Skip to main content

Skip to navigation

Departments & Programs

More

Rock Deformation and Fluid Transport

GCTS

Our laboratory currently houses several mechanical and transport systems, dedicated to test natural rocks samples at in-situ conditions. We aim to identify the mechanisms that control bulk rock deformation and fluid flow, and how these processes relate to coarser-scale fault movement and fluid transport. Our scale of focus therefore varies from the crustal scale to the reservoir scale. Our current focus is mainly on unconventional reservoir rocks including shales.

The following people in the Stress and Crustal Mechanics Group regularly work in our lab: Arjun KohliFatemeh Rassouli, and Shaochuan Xu. The work in our mechanical and transport lab is supplemented by high-resolution image analysis performed at the Stanford Nanocharacterization Lab, but also at other locations. Often, our lab results support reservoir geomechanics interpretations made by others in the Stress & Crustal Mechanics group.

Contact

Antonio Trias
Laboratory Technician
atrias@stanford.edu 

Fatemeh Rassouli
frasouli@stanford.edu

Shaochuan Xu
scxu@stanford.edu

Equipment

GCTSGCTS RTR-1000 | Triaxial system capable of rock deformation experiments up to confining and pore pressures up to 140 MPa (20000 psi), with a maximum axial load of 1000 kN. The cell accepts samples with a diameter of up to 75 mm (3 inch) with a length of two times the diameter, and can hold different types of sensors including internal load cells, LVDT’s, and ultrasonic transducers. Currently, we are using the machine to test the creep behavior of unconventional rocks (SX).

 

NERNER Autolab 2000 | Recently upgraded, triaxial system capable of testing under confining pressures up to 200 MPa (29000 psi). Since we test mainly using gases as pore fluids, we use a separate Quizix pump to generate He, CO2, CH4, and N2 pore pressures up to 10 MPa (1500 psi). The NER cell accepts either one- or two-inch core samples and holds an internal load cell, LVDT’s, and an ultrasonic transducer. All experiments in this system run under room temperature. We use this system to investigate mechanisms of time-dependent deformation of shales (FR).

 

PermThermally-controlled permeability system | Set-up consisting of a Temco core holder, coupled to a Quizix pump and a manually operated confining pressure cylinder. All components are enclosed in a sealed polystyrene box, which is thermally controlled by two heaters and a powerful fan. We are capable of running experiments with the following maximum testing conditions: 41 MPa (6000 psi) confining pressure, 34 MPa (5000 psi) fluid pressure and a constant temperature of 40 °C. We use this system to conduct stress-dependent permeability measurements on gas shales (SX).

 

AdsorptionManometric adsorption system | Various pressure cells submerged in a temperature bath and coupled with an Argilent MicroGC. This system is used to determine the chemical composition of gas mixtures. 

 

 

 

Publications