
 

 
 
 
 
QUANTITATIVE DATA INTEGRATION FOR FRACTURE CHARACTERIZATION  

USING STATISTICAL ROCK PHYSICS 
 
 
 
 
 
  

 

A DISSERTATION 

SUBMITTED TO THE DEPARTMENT OF GEOPHYSICS 

AND THE COMMITTEE ON GRADUATE STUDIES 

OF STANFORD UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 
 
 
 
 
 

Diana Sava 

August 2004 



ii 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Diana Sava 2004 
All Rights Reserved 

 

 

 

 

 

 

 

 

 



iii 

 
I certify that I have read this dissertation and that, in my opinion, it is fully adequate 

in scope of and quality as a dissertation for the degree of Doctor of Philosophy. 
 
 
 
 

Gary Mavko (Principal Adviser) 
 
 

I certify that I have read this dissertation and that, in my opinion, it is fully adequate 
in scope of and quality as a dissertation for the degree of Doctor of Philosophy. 

 
 

 
 

Biondo Biondi 
 
 

I certify that I have read this dissertation and that, in my opinion, it is fully adequate 
in scope of and quality as a dissertation for the degree of Doctor of Philosophy. 

 
 

 
 

                                                                 Tapan Mukerji 
 

Approved for the University Committee on Graduate Studies: 
 
 
 
 

 



iv 

 

 

Abstract 
 

The goal of this dissertation is to design a methodology for quantitative integration of 

geological information with seismic data using rock physics theories, formulated in the 

framework of an inverse problem. I illustrate this method with fracture characterization 

of hydrocarbon reservoirs.  

There are different types of information that can be used to study fractures, such as 

geologic, seismic, and well-log, and each one of them contributes in a different way to 

fracture characterization. Thus, by using these different sources of information, we can 

better constrain the predictions on the fracture parameters, such as fracture density and 

orientation. The various types of data from geology and seismic can be combined 

quantitatively if we translate them into the common language of probability theory.  This 

probabilistic approach allows us to integrate quantitatively the various types of 

information and to estimate the uncertainty in our predictions.   

A general way of expressing mathematically the prior geological knowledge about 

the fracture parameters is through a priori probability density functions (PDFs).  I present 

a method to estimate the prior PDF for fracture parameters from geological constraints, 

using the Maximum Entropy Principle.  At the same time, seismic data is affected by 

measurement errors. Therefore, I express the seismic information using PDFs, 

representing the measurement uncertainties. Furthermore, the theoretical relations 

between the fracture parameters and the seismic data, given by rock physics theories, are 

also uncertain. This uncertainty is due to approximations in the rock physics models and 

to natural variability of the rock properties. I present a method to estimate the uncertainty 
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in the theoretical relation between the fracture parameters and the seismic data, caused by 

the natural variability of the rock properties. This uncertainty can also be expressed 

mathematically using PDFs. The final result for the integration is represented by the a 

posteriori PDF for the fracture parameters. This posterior PDF represents an updated 

measure of uncertainty, obtained after combining quantitatively the prior geological 

information, the seismic measurements and the information from the rock physics 

theories. From the posterior PDFs I derive the expected values for the fracture 

parameters, and also probability maps, as a general way to express the uncertainty in the 

estimates. 

I demonstrate this methodology with a fractured carbonate reservoir in eastern Texas. 

The fracture orientation is determined from seismic data, based on rock physics theories. 

I use a bootstrap method to estimate the uncertainty in the fractures’ strike, due to seismic 

measurement errors. The fracture density is determined using rock physics theories, by 

integrating quantitatively the prior information, obtained from the geological 

interpretation of a fault at the top of the reservoir, with reflectivity attributes derived from 

a 3D seismic data set. I emphasize the uncertainty in the fracture density, and the relative 

impact of the prior geologic information in comparison with the seismic information on 

the final results for fracture density distribution. 

This methodology provides a framework for integrating diverse data into one 

consistent result for subsurface rock properties, with an estimate of uncertainty associated 

with it.  Therefore, this method facilitates an informed decision-making process for 

reservoir management, based on the uncertainty estimates. 
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Chapter 1  

Introduction  
 

1.1 Motivation and objectives 

 

Estimating subsurface properties in the geosciences is a challenging problem, always 

subject to uncertainty. The main contributing causes for this uncertainty are limited 

measurement resolution, insufficient measurements relative to the subsurface 

complexities, a limited understanding of the physical and geological phenomena, and 

natural variability of the target rock properties, among others.  Each geoscience discipline 

brings different information -often complementary, but sometimes contradictory- about 

the subsurface heterogeneities. Therefore, integrating different types of geological and 

geophysical information can better constrain our predictions of the subsurface rock 

properties. The challenge is to combine quantitatively these various types of information 

into one consistent result, together with an estimate of the uncertainty associated with it.  

The main objective of this thesis is to address this challenge by designing a 

methodology for quantitative integration of geological information with seismic data 

using rock physics theories (Mavko et al., 1998). The second objective is to apply this 

methodology to fracture characterization of hydrocarbon reservoirs. 

Fracture characterization is of great practical importance not only in hydrocarbon 

recovery, but also in mine and well stability, earthquake studies, CO2 sequestration, 
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nuclear waste isolation, etc.. In particular, fractures are of great importance for 

hydrocarbon exploration and production, because significant amounts of hydrocarbons 

are trapped in tight reservoirs. In such formations, natural fractures are the main factors 

controlling fluid flow. The key requirement for efficient management of such reservoirs 

is the ability to locate fractures and to describe their parameters, such as fracture density, 

orientation, and type of fluid saturating the fractures. 

Many types of information can be used to study fractures, and each one of them 

contributes in a different way to fracture characterization.  For example, geological 

outcrop studies give us direct observations of the fracture orientation, spatial density, and 

sometimes even their length. However, the challenge is to extrapolate this information at 

the reservoir depth.  Seismic data, on the other hand, provide a good coverage at depth, 

but the measurements are indirectly related to fractures, and their resolution is lower than 

the scale of the features we are interested in.  However, even though we cannot directly 

image the fractures from seismic measurements, we can use various seismic attributes, 

which give us information about fracture density, orientation, and sometimes the type of 

fluid saturating the fractures.  

In this thesis, I integrate these various types of geological and seismic information 

using rock physics theories, in the framework of an inverse problem, as defined by 

Tarantola (1982, 1987).  A typical inverse problem has three different elements: 1) the 

model parameters, represented by the subsurface rock properties that we are interested in, 

(e.g. fracture characteristics), 2) the data parameters (e.g. seismic measurements), and 3) 

the physical laws that relate the model parameters to the data parameters, which are given 

by rock physics theories. In addition to the seismic measurements, we often have prior 

information about the subsurface rock properties (model parameters) from geological 

interpretation.  These various types of geological and seismic information can be 

combined quantitatively if we translate them into the common language of probability 

theory.  

A general way of expressing mathematically the prior geological knowledge about 

the model parameters is through a priori probability density functions (PDFs).  The 

seismic data, which is affected by measurement errors, can also be described through 
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PDFs, representing the measurement uncertainties. Furthermore, the theoretical relations 

between the model parameters (fracture characteristics) and the data parameters (seismic 

attributes), given by rock physics theories, are also uncertain. This uncertainty is due to 

approximations in the rock physics models and to natural variability of the rock 

properties. We can also use PDFs to express mathematically the uncertainty in the 

physical correlations between the model and data parameters.  

The language of probability theory allows us to integrate quantitatively the various 

types of information and, at the same time, to estimate the uncertainty in our predictions. 

The solution to an inverse problem formulated in this framework is represented by the a 

posteriori PDF for the model parameters (fracture characteristics), obtained by 

combining quantitatively the prior geological information, the seismic measurements and 

the information from the rock physics theories.  From this PDF we can obtain the 

posterior expected values for fracture parameters, but we can also derive probability 

maps, as a general way of expressing the uncertainty in our estimations.  The language of 

probability also allows us to estimate the impact of each type of information in reducing 

the uncertainty in our predictions (Shannon, 1948; Takahashi et al., 1999). Therefore, this 

method can have a significant impact in risk and decision analysis. 

1.2 Thesis outline 

The structure of this dissertation follows closely the methodology introduced in the 

preceding section. The first part of the thesis focuses on the rock physics theories on 

fractures, which relate the model to data parameters, the second part focuses on the data 

parameters, represented by seismic attributes from a 3D seismic data set acquired over a 

fractured carbonate reservoir, and the last part presents the integration methodology, in 

the framework of an inverse problem. 

The key link between the fracture characteristics (model parameters) and the seismic 

measurements (data parameters) is given by rock-physics models. In Chapter 2 of the 

thesis, I review some of the existing rock-physics theories on fractures, such as Hudson’s 

(1980, 1981, 1997) and Schoenberg’s (1980, 1983, 1989) models.  The validity of these 

various theoretical models has hardly been tested experimentally.  Therefore, one 
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objective of this chapter is to explore the validity of these models and of the relations 

between them, to choose the most appropriate one for field fracture characterization. To 

achieve this goal, I compare the theoretical predictions of the various fracture models 

with laboratory measurements on simulated fractured media, performed by Hsu and 

Schoenberg (1993).  Another objective of this chapter is to calibrate the fracture density 

parameter, defined in Hudson’s model, based on the comparison between the theoretical 

predictions and the laboratory results.  I also analyze the collection of field data on shear-

wave anisotropy acquired in various places around the globe by different authors and 

summarized by Crampin (1994).  The goal of this analysis is to get prior constraints on 

the fracture parameters as a function of depth, assuming that the observed shear-wave 

anisotropy is caused by the alignment of fractures.  

Chapter 3 presents the results of the rock physics fracture modeling, based on well-

log data from a gas carbonate reservoir in eastern Texas. An important objective of this 

chapter is to determine which seismic attributes are optimal to differentiate the gas-filled 

fractured zones from the other heterogeneities in this reservoir. Another objective is to 

assess the uncertainty in the fracture characterization caused by the natural variability of 

the unfractured rock properties, through Monte Carlo simulations. The stochastic 

approach allows us to incorporate the natural geologic variability of rock properties into 

deterministic elastic models (Mavko and Mukerji, 1998; Mukerji et al., 2001). 

Chapter 4 focuses primarily on the data parameters, represented by the reflectivity 

attributes from a 3D seismic data set acquired over the fractured carbonate reservoir in 

eastern Texas.  In the geological hypothesis of a single set of aligned, vertical fractures, 

Amplitude Variation with Azimuth (AVAZ) at far offsets is a useful attribute to 

determine the fracture orientation and the relative intensity of fracturing, as previous field 

studies show (Mallick et al. , 1998; Teng, 1998; Perez et al., 1999; Shen et al., 2002) The 

main goal of this chapter is to determine the fracture orientations and the azimuthal 

anisotropy of the reflectivity at the top of the reservoir, together with a measure of 

uncertainty about these estimates, caused by the errors in the seismic reflectivity data.   

Finally, Chapter 5 presents the methodology for quantitative integration of geological 

information with seismic data using rock physics theories discussed in Chapters 2 and 3. 
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The main objective is to constrain the prior information about fracture density, derived 

from the geologic interpretation of a fault at the top of the reservoir, with reflectivity 

attributes derived from the 3D seismic data set presented in Chapter 4.  I also present a 

method for estimating prior uncertainties in the fracture density, using geological 

constraints.  I emphasize the relative impact of the prior geological information, in 

comparison with the seismic measurements and associated errors, on the posterior 

fracture density distribution.  

Chapter 6 summarizes the main findings and contributions of the thesis.  
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Chapter 2 

Fracture Models and Bounds on 

Crack Density: Comparison with 

Laboratory and Field Measurements 
 

2.1 Abstract 

 
Fracture characterization from seismic data requires elasticity theories that relate the 

mechanical properties of fractured rocks to the physical parameters of fractures, such as 

fracture density, fracture orientation, type of fluids filling the fractures, etc.  Hudson’s 

penny-shaped crack model is one of the theories that predict the elastic properties of a 

fractured medium, assuming distributions of penny-shaped cracks. This model is valid for 

crack densities up to 0.1. I address several questions in this chapter:  How far can we go 

beyond this limit before the rock loses its strength?  How prevalent is fracturing at crack 

density of 0.1?  Can we improve our physical understanding of this model parameter to 

better represent real fractures? 

In this chapter I review in detail some of the existing fracture models, such as the 

penny-shaped crack model and the linear-slip model. These two models are equivalent to 

the first order. However, I show that, if we use the relationship between these two models 
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beyond the limit of validity of penny-shaped crack model, we can obtain unphysical 

results.  

I also use the collection of field data by Crampin (1994) on shear-wave anisotropy to 

suggest practical bounds for crack density as a function of depth. This collection of data 

indicates that there is an upper bound on the shear-wave anisotropy, and implicitly on the 

crack density, that decreases with depth. For example, the upper bound on shear-wave 

anisotropy decreases from 14% at the surface to about 3% at 5 km depth. This 

observation can be used to constrain the crack density values as a function of depth. 

In this chapter I also compare published laboratory measurements on simulated 

fractured media with the predictions of various theoretical models. I find good agreement 

of these theoretical fracture models with the lab measurements. 

2.2 Introduction 

 
Fracture models provide a quantitative link between the elastic properties of the 

fractured rocks, determined from seismic data (observable parameters), and the physical 

characteristics of fractures (model parameters). There are two widely used fracture 

models, both corresponding to effective medium theory. The first one is represented by 

Hudson’s (1980, 1981) model, which approximates fractures as ellipsoidal cracks. The 

second one is the Schoenberg’s (1980, 1983, 1989) linear-slip model, which represents 

fractures as infinitely extended planes of weakness. These two models, while very 

different in their description of fractures, are elastically equivalent to first order 

(Schoenberg and Douma, 1988; Li Teng, 1998). Therefore, we can use the relation 

between them to exploit their specific advantages.  The linear-slip model, unlike to the 

penny-shaped crack model, does not contain porosity information. However, based on the 

equivalence between the two models, we can use the ratio between normal and tangential 

excess compliances due to fractures, as described in the linear-slip model, as an indicator 

of fluid content. I also show that if we use the relationship between these two models 

beyond the limit of validity of the Hudson’s model, we obtain unphysical results. 
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In this chapter I also review the more recently developed fracture model by Hudson 

(1997), which is a combination of the penny-shaped crack model and the linear-slip 

model. In this work, the fracture is modeled as a planar distribution of open penny-shaped 

cracks, between which the faces of the fracture are held in contact by the ambient 

pressure and friction. This model has the advantages of both the penny-shaped crack 

model and the linear-slip model, while also providing a better physical representation for 

the fractures. Hudson also considers the case of a planar distribution of approximately 

circular welded regions, between which the faces are separated as a fracture. These new 

models can be applied to heavily fractured media. 

There are many published papers regarding the theoretical effective medium models 

of fractures. However, little work has been done to test the validity of these various 

models and of the relationships among them. Hsu and Schoenberg (1993) perform 

physical measurements on a simulated fractured medium to test the assumption of the 

linear-slip model. I use their laboratory results to explore the validity of the relationship 

between the linear-slip model and the penny-shaped crack model with volumetric 

distributions of cracks (Hudson, 1981). I also compare the theoretical predictions of 

Hudson’s model (1997) with a planar distribution of cracks, with the results from the 

laboratory measurements. I find good agreement between the theoretical predictions and 

the actual measurements on the simulated fractured medium. This comparison suggests 

that a crack density of 0.1 as expressed by Hudson’s model represents a relatively high 

degree of fracturing at realistic reservoir pressures. 

The collection of the shear-wave anisotropy data from around the globe, reported by 

different authors and summarized by Crampin (1994), can help put valuable constraints 

on the fracture density distribution as a function of depth. This collection suggests the 

presence of an upper bound for the shear-wave anisotropy, and implicitly for the crack 

density. The upper-bound decreases with increasing depth, due to higher pressures 

encountered deeper in the Earth’s crust. 
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2.3 Fracture models 

In this section I present a review of Hudson’s penny-shaped crack models (1981, 

1997) and the Schoenberg’s linear-slip model (1980, 1983, 1989).  

 

2.3.1 Hudson’s penny-shaped crack model 

Hudson’s model (1980, 1981, 1990, 1994) is an effective medium theory that 

assumes an elastic solid with an internal distribution of thin, penny-shaped cracks (Figure 

2.1).  Hudson uses crack density (e) and the aspect ratio of the oblate sphereoidal cracks 

(α) to describe the structure of fracture systems. The aspect ratio is the ratio between the 

short and the long semi-axes of the penny-shaped crack. The crack density, or fracture 

density, is defined as follows: 

πα
φ

4
33 == a

V
Ne .                                                      (2.1) 

Here, a is the crack radius, N / V is the number of cracks per unit volume, φ is the crack-

induced porosity, and α is the aspect ratio of the cracks. The effective moduli are given 

as follows: 
210
ijijij

eff
ij CCCC ++=  ,                                                (2.2) 

where Cij
0 are the components of the isotropic background elastic stiffness tensor, and 

Cij
1,Cij

2  are the first and second order corrections, respectively, which depend on the 

crack orientation, density, aspect ratio, and the bulk and shear moduli of the material 

filling the cracks. The second-order corrections have the flaw that for increasing crack 

density the rock does not fall apart. On the contrary, the second order correction predicts 

that the elastic stiffness of the rock increases with increasing crack density for values of 

crack density larger than 0.1. Therefore, in the analysis presented in this chapter, I use 

only the first order corrections. In this case, the elastic stiffness of the rock decreases 

monotonically as the crack density increases, until the rock loses completely its strength.  
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Figure 2.1: Graphical representation of vertical fractures using the penny-shaped crack 

model with volumetric distribution of cracks (Hudson, 1981). 
 

Hudson’s theory is well developed for diverse crack distributions, including one or 

more sets of parallel fractures, a conical distribution of the crack normals, and a random 

distribution of fracture orientations.  The limitation is that it only works for crack 

densities smaller than 0.1 and for small aspect ratios, up to 0.3.  

For a single set of parallel fractures with the crack normals aligned along the x1-axis, 

the cracked medium shows a transversely isotropic elastic symmetry, and the first-order 

effective elastic stiffness matrix is given by 
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U11 and U33 depend on the crack conditions: 

 
( )

( ) M
U

++
+

=
1

1
433
216

11 µλ
µλ  ,                                                 (2.4) 
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( )
( ) k

U
++

+
=

1
1

3
24

33 µλ
µλ ,                                                    (2.5) 

with:  

( )
( )µλπαµ

µλµ
+

+
=

2'4M ,                                                         (2.6) 

 
[ ]( )

( )µλπαµ
µλµ

+
++

=
2)3/4( ''Kk .                                         (2.7) 

 

K’ and µ’ are the bulk and shear moduli of the inclusion material, λ and µ are the 

Lame constants of the unfractured rock, and α is the aspect ratio of the penny-shaped 

crack.  

2.3.2 Schoenberg’s linear-slip model 

Schoenberg’s linear-slip model (1983, 1988, 1989) is based on the Backus (1962) 

average. This model treats fractures, regardless of their shape and microstructure, as 

either infinitely thin and highly compliant layers, or planes of weakness with linear-slip 

boundary conditions (Figure 2.2). These two representations are equivalent in the long-

wavelength limit.  

 
 
 
 
 
 
 
 
 
Figure 2.2: Graphical representation of fractures using the linear-slip model with 

infinitely long planes of weaknesses. 
 
The exact Backus averaging procedure for parallel, thin layers embedded in an 

isotropic rock leads to the following simple form of the effective compliance matrix S: 
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S = So+Sf  ,                                                                                       (2.8) 

 
where So is the compliance matrix of the host rock and Sf is the excess compliance 

associated with the layers (Schoenberg, 1983). It may be proved, by means of reflectivity 

matrix method, that for vertical layers orthogonal to the x1 axis, Sf is given by: 
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whereν represents the fraction of the total volume occupied by the thin layers, while Sijf 

are the excess compliances of the fracture layers’ material. The above equation can also 

be used to describe a set of parallel fractures of infinite extent with the fracture normals 

parallel to the x1 axis. Therefore, the matrix of excess fracture compliance can be written 

as follows: 
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The jumps in the stress tensor and displacement vector “u” across the planes of 

weakness satisfy the boundary conditions of linear slip (Schoenberg, 1980, Molotkov and 

Bakulin, 1997, Bakulin et al., 2000): 
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Here, H is the average spacing between fractures, σ are the stresses, and u are the 

displacements. Square brackets indicate jumps across the interface. Based on the above 

relations, we can also interpret the physical meaning of the compliances KN, KV, KH, KNV, 

KNH, KVH. For example, KN is the normal fracture compliance relating the jump per unit 

length of the normal displacement u1 to the normal stress σ11. In the same way, KV and 

KH are the two shear compliances along the vertical (x3) and horizontal (x2) directions. 

The compliance KNV is the coupling factor between the jump of the normal displacement 

u1 and the shear stress σ13, or equivalently between u3 and σ11. Such a coupling may be 

caused by a slight roughness of the fracture surfaces, with peaks and troughs somewhat 

offset from one side to the other of the fracture (Schoenberg and Douma, 1988).  If KNV is 

nonzero, then the normal and shear slips with respect to the fracture plane (u1 and u3) are 

coupled. In this case the medium has a monoclinic symmetry.  

The simplest form of the matrix of excess fracture compliance is obtained if we 

assume no coupling between the slips along the coordinate directions. This type of 

fracture set is called rotationally invariant by Schoenberg and Sayers (1995) and satisfies 

the following relationships (Hsu and Schoenberg, 1993): 

THV

VHNHNV
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=== 0

.                                                  (2.12) 

As a result, the matrix of fracture excess compliance reduces to 
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We can also write the matrix of fracture stiffness as follows: 
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Here, EN and ET represent the non-negative, dimensionless fracture compliances, 

which express the ratios of the compliance in the fractures to the corresponding 

compliance in the fractured medium. These quantities are also called the specific 

compliances. 

Hsu and Schoenberg (1993) introduce two dimensionless quantities: 
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These quantities represent the normal and tangential weaknesses, and they vary from 

0 to 1. 

In the case of an HTI medium generated by planes of slip with their normals 

orthogonal to the x1-axis, the effective elastic stiffness matrix is as follows:  
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Although general HTI models are described by five independent parameters, the 

stiffness matrix from Equation 2.16 depends on just four quantities: λ, µ of the host rock, 

and the dimensionless fracture weaknesses, ∆N and ∆T. This medium is called TI (LSD), 
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where the initials TI correspond to transversely isotropic, while the initials LSD come 

from the “linear-slip deformation” assumption. Therefore, there is an additional 

constraint between the stiffness matrix components that can be written as follows 

(Schoenberg and Sayers, 1995): 

( )131144
2

133311 2 CCCCCC +=− .                                         (2.17) 
 

2.3.3 Relationship between the fracture models 

In the linear-slip model, the descriptors of the fracture system - the specific 

compliances, EN and ET, and the spacing - are quite different from the description based 

on penny-shaped cracks. However, Schoenberg and Douma (1988) and Teng (1998) 

show that, to the first order, Hudson’s model is equivalent to the linear-slip model, such 

that: 

eUN 33
2

µ
µλ +

=∆ ,                                                      (2.18) 

eUT 11=∆ .                                                                  (2.19) 
Here,  ∆N and ∆T are the normal and tangential weaknesses as described through the 

linear-slip model, and U11 , U33 , and e are used in Hudson’s model. These relationships 

are evident if we compare the stiffness matrices for an HTI medium from Equation 2.3 

and Equation 2.16. 

From Equations 2.18 and 2.19 we get these relations: 
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This means that, once we fix a value of fracture density, the normal and tangential 

weaknesses must satisfy the following relationship: 
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If we now introduce the relations for U11 and U33 from Equations 2.4 and 2.5 into 

Equation 2.20, we get new expressions for the weaknesses (Bakulin et al., 2000): 
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In the Equations 2.22 and 2.23, g is given as follows: 
2
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VP and VS represent the P- and S-wave velocities of the unfractured, isotropic 

background rock. 

2.3.3.1 Pitfall: Pushing the Hudson’s model beyond its limit of validity 

In this section I explore the consequences of the first-order equivalence between the 

linear-slip model and the penny-shaped crack model for dry cracks. 

Making K’= 0 and µ’ = 0 in Equations 2.22 and 2.23 we obtain the following 

relations between the fracture weaknesses and the crack density for dry cracks: 
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−
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                                                           (2.25) 

We observe that, for the dry cracks case, the description of the fractures using 

Hudson’s model is based only on the crack density, while the description of the fractures 

using the linear-slip model is based on two parameters, both the normal and the tangential 

weaknesses. Therefore, the first-order equivalence between the Hudson’s model and the 

linear-slip model implies that, for a certain crack density, the ratio between the normal 

and tangential weaknesses is fixed for dry cracks. In other words, the weaknesses ∆N and 



CHAPTER 2:  Fracture Models: Comparison with Experimental Data 17 

 

∆T are not independent. The normal weakness is related to the tangential weakness in the 

following way: 
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In Equation 2.26, ν  represents the Poisson’s ratio of the unfractured rock. Therefore, if 

the normal and tangential weaknesses do not respect the relation from Equation 2.26, 

then when we use the relations in Equation 2.25 to predict the equivalent fracture density, 

we obtain two different values for crack density evaluated using ∆N and ∆T, respectively.  

The fracture weaknesses must satisfy these conditions: 

10
10

<∆<
<∆<

T

N                                                             (2.27) 

where ∆ = 0 corresponds to an unfractured rock, and ∆ = 1 corresponds to a rock that has 

lost coherence, and is falling appart. 

Therefore, based on the relations from Equation 2.25, the crack density should satisfy 

these conditions: 
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                                                   (2.28) 

Figure 2.3 shows the variation of the upper limits for crack density as a function of 

the VP/VS ratio of the host rock. These limit values are calculated for ∆N = 1 (red curve) 

and for ∆T = 1 (blue curve) respectively.  
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Figure 2.3: Variation of the upper limit for crack density as a function of the VP/VS ratio 

of the host rock such that ∆N = 1 (red curve) and ∆T = 1 (blue curve). The cracks are 
considered dry.  

