup, see *Water Sampler in Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control*.

Bottles can be fired in one of the following ways:

- By command from Seasave (see below).
- From a remote computer via a TCP/IP port, if *Enable remote firing* was selected on the Water Sampler tab in Configure Inputs. See *Appendix V: Seasave Remote for Remote Display and Bottle Firing*.
- Automatically, if *Auto Fire* was selected on the Water Sampler tab in Configure Inputs. For auto fire setup, see *Water Sampler in Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control*.
- By command from Seasave **and** automatically, if *Auto Fire* was selected on the Water Sampler tab in Configure Inputs **and** *Allow manual firing* was selected in the Auto-Fire Table Entry dialog box (see below).

Firing Bottles by Command from Seasave

To fire bottles Sequentially, by User Input, or by Table Driven entries:

1. Set up the water sampler in Configure Inputs.
2. In the Real-Time Control menu, select Fire Bottle Control. The Bottle Fire dialog box appears (you can leave this open throughout the cast); shown below is the dialog if you selected Sequential firing in the Water Sampler setup (Step 1).

Sequential Bottle Fire

#Fired: 0 Next bottle to be fired:

Fire Bottle
3. Start real-time data acquisition.
4. If you selected Sequential or Table driven in the Water Sampler setup (Step 1), the Bottle Fire dialog box displays the number of the next bottle to be fired. If you selected User Input in the Water Sampler setup (Step 1), select the bottle you want to fire next. When desired, click Fire Bottle.

When Seasave receives a bottle fired confirmation from a water sampler, it:

- (for SBE 911plus with SBE 32 Carousel Water Sampler or G.O. 1016, **or** SBE 19, 19plus, 19plus V2, 25, 25plus, or 49 with SBE 33 Deck Unit and SBE 32 Carousel Water Sampler, **or** SBE 19, 19plus, 19plus V2, 25, 25plus, or 49 with SBE 33 Deck Unit and SBE 55 ECO Water Sampler)

Writes a line to an output file (same filename as the data file) with a .bl extension. The .bl file contains the bottle firing sequence number, bottle position, date, time, and beginning and ending scan number (to provide 1.5 seconds of scans) for the fired bottle.
- (for SBE 911plus with G.O. 1015) Sets the bottle confirm bit in the data (.hex) file for all scans within a 1.5 second duration after a bottle firing confirmation is received.

Later, when the raw data file is converted in SBE Data Processing's Data Conversion module, scans identified in the .bl file or with a bottle confirmation bit are written to a file with a .ros extension.

To fire bottles in *Mixed Mode* (auto bottle firing, but also allowing manual bottle firing):

1. Set up the water sampler for Auto Fire in Configure Inputs; select *Allow manual firing* in the Auto-Fire Table Entry dialog box.
2. In the Real-Time Control menu, select Fire Bottle Control. The Bottle Fire dialog box appears (you can leave this open throughout the cast); shown below is the dialog if you selected SBE Carousel, SBE ECO, or G.O. 1016 in the Water Sampler setup (Step 1).

3. Start real-time data acquisition.
4. The *Automatic fire* portion of the dialog box shows the next bottle that has a *valid* pressure or depth in the Auto-Fire Table Entry (pressure or depth greater than 0 and less than 10,500). The *Manual fire* portion of the dialog box shows the next bottle that has an *invalid* pressure or depth in the Auto-Fire Table Entry (pressure or depth less than 0 or greater than 10,500; these are bottles that **must be** fired manually). Select the desired bottle to fire manually, and when desired, click *Fire Selected Bottle*.

When Seasave receives a bottle fired confirmation from a water sampler:

- (for SBE 911*plus* with SBE 32 Carousel Water Sampler or G.O. 1016, or SBE 19, 19*plus*, 19*plus* V2, 25, 25*plus*, or 49 with SBE 33 Deck Unit and SBE 32 Carousel Water Sampler, or SBE 19, 19*plus*, 19*plus* V2, 25, 25*plus*, or 49 with SBE 33 Deck Unit and SBE 55 ECO Water Sampler) Seasave writes a line to an output file (same filename as the data file) with a .bl extension. The .bl file contains the bottle firing sequence number, bottle position, date, time, and beginning and ending scan number (to provide 1.5 seconds of scans) for the fired bottle.
- (for SBE 911*plus* with G.O. 1015) Seasave sets the bottle confirm bit in the data (.hex) file for all scans within a 1.5 second duration after a bottle firing confirmation is received.

Later, when the raw data file is converted in SBE Data Processing's Data Conversion module, scans identified in the .bl file or with a bottle confirmation bit are written to a file with a .ros extension.

Notes:

- The Fire Bottle button in the Bottle Fire dialog box is inaccessible until you start saving data to a file. If you did not select *Begin archiving data immediately* (or selected *Begin archiving data when 'Start Archiving' command is sent* and did not yet send the Start Archiving command), the Fire Bottle button is grayed out.
- If desired, you can fire bottles without using the Bottle Fire dialog box, **if you are set up for a G.O. 1015, Hydro-Bios, or IOW water sampler**. Each time you want to fire a bottle, press Ctrl F3. Note that this does not fire a bottle if set up for an SBE Carousel, SBE ECO, or G.O. 1016, because you must select which bottle to fire.
- You can manually fire **any** bottle, regardless of the pressure or depth you specified in the Auto-Fire Table Entry.
- The .bl file has the same path and file name as the data file. For example, if the data file is c:\test1.hex, the .bl file is c:\test1.bl.

Marking Scans

Note:

The .mrk file has the same path and file name as the data file. For example, if the data file is c:\test1.hex, the .mrk file is c:\test1.mrk.

Mark Scan allows you to copy the most recent scan of data to a mark (.mrk) file as desired. The .mrk file can be used to manually note water sampler bottle firings, compare CTD data with data acquired from a Thermosalinograph at the same time, or mark significant events in the cast (winch problems, large waves causing ship heave, etc.) for later review and analysis of the data.

If a plot display is set up to Show Mark Lines, Seasave also draws a horizontal line in the plot each time you mark a scan.

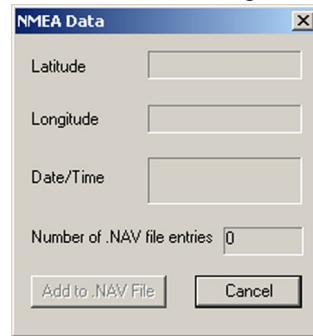
To mark scans:

1. Set up the Mark Variables in Configure Outputs (see *Mark Variables* in *Section 6: Configure Outputs*).
2. In the Real-Time Control menu, select Mark Scan. The Mark Scan Control dialog box appears.

 The dialog box is titled 'Mark Scan Control'. It contains a text input field labeled '# Marks:' with the value '0' and a large 'Mark Scan' button below it.
3. Start real-time data acquisition.
4. When desired, click Mark Scan. The dialog box displays how many scans have been *marked* (copied to .mrk file).

Adding NMEA Data to .nav File

Notes:


- If the NMEA navigation device is connected directly to the computer, you must define the serial port and baud rate on the Serial Ports tab in Configure Inputs or Configure Outputs before beginning data acquisition.
- The Add to .NAV file button in the NMEA Data dialog box is inaccessible until you start saving data to a file. So, if you did not select *Begin archiving data immediately* (or selected *Begin archiving data when 'Start Archiving' command is sent* and did not yet send the Start Archiving command), the Add to .NAV File button is grayed out.
- The .nav file has the same path and file name as the data file. For example, if the data file is c:\test1.hex, the .nav file is c:\test1.nav.
- System Upload Time in the output data file header is always the *computer time and time*, regardless of whether a NMEA navigation device transmitted time/data data.

If your system includes a NMEA navigation device **and** NMEA has been selected in the instrument configuration (.con or .xmlcon) file, NMEA Display allows you to view the latitude, longitude, and time during data acquisition, and to select scans to be written to a .nav file. Each scan written to the .nav file contains latitude, longitude, time, scan number, and pressure. The source of the date and time information in the NMEA display and in the output data file header varies, depending on your NMEA navigation device:

- NMEA data includes both time and time – both the NMEA Display and the NMEA UTC Time in the output data file header show the NMEA date and time.
- NMEA data includes time but not date – the NMEA Display shows the NMEA time and the date from the computer, while the NMEA UTC Time in the output data file header shows just the NMEA time.
- NMEA data does not include date or time – both the NMEA Display and the NMEA UTC Time in the output data file header contain no date/time information

To add data to a .nav file:

1. In the Display menu or the Real-Time Control menu, select NMEA Display. The NMEA Data dialog box appears.

2. Start real-time data acquisition.
3. When desired, click Add to .nav File or press Ctrl F7.

Turning Pump On / Off

Seasave allows you to manually turn a SBE 9*plus*[®] pump on and off during data acquisition, **for a 9*plus* with the manual pump control option**. This may be useful if your system is integrated with an acoustic instrument, to provide a quiet period during its data acquisition. Note that although the same COM port is used to operate a water sampler and to send pump control commands to the 9*plus*, the manual pump control does not interfere with water sampler operation.

To manually turn the 9*plus* pump on / off:

1. Select Configure Inputs.
 - A. On the Instrument Configuration tab, open or create a configuration (.con or .xmlcon) file for the 911*plus*.
 - B. On the Pump Control tab, select *Enable pump on/pump off commands*.
 - C. On the Serial Ports tab, in the *Water Sampling and 911 Pump Control Serial Port* section, select the COM port connected to the SBE 11*plus* Deck Unit Modem Channel connector.
 - D. Click OK to exit Configure Inputs.
2. Set up the rest of the system and displays as desired.
3. Start real-time data acquisition.
4. When desired:

In the Real-Time Control menu, select Pump On or Pump Off, **OR** Press Ctrl F2 (pump on) or Ctrl F4 (pump off).

Resetting Control Positions

Seasave allows you to reset control positions (i.e., position of the NMEA Data, Mark Scan, and Fire Bottle Control displays). This may be useful if you moved a display onto a second monitor in a previous session. If the second monitor is no longer available, the display will *open* on that non-existent monitor (where you cannot see it). Select Reset Control Position in the Real-Time Control menu to bring all displays back into the main Seasave window.

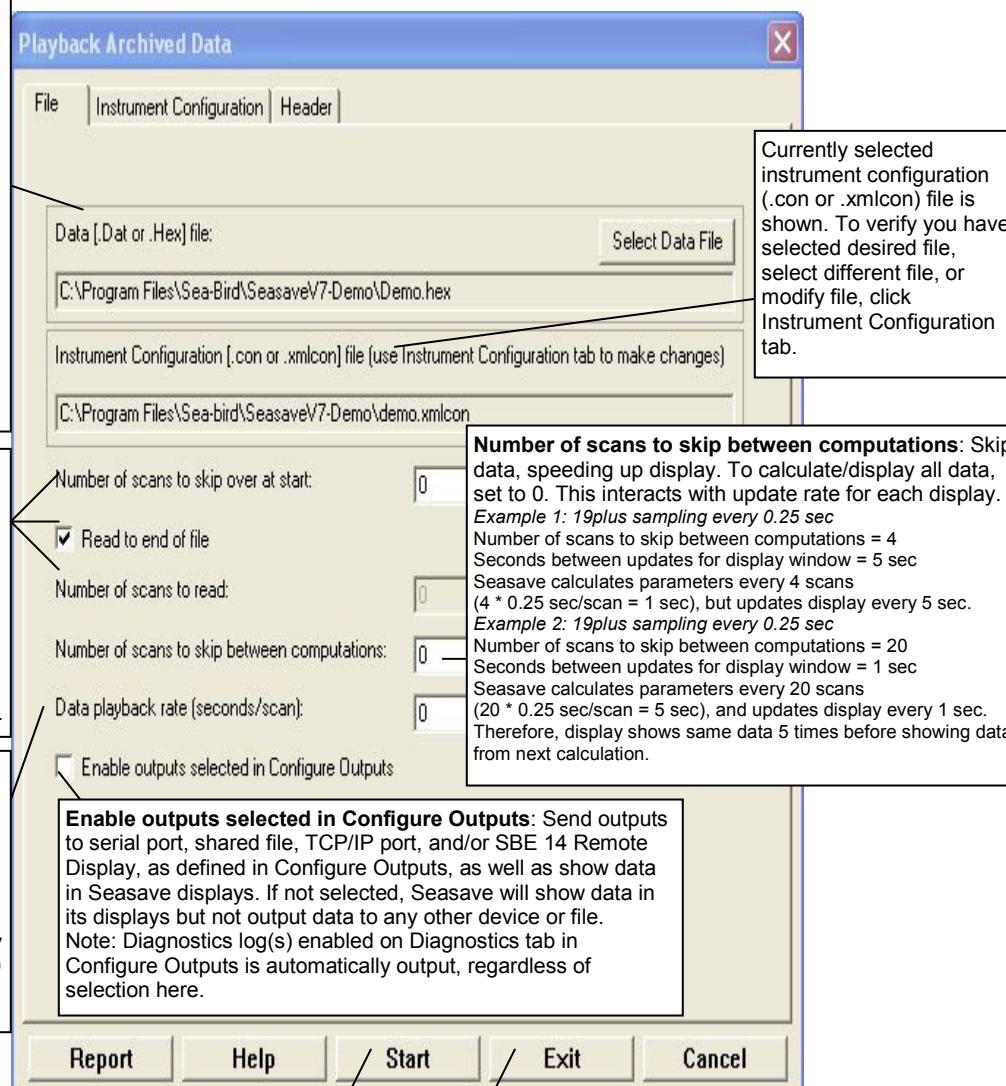
Section 9: Archived Data - Displaying Archived Data

Note:

To display data without a mouse:
With the cursor in the main Seasave window, press the Alt key to show the keyboard shortcuts (underlines) on menus. Press the appropriate letter (for example, A for Archived Data) and use the arrow and Enter keys to navigate.

