Skip to main content Skip to secondary navigation
Lake in Jordan
Main content start

Jordan Water Project

Dead Sea - Jordan

In arid regions throughout the world, water system security is at a tipping point due to a confluence of drivers that include severely limited water supplies, rapid population growth and demographic shifts, climate change and variability, transboundary competition for shared freshwater resources, and institutional dysfunction. The overarching challenge is to sustain the human-natural system in the presence of rapid environmental and socioeconomic change. This interdisciplinary effort is aimed at developing a new approach to evaluate policies to enhance sustainability of freshwater resource systems. Our research is focused on Jordan, which is one of the ten water poorest countries in the world.

Jordan Landscape

Intellectual Merit

Past policy evaluation modeling efforts to identify effective interventions in stressed water systems have been limited. Notably, such models have largely ignored institutional complexity in management decision-making with results divorced from reality. Our work will adopt a multi-agent modeling framework to allow for the incorporation of institutional complexity in evaluation of policy instruments aimed at improving water security in Jordan. The model will employ a modular approach, integrating biophysical modules that simulate natural and engineered phenomena (e.g., groundwater-surface water flow, reservoir storage, network routing, salt balance, and crop yield) with human modules that represent behavior at multiple scales of decision making. The human modules in turn will adopt a multi-agent simulation approach, defining agents as autonomous decision makers at the government, administrative, organizational, and user levels. Our ultimate goal is to construct a suite of policy intervention scenarios that will form the basis for analysis of freshwater sustainability.

Canals in Jordan

Broader Impacts

Through application of the integrated multi-agent system modeling framework for policy analysis in Jordan, we will identify innovative policy solutions for a vulnerable water system that has exhausted traditional supply sources.  This approach and the merit of policy interventions will have ramifications for the Middle East and other water stressed areas throughout the world. We will produce a body of literature on water security in vulnerable regions.  Publications will span interdisciplinary interests and will evolve naturally from interactions of our research team through project task and integrated model development. Through its research, training, and networking, dissemination, outreach activities, the project will strengthen the human and institutional capacity of the water sector in Jordan. The scholarly work produced will advance fields ranging from water policy analysis to risk management to coupled natural and human systems modeling in a multi-agent analysis context.