 
From Figure 2.3 we can see that when the normal and tangential weaknesses tend to 

1, we are beyond the validity of the Hudson’s model, and nonphysical behavior begins to 

appear. Firstly, the crack density exceeds the limit of 0.1 for all values of the VP/VS ratio 

of the unfractured host rock. Secondly, if we push its limits of validity, the Hudson model 

predicts for dry cracks that the rock will lose first its compressional strength, and then its 

shear strength, due to increasing fracture density.  This result seems unrealistic. There is 

no physical reason described in Hudson’s (1980, 1981) model why the rock should lose 

its compressional strength before its shear strength. 

We can also observe in Figure 2.3 that for dry cracks embedded into carbonate rocks 

(VP/VS =2), the crack density at which the rock loses it compressional strength is smaller 

than 0.15. Thus, a fracture density of 0.1 represents a relatively large degree of fracturing, 

especially for rocks with a high VP/VS ratio, such as carbonates. 

Figure 2.4 shows the maximum values for the normal and tangential weaknesses as a 

function of the VP/VS ratio of the host rock, computed using the relations in Equation 2.25 

for a crack density of 0.1. This crack density corresponds to the limit of validity for 

Hudson’s model. 
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Figure 2.4: Variation of the upper limits for the normal (blue) and tangential (red) 

weaknesses as a function of the VP/VS ratio of the host rock, calculated using Equation 
2.25 for a crack density equal to 0.l (the limit of validity for Hudson’s model). The 
cracks are considered dry.  

 

Figure 2.4 gives the maximum values for the normal and tangential weaknesses that 

can be safely mapped into crack density for dry fractures. However, to insure the same 

solution whether the crack density is evaluated from the normal or tangential weakness, 

the weaknesses should satisfy the relation from Equation 2.26. 

2.3.3.2 Fluid information in the linear-slip model 

The linear-slip model does not contain porosity information. Therefore, we cannot 

conduct fluid substitution when using this model. However, we can use the equivalence 

of the linear-slip model with the penny-shaped crack model to gain insights about fluid 

effects in the fractures. 

For example, the ratio between the normal and tangential excess compliances 

introduced by fractures (KN/KT) can be used as an indicator of fluid content (Schoenberg 

and Sayers, 1995). We begin with the Hudson’s model, specifying the elastic bulk 

modulus of the fluid of interest, and then we find the equivalent KN and KT that give the 

same elastic tensor. Figures 2.5 and 2.6 show this ratio (KN/KT) for dry cracks and fluid-
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filled cracks as a function of the VP/VS ratio of the host rock.  Different curves correspond 

to different values of fracture density, from 0.01 to 0.1.  For the fluid filled cracks, the 

aspect ratio is 0.001. For dry fractures, the results are independent of the aspect ratio, 

with the limitation given by the theory (α < 0.3) 

 
Figure 2.5: The ratio between normal and tangential compliances introduced by fractures 

as a function of the VP/VS ratio of the host rock. Different curves correspond to 
different values of fracture density. Fractures are considered dry. 

 

As we can see from Figure 2.5, the values of KN/KT ratio are larger than 1. This means 

that for dry fractures, KN is larger than KT. In other words, Hudson’s model predicts that 

the dry fractures are more compliant in compression than in shear. Also, the ratio 

increases with increasing fracture density.  

 

e 
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Figure 2.6: The ratio between normal and tangential compliances introduced by fractures 

as a function of VP/VS ratio of the host rock. Different curves correspond to different 
values of fracture density. Fractures are filled with a fluid whose bulk modulus is one 
order of magnitude lower than the shear modulus of the rock. 

 
For fluid-filled cracks with small aspect ratio (α<< 0.1), we get the following 

inequality: (K’+4/3µ’)/(µα) >> 1. Consequently, ∆N goes to 0. Then, for fluid-filled 

cracks we have the following relations: 
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Therefore, in contrast with the case for dry cracks, for fluid-filled fractures with small 

aspect ratios (0.001), the KN/KT ratio is much smaller than 1, and its values are very close 

to zero. In this case, Hudson’s model predicts that the fractures are more compliant in 

shear than in compression. This ratio decreases as we increase the fracture density in the 

Hudson model. 

Therefore, the ratio between the normal and tangential compliance introduced by 

fractures can be used as a fluid indicator for the linear-slip model. 

 

e 
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2.3.4 Hudson’s model for heavily fractured media 

More recently, Hudson et al. (1997) have published fracture models that are a 

conceptual combination of the previous penny-shaped crack model and the linear-slip 

model. In this new model, the fracture is an infinite plane with two rough surfaces in 

contact. The fraction of the interface that is open is represented as a planar distribution of 

approximately penny-shaped cracks, while elsewhere the faces of the fracture are held 

together by the ambient pressure and friction (Figure 2.7). The interactions between 

cracks on the fracture planes are taken into account, while the interactions between cracks 

from different planes are ignored. Hudson also considers the case of a plane distribution 

of approximately circular welded regions within an area where otherwise the faces are 

separated as for a fracture (Figure 2.9).  

 
 
 
 
 
 
 
 

 
Figure 2.7: Graphical representation of fractures using the penny-shaped crack model 

with planar distribution of cracks (Hudson, 1997).  
 
For the first case of a planar distribution of cracks on a fracture plane, the normal and 

tangential weaknesses are given by 
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with 
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         (2.32) 

The variable are as follows: 

νs is the number density of cracks on the fracture surface, 

a is the mean radius of the cracks, 

H is the average spacing between fractures, 

VP and VS are the P and S wave velocities of the unfractured rocks, 

U11 and U33 are given in equations 2.4 and 2.5 and depend on crack conditions. 

The overall crack density is as follows: 

H
ar

H
ae

s

π
ν

==
3

.                                                     (2.33) 

Here, r represents the proportion of the fault surface occupied by cracks:  
2ar sπν= .                                                       (2.34) 

We can see from Equation 2.32 that the fracture dimensionless compliances, EN and 

ET, depend on the number density of cracks in a nonlinear way. The dependence has a 

power law of 5/2.  

In this model, the relative area of cracking, r, can vary from 0 to 0.2 (0 < r <0.2) If 

we assume the relative area of cracking to be the maximum acceptable by the theory 

(0.2), we can compute the overall crack density depending on the ratio between the radius 

of the crack (a) and the spacing (H). Figure 2.8 presents the crack density as a function of 

the ratio of the average crack radius on the fracture plane to the fracture spacing, on a 

logarithmic scale. 
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Figure 2.8: Crack density as a function of the ratio between the average radius of the 

cracks on the fracture planes and the fracture spacing. The values are computed using 
Equation 2.34, where the relative area of cracking is assumed to be 0.2. The 
corresponding crack density for a ratio of crack radius and spacing equal to 1 is 
schematically represented in this figure. 

 
From Figure 2.8 we can see that for fracture spacing one order of magnitude higher 

than the mean radius of the crack, the overall crack density is very small. When the ratio 

between the radius of crack and the fracture spacing is 1, then the overall crack density is 

equal to 0.0637, for a relative area of cracking on the fracture planes equal to 0.2. In other 

words, when the height of the crack (two times its radius) is equal to the spacing between 

fractures, the overall crack density is 0.127. This fracture density estimated for a spacing 

equal to the crack height may be interpreted as the saturation level, as described by Bai 

(2000). 

For fracture spacing one order of magnitude smaller than the radius of the crack, the 

overall crack density may increase significantly.  

Hudson and Liu (1999) give an alternative approach to replace each fracture (or slip-

interface) by an equivalent thin layer of material whose properties are given by 
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Here K’ and µ’ are the bulk and shear moduli of the inclusion material, ∆ is the 

thickness of the equivalent layer for the fracture, a is the average radius of cracks, r is the 

relative area of cracking, and λ and µ are the Lame constants for the unfractured medium. 

The thickness of the layer is given by rd=∆ . Here, d is the mean aperture of the cracks. 

Therefore, the aspect ratio of the cracks α, is given by α = ∆/ar= d/a. 

For the second case, when the fracture is modeled as a planar distribution of welded 

regions (Figure 2.9) we have new expressions for EN and ET  (Hudson and Liu, 1999): 
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Here νw represents the number density of contacts, H is the average spacing of slip 

interfaces, and b is the average radius of the welded region. 

The proportion of the fracture face that consists of open cracks is given by  
21 br wπν−= .                                                      (2.38) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9: Graphical representation of the fractures modeled with a planar distribution of 

circular welded regions. 
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We can also represent the fracture as an equivalent thin layer of thickness ∆, whose 

elastic properties are given by Hudson and Liu (1999):  
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Here, K’ and µ’ are the bulk and shear moduli of the inclusion material, ∆ is the 

thickness of the equivalent layer for the fracture, b is the average radius of the welded 

region, and r is the proportion of the fracture face that consists of open cracks. 

The thickness is related to the relative area of cracking by rd=∆ , where d is the 

mean aperture of the cracks and r is the relative area of cracking. This model is valid for r 

between 0.8 and 1. When r  1, the two faces of the crack lose contact completely, and 

the fractured rock falls apart. 

To calculate the effective elastic stiffnesses of the medium with such parallel 

fractured zones, we can use the Backus (1964) average method where the background 

properties are K and µ, while the fracture planes properties are K’, and µ’, and the 

thickness is ∆.  

These models enable us to determine the elastic properties of heavily fractured 

structures, while they also give a more realistic physical representation of the fractures.  

In the next section, I explore the validity of these reviewed theoretical models of 

fractures with published laboratory measurements on simulated fractured media.  

2.4 Comparison of the models with laboratory measurements 

 
The technical literature abounds in papers on the theoretical models of fractures. 

However, there are very few papers on testing the validity of these various models, and of 

the relationships among them. Hsu and Schoenberg (1993) perform measurements on 
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simulated fractured media to test the assumption of the linear-slip model. They find a 

good agreement between the linear-slip theory and the laboratory measurements.  

In this section, I compare the results of their laboratory measurements with the 

theoretical predictions of the penny-shaped crack models of Hudson (1981, 1997). The 

main goal is to explore the validity of the relationship between the linear-slip model and 

the penny-shaped crack model.  

Hsu and Schoenberg (1993) measure the ultrasonic velocities on a block of lucite 

plates with roughened surfaces, pressed together with a static normal stress, to simulate a 

fractured medium. In their experiment, the 3rd axis is orthogonal to the fracture planes, 

such that the effective medium model is VTI (transversely isotropic with vertical axis of 

symmetry). 

The measurements, normal, parallel and oblique to the fractures, show that, for 

wavelengths much larger than the individual thickness of a plate, the block of lucite 

plates can be modeled as a particular type of TI medium that depends on four parameters: 

the two isotropic background moduli, and the normal and tangential fracture 

compliances. This TI medium behavior is the same as that of an isotropic solid in which 

are embedded a set of parallel linear-slip interfaces. In this assumption, the elastic 

stiffness matrix of the effective fractured medium can be derived based on only four 

measurements of P- and S-wave velocities, polarized parallel and perpendicular to the 

fracture planes. However, for the linear-slip assumption, there is an additional constraint 

that should be satisfied (Equation 2.17).  

First, Hsu and Schoenberg fit a TI model to the five different measurements 

performed at different pressure states, and obtain all five elements of the stiffness matrix 

(C11, C33, C44, C66, C13). Table 2.1 presents, in columns 2 to 6, the five TI moduli, 

normalized by the density of the bulk lucite, determined from the five ultrasonic 

measurements of velocities. The velocity measurements are performed at four different 

levels of normal stress, from 6 MPa to 24 MPa.  

Then, to verify the linear-slip assumption, they use the equivalent of Equation 2.17 

for a model with a vertical axis of symmetry to predict again the off-diagonal term of the 

stiffness matrix, C’13, but this time based only on the measured C11, C33 and C66. The 
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values of the C’13 term, normalized by density, are given in the 7th column of Table 2.1. 

The maximum difference between the C13 values determined from the P-wave velocities 

propagating oblique to the stack of lucite plates, and C’13 values calculated from the P- 

and S-wave velocities polarized parallel and perpendicular to the fracture planes 

assuming a linear-slip model, is only 3.8%. 

Table 2.1: Elastic moduli for the TI medium from ultrasonic velocity measurements. 
(Hsu and Schoenberg, 1993) 

Stress  
(MPa) 

C11/ρ  
(ΜPa m3/Kg) 

C33/ρ 
(ΜPa m3/Kg) 

C44/ρ 
(ΜPa m3/Kg) 

C66/ρ 
(ΜPa m3/Kg) 

C13/ρ 
(ΜPa m3/Kg) 

C13’/ρ 
(ΜPam3/Kg) 

6 6.656 4.494 1.513 1.858 2.209 2.224 
12 6.970 5.476 1.664 1.858 2.656 2.754 
18 7.076 5.954 1.742 1.860 2.868 2.982 
24 7.129 6.150 1.769 1.863 3.024 3.077 

 
Then, Hsu and Schoenberg derive the normal and tangential excess compliances 

introduced by fractures (EN and ET). As expected, these non-dimensional excess 

compliances due to fractures decrease with increasing static stress, implying that the 

asperities on either side of the plates get closer, increasing the contact area on the fracture 

surfaces. 

Table 2.2 summarizes the fit of the laboratory measurements to a linear-slip model, 

for all of the normal static stress states, as derived by Hsu and Schoenberg. VP and VS are 

the inverted velocities for the unfractured bulk lucite, while EN and ET are the inverted 

normal and tangential excess dimensionless compliances, as defined in Equation 2.13b. 

In Table 2.3, the VS of the unfractured lucite block and the tangential dimensionless 

compliance ET are uniquely determined from the measurements of S-wave velocities 

polarized parallel and orthogonal to the fracture planes. VP of the unfractured lucite block 

and the normal dimensionless compliance EN are determined from the measurements of 

the P-wave velocity propagating perpendicular to the fractures, the S-wave velocity 

polarized parallel to the fractures, and the quasi-P-wave velocity propagating oblique to 

the fractures. The other set of estimates, VP’ and EN’, are determined from the 

measurements of the P-wave velocities propagating perpendicular and parallel to the 

fractures, and the S-wave velocity polarized parallel to the fractures. The numbers in 
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parentheses are the ratios of the fit parameters to the actual velocities, measured 

independently on a reference lucite block. 

 

Table 2.2: Results for the linear slip model fitting for the P and S wave velocity of 
the bulk lucite and for the normal and tangential dimensionless compliances 
added by the fractures (Hsu and Schoenberg, 1993). The numbers in parentheses 
are the ratios of the fit parameters to the actual velocities measured independently 
on a reference lucite block.  

Stress 
(MPa) 

VS (m/s) 
(Bulk lucite) 

ET VP (m/s) 
(Bulk lucite) 

EN VP’ (m/s) 
(Bulk lucite) 

EN’ 

6 1363(0.996) 0.228 2703(0.992) 0.626 2.713(0.995) 0.637 
12 1363(0.996) 0.117 2686(0.986) 0.318 2.734(1.003) 0.365 
18 1364(0.997) 0.067 2679(0.983) 0.205 2.730(1.002) 0.252 
24 1365(0.998) 0.053 2707(0.994) 0.192 2.730(1.002) 0.212 

 

Using their experimental results, I first explore the theoretical relationship between 

the linear-slip model and the Hudson (1981) model with a volumetric distribution of 

penny-shaped cracks. Then, I also model the variation of the relative area of cracking on 

the surface of the fractures with increasing stress, using Hudson’s model (1997) with 

planar distributions of cracks. Finally, I compare the theoretical predictions of velocities 

parallel and perpendicular to fractures with the ultrasonic measurements on the simulated 

fractured medium. 

For calculating the equivalent crack densities from Hudson’s (1981) penny-shaped 

crack model with a volumetric distribution of cracks, at each pressure step I use the 

relations from Equations 2.22 and 2.23. I assume the bulk modulus of the air that fills the 

simulated fractures to be 1 bar.  The radius of the penny-shaped cracks is assumed to be 

1/10 of the wavelength, to ensure the assumption of an effective medium, while the 

maximum aperture of the crack is equal to the dimension of the asperities on the fault 

plane (10 µm). Therefore, the average aspect ratio of the penny-shaped cracks is 

estimated at 0.01, given by the ratio between the half aperture (the small semiaxis of the 

ellipsoidal crack), and the radius of the crack. 

Table 2.3 summarizes the results of the crack density calculations based on the 

normal and tangential excess compliances at each pressure step. The last column gives 

the average crack density. 
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Table 2.3: Crack density calculations based on the theoretical relationship between 
the linear-slip model and a volumetric distribution of penny-shaped cracks for an 
aspect ratio of 0.01.  

Stress (MPa) 6 12 18 24 
crack density (from EN) 0.0545 0.0342 0.0241 0.0228 
crack density (from ET) 0.0869 0.0490 0.0294 0.0236 
Average crack density 0.0707 0.0416 0.0267 0.0232 

 

As we can observe from Table 2.3, the crack density calculated from the tangential 

excess compliance is larger than the crack density evaluated from the normal excess 

compliance. However, the differences between the two predictions decrease significantly 

with increasing stress. At 24 MPa normal stress, this difference is only about 3%.  

If we allow for an additional degree of freedom through the aspect ratio of the cracks 

in Hudson’s model, we can reduce the difference between the crack density values 

evaluated from EN and ET , at 6 MPa normal stress. Table 2.4 presents the values of crack 

density evaluated from EN and ET for an aspect ratio of 0.0001. As Equation 2.23 

predicts, the tangential excess compliance does not change with aspect ratio for fluid-

filled cracks. Therefore, the crack density derived from ET does not change with aspect 

ratio, as we can see by comparing Tables 2.3 and 2.4.  However, the crack density 

evaluated from the normal excess compliance at 6 MPa is closer to that derived from the 

tangential excess compliance at the same stress state of 6 MPa. 

Table 2.4: Crack density calculations based on the theoretical relationship between 
the linear-slip model and a volumetric distribution of penny-shaped cracks, for an 
aspect ratio of 0.0001.  

Stress (MPa) 6 12 18 24 
crack density (from EN) 0.0674 0.0443 0.0324 0.0293 
crack density (from ET) 0.0869 0.0490 0.0294 0.0236 

average crack density 0.0771 0.467 0.309 0.0264 
 

Based on the average crack density from Table 2.4, I compute the normal excess 

compliances, again using the relationship between the linear-slip model and the Hudson’s 

penny-shaped crack model. Table 2.5 gives in the second column the Hudson’s 

predictions for the normal excess compliances. For comparison, I added in the third and 

fourth columns of the same table the inverted normal compliances by Hsu and 

Schoenberg, using their two different approaches, as explained previously. The fifth 
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column gives the average values of the two inverted excess normal compliances. The 

sixth column shows the absolute values of differences between the two different inverted 

normal excess compliances, while the seventh column gives the absolute differences 

between Hudson’s predictions and the average values for the inverted normal 

compliances. We observe that at 6 MPa static stress, Hudson’s model predicts larger 

normal excess compliance than the ones inverted by Hsu and Schoenberg. This difference 

is about 19.4%, as we can observe from Table 2.5, column 7. However, we can also see 

from Table 2.5 in column 6, that the largest discrepancy between the two different fits for 

normal excess compliance by Hsu and Schoenberg is 18.6%. Therefore, the difference 

between Hudson’s prediction and the average inverted normal excess compliance is of 

the same order of magnitude as the difference between the two inverted normal excess 

compliances by Hsu and Schoenberg. Therefore, based on this analysis, we can consider 

that either the linear slip model or the penny-shaped crack model can be used to describe 

equally well the effective properties of the fractured media. 

 

Table 2.5: Comparison between the normal compliances inverted by Hsu and 
Schoenberg (1993) and the normal compliance predicted by Hudson’s model 
with a volumetric distribution of cracks.  

Stress 
(MPa) 

Hudson
NE   

Hudson 
(1981) 

EN EN’ (EN+EN’)/2 
averageHsu

NE _  
average 

 
'

'

N

NN

E
EE −

 
Hudson
N

averageHsu
N

Hudson
N

E
EE _−  

6 0.7957 0.626 0.637 0.6315 0.0173 0.1939 

12 0.3663 0.318 0.365 0.3415 0.1288 0.0572 

18 0.2157 0.205 0.252 0.2285 0.1865 0.0690 

24 0.1788 0.192 0.212 0.2020 0.0943 0.1389 
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Figure 2.10: Normal (blue) and tangential (red) excess compliance obtained by Hsu and 

Schoenberg (solid lines) and predicted by Hudson’s model with a volumetric 
distribution of cracks (dashed lines), as a function of the average crack density from 
Table 2.4, evaluated using the relation between the Schoenberg’s (1983) linear-slip 
model and Hudson’s model (1981). 

 

Figure 2.10 presents the comparison between the inverted normal and tangential 

compliances derived by Hsu and Schoenberg, and the theoretical predictions using 

Hudson’s model with volumetric distribution of cracks. In this figure, the normal excess 

compliances fitted by Hsu and Schoenberg represent the average of the two different 

estimations from Table 2.5. The x-axis represents the average crack density from Table 

2.4. The aspect ratio of the cracks is assumed to be 0.0001. From Figure 2.10, we can 

observe a good agreement between the inverted and theoretically modeled tangential 

excess compliances (red curves). The differences between the average of the inverted 

normal excess compliances and Hudson’s predictions are relatively small for small crack 

densities. The largest difference is obtained for a crack density of approximately 0.08, 

estimated at 6 MPa static stress, as we can see in Table 2.5. 

One important observation is that all of the estimated crack density values are smaller 

than 0.1, the limit of validity for Hudson’s model (1981). From Table 2.3 and 2.4 we see 

that fracture density decreases as the normal stress increases, as expected. In the absence 

of the normal stress, the block of lucite plates would fall apart, due to fractures. However, 



CHAPTER 2:  Fracture Models: Comparison with Experimental Data 33 

 

as we increase the pressure, we get positive values for the elastic moduli of the 

corresponding TI medium, as we can see in Table 2.1. The highest estimated crack 

density value is 0.0869, obtained at 6 MPa using the tangential excess compliance. 

For most fractured reservoirs, the normal effective stress on the fracture planes is 

larger than 6 MPa. This suggests that a value of 0.1 for fracture density represents a high 

degree of fracturing in most practical situations. 

Even though the spacing between the slip-interfaces in the lucite block practically 

does not change as we increase the normal stress, the crack density decreases 

significantly. This happens because the excess compliances decrease with increasing 

stress, implying that asperities on either side of the plates get into closer contact, 

gradually increasing the contact area on the fracture surfaces. This suggests that the 

fracture index taken alone (defined as the ratio between the fracture spacing and the bed 

thickness) is not a complete description of the seismic degree of fracturing. We need to 

also take into account the degree of open space on the fracture plane. This parameter 

impacts significantly both the elastic and the transport properties of the fractured 

medium. 

Next, I compare the laboratory results of Hsu and Schoenberg with Hudson’s (1997) 

model with a planar distribution of cracks. In this model, the faces of the fracture are held 

together by the ambient pressure and friction. As we increase the confining stress, the 

area of contact on the fracture surfaces increases, while the crack density on the fracture 

surfaces decreases. I derive the equivalent crack densities using Hudson’s (1997) model 

with planar distributions of cracks, by numerically solving Equation 2.32. The aspect 

ratio of the cracks is considered to be 0.01, while the spacing of the fracture planes is 

7mm. 

Table 2.6 summarizes the calculations for crack density and the corresponding 

relative area of cracking on the fracture surfaces, as defined in Equation 2.34 for a planar 

distribution of cracks. All of these values are smaller than 0.1, which is the theoretical 

limit of validity for Hudson’s (1981) model with a volumetric distribution of cracks. 
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Table 2.6: Crack density and relative area of cracking, using Hudson’s (1997) model 
for planar distributions of cracks.  

Stress (MPa) 6 12 18 24 
crack density (from EN) 0.0760 0.0420 0.0290 0.0260 
crack density (from ET) 0.0880 0.0500 0.0300 0.0240 

Relative area of cracking (from EN) 0.3673 0.2030 0.1402 0.1257 
Relative area of cracking (from ET) 0.4253 0.2417 0.1450 0.1160 

 
From Table 2.6 we observe that the relative difference between the two predictions 

for crack density based on EN and ET is about 13% at 6 MPa, while at 18 MPa this 

difference decreases to only 3%.  

Also, the values of crack density for a planar distribution of cracks calculated from ET 

are very similar to the equivalent values calculated using Hudson’s model (1981) for a 

volumetric distribution of ellipsoidal cracks (Table 2.3). The relative differences between 

them are smaller than 2% for all of the stress states. This suggests that, to first order, it 

does not matter if the parallel cracks are distributed volumetrically, or if they are 

confined in parallel planes.  

As, expected, the crack density decreases as we increase the normal stress on the 

fracture planes, while the relative area of cracking on the fracture plane decreases.  

Figure 2.11 shows the variation of the relative area of cracking on the fracture 

surfaces with the increasing normal stress, calculated using Hudson’s model (1997) for 

planar distributions of ellipsoidal cracks. At 6 MPa normal stress, the relative area of 

cracking is approximately 0.43. This value is above the limit of validity of the model 

(0.2). Despite this, we can still see a relatively good agreement between the measured 

ultrasonic P-wave velocities orthogonal and parallel to fractures, and the corresponding 

P-wave velocities calculated using Hudson’s model (1997) with planar distributions of 

ellipsoidal cracks (Figure 2.12). 
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Figure 2.11:  Relative area of cracking on the fracture planes as a function of the normal 

stress, evaluated from tangential excess compliance ET, using Hudson’s model with 
planar distribution of cracks. 

 
Figure 2.12 presents a summary of the comparisons between the ultrasonic 

measurements of velocities on the simulated fractured medium with lucite plates (Hsu 

and Schoenberg, 1993), and the theoretical predictions of Hudson’s models with both 

volumetric (blue curves), and planar (red curves) distributions of cracks. The theoretical 

velocities for distributions of parallel penny-shaped cracks are determined using the mean 

values of fracture density derived from EN and ET. The aspect ratio of the cracks is 

considered to be 0.01. 

The P- and S-wave velocities polarized orthogonal to fractures increase with the 

normal stress, while the P- and S-wave velocities polarized parallel to fracture planes are 

less sensitive to stress, as expected.  