Currently selected data file is shown. To select different file, click **Select Data File**. Select Data File dialog box appears. Browse to desired file and click Open. To verify you selected desired file, click Header tab to view data file header.

Notes:


1. Seasave searches for .bl (bottle) file in same directory, with same name. Seasave displays bottle fire lines on plot during data playback if it finds a .bl file, a Water Sampler is selected in Configure Inputs, and plot display setup enables showing bottle lines.
2. You can also play back data uploaded from SBE 25plus memory, in a .XML file.

Number of scans to skip over at start: Skip scans at beginning of data, allowing you to skip data from before cast began (i.e., when instrument was on deck and initially soaking in water).
If **Read to end of file** not selected, enter total **Number of scans to read**. This allows you to view just a portion of file.

Data playback rate: Adjust playback speed, simulating real-time acquisition rate of instrument, or speeding up / slowing down. To simulate real-time rate, set to CTD acquisition rate (for example, 0.25 sec for 19plus). To display at fastest possible rate, set to 0 (for quick creation of plots).

Seasave can be used to display and plot archived data:

1. In the Archived Data menu, select Start. The Playback Archived Data dialog box appears:

Save archived data setup (all parameters input on or accessible through this dialog box, including .con or .xmlcon and data file names, number of scans to skip over at start, etc.) to buffer. If you then save program setup (.psa) file, the next time you select Start in Archived Data menu, Playback Archived Data dialog box will appear with your saved selections.

2. Click **Start** to begin processing and displaying data.
3. **To pause and restart data display:**
 - A. In the Archived Data menu, select Pause. The data display stops, but Seasave retains information on where it stopped.
 - B. When ready to restart the display where it stopped, pull down the Archived Data menu. You will see a check mark next to Pause; select Pause to restart.
4. **To adjust rate that data is displayed** (rate that was entered in Playback Archived Data dialog box as *Data playback rate*): In the Archived Data menu, select Faster, Slower, or No Wait. No Wait plays back data at the fastest possible speed, which is useful for quick creation of plots (equivalent to setting up the playback with Data playback rate set to 0).
5. **To stop data display:** In the Archived Data menu, select Stop. The data display stops.

Note:

Archived data playback can be very fast if *No Wait* is selected, if there is no scrolled view display. For an example data file with 392,000 scans, archived data playback took 19 seconds if only a plot display was generated; adding a scrolled display caused playback to take 13 minutes!

Section 10: Processing Data

Sea-Bird provides software, SBE Data Processing, for converting the raw data file into engineering units, editing (aligning, filtering, removing bad data, etc.) the data, calculating derived variables, and plotting the processed data.

However, sometimes users want to edit the raw .hex, .dat, or .xml data file before beginning processing, to remove data at the beginning of the file corresponding to instrument *soak* time, to remove blocks of bad data, to edit the header, or to add explanatory notes about the cast. **Editing the raw file can corrupt the data, making it impossible to perform further processing using Sea-Bird software.** Sea-Bird strongly recommends that you first convert the data to a .cnv file (using the Data Conversion module in SBE Data Processing), and then use other SBE Data Processing modules to edit the .cnv file as desired.

Note:

Although we provide this technique for editing a raw .hex file, **Sea-Bird's strong recommendation, as described above, is to always convert the raw data file and then edit the converted file.**

.hex Files

The procedure for editing a .hex data file described below has been found to work correctly on computers running Windows 98, 2000, and NT. **If the editing is not performed using this technique, SBE Data Processing may reject the edited data file and give you an error message.**

1. **Make a back-up copy of your .hex data file before you begin.**
2. **Run WordPad.**
3. In the File menu, select Open. The Open dialog box appears. For *Files of type*, select *All Documents (*.*)*. Browse to the desired .hex data file and click Open.
4. Edit the file as desired, **inserting any new header lines after the System Upload Time line.** Note that all header lines must begin with an asterisk (*), and *END* indicates the end of the header. An example is shown below, with the added lines in bold:

```

* Sea-Bird SBE 21 Data File:
* FileName = C:\Odis\SAT2-ODIS\oct14-19\oc15_99.hex
* Software Version Seasave Win32 v1.10
* Temperature SN = 2366
* Conductivity SN = 2366
* System UpLoad Time = Oct 15 1999 10:57:19
* Testing adding header lines
* Must start with an asterisk
* Place anywhere between System Upload Time & END of header
* NMEA Latitude = 30 59.70 N
* NMEA Longitude = 081 37.93 W
* NMEA UTC (Time) = Oct 15 1999 10:57:19
* Store Lat/Lon Data = Append to Every Scan and Append
to .NAV File When <Ctrl F7> is Pressed
** Ship: Sea-Bird
** Cruise: Sea-Bird Header Test
** Station:
** Latitude:
** Longitude:
*END*

```

5. In the File menu, select Save (**not** Save As). If you are running Windows 2000, the following message displays:

You are about to save the document in a Text-Only format, which will remove all formatting. Are you sure you want to do this?

Ignore the message and click *Yes*.

6. In the File menu, select Exit.

Appendix I: Command Line Operation

Seasave has a number of command line parameters, for infrequently used options:

Parameter	Function
<code>-autostart=filename</code>	Automatically start Seasave and data acquisition, using program setup (.psa) file defined by <i>filename</i> . <i>Filename</i> must include path and extension (.psa). Seasave uses .con or .xmlcon file, setup in Configure Inputs and Configure Outputs, displays, and output file name defined in .psa file. This allows you to set up system ahead of time, and then have an untrained operator start acquisition without navigating through Seasave's menus.
<code>-u</code>	Ignore output (.hex) file name defined in .psa file, and create a unique output (.hex) file name, based on current date and time. When used with autostart command line option, this allows you to set up system ahead of time, and then have an untrained operator start and stop acquisition multiple times without navigating through Seasave's menus, generating a unique output file for each data acquisition.
<code>-aa=filename</code>	Automatically start Seasave and playback archived data, using program setup (.psa) file defined by <i>filename</i> . <i>Filename</i> must include path and extension (.psa). Seasave uses .con or .xmlcon file, setup in Configure Inputs and Configure Outputs, displays, and input data file name defined in .psa file.
<code>-p=filename</code>	Automatically start Seasave, using program setup (.psa) file defined by <i>filename</i> . <i>Filename</i> must include path and extension (.psa). Seasave opens with .con or .xmlcon file, setup in Configure Inputs and Configure Outputs, and displays defined in .psa file. Note: This command line parameter does not start data acquisition or playback of archived data , it simply launches Seasave.
<code>-autofireondowncast</code>	Allow user to set up auto fire for bottles at user-input, pre-defined pressures or depths on downcast (when this parameter is not specified, auto fire can only be set up for upcast, which is recommended for most applications). See <i>Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control</i> to set up auto fire. Note: <i>Mixed mode</i> firing (firing some bottles manually) is supported for firing on downcast as well as on upcast.
<code>-autostop=time</code>	Automatically stop Seasave real-time data acquisition and shut down Seasave after <i>time</i> (in minutes). This can be used in conjunction with a batch file script to create new data files on a defined schedule for continuous acquisition systems, such as a thermosalinograph or a towed vehicle. See example in <i>Running Seasave with –Autostop Parameter</i> below.

List continued on next page

-ignorenmechecksum	Ignore checksum from a NMEA device cabled directly to computer (not cabled to a Sea-Bird deck unit or interface box). This allows data to still be acquired by Seasave even if your NMEA device incorrectly calculates checksum (when this parameter is not specified, Seasave will give an error message and will not acquire data if checksum is incorrect).
-nodeckunit	(9plus only) Provides smoother operation for a 9plus CTD used without an 11plus Deck Unit.

Note: If specifying multiple parameters, insert a space between each parameter in the list.

Running Seasave with Command Line Parameters (general instructions)

Notes:

- If the path includes any spaces, enclose the path in quotes ("path"). See the examples.
- An alternative method of running Seasave with a Command Line Parameter is from a command prompt.

To run Seasave with a Command Line Parameter:

1. In the Windows Start menu, select Run. The Run dialog box appears. Enter the command line parameter(s) as shown below:

Path\seasave.exe parameter1 parameter2 . . .

where Path is the location of seasave.exe on your computer, and one or more command line parameters are listed.

Examples

- "C:\Program Files\Sea-Bird\SeasaveV7\seasave.exe" -autostart="C:\Test Directory\test.psa" (automatically start Seasave and data acquisition, based on setup in test.psa, and save data to .hex file specified in test.psa)
- "C:\Program Files\Sea-Bird\SeasaveV7\seasave.exe"-autostart="C:\Test Directory\test.psa" -u (enable 2 parameters shown -- automatically start Seasave and data acquisition, based on setup in test.psa, but ignore .hex file specified in .psa and save data to a uniquely named .hex file)
- "C:\Program Files\Sea-Bird\SeasaveV7\seasave.exe" -autofireondowncast (automatically start Seasave. In Seasave, when you select Configure Inputs, click on Water Sampler tab, select a water sampler, select auto fire firing sequence, and click Auto-Fire Pressures & Positions button, dialog box shows that bottles will be fired on downcast instead of upcast.)

2. Seasave opens. The functions specified by the command line parameters are enabled. If –autostart was used, data acquisition starts.

Running Seasave with Autostop Parameter

The Autostop parameter can be used in conjunction with a batch file (.bat) script to create new data files on a defined schedule for continuous acquisition systems, such as a thermosalinograph or a towed vehicle. Note the following additional requirements for this type of application:

- Use the /autostart parameter, to automatically restart Seasave after each time it shuts down.
- Use the /u parameter, to create a unique output (.hex) file name based on current date and time for each time that Seasave restarts.
- Use MS-DOS' /w parameter, to wait until Seasave completely closes before starting it again.

Note these additional requirements when using a batch file to run Seasave with Autostop:

- You must use the forward slash (/) instead of the dash (-) in front of each parameter in the batch file (for example, use /w instead of -w).
- A file path in the Start line of the batch file cannot contain any spaces, regardless of whether the path is enclosed in quotes.

A small amount of data is *lost* at the end of each specified time interval, because Seasave briefly shuts down and then restarts. Testing at Sea-Bird with several instruments showed a 10 – 20 second gap in the data each acquisition was stopped and restarted using this technique. The gap is dependent on the instrument and its setup and configuration; we suggest running a test with your specific setup before implementation in the field.

Example .bat script

```
c:  
cd \  
cd Program Files  
cd Sea-Bird  
cd SeasaveV7  
:repeat_forever  
start /w seasave.exe /autostart=C:\test.psa /u /autostop=60  
goto repeat_forever
```

(automatically start Seasave and data acquisition, based on setup in test.psa, but ignore .hex file specified in .psa and save data to a uniquely named .hex file. Stop acquisition after 60 minutes and shut Seasave. Repeat the sequence.)

Run the .bat file using a DOS command window. When ready to stop the start / acquire data / stop sequence, simply close the DOS window.

Appendix II:

Configure (.con or .xmlcon) File Format

Modify a .con or .xmlcon configuration file by selecting Configure Inputs, clicking on the Instrument Configuration tab in the dialog box, and clicking on Modify.

Configuration files (.con or .xmlcon) can also be opened, viewed, and modified with DisplayConFile.exe, a utility that is installed in the same folder as SBE Data Processing. Right click on the desired configuration file, select *Open With*, and select *DisplayConFile*. This utility is often used at Sea-Bird to quickly open and view a configuration file for troubleshooting purposes, without needing to go through the additional steps of selecting the file in SBE Data Processing or Seasave.

.xmlcon Configuration File Format

Note:

We recommend that you **do not** open .xmlcon files with a text editor (i.e., Notepad, Wordpad, etc.).

.xmlcon configuration files, written in XML format, were introduced with SBE Data Processing and Seasave 7.20a. A .xmlcon file uses XML tags to describe each line in the file. Versions 7.20a and later allow you to open a .con or a .xmlcon file, and to save the configuration to a .con or a .xmlcon file. Instruments introduced after 7.20a are compatible only with .xmlcon files.

.con Configuration File Format

Shown below is a line-by-line description of a .con configuration file contents, which can be viewed in a text editor (i.e., Notepad, Wordpad, etc.).

