Repeated Mine Blasts Recorded on a Dense Broadband Array, Ruby Mountains, Nevada

Caroline Scheevel ¹ (scheevec@carleton.edu), Mairi Litherland ², Simon Klemperer ² ¹ Carleton College, Northfield, MN ² Stanford University, Stanford, CA

Motivation

- Active seismic surveys across large areas are cost-prohibitive. If mine blasts can successfully be used for source energy, passive seismic studies in areas with regular active seismic sources can be complemented by interpretation of the energy recorded from these sources.
- The Ruby Mountains Core Complex (RMCC), located in the Basin and Range region in northeastern Nevada, is surrounded by three mining operations roughly in line with the Ruby Mountain Seismic Experiment recorders.
- We hope to create a first order velocity model from the stacked mine data, and compare it to results from more conventional methods.

Ruby Mountains Seismic Experiment

A 50-station broadband passive seismic array with dense station spacing of 5-10 km arranged in three crossing lines over the RMCC (Figure 1). The array was deployed from June 2010 through June 2012. RMSE ambient noise tomography indicates faster seismic velocities through the mountains and slower velocities in the adjacent basins (Figure 2).

Receiver function analysis also identified a clear Moho (Figure 3) using teleseismic events.

Results from our active mine blast survey will complement these techniques when we produce a full velocity model.

Preliminary Results

Data Preparation

We first selected arrivals at the two closest stations and categorized origin locations by the delta time and GPS coordinates provided by the mines.

The length delay signal requires a filter to help deconvolve the data. We applied a high pass Butterworth filter to the data, with a 1Hz cutoff. Data is sampled at 40 Hz.

Below we display the "best" single shot from Mine B, examining the signal shape prior to stacking. We are interested to see if signal-to-noise improves with stacking. Prior to stacking mean signal-to-noise is 22.5.

Stacked Traces

Mine blasts are "ripple-fired": a single blast fires many tens of shot-holes with planned delays of hundreds of milliseconds and does not produce a compact seismic source.

To mitigate the length delay we stack multiple blasts from similar locations (successive blasts on subsequent days are fired close by, but not at identical locations) that occurred on different days, with the hope that the onset of the blast will stack constructively between blasts, but that the later part of the source signatures will interfere destructively.

Below are the data from Mine B after stacking.

Discussion

- The shape of the arrivals, even when corrected for elevation, corresponds with that of the regional topography. Velocities decrease in topographic lows and increase in topographic highs, fitting the expectation of slower sediments in basins and faster crystalline rocks in the mountains.
- So far, stacking has not improved the shape of the data over the best individual trace. Stacked signal-to-noise is 11.5, compared to 22.5 prior to stacking.
- We find the best-fit P-wave velocity across the C-line to be 6.2 km/s, regardless of whether data is stacked or not. This velocity is consistent with other studies which found velocities of 6.1-6.2 km/s across the southern Rubies [2,4].
- Our best-fit S-wave velocity is 3.4 km/s, slightly slower than previous studies found [3]. We do not gain resolution on the S-wave arrival until after 100 km, where stations are primarily in basins.

Future Work

- Incorporate more data into the stacks in order to successfully increase P- and S-wave amplitudes.
- Increase resolution via stacking such that we can successfully identify the Moho reflection and other reflections.
- Create crustal velocity model utilizing P- and S-wave velocities determined from the stacks.

Acknowledgements

The Ruby Mountain Seismic Experiment was funded by the NSF as part of the Earthscope Flexiible Array, and by the Petroleum Research Fund of the American Chemical Society. My participation in this project was funded by the Carleton College Geology Department. Thanks to BDS PASSCAL for providing instrumentation and support. We thank the BLM, USFS, and all the people associated with their generosity allowing sitting of our instruments, as well as Mines 4, 8, and 9 for generously sharing their data. Special thanks to Shahar Banai for his help with coding and map making.

References


Acknowledgements

The Ruby Mountain Seismic Experiment was funded by the NSF as part of the Earthscope Flexibile Array, and by the Petroleum Research Fund of the American Chemical Society. My participation in this project was funded by the Carleton College Geology Department. Thanks to BDS PASSCAL for providing instrumentation and support. We thank the BLM, USFS, and all the people associated with their generosity allowing sitting of our instruments, as well as Mines 4, 8, and 9 for generously sharing their data. Special thanks to Shahar Banai for his help with coding and map making.

References