We observe good agreement between the laboratory measurements on the simulated 

fractured medium (Hsu and Schoenberg, 1993) and the theoretical predictions of the 

penny-shaped crack models of Hudson (1981, 1997), especially for the velocities 

polarized parallel to the fracture planes. The larger discrepancy occurs for the P-wave 

velocity orthogonal to fractures at 6 MPa, estimated by Hudson’s model with volumetric 

distribution of cracks. The theoretical prediction is 9% smaller than the actual 

measurement. However, as we increase the normal stress, the predictions improve 
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considerably. At 12 MPa normal stress, the error is 2%, while at 24 MPa it is only 0.4%. 

For normal stress larger than 6 MPa, both models of penny-shaped cracks give very good 

predictions for the P- and S-wave velocities orthogonal and parallel to fractures.  

 
Figure 2.12: Comparison between ultrasonic velocity measurements on simulated 

fractured medium (Hsu and Schoenberg, 1993) – black dots, and the theoretical 
predictions of Hudson’s models for volumetric distribution of cracks (Hudson, 1981) 
and planar distribution of cracks (Hudson, 1997). Aspect ratio of the cracks is 
considered 0.01. 

 

However, if we allow for an additional degree of freedom through the aspect ratio of 

the cracks we can improve the agreement between the P-wave velocity orthogonal to the 

fracture planes predicted by Hudson’s model and the data from Hsu and Schoenberg 

(Figure 2.13). For an aspect ratio of 0.0001, the theoretical prediction is only 3.8% 

smaller than the data measured at 6 MPa. 
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Figure 2.13: Comparison between ultrasonic velocity measurements on simulated 

fractured medium (Hsu and Schoenberg, 1993) – black dots, and the theoretical 
predictions of Hudson’s models for volumetric distribution of cracks (Hudson, 1981) 
and planar distribution of cracks (Hudson, 1997). Aspect ratio of the cracks is 0.0001. 

 

Another observation is the similarity of the results from Hudson’s (1981, 1997) two 

different models with volumetric and planar distributions of cracks.  This demonstrates 

that to the first order, it does not matter whether the cracks are distributed volumetrically 

or confined in planar surfaces.  

To summarize, from the comparison of the theory with measurements, I observe that 

a value of 0.1 for crack density represents a large degree of fracturing. The highest 

estimation for crack density is 0.0869, obtained from the tangential excess compliance at 

6 MPa. For most fractured reservoirs, the normal stress on the fracture planes is larger 

than 6 MPa. This suggests that, in most of the practical situations, we should expect 

values for crack density smaller than 0.1. In other words, the limit of validity for 
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Hudson’s model (1981) may represent a large degree of fracturing. Also, from this 

analysis, I conclude that either Hudson’s models (1981, 1997) or the Schoenberg’s (1980, 

1983, 1989) linear-slip model can be used to describe the effective elastic behavior of 

fractured media.  

2.5 Field data: Practical bounds on crack density 

 
In this section I present the collection of field data on shear-wave anisotropy reported 

by different authors and summarized by Crampin (1994). I use this data set to obtain 

insights into the distribution of shear-wave splitting, and implicitly crack density, as a 

function of depth. The results of the analysis presented in this section constitute valuable 

a priori information that can be used to constrain the crack density values for fracture 

modeling, depending on the depth of the reservoir. 

The data were acquired in various environments, from sedimentary basins to 

igneous/volcanic and metamorphic rocks, and at different depths, from near surface, to 

more than 30 km depth. The shear-wave data were collected either from earthquakes or 

from controlled sources, such as reflection surveys, VSP, reversed VSP, and cross-hole 

surveys.  

Table 2.7 presents this collection of the field data on azimuthal shear-wave anisotropy 

after Crampin (1994).  The first column gives the types of rocks, or the environment, the 

second column gives the method used for acquiring the data, the third column presents 

the place where the data were collected, the fourth column gives the corresponding depth 

for the recorded anisotropy, the fifth column presents the percentage of shear-wave 

splitting anisotropy, while the last column indicates the reference. 

 
Table 2.7: Observed percentage of azimuthal shear-wave velocity anisotropy from 

field data reported by different authors and collected by Crampin (1994). 
type of rock method place depth anis% reference 
volcanic rocks shear-wave splitting/ 

aftershocks 
Campi Flegrei, 
Italy 

<15km 1.4 1 

gabbro shear-wave 
splitting/earthquake 

Anza, CA, USA <17km 1.5 2 

above subduction zone shear-wave 
splitting/earthquake 

Wellington, New 
Zealand 

<60 2 3 
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mixed metam/sedim rocks shear-wave 
splitting/earthquake 

Los Angeles 
Basin, CA 

<15 2,2.5 4 

gabro shear-wave 
splitting/earthquake 

Anza, CA, USA <3.5 2.3+ - 1.7 5 

welded fractured tuff shear-wave 
splitting/earthquake 

Tazawako, Akita, 
Japan 

<0.5 3 6 

unspecified Vs information omitted Charlevoix Zone, 
Canada 

unspec 3 7 

crystalline rock shear-vave 
splitting/earthquake 

Mojave Desert, 
CA, USA 

<0.45 3.5 8 

metamorphic rocks shear-wave 
splitting/earthquake 

W. Deep Levels, 
S. Africa 

<5 <4 9 

granite shear-wave 
splitting/earthquake 

Manitoba, Canada 0.4-0.5 4 10 

granite and mixed geology shear-wave 
splitting/earthquake 

Kinki, Honshu, 
Japan 

<15 4 11 

volcanic rocks shear-wave 
splitting/earthquake 

Rift zone, Japan <10 4 12 

mixed metam/sedim rocks shear-wave 
splitting/earthquake 

Los Angeles 
Basin, CA 

<15 4.3 4 

volcanic caldera shear-wave 
splitting/earthquake 

Long Valley, CA <10 4.3 13 

mixed metam/sedim rocks shear-wave 
splitting/earthquake 

TDP Izmit, 
Turkey 

<12 4.5 14 

mixed metam/sedim rocks shear-wave 
splitting/earthquake 

Shikoku, Japan <10  4.5 15 

volcanic rocks shear-wave 
splitting/earthquake 

E Rift Zone, 
Hawaii 

<10 5 16 

volcanic/ sedimentary 
rocks/ geothermal area 

shear-wave 
splitting/earthquake 

Takinoue, 
Honshu, Japan 

<2 6 17 

volcanic caldera shear-wave 
splitting/earthquake 

Long Valley, CA <10 6.4 18 

volcanic caldera shear-wave 
splitting/earthquake 

Phlegraean Fields, 
Italyl 

<3.1 7 16 

metamorphic 
rocks/aftershocks 

shear-wave 
splitting/earthquake 

Nahami, NWT, 
Canada 

<20 7 19 

granite/geothermal area shear-wave 
splitting/earthquake 

Cornwall, England <2 8 20 

volcanic caldera/resurgent 
dome 

shear-wave 
splitting/earthquake 

Long Valley, CA <10 9.6 18 

principally lower crust shear-wave 
splitting/earthquake 

TDP Izmit, 
Turkey 

<30 10 21 

above subduction zone shear-wave 
splitting/earthquake 

Wellington, New 
Zealand 

<15 10 3 

granulite facies shear-wave 
splitting/earthquake 

Arunta Block, 
Australia 

<1 10 22 

volcanic caldera/fault zone shear-wave 
splitting/earthquake 

Long Valley, CA <10 15 23 

volcanic/sedimentary rocks 
/geothermal area 

shear-wave 
splitting/earthquake 

Takinoue, 
Honshu, Japan 

<2 18 17 

mixed sediments shear-wave 
splitting/VSP 

Devine, TX, USA <0.47 0.7-3.8 24 

unspecified sediments shear-wave 
splitting/RFL 

Pennsylvania, 
USA 

<6 1.4 25 

mixed sediments shear-wave 
splitting/RFL 

Dimmit, Zavala, 
Frio Counties, TX 

<2 1.5, 2,  2.5 26 

clay, sandstones, limestones shear-wave 
splitting/VSP 

Caucasus Basin, 
Russia 

<.9 1.4 27 
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shale, limestone shear-wave 
splitting/VSP 

Paris Basin, 
France 

1.1-2 1.6 28 

mixed sediments shear-wave 
splitting/RFL 

Silo Field, WY, 
USA 

<2.4 1.0-4.0 29 

unspecified sediments shear-wave 
splitting/RFL 

unspecified, USA <3 2 30 

mixed sediments shear-wave 
splitting/RFL 

Giddings Fld. TX, 
USA 

<2.6 2 31 

Palaeozoic sedim shear-wave 
splitting/EQ 

Enola, Arkansas, 
USA 

<6 2 32 

shale, limestone shear-wave 
splitting/VSP 

Paris Basin, 
France 

0.6-1.1 3 33 

shale, carbonates shear-wave 
splitting/VSP 

Romashkino, 
Russia 

<1 3.3-4 34 

mixed sediments shear-wave 
splitting/VSP 

Dilley, TX USA <3 3.5+-0.5 35 

unspecified sediments shear-wave 
splitting/VSP 

CBTF, OK, USA <.6 4 36 

unspecified sediments shear-wave 
splitting/VSP 

Lost Hills Field, 
CA 

<.64 7 37 

fractured chalk shear-wave 
splitting/VSP 

Silo Field, WY, 
USA 

2.5 >7 38 

fault zone shear-wave 
splitting/VSP 

Orroville, CA, 
USA 

0.3 7.2-7.6 39 

fault zone shear-wave 
splitting/VSP 

Parkfield, CA, 
USA 

<1.4 8 40 

unspecified sediments shear-wave 
splitting/VSP 

Railroad Gap 
Field, CA, USA 

<0.4 9 41 

fractured sandstone shear-wave 
splitting/VSP 

S. Casper Creek, 
WY, USA 

0.8-0.85 10 42 

clay, limestones shear-wave 
splitting/RVSP 

CBTF, OK, USA <0.04 10.5 43 

clay, limestones shear-wave 
splitting/CHS 

CBTF, OK, USA <0.04 12 44 

unspecified sediments shear-wave 
splitting/VSP 

Cymric Field, CA, 
USA 

<0.47 14 41 

(1) Iannaccone & Deschamps (1989); (2) Peacock et al. (1988), (3) Gledhill 
(1991); (4) Du (1990); (5) Aster &Shearer (1991); (6) Kuwahara, Ito & Kiguchi 
(1991); (7) Buchbinder (1985); (8) Li, Leary & Aki (1990); (9) Graham, Crampin 
& Fernandez (1991); (10) Holmes, Crampin & Young (1993); (11) Kaneshima, 
Ando & Crampin (1987); (12) Kaneshima, Ito & Sugihara (1989);  (13) Savage, 
Peppin & Vetter (1990); (14) Booth et al. (1985), (15) Kaneshima & Ando 
(1989); (16) Savage, et al. (1989); (17) Kaneshima et al. (1988); (18) Shih & 
Meyer (1990); (19) Buchbinder (1990); (20) Roberts & Crampin (1986); (21) 
Graham & Crampin (1993); (22) Greenhalgh et al.. (1990); (23) Savage, Peppin 
& Vetter (1990); (24) Yardley & Crampin (1993); (25) Lynn & Thomsen (1990); 
(26) Li, Mueller & Crampin (1993); (27) Slater et al. (1993); (28) Bush & 
Crampin (1991);  (29) Martin & Davies (1987), (30) Lynn & Thomsen (1986); 
(31) Mueller (1991); (32) Booth et al. (1990); (33) Lefeuvre, Cliet & Nicoletis 
(1989); (34) Cliet et al. (1991); (35) Alford (1986); (36) Queen & Rizer (1990); 
(37) Winterstein & Meadows (1991a); (38) Lewis, Davis & Vuillermoz (1991); 
(39) Leary, Li & Aki (1987); (40) Daley & McEvilly (1990); (41) Winterstein & 
Meadows (1991b); (42) Shuck (1991); (43) Liu et al. (1993a); (44) Liu, Crampin 
& Queen (1991); 
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As shown in Table 2.7, shear-wave splitting in crustal rocks has been widely 

observed in controlled-source reflection surveys, as well as associated with earthquakes. 

There are cases when the shear-wave splitting may be attributed to phenomena other than 

cracks, such as rock foliation or crystal alignment, but typically the anisotropy appears to 

be the result of aligned fractures or microcracks and preferentially oriented pore space.  

 
Figure 2.14: Histogram for the shear-wave splitting data from Table 2.7. Data collected 

by Crampin (1994). 

 
Figure 2.15: Cumulative distribution function for the shear-wave splitting data from 

Table 2.7. Data collected by Crampin (1994). 

 
Figure 2.14 presents the histogram for the shear-wave splitting data from Table 2.7, 

while Figure 2.15 presents its corresponding cumulative distribution function. We can 
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observe from Figure 2.15 that more than 90% of the reported data corresponds to the 

shear-wave anisotropies of less than 10%. 

 
Figure 2.16: Q-Q plot for the logarithm of the shear-wave splitting data from Table 2.7. A 

linear trend close to the red line indicates a log-normal distribution for the data.  
 

We can also observe from Figure 2.14 that the world-wide shear-wave anisotropy 

data does not follow a Gaussian distribution. From the shape of the histogram from 

Figure 2.14, it appears that the distribution of the shear-wave splitting data is more likely 

log-normal or exponential. In Figure 2.16, I show a quantile-quantile plot that compares 

the logarithm of the S-wave anisotropy distribution from Figure 2.14 with a normal 

distribution. The trend in Figure 2.16 is close to linear. This suggests that the world-wide 

S-anisotropy data follows more or less a log-normal distribution.  Of course, there are 

departures from a log-normal distribution, as we can see in Figure 2.16. These departures 

are more significant especially for the large values of the shear-wave anisotropy. 

We can obtain more insights about the world-wide shear-wave anisotropy data if we 

plot it against the depth, as in Figure 2.17. Figure 2.18 is similar to Figure 2.17, zooming 

on the first 6 km in depth.   
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Figure 2.17: Shear-wave anisotropy data as a function of depth. Data collected by 

Crampin (1994). 

 
Figure 2.18: Shear-wave anisotropy data as a function of depth, for the first 6km. Data 

collected by Crampin (1994). The curve represents schematically the upper bound for 
the shear-wave data as a function of depth. 

 

The data in Figure 2.18 acquired around the globe by different authors, suggests that 

there is an upper bound for shear-wave anisotropy that decreases with depth. For example, 

this data set suggests that at 0.5 km depth we may expect shear-wave anisotropy values 

between 0 and 14%, while at 6 km depth we should expect shear-wave anisotropy values 
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between 0 and 3%. The upper bound on the shear-wave anisotropy decreases from 14% 

at the surface to about 3% at 5 km depth. 

Shear-wave splitting phenomena can sometimes be attributed to factors other than the 

presence of aligned cracks, such as rock foliation, crystal alignment, or structural effects. 

However, in most situations the azimuthal shear-wave anisotropy in the shallow crust 

appears to be the result of aligned fractures, or aligned microcracks.  

The interpretation of the shear-wave splitting as crack-induced anisotropy requires 

elasticity theories that relate the observable seismic parameters to fracture parameters. 

For example, we can use Hudson’s (1981, 1997) model to derive the corresponding crack 

densities that would generate the observed shear-wave anisotropy. In the weak anisotropy 

approximation, the relationship between the crack density of a fractured medium with 

aligned cracks, and the shear-wave splitting is given by (Bakulin, 2000): 

( )γ
8

233 ge −
= .                                                      (2.41) 

In the formula above, e is the crack density as defined in Hudson’s model, g is the 

square of the S to P-wave velocity ratio (VS/VP)2  of the unfractured background rock, and 

γ is the induced shear-wave anisotropy. 

 
Figure 2.19: Computed crack density from the shear-wave anisotropy data using 

Hudson’s penny-shaped crack model with volumetric distribution of cracks. I assume 
the VP/VS ratio of the host rock to be 1.7.  The curve represents schematically the 
upper bound for the crack density as a function of depth. 
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The computed values of the crack density using Equation 2.41 are presented in Figure 

2.19. The VP/VS ratio is assumed to be 1.7. 

As expected, the computed crack densities also exhibit an upper bound, which 

decreases with depth, as is shown schematically in Figure 2.19. For example at 0.5 km 

depth the computed crack density varies approximately between 0 and 0.12, while at 6 

km depth, the crack density varies in a narrower range, between 0 and 0.02. This may be 

explained by the effect of stress on cracks. Normally, increasing depth implies also 

increasing effective stress on the fracture planes. The stress is closing the cracks, 

therefore reducing the crack density.  Another observation is that more than 95% of the 

computed crack density values are smaller than 0.1, which is the limit of validity for the 

Hudson’s penny-shaped crack model. Therefore, this collection of field data also suggests 

that a crack density of 0.1 represents a relatively large degree of fracturing, which may be 

encountered especially at small depths, where the stresses are smaller. However, as the 

depth increases, the normal effective stress on the fracture planes increases as well, 

increasing the contact area on the fracture planes, and reducing the crack density. This 

collection of data suggests that in most practical situations we should expect crack 

density values smaller than 0.1. 

As I discuss in the previous sections, Hudson also models fractures as linear, planar 

arrangements of cracks (Hudson, 1997). However, he shows that, to first order, it does 

not matter if the cracks are volumetrically distributed in the rock mass, or if they are 

confined in parallel planes. Therefore, in the assumption of planar distribution of cracks, 

we can obtain the average relative area of cracking on the fracture planes from the crack 

density from Figure 2.19. I assume that the ratio between the average radius of the cracks 

and the distance between fracture planes is constant and equal to 1. The relative area of 

cracking, r, is given by: 

e
a
Hr π= .                                                      (2.42) 

Here, H is the distance between the fracture planes, a is the mean radius of the crack 

on the fracture plane, and e is the total crack density of the fractured rock mass computed 

from the shear-wave anisotropy data using Hudson’s model (1981).  
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Figure 2.20 presents the relative area of cracking on the fracture planes as a function 

of depth, in the assumption that the ratio of the spacing between fracture planes to the 

radius of the cracks is 1. We can see, as expected, that the relative area of cracking on the 

fracture planes decreases with increasing depth. This is because the effective stress on the 

fracture planes is larger at higher depth, pressing the faces of the fractures closer together, 

and increasing the area of contact between them. 

 
Figure 2.20: Computed relative area of cracking for planar distribution of cracks using 

Hudson’s (1997) penny-shaped crack model. I assume the VP/VS ratio of the host rock 
to be 1.7.  The curve represents schematically the upper bound for the relative area of 
cracking as a function of depth. 

 

Figure 2.21 presents a summary for the analysis of the shear-wave anisotropy data. I 

converted the depth into the effective overburden stress, using a gradient of 15 MPa per 

km. The first panel shows the shear-wave anisotropy data as a function of effective 

overburden stress, the second panel shows the crack density as a function of effective 

overburden stress, and the third panel shows the relative area of cracking as a function of 

the effective overburden stress. 
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Figure 2.21: From left to right: Shear-wave anisotropy, crack density and the relative area 

of cracking as a function of the effective overburden stress computed using 
Crampin’s collection (1994). Superimposed with red squares are the calculated values 
using Hsu and Schoenberg (1993) laboratory measurements.  The effective 
overburden stress is estimated assuming a gradient of 15 MPa per km. 

 
On the panels from Figure 2.21 are superimposed also the corresponding computed 

values from Hsu’s and Schoenberg’s measurements on simulated fractured media 

presented in the previous section. 

 
Figure 2.22: Computed S-wave velocity orthogonal to the fractures, using Hudson’s 

model and the crack density, evaluated from the shear-wave anisotropy data from 
Crampin’s collection.  
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Figure 2.22 presents the computed shear-wave velocity in the direction orthogonal to 

the fractures as a function of the overburden stress. The velocity is derived by using 

Hudson’s model and the crack density evaluated from the shear-wave anisotropy data 

from Crampin’s collection. I assume the same velocity for the unfractured background 

rock properties for all of the observed shear-wave anisotropy data. For the fractures, I 

assume an aspect ratio of 0.001. As expected, the computed shear-wave velocity 

increases with the estimated overburden effective stress. This happens because the cracks 

are closed gradually by the increasing stress as we go deeper in the Earth’s crust, which 

has a stiffening effect on the elastic moduli. The increase in velocity with increasing 

pressure due to the closing of the cracks is one of the fundamental rock physics 

observations in the laboratory (Nur, 1971). 

In conclusion, from the collection of the shear-wave anisotropy data acquired in 

various places around the globe, I observe a general trend of decreasing anisotropy with 

depth.  More precisely, at each depth, the shear-wave anisotropy may vary from 0 to an 

upper bound. The upper bound values decrease with depth. Using elasticity theories that 

relate shear-wave anisotropy with fracture characteristics, I compute the crack density 

and the relative area of cracking on the fracture planes, and display them as a function of 

depth, as well as the corresponding effective overburden stress. The analysis puts 

valuable constraints on the values of fracture parameters we should use in the modeling, 

depending on the depth of the reservoirs.  

Based on the collection of data by Crampin, I also observe that the shear-wave 

anisotropy values of all of the reported data taken together do not exhibit a Gaussian 

distribution, but rather a log-normal or exponential distribution. Therefore, the prior 

distribution for the crack density should also follow a log-normal or exponential 

distribution, as geological outcrop studies also suggest (Snow, 1968; Priest and Hudson, 

1976; Sen and Kazi, 1984; La Pointe and Hudson, 1985; Rouleau and Gale, 1985; 

Bouroz, 1990; Villaescusa and Brown, 1990, Narr and Suppee, 1991). This is also an 

important result that can be used in assigning prior distributions to crack density as a 

measure of uncertainty due to natural variability. 
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2.6 Conclusions 

 
Fracture models provide a quantitative link between the elastic properties of the 

cracked media and the physical parameters of fractures, such as fracture density. The 

literature abounds in papers on theoretical models of fractures. However, the validity of 

these various models has been rarely tested experimentally.  

In this chapter I review some of the existing fracture models, such as Hudson’s penny 

shaped crack model and the Schoenberg’s linear-slip model, and the theoretical relations 

between them. I also compare their theoretical predictions with published laboratory 

measurements on simulated fractured media.  

I show theoretically that if we push the validity limits for Hudson’s model, we can 

obtain unphysical results. For example, for dry cracks the rock loses first its 

compressional strength and then the shear strength, due to increasing fracturing. The 

values of crack density for which the rocks lose their compressional strength are higher 

than 0.1. The maximum value of crack density is 0.18, which corresponds to a rock with 

an unfractured VP/VS ratio of 1.4.  

The first-order equivalence between Hudson’s model and the linear-slip model 

implies that for a certain crack density, the ratio between the normal and tangential 

weaknesses is fixed for dry cracks. In other words, the weaknesses (∆N and ∆T ) are not 

independent. I also derive upper limits for the normal and tangential weaknesses as 

defined in the Schoenberg’s model, which correspond to a crack density limit of 0.1. 

These maximum values for normal and tangential weaknesses correspond to the upper 

limits for which we can get an equivalent crack density and obtain physically realistic 

description of elastic properties of a fractured medium using Hudson’s model.  

Hsu and Schoenberg (1993) perform ultrasonic velocity measurements on simulated 

fractured media. They use a block of lucite plates pressed together by a normal static 

stress to test the assumption of the linear-slip model. They find a good agreement 

between the linear-slip theory and the measurements. Their laboratory measurements 

show a decrease in the normal and tangential excess compliances with increasing normal 
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stress. This observation implies that the lucite plates get into closer contact, gradually 

increasing the contact area on the fracture surfaces.  

I use their laboratory results to explore the validity of the relation between the linear-

slip model and the penny-shaped crack models.  I find very good agreement between the 

theoretical predictions of velocities parallel and perpendicular to fractures, and the actual 

measurements on the simulated fractured medium. From this analysis, I conclude that 

either Hudson’s models (1981, 1997) or the Schoenberg’s (1980, 1983) linear-slip model 

can be used to describe the effective elastic behavior of the fractured medium.  

The theoretical predictions for fracture density, from penny-shaped crack models with 

both volumetric and planar distributions of cracks, decrease with increasing normal stress 

on the fracture planes, from 0.086 at 6 MPa to 0.022 at 24 MPa.  The spacing between the 

fracture planes in the lucite block, however, does not change as we increase the normal 

stress on the fracture planes. This suggests that the fracture index taken alone (defined as 

the ratio between the fracture spacing and the bed thickness) is not a complete description 

for the seismic degree of fracturing, at least for analysis of seismic signatures of fractures. 

The relative area of cracking on the fracture planes is a very important parameter, which 

impacts significantly both the elastic and transport properties of the fractured medium.  

The decrease in the crack density with normal stress indicates that the asperities on 

either side of the lucite plates get into closer contact, gradually decreasing the relative 

area of cracking on the fracture planes. From this point of view, Hudson’s model with a 

planar distribution of cracks gives a better physical representation of the fractured 

medium.  

However, the similarity between the velocity predictions from the two different 

penny-shaped crack models suggests that, to the first order, it does not matter whether the 

cracks are distributed volumetrically, or confined in planar surfaces. Seismic waves are 

not sensitive enough to distinguish between the two different types of crack distributions. 

From the comparison of the theory with Hsu’s and Schoenberg’s (1993) laboratory 

measurements, I also observe that the value of 0.1 for crack density represents a relatively 

large degree of fracturing. In the absence of normal stress, the block of lucite plates 

would fall apart. However, as we increase the pressure on the fracture planes, we get 
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positive values for the elastic moduli of the corresponding TI medium. The highest 

estimation for crack density based on the lab measurements is 0.0869, obtained at 6 MPa. 

For most fractured reservoirs, the normal stress on the fracture planes is larger than 6 

MPa. This suggests that, for reservoirs at depth, we should expect values for crack 

density smaller than 0.1.  

I derive the same conclusion from the analysis of the shear-wave anisotropy data 

reported by different authors and summarized by Crampin (1994).  The data were 

acquired in various environments, from sedimentary basins to igneous/volcanic and 

metamorphic rocks, and at different depths, from near the surface, to more than 30 km 

depth. The shear-wave data were collected either from earthquakes, or from controlled 

sources, such as reflection surveys, VSP, reversed VSP, and cross-hole surveys.  More 

than 95% of the computed crack-density values based on these S-wave anisotropy data 

are smaller than 0.1. The larger values of crack density (around 0.1) correspond to data 

acquired at shallower depths, where the stress is smaller. 