Line	Contents
1	Conductivity sensor serial number
2	Conductivity M, A, B, C, D, CPCOR
3	Conductivity cell const, series r, slope, offset, use GHIJ coefficients?
4	Temperature sensor serial number
5	Temperature F0, A, B, C, D, slope, offset, use GHIJ coefficients?
6	Secondary conductivity sensor serial number
7	Secondary conductivity M, A, B, C, D, PCOR
8	Secondary conductivity cell const, series r, slope, offset, use GHIJ coefficients?
9	Secondary temperature sensor serial number
10	Secondary temperature F0, A, B, C, D, slope, offset, use GHIJ coefficients?
11	Pressure sensor serial number
12	Pressure T1, T2, T3, T4, T5
13	Pressure C1 (A1), C2 (A0), C3, C4 (A2) - parameters in parentheses for strain gauge sensor
14	Pressure D1, D2, slope, offset, pressure sensor type, AD590 M, AD590 B
15	Oxygen (Beckman/YSI type) sensor serial number
16	Oxygen (Beckman/YSI type) M, B, K, C, SOC, TCOR
17	Oxygen (Beckman/YSI type) WT, PCOR, TAU, BOC
18	pH sensor serial number
19	pH slope, offset, VREF
20	PAR light sensor serial number
21	PAR cal const, multiplier, M, B, surface cc, surface r, offset
22	Transmissometer (SeaTech, Chelsea AlphaTracka, WET Labs Cstar) sensor serial number
23	Transmissometer (SeaTech, Chelsea AlphaTracka, WET Labs Cstar) M, B, path length
24	Fluorometer SeaTech sensor serial number
25	Fluorometer SeaTech scale factor, offset

26	Tilt sensor serial number
27	Tilt XM, XB, YM, YB
28	ORP sensor serial number
29	ORP M, B, offset
30	Primary OBS/Nephelometer D&A Backscatterance sensor serial number
31	Primary OBS/Nephelometer D&A Backscatterance gain, offset
32	Altimeter scale factor, offset, hyst, min pressure, hysteresis
33	Microstructure temperature sensor serial number
34	Microstructure temperature pre m, pre b
35	Microstructure temperature num, denom, A0, A1, A3
36	Microstructure conductivity sensor serial number
37	Microstructure conductivity A0, A1, A2
38	Microstructure conductivity M, B, R
39	Number of external frequencies, number of bytes, number of voltages, instrument type, computer interface, scan rate, interval, store system time, deck unit or Searam?
40	Data format channels 0 - 9
41	Data format channels 10 - 19
42	Data format channels 20 - 39
43	SBE 16: use water temperature?, fixed pressure, fixed pressure temperature
44	Firmware version
45	Miscellaneous: number of frequencies from SBE 9, number of frequencies from SBE 9 to be suppressed, number of voltages from SBE 9 to be suppressed, voltage range, add surface PAR voltage?, add NMEA position data?, include IOW sensors? Add NMEA depth data?
46	OBS/Nephelometer IFREMER sensor serial number
47	OBS/Nephelometer IFREMER VM0, VD0, D0, K
48	OBS/Nephelometer Chelsea sensor serial number
49	OBS/Nephelometer Chelsea clear water voltage, scale factor
50	ZAPS sensor serial number
51	ZAPS m, b
52	Conductivity sensor calibration date
53	Temperature sensor calibration date
54	Secondary conductivity sensor calibration date
55	Secondary temperature sensor calibration date
56	Pressure sensor calibration date
57	Oxygen (Beckman/YSI type) sensor calibration date
58	pH sensor calibration date
59	PAR light sensor calibration date
60	Transmissometer (SeaTech, Chelsea AlphaTracka, WET Labs Cstar) sensor calibration date
61	Fluorometer (SeaTech) sensor calibration date
62	Tilt sensor calibration date
63	ORP sensor calibration date
64	Primary OBS/Nephelometer D&A Backscatterance sensor calibration date
65	Microstructure temperature sensor calibration date
66	Microstructure conductivity sensor calibration date
67	IFREMER OBS/nephelometer sensor calibration date
68	Chelsea OBS/nephelometer sensor calibration date
69	ZAPS sensor calibration date
70	Secondary oxygen (Beckman/YSI type) sensor serial number
71	Secondary oxygen (Beckman/YSI type) sensor calibration date
72	Secondary oxygen(Beckman/YSI type) M, B, K, C, SOC, TCOR
73	Secondary oxygen(Beckman/YSI type) WT, PCOR, TAU, BOC
74	User polynomial 1 sensor serial number
75	User polynomial 1 sensor calibration date
76	User poly1 A0, A1, A2, A3
77	User polynomial 2 sensor serial number
78	User polynomial 2 sensor calibration date
79	User polynomial 2 A0, A1, A2, A3
80	User polynomial 3 sensor serial number
81	User polynomial 3 sensor calibration date
82	User polynomial 3 A0, A1, A2, A3
83	Dr. Haardt Chlorophyll fluorometer sensor serial number
84	Dr. Haardt Chlorophyll fluorometer sensor calibration date
85	Dr. Haardt Chlorophyll fluorometer A0, A1, B0, B1, which modulo bit, gain range switching
86	Dr. Haardt Phycoerythrin fluorometer sensor serial number
87	Dr. Haardt Phycoerythrin fluorometer sensor calibration date
88	Dr. Haardt Phycoerythrin fluorometer A0, A1, B0, B1, which modulo bit, gain range switching
89	Dr. Haardt Turbidity OBS/nephelometer sensor serial number
90	Dr. Haardt Turbidity OBS/nephelometer sensor calibration date
91	Dr. Haardt Turbidity OBS/nephelometer A0, A1, B0, B1, which modulo bit, gain range switching
92	IOW oxygen sensor serial number
93	IOW oxygen sensor calibration date
94	IOW oxygen A0, A1, A2, A3, B0, B1
95	IOW sound velocity sensor serial number

96	IOW sound velocity sensor calibration date
97	IOW sound velocity A0, A1, A2
98	Biospherical natural fluorometer sensor serial number
99	Biospherical natural fluorometer sensor calibration date
100	Biospherical natural fluorometer Cfn, A1, A2, B
101	Sea tech ls6000 OBS/nephelometer sensor serial number
102	Sea tech ls6000 OBS/nephelometer sensor calibration date
103	Sea tech ls6000 OBS/nephelometer gain, slope, offset
104	Fluorometer Chelsea Aqua 3 sensor serial number
105	Fluorometer Chelsea Aqua 3 sensor calibration date
106	Fluorometer Chelsea Aqua 3 scale factor, slope, offset, Vacetone, VB (static), Vlug/1
107	Fluorometer Turner sensor serial number
108	Fluorometer Turner sensor calibration date
109	Fluorometer Turner scale factor, offset; or Turner-10au-005 full scale concentration, full scale voltage, zero point concentration
110	Conductivity G, H, I, J, ctcpr, cpcor
111	Temperature F0, G, H, I, J
112	Secondary conductivity G, H, I, J, ctcpr, cpcor
113	Secondary temperature F0, G, H, I, J
114	WET Labs AC3 beam transmission transmissometer sensor serial number
115	WET Labs AC3 beam transmission transmissometer sensor calibration date
116	WET Labs AC3 beam transmission transmissometer Ch2o, Vh2o, Vdark, x, chlorophyll absorption Kv, Vh2o, a^x
117	WET Labs WETStar fluorometer sensor serial number
118	WET Labs WETStar fluorometer sensor calibration date
119	WET Labs WETStar Vblank, scale factor
120	Primary conductivity sensor using g, h, i, j coefficients calibration date
121	Primary temperature sensor using g, h, i, j coefficients calibration date
122	Secondary conductivity sensor using g, h, i, j coefficients calibration date
123	Secondary temperature sensor using g, h, i, j coefficients calibration date
124	FGP pressure sensor #0 serial number
125	FGP pressure sensor #0 calibration date
126	FGP pressure sensor #0 scale factor, offset
127	FGP pressure sensor #1 serial number
128	FGP pressure sensor #1 calibration date
129	FGP pressure sensor #1 scale factor, offset
130	FGP pressure sensor #2 serial number
131	FGP pressure sensor #2 calibration date
132	FGP pressure sensor #2 scale factor, offset
133	FGP pressure sensor #3 serial number
134	FGP pressure sensor #3 calibration date
135	FGP pressure sensor #3 scale factor, offset
136	FGP pressure sensor #4 serial number
137	FGP pressure sensor #4 calibration date
138	FGP pressure sensor #4 scale factor, offset
139	FGP pressure sensor #5 serial number
140	FGP pressure sensor #5 calibration date
141	FGP pressure sensor #5 scale factor, offset
142	FGP pressure sensor #6 serial number
143	FGP pressure sensor #6 calibration date
144	FGP pressure sensor #6 scale factor, offset
145	FGP pressure sensor #7 serial number
146	FGP pressure sensor #7 calibration date
147	FGP pressure sensor #7 scale factor, offset
148	Primary OBS/Nephelometer Seapoint turbidity meter sensor serial number
149	Primary OBS/Nephelometer Seapoint turbidity meter sensor calibration date
150	Primary OBS/Nephelometer Seapoint turbidity meter gain, scale
151	Secondary OBS/Nephelometer Seapoint turbidity meter sensor serial number
152	Secondary OBS/Nephelometer Seapoint turbidity meter sensor calibration date
153	Secondary OBS/Nephelometer Seapoint turbidity meter gain, scale
154	Fluorometer Dr. Haardt Yellow Substance sensor serial number
155	Fluorometer Dr. Haardt Yellow Substance sensor calibration date
156	Fluorometer Dr. Haardt Yellow Substance A0, A1, B0, B1, which modulo bit, gain range switching
157	Fluorometer Chelsea Minitraka serial number
158	Fluorometer Chelsea Minitraka calibration date
159	Fluorometer Chelsea Minitraka vacetone, vacetone100, offset
160	Seapoint fluorometer serial number
161	Seapoint fluorometer calibration date
162	Seapoint fluorometer gain, offset
163	Primary Oxygen (SBE 43) serial number
164	Primary Oxygen (SBE 43) calibration date
165	Primary Oxygen (SBE 43) Soc, Tcor, offset

166	Primary Oxygen (SBE 43) Pcor, Tau, Boc
167	Secondary Oxygen (SBE 43) serial number
168	Secondary Oxygen (SBE 43) calibration date
169	Secondary Oxygen (SBE 43) Soc, Tcor, offset
170	Secondary Oxygen (SBE 43) Pcor, Tau, Boc
171	Secondary sea tech ls6000 OBS/nephelometer sensor serial number
172	Secondary sea tech ls6000 OBS/nephelometer sensor calibration date
173	Secondary sea tech ls6000 OBS/nephelometer gain, slope, offset
174	Secondary Chelsea Transmissometer sensor serial number
175	Secondary Chelsea Transmissometer calibration date
176	Secondary Chelsea Transmissometer M, B, path length
177	Altimeter serial number
178	Altimeter calibration date
179	WET Labs AC3 serial number
180	WET Labs AC3 calibration date
181	Surface PAR serial number
182	Surface PAR calibration date
183	SEACATplus temperature sensor serial number
184	SEACATplus temperature sensor calibration date
185	SEACATplus temperature sensor A0, A1, A2, A3, slope, offset
186	SEACATplus serial sensor, scans to average, mode
187	Pressure (strain gauge with span TC) serial number
188	Pressure (strain gauge with span TC) calibration date
189	Pressure (strain gauge with span TC) ptempA0, ptempA1, ptempA2, pTCA0, pTCA1, PTCA2
190	Pressure (strain gauge with span TC) pTCB0, pTCB1, pTCB2, pa0, pa1, pa2, offset
191	SBE 38 temperature sensor serial number
192	SBE 38 temperature sensor calibration date
193	Turner SCUFA fluorometer serial number
194	Turner SCUFA fluorometer calibration date
195	Turner SCUFA fluorometer scale factor, offset, units, mx, my, b
196	Turner SCUFA OBS serial number
197	Turner SCUFA OBS calibration date
198	Turner SCUFA OBS scale factor, offset
199	WET Labs ECO-AFL fluorometer serial number
200	WET Labs ECO-AFL fluorometer calibration date
201	WET Labs ECO-AFL fluorometer vblank, scale factor
202	Userpoly 0 name
203	Userpoly 1 name
204	Userpoly 2 name
205	CAPSUM METS serial number
206	CAPSUM METS calibration date
207	CAPSUM METS D, A0, A1, B0, B1, B2, T1, T2
208	Secondary PAR sensor serial number
209	Secondary PAR sensor calibration date
210	Secondary PAR sensor cal const, multiplier, M, B, offset
211	Secondary WET Labs WETstar Fluorometer sensor serial number
212	Secondary WET Labs WETstar Fluorometer sensor calibration date
213	Secondary WET Labs WETstar Fluorometer Vblank, scale factor
214	Secondary Seapoint Fluorometer sensor serial number
215	Secondary Seapoint Fluorometer sensor calibration date
216	Secondary Seapoint Fluorometer gain, offset
217	Secondary Turner SCUFA Fluorometer sensor serial number
218	Secondary Turner SCUFA Fluorometer sensor calibration date
219	Secondary Turner SCUFA Fluorometer scale factor, offset, units, mx, my, b
220	WET Labs WETStar CDOM sensor serial number
221	WET Labs WETStar CDOM sensor calibration date
222	WET Labs WETStar CDOM Vblank, scale factor
223	Seapoint Rhodamine Fluorometer sensor serial number
224	Seapoint Rhodamine Fluorometer sensor calibration date
225	Seapoint Rhodamine Fluorometer gain, offset
226	Primary Gas Tension Device sensor serial number
227	Primary Gas Tension Device sensor calibration date
228	Primary Gas Tension Device type
229	Secondary Gas Tension Device sensor serial number
230	Secondary Gas Tension Device sensor calibration date
231	Secondary Gas Tension Device type
232	Sequoia LISST-25A sensor serial number
233	Sequoia LISST-25A sensor calibration date
234	Sequoia LISST-25A Total Volume Conc Const, Sauter Mean Diameter Cal, Clean Water Scattering, Clean Water Trans
235	SBE 45 output conductivity? Output salinity? Output sound velocity? Use 90402 junction box? SBE 38 remote temperature?

