Skip to main content

Skip to navigation

Departments & Programs

More

Life cycle assessment

Figure 1. System diagram showing mass and energy flows in CO2 mineralization process. Source: Kirchofer et al. (2012).

Life cycle assessment (LCA) is a method used to estimate the total environmental impacts from producing a good or service.  The full life cycle environmental impacts can be challenging to model, because modern production "pathways" can involve numerous interacting technologies, each of which can consume materials and energy that are themselves products of complex production processes.  Our group aims to build rigorous, transparent models to allow for complete accounting of environmental impacts from energy technologies.

Our work focuses primarily on transportation fuels production from conventional and unconventional sources.  A major result from these studies has been estimates of greenhouse gas (GHG) emissions from different transportation fuel pathways. Other recent work has been performed on LCA of carbon dioxide capture technologies.

LCA of conventional fuels production

Conventional liquid fuels production technologies have traditionally been modeled using simple pathway averages in full-fuel-cyle LCA models (such as the GREET and GHGenius models).  While these pathway average emissions estimates are acceptable for the original uses of these LCA models, they are increasingly seen as too coarse for modern LCA applications, such as regulations that aim to reduce full-fuel-cycle emissions from transportation fuel pathways (e.g., California LCFS and EU Fuel Quality Directive).  For this reason, we have built the Oil Production Greenhouse Gas Emissions Estimator (OPGEE), a tool to compute GHG emissions from conventional oil pathways.

See more about this research on the OPGEE page.

LCA of unconventional fuels production

Unconventional liquid fuel sources are increasingly important, given the challenges associated with increasing depletion of conventional oil resources.  These unconventional fuel sources include bitumen deposits of Alberta and Venezuela, oil shale deposits of the Green River formation in Utah and Colorado, as well as shale oil and shale gas resources across North America.  Our work involves building LCA models to understand the environmental impacts of shifting to use of these unconventional sources.

LCA of carbon dioxide capture and storage technologies

Recent work has examined carbon dioxide capture and storage (CCS) technologies to understand their full system energy efficiency and emissions.

Publications