I also observe that the shear-wave anisotropy values of all reported data taken 

together exhibit not a Gaussian distribution, but rather a log-normal or exponential 

distribution. Therefore, the prior distribution for the crack density should also follow a 

log-normal or exponential distribution, as geological outcrop studies suggest (Snow, 

1968; Priest and Hudson, 1976; Sen and Kazi, 1984; La Pointe and Hudson, 1985; 

Rouleau and Gale, 1985; Bouroz, 1990; Villaescusa and Brown, 1990, Narr and Suppee, 

1991). This is also an important result that can be used in assigning prior distributions to 

crack density as a measure of uncertainty due to natural variability. 

This collection of data suggests also that there is an upper bound on the shear-wave 

anisotropy, and implicitly on the crack density, that decreases with depth. For example, 

the upper bound on the shear-wave anisotropy decreases from 14% at the surface to about 

3% at 5 km depth. This helps us put powerful constraints on the crack density values as a 

function of depth. For example, for a reservoir at 1 km depth the crack density values 

may vary between 0 and 0.09, while for a deeper reservoir around 5 km depth, the crack 

density values may vary within a narrower interval from 0 to 0.04.  
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The results of the analysis of the laboratory and field data are valuable a priori 

information that we can use to constrain the crack density in our fracture modeling. This 

can help us to estimate the feasibility of various seismic methods to detect fractures, 

depending on the depth of the reservoirs. 
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Chapter 3 

Rock Physics Analysis and Stochastic 

Fracture modeling of the James 

Limestone Reservoir  
 

3.1 Abstract 

 
The first part of this chapter presents the rock physics analysis, based on well logs, of 

the fractured James Limestone reservoir. The objective is to understand if it is possible to 

seismically differentiate the gas-filled fractured zones from the other heterogeneities in 

the reservoir. 

Using the information from the cross-dipole and FMI logs from one of the wells, I 

show that most of the fractures are associated with high velocity rocks, characterized by 

low porosity and a small amount of shale. This observation can be used to directly 

delineate fractured zones from seismic measurements. The association of fractures with 

high-velocity rocks also constrains the seismic properties of the background rocks that we 

use in our fracture modeling. 



CHAPTER 3:  Rock Physics Analysis and Fracture Modeling 54 

 

Based on the rock physics analysis, I consider that the reservoir may exhibit three 

main types of facies: 1) unfractured, clean limestones, 2) shaly limestones, and 3) 

fractured, clean limestones. The goal is to find the optimal combination of seismic 

attributes for distinguishing the gas-filled fractured zones from the shaly and unfractured 

limestones in the reservoir. 

The second part of the chapter presents the results of the stochastic simulations of 

various seismic attributes for different models of fractures in the James Limestone 

reservoir. The modeling suggests that for the James Limestone reservoir, the interface 

attributes, such as amplitude variation with offset (AVO), as well as with azimuth 

(AVAZ), may be more useful than travel-time techniques. The advantage of using 

interface attributes, defined at the boundary between two layers, is that they provide 

localized information at the target of interest, unlike the travel-time methods. Besides, for 

thin reservoirs, travel-time techniques are not very useful for fracture detection.  

Based on the modeling, I conclude that the fractures at this site do have a seismic 

signature, especially if they are saturated with gas. For example, the modeling predicts 

low PP reflectivity values for the gas-filled fractured zones. However, we also expect low 

amplitudes from the shaly rocks in the reservoir, which are less likely to get fractured. 

The AVO gradient can help resolve this ambiguity. Modeling shows that the shaliness 

moves the AVO gradient to smaller negative values as compared to the clean, unfractured 

limestones, while the gas-filled fractured zones move the AVO gradient to larger negative 

values as compared to the clean, unfractured limestones. 

In summary, rock physics fracture modeling and stochastic simulations for seismic 

attributes of the James Limestone reservoir provide a framework for delineating gas-

filled fractured zones from seismic data, and for estimating the uncertainty in fracture 

characterization due to natural variability. 

3.2 Introduction 

 
The James Limestone formation has been an exploration target on the onshore Gulf of 

Mexico since the discovery of the Fairway field in Texas basin in 1960 (Loucks et al, 
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1996). In the study area, the formation is a microcrystalline fractured limestone, with the 

unfractured matrix permeability between 0.001 and 0.1 mD (Marathon Oil Co., Internal 

Report). However, the presence of fractures can locally increase the permeability. 

Therefore, precise fracture localization can have a big impact on gas production. 

The rock physics analysis of the cross-dipole and FMI logs from one of the wells 

suggests that most of the fractures are associated with rocks which have the least amount 

of shale, characterized by high velocity and small porosity values. The same preferential 

association of the fractures with a particular type of facies was also observed for the San 

Andres carbonate reservoir (Sava et. al, 2001). The association of the fractures with the 

high-velocity rocks constrains the seismic properties of the background rocks that I use in 

the fracture modeling. 

The area of study is situated in a normal faulting regime. The maximum horizontal 

stress in the region is oriented E-W. In a normal faulting regime, the orientation of the 

faults is expected to be parallel to the maximum horizontal stress. A geological model 

based on the logs from horizontal wells suggests that the fractures are in part controlled 

by subseismic normal faults (Meeder, personal communication). These small faults can 

generate narrow damaged zones with high fracture density, due to increasing strain in the 

proximity of the faults (Nelson, 1985). Between these fracture swarms, the background 

fracture distribution may correspond to regularly spaced, vertical joints. This 

interpretation is supported by the FMI data from a nearby field. The fracture distribution 

interpreted from FMI log suggests the presence of a single set of vertical joints oriented 

approximately on the E-W direction. Therefore, for fracture modeling I consider the cases 

of both isotropic and anisotropic distributions of fractures. The isotropic distribution 

corresponds to the fracture swarms in the vicinity of faults, where the crack distribution is 

more chaotic, such as in brecciated zones. The anisotropic distribution corresponds to a 

single set of vertical joints that generates an azimuthally anisotropic elastic medium with 

HTI symmetry.  

For the interface properties, I consider the boundary between the cap rock (Bexar 

shale), and the underlying James Limestone reservoir, modeled with different 

distributions of fractures.  
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I use Monte Carlo simulations for both fracture properties as well as for the 

background rocks to assess the feasibility of the seismic methods to delineate and 

characterize the fractured zones. The stochastic approach helps to incorporate the natural 

variability of the rock properties into deterministic models (Mavko and Mukerji, 1998; 

Mukerji et al., 2001). In this chapter, I show how I estimate the uncertainty due natural 

variability of both the background rock properties and the fracture parameters using 

Monte Carlo simulations. 

3.3 Rock Physics Analysis 

 
In this section, I use the well-log data available from two wells in the region to 

understand how the reservoir heterogeneities, and especially fractures, influence the 

seismic properties (VP and VS). 

 
Figure 3.1: Well A: Well-log data over a depth interval corresponding to James 

Limestone reservoir. The depth is in feet. Gamma-Ray in first column is given in 
API, the VP and VS from the second and third columns respectively are in m/s, while 
the fourth column gives the number of fractures per foot interpreted from FMI data.  



CHAPTER 3:  Rock Physics Analysis and Fracture Modeling 57 

 

Figure 3.1 presents the well-log data from one of the key wells (Well A). The depth 

interval corresponds to the James Limestone reservoir. The first column gives the 

Gamma-Ray, the second and the third columns present the ultrasonic P- and S-wave 

velocities, while the fourth column shows the number of fractures per foot, interpreted 

from an FMI log. From Figure 3.1 we see a large variability in the gamma-ray, usually 

interpreted in terms of the volume of shale. This suggests that the reservoir is a 

heterogeneous limestone with intercalations of shaly rocks. As expected, the fractures 

occur primarily in the more brittle rocks, with lower content of shale, characterized by 

lower Gamma-Ray values. 

Figure 3.2 presents the porosity as a function of the Gamma-Ray for the James 

Limestone reservoir. The data are color-coded by the number of fractures per foot, 

interpreted from the FMI. We see a trend of increasing porosity with Gamma-Ray. This 

implies that the rocks with higher shale content exhibit also higher porosities.  The 

important observation is the association of the fractures with the reservoir rocks that have 

low Gamma-Ray and low porosity values. This implies that the fractures occur 

preferentially in the more brittle and tighter rocks inside the reservoir, as expected 

(Nelson, 1985). 
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Figure 3.2: Porosity as function of the Gamma-Ray for the James Lime reservoir. The 

data are color-coded by the number of fractures per foot, interpreted from FMI. (Well 
A). 

 
In the following sections I present the rock physics analysis, emphasizing the impact 

of shale content and fracture distribution on the seismic properties, such as the P- and S-

wave velocities, using the well-log data from two wells. 

3.3.1 VP-porosity relation 

 
A very common and useful plot in any rock physics analysis is the P-wave velocity 

vs. porosity scatter-plot, which gives information about the diagenetic processes that the 

rocks have experienced, as well as about the pore types (Anselmetti and Eberli, 1977). 
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Figure 3.3: VP-porosity scatter plot for James Lime reservoir. Data are color-coded by 

Gamma Ray (Well B). 
 

Figure 3.3 presents the VP vs. porosity scatter-plot for the James Limestone interval 

from one well (Well B). The data are color-coded by Gamma-Ray intensity (API). We 

observe the expected trend of decreasing velocities with increasing porosity. We can also 

see that the higher velocities correspond to cleaner limestones (smaller values of Gamma-

Ray), while the lower velocities correspond to rocks with higher shale content (larger 

values of Gamma-Ray). The porosity values for the shaly rocks are large, while those for 

the clean limestones are significantly smaller. This indicates that the cleaner limestones 

are tight, densely cemented rocks. Therefore, fracture permeability can have a big impact 

on the fluid flow in the areas of tight, clean limestones.  

From Figure 3.3 we observe a larger scatter in the VP-porosity domain for the shaly 

rocks than for the cleaner limestones. The scatter increases with porosity and shale 

content. 

GR 
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Figure 3.4: VP-porosity scatter plot for the James Limestone reservoir. Data are color-

coded by Gamma-Ray (Well A). 
 

Figure 3.4 shows again a VP vs. porosity scatter-plot, but for data from one of the key 

wells (Well A). We can observe the same expected trends of decreasing velocities with 

porosity, and decreasing velocities with Gamma-Ray, due to higher shale content. 

However, in this well there is more scatter in the velocities for the lowest porosities, in 

contrast with what we observed in the previous well (Figure 3.3). The P-wave velocities 

vary significantly, from approximately 5700 m/s to 4000 m/s, at about 5% porosity. We 

see from the color-coded Gamma-Ray that at these small porosities the shale content is 

relatively low. I also know from FMI data that fractures occur preferentially in the rocks 

with lower shale content. Therefore, I hypothesize that this large variation in the P-wave 

velocity at low porosities is the result of fractures. Fractures can greatly lower the 

velocities, without significantly increasing the porosities.  

If we compare the VP-porosity scatter plots for the two wells, we may interpret from 

the velocity variation, that Well A encountered more fractures than Well B. However, I 

can not verify this interpretation, since Well B does not have an FMI log. 

GR 
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3.3.1.1 Fracture distribution in the VP-porosity domain 

Figure 3.5 shows the same VP vs. porosity scatter-plot for the James Limestone 

reservoir from Well A, but the data are color-coded by the number of fractures per foot. 

The fractures are interpreted from FMI log. I interpolated the number of fractures per foot 

to match the sonic log depth sampling. We can see that most of the fractures are in the 

brittle rocks, characterized by higher velocities, smaller porosities and lower shale 

content. 

 
Figure 3.5: Fracture distribution in the James Limestone in the VP-porosity domain.  The 

data are color-coded by number of fractures per foot, determined through FMI in 
Well A.  

 
In Figure 3.5, I highlight a zone of highly varying VP at small porosity. This zone 

corresponds to intervals with a relatively larger number of fractures per foot, and it 

supports the hypothesis that the scatter in the velocities is due to fractures.  

 

3.3.2 VP -VS relation 

Another very important relation that we consider in any rock physics analysis is the 

one between the P-wave velocity and the S-wave velocity, since this is the key to 
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lithology, and also to fluid discrimination from seismic or sonic-log data. This relation is 

also very important for predicting VS in cases when we have only P-wave information. 

 
Figure 3.6: VP-VS scatter plot for James Lime reservoir. Superimposed is Castagna’s line 

for Limestones.  (Data from Well A).  
 
For the area of study, I use the VP-VS relation from Well A, the only one which has 

shear-wave information. Figure 3.6 presents the VP-VS scatter plot for the James 

Limestone reservoir. Data are for brine-saturated rocks. I also superimposed the least-

squares polynomial fit derived by Castagna et al. (1993) for limestones:  

 

0305.10168.105508.0 2 −+−= PPS VVV                                 (3.1) 
 

We can see that for this data set, the S-wave velocity is slightly lower than the one 

predicted by the Castagna’s empirical relation. In other words, the VP/VS ratio is a little 

higher for the James Limestone than is predicted by Castagna’s relation. Nevertheless, 

there is a very distinct correlation between VP and VS, as expected. 

GR 
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3.3.2.1 Fracture distribution in the VP-VS domain 

Figure 3.7 presents the same VP-VS scatter plot for an interval from the James 

Limestone reservoir. The data are color-coded by the number of fractures per foot.  

 
Figure 3.7: Fracture distribution in the James Limestone in the VP-VS domain. The data 

are color-coded by number of fractures per foot, determined through FMI. (Well A). 
 

We observe that the fractures are mostly present in rocks with high P- and S-wave 

velocities. As a consequence, in the modeling I assume that the fractures are associated 

with high-velocity rocks, whose unfractured background properties exceed certain limits, 

such as 4500m/s for VP and 2400m/s for VS. 

This association of the fractures with the high-velocity rocks was observed also for 

the San Andres reservoir, in the Yates Field (Sava et al, 2001). The association can play 

an important role in fracture delineation from seismic data. Even if the fractures will 

lower the velocity significantly in the most fractured zones, on average the velocities of 
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the fractured regions may be larger than the velocities of the unfractured rocks, 

characterized by higher shale content. Therefore, on average, higher impedance may 

correspond to the zones with higher probability of fractures, as the results from fracture 

modeling show in the next sections. 

 

3.3.3 Gassmann fluid substitution 

 
Another very important task in any rock physics analysis is to assess the fluid 

sensitivity in the seismic response.  For this, I use Gassmann’s (1951) low-frequency 

fluid substitution method (Mavko et al., 1998). Figure 3.8 shows the brine-saturated 

(blue) and the gas-saturated (red) properties of the James Limestone reservoir in the VP-

VS domain. As expected, the fluid sensitivity is a little larger at smaller velocities. The 

superimposed lines are least-square linear fits to the data, for the brine and gas cases, 

respectively. We can observe that the variability in VP and VS from rock stiffness, clay 

content, and porosity is as large as the sensitivity to the fluid changes. 

The average elastic fluid properties in the area of interest are presented in Table 3.1, 

and are evaluated using Batzle’s and Wang’s (1992) empirical relations:. 

 

Table 3.1: Fluid properties for the James Limestone reservoir. 

 Bulk modulus [GPa] Density [g/cm3] 

brine 2.51 1.018 

gas 0.048 0.032 

 

However, we expect the fluid sensitivity to be significantly enhanced by the presence 

of the fractures, as the modeling results show in the next sections. 
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Figure 3.8: VP-VS scatter-plot for brine and gas-saturated cases for the James Limetone 

reservoir. Velocities are stochastically simulated. 
 

3.3.4 Summary of the observations 

 
In this section, I give a brief summary of the preceding rock physics analysis, based 

on the well-log data. 

From the VP-porosity scatter-plots color-coded by the Gamma-Ray, we see that the 

velocities decrease with porosity and shale content, as expected. The cleaner limestones 

have lower porosities and higher velocities than the more shaly rocks.  

From the VP-VS scatter-plot color-coded by the number of fractures per foot, we can 

see that most of the fractures are associated with high VP and VS.  This association can 

play an important role in fracture delineation from seismic data.  As I show in the next 

section, high density of gas–filled fractures can significantly lower the velocities of the 

clean limestones. However, on average, the velocities of the fractured regions may still be 

larger than the velocities of the shaly rocks. Therefore, higher impedance values may 

correspond to the zones with higher probability of fractures. 
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This association of fractures with higher velocity rocks helps us in choosing the 

unfractured background properties that we need to input in the modeling. The elastic 

properties should correspond to rocks with velocities higher than certain limits, such as 

4500 m/s for VP and 2400m/s for VS.  

Based on these observations, I consider that the reservoir may exhibit three main 

types of facies: 1) unfractured, clean limestones, 2) shaly limestones, and 3) fractured, 

clean limestones that I model with various distributions of cracks.  

3.4 Monte Carlo simulations and fracture modeling  

 
In this section, I present the results of the fracture modeling and stochastic 

simulations of various seismic signatures, with the objective of determining the optimal 

seismic attributes for delineating the gas-filled fractured zones in the reservoir. The 

stochastic approach allows us to incorporate the natural geologic variability of rock 

properties into deterministic elastic models (Mavko and Mukerji, 1998; Mukerji et al., 

2001, Avseth et al., 2005). 

Fractures affect both the interval properties, such as velocities and travel-time, and 

the interface properties, such as reflectivity and AVO. If the fractures are aligned, they 

can also induce anisotropy for both interval and interface properties. 

In most cases, seismic field studies for fracture detection are designed to find near-

vertical and open joints (Teng, 1998; Grimm, 1999; Perez, 1999; Lynn, 1999). However, 

in the proximity of the faults, sometimes the host rock can be very fractured, giving rise 

to the so-called “breccia zone”. In these cases the faults may have systematic alignment, 

but the smaller fractures can be distributed in all possible directions. Therefore, for this 

situation a more appropriate fracture model is one that assumes isotropic distribution of 

crack orientations.  

For both isotropic and anisotropic distribution of fracture orientations, I use Hudson’s 

(1981) penny-shaped crack model. More details about this model are given in the 

preceding chapter. 
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In this section, I consider the fractures to be 100% saturated with either brine or gas, 

but not necessarily with the same fluid as in the matrix porosity. I substitute the fluids in 

the fractures by changing the elastic moduli of the inclusion material in Hudson’s (1981) 

equations. This procedure assumes that there is little communication between the fluids 

in the matrix pores and the fluids in the cracks during wave excitation. This assumption is 

most appropriate when the matrix porosity and permeability are small (Hudson, 1997, 

Teng, 1998). For the clean limestones that are most likely to get fractured, the porosity of 

the unfractured background rocks is smaller than 10%, while the permeability has also 

very low values, between 0.001 and 0.1mD (Marathon Oil Co., Internal Report).  

To assess the uncertainty of fracture detection and characterization from seismic data, 

I run Monte Carlo simulations on the input parameters in the Hudson’s model (1981).  

The input parameters are the crack density, aspect ratio of the ellipsoidal cracks, bulk 

modulus of the saturating fluid, and the VP, VS and density of the isotropic, unfractured 

background rocks.  

For the crack density, I choose a uniform distribution between 0.01 and 0.1. The 

upper value of 0.1 corresponds to the limit of validity of Hudson model. As discussed in 

Chapter 2, this value represents a relatively large degree of fracturing, especially for a 

reservoir at approximately 2 km depth. By choosing a uniform distribution I assume 

maximum uncertainty over the interval considered for the crack density. For the aspect 

ratio of the penny-shaped cracks, defined as the ratio between the aperture and the radius 

of the crack, I also use a uniform distribution, on a logarithmic scale (from 0.001 to 0.1). 

More details about Hudson’s model are given in Chapter 2.  

For the unfractured matrix properties  (VP, VS, density), I derive the distributions from 

the well-log data. . Figure 3.9 presents in the upper panels the histograms for the VP, VS 

and density of the clean limestones in the reservoir, obtained from the well logs. The 

lower panels in the same figure present the probability distribution functions (PDFs) of 

the VP, VS, and density derived from the histograms. Since the fractures occur 

preferentially in the high velocity rocks, as the rock physics analysis shows, I consider for 

the background properties of the host rocks only P-wave velocities greater than 4500m/s. 
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Figure 3.9:  Upper panels: VP VS and density histograms derived from the well logs for 

the unfractured background rock properties. Lower panels: Corresponding probability 
density functions (PDFs). 

 

The VP, VS, and density derived from the well logs are also upscaled to seismic 

wavelengths. The upscaling is performed on the well data using Backus (1962) averages 

for the bulk and shear modulus, and volumetric averages for density (Mukerji, 1995). The 

fluid that saturates the fractures is considered to be either gas or brine. 

The Monte Carlo procedure consists in randomly drawing correlated sets of VP, VS, 

and density from the distributions derived from the well-logs for the unfractured 

background rock properties, and also from the assumed distributions for the crack density 

and the aspect ratio of the ellipsoidal cracks. For each realization of a set of VP, VS, and 

density, together with the crack density and the aspect ratio of the cracks, I compute the 

elastic properties for the fractured medium, using Hudson’s model. If we repeat this 

procedure many times, we obtain a large number of realizations of elastic properties for 

the modeled fractured medium, to span the intrinsic natural variability.  



CHAPTER 3:  Rock Physics Analysis and Fracture Modeling 69 

 

I also simulate multiple realizations for the elastic properties for the other possible 

facies in the reservoir, such as the shaly rocks and the unfractured, clean limestones. In 

order to model the interface properties, I also simulate multiple realizations for the Vp, Vs 

and density of the cap rock, based on the distributions derived from the well logs.  

Based on this large number of correlated realizations of elastic properties, I derive the 

joint probability density functions (PDFs) of various seismic attributes for each facies in 

the reservoir: 1) clean, unfractuered limestone, 2) shaly limestone, and 3) fractured, clean 

limestone. I compute both the interval and the interface seismic properties, to understand 

how we can separate the fractured zones filled with gas from the other facies in the 

reservoir, in different possible scenarios.  

3.4.1 Interval properties 

 
In this section, I present the results of our stochastic simulations for interval 

properties, such as P- and S-wave velocities, P-Impedance and Poisson’s ratio and travel-

times, in the hypotheses of a vertical set of fractures, and of randomly oriented cracks in 

the reservoir. 

3.4.1.1 Interval velocities 

Fractures can lower significantly the velocities of the initially unfractured host rock. I 

consider first the hypothesis of an isotropic distribution of fracture orientations, which 

corresponds to breacciated zones associated with faults.  

I use Monte Carlo method and fracture modeling, as previously presented, and obtain 

the joint probability density function for the interval P- and S- wave velocities. 

Figure 3.10 shows one of the results of the stochastic simulations for the three 

different possible facies in the reservoir. The contours represent the joint probability 

density functions (PDF) of VP and VS for the unfractured, clean limestone (blue), for the 

shaly rocks in the reservoir (red), and also for the fractured, clean limestone, modeled 

with randomly oriented cracks (green). The fractures are filled with gas.  
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Figure 3.10: Joint probability distribution functions of VP and VS for the Monte Carlo 

simulations of the unfractured clean limestones (blue), fractured limestones with 
randomly oriented cracks (green), and shaly rocks (red). Fractures are filled with gas. 
The upper and right panels show the marginal distributions for VS and VP for each 
facies. 

 

The uncertainty in the PDFs is due to the variability in the unfractured background 

properties.  For the fractured facies, the scatter is also due to the variability in both the 

crack density and the aspect ratio of the cracks.  

We can see that in the VP-VS domain there is some overlap of the joint probability 

distribution functions (PDF) between the modeled fractured rocks and the unfractured 

ones. The P-wave velocity of the fractured rocks filled with gas decreases more than the 

S-wave velocity. From the marginal distribution, presented in the right-side panel of 

Figure 3.10, we see that on average, the VP of the fractured, clean limestone is larger than 

the VP of the shaly rocks. However, as the fracture density increases, the P-wave velocity 

of the fractured, clean limestone becomes closer to the P-wave velocity of the shaly 

limestone. At the same time, the decrease in VS due to fractures is smaller, such that the 
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limestones 

fractured, clean 
limestones  

V P
 



CHAPTER 3:  Rock Physics Analysis and Fracture Modeling 71 

 

S-wave velocities of the fractured, clean limestones remain significantly higher than the 

VS of the shaly rocks.  Therefore, the shear-wave information is valuable for 

discriminating between the gas-filled fractured zones and the shaly zones in the reservoir. 

 
Figure 3.11: Joint probability distribution functions of VP and VS for the Monte Carlo 

simulations of the unfractured, clean limestones (blue), fractured limestones with 
randomly oriented cracks (green), and shaly rocks (red). Fractures are filled with 
brine. The upper and right panels show the marginal distributions for VS and VP 
respectively, for each facies. 

 

Figure 3.11 presents the joint PDF of VP and VS for the three main facies in the 

reservoir. In this case, however, the fractures are saturated with brine. We observe very 

small decrease in both P and S-wave velocities as compared with the properties of the 

unfractured limestones. Modeling shows that in the VP-VS domain it is difficult to 

distinguish between unfractured, clean limestones and fractured zones, if the randomly 

oriented fractures are saturated with brine.  

In the case of a vertical set of aligned fractures, the medium is anisotropic, and 

velocities vary with direction. Figures 3.12 and 3.13 show the joint PDF of VP and VS  for 

the three possible facies in the reservoir.  
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The modeled VP and VS  of the fractured limestones correspond to the waves polarized 

parallel to the fracture planes. In Figure 3.12, the cracks are gas-saturated, while in Figure 

3.13, the cracks are brine-saturated. As Hudson’s model predicts, the VS of the fractured 

rocks polarized along the crack plane is not at all affected by the presence of the 

fractures. However, the P-wave velocity propagating parallel to fracture planes is slightly 

lowered, if the cracks are filled with gas. However, this decrease in VP is not very large, 

such that the P-wave velocities propagating along the fracture planes remain higher than 

those of the shaly limestones in the reservoir. 

 
Figure 3.12: Joint PDFs of VP and VS for the Monte Carlo simulations of the unfractured 

clean limestones (blue), fractured limestones with a set of vertical cracks (green), and 
shaly rocks (red). Fractures are filled with gas. The VP and VS for fractured facies 
correspond to polarization parallel to fractures. The upper and right panels show the 
marginal distributions for VS and VP respectively, for each facies.  

 

If the fractures are saturated with brine, then the fractured rock cannot be 

distinguished from the unfractured, clean limestones, as Figure 3.13 shows. 
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Figure 3.13: Joint PDFs of VP and VS for the Monte Carlo simulations of the unfractured 
clean limestones (blue), fractured limestones with a set of vertical cracks (green), and 
shaly rocks (red). Fractures are filled with brine. The VP and VS for fractured facies 
correspond to polarization parallel to fractures. The upper and right panels show the 
marginal distributions for VS and VP respectively, for each facies.  