236	SBE 21 remote temperature type
237	SBE 50 serial number
238	SBE 50 calibration date
239	Secondary Chelsea Aqua 3 fluorometer serial number
240	Secondary Chelsea Aqua 3 fluorometer calibration date
241	Secondary Chelsea Aqua 3 fluorometer scale factor, slope, offset, vacetone, vb, v1
242	Chelsea UV Aquatracka serial number
243	Chelsea UV Aquatracka calibration date
244	Chelsea UV Aquatracka a, b
245	SBE 49 temperature sensor serial number
246	SBE 49 temperature sensor calibration date.
247	SBE 49 temperature sensor A0, A1, A2, A3, slope, and offset.
248	Secondary Turner SCUFA OBS serial number
249	Secondary Turner SCUFA OBS calibration date
250	Secondary Turner SCUFA OBS scale factor, offset
251	OBS D&A 3+ serial number
252	OBS D&A 3+ calibration date
253	OBS D&A 3+ a0, a1, a2
254	Secondary OBS D&A 3+ serial number
255	Secondary OBS D&A 3+ calibration date
256	Secondary OBS D&A 3+ a0, a1, a2
257	SBE 16, 19, 19plus, 21, 25, or 49 scan time added? NMEA time added? NMEA device connected to PC?
258	SBE 43 Oxygen sensor: use Sea-Bird equation, Soc2007, A, B, C, E, Voffset, Tau20, D0, D1, D2, H1, H2, H3
259	Secondary SBE 43 Oxygen sensor: use Sea-Bird equation, Soc2007, A, B, C, E, Voffset, Tau20, D0, D1, D2, H1, H2, H3
260	File version of SB ConfigCTD.dll which saved the .con file
261	IFREMER OBS/nephelometer sensor serial number
262	Primary Beckman Oxygen Temperature sensor - calibration date
263	Primary Beckman Oxygen Temperature sensor - serial number
264	Secondary Beckman Oxygen Temperature sensor - calibration date
265	Secondary Beckman Oxygen Temperature sensor - serial number
266	IOW Oxygen Temperature sensor - calibration date
267	IOW Oxygen Temperature sensor - serial number
268	Methane Gas Tension, Capsum METS sensor - calibration date
269	Methane Gas Tension, Capsum METS sensor -serial number
270	Secondary WET Labs ECO-AFL fluorometer serial number
271	Secondary WET Labs ECO-AFL fluorometer calibration date
272	Secondary WET Labs ECO-AFL fluorometer vblank, scale factor
273	Secondary OBS/Nephelometer D&A Backscatterance sensor serial number
274	Secondary OBS/Nephelometer D&A Backscatterance gain, offset
275	Secondary OBS/Nephelometer D&A Backscatterance sensor calibration date
276	Aanderaa Oxygen Optode serial number
277	Aanderaa Oxygen Optode calibration date
278	Aanderaa Oxygen Optode: do salinity correction? do depth correction? internal salinity value

Appendix III: Software Problems

Considerable effort has been made to test and check this software before its release. However, because of the wide range of instruments that Sea-Bird produces (and interfaces with) and the many applications that these instruments are used in, there may be software problems that have not been discovered and corrected. If a problem occurs, please contact us via phone (425-643-9866), e-mail (seabird@seabird.com), or fax (425-643-9954) with the following information:

- Instrument serial number
- Version of the software originally shipped with the instrument
- Version of the software you are attempting to run
- Complete description of the problem

If the problem involves the software configuration or setup, in most cases a phone call to Sea-Bird will be sufficient to solve the problem. If you phone, please be ready to run the software during the phone conversation.

If the problem involves data analysis or processing, you may be asked to send a sample of the data to Sea-Bird for evaluation.

If you discover a reproducible bug, please document the steps required to create the problem and send a report to Sea-Bird.

We also welcome suggestions for new features and enhancements.

Known Bugs/Compatibility Issues

1. Seasoft-DOS' terminal programs (Term19, Term25, etc.) may not run when Seasave is running.

Solution: Use Seasoft V2 terminal program (SeatermV2, Seaterm, or SeatermAF as applicable), or close Seasave to run Seasoft-DOS terminal program.

2. Seasave may not run when a DOS window (such as for Seasoft-DOS) is open.

Solution: Close DOS window. Use Windows software.

3. Seasave may not be able to read and display an *archived* data file that was uploaded from an instrument's memory using Seaterm version 1.58 or earlier, if the computer was set to a language other than English when the file was uploaded. This is because Seasave cannot recognize the System Upload Time date in the file header if does not contain the appropriate English abbreviation for the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec).

Solution 1: Edit the uploaded file to change the month to one consistent with English. Follow the instructions for file editing in *Section 10: Processing Data*.

Solution 2: Install Seaterm 1.59 or later, and upload the data again (if it is still available in the instrument). Seaterm 1.59 and later always writes the System Upload Time date with the appropriate English abbreviation, regardless of the computer's language setting.

Note:

The date in the System Upload Time must be in the format:

Mmm dd yyyy
(for example, Nov 09 2007, with the month capitalized and a space between the month, day, and year).

Appendix IV: Derived Parameter Formulas

Notes:

- Algorithms used for calculation of derived parameters in Seasave and in SBE Data Processing's Data Conversion, Derive, and SeacalcW modules are identical, except as noted.
- Absolute Salinity** (TEOS-10) is available in our seawater calculator, SeaCalc II, in SBE Data Processing; see the SBE Data Processing manual.
Seasave outputs only Practical Salinity, and all parameters derived from salinity in Seasave are based on Practical Salinity.

For formulas for the calculation of conductivity, temperature, and pressure, see the calibration sheets for your instrument.

Formulas for the computation of salinity, density, potential temperature, specific volume anomaly, and sound velocity were obtained from "Algorithms for computation of fundamental properties of seawater", by N.P. Fofonoff and R.C Millard Jr.; Unesco technical papers in marine science #44, 1983.

- Temperature used for calculating derived variables is IPTS-68, except as noted. Following the recommendation of JPOTS, T_{68} is assumed to be $1.00024 * T_{90}$ (-2 to 35 °C).
- Salinity is PSS-78, and by definition is valid only in the range of 2 to 42 psu. Sea-Bird uses the PSS-78 algorithm in our software, without regard to those limitations on the valid range. Unesco technical papers in marine science 62 "Salinity and density of seawater: Tables for high salinities (42 to 50)" provides a method for calculating salinity in the higher range (<http://unesdoc.unesco.org/images/0009/000964/096451mb.pdf>)

Equations are provided for the following oceanographic parameters:

- density (density, sigma-theta, sigma-1, sigma-2, sigma-4, sigma-t)
- thermosteric anomaly
- specific volume
- specific volume anomaly
- geopotential anomaly
- dynamic meters
- depth (salt water, fresh water)
- seafloor depth (salt water, fresh water)
- practical salinity (psu)
- sound velocity (Chen-Millero, DelGrosso, Wilson)
- average sound velocity
- potential temperature (reference pressure = 0.0 decibars)
- potential temperature anomaly
- plume anomaly
- specific conductivity
- oxygen - requires pressure, temperature, and conductivity, as well as oxygen signal (for SBE 43), oxygen current and oxygen temperature (for SBE 13 or 23), or oxygen phase and thermistor voltage (SBE 63)
- oxygen saturation
- oxygen percent saturation
- nitrogen saturation
- derivative variables (descent rate and acceleration)
- corrected irradiance (CPAR)

$$\text{density} = \rho = \rho(s, t, p) \quad [\text{kg/m}^3]$$

(density of seawater with salinity s, temperature t, and pressure p, based on the equation of state for seawater (EOS80))

Density calculation:

Using the following constants -

```
B0 = 8.24493e-1, B1 = -4.0899e-3, B2 = 7.6438e-5, B3 = -8.2467e-7, B4 = 5.3875e-9,
C0 = -5.72466e-3, C1 = 1.0227e-4, C2 = -1.6546e-6, D0 = 4.8314e-4, A0 = 999.842594,
A1 = 6.793952e-2, A2 = -9.095290e-3, A3 = 1.001685e-4, A4 = -1.120083e-6, A5 = 6.536332e-9,
FQ0 = 54.6746, FQ1 = -0.603459, FQ2 = 1.09987e-2, FQ3 = -6.1670e-5, G0 = 7.944e-2, G1 = 1.6483e-2,
G2 = -5.3009e-4, i0 = 2.2838e-3, i1 = -1.0981e-5, i2 = -1.6078e-6, J0 = 1.91075e-4, M0 = -9.9348e-7,
M1 = 2.0816e-8, M2 = 9.1697e-10, E0 = 19652.21, E1 = 148.4206, E2 = -2.327105, E3 = 1.360477e-2,
E4 = -5.155288e-5, H0 = 3.239908, H1 = 1.43713e-3, H2 = 1.16092e-4, H3 = -5.77905e-7,
K0 = 8.50935e-5, K1 = -6.12293e-6, K2 = 5.2787e-8
```

C Computer Code -

```
double Density(double s, double t, double p)
// s = salinity PSU, t = temperature deg C ITPS-68, p = pressure in decibars
{
    double t2, t3, t4, t5, s32;
    double sigma, k, kw, aw, bw;
    double val;
    t2 = t*t;
    t3 = t*t2;
    t4 = t*t3;
    t5 = t*t4;
    if (s <= 0.0) s = 0.000001;
    s32 = pow(s, 1.5);
    p /= 10.0; /* convert decibars to bars */
    sigma = A0 + A1*t + A2*t2 + A3*t3 + A4*t4 + A5*t5 + (B0 + B1*t + B2*t2 + B3*t3 + B4*t4)*s +
    (C0 + C1*t + C2*t2)*s32 + D0*s*s;
    kw = E0 + E1*t + E2*t2 + E3*t3 + E4*t4;
    aw = H0 + H1*t + H2*t2 + H3*t3;
    bw = K0 + K1*t + K2*t2;
    k = kw + (FQ0 + FQ1*t + FQ2*t2 + FQ3*t3)*s + (G0 + G1*t + G2*t2)*s32 + (aw + (i0 + i1*t +
    i2*t2)*s + (J0*s32))*p + (bw + (M0 + M1*t + M2*t2)*s)*p*p;
    val = 1 - p / k;
    if (val) sigma = sigma / val - 1000.0;
    return sigma;
}
```

$$\text{Sigma-theta} = \sigma_\theta = \rho(s, \theta(s, t, p, 0), 0) - 1000 \quad [\text{kg/m}^3]$$

$$\text{Sigma-1} = \sigma_1 = \rho(s, \theta(s, t, p, 1000), 1000) - 1000 \quad [\text{kg/m}^3]$$

$$\text{Sigma-2} = \sigma_2 = \rho(s, \theta(s, t, p, 2000), 2000) - 1000 \quad [\text{kg/m}^3]$$

$$\text{Sigma-4} = \sigma_4 = \rho(s, \theta(s, t, p, 4000), 4000) - 1000 \quad [\text{kg/m}^3]$$

$$\text{Sigma-t} = \sigma_t = \rho(s, t, 0) - 1000 \quad [\text{kg/m}^3]$$

$$\text{thermosteric anomaly} = 10^5 ((1000/(1000 + \sigma_t)) - 0.97266) \quad [10^{-8} \text{ m}^3/\text{kg}]$$

$$\text{specific volume} = V(s, t, p) = 1/\rho \quad [\text{m}^3/\text{kg}]$$

$$\text{specific volume anomaly} = \delta = 10^{-8} (V(s, t, p) - V(35, 0, p)) \quad [10^{-8} \text{ m}^3/\text{kg}]$$

$$\text{geopotential anomaly} = 10^{-4} \sum_{\Delta p, p=0}^p (\delta \times \Delta p) \quad [\text{J/kg}] = [\text{m}^2/\text{s}^2]$$

$$\text{dynamic meters} = \text{geopotential anomaly} / 10.0$$

(1 dynamic meter = 10 J/kg;
(Sverdrup, Johnson, Flemming (1946), UNESCO (1991)))

depth = [m]

(Note: To calculate gravity for the depth algorithm, Seasave uses the latitude from a NMEA navigation device, if NMEA is enabled in the .con or .xmlcon file. If your system does not have NMEA, enter the desired latitude on the Miscellaneous tab in Configure Inputs.)

Depth calculation:**C Computer Code –**

```
// Depth
double Depth(int dtype, double p, double latitude)
// dtype = fresh water or salt water, p = pressure in decibars, latitude in degrees
{
    double x, d, gr;
    if (dtype == FRESH_WATER)      /* fresh water */
        d = p * 1.019716;
    else {                         /* salt water */
        x = sin(latitude / 57.29578);
        x = x * x;
        gr = 9.780318 * (1.0 + (5.2788e-3 + 2.36e-5 * x) * x) + 1.092e-6 * p;
        d = (((-1.82e-15 * p + 2.279e-10) * p - 2.2512e-5) * p + 9.72659) * p;
        if (gr) d /= gr;
    }
    return(d);
}
```

seafloor depth = depth + altimeter reading [m]

Note:

Absolute Salinity (TEOS-10) is available in our seawater calculator, SeaCalc II, in SBE Data Processing; see the SBE Data Processing manual.