 

Figures 3.14 and 3.15 show again the joint PDFs for VP and VS. In these cases the 

properties of the fractured facies correspond to the wave polarization orthogonal to the 

fracture planes. The cracks are filled with gas (Figure 3.14), and brine (Figure 3.15), 

respectively.  For the gas-saturated fractures, both VP and VS decrease significantly as 

compared with the properties of the unfractured, clean limestones. However, the 

modeling predicts a larger decrease in VP, than in VS. The S-wave velocities polarized 

orthogonal to the fracture planes remain significantly higher than the S-wave velocities of 

the shaly limestones, in contrast with the P-wave velocities. This result suggests that the 

shear information from waves polarized orthogonal to the fracture planes is important for 

discriminating between the gas-filled fractured zones and the shaly zones in the reservoir.  
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Figure 3.14: Joint PDFs of VP and VS for the Monte Carlo simulations of the unfractured 

clean limestones (blue), fractured limestones with a set of vertical cracks (green), and 
shaly rocks (red). Fractures are filled with gas. The VP and VS for fractured facies 
correspond to polarization orthogonal to fractures. The upper and right panels show 
the marginal distributions for VS and VP respectively, for each facies.  

 

Figure 3.15 shows that, if the fractures are saturated with brine, the P-wave velocity 

polarized orthogonal to fractures decreases less than the corresponding S-wave velocity 

with the same polarization. Both VP and VS polarized orthogonal to brine-filled cracks are 

larger than the velocities of the shaly rocks in the reservoir.  

From the modeling, we observe that in the VP -VS domain the gas-filled fractures are 

much more easily distinguishable from the unfractured rocks than the brine-filled 

fractures, for both isotropic and anisotropic distributions of fracture orientations.  

If the fractures are saturated with gas, the modeling shows that the P-wave velocities 

are more sensitive than the S-wave velocities. As expected, the P-wave velocity decreases 

the most in the case of a vertical set of aligned fractures, if the waves are propagating 

orthogonal to the cracks. For large crack densities, the VP of the fractured zones becomes 

comparable to the VP of the shaly limestones in the reservoir, which are less susceptible 

to be fractured. The S-wave velocity decreases less than P-wave velocity, and its 
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expected values remain larger than the S-wave velocity of the shaly rocks. Therefore, VS 

is a valuable piece of information to discriminate between the gas-filled fractured zones 

and the shaly limestones in the reservoir. 

 
Figure 3.15: Joint PDFs of VP  and VS for the Monte Carlo simulations of the unfractured 

clean limestones (blue), fractured limestones with a set of vertical cracks (green), and 
shaly rocks (red). Fractures are filled with brine. The VP and VS for fractured facies 
correspond to the polarization orthogonal to fractures. The upper and right panels 
show the marginal distributions for VS and VP respectively, for each facies.  

 

If the fractures are brine-saturated, it is more difficult to distinguish the fractured 

zones from the unfractured ones. Both P- and S-wave velocities are little affected by the 

presence of the fractures, for both isotropic and anisotropic distribution of cracks. The 

fractured zones saturated with brine are the most visible in the VP -VS domain, when the 

waves are polarized orthogonal to the aligned fracture planes. This is the only case in 

which VS is more sensitive to fractures than VP (Figure 3.15). However, on average, S-

wave velocity of the fractured zones remains larger than the S-wave velocity of the shaly 

limestones in the reservoir. 
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3.4.1.2 P-Impedance – Poisson’s Ratio 

Besides the VP -VS domain, I also consider the P-Impedance - Poisson’s Ratio 

domain, in the case of an isotropic distribution of fractures. 

Figures 3.16 and 3.17 present the joint PDF for the P-Impedance and Poisson’s Ratio, 

again for the three possible facies in the reservoir: unfractured, clean limestones (blue), 

fractured limestones (green), and shaly rocks (red). Fractures are randomly distributed 

and filled with gas (Figure 3.16) and brine (Figure 3.17), respectively. The pores in the 

matrix rocks are brine-saturated.  

From Figure 3.16 we can see very little overlap between the three different possible 

facies in the reservoir. The P-Impedance of the fractured rocks filled with gas may drop 

significantly, especially for high fracture density, as compared with the P-Impedance of 

the unfractured, clean limestones.  However, as we observe from the marginal 

distributions of the P-Impedance for each facies (right panel of Figure 3.16), the expected 

value for the P-Impedance of the fractured zones is still larger than the one corresponding 

to the shaly limestones in the reservoir. Therefore, higher impedance may correspond to 

zones of higher fracture probability. Poisson’s ratio is a good discriminator between the 

fractured, clean limestones and the shaly rocks. If the fractures are filled with gas, the 

Poisson’s Ratio of the fractured limestones decreases drastically as compared to the 

Poisson’s Ratio of both the shaly limestones and the unfractured, clean limestones.   
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Figure 3.16: Joint probability distribution functions of the P-Impedance and Poisson’s 

Ratio for the Monte Carlo simulations of the unfractured, clean limestones (blue), 
fractured limestones with randomly oriented cracks (green), and shaly  rocks (red). 
Fractures are filled with gas. The upper and right panels show the marginal 
distributions for Poisson’s Ratio and P-Impedance respectively, for each facies.  

 
If the fractures are saturated with brine (Figure 3.17), then they are not 

distinguishable from the unfractured, clean limestones. We can observe very small 

decrease in the P-Impedance, and practically no change in the Poisson’s Ratio, as 

compared to the unfractured properties.  

These modeling results suggest that it is the gas in the fractures that makes the 

Poisson’s ratio drop, not the fractures themselves, since the Poisson’s ratio of the brine-

filled fractured zones does not change significantly in comparison with the unfractured 

facies. 
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Figure 3.17: Joint probability distribution functions of the P-Impedance and Poisson’s 
Ratio for the Monte Carlo simulations of the unfractured, clean limestones (blue), 
fractured limestones with randomly oriented cracks (green), and shaly  rocks (red). 
Fractures are filled with brine. The upper and right panels show the marginal 
distributions for Poisson’s Ratio and P-Impedance respectively, for each facies.  

3.4.1.3 Thomsen’s anisotropic parameters 

A single set of aligned vertical fractures generates a transversely isotropic medium 

with horizontal axis of symmetry (HTI). Most of the seismic attributes for an HTI 

medium are given in the literature in terms of Thomsen’s (1986) anisotropic parameters 

and modification of these developed by Tsvankin (1997). 

I use again Hudson model (1980, 1981), together with stochastic simulations, to 

compute the anisotropic Thomsen’s type parameters. The background properties are 

simulated through a correlated Monte Carlo approach, based on the VP ,VS and density 

derived from well-log data. 

fractured clean 
limestones 

unfractured, clean 
limestones 

shaly limestones 
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Figures 3.18 and 3.19 present the stochastically simulated epsilon, gamma and delta 

anisotropic coefficients defined with respect to the vertical axis (Tsvankin, 1997). The 

scatter in the data is due to the variability in the unfractured background properties, and 

also in the crack density and aspect ratio of the fractures. I use the same distributions of 

the crack density and the aspect ratio for both gas-filled and brine-filled fractures.  

In Figure 3.18 the data are color-coded by fracture density, which increases from 0.01 

to 0.1. The anisotropy coefficients increase in absolute value with increasing fracture 

density, as expected.  

 
Figure 3.18: Stochastically simulated Thomsen type anisotropic parameters epsilon, 

gamma and delta defined with respect to vertical axis for HTI medium. Matrix 
porosity is brine saturated. Fractures are filled with gas and brine, respectively. Data 
are color-coded by the crack density.  

 

We observe that the gas-filled and the brine-filled fractures have different signatures 

in the Thomsen’s-parameter domain. More specifically, absolute values of the epsilon 

and delta parameters are larger for gas-filled fractures than for brine-filled fractures. 

However, as expected, the gamma parameter, which is a measure of the shear-wave 

anisotropy, does not change with the fluid.  
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Figure 3.19: Stochastically simulated Thomsen type anisotropic parameters epsilon, 

gamma and delta for HTI medium, defined with respect to vertical axis.  Matrix 
porosity is brine saturated. Fractures are filled with gas and brine, respectively. Data 
are color-coded by aspect ratio of the cracks. 

 

In Figure 3.19 the data are color-coded by the aspect ratio of the fractures. We see 

that the brine-filled cracks are more sensitive to the aspect ratio than are the gas-filled 

fractures. As a result, the scatter in the data for the brine-filled fractures is larger than for 

the gas-filled fractures. At fixed crack density, the higher the aspect ratio of the brine-

filled cracks, the larger the absolute values of epsilon and delta. For smaller aspect ratios, 

i.e., for very thin cracks, the presence of brine stiffens the cracks significantly, making 

them almost invisible to the seismic waves. 

For gas-filled fractures, I verify the weak anisotropy approximation for fracture 

density, given by Bakulin (2000): 
( )Ve ε8/3−= .                                                          (3.2) 

 
Here, e represents the fracture density, while ε(V) represents the epsilon parameter 

defined with respect to the vertical axis (Tsvankin, 1997). 
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I vary the crack density in a deterministic way, and I use Monte Carlo method and 

Hudson’s model to simulate the elastic stiffness matrix of the fractured medium, taking 

into account the variability in the unfractured background rock properties and in the 

aspect ratio of the cracks. Then, for each realization of elastic stiffness matrix, I derive 

the Thomsen’s epsilon parameter with respect to vertical, and use Equation 3.2 to 

compute the crack density. These computed values of crack density are shown in Figure 

3.20 (the open circles). To check the approximation from Equation 3.2, I superimposed 

the actual values of crack density used in the modeling (the horizontal lines). 

 
Figure 3.20: Verification of the weak-anisotropy approximation for crack density as a 

function of the Thomsen’s epsilon parameter with respect to the vertical axis, for gas-
filled fractures. The circles represent the computed crack density using the Equation 
3.2 and Monte Carlo simulations for the elastic stiffness matrix of the fractured 
medium. The horizontal lines represent the actual values of crack density used in the 
modeling. The scatter in the data is due to variability in the background rock 
properties and aspect ratio of the cracks. 

 

From Figure 3.20, we observe that, for small crack density up to 0.04, the Equation 

3.2 gives good results for crack density. However, for larger crack density values, the 

weak anisotropy approximation overestimates the actual crack density. For example, in 

this case, for a crack density of 0.07 the overestimation is approximately 8%. Therefore, 

for gas-filled fractures, the crack density can be approximated by 3/8 of the absolute 
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value of Thomsen’s epsilon parameter expressed with respect to vertical axis, especially 

for relatively small crack densities. 

For the brine-filled fractures the absolute values of the epsilon parameter are smaller 

than those of the gas-filled fractures, as we can observe in Figures 3.18 and 3.19.  

The delta parameter is also a function of the fluid type, and its absolute values are 

larger for the gas-filled fractures than for the brine-filled fractures, as we can observe in 

Figures 3.18 and 3.19. 

The gamma parameter, also a linear function of the fracture density in the weak 

anisotropy approximation, does not change with fluid.  This parameter represents the S-

wave anisotropy. Bakulin (2000) gives an expression for the gamma parameter as a 

function of the ratio between VP and VS of the unfractured background rock: 

( )

( )e
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−=γ ,                                                       (3.3) 
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Vsg .                                                            (3.4) 

Therefore, when the fluid is not known, gamma, the shear-wave splitting parameter, 

may be useful to predict fracture densities. 

3.4.1.4 Travel time 

In the hypothesis of a vertical set of aligned fractures in the reservoir the P-wave 

travel time varies with the direction of wave propagation.  

Grechka and Tsvankin (1998) give the travel time variation for an HTI medium as a 

function of azimuth. Figure 3.21 is a contour plot of the difference between the P-wave 

travel time from the bottom of the James Limestone for the fractured and unfractured 

cases, as a function of azimuth and offset. The fractured James Limestone reservoir is 

modeled with vertical fractures filled with gas. In the modeling, I consider the crack 

density to be constant and equal to 0.07. The contour values in the plot are in seconds. 

We can see that the difference in travel time is larger in the direction perpendicular to 

fractures (azimuth 180) than in the direction parallel to fractures (azimuth 90), as 
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expected. Therefore, in principle, travel time may be used to determine the orientation of 

the main fracture system, and also to estimate fracture density. However, for the James 

Limestone reservoir, the difference in P-wave travel time between fractured and 

unfractured cases is very small. This is due because the reservoir is thin (approximately 

200 ft).  

 
Figure 3.21: Contour plot for the travel time differences between the fractured and 

unfractured simulated James Limestone reservoir as a function of azimuth and offset. 
The values on the curves are in seconds. 

 
For example, at the azimuth orthogonal to fractures and at an offset of 700m, the 

difference between the fractured and unfractured cases is approximately 1.4 milliseconds. 

Therefore, P-wave travel time difference between the fractured and unfractured zones 

through the James Limestone reservoir is not a practically useful attribute. 

I also consider the hypothesis of a more chaotic distribution for fracture orientations, 

such as near the faults. Figure 3.22 shows the travel time from the bottom of the James 

Limestone for the unfractured (blue) and gas-filled fractured (red) cases, in the 

hypothesis of randomly distributed cracks. The travel time through the fractured region of 

the reservoir is larger than through the unfractured zones, as expected. The difference 
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between fractured and unfractured cases is approximately 5 milliseconds. This difference 

is higher than for the case of a nearly vertical set of fractures with the same fracture 

density of 0.07. However, the difference is relatively small to be useful for fracture 

characterization, since the dominant frequency of this seismic survey is relatively low.  

 
Figure 3.22: Expected travel time through the simulated James Limestone reservoir as a 

function of offset for the unfractured and fractured cases. Fractures are randomly 
distributed and filled with gas. Fracture density is 0.07. 

 

I conclude that travel time methods are not very useful for fracture characterization in 

this case, since the James Limestone reservoir is too thin. 

 

3.4.2 Interface properties 

 
The advantage of using interface attributes, defined at the boundary between two 

layers, based on the contrast of their elastic properties, is that they provide localized 

information at the target of interest, unlike the travel time techniques. Besides, the 

interface properties are more appropriate than the travel time methods for thin reservoirs 

above the tuning thickness. 
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This section presents the results of the stochastic simulations for PP reflectivity 

Amplitude Variation with Offset (AVO) in the case of an isotropic distribution of cracks, 

and also for the PP reflectivity Amplitude Variation with Angle of Incidence and 

Azimuth (AVAZ) in the case of an HTI medium.  

For the interface properties, I consider the boundary between the cap rock, 

represented by the Bexar shale, and the underlying reservoir, modeled with various 

distributions of fractures.  

3.4.2.1 AVO gradient and Intercept 

For the case of an isotropic distribution of cracks, I use Shuey’s (1985) approximation 

for predicting the AVO gradient. 

Figures 3.23 and 3.24 show the joint PDF of the AVO Gradient and Intercept of the 

reflected PP wave for the three different possible facies in the reservoir. The fractured 

facies (green) is modeled with randomly oriented fractures filled with gas and with brine. 

The corresponding results are presented in Figure 3.23 and Figure 3.24, respectively.  

We observe a larger overlap between the different facies in the interface attributes 

domain than in the interval attributes domain. This is due to the larger variability in the 

seismic properties of the cap rock.  

From Figure 3.23 we see that on average, the normal PP reflectivity from the 

fractured zones saturated with gas is smaller than that from the unfractured ones. The 

presence of the gas-filled fractures decreases the PP reflectivity. However, on average we 

should expect the smallest reflectivity from the shaliest rocks in the reservoir. As the 

fracture density increases, the PP reflectivity from the fractured zones decreases, and 

becomes closer to the PP reflectivity from the shaly limestones in the reservoir. The AVO 

gradient can help resolve this ambiguity. From the right-side panel of Figure 3.23, we see 

that on average, the AVO gradient for the shaly rocks is higher than that of the clean, 

unfractured limestones. At the same time, the AVO Gradient of the fractured limestones 

is smaller than that of the unfractured, clean limestones.  Therefore, the shaliness moves 

the AVO gradient to smaller negative values as compared to the unfractured, clean 
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limestones, while the fractures filled with gas move the AVO gradient to larger negative 

values as compared to the clean, unfractured limestones. In conclusion, using reflectivity 

together with AVO gradient can help in better discriminating the gas-filled fractured 

zones from the shaly zones in the reservoir. 

 

 
Figure 3.23: Joint probability distribution functions of the AVO Gradient and Intercept 

for the Monte Carlo simulations of the unfractured, clean limestones (blue), fractured 
limestones with randomly oriented cracks (green), and shaly  rocks (red). Fractures 
are filled with gas.  

shaly limestones 

unfractured, clean 
limestones 

fractured, clean 
limestones 
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Figure 3.24: Joint probability distribution functions of the AVO Gradient and Intercept 

for the Monte Carlo simulations of the unfractured, clean limestones (blue), fractured 
limestones with randomly oriented cracks (green), and shaly  rocks (red). Fractures 
are filled with brine.  
 

From Figure 3.24 we see that the brine-filled fractured zones are not distinguishable 

from the unfractured clean limestones in the reservoir, if the fracture orientations are 

isotropically distributed. The assumption is that there is little fluid communication 

between the fluid in the fractures and the fluid in the matrix pores, during seismic 

excitation. This assumption is most appropriate when the matrix porosity and 

permeability are low, which is the case for the tight, clean limestones intervals in this 

reservoir. 

shaly limestones 

unfractured, clean 
limestones 

fractured, clean 
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Figure 3.25: Joint probability distribution functions of the AVO Gradient and Intercept 

for the Monte Carlo simulations of the unfractured, clean limestones (blue), fractured 
limestones with a vertical set of cracks (green), and shaly  rocks (red). Fractures are 
filled with gas.  The azimuth is parallel to the crack’s plane. 
 
 

If we consider the case of vertical aligned fractures, the AVO gradient is a function of 

azimuth. I use Ruger’s (1995, 1998) approximation to estimate the AVO gradient for the 

James Limestone reservoir modeled as an HTI medium. Figure 3.25 presents the AVO 

gradient parallel to fractures, while Figure 3.26 shows the AVO gradient orthogonal to 

fractures. The azimuthal variation of the AVO gradient for gas-filled fractures is 

insignificant.  

In both cases we observe the same behavior as in the case of a random distribution of 

fractures filled with gas (Figure 3.23). The azimuthal variation of the AVO gradient for 

gas-filled fractures is small. 

fractured, clean 
limestones 

unfractured, clean 
limestones 

shaly limestones 
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Figure 3.26: Joint probability distribution functions of the AVO Gradient and Intercept 

for the Monte Carlo simulations of the unfractured, clean limestones (blue), fractured 
limestones with a vertical set of cracks (green), and shaly  rocks (red). Fractures are 
filled with gas.  The azimuth is orthogonal to the crack’s plane. 
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Figure 3.27: Joint probability distribution functions of the AVO Gradient and Intercept 

for the Monte Carlo simulations of the unfractured clean limestones (blue), fractured 
limestones with a vertical set of cracks (green), and shaly  rocks (red). Fractures are 
filled with brine.  The azimuth is parallel to the crack’s plane. 

 

Figures 3.27 and 3.28 show the joint PDF of the AVO Gradient and Intercept for 

brine-filled fractures in the directions parallel and orthogonal to fractures, respectively. 

We see that brine-saturated fractured zones are indistinguishable from the unfractured 

clean limestones.  
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Figure 3.28: Joint probability distribution functions of the AVO Gradient and Intercept 

for the Monte Carlo simulations of the unfractured, clean limestones (blue), fractured 
limestones with a vertical set of cracks (green), and shaly rocks (red). Fractures are 
filled with brine.  The azimuth is orthogonal to the crack’s plane. 

 

To summarize, brine-filled fractures are difficult to delineate in the AVO Gradient – 

Intercept domain, for both isotropic and anisotropic distributions of fractures. The gas-

saturated fractured zones are easier to distinguish from the unfractured clean limestones. 

Independently of the fracture distribution, the AVO gradient of the gas-filled fractured 

zones has higher negative values than the unfractured clean limestones. The shaly 

limestones in the reservoir exhibit smaller negative values than the unfractured, clean 

limestones. Therefore, the AVO gradient is a useful attribute for delineating gas-saturated 

fractures from the shaly limestones in the reservoir. However, due to a larger variability 

in the seismic properties of the cap rock, there is a significant overlap between the 

different facies in the reservoir in the interface-attributes domain. 
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3.4.2.2 AVAZ modeling 

 
For an HTI medium generated by a single set of vertical fractures, amplitude variation 

with incidence angle and azimuth (AVAZ) can be a useful technique for determining the 

main fracture orientation. AVAZ may also give us information about fracture density and 

type of fluid in the fractures. In the modeling I use Ruger’s (1995, 1996, 1998) 

approximation for calculating PP reflectivity as a function of offset and azimuth.  

Figures 3.29 and 3.30 show the statistical expected values of the PP reflectivity (RPP) 

as a function of incidence angle and azimuth, for gas- and brine-saturated fractures, 

respectively. In both cases the matrix porosity is brine-saturated. 

 
Figure 3.29: Expected values for the PP reflectivity as a function of angle of incidence 

and azimuth. The right side panel presents the RPP amplitude variation with azimuth 
at 15 and 30 degree angles of incidence. Azimuth 0 is perpendicular to the fracture 
plane. Fractures are oriented E-W. Matrix porosity is brine-saturated, while the 
fractures are filled with gas.  
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The fractures are orientated E-W.  The azimuth 0 corresponds to the symmetry axis of 

the HTI medium, orthogonal to fractures. On the right panels of Figures 3.29 and 3.30 is 

represented the RPP as a function of azimuth for the 15 and 30 degree angles of incidence.   

 
Figure 3.30: Expected values for the PP reflectivity as a function of angle of incidence 

and azimuth. The right side panel presents the RPP amplitude variation with azimuth 
at 15 and 30 degree angles of incidence. Azimuth 0 is perpendicular to the fracture 
plane. Fractures are oriented E-W. Matrix porosity is brine saturated, while the 
fractures are filled with brine.  

 
As expected, the azimuthal variation of PP reflectivity increases with angle of 

incidence, for both brine-filled and gas-filled fractures.  The main difference between 

brine-saturated and gas-saturated fractures is that the polarity of the azimuthal variation is 

opposite. For the brine-filled fractures, the maximum RPP value at a fixed angle of 

incidence is in the direction perpendicular to fractures, while for the gas-filled fractures 

the maximum RPP value is in the direction parallel to fractures. This is an interesting 

result that can be used to differentiate between gas-filled and brine-filled fractures under 

the assumption that the azimuthal anisotropy is due only to the presence of a vertical set 

of joints.  
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3.5 Conclusions 

 
The results of the rock physics analysis, together with the interpreted FMI 

information about fractures from one of the wells, show that fractures in the James 

Limestone reservoir are associated with the clean limestone intervals, which have higher 

velocities and smaller porosities. This association of fractures with the higher-velocity 

rocks may be used directly in fracture delineation from seismic data. Even if the velocity 

will be drastically lowered in the most highly fractured zones, on average the velocities 

of the fractured regions may be larger than the velocities of the unfractured rocks, but 

with higher shale content. Therefore, an impedance inversion may help in delineating the 

zones with higher fracture probability. Within each higher-impedance region, more 

detailed analysis can map the zones of higher fracture density.  

As the rock physics analysis of the well log-data shows, the high-velocity rocks, with 

the least shale content are much more likely to be fractured. This is expected, since the 

fractures tend to be associated with the more brittle intervals. Therefore, I consider that 

the reservoir may exhibit three main types of facies: 1) unfractured, clean limestones, 2) 

shaly limestones, and 3) fractured, clean limestones, which I have modeled with different 

distributions of cracks. The goal is to find the optimal combination of seismic attributes 

for distinguishing the gas-filled fractured zones from the shaly and unfractured 

limestones in the reservoir. 

A geologic model for the James Limestone reservoir suggests the presence of fracture 

swarms associated with small faults. Between these fracture swarms, the reservoir may 

exhibit regularly spaced vertical joints.  Therefore, in the analysis of the fractured James 

Limestone reservoir I model the cases of both anisotropic and isotropic distribution of 

fractures. The anisotropic model that I use is a good representation for approximately 

vertical, parallel joints that create an HTI medium. The isotropic distribution of fractures 

can be a good approximation for the fractured zone in the vicinity of faults, where the 

cracks can be oriented randomly, like in a breccia zone.   

For each of the hypotheses of isotropic and anisotropic fracture distribution I 

stochastically model seismic interval and interface properties such as velocities, travel 
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time, and PP reflectivity as a function of angle of incidence and azimuth. By using the 

stochastic approach we can incorporate natural variability in deterministic physical 

models. 

The modeling shows that all of these seismic attributes may be influenced by the 

presence of the gas-filled fractures.  However, the brine-filled fractures are difficult to 

distinguish, due to the smaller compressibility in comparison with that of the gas. 

The interval velocities decrease with the fracture density. From the modeling we 

observe that in the VP-VS domain the gas-saturated fractures are much more easily 

distinguishable from the unfractured rocks than are the brine-saturated fractures, in both 

hypotheses of isotropic and anisotropic fracture distributions.  

If the fractures are saturated with gas, modeling shows that the P-wave velocity is 

more sensitive to fractures than the S-wave velocity polarized orthogonal and parallel to 

fracture planes. As expected, the P-wave velocity decreases the most when the waves are 

propagating in the direction orthogonal to a set of aligned cracks. For large crack 

densities, the VP of the gas-filled fractured zones becomes comparable to the VP of the 

shaly limestones in the reservoir, which are less susceptible to fracture. The S-wave 

velocity decreases less than VP, and its expected value remains larger than the S-wave 

velocity of the shaly rocks. Therefore, VS is a valuable piece of information to 

discriminate between the gas-filled fractured zones and the shaly limestones in the 

reservoir. 

If the fractures are brine-saturated, it is more difficult to distinguish the fractured 

zones from the unfractured ones. VP and VS are little or not at all affected by the presence 

of the fractures, in both the hypothesis of isotropic and anisotropic distribution of cracks.  