Seasave outputs only Practical Salinity, and all parameters derived from salinity in Seasave are based on Practical Salinity.

practical salinity = [PSU]
(Salinity is PSS-78, valid from 2 to 42 psu.)

Practical Salinity calculation:**Using the following constants -**

$A_1 = 2.070e-5$, $A_2 = -6.370e-10$, $A_3 = 3.989e-15$, $B_1 = 3.426e-2$, $B_2 = 4.464e-4$, $B_3 = 4.215e-1$,
 $B_4 = -3.107e-3$, $C_0 = 6.766097e-1$, $C_1 = 2.00564e-2$, $C_2 = 1.104259e-4$, $C_3 = -6.9698e-7$,
 $C_4 = 1.0031e-9$

C Computer Code -

```
static double a[6] = { /* constants for salinity calculation */
    0.0080, -0.1692, 25.3851, 14.0941, -7.0261, 2.7081
};

static double b[6] = { /* constants for salinity calculation */
    0.0005, -0.0056, -0.0066, -0.0375, 0.0636, -0.0144
};

double Salinity(double C, double T, double P) /* compute salinity */
// C = conductivity S/m, T = temperature deg C ITPS-68, P = pressure in decibars
{
    double R, RT, RP, temp, sum1, sum2, result, val;
    int i;
    if (C <= 0.0)
        result = 0.0;
    else {
        C *= 10.0; /* convert Siemens/meter to mmhos/cm */
        R = C / 42.914;
        val = 1 + B1 * T + B2 * T * T + B3 * R + B4 * R * T;
        if (val) RP = 1 + (P * (A1 + P * (A2 + P * A3))) / val;
        val = RP * (C0 + (T * (C1 + T * (C2 + T * (C3 + T * C4)))));
        if (val) RT = R / val;
        if (RT <= 0.0) RT = 0.000001;
        sum1 = sum2 = 0.0;
        for (i = 0; i < 6; i++) {
            temp = pow(RT, (double)i / 2.0);
            sum1 += a[i] * temp;
            sum2 += b[i] * temp;
        }
        val = 1.0 + 0.0162 * (T - 15.0);
        if (val)
            result = sum1 + sum2 * (T - 15.0) / val;
        else
            result = -99.0;
    }
    return result;
}
```

sound velocity = [m/sec]

(sound velocity can be calculated as Chen-Millero, DelGrosso, or Wilson)

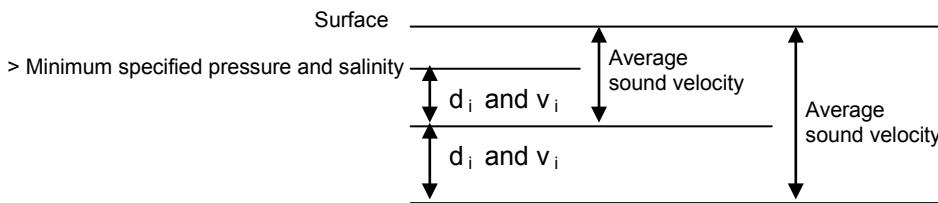
Sound velocity calculation:

C Computer Code -

```

// Sound Velocity Chen and Millero
double SndVelC(double s, double t, double p0)           /* sound velocity Chen and Millero 1977 */
                                                       /* JASA, 62, 1129-1135 */
// s = salinity, t = temperature deg C ITPS-68, p = pressure in decibars
{
    double a, a0, a1, a2, a3;
    double b, b0, b1;
    double c, c0, c1, c2, c3;
    double p, sr, d, sv;
    p = p0 / 10.0;           /* scale pressure to bars */
    if (s < 0.0)  s = 0.0;
    sr = sqrt(s);
    d = 1.727e-3 - 7.9836e-6 * p;
    b1 = 7.3637e-5 + 1.7945e-7 * t;
    b0 = -1.922e-2 - 4.42e-5 * t;
    b = b0 + b1 * p;
    a3 = (-3.389e-13 * t + 6.649e-12) * t + 1.100e-10;
    a2 = ((7.988e-12 * t - 1.6002e-10) * t + 9.1041e-9) * t - 3.9064e-7;
    a1 = (((-2.0122e-10 * t + 1.0507e-8) * t - 6.4885e-8) * t - 1.2580e-5) * t + 9.4742e-5;
    a0 = (((-3.21e-8 * t + 2.006e-6) * t + 7.164e-5) * t - 1.262e-2) * t + 1.389;
    a = ((a3 * p + a2) * p + a1) * p + a0;
    c3 = (-2.3643e-12 * t + 3.8504e-10) * t - 9.7729e-9;
    c2 = (((1.0405e-12 * t - 2.5335e-10) * t + 2.5974e-8) * t - 1.7107e-6) * t + 3.1260e-5;
    c1 = (((-6.1185e-10 * t + 1.3621e-7) * t - 8.1788e-6) * t + 6.8982e-4) * t + 0.153563;
    c0 = (((((3.1464e-9 * t - 1.47800e-6) * t + 3.3420e-4) * t - 5.80852e-2) * t + 5.03711) * t +
1402.388;
    c = ((c3 * p + c2) * p + c1) * p + c0;
    sv = c + (a + b * sr + d * s) * s;
    return sv;
}

// Sound Velocity Delgrosso
double SndVelD(double s, double t, double p) /* Delgrosso JASA, Oct. 1974, Vol 56, No 4 */
// s = salinity, t = temperature deg C ITPS-68, p = pressure in decibars
{
    double c000, dct, dcs, dcp, dcstp, sv;
    c000 = 1402.392;
    p = p / 9.80665;           /* convert pressure from decibars to KG / CM**2 */
    dct = (0.501109398873e1 - (0.550946843172e-1 - 0.22153596924e-3 * t) * t) * t;
    dcs = (0.132952290781e1 + 0.128955756844e-3 * s) * s;
    dcp = (0.156059257041e0 + (0.244998688441e-4 - 0.83392332513e-8 * p) * p) * p;
    dcstp = -0.127562783426e-1 * t * s + 0.635191613389e-2 * t * p + 0.265484716608e-7 * t * t *
p * p - 0.159349479045e-5 * t * p * p + 0.522116437235e-9 * t * p * p * p - 0.438031096213e-6 * t *
t * p - 0.161674495909e-8 * s * s * p * p + 0.968403156410e-4 * t * t * s + 0.485639620015e-5 *
t * s * s * p - 0.340597039004e-3 * t * s * p;
    sv = c000 + dct + dcs + dcp + dcstp;
    return sv;
}


// sound velocity Wilson
double SndVelW(double s, double t, double p) /* wilson JASA, 1960, 32, 1357 */
// s = salinity, t = temperature deg C ITPS-68, p = pressure in decibars
{
    double pr, sd, a, v0, v1, sv;
    pr = 0.1019716 * (p + 10.1325);
    sd = s - 35.0;
    a = (((7.9851e-6 * t - 2.6045e-4) * t - 4.4532e-2) * t + 4.5721) * t + 1449.14;
    sv = (7.7711e-7 * t - 1.1244e-2) * t + 1.39799;
    v0 = (1.69202e-3 * sd + sv) * sd + a;
    a = ((4.5283e-8 * t + 7.4812e-6) * t - 1.8607e-4) * t + 0.16072;
    sv = (1.579e-9 * t + 3.158e-8) * t + 7.7016e-5;
    v1 = sv * sd + a;
    a = (1.8563e-9 * t - 2.5294e-7) * t + 1.0268e-5;
    sv = -1.2943e-7 * sd + a;
    a = -1.9646e-10 * t + 3.5216e-9;
    sv = (((-3.3603e-12 * pr + a) * pr + sv) * pr + v1) * pr + v0;
    return sv;
}

```

$$\text{average sound velocity} = \frac{\sum_{\Delta p, p=\min}^{p=p} d_i}{\sum_{\Delta p, p=\min}^{p=p} d_i / v_i} \text{ [m/s]}$$

Average sound velocity is the harmonic mean (average) from the surface to the current CTD depth, and is calculated on the downcast only. The first window begins when pressure is greater than a minimum specified pressure **and** salinity is greater than a minimum specified salinity. Depth is calculated from pressure based on user-input latitude on the Miscellaneous tab in Configure Inputs (regardless of whether latitude data from a NMEA navigation device is in the data file).

- In Seasave and in SBE Data Processing's Data Conversion module, the algorithm also requires user input of a pressure window size and time window size. It then calculates:
 $d_i = \text{depth at end of window} - \text{depth at start of window}$ [meters]
 $v_i = (\text{sound velocity at start of window} + \text{sound velocity at end of window}) / 2$ [m/sec]
- In SBE Data Processing's Derive module, the algorithm is based on the assumption that the data has been bin averaged already. Average sound velocity is computed scan-by-scan:
 $d_i = \text{depth of current scan} - \text{depth of previous scan}$ [meters]
 $v_i = \text{sound velocity of this scan (bin)}$ [m/sec]

(Notes:

1. Enter the latitude on the Miscellaneous tab in Configure Inputs. Seasave uses the user-input latitude, regardless of whether latitude data [from a NMEA navigation device] is available, to calculate gravity for the depth algorithm.
2. Also enter the minimum pressure, minimum salinity, pressure window size, and time window size on the Miscellaneous tab in Configure Inputs.)

potential temperature [IPTS-68] = $\theta(s, t, p, p_r)$ [°C]

(Potential temperature is the temperature an element of seawater would have if raised adiabatically with no change in salinity to reference pressure p_r .
Sea-Bird software uses a reference pressure of 0 decibars).

Potential Temperature [IPTS-68] calculation:**C Computer Code -**

```

// ATG (used in potential temperature calculation)
double ATG(double s, double t, double p)      /* adiabatic temperature gradient deg C per decibar */
                                                 /* ref broyden,h. Deep-Sea Res.,20,401-408 */
// s = salinity, t = temperature deg C IPTS-68, p = pressure in decibars
{
    double ds;
    ds = s - 35.0;
    return((((-2.1687e-16 * t + 1.8676e-14) * t - 4.6206e-13) * p + ((2.7759e-12 * t - 1.1351e-
10) * ds + ((-5.4481e-14 * t + 8.733e-12) * t - 6.7795e-10) * t + 1.8741e-8)) * p + (-4.2393e-8 * t
+ 1.8932e-6) * ds + ((6.6228e-10 * t - 6.836e-8) * t + 8.5258e-6) * t + 3.5803e-5);
}
// potential temperature
double PoTemp(double s, double t0, double p0, double pr)      /* local potential temperature at pr */
                                                 /* using atg procedure for adiabatic lapse rate */
                                                 /* Fofonoff,N.,Deep-Sea Res.,24,489-491 */
// s = salinity, t0 = local temperature deg C IPTS-68, p0 = local pressure in decibars, pr =
reference pressure in decibars
{
    double p, t, h, xk, q, temp;
    p = p0;
    t = t0;
    h = pr - p;
    xk = h * ATG(s,t,p);
    t += 0.5 * xk;
    q = xk;
    p += 0.5 * h;
    xk = h * ATG(s,t,p);
    t += 0.29289322 * (xk-q);
    q = 0.58578644 * xk + 0.121320344 * q;
    xk = h * ATG(s,t,p);
    t += 1.707106781 * (xk-q);
    q = 3.414213562 * xk - 4.121320344 * q;
    p += 0.5 * h;
    xk = h * ATG(s,t,p);
    temp = t + (xk - 2.0 * q) / 6.0;
    return(temp);
}

```

potential temperature [ITS-90] = $\theta(s, t, p, p_r) / 1.00024$ [°C]**potential temperature anomaly =****potential temperature - a0 - a1 x salinity***or***potential temperature - a0 - a1 x Sigma-theta**

(Note: Enter a0 and a1, and select salinity or sigma-theta on the Miscellaneous tab in Configure Inputs.)

Note:

Reference: Baker, E.T., Feely, R.A., Mottl, M.J., Sansone, F. T., Wheat, C.G., Resing, J.A., Lupton, J.E., "Hydrothermal plumes along the East Pacific Rise, 8° 40' to 11° 50' N: Plume distribution and relationship to the apparent magmatic budget", *Earth and Planetary Science Letters* 128 (1994) 1-17.

plume anomaly =

potential temperature (s, t, p, Reference Pressure) – Theta-B

– Theta-Z / Salinity-Z * (salinity – Salinity-B)

(Note: Enter Theta-B, Salinity-B, Theta-Z / Salinity-Z, and Reference Pressure on the Miscellaneous tab in Configure Inputs.)

The plume anomaly equation is based on work in hydrothermal vent plumes. The algorithm used for identifying hydrothermal vent plumes uses potential temperature, gradient conditions in the region, vent salinity, and ambient seawater conditions adjacent to the vent. This function is specific to hydrothermal vent plumes, and more specifically, temperature and potential density anomalies. It is not a generic function for plume tracking (for example, not for wastewater plumes). One anomaly for one region and application does not necessarily apply to another type of anomaly in another region for a different application. The terms are specific to corrections for hydrothermal vent salinity and local hydrographic features near vents. They are likely not relevant to other applications in this exact form.

If looking at wastewater plumes, you need to derive your own anomaly function that is specific to what it is you are looking for and that is defined to differentiate between surrounding waters and the wastewater plume waters.

specific conductivity = (C * 10,000) / (1 + A * [T – 25]) [microS/cm]

(C = conductivity (S/m), T = temperature (° C),

A = thermal coefficient of conductivity for a natural salt solution [0.019 - 0.020]; Sea-Bird software uses 0.020.)

Note:

Oxygen [ml/l] for the SBE 63 Optical Dissolved Oxygen Sensor is calculated as described in its manual. Tau and hysteresis corrections are not applicable to the SBE 63.

Oxygen [ml/l] is calculated as described in *Application Note 64: SBE 43 Dissolved Oxygen Sensor* or *Application Note 13-1: SBE 13, 23, 30 Dissolved Oxygen Sensor Calibration & Deployment*

When you select oxygen as a derived variable, there are two correction options available:

- **Tau correction** – The Tau correction ($[\tau(T,P) * \delta V / \delta t]$ in the SBE 43 or $[\tau * \text{doc/dt}]$ in the SBE 13 or 23) improves response of the measured signal in regions of large oxygen gradients. However, this term also amplifies residual noise in the signal (especially in deep water), and in some situations this negative consequence overshadows the gains in signal responsiveness.
- If the Tau correction is enabled, oxygen computed by Seasave and SBE Data Processing's Data Conversion module are somewhat different from values computed by SBE Data Processing's Derive module. Both algorithms compute the derivative of the oxygen signal with respect to time (with a user-input window size for calculating the derivative), using a linear regression to determine the slope. Seasave and Data Conversion use a window looking backward in time, since they share common code and Seasave cannot use future values of oxygen while acquiring data in real time. Derive uses a centered window (equal number of points before and after the scan) to obtain a better estimate of the derivative. Use Seasave and Data Conversion to obtain a quick look at oxygen values; use Derive to obtain the most accurate values.

- **Hysteresis correction** (SBE 43 only, when using *Sea-Bird* equation) - Under extreme pressure, changes can occur in gas permeable Teflon membranes that affect their permeability characteristics. Some of these changes (plasticization and amorphous/crystallinity ratios) have long time constants and depend on the sensor's time-pressure history. These slow processes result in *hysteresis* in long, deep casts. The hysteresis correction algorithm (using H1, H2, and H3 coefficients entered for the SBE 43 in the .con or .xmlcon file) operates through the entire data profile and corrects the oxygen voltage values for changes in membrane permeability as pressure varies. At each measurement, the correction to the membrane permeability is calculated based on the current pressure and how long the sensor spent at previous pressures.

Hysteresis responses of membranes on individual SBE 43 sensors are very similar, and in most cases the default hysteresis parameters provide the accuracy specification of 2% of true value. For users requiring higher accuracy ($\pm 1 \mu\text{mol/kg}$), the parameters can be fine-tuned, if a complete profile (descent and ascent) made preferably to greater than 3000 meters is available. H1, the effect's amplitude, has a default of -0.033, but can range from -0.02 to -0.05 between sensors. H2, the effect's non-linear component, has a default of 5000, and is a second-order parameter that does not require tuning between sensors. H3, the effect's time constant, has a default of 1450 seconds, but can range from 1200 to 2000. Hysteresis can be eliminated by alternately adjusting H1 and H3 in the .con or .xmlcon file during analysis of the complete profile. Once established, these parameters should be stable, and can be used without adjustment on other casts with the same SBE 43.

(Note: Enable the tau correction and enter the window size (seconds), and enable the hysteresis correction on the Miscellaneous tab in Configure Inputs.)

$$\text{oxygen } [\mu\text{moles/kg}] = \frac{44660}{\text{Sigma-theta} + 1000} \quad \text{oxygen } [\text{ml/l}]$$

Oxygen saturation is the theoretical saturation limit of the water at the local temperature and salinity value, but with local pressure reset to zero (1 atmosphere). This calculation represents what the local parcel of water could have absorbed from the atmosphere when it was last at the surface ($p=0$) but at the same (T, S) value. Oxygen saturation can be calculated as Garcia and Gordon, or Weiss –

Notes:

- The oxygen saturation equation based on work from Garcia and Gordon (1992) reduces error in the Weiss (1970) parameterization at cold temperatures.
- As implemented in Sea-Bird software, the Garcia and Gordon equation is valid for $-5 < T < 50$ and $0 < S < 60$. Outside of those ranges, the software returns a value of -99 for Oxsol.
- As implemented in Sea-Bird software, the Weiss equation is valid for $-2 < T < 40$ and $0 < S < 42$. Outside of those ranges, the software returns a value of -99 for Oxsat.

Garcia & Gordon:

$$\text{Oxsol}(T, S) = \exp \{ A0 + A1(Ts) + A2(Ts)^2 + A3(Ts)^3 + A4(Ts)^4 + A5(Ts)^5 + S * [B0 + B1(Ts) + B2(Ts)^2 + B3(Ts)^3] + C0(S)^2 \}$$

where

- $\text{Oxsol}(T, S)$ = oxygen saturation value (ml/l)
- S = salinity (psu)
- T = water temperature (ITS-90, °C)
- $Ts = \ln [(298.15 - T) / (273.15 + T)]$
- $A0 = 2.00907$ $A1 = 3.22014$ $A2 = 4.0501$
 $A3 = 4.94457$ $A4 = -0.256847$ $A5 = 3.88767$
- $B0 = -0.00624523$ $B1 = -0.00737614$
 $B2 = -0.010341$ $B3 = -0.00817083$
- $C0 = -0.000000488682$

Weiss:

$$\text{Oxsat}(T, S) = \exp \{ [A1 + A2 * (100/T_a) + A3 * \ln(T_a/100) + A4 * (T_a/100)] + S * [B1 + B2 * (T_a/100) + B3 * (T_a/100)^2] \}$$

where

- $\text{Oxsat}(T, S)$ = oxygen saturation value (ml/l)
- S = salinity (psu)
- T = water temperature (IPTS-68, °C)
- T_a = absolute water temperature ($T + 273.15$)
- $A1 = -173.4292$ $A2 = 249.6339$ $A3 = 143.3483$ $A4 = -21.8492$
 $B1 = -0.033096$ $B2 = 0.014259$ $B3 = -0.00170$

Oxygen, percent saturation is the ratio of calculated oxygen to oxygen saturation, in percent:

$$(\text{Oxygen} / \text{Oxygen saturation}) * 100\%.$$

The Oxygen Saturation value used in this calculation is the value that was used in the Oxygen calculation –

- SBE 43 -if you selected the *Sea-Bird* equation in the .con or .xmlcon file, the software uses the Garcia and Gordon Oxsol in this ratio; if you selected the *Owens-Millard* equation in the .con or .xmlcon file, the software uses the Weiss Oxsat in this ratio.
- SBE 13, 23, or 30 – the software uses the Weiss Oxsat for this ratio.

Nitrogen saturation is the theoretical saturation limit of the water at the local temperature and salinity value, but with local pressure reset to zero (1 atmosphere). This calculation represents what the local parcel of water could have absorbed from the atmosphere when it was last at the surface ($p=0$) but at the same (T, S) value.

$$\text{N2sat}(T, S) = \exp \{ [A1 + A2 * (100/T_a) + A3 * \ln(T_a/100) + A4 * (T_a/100)] + S * [B1 + B2 * (T_a/100) + B3 * (T_a/100)^2] \}$$

where

- $\text{N2Sat}(T, S)$ = nitrogen saturation value (ml/l)
- S = salinity (psu)
- T = water temperature (°C)
- T_a = absolute water temperature (°C + 273.15)
- $A1 = -172.4965$ $A2 = 248.4262$ $A3 = 143.0738$ $A4 = -21.7120$
 $B1 = -0.049781$ $B2 = 0.025018$ $B3 = -0.0034861$

Note:

The nitrogen saturation equation is based on work from Weiss (1970).

Descent rate and acceleration are computed by calculating the derivative of the pressure signal with respect to time (with a user-input window size for calculating the derivative), using a linear regression to determine the slope. Values computed by Seasave and SBE Data Processing's Data Conversion module are somewhat different from values computed by SBE Data Processing's Derive module. Seasave and Data Conversion compute the derivative with a window looking backward in time, since they share common code and Seasave cannot use future values of pressure while acquiring data in real time. Derive uses a centered window (equal number of points before and after the scan) to obtain a better estimate of the derivative. Use Seasave and Data Conversion to obtain a quick look at descent rate and acceleration; use Derive to obtain the most accurate values.

(Note: Enter the window size (seconds) for calculation of descent rate and acceleration on the Miscellaneous tab in Configure Inputs.)

Note:

For complete description of ratio multiplier, see Application Note 11S (SBE 11*plus* Deck Unit) or 47 (SBE 33 or 36 Deck Unit).

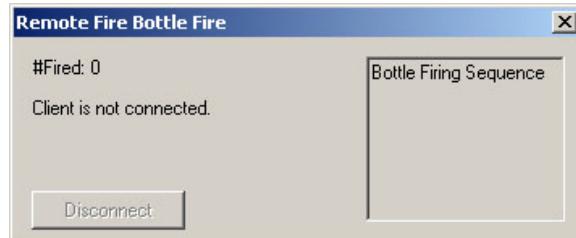
Corrected Irradiance [CPAR] =

$$100 * \text{ratio multiplier} * \text{underwater PAR} / \text{surface PAR} \quad [\%]$$

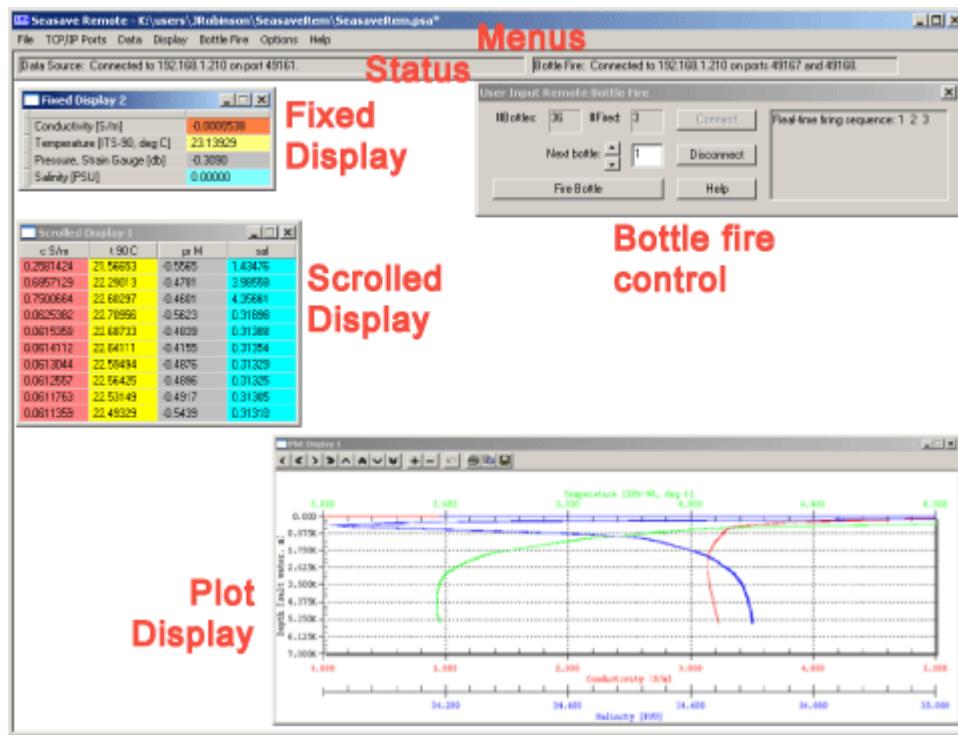
(Ratio multiplier = scaling factor used for comparing light fields of disparate intensity, input in .con or .xmlcon file entry for surface PAR sensor;
Underwater PAR = underwater PAR data;
Surface PAR = surface PAR data)

Appendix V: Seasave Remote for Remote Display and Bottle Firing

Notes:


- Seasave Remote can only display variables that are transmitted by Seasave; it **cannot calculate derived variables** based on the transmitted variables.
- As an alternative to Seasave Remote, Sea-Bird also provides sample Java applications that can be used as-is or can be modified by a Java programmer; however, **Seasave Remote is a more full-featured program**. For information on the Java applications, see *Appendix VI: Java Applications for Remote Display and Bottle Firing*.

Software on the remote computer is required to view data output via TCP/IP or to a shared file and to fire bottles remotely. Seasave Remote can perform those functions, and has many of the same display and plotting capabilities as Seasave. **Data transmitted via TCP/IP must be converted data in XML format; data transmitted to a shared file must be in XML format.**


Seasave Remote (**SeasaveRem.exe**) is installed when you install Seasave, to the same folder as Seasave (default location C:\Program Files\Sea-Bird\SeasaveV7).

Basic instructions are provided below for viewing data on a remote computer and firing bottles from a remote computer using Seasave Remote (see Seasave Remote's Help files for more details).

1. In **Seasave's Configure Outputs**, select one of the following methods for transmitting data to a remote computer:
 - On the TCP/IP Out tab, select **Output converted data to socket using TCP/IP** and select **XML format**. Click Select Variables, pick the desired variables for viewing remotely, and click OK. Click OK to exit the Configure Outputs dialog box. **OR**
 - On the Shared File Out tab, select **Output data to shared file** and select **XML format**. Click Select File; define the path and file name for the shared file, and click Save. Click Select Variables, pick the desired variables for viewing remotely, and click OK. Click OK to exit the Configure Outputs dialog box.
2. In **Seasave's Configure Inputs**, on the Water Sampler tab, set up the water sampler and select **Enable remote firing** (see *Water Sampler in Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control*).
3. In **Seasave's Real-Time Control menu**, select Fire Bottle Control. The Bottle Fire dialog box appears (you can leave this open throughout the cast).