In the case of an isotropic distribution for the fracture orientation, the P-wave 

Impedance - Poisson’s ratio domain is an optimal combination of interval properties for 

delineating the gas-filled fractured zones in the reservoir. However, if the fractures are 

saturated with brine, it is difficult to distinguish them from the unfractured, clean 

limestones.  
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The travel time can be also influenced by the presence of fractures. However, for the 

James Limestone reservoir the travel time difference between the fractured and the 

unfractured cases is very small, due to the fact that the reservoir is too thin.  

For the interface properties, the AVO Gradient - Intercept domain is a potentially 

useful combination for discriminating gas-filled fractures in the reservoir. However, due 

to a large variability in the seismic properties of the cap rock, the uncertainty in 

differentiating fractured zones from interface properties is a little higher than from 

interval properties, such as P-Impedance and Poisson’s Ratio. As the fracture density 

increases, the PP reflectivity from the fractured zones decreases, and becomes closer to 

the PP reflectivity from the shaly limestones in the reservoir. The AVO gradient can help 

resolve this ambiguity. Modeling shows that the shaliness moves the AVO gradient to 

smaller negative values as compared to the clean, unfractured limestones, while the 

fractures filled with gas move the AVO gradient to larger negative values as compared to 

the clean, unfractured limestones. Therefore, the AVO gradient can help in better 

separating the gas-filled fractured zones from the shaly zones in the reservoir. 

Brine-saturated fractures are difficult to distinguish also in the AVO Gradient -

Intercept domain. 

In the hypothesis of a nearly vertical set of joints, I also model the Amplitude 

Variation with Angle of Incidence and Azimuth (AVAZ). The azimuthal variation 

depends on the fluid type. In the assumption of little fluid communication between 

fractures and matrix porosity during a seismic period, the gas-filled fractures and brine-

filled fractures have opposite azimuthal polarity. For the brine-saturated fractures, the 

maximum PP reflectivity value, at a fixed angle of incidence, is in the direction 

perpendicular to fracture strike, while for the gas-saturated fractures the maximum PP 

reflectivity value is in the direction parallel to fracture planes. This result can be used to 

differentiate between gas-filled and brine filled-fractures for a vertical set of joints. 

However, if we do not have additional geological information about the orientation of the 

main fracture system, the different responses in the azimuthal variation of the amplitudes 

due to fluids bring more ambiguity in determining the fractures’ strike.  
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In summary, rock physics fracture modeling and stochastic simulations for seismic 

attributes of the James Limestone reservoir provide a framework for delineating fractured 

zones from seismic data, and for estimating the uncertainty in fracture characterization 

due to natural variability.  
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Chapter 4 

3D Seismic data: Analysis of the 

Azimuthal Variation of Reflectivity  
 

4.1 Abstract 

 
Aligned vertical fractures can produce elastic anisotropy in the shallow crust that can 

be observed in seismic data, such as amplitude variation with angle of incidence and 

azimuth (AVAZ). AVAZ can be a useful technique that can give information about the 

fracture orientation, fracture density, and sometimes the type of fluid in the fractures. 

In this chapter, I present the analysis of the PP reflectivity from a 3D seismic data set 

acquired over a fractured carbonate reservoir in East Texas, with the final goal of 

determining the orientations of the fractures and the relative intensity of fracturing.  

I compare the results of the rock physics fracture modeling for AVAZ, based on the 

well-log data, with the seismic observations. Fracture modeling shows that the polarity of 

the azimuthal variation of the reflectivity changes with the fluid and fracture 

compressibility. Therefore, rock physics modeling is a key link between the observed 

seismic amplitude variation with azimuth (observable parameter) and the actual fracture 

parameters, such as fracture strike and density. Based on the results of the rock physics 
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modeling, I derive the mean fracture orientations from the seismic data using a bootstrap 

method. By using this technique, I quantify the uncertainty in fracture orientation due to 

the possible measurement errors.  

I find a good agreement between the fracture orientation derived from the azimuthal 

variation of the seismic amplitudes at far offsets and the fracture orientation derived from 

the FMI logs from the nearby wells. There is also a good agreement between the mean 

fracture strikes from the azimuthal variation in the seismic amplitude and the present 

regional stress field. The mean fracture strike is approximately parallel to the maximum 

horizontal stress in the region.  

From the seismic data, I also derive the map of the azimuthal anisotropy for the PP 

reflectivity at the top of the reservoir. The degree of anisotropy represents a measure of 

the relative degree of fracturing, if the cracks are gas-saturated.  

In this chapter, I also emphasize the impact of the acquisition footprint on the seismic 

amplitudes. For this 3D seismic survey the fold is not uniform and it creates artificial 

stripes of low and high amplitudes that vary with both offset and azimuth. This footprint 

can mask the actual signatures of fractures. Therefore, to interpret the variations of the 

reflectivity with offset and azimuth in terms of fracture distribution, we first need to 

suppress this footprint. In this chapter, I show how increasing the bin size of the regular 

grid used for analyzing the seismic data gradually diminishes the acquisition footprint. 

However, this comes at the expense of the spatial resolution. 

4.2 Introduction 

 
Most of the seismic field studies for fracture detection have as targets, vertical and 

open joints (Grimm and Lynn, 1997, Teng, 1998; Grimm et al, 1999; Perez et al, 1999; 

Lynn et al., 1999). A single set of vertical, parallel fractures embedded in an isotropic 

background can be described using a transversely isotropic model with a horizontal axis 

of symmetry (HTI). 

Earlier research on HTI media was focused on the propagation of shear-waves, due to 

their sensitivity to the direction and the amount of fracturing. More recently, P-wave 
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methods for fracture detection have attracted considerable interest. P-wave methods offer 

several advantages, such as decreased cost and increased data quality. Moreover, P-wave 

data are sensitive to fluids, unlike the S-wave data that contain information mainly about 

the rock frame.  

One of the P-wave methods for fractures developed in the recent years is the 

Amplitude Variation with Offset (AVO). For aligned, vertical fractures the P-wave AVO 

response is azimuthally dependent. The azimuthal variations in the P-wave reflections 

have been observed in field data by different authors, such as Lynn, (1996), Mallick et al. 

(1998), Teng (1998), Perez et al. (1999), Shen et al. (2002). One important advantage of 

this method is that it can provide localized information at the interface of interest, unlike 

the travel time methods, which describe the cumulative effect over larger scales. Also, if 

the reservoir is thin, travel time techniques are not very useful for fracture 

characterization, as I showed in the preceding chapter. 

The reservoir in our study area is approximately 7000 ft deep, and has an average 

thickness of 200 ft. The formation is a microcrystalline fractured limestone, with matrix 

permeability between 0.001 and 0.1 mD (Marathon Oil Co., Internal Report). However, 

the presence of fractures may significantly increase the permeability. Therefore, precise 

localization of fractured zones has a crucial impact on reservoir management. 

The area of study is situated in a normal faulting regime. The maximum horizontal 

stress in the region is oriented E-W. In such regime, the strike of the faults is expected to 

be approximately parallel to the maximum horizontal stress. A geological model based on 

the logs from a horizontal well suggests that the fractures are controlled by subseismic 

normal faults (Meeder, personal communication). These small faults can generate narrow 

zones with high fracture density, where the cracks are more or less randomly oriented, as 

in brecciated zones. Between these fracture swarms, there may be vertical joints, more 

uniformly distributed. The rock physics fracture modeling predicts low PP reflectivity 

values associated with the fracture swarms (Sava et al., 2002), as I present in Chapter 3. 

These low reflectivity zones may be identified in the seismic data. 

In this chapter, I present the analysis of the PP reflectivity from a 3D seismic data set 

acquired over this reservoir.  The focus is on the Amplitude Variation with Azimuth 
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(AVAZ) in the hypothesis of a single set of vertical aligned fractures. AVAZ involves 

partial stacking the data on different ranges of azimuth. There is a tradeoff between the 

azimuthal resolution, which requires small ranges of azimuths, and the signal-to-noise 

ratio, which requires larger fold, and implicitly larger azimuth ranges.  However, we can 

increase the fold either by considering larger azimuth bins (which diminishes the 

azimuthal resolution), or by considering larger spatial bins (which lowers the spatial 

resolution).  

The acquisition footprint of the survey significantly impacts the reflectivity. The fold 

is not uniform and creates artificial stripes of low and high amplitudes that vary with both 

offset and azimuth. This footprint can mask the actual signatures of fractures. In this 

chapter, I investigate the influence of increasing the spatial bin size on reducing the 

survey footprint, such that the amplitude variations can be interpreted in terms of fracture 

distribution. 

I also present the results of the rock physics fracture modeling for AVAZ, based on 

the well-log data, and I compare them with the seismic observations. The fracture 

modeling shows that the interpretation of the azimuthal variation of the PP reflectivity 

depends on both the compressibility of the fractures and of the fluids filling the fractures.  

Based on the results of the rock physics fracture modeling, I derive the mean fracture 

orientations at the top of the reservoir from the azimuthal variation of the seismic 

amplitudes at far offsets. I use a bootstrap method that takes into account the possible 

measurement errors.  

I also present the distribution of the azimuthal anisotropy of the PP reflectivity at the 

top of the reservoir derived from the seismic data. As the rock physics fracture modeling 

shows, the degree of reflectivity anisotropy may be a measure of the relative degree of 

fracturing, in the case of uniformly saturated fractures.  
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4.3 3D Seismic survey and the acquisition footprint 

 
A 3D seismic data set was acquired over a fractured carbonate reservoir in East 

Texas. The source and receiver locations are presented in Figure 4.1. In Figure 4.1, as 

well as in all of the other figures showing the seismic data, the actual survey is rotated 34 

degrees East with respect to North, for the purpose of display.  
 

 
 

Figure 4.1: Map view with the source (open circles) and receiver (stars) locations. The 
survey is rotated 34 degrees East with respect to North. 

 

From this acquisition geometry we can get a map of mid-point locations. Figure 4.2 

presents a sub-sample of the mid-point positions. 
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Figure 4.2: Map view with a sub-sample of the midpoint locations. The survey is rotated 

34 degrees East with respect to North. 
 

 
 

Figure 4.3: Scatter-plot with the x and y components of the offset vector for every 200th 
trace of the data set. The survey is rotated 34 degrees East with respect to North. 
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Figure 4.3 shows a scatter-plot with the x and y components of the offset vector, 

for every 200th trace of the dataset. The plot shows a wide azimuth acquisition, with a 

relatively uniform distribution, displaying no obvious preferential orientation of the 

acquisition with respect to azimuth. 

 
Figure 4.4: Map view with the fold for the stack data (200ft bin size). 

 
Analysis of the reflectivity variations with offset and azimuth requires seismic data 

arranged on a regular grid. I first choose a small bin size equal to 200 ft. The 

corresponding fold map for the stack data of all azimuths and offsets is presented in 

Figure 4.4. We can see alternating parallel stripes of low and high fold along some of the 

receiver lines. This pattern can be misleading, especially when analyzing amplitude data. 

Figures 4.5 and 4.6 show the impact of the acquisition footprint on the PP reflectivity 

maps for two different azimuth ranges of 60 degrees each, one centered about azimuth 0º, 

the other centered about azimuth 60º. The data are stacked for all offsets, between 0 and 

8000 ft.  The top panels of Figures 4.5 and 4.6 show the amplitude maps at 1.2 seconds, 

while on the bottom panels I present the amplitude maps at 1.3 seconds, corresponding to 

the top of the reservoir. The corresponding fold maps are presented on the top-right 
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panels in each figure, while the acquisition geometry for the survey is presented on the 

bottom-right panels. The left panels of both figures show the amplitude maps un-

normalized by the fold, while the middle panels show the amplitude maps normalized by 

the fold.  

By comparing Figures 4.5 and 4.6 we can see that the pattern of low and high seismic 

amplitude values varies with the azimuth, as the fold pattern changes. Normalizing the 

amplitude values by fold does not completely suppress the acquisition footprint.  
 

 
 

Figure 4.5: Amplitude maps for two time slices at 1.2 seconds (top) and 1.3 seconds 
(bottom) for an azimuth bin of 60 degrees, centered about azimuth 0º.Left panels 
show the un-normalized reflectivity maps. Centered panels show the corresponding 
reflectivity maps normalized by fold. Top right panel shows the fold map for the 
chosen azimuth range. Bottom right panel shows the acquisition geometry. 
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Figure 4.6: Amplitude maps for two time slices at 1.2 seconds (top) and 1.3 seconds 
(bottom) for an azimuth bin of 60 degrees, centered about azimuth 60º.Left panels 
show the un-normalized reflectivity maps. Centered panels show the corresponding 
reflectivity maps normalized by fold. Top right panel shows the fold map for the 
chosen azimuth range. Bottom right panel shows the acquisition geometry. 

 

The structural geological model suggests the presence of fracture swarms in the 

proximity of the normal subseismic faults (Meeder, personal communication). Rock 

physics modeling shows decreased amplitudes associated with the gas-filled fractured 

zones in the reservoir (Sava et al, 2002). Therefore, we should expect to observe low PP 

reflectivity values on the 3D seismic data set, aligned with the possible subseismic faults. 

However, the acquisition footprint artificially creates alternating alignments of high and 

low amplitudes due to the alternating high and low folds along the sources and receiver 

lines (Figures 4.5 and 4.6).  Therefore, to interpret the variations in reflectivity with offset 

and azimuth in terms of fracture distribution, we first need to eliminate this footprint.  

To reduce the acquisition footprint, I choose to keep the azimuthal bins constant and 

change the spatial bin sizes. The next section shows how increasing the bin size reduces 

the acquisition footprint of the survey. 
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4.4 3D Seismic data processing for reflectivity analysis  

 
In this section, I present the main processing steps of the 3D seismic data. The goal is 

to eliminate the survey footprint, such that the amplitude variations with offset and 

azimuth may be interpreted in terms of fracture orientation and relative degree of 

fracturing.  

The data had refraction statics applied, and they were NMO corrected by Marathon 

Oil. Co. I initially binned the data into small bins of 200 ft size, as presented in the 

figures from the preceding section. 

For a reliable azimuthal analysis of the PP reflectivity, I partially stack the data on 

relatively small azimuthal ranges of 20 degrees. In the ideal case of full coverage for all 

azimuth ranges, we get nine reflectivity values at each spatial bin location, corresponding 

to the 9 different azimuthal ranges. However, for small bin sizes, the azimuthal coverage 

is very low. We can increase the fold at each grid location by increasing the spatial bin 

size, while keeping the azimuthal ranges constant. There is a tradeoff between the spatial 

resolution, which requires small bin sizes, and the signal-to-noise ratio, which requires 

larger bin sizes. Ideally, we want to obtain the smallest grid size for which we get a more 

uniform distribution of the fold over the survey for each azimuthal range, and also a 

larger signal-to-noise ratio at each bin location.  

Alternatively, for a fixed bin size we can increase the fold by increasing the azimuthal 

range. For 60º azimuthal bins, we expect a larger fold and consequently a larger signal to 

noise ratio than for smaller azimuthal bins of 20º. However, in this case we considerably 

diminish the resolution in the azimuthal variation of the PP reflectivity, and implicitly we 

reduce from our ability to determine accurately the fracture orientations.  

Figure 4.7 shows a conceptual sketch of the competing effects between the spatial and 

azimuthal resolutions, and the fold. The curves represent schematic lines of constant fold, 

and emphasize the fact that we can obtain approximately the same fold by either 

increasing the spatial bin size and decreasing the azimuthal range (consequently 

decreasing the spatial resolution, while increasing the azimuthal resolution), or 

alternatively, by increasing the azimuthal range and decreasing the spatial bin size 
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(consequently decreasing the azimuthal resolution, while increasing the spatial 

resolution). The fold increases with both azimuthal range and spatial bin size. 

 
Figure 4.7: Conceptual variation of the fold with the azimuthal bin size and the spatial bin 

size. We can keep the fold approximately constant either by increasing the bin size 
and decreasing the azimuthal range (consequently decreasing the spatial resolution, 
while increasing the azimuthal resolution), or by decreasing the bin size and 
increasing the azimuth range (consequently increasing the spatial resolution, while 
decreasing the azimuthal resolution). The fold increases with both azimuthal and 
spatial bin sizes. 

 
In this section, I present the analysis of the fold, and the corresponding amplitude 

maps, with increasing spatial bin sizes, at fixed azimuthal range. The goal is to determine 

the optimal grid dimension for which the acquisition pattern is significantly reduced. 

At fixed spatial bin size, the fold varies with azimuth, as well as offset. For each of 

the spatial bin sizes considered, I partially stack the data for the near-offsets (0 –3000 ft) 

and for the far-offsets (4000-8000 ft). For each of the near- and far-offset stacks, I 

additionally sort the data and partially stack them on 9 different azimuth ranges of 20 

degrees each. 

Figure 4.8 shows the seismic amplitudes and the corresponding fold maps for the far-

offset stack (top panels), and for the near-offset stack (bottom panels), at a time slice 

corresponding to the top of the reservoir. The size of the spatial bins is 200 ft. The 

azimuthal range is 20 degrees, centered about azimuth 20º. The left panels present the un-
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normalized amplitude maps, while the middle panels present the amplitude maps 

normalized by the fold.  We can observe a strong acquisition pattern on both near- and 

far-offset stacks for this azimuthal range.  
 

 
 

Figure 4.8: 200 ft bin size. Amplitude maps for a time slice at 1.3 seconds for the far -
offset stacks (top panels) and the near-offset stacks (bottom panels) with their 
corresponding fold maps (right panels). Left panels: amplitudes un-normalized by 
fold. Middle panels: amplitudes normalized by fold.  Azimuth centered about 20º. 

 

Figure 4.9 is similar with Figure 4.8, but corresponds to another azimuth range, 

centered at azimuth 80º. Comparing Figures 4.8 and 4.9, we can see that the fold maps 

change with the azimuth for both far and near offsets, as expected. The seismic amplitude 

maps also change with the azimuth. 

For a small bin size of 200 ft, the azimuthal coverage is very low. For the specified 

ranges of azimuth and offsets, there are numerous bins that do not have any data. 

Furthermore, even for the bins that have data, the fold is very small, and therefore the 
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signal-to-noise ratio is not satisfactory to confidently interpret any seismic amplitude 

variations.  
 

 
 
Figure 4.9: 200 ft bin size. Amplitude maps for a time slice at 1.3 seconds for the far -

offset stacks (top panels) and the near-offset stacks (bottom panels) with their 
corresponding fold maps (right panels). Left panels: amplitude un-normalized by fold. 
Middle panels: amplitude normalized by fold.  Azimuth centered about 80º. 

 

Next, I double the grid size, and repeat the analysis of the fold for the same ranges of 

azimuths and offsets. Figure 4.10 shows the fold map for all of the azimuths and offsets 

taken together, using bins of 400 ft. The acquisition footprint is not yet eliminated, 

although the fold increases, as compared to the case of 200 ft bin size (Figure 4.4). 

However, from Figure 4.11 we can see that, for a grid size of 400 ft, the azimuthal 

coverage is still low. There are many bins that do not have any data for the specified 

ranges of azimuths and offsets. The acquisition footprint is still visible on the fold maps 

for the near- and far-offset stacks, corresponding to the range of azimuth centered about 

80º. 
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Figure 4.10: Map view with the fold for the stack data (400 ft bin size). 
 

 

 
Figure 4.11: 400 ft bin size. Amplitude maps for a time slice at 1.3 seconds for the far -

offset stacks (top panels) and the near-offset stacks (bottom panels) with their 
corresponding fold maps (right panels). Left panels: amplitude un-normalized by fold. 
Middle panels: amplitude normalized by fold.  Azimuth centered about 80º. 
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Figure 4.12 shows the fold map corresponding to superbins of 800 ft, for all offsets 

and azimuths. We can still observe the acquisition footprint at this large superbin size. 

However, as Figure 4.13 shows, the fold map for the far-offset stack corresponding to an 

azimuthal range of 20 degrees, centered about 80º, becomes more uniform than those 

corresponding to the smaller bin sizes. Therefore, I determine that, for a reliable 

azimuthal analysis of the reflectivity from this 3D seismic survey, the superbin size 

should be at least 800 ft, to get a satisfactory fold for the specified offset and azimuths 

ranges, for most of the grid points.  

 
Figure 4.12: Map view with the fold for the stack data (800 ft bin size). 

 
 

For completeness, I also consider superbins of 1600 ft. The corresponding fold map 

for all azimuths and offsets is presented in Figure 4.14. The fold map shows a much more 

uniform distribution over the survey. The acquisition footprint is eliminated at this 

superbin size. However, by using bins of 1600 ft size, we lose significantly on the spatial 

resolution.  
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Figure 4.13: 800 ft bin size. Amplitude maps for a time slice at 1.3 seconds for the far -

offset stacks (top panels) and the near-offset stacks (bottom panels) with their 
corresponding fold maps (right panels). Left panels: amplitude un-normalized by fold. 
Middle panels: amplitude normalized by fold.  Azimuth centered about 80º. 

 

 
Figure 4.14: Map view with the fold for the stack data (1600 ft bin sizes).  
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Figure 4.15: 1600 ft bin size. Amplitude maps for a time slice at 1.3 seconds for the far -

offset stacks (top panels) and the near-offset stacks (bottom panels) with their 
corresponding fold maps (right panels). Left panels: amplitude un-normalized by fold. 
Middle panels: amplitude normalized by fold.  Azimuth centered about 80º. 

 
Figure 4.16 shows the amplitude maps at the top of the reservoir for the far-offset 

stack, summed over all of the azimuths, for each of the bin sizes considered. We observe 

the significant loss in spatial resolution due to increasing spatial bin size. 

In conclusion, by increasing the spatial bin size, I reduce the influence of the 

acquisition footprint, and I also increase the signal-to-noise ratio, by increasing the fold at 

each superbin.  However, the spatial resolution is diminished, as we can see in Figure 

4.16, and therefore the ability to precisely localize possible fracture swarms is also 

reduced.  

From the analysis presented in this section, I consider that for this 3D seismic survey, 

the superbin size should be at least 800 ft at 20º azimuthal ranges to make a reliable 

interpretation of the PP reflectivity variation with offset and azimuth. 
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Figure 4.16:  Interpolated amplitude maps for the far-offset stack and all azimuths 

corresponding to the four different spatial bin sizes considered. Top left panel: 200 ft. 
Top right panel: 400 ft. Bottom left panel: 800 ft. Bottom right panel: 1600 ft. We can 
see how the increasing bin size reduces the spatial resolution. 

4.5 Bootstrap analysis of the PP reflectivity variation with azimuth 

 

In this section, I present the method I use to analyze the PP reflectivity variation with 

azimuth for fracture characterization. 

As previously discussed, the smallest superbin size we should use for the seismic 

amplitude analysis is 800 ft, when we consider azimuthal bins of 20 degrees. 

Figure 4.17 presents the seismic amplitude values at the top of the reservoir as a 

function of azimuth, for both the far- and the near-offset stacks, corresponding to two 

randomly chosen superbin locations, each of 800 ft size. The top panel of Figure 4.17 

shows very little azimuthal variation for both near- and far-offset stacks.  
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However, the azimuthal variation may be significant at other location, as we can 

observe on the bottom panel of Figure 4.17. As expected, the azimuthal variation of the 

seismic amplitudes is stronger for the far-offset stack than for the near-offset stack, as 

predicted by fracture modeling (Sava et al, 2002), as I also show in Chapter 3. 

 

 
Figure 4.17: Amplitude for the far- and near-offset stacks as a function of azimuth at two 

different superbin locations. 
 

For a fixed angle of incidence, the azimuthal variation of the reflectivity due to the 

presence of a single set of aligned fractures can be approximated by a cosine function 
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(Teng, 1998). The parameters of this cosine function are its mean value, the amplitude of 

the oscillation, and the phase. The mean value of the cosine function is influenced by the 

degree of fracturing, and the fluid type in the fractures. The amplitude of the cosine 

function is commonly interpreted as a measure of the fracture density, while the phase of 

the cosine function gives information about the fracture orientation.  

To determine the parameters of the least-squares cosine fit to the observed azimuthal 

variation at each superbin, I use a bootstrap method (Efron and Tibshirani, 1998; Teng, 

1998). The idea is that the measurements for the 9 different azimuthal ranges of 20 

degrees can be treated as 9 random samples out of an infinite number of measurements 

we could have made. The errors in the reflectivity values are considered to be Gaussian. 

Therefore, each data value belongs to a normal distribution with the mean equal to the 

measured value, and the standard deviation evaluated as a percentage of the mean 

amplitude at the top of the reservoir, to represent the measurement uncertainty.  Then, I 

draw a value independently from each of the 9 individual normal distributions. These 9 

different values, corresponding to the 9 different azimuthal ranges of 20 degrees each, 

represent one realization.  Next, I fit a cosine curve to these 9 values using the least-

square method.  This cosine curve represents one bootstrap realization for estimating the 

true model. I repeat the procedure many times and obtain hundreds of cosine functions 

that would fit the observations affected by errors. Therefore, from this large number of 

realizations we can derive the corresponding distributions for the cosine parameters, 

which represent a measure of uncertainty due to measurement errors. Figure 4.18 presents 

100 realizations for the least-square cosine fits to the data corresponding to the far-offset 

stack presented at the bottom of the Figure 4.17. 

However, the interpretation of the fracture parameters based on the cosine fitting 

alone is not enough. Rock physics modeling shows that the azimuthal variation of 

amplitudes depends strongly on the model we consider. Therefore, rock physics fracture 

modeling is the crucial link between the observed seismic data and the actual parameters 

of fractures.  
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Figure 4.18:  Amplitude variation with azimuth at a fixed superbin, and the 100 cosine 

fits obtained using a bootstrap method, taking into account the measurement errors 
represented by the error bars. 

 

In the next section I present the results of the rock physics fracture modeling for the 

PP reflectivity variation with azimuth for the James Limestone reservoir. 

4.6 Rock physics fracture modeling of the PP reflectivity 

 
In this section, I present the results of the PP reflectivity modeling, based on the well-

log data from a nearby field. More details and results are given in Chapter 3. The 

carbonate reservoir is modeled with a single set of vertical fractures. The cap rock, 

represented by a shaly formation, is considered unfractured. The seismic properties (VP, 

VS, and density) for the cap rocks and the reservoir rocks are derived from the well-log 

data, by upscaling, as I describe in more detail in the Chapter 3.  

For an HTI medium generated by a single set of vertical fractures, the amplitude 

variation with angle of incidence and azimuth (AVAZ) can help in determining the 

fracture’s strike. AVAZ can also give information about the degree of fracturing and the 

type of fluid in the fractures.  
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In this analysis, I use Hudson’s (1981) penny-shaped crack model to derive the elastic 

properties of the fractured reservoir. Then I use the approximation by Vavrycuk and 

Psencik (1998) to calculate the PP reflectivity variation with angle of incidence and 

azimuth at the interface between the reservoir, modeled with a vertical set of fractures, 

and the cap rock, represented by a shaly formation. 

Figures 4.19 and 4.20 show the mean values of the PP reflectivity from the top of the 

reservoir, as a function of the incidence angle and azimuth, for the gas- and brine-filled 

fractures, respectively (Sava et al, 2002). In both cases the matrix porosity is brine 

saturated.  

As expected, the azimuthal variation of the PP reflectivity (RPP) increases with angle 

of incidence, for both brine-filled and gas-filled fractures. From the bottom panel of 

Figure 4.17, we observe that the PP reflectivity derived from the 3D seismic survey at 

this randomly chosen spatial bin shows qualitatively the same result as the one predicted 

by the rock physics fracture modeling. The modeling results are displayed on the whole 

360º range for the azimuth (Figures 4.19 and 4.20, right panels), while the seismic 

derived amplitudes are displayed on a 180º range, due to symmetry considerations. 

The modeling shows that there is a change in the polarity of the azimuthal variation 

of the PP reflectivity (RPP) between 100% brine-filled fractures and 100% gas-filled 

fractures, as I also presented in Chapter 3. For the brine-filled fractures, the maximum 

RPP value at a fixed angle of incidence is in the direction perpendicular to fractures, while 

for the fractures saturated with gas the maximum RPP value is in the direction parallel to 

fractures. This result can be used to differentiate between gas-filled and brine-filled 

fractures, assuming that the azimuthal anisotropy is due only to the presence of a vertical 

set of joints. On the other hand, this fact introduces an additional ambiguity, when 

considering only the azimuthal variation of the amplitude. If we do not have information 

about the fluid type we cannot say, for example, if the fractures are oriented E-W or N-S, 

based on the azimuthal variation of the seismic amplitudes alone. 
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Figure 4.19: Expected values for the PP reflectivity as a function of angle of incidence 

and azimuth. The right side panel presents the RPP amplitude variation with azimuth 
at 15º and 30º angles of incidence. Azimuth 0º is perpendicular to the fracture plane. 
Fractures are oriented E-W. Matrix porosity is brine saturated, while the fractures are 
100% filled with gas. Aspect ratio of the fractures is 0.01. 

 
Figure 4.20: Expected values for the PP reflectivity as a function of angle of incidence 

and azimuth. The right side panel presents the RPP amplitude variation with azimuth 
at 15º and 30º angle of incidence. Azimuth 0º is perpendicular to the fracture plane. 
Fractures are oriented E-W. Matrix porosity is brine saturated, while the fractures are 
filled with brine. Aspect ratio of the fractures is 0.01. 
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In practical situations the fractures may be partially saturated with gas. I investigate 

the azimuthal variation of the PP reflectivity with gas saturation. To determine the bulk 

modulus for the mixture of fluids, I consider both the fine-scale mixing of brine and gas, 

by using Reuss (1929) average, and also the patchy saturation, approximated by the Voigt 

average. I expect the patchy saturation to be more relevant for field studies, since the gas 

tends to segregate gravitationally from the brine. 

Figure 4.21 presents the reflectivity variation with azimuth, at fixed angle of 

incidence, equal to 30º, for different gas saturations. The fracture density as defined in 

Hudson’s model is 0.1, while the aspect ratio of the ellipsoidal cracks is 0.01. The 

different curves correspond to different gas-saturation levels (from 100% to 0%). The left 

panel corresponds to the fine-scale mixing of the gas and the brine, while the right panel 

corresponds to the large-scale mixing of the two fluids (patchy saturation). Azimuth 0º 

corresponds to the direction orthogonal to fractures. In the direction parallel to fractures 

(azimuth 90º), the PP reflectivity does not change significantly with the fluid type, as 

expected.  

However, in the direction orthogonal to fractures, the PP reflectivity varies 

significantly. Also, the polarity of the azimuthal variation changes with gas saturation. 

The type of fluid-mixing law has also a significant influence on the amplitude variation.  

In the case of patchy saturation (right panel), the azimuthal polarity changes at a brine 

saturation of only 20%.  Therefore, for fractures saturated 80% with gas and 20% with 

brine in a patchy manner, the polarity of the azimuthal variation becomes identical to that 

of the 100% brine saturated fractures. Also, we observe that in this example, for a gas 

saturation of 90%, the azimuthal variation is very small. Therefore, the modeling 

suggests that for some gas saturations, the azimuthal variation of the PP reflectivity may 

not be very useful to predict the main fracture orientation. In the case of the fine-scale 

mixing of gas and brine, the gas-saturation level at which the azimuthal polarity of the PP 

reflectivity becomes identical to that of the 100% brine filled fractures is around 30%. 

The compressibility of the cracks also influences the azimuthal variation of the PP 

reflectivity. For a higher compressibility (aspect ratio of 0.001), the azimuthal variation 

of the PP reflectivity has the same polarity, independently of the gas concentration 



CHAPTER 4:  Azimuthal Analysis of the PP Reflectivity for Fracture Characterization  122 

 

(Figure 4.22). The PP reflectivity is has a maximum value in the direction orthogonal to 

the fracture plane. In this case, the azimuthal variation increases slightly with increasing 

brine saturation.  

In conclusion, rock physics modeling enables us to understand the relations between 

the azimuthal variation of seismic amplitudes and physical parameters, such as fracture 

orientation, fluid content and compressibility of the fractures. Observing a certain 

azimuthal variation of the reflectivity in the seismic data does not determine fracture 

orientation and density. Rock physics of fractures shows that the variation of the PP 

reflectivity with azimuth depends significantly on the model considered. Therefore, 

careful analysis should be performed before interpreting the seismic observations.  

 
Figure 4.21: PP reflectivity as a function of azimuth at a 30º degrees angle of incidence. 

Different curves correspond to different gas-saturation levels (from 100% to 0%). 
Left panel corresponds to fine-scale mixing of gas and brine. Right panel correspond 
to patchy saturation. The arrow indicates decreasing gas saturation. Aspect ratio of 
the fractures is 0.01. Azimuth 0º is orthogonal to fractures. 
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Figure 4.22: PP reflectivity as a function of azimuth at a 30º angle of incidence. Different 

curves correspond to different gas-saturation levels (from 100% to 0%). Left panel 
corresponds to fine-scale mixing of gas and brine. Right panel correspond to patchy 
saturation. The arrow indicates decreasing gas saturation. Aspect ratio of the 
fractures is 0.001. Azimuth 0º is orthogonal to fractures. 

4.7 Fracture distribution from the azimuthal variation of the PP reflectivity 

 
In this section, I present the results of the azimuthal analysis of the PP reflectivity 

from the 3D seismic survey presented in previous sections. The goal is to determine the 

fracture orientations and the anisotropy of the azimuthal variation in the amplitudes at the 

top of the fractured carbonate reservoir. Since the geological structure is very flat, the top 

of the reservoir corresponds to a time slice at 1.3 seconds.  

The fracture orientation at each bin location is derived from the azimuthal analysis of 

PP reflectivity at far-offset stacks (4000-8000 ft) using the bootstrap method presented in 

section 4.5. Therefore, I obtain not only a map with the mean fracture orientations, but 

also the associated standard deviations, due to measurement errors. These standard 

deviations correspond to a measurement error in the seismic amplitudes equal to 10% of 

the mean amplitude at the top of the reservoir. 
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As the rock physics modeling shows, the fracture strike may correspond to the 

azimuth for which we obtain either a minimum or a maximum of the amplitude, 

depending on the compressibility of the fluid and of the fractures.  

Based on the modeling results for the carbonate reservoir, I determine the fracture 

strike such that it corresponds to the azimuth for which we get a minimum in the 

azimuthal variation of the reflectivity. This criterion corresponds primarily to two 

situations: either the fractures are highly compressible, independently of the type of fluids 

that saturate them (Figure 4.22), or the fractures are less compressible and partially 

saturated with 90% or less of gas, in a patchy manner (Figure 4.21, right panel). 

Figure 4.23 presents the mean fracture orientations at each superbin locations. The 

bin size in this case is 1600 ft. The orientations of the red segments represent the mean 

fracture strikes, while those of the green and blue segments are the corresponding 

standard deviations from the mean orientation. The results for fracture orientation are 

superimposed on the map of the stack amplitudes on all offsets and azimuths, at a time 

slice of 1.3 seconds. The length of the red segments is proportional to the mean 

difference between the maximum and minimum values in the azimuthal variation of the 

reflectivity. The lengths of the blue and the green segments represent the standard 

deviations of this mean amplitude difference.  

From Figure 4.23 we can observe that for some bin locations, the standard deviation 

of the mean orientation of the fractures is large, especially at the edges of the survey. 

However, for most of the superbins we obtain relatively small standard deviations, 

showing that the seismic data, with their associated measurement errors, constrain the 

fracture orientations reasonably well.  
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Figure 4.23: Fracture orientation at time slice of 1.3 seconds, corresponding to the top of 

James Limestone reservoir. The orientations of the red segments represent the mean 
fracture strikes, while the blue and green segments represent the standard deviations 
from the mean orientation. The length of the red segments is proportional to the mean 
of the difference between the maximum and minimum amplitudes at each bin location 
(reflectivity anisotropy). The lengths of the blue and green segments give the standard 
deviations from this mean difference in the amplitudes. The fracture strikes are 
superimposed on the stack amplitude map for the time slice. The superbin size is 
1600 ft. 

 

However, as we can see in Figure 4.23, the superbin size is very large, equal to 1600 

ft.  Thus, this map only gives average trends for fracture orientation. To obtain a more 

detailed interpretation we have to use smaller bin sizes. Therefore, I also consider the 

case of a superbin size of 800 ft. This dimension is the smallest we should use to avoid 

the artifacts introduced by the acquisition footprint, as I showed in the section 4.4. 
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 Figure 4.24: Fracture orientation at time slice of 1.3 seconds, corresponding to the top of 

James Limestone reservoir. The orientations of the red segments represent the mean 
fracture strikes, while the blue and green segments represent the standard deviations 
from the mean orientation. The length of the red segments is proportional to the mean 
of the difference between the maximum and minimum amplitudes at each bin location 
(reflectivity anisotropy). The lengths of the blue and green segments give the standard 
deviations from this mean difference in the amplitudes. The fracture strikes are 
superimposed on the stack amplitude map for the same time slice. The superbin size 
is 800 ft. 

 

Figure 4.24 gives the same representation for the fracture orientation as Figure 4.23. 

However, in this case the superbin size is 800 ft, enabling us to obtain a more detailed 

interpretation of the fracture orientation at the top of the reservoir. We again observe 

some bins that show large standard deviations of the fracture strike determined from the 

azimuthal variation in the seismic amplitudes at far offsets. Most of the superbins display 

relatively small standard deviations, suggesting that the azimuthal variation in seismic 

amplitudes at far offset can be used to constrain the fracture orientation for this survey. 
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The distributions of the mean fracture orientations in the rotated coordinate system 

for both the 1600 ft and 800 ft bin size cases are presented in Figure 4.25. From the two 

rose diagrams, we observe that the mean fracture strikes derived from the amplitude 

variation with azimuth at far offsets does not change significantly with the bin size. The 

trends observed at smaller scale (800 ft bin size) are preserved also at larger scale (1600 

ft). 

 
Figure 4.25: Rose diagrams for the fracture strike in the rotated coordinate system for 

1600 ft bin size (left) and 800 ft bin size (right). This coordinate system is rotated 34º 
East with respect to the geographic North. 

 

If we represent the fracture orientation in the original system of coordinates of the 

survey, we observe an E-W trend for the fracture strikes in this field.  

The FMI log data show the existence of open, nearly vertical fractures with dips 

around 89 degrees, whose orientations are W10N-E10S. There is a relatively small spread 

of the mean fracture strike around this main orientation. I find a very good agreement 

between the fracture orientation derived from azimuthal analysis of the seismic 

amplitudes and the FMI measurements from the well, as we can see in Figure 4.27. 
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Figure 4.26: Left: Rose diagram for the fracture strike from azimuthal variation of PP 

reflectivity at far offsets in the original system of coordinates of the survey. In the 
rose diagram, 90 degrees azimuth corresponds to the geographical North. Right: 
Schematic representation of the seismic survey area. 

 

 
Figure 4.27: Comparison between the distributions of fracture strikes interpreted from a 

FMI log in James Limestone reservoir from a well in a nearby field (left) and the 
fracture strike interpreted from the azimuthal analysis of the seismic amplitudes at far 
offsets at the top of the James Limestone reservoir (right). Geographic North is the 
same for both rose diagrams. The observed fractures in the FMI log have dips of 89 
degrees. 

 

If we plot the mean fracture orientation from the distribution that we get from the 

azimuthal analysis of the PP reflectivity on the map with the regional stress field we 

observe again a good agreement. The mean fracture strike is almost parallel to the 

maximum horizontal stress (Figure 4.28). 

N 

N 
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Figure 4.28: Map with the regional stress field (World Stress Map Project, data collected 

originally by Mary Lou Zoback). Superimposed is the fracture strike obtained from 
the azimuthal analysis of the PP reflectivity at far offsets (blue). 

 

I also derive the relative anisotropy observed in the azimuthal variation of the seismic 

amplitudes at far offsets, and the associated standard deviation due to measurement 

errors, by using the bootstrap method. Figure 4.29 presents a map at the top of the 

reservoir with the mean values for the relative anisotropy of the azimuthal variation in the 

seismic amplitudes. The relative anisotropy is defined as: 

min

minmax

R

RR
R anis

−
=                                                     (4.1) 

The modeling shows that the difference between the maximum and minimum values 

of the amplitude from the azimuthal variation at far offsets is a function not only of the 

crack density, but also of the compressibility of the fractures and of the fluids that 

saturate them. In the hypothesis of little variability in the fracture compressibility and of 

uniformly saturated fractures, the map presented in Figure 4.29 can be interpreted as a 

relative degree of fracturing at the top of the reservoir.  

We can observe a relatively higher anisotropy in the proximity of an interpreted fault 

that penetrates the carbonate reservoir. This fault is schematically represented in Figure 

4.28. This may be due to a relatively higher fracture density of nearly vertical fractures in 

the proximity of the fault. The anisotropy anomaly is slightly asymmetric with respect to 

Fracture strike from 
seismic data 
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the fault. Larger values of the relative reflectivity anisotropy are encountered in the 

hanging wall, as some outcrop observations for analogs show (Florez, 2002). However, 

we can also observe a zone of higher azimuthal anisotropy in the seismic amplitudes 

away from the fault. This zone may also correspond to larger fracture densities associated 

with possible subseismic faults. This reflectivity anisotropy is used in Chapter 5 to 

constrain the fracture density distribution at the top of the reservoir. 

 
Figure 4.29: Map with the mean relative azimuthal anisotropy in reflectivity at the top of 

the reservoir.  
 
In conclusion, I find an excellent agreement between the fracture orientation derived 

from the azimuthal variation of seismic amplitudes at far offsets and the fracture 

orientation derived from the FMI logs from the nearby wells. Furthermore, the mean 

fracture orientation derived from the seismic data is approximately parallel to the 

maximum horizontal stress in the region, as expected in a normal faulting environment.  

The distribution of the azimuthal anisotropy in the PP reflectivity derived from the 

seismic data at the top of the reservoir may be interpreted as a relative degree of 

RPP anis. 
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fracturing, assuming little variability in the fracture compressibility for the zone of 

interest, and uniform saturation for the fractures.  

4.8 Conclusions 

 
In this chapter, I present the analysis of the PP reflectivity from a 3D seismic data set 

acquired over a fractured carbonate reservoir in eastern Texas, for determining the 

fracture orientations and the azimuthal anisotropy in reflectivity at the top of the 

reservoir.  

In the first part of this chapter, I show the impact of the 3D seismic acquisition 

footprint on analyzing the variation of the reflectivity with both offset and azimuth.  The 

acquisition footprint of this survey affects significantly the seismic amplitudes, as we 

observe on the reflectivity time slices. The fold is not uniform, and it creates artificial 

stripes of low and high reflectivity that can mask the actual signatures of fractures.   

Azimuthal analysis of the PP reflectivity involves partial stacking of the data on 

different ranges of azimuth. There is a tradeoff between the azimuthal resolution, which 

requires small ranges of azimuth, and the signal-to-noise ratio that requires larger fold, 

and implicitly larger azimuthal bins. For a fixed azimuthal range we can increase the fold 

by increasing the bin size, at the expense of reducing the spatial resolution.  

In this chapter, I show how increasing the spatial bin size can diminish the strong 

acquisition footprint, while increasing the fold and implicitly the signal-to-noise ratio at 

each superbin location. The azimuthal range for stacking the reflectivity is kept constant, 

equal to 20 degrees. Based on the analysis, I determine that for this 3D seismic survey, 

the superbin size should be at least 800 ft, at 20º azimuthal range, to make a reliable 

interpretation of the reflectivity variation with offset and azimuth.  

Once we observe an azimuthal variation in the seismic amplitudes, the challenge is to 

interpret it in terms of fracture density, orientation, and fluid saturation. Rock physics 

fracture modeling enables us to link the observed seismic attributes to the actual 

parameters of fractures. Therefore, in the second part of this chapter I present more 

modeling results of the amplitude variation with incidence angle and azimuth (AVAZ) 
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for the fractured carbonate reservoir. The rock physics fracture modeling shows that the 

interpretation of the azimuthal variation of the PP reflectivity in terms of fracture 

orientation and relative degree of fracturing requires careful rock physics modeling and 

additional geological constraints. The polarity of the azimuthal variation of the 

reflectivity changes with both gas saturation and the compressibility of the cracks. 

Therefore, the fracture strike can be given by the azimuth corresponding to either a 

maximum or a minimum in the azimuthal variation of the reflectivity. This result that 

may be used to differentiate between gas-filled and brine-filled fractures, assuming that 

the azimuthal anisotropy is due only to the presence of a vertical set of joints whose 

orientation is determined from other sources of information. On the other hand, this fact 

introduces an additional ambiguity when we want to determine the fracture orientation 

from the AVAZ alone. If we do not have information about the fluid that saturates the 

fractures, in some situations we may not be able to determine the fracture strike.  

Based on the rock physics analysis, I consider that the fracture strike at the top of the 

James Limestone reservoir is given by the minimum in the azimuthal variation of the 

reflectivity. This criterion corresponds to the cases for which either the fractures are 

highly compressible, independently of the type of fluids that saturate them, or the 

fractures are less compressible and partially saturated with 90% or less of gas, in a patchy 

manner.  Under these hypotheses, I derive a map with the fracture orientation and the 

associated azimuthal anisotropy in the reflectivity at the top of the reservoir. Using a 

bootstrap method, I also estimate the uncertainty in the fracture orientation and the 

azimuthal anisotropy in the reflectivity due to measurement errors. I find an excellent 

agreement between the mean fracture orientations derived from the azimuthal variation of 

the seismic amplitudes at far offsets and the fracture orientations derived from the FMI 

logs from a nearby well. There is also a very good agreement between the mean 

fractures’ strike from AVAZ and the present regional stress field. The mean fracture 

orientations are approximately parallel to the maximum horizontal stress in the region.  

The distribution of the azimuthal anisotropy in the PP reflectivity at the top of the 

reservoir may be interpreted as a distribution of the relative degree of fracturing, 

assuming little variability in the fracture compressibility for the zone of interest, and 
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uniform saturation for the fractures. I observe a relatively higher anisotropy in the 

proximity of an interpreted fault that penetrates the James Limestone reservoir. This may 

be due to higher fracture densities in the proximity of the interpreted fault. The 

anisotropy anomaly is slightly asymmetric, with higher values of the anisotropy in the 

hanging wall of the fault. This interpretation is in agreement with field observations, and 

with the geological model for the reservoir. However, we can also observe a zone of 

higher azimuthal anisotropy in the seismic amplitudes away from the fault. This zone 

may also correspond to larger fracture densities, perhaps associated with subseismic 

faults. 

Fracture characterization from AVAZ requires careful rock physics modeling and 

additional geological and geomechanical information on fracture compressibility and 

fluids distribution. However, in the absence of such information, using multiple seismic 

attributes can also help reduce the uncertainty in the interpretation of fracture orientation 

and density. For example, using the azimuthal variation in the reflectivity together with 

the seismic amplitude values either at the near- or far-offsets can better constrain the 

fracture distribution.  

The next chapter presents the methodology for integrating quantitatively the 

geological information about fracture density with seismic data, to reduce the uncertainty 

in fracture characterization. 
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Chapter 5 

Quantitative Integration for Fracture 

Characterization 
 

5.1 Abstract 

 

Subsurface property estimation in the geosciences is always subject to uncertainty. 

This is mainly due to measurement errors, to limited measurement resolution, to 

incomplete understanding of the physical and geological phenomena, to natural 

variability of the target rock properties, etc.  Each geoscience discipline brings different 

information, often complementary, but sometimes contradictory, about the subsurface 

heterogeneities. Therefore, integrating different types of geological and geophysical 

information can better constrain the predictions on the subsurface properties.  

In this chapter, I design a methodology for quantitative integration of geological and 

seismic data, using statistical rock physics. Rock physics theories provide a link between 

geology and seismics, while the statistical approach allows for quantitative integration of 

the various types of information. 

Every geophysical measurement is designed to increase our knowledge of the 

subsurface properties we want to estimate. For example, in fracture characterization the 
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goal is to update the prior geological information about the crack density and orientation 

by acquiring seismic data.  I formulate the integration methodology in the framework of 

an inverse problem. I use the language of probability theory and Bayesian statistics to 

combine quantitatively the different types of information from geology, well-log, seismic 

measurements, and rock physics theories, to better constrain the fracture distribution in 

the subsurface. The probabilistic approach also allows for estimating the associated 

uncertainty, and therefore, the method can have an impact on risk and decision analysis in 

reservoir development. 

In this chapter, I illustrate the quantitative integration methodology with fracture 

characterization of a carbonate reservoir in eastern Texas. The main objective is to 

constrain the prior information about fracture density, from the geologic interpretation, 

with reflectivity attributes derived from the 3D seismic data set (Chapter 4), using rock 

physics theories on fractures (Chapter 2). I also present a method for estimating prior 

uncertainties on the fracture density, using geological constraints.   

5.2 Introduction  

 
Estimating the subsurface properties from geophysical measurements represents an 

inverse problem always subject to uncertainty. Among the contributing factors to this 

uncertainty are the measurement errors, the limited measurement resolution, the 

imperfect dependence between the measurements and the rock properties, etc. The 

information provided by seismic data about the subsurface fracture distribution is 

influenced by many factors, such as the type and number of seismic attributes, sensitivity 

of these attributes to the fracture properties, natural variability of the target rocks, and 

accuracy of the derived seismic attributes.  

However, we often have prior, independent information about the spatial distribution 

for the variable of interest from the geological interpretation. In some cases, the prior 

information can play an important role in constraining the geophysical data, to reduce the 

uncertainty of our estimations.  
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This chapter presents a way to integrate quantitatively the geological and seismic 

observations using stochastic rock-physics modeling. The approach is based on the 

framework of an inverse problem, as formulated by Tarantola (1987), using the language 

of probability theory. The probabilistic approach allows us to integrate quantitatively the 

various types of information and also to estimate the uncertainty in our predictions 

(Tarantola, 1987; Houck, 1999; Takahashi et al., 1999).  Therefore, this method can have 

a significant impact on risk and decision analysis for reservoir management. 

The first part of this chapter presents the general methodology of integrating prior 

geological information with seismic data, using rock physics theories (Mavko et. al, 

1998). This method can be applied not only to fracture characterization, but also to 

estimating other subsurface rock properties.  However, the illustrative examples are 

related to fracture density estimation. 

In any Bayesian (Bayes, 1783; Box and Tiao, 1992; Jaynes, 2003) analysis, we start 

by quantifying the state of knowledge about the variable of interest before acquiring new 

data, through the so-called a priori probability density function (PDF). In this chapter I 

also present a method to derive the a priori PDF for the fracture density, based on a set of 

constraints imposed by the geological interpretation and theoretical considerations.  

Finally, I show an example of integrating prior geological information about fracture 

density and various reflectivity attributes from a 3D seismic dataset acquired over a 

fractured carbonate reservoir in eastern Texas. 

5.3 Methodology 

 
The methodology presented in this section is based on Tarantola’s (1987) approach to 

solving inverse problems, by using Bayesian analysis.  The inverse problem can be 

divided into the following steps: 

1) Decide on a minimal set of model parameters which represent the model space 

(M ),  

2) Define the physical laws that relate the model parameters to the observable, or 

data parameters, 
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3) Use measurements of the observable parameters, which constitute the data 

space (D ), to infer the actual values of the model parameters. 

In fracture characterization, the model parameters are represented by the fracture 

density, fracture orientation, fracture compressibility, and type of fluids saturating the 

fractures.  The physical laws that relate the model parameters to elastic properties that 

can be measured seismically are given by rock-physics fracture models, such as those of 

Hudson (1981) or Schoenberg (1980), presented in Chapter 2.  

In this section, I present in more detail the three different components of the inverse 

problem for fracture characterization: the prior information on the model parameters, the 

theoretical relations between the model and the observable parameters, and the 

experimental data. Finally, I present the method of combining all these pieces of 

information to obtain the updated, or posterior state of information on the model 

parameters.  

5.3.1 A priori PDF on the model parameters 

 
As already mentioned, we often have some prior information on the model 

parameters, independent of the site-specific geophysical measurements. The general way 

of expressing mathematically the state of information over a parameter set is through a 

probability density function (Feynman et al., 1963; Tarantola, 1987). In estimation 

problems, the PDF provides us with a complete quantitative description of how likely is 

each of the parameter values.  
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Figure 5.1: Probability density function for crack density. The PDF is assumed to be a 

truncated exponential on the interval 0.02 to 0.12, with mean 0.04. The small values 
are more probable than the large values. 