4. On the **remote computer**, double click on SeasaveRem.exe. Seasave Remote has menus, a Status bar, and fixed, scrolled, and/or plot displays, as well as a bottle fire control window.

Note:

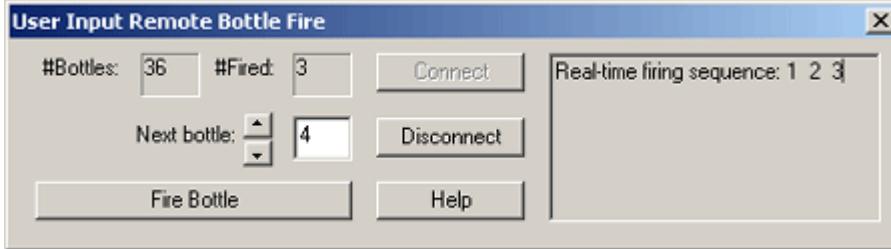
To get the **Server address**

(instructions are for Windows XP):

1. On the computer that is running Seasave, click Start -> Control Panel.
2. Double click Network Connections.
3. Double click Local Area Network Connection. Click the Support tab to see the computer's IP address; this is the address to enter as the **Server address** in the Seasave Remote Fixed Display window.

5. In **Seasave Remote**, click the **TCP/IP Ports** menu; the TCP/IP Ports dialog box appears. Define the **address** of the computer running Seasave, and the **ports** used for transmitting data (if transmitting data via TCP/IP) and for remote bottle firing commands and status; the ports must match the ports defined on Seasave's TCP/IP Ports tab in Configure Inputs or Configure Outputs.
6. In **Seasave Remote's Data menu**, select **Data Source**; the Data Source dialog box appears. Select the Data Source for the displays: TCP/IP or Shared File. If you select Shared File, browse to the path and file name for the shared file.
7. (for remote bottle firing) In **Seasave Remote's Bottle Fire** menu, select **Configure Bottle Firing**. The Configure Bottle Firing dialog box appears. Select the bottle fire sequence: Sequential, User Input, or Table Driven. Enter the number of bottles on your water sampler. If you selected Table Driven, click Bottle Positions for Table Driven to input the desired bottle firing order.
8. In **Seasave**, start real-time data acquisition.
9. In **Seasave Remote's Data menu**, click **Connect**. If you already have display windows set up in Seasave Remote, you should begin to see data; the Status bar should show that you are connected.
10. If desired, modify or add display windows in **Seasave Remote**, using the same methods as in Seasave.

11. In **Seasave Remote's** Bottle Fire menu, click **Bottle Fire Control**. In the Bottle Fire dialog box, click **Connect**. The Status bar should show that you are connected to the bottle fire client (“Connected to . . . on ports . . . and . . .”); you can now fire bottles from Seasave Remote.


Note:

When Seasave receives a bottle fired confirmation from a water sampler, its response to remote bottle firing is identical to bottle firing from within the software: it writes bottle fire data to a file or sets a bottle confirm bit in the data file, as applicable to the equipment used. See *Firing Bottles by Command from Seasave* above.

12. In **Seasave Remote's** Remote Bottle Fire window, click **Fire Bottle** when desired.

When Seasave receives a bottle fired confirmation from a water sampler, it increments the **#Fired** and shows the bottle number that was fired in the **Bottle Firing Sequence** box.

When Seasave Remote receives a bottle fired confirmation from Seasave, it increments the **#Fired**, and shows the bottle number that was fired in the **Sequence** box.

13. When you are done:
 - A. To end TCP/IP transmission of data or access to a shared file - In **Seasave Remote's Data menu**, click **Disconnect**.
 - B. To end transmission of bottle fire commands and responses - In **Seasave Remote's Bottle Fire** dialog, click **Disconnect**.
OR
In **Seasave's Remote Fire Bottle Fire** dialog, click **Disconnect**.
14. In **Seasave**, stop real-time data acquisition.

Appendix VI: Java Applications for Remote Display and Bottle Firing

Notes:

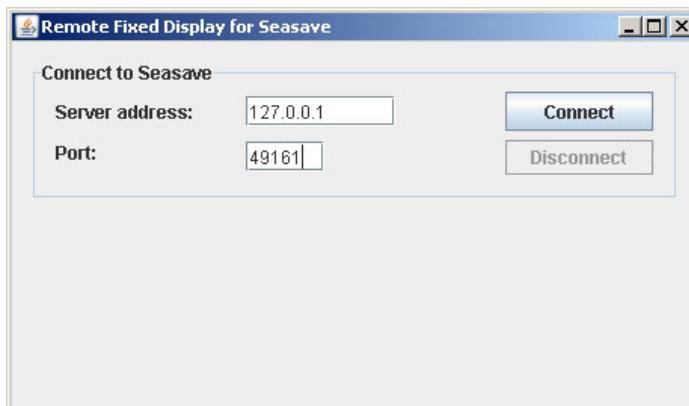
- FixedDisplay.jar can only display variables that are transmitted by Seasave; it **cannot calculate derived variables** based on the transmitted variables.
- As an alternative to the Java applications described in this appendix, Sea-Bird also provides Seasave Remote. **Seasave Remote is a more full-featured program**, with many of the same display and plotting capabilities as Seasave. It can be used to display data (transmitted via TCP/IP or to a shared file) on a remote computer and to fire bottles from a remote computer. See *Appendix V: Seasave Remote for Remote Display and Bottle Firing* or Seasave Remote's Help files.

Software on the remote computer is required to view data output via TCP/IP and to fire bottles remotely. FixedDisplay.jar and FireBottles.jar are sample Java applications:

- **FixedDisplay.jar** allows you to view a Fixed display on a remote computer, to display data transmitted via TCP/IP. To use it, you must select **Output converted data to socket using TCP/IP and XML format** on the TCP/IP Out tab in Configure Outputs.
- **FireBottles.jar** allows you to fire bottles from a remote computer.

FixedDisplay.jar and FireBottles.jar are installed when you install Seasave, to the same folder as Seasave (default location C:\Program Files\Sea-Bird\SeasaveV7).

You can use the provided sample applications or modify them as desired.


- To **run** the provided sample applications, you must have Java Runtime Environment (JRE) version 6u1 or later installed on the remote computer.
- To **modify** the provided sample applications, you must have Java SE Development Kit (JDK) version 6u1 or later with NetBeans version 5.5.1 or later installed on the remote computer.

Java is a product of Sun Microsystems. The versions cited above can be downloaded for free from <http://java.sun.com/javase/downloads/index.jsp>

Remote Display

To set up a remote display for **converted data in XML format** transmitted from Seasave via TCP/IP:

1. In Seasave's Configure Outputs, on the TCP/IP Out tab, select **Output converted data to socket using TCP/IP and select XML format**. Click Select Variables, pick the desired variables for viewing remotely, and click OK. Click OK to exit the Configure Outputs dialog box.
2. **On the remote computer**, double click on **FixedDisplay.jar**. The dialog box looks like this:

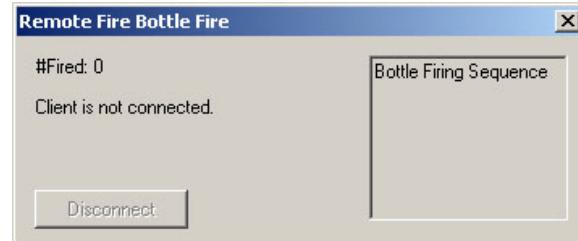
Note:

To get the **Server address** (instructions are for Windows XP):

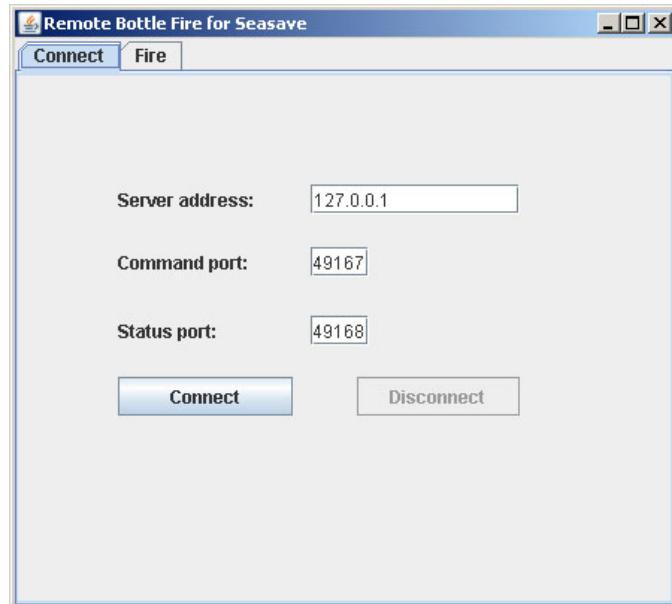
1. On the computer that is running Seasave, click Start -> Control Panel.
2. Double click Network Connections.
3. Double click Local Area Network Connection. Click the Support tab to see the computer's IP address; this is the address to enter as the **Server address** in the Seasave Remote Fixed Display window.

- A. Set **Server address** to the address of the computer running Seasave.
- B. Set **Port** to match the *Send converted data* port on the TCP/IP Ports tab in Configure Inputs or Configure Outputs in Seasave.

C. Click **Connect**. If the remote display is working properly, the labels for the variables that you selected on the TCP/IP Out tab in Configure Outputs should appear in the Remote Fixed Display (as shown in the example below).



3. In Seasave, start real-time data acquisition. You should see data appear on the remote computer display as well as on the displays in Seasave.
4. When you are done, click **Disconnect** on the remote computer.

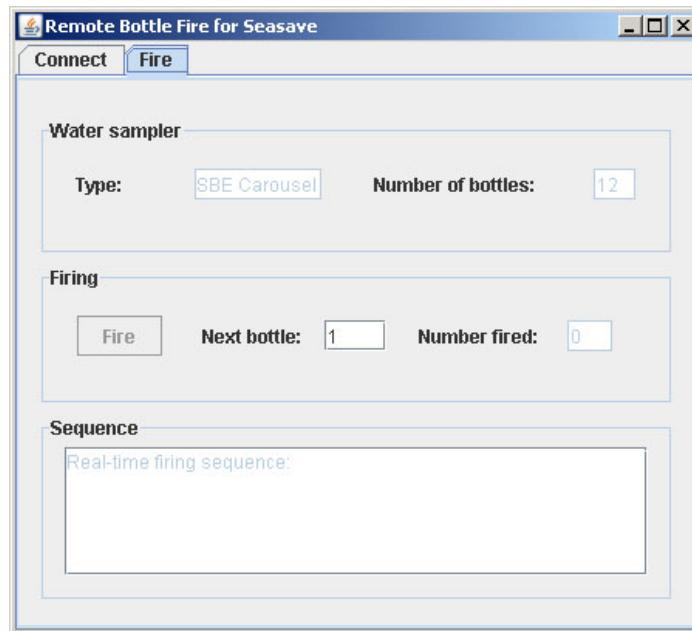

Firing Bottles via TCP/IP from a Remote Computer

To fire bottles via TCP/IP:

1. In Seasave's Configure Inputs, on the Water Sampler tab, set up the water sampler, and select *Enable remote firing* (see *Water Sampler* in *Section 5: Configure Inputs, Part III – Serial Ports, Water Sampler, TCP/IP Ports, Miscellaneous, and Pump Control*).
2. In Seasave's Real-Time Control menu, select Fire Bottle Control. The Bottle Fire dialog box appears (you can leave this open throughout the cast).

3. **On the remote computer**, double click on **FireBottles.jar**. The dialog box looks like this:

- A. On the Connect tab:
 - Set **Server address** to the address of the computer running Seasave.
 - Set **Command port** to match the **Receive commands** port and set **Status port** to match the **Send Status** port on the TCP/IP Ports tab in Configure Inputs or Configure Outputs in Seasave.
- B. On the Connect tab, click **Connect**. On the Remote Fire Bottle Fire dialog in Seasave (Step 2), it should now show "Connected to . . . on ports . . . and . . .".



Note:

To get the **Server address** (instructions are for Windows XP):

1. On the computer that is running Seasave, click Start -> Control Panel.
2. Double click Network Connections.
3. Double click Local Area Network Connection. Click the Support tab to see the computer's IP address; this is the address to enter as the **Server address** in the Remote Bottle Fire for SeasaveV7 window.

C. **On the remote computer**, click the Fire tab. The dialog box looks like this:

If the remote software is working properly, the water sampler type and number of bottles should match the settings on the Water Sampler tab in Configure Inputs in Seasave.

4. In Seasave, start real-time data acquisition.
5. **On the remote computer**, on the Fire tab, click Fire when desired. When Seasave receives a bottle fired confirmation from a water sampler, it increments the *#Fired* and shows the bottle number that was fired in the *Bottle Firing Sequence* box.
When the remote bottle fire software receives a bottle fired confirmation from Seasave, it increments the *Number fired*, and shows the bottle number that was fired in the *Sequence* box.
6. When you have fired all the bottles, click **Disconnect** on the Connect tab on the remote computer **or** click **Disconnect** on the Remote Fire Bottle Fire dialog in Seasave.

Note:

When Seasave receives a bottle fired confirmation from a water sampler, its response to remote bottle firing is identical to bottle firing from within Seasave: it writes bottle fire data to a file or sets a bottle confirm bit in the data file, as applicable to the equipment used. See *Firing Bottles* in *Section 8: Real-Time Data and Real-Time Control – Real-Time Data Acquisition*.

Appendix VII: Seasave .hex Output Data Format

Notes:

- Characters described in this appendix are all Hex characters.
- See the SBE 11plus manual for details on the data output format from the Deck Unit.

For most Sea-Bird instruments, Seasave saves data to the .hex data file in the following order, as applicable (each added parameter must be enabled in the .xmlcon or .con configuration file in Seasave):

1. Data from instrument
2. Surface Par (SPAR) voltage data – 4 characters
3. NMEA latitude/longitude data – 6 characters for latitude (omitting sign), 6 characters for longitude (omitting sign), 2 characters for status and sign (status indicating new position or same position, sign indicating north-south, east-west)
4. NMEA depth data – 6 characters
5. NMEA time data – 8 characters; seconds since January 1, 2000, written with the low byte first.
6. System time (*scan time added* in configuration file) – 8 characters; seconds since January 1, 1970, written with the low byte first.

The data order for the **SBE 9plus with SBE 11plus Deck Unit** varies from what is shown above. The 911plus output is in the following order (each added parameter must be enabled in the .xmlcon or .con configuration file in Seasave):

1. Data from instrument –
 - A. Each frequency - 6 characters
 - B. Each voltage - 3 characters
2. Surface Par (SPAR) voltage data – 2 characters of wasted space (meaningless characters) following by 4 characters of SPAR data
3. NMEA latitude/longitude data – 6 characters for latitude (omitting sign), 6 characters for longitude (omitting sign), 2 characters for status and sign (status indicating new position or same position, sign indicating north-south, east-west)
4. NMEA depth data – 6 characters
5. NMEA time data – 8 characters; seconds since January 1, 2000, written with the low byte first
6. More data from instrument –
 - A. Pressure temperature - 3 characters
 - B. Status (pump status, bottom contact status, and bottle fire information) - 1 character
 - C. Modulo byte – 2 characters
7. System time (*scan time added* in configuration file) – 8 characters; seconds since January 1, 1970, written with the low byte first.

Example – SBE 9plus CTD with 11plus Deck Unit, with 3 frequencies (temperature, conductivity, pressure), 0 voltages, NMEA latitude/longitude, NMEA time, and system time: 0D91BD0A7FFE8115EF0C5D2F71AD29C0A166740494C2A5C298444C

Breaking the data string into pieces:

1. 0D91BD0A7FFE8115EF = temperature, conductivity, and pressure frequencies
2. (not applicable)
3. 0C5D2F71AD29C0 = NMEA (latitude/longitude, status and new position)
4. (not applicable)
5. A1667404 = NMEA time with bytes reversed
6. 94C2A5 = pressure temperature, status, and modulo
7. C298444C = system time with bytes reversed

Looking at #5 and #7, and reversing the bytes:

5. NMEA time with bytes reversed A1667404 = 047466A1 (74737313 decimal seconds since January 1, 2000).
7. System time with bytes reversed C298444C = 4C4498C2 (1279563970 decimal seconds since January 1, 1970.)

Index

- - .bl file · 16
 - .bmp file · 16, 97, 98
 - .con file · 15, 17, 42, 103, 111, 118
 - SBE 16 · 22
 - SBE 16*plus* · 23
 - SBE 16*plus* V2 · 25
 - SBE 19 · 27
 - SBE 19*plus* · 29
 - SBE 19*plus* V2 · 31
 - SBE 21 · 33
 - SBE 25 · 35
 - SBE 45 · 40
 - SBE 49 · 41
 - SBE 911*plus* · 20
 - SBE 917*plus* · 20
 - .dat file · 16, 103, 111
 - .dsa file · 15
 - .hdr file · 16, 103, 111
 - .hex file · 16, 103, 111
 - .hex format · 142
 - .ini file · 15
 - .jpg file · 16, 97, 98
 - .mrk file · 16, 103
 - .nav file · 16, 103
 - .psa file · 15
 - .txt file · 16
 - .wmf file · 16, 97, 98
 - .xml file · 15, 16
 - .xmlcon file · 15, 17, 42, 103, 111, 118
 - SBE 16 · 22
 - SBE 16*plus* · 23
 - SBE 16*plus* V2 · 25
 - SBE 19 · 27
 - SBE 19*plus* · 29
 - SBE 19*plus* V2 · 31
 - SBE 21 · 33
 - SBE 25 · 35
 - SBE 25*plus* · 37
 - SBE 45 · 40
 - SBE 49 · 41
 - SBE 911*plus* · 20
 - SBE 917*plus* · 20

A

- A/D count sensors · 47
- Acceleration · 70, 134
- Adding display · 88
- Alarms · 82, 83, 84, 101
 - altimeter · 82, 83, 84, 101
 - bottom contact switch · 82, 83, 84, 101
 - computer · 84, 101
 - PC · 84, 101
 - pressure · 82, 83, 84, 101
 - SBE 11*plus* · 82
 - SBE 14 Remote Display · 83
 - visual · 101
- Algorithms · 124
- Altimeter · 48
- Altimeter alarm · 82, 83, 84, 101
- Archived data · 13, 111
- Auto fire · 66

Average sound velocity · 70, 129

B

- Bottle firing · 135, 138
- Bottles · 65, 107
- Bottom contact switch alarm · 82, 83, 84, 101
- Bugs · 123

C

- Calibration coefficients · 42
 - A/D count sensors · 47
 - altimeter · 48
 - bottles closed · 46
 - conductivity · 45
 - exporting · 43
 - fluorometer · 48
 - frequency sensors · 44
 - GTD · 61
 - importing · 43
 - methane · 53
 - OBS/nephelometer/Turbidity · 53
 - optode · 61
 - ORP · 54
 - oxygen · 55
 - PAR/irradiance · 56
 - pH · 56
 - pressure · 46, 47, 48
 - pressure/FGP · 56
 - RS-232 sensors · 60
 - SBE 38 · 60
 - SBE 50 · 60
 - SBE 63 · 60
 - sound velocity · 46
 - suspended sediment · 57
 - temperature · 44, 47
 - transmissometer · 57
 - user polynomial · 59
 - voltage sensors · 48
 - WET Labs C-Star · 60
 - WET Labs ECO · 60
 - WET Labs WETStar · 60
 - Zaps · 59
- Carousel · 65, 74, 107
- Closing bottles · 107
- COM ports · 62
- Command line operation · 115
- Communication parameters · 62, 74
- Compatibility issues · 123
- Computer alarm · 84, 101
- Conductivity · 45
 - specific · 131
- Configuration
 - calibration coefficients · 42, 43
 - calibration coefficients – A/D count sensors · 47
 - calibration coefficients - frequency sensors · 44
 - calibration coefficients – RS-232 sensors · 60
 - calibration coefficients - voltage sensors · 48
- file · 15, 17, 42, 103, 111, 118
- SBE 16 · 22
- SBE 16*plus* · 23
- SBE 16*plus* V2 · 25
- SBE 19 · 27
- SBE 19*plus* · 29

SBE 19plus V2 · 31
 SBE 21 · 33
 SBE 25 · 35
 SBE 25plus · 37
 SBE 45 · 40
 SBE 49 · 41
 SBE 911plus · 20
 SBE 917plus · 20
 Configure Inputs · 62
 Configure Outputs · 72
 Contour plot · 92
 Control positions · 110
 Corrected irradiance · 134
 C-Star · 60
 CTD · 74

D

Data acquisition · 14, 103
 Data format · 142
 Data processing · 113
 Demo files · 13
 Density · 125
 Depth · 70, 126
 seafloor · 126
 Derived parameter formulas · 124
 Descent rate · 70, 134
 Diagnostics · 87
 Dialog box positions · 110
 Display
 adding · 88
 editing · 89
 exporting · 89
 fixed · 90
 GPS · 100
 importing · 88
 Lat/Lon · 100
 NMEA · 100, 109
 plot · 92
 printing · 89
 remote · 135, 138
 remote · 102
 Remote · 78, 81
 resizing · 89
 scrolled · 91
 status · 100
 Dynamic meters · 125

E

ECO · 60, 65, 74, 107
 Editing data files · 113
 Editing display · 89
 Example files · 13
 Exporting calibration coefficients · 43
 Exporting display · 89

F

File extensions · 15
 File formats · 15
 Firing bottles · 107
 Fixed display · 90
 Fluorometer · 48
 Format
 .hex data · 142
 Formulas · 124
 Frequency sensors · 44

G

Geopotential anomaly · 125
 Getting started · 13
 GPS display · 100, 109
 Gravity · 70
 GTD · 61

H

Header form · 85

I

Importing calibration coefficients · 43
 Importing display · 88
 Input
 miscellaneous · 70
 pump control · 71
 serial ports · 62
 TCP/IP · 69
 water sampler · 65
 Installation · 8
 Instrument configuration · 17, 118
 Irradiance · 56, 134

J

Java application · 68, 80, 138

L

Lat/Lon display · 100, 109
 Latitude · 70

M

Manual bottle fire · 65, 66
 Mark scan · 77, 109
 Mark variables · 77, 109
 Menus · 11
 Methane · 53
 Miscellaneous · 70
 Mixed mode bottle fire · 66

N

Navigation display · 100, 109
 Nephelometer · 53
 Nitrogen saturation · 133
 NMEA display · 100, 109

O

OBS · 53
 Options · 115
 Optode · 61
 ORP · 54
 Output
 diagnostics · 87
 header · 85
 mark variables · 77
 SBE 11plus · 82
 SBE 14 Remote Display · 74, 83
 serial data · 73, 74
 shared file · 75
 TCP/IP · 78, 81
 Output data format · 142
 Overview · 9
 Oxidation reduction potential · 54

Oxygen · 55, 70, 132
 Oxygen saturation · 133
 Oxygen solubility · 133

P

PAR · 56, 134
 Parameter formulas · 124
 PC alarm · 84, 101
 pH · 56
 Playback archived data · 111
 Plot display · 92
 Plume anomaly · 70, 130, 131
 Port
 serial · 62, 74
 TCP/IP · 69, 78, 81
 Potential temperature · 130
 Potential temperature anomaly · 70, 130
 Pressure · 46, 47, 48, 56
 Pressure alarm · 82, 83, 84, 101
 Printing display · 89
 Problems · 123
 Processing data · 113
 Pump control · 71, 74, 110

R

Real-time data acquisition · 14, 103
 Remote bottle firing · 68, 135, 138
 Remote computer · 135, 138
 Remote display · 75, 78, 80, 81, 102, 135, 138
 SBE 14 · 74, 83
 Remote display and alarm
 SBE 14 · 83
 Resetting control positions · 110
 Resizing display · 89
 Rosette · 65, 74, 107
 RS-232 sensors · 60

S

Salinity · 127
 Saturation · 133
 SBE 11plus alarm · 20, 82
 SBE 14 Remote Display and alarm · 74, 83
 SBE 16 · 22
 SBE 16plus · 23
 SBE 16plus V2 · 25
 SBE 19 · 27
 SBE 19plus · 29
 SBE 19plus V2 · 31
 SBE 21 · 33
 SBE 25 · 35
 SBE 25plus · 37
 SBE 32 · 65, 74, 107
 SBE 38 · 60
 SBE 45 · 40
 SBE 49 · 41
 SBE 50 · 60
 SBE 55 · 65, 74, 107
 SBE 63 · 60
 SBE 911plus · 20
 pump control · 71, 74
 SBE 917plus · 20
 Scrolled display · 91
 Seafloor depth · 126
 Seasave Remote · 75, 80, 135
 Seasave-Win32 · 7
 Serial data output · 73, 74

Serial ports · 62, 74
 Shared file output · 75
 Sigma-1 · 125
 Sigma-2 · 125
 Sigma-4 · 125
 Sigma-t · 125
 Sigma-theta · 125
 Software
 problems · 123
 Solubility · 133
 Sound velocity · 46, 128
 average · 70, 129
 Specific conductivity · 131
 Specific volume · 125
 Specific volume anomaly · 125
 Status display · 100
 Summary · 6
 Surface PAR · 134
 Suspended sediment · 57

T

TCP/IP port · 69, 78, 81
 Temperature · 44, 47
 potential · 130
 Thermosteric anomaly · 125
 Timeout error · 106
 Toolbar · 11, 99
 Transmissometer · 57
 Troubleshooting · 87
 Troubleshooting real-time data acquisition · 106
 TS plot · 92
 Turbidity · 53

U

Updates · 8
 User polynomial coefficients · 59

V

Velocity · 70, 134
 Visual alarm · 101
 Voltage sensors · 48

W

Water sampler · 65, 74, 107
 WETStar · 60
 Window · 9
 adding · 88
 editing · 89
 exporting · 90, 91, 99
 fixed · 90
 GPS · 100, 109
 importing · 88
 Lat/Lon · 100, 109
 NMEA · 100, 109
 plot · 92
 remote · 102
 scrolled · 91
 status · 100
 Window remote · 78, 81

Z

Zaps · 59