 

For example, Figure 5.1 presents an a priori probability density function for the crack 

density (e) as defined in Hudson’s (1981) model (see Chapter 2). The prior information 

often comes from geological observations in outcrops, from laboratory measurements, 

and also from previous field studies.  In the example from Figure 5.1, the PDF is assumed 

to be exponential over the crack density interval from 0.02 to 0.12, with a mean equal to 

0.04. This PDF suggests that the smaller values of the crack density are more probable 

than the higher values, as presented in Chapter 2. 

In the case of a multi-dimensional parameter set, including for example, the fracture 

density, orientation, and compressibility of the fractures and of the saturating fluid, we 

can describe the prior information using the joint PDF over these variables. In the simple 

case of independence among the variables, the joint PDF is given by the product of the 

individual marginal PDFs for each of the variables. Following Tarantola’s (1987) 

notation, ρM(m) represents the probability density function for the prior information on 

the model parameters, where m is a vector representing the parameter set of the model 

space (M ).   

In the example from Figure 5.1, the prior PDF of the crack density can be denoted as 

ρM(e). In this case, the model parameter is the crack density, e. 
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The prior information about the model parameters is by definition statistically 

independent of the measurements, and represents an important component of any 

Bayesian analysis (Bayes, 1783). In this chapter, I also present a way of estimating the 

prior PDF based on constraints imposed by geological and theoretical information, in 

section 5.4. 

5.3.2 Experimental data 

 
The geophysical measurements, in our case the seismic data, are affected by errors. 

Thus, the most general way of expressing the uncertainty about the observed data is 

through probability density functions, often with a Gaussian distribution.  

 
Figure 5.2: Probability density function for seismic reflectivity. The PDF is assumed 

Gaussian, with the mean centered about the observed value. The variance is a 
measure of the uncertainty about the observed value.  

 

For example, Figure 5.2 presents a Gaussian PDF associated with a measurement of 

near-offset seismic reflectivity. The mean of the Gaussian represents the observed 

reflectivity, while the variance represents our degree of belief in that particular measured 

value.  

The data space (D) usually includes different types of measurements, for example, 

the near- and the far-offset seismic reflectivity. I generically denote the joint PDF over 
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the data space as ρD(d). Therefore, for multiple types of data, we can represent the 

measurement errors by a multivariate Gaussian, as follows: 

ρD(d)=Gaussian(d,dobs,CD),                                              (5.1) 

In Equation 5.1, d is the vector with the data variables (such as the near- and the far-

offset reflectivity), dobs is the vector with the observed values, which contains the means 

of the multivariate Gaussian function, and CD is the covariance matrix over the data 

space. If the data are assumed independent, the covariance matrix is diagonal with the 

variances of the individual data types. 

In the example from Figure 5.2, the PDF expressing the uncertainty of the near-offset 

reflectivity value can be written as: 

ρD(RN)=Gaussian(RN, RNobs , s2) = ⎥
⎦
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                (5.2) 

In this case, the data is represented by the near-offset reflectivity, RN. The mean of the 

Gaussian function is the observed value of reflectivity RNobs,, while the variance, s2, is 

assumed to represent the uncertainty about the observed value. 

5.3.3 Theoretical relation between model parameters and experimental data 

 
Probability density functions can be used to express not only the a priori information 

on the model parameters and the measurement uncertainty in the data, but also the 

physical correlations between these model parameters and the measurable, or data 

parameters. The joint PDF between the model parameters and the measurable seismic 

attributes describes the uncertainty of the relation between them. This uncertainty can be 

caused by various factors, including the approximations in the physical theory, as 

Tarantola (1987) describes, which are difficult to estimate. However, the uncertainty due 

to the natural variability of the target rock properties may be a more significant source of 

uncertainty. In this case we can incorporate the natural variability of the rock properties 

into deterministic rock-physics theories, using stochastic simulations (Mavko and 

Mukerji, 1998; Mukerji et. al, 2001).  
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Figure 5.3 gives an example for the joint PDF between the model parameter (crack 

density), and the data parameter (azimuthal reflectivity anisotropy), in the assumption of 

aligned vertical fractures. The physical law from which I generate the joint PDF in Figure 

5.3 is given by Hudson’s (1981) theory, which relates the fracture density to the elastic 

properties of the fractured media. Using the elastic properties for the fractured rocks I 

estimate the seismic reflectivity anisotropy based on the Ruger’s (1997) equations, in the 

hypothesis of a vertical set of fractures (more details in Chapter 4). The Monte Carlo 

simulations for deriving the theoretical joint PDF between the model parameters and the 

observable data will be presented in the following sections; more details are given in 

Chapter 3. 

 
Figure 5.3: Joint PDF of crack density and azimuthal reflectivity anisotropy, showing 

uncertainty in the relation between model parameters and observable parameters due 
to natural variability of the rock properties. 

 

The joint PDF that describes the theoretical relation between the model parameters 

and the data is symbolically represented as Θ(m,d).  

In the example from Figure 5.3, the theoretical joint PDF can be written as Θ(e,A), 

where e is the crack density and A is the azimuthal reflectivity anisotropy. 
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5.3.4 Combining a priori, experimental and theoretical information 

 
To summarize, any geophysical inverse problem has three different components: 1) 

the prior information on the model parameters, which often comes from geology, 2) the 

results of some experiments, often represented by the seismic data, and 3) the theoretical 

relation between the model parameters and the experimental data, which in fracture 

characterization is given by rock-physics theories. Therefore, the general question we 

should ask in solving an inverse problem is the following (Tarantola, 1987): Given a 

certain amount of prior information on the model parameters, and given an uncertain 

physical law relating the observable parameters to the model parameters, how should we 

modify the a priori information, given the uncertain results of some measurements?  

In this framework, the inverse problem is solved by integrating quantitatively the 

prior, experimental, and theoretical information.  

If we combine the prior PDF for the model parameters with the information on the 

data, we can define the prior joint PDF ρ(m, d) in the space M x D.  Since the a priori 

information on the model parameters is by definition statistically independent from the 

data, the joint PDF of the model parameters and the observable data is given by the 

product between the PDF for the model parameters ρM(m) and the PDF for the data 

ρD(d): 

ρ(m, d) = ρM(m) ρD(d)                                              (5.3) 

The joint probability density ρ(m, d), defined on the M x D  space, represents the 

prior geological information on the model parameters, m, and the information from the 

geophysical data, d.  

On the other hand, we also have the theoretical PDF, Θ(m, d), which represents the 

state of information on the physical correlations between the model parameters, m, and 

the data, d, which are given by the rock physics theories. 

The solution to the inverse problem is obtained by combining these two states of 

information to produce the a posteriori state of information on the model parameters and 

the data, as follows (Tarantola, 1987): 
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σ(m, d) ~ 
µ
1

ρ(m, d) Θ(m, d),                                      (5.4) 

where σ(m, d) represents the a posteriori state of information on the model parameters 

and the data, defined also in the M x D  space. The a posteriori distribution is obtained 

by dividing the product of the two different states of information, ρ(m, d) and Θ(m, d), 

as described above, by the non-informative PDF, also known as the homogeneous 

probability, µ  (Tarantola, 1987). Although no coherent inverse theory can be set without 

the introduction of the homogeneous probability, it does not play an important role, and 

numerical inverse results do not critically depend on the particular form of µ (Tarantola, 

1987).  

The posterior PDF for the model parameters is obtained by integrating the a 

posteriori joint PDF for the model parameters and the observable parameters, σ(m, d), 

over the data dimension: 

σM(m) = ∫ σ(m, d) dd.                                                (5.5) 

The a posteriori distribution on the model parameters, σM(m), represents the updated 

state of information after integrating quantitatively the prior information, the measured 

data affected by errors, and the theoretical relations between the model parameters and 

data. From the posterior distribution on the model parameters, σM(m), we can obtain any 

type of information, such as the expected values and the median values. More 

importantly, we can obtain the probability that the model parameters will satisfy various 

criteria, such as the probability that fracture density is greater than certain thresholds. 

In fracture characterization, the model parameters, represented by the vector m, may 

include the fracture density, the fracture orientation, compressibility of the fractures and 

of the saturating fluid, etc., while the data may be represented by the near- and the far-

offset reflectivity, the azimuthal reflectivity anisotropy, etc. 
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Figure 5.4: Upper panel: Joint PDF of the a priori information on the model parameter 

(crack density) and the information on the observable parameters (reflectivity 
anisotropy). Middle panel: Theoretical Joint PDF between crack density and 
reflectivity anisotropy derived using Hudson’s model for randomly oriented fractures. 
Lower panel: A posteriori PDF for the model and data, computed by combining the 
information in the joint prior PDF and theoretical PDF presented in the upper and 
middle panels. 
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Figure 5.4 illustrates graphically how we can determine the a posteriori PDF, σ(m, 

d), and its marginal distribution on the model parameters, σM(m), from ρ(m, d) and Θ(m, 

d). In this example, the model parameter is the crack density (e), as defined in Hudson’s 

(1981) model, while the data is the azimuthal reflectivity anisotropy (A). The geological 

hypothesis is that there is a single set of aligned vertical fractures. 

The upper panel presents ρ(e, A), the prior joint PDF for the crack density and the 

azimuthal reflectivity anisotropy, with the corresponding marginal PDFs for the model 

parameter, ρM(e), and for the data, ρD(A).  

The theoretical joint PDF, Θ(e, A), presented in the middle panel of Figure 5.4, 

represents the physical correlation between the crack density and the azimuthal 

reflectivity anisotropy. In this example the theoretical joint PDF is derived using 

stochastic simulations and deterministic rock-physics fracture modeling, assuming a 

single set of aligned fractures. The uncertainty in the relation between the crack density 

and the reflectivity anisotropy is due to the natural variability of the unfractured rock 

properties (VP, VS, and density) of the reservoir and cap rocks, derived from the well-log 

data.  However, the uncertainty due to imperfections and approximations in the physical 

model is not considered. 

The lower panel of Figure 5.4 presents the a posteriori joint PDF, σ(e, A), for the 

crack density (e) and the azimuthal reflectivity anisotropy (A). This a posteriori PDF is 

obtained by multiplying the prior joint PDF and the theoretical PDF, using Equation 5.4. 

The homogenous probability is considered constant. To obtained the updated distribution 

of crack density σΜ(e), shown in black on the top of the lower panel in Figure 5.5, I 

integrate the a posteriori joint PDF σ(e, A) over the reflectivity anisotropy (A), as in 

Equation 5.5. The a posteriori distribution, σΜ(e), represents the updated measure of 

uncertainty about the fracture density after conditioning the prior independent 

information from geological interpretation with the observed azimuthal reflectivity 

anisotropy. Based on this posterior PDF, presented at the top of the lower panel, we can 

obtain any central estimators, such as expected values or median values, as well as the 

probability that the model parameters satisfy certain criteria.  
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5.3.5 Independent data information 

 
Bayesian analysis (Bayes, 1783) provides mathematical rules for changing our 

existing knowledge in the light of new evidence. In other words, it allows scientists to 

combine new data with their existing knowledge or expertise, for better constrained 

inferences.   

Bayes’ rule is based on the concept of conditional probability and it allows us to 

update our information about the model parameters m, given the data, d.  Specifically, 

our posterior knowledge, expressed in terms of a conditional probability, P(m | d), is 

proportional to the prior information, ρ(m), multiplied by the likelihood function, P(d 

|m), (Box and Tiao, 1992). The a posteriori distribution presented in the preceding 

section, σΜ(m), may be interpreted as a conditional probability, P(m | d),.about the model 

parameters, m, given the observed data, d. 

If we have different types of data, d1, d2,…, dn, statistically independent of one-

another, we can derive many posterior distributions on the model parameters, P(m | d1), 

P(m | d2),…, P(m | dn), by separately conditioning the prior information on the different 

datasets. The question is how to combine quantitatively the different posterior 

distributions into one result, which contains the information from all datasets. This 

problem reduces to combining the different conditional probability density functions, 

P(m | d1), P(m | d2),…, P(m | dn), into a single conditional probability model, P(m | d1, 

d2,…, dn) . 

From the definition of the conditional probability we obtain the following expression: 

 

P(m | d1, d2,…, dn) =
),...,,

),...,,,(

n21

n21

ddd
dddm

P(
P .                                  (5.6) 

The numerator from the Equation 5.6 can be written, using the general multiplication law 

(Ross, 2001), as follows: 

 
),...,,,( n21 dddmP =P(m)P(d1 | m)P(d2 | m, d1)…P(dn | m,d1,…,dn-1).        (5.7) 
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In Equation 5.7, P(m) is the a priori information on the model parameters, ρ(m), from 

the preceding sections. Using again the general multiplication law, the denominator from 

Equation 5.6 can be written as follows: 

 
),...,,( n21 dddP = P(d1)P(d2 |d1)…P(dn |d1,…,dn-1).                      (5.8) 

 
Since the data d1, d2,…, dn are independent, we can write the following relations: 

 
P(di | m, d1, d2,…, di-1) = P(di | m),     (∀ ) i =1, 2,…,n,                   (5.9) 

and also: 

P(di | d1, d2,…, di-1) = P(di),   (∀ ) i =1, 2,…,n.                    (5.10) 

 
Therefore, Equation 5.6 can be rewritten as follows: 
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At the same time, Bayes’ rule gives the following expressions: 

 

( ) ( ) ( )∀=
)

)(||
m

ddmmd ii
i P(

PPP  i =1, 2,…,n.                        (5.12) 

If we use Bayes’ rule from Equation 5.12 in Equation 5.11, we obtain the following 

result: 

 

P(m | d1, d2,…, dn) = ( ) ( ) ( )
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Equation 5.13 allows us to integrate quantitatively the different conditional 

probability density functions, P(m | d1), P(m | d2),…,P(m | dn), derived by independently 

using each of the statistically independent data, d1, d2,…, dn, into one single conditional 

probability model, P(m | d1, d2,…, dn).  In other words, if we derive different posterior 

distributions for the model parameters, based on different types of independent data by 

using the methodology presented in the preceding sections, we can combine all of these 
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posterior probabilities into a single posterior probability model, conditioned on all of the 

data, d1, d2,…, dn, by simply multiplying the individual posterior distributions. 

Next section presents a summary with the practical steps for the quantitative data 

integration applied to fracture characterization. 

5.3.6 Summary for the methodology of integration 

 
I present the following practical steps for integrating the prior information about 

fracture distribution, obtained from the geological interpretation, with the well-log and 

seismic measurements, using stochastic rock physics modeling within a Bayesian 

framework:  

1) Model parameters 

We first decide which model parameters are needed to answer the question under 

consideration. The model parameters may include the fracture density, orientation and 

compressibility, the type of fluid in the fractures, the connectivity of the fractures, etc. In 

some practical problems, we may be interested only in some of these parameters.  

2) Geological hypotheses 

Next we evaluate the possible geological hypotheses for the fracture model 

parameters, based on the site-specific outcrop observations, if available, or outcrop 

analogs, as well as on the well-log information. Another valuable source of information 

for fracture distribution is the geological structure of the reservoir, which can be obtained 

from the interpretation of seismic data.  

3) Rock-physics modeling and stochastic simulations: Theoretical PDF  

We perform rock-physics forward modeling and stochastic simulations based on the 

well-log data available, under the chosen geological hypotheses. The goals of this step 

are, first, to choose the most informative seismic attributes with respect to the model 

parameters (Takahashi, 2000), and second, to derive the physical relations between the 

model parameters and the chosen seismic attributes. We use rock-physics fracture 

modeling and stochastic simulations to incorporate the natural variability of the 

background rock properties.  Thus, we run Monte Carlo simulations on the input 

parameters of the deterministic fracture models. One physical theory often used is 
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Hudson’s (1981) model. The input parameters in Hudson’s penny-shaped crack model 

are the crack density, the aspect ratio of the ellipsoidal cracks, the elastic properties of the 

fluid saturating the cracks, and the VP, VS and density of the unfractured background 

rocks, derived from the well-logs. For the crack density, we use a uniform distribution, 

assuming maximum uncertainty over the interval of variation for the crack density.  For 

the aspect ratio of the penny-shaped cracks, defined as the ratio between the aperture and 

the radius of the crack, we use a uniform distribution, on a logarithmic scale. For the 

elastic properties of the fluid, we can use deterministic values, when the fluid saturating 

the fractures is known, or we can use a uniform distribution spanning the possible values 

for the bulk modulus and density at reservoir conditions.  For the unfractured matrix 

properties  (VP, VS, density), we use the correlated PDF for VP, VS, and density derived 

from the well-log data. If no addition information indicates otherwise, these properties 

are considered representative and stationary over the area of study. By using Monte Carlo 

simulations, we obtain many realizations of sets of fracture parameters and seismic 

attributes that span the intrinsic natural variability. Based on these realizations, we can 

estimate the theoretical joint PDF Θ(m, d), which describes the physical relations 

between the fracture parameters and the seismic attributes. This PDF represents a 

measure of uncertainty about the relation between the model parameters and the 

observable data, with its inherent non-uniqueness and non-linearity, due to natural 

variability of the target rock properties. If the correlated distributions of VP, VS and 

density for the reservoir and cap rocks are assumed representative and stationary over the 

area of study, the theoretical PDF, which describes the relations between the fracture 

parameters and seismic attributes, may also be assumed stationary and representative for 

the area of study. However, this theoretical joint PDF is site specific. 

4) Prior PDF for fracture parameters 

Based on the structural-geology model of the reservoir we estimate the a priori PDF 

ρM(m), for fracture parameters at each grid point of the target. More details are given in 

section 5.3.1, and also in the example from section 5.5.1.2. 
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5) Seismic data 

Seismic measurements are affected by errors. Thus, we need to estimate the 

uncertainty associated with the observed seismic attributes and describe it using a PDF, 

ρD(d). 

6) Combining the prior information on fracture parameters with seismic data 

Next we derive the joint PDF, ρ(m, d), for the fracture parameters and the data at 

each grid point, assuming that the prior information about the fracture parameters and the 

actual seismic data are statistically independent.  

7) Posterior PDF for fracture parameters: integration of geology and seismic data 

Finally, we compute the a posteriori PDF, σ(m, d), over the fracture parameters and 

data by combining the theoretical PDF, Θ(m, d), which is considered stationary, with the 

prior PDF for the model parameters and observable data, ρ(m, d), which varies with 

location. Then we integrate the a posteriori PDF, σ(m, d), over the seismic attributes 

space to obtain the updated distribution of fracture parameters σΜ(m). This a posteriori 

PDF for the fracture parameters represents the solution to the inverse problem, and it 

gives a measure of uncertainty about the fracture parameters after integrating prior 

geological information with seismic data. 

From this a posteriori PDF for the fracture parameters, we can derive any statistical 

information, such as any central estimators, like expected or median values. More 

importantly, we can compute the probability that a certain model will satisfy any criteria, 

for example, the probability that the fracture density exceeds certain thresholds.  

Figure 5.5 presents a flow-chart for integration. 
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Figure 5.5: Flow-chart with the methodology of integration. 
 

In the next section, I present a method of estimating the prior PDF for the fracture 

parameters by using geological and theoretical constraints. 

PRIOR GEOL. 

INFO 
SEISMIC  

DATA  

ρM(m) ρD(d)

WELL-LOG  

DATA  

Vp 

Vs 

density 

Joint prior PDF  
(geological information on the 
model parameters and the 
information from seismic data) 
ρ(m, d) = ρM(m) ρD(d) 

Theoretical PDF 
(rock physics theoretical relations 
between the model parameters and 
the seismic data)  
Θ (m, d) 

Statistical Rock Physics: 
 
Fracture modeling and 
Stochastic Simulations 

Posterior PDF  
(integration of  the geological, 
seismic and rock physics 
theoretical information) 
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5.4 The a priori PDF for fracture density  

 
The prior distribution of the variable of interest is an important ingredient in any 

Bayesian analysis (Bayes, 1783), and it may sometimes play an important role in 

determining the final results. Even if the prior information is vague, using it helps in 

formulating well-posed inverse problems.  

Traditionally, all probabilities were treated as frequencies. Here, the word 

“frequency” is used in the sense of the number of times an event occurs. However, 

Bayesian theory does not define a probability as a frequency of occurrence of an event, 

but as a reasonable degree of belief (Laplace, 1814). In other words, the probability is 

viewed as a measure of the uncertainty about a particular parameter, and it represents the 

state of knowledge about that parameter. Therefore, probability is related to the state of 

uncertainty, and not (only) to the outcome of repeated experiments. This view of the 

probability is much more useful in most of the practical applications in science and 

engineering. 

However, assigning the prior probability is one of the most controversial areas in 

Bayesian probability. Yet, to a Bayesian, it is the most natural of things. No one would 

think of trying to solve any problem without using all of his prior experiences. There are 

different ways of assigning prior probabilities (Jaynes, 1983), but one of the most used is 

based on the Maximum Entropy Principle, as defined by Jaynes (1983), which has its 

foundation on Shannon’s (1948) information theory. 

In information theory, uncertainty is quantified by a parameter called “information 

entropy”, H(X). H(X) is a statistical parameter that quantifies the state of knowledge for 

parameter X, and it can be calculated from the PDF of X, P(X), using the following 

formula: 

)](log[)()( i
i

i xPxPXH ∑−= .                                                    (5.14) 

This quantity is a measure of the amount of ignorance in the probability distribution 

of the variable X (Shannon, 1948; Takahashi, 2000).  
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Jaynes’ Maximum Entropy Principle states that from all of the probability distribution 

functions consistent with a given set of constraints, we should choose the one that 

maximizes the uncertainty, as defined by Shannon (1948).  

In the discreet case, it can be shown that if nothing is known, except that the 

probability distribution should be normalized, the maximum entropy principle reduces to 

the uniform prior. This is Laplace’s principle of insufficient reason (Laplace, 1814). 

However, the maximum entropy is more general, because it allows one to assign 

probabilities that are maximally uninformative, while still incorporating the known 

information. The term “uninformative” may sound negative, but its meaning is related to 

defining PDFs that do not convey unintentional biases. Therefore, the principle of 

maximum entropy represents a useful tool for assigning probabilities based only on the 

information that one actually possesses.  

Therefore, to estimate prior probabilities for fracture density, we should first quantify 

the geological constraints at each spatial location. Then, we can determine the maximum 

entropy PDF at that location by maximizing Shannon’s entropy, consistent with the local 

constraints. This is a classical problem of optimization under constraints, for which we 

can use the method of Lagrange multipliers.  

One of the constraints we can put on fracture density from both practical and 

theoretical considerations is related to its range of variability. Fracture density should not 

be smaller than 0, because negative fracture density has no physical meaning. At the 

same time, fracture density has also an upper bound, beyond which the rock loses its 

strength, as I discuss in Chapter 2 (Figure 2.3). If no other constraints are specified from 

geology, then the maximum entropy PDF is given by a uniform distribution over the 

interval between 0 and the theoretical upper bound of fracture density (eup), as follows: 
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If from the geological interpretation we additionally obtain the local mean value of 

fracture density (m), then the maximum entropy PDF is given by a truncated exponential 

as follows: 
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The constants c and k in the above formula are determined from the conditions that 

the p(e) is a PDF and therefore integrates to 1, and that the expected value of this PDF is 

equal to the known mean value m. These conditions are expressed as follows: 

( ) mkeecandkec
upup ee

=−=− ∫∫
00

)exp(,1exp .                                  (5.17) 

 
The probability density function for fracture density, defined as an exponential 

distribution, is in good agreement with the outcrop observations, which suggest 

exponential or log-normal distributions for fracture density (Snow, 1968; Priest and 

Hudson, 1976; Sen and Kazi, 1984; La Pointe and Hudson, 1985; Rouleau and Gale, 

1985; Bouroz, 1990; Villaescusa and Brown, 1990; Narr and Suppee, 1991; Rives et. al, 

1992). I derive the same conclusion also from the field data on shear-wave anisotropy, 

collected by different authors and summarized by Crampin (1994). Assuming that the 

shear-wave anisotropy is caused by the alignment of fractures, the computed crack 

density exhibits an approximately exponential, or log-normal distribution, as I discuss in 

Chapter 2 (Figures 2.14 and 2.16). 

The Maximum Entropy Principle is a very useful tool to define prior probabilities for 

Bayesian analysis that are consistent with a given set of constraints imposed by the 

geological interpretation. 

5.5 Real data example  

 
In this section, I illustrate the integration of prior geological information on fractures 

with reflectivity attributes from a 3D seismic data set acquired over a fractured carbonate 

reservoir in eastern Texas.  More information on the reservoir and the seismic data are 

presented in Chapters 3 and 4.  

The goal is to update the information on the fracture density, as described in 

Hudson’s (1981, 1997) model, by integrating the prior information with seismic data.  
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Thus, the model parameter is the crack density, while the observable, or data parameters 

are the reflectivity attributes. I assume that the fractures are gas-saturated, and the 

objective is to delineate the zones of higher fracture density at the top of the reservoir.  

Based on the geological information about the reservoir, I consider two geological 

hypotheses. The first hypothesis is that the fractures are vertical, aligned, and fairly 

regularly spaced, such that they generate an anisotropic medium. The fracture orientation 

in this hypothesis was already determined from the Amplitude Variation with Azimuth at 

far offsets, using a bootstrap method presented in the previous chapter.  Therefore, the 

fracture orientation is not a model parameter, since it was already determined from the 

seismic data.  

The second hypothesis is that the fractures occur in swarms associated with possible 

subseismic faults, and are more-or-less randomly oriented, such as in brecciated zones. In 

this hypothesis, the fracture orientation is not a model parameter either, since the 

assumption is that the fractures are randomly oriented. 

5.5.1 Available information 

 
In this section I present the seismic attributes extracted from the 3D seismic data set 

presented in the previous chapter, which I use for constraining the prior information on 

fracture density. I also show an example of estimating the prior information about the 

fracture density, based on a geological interpretation.  

5.5.1.1 Seismic data 

The seismic data used is represented by the amplitude of the seismic waves at the top 

of the fractured gas reservoir. The distribution of the near-offset (0 –3000 ft) reflectivity 

is shown in Figure 5.6, while the distribution for the far-offset (4000 ft – 8000 ft) 

reflectivity is shown in Figure 5.7. I use large superbins of 1600 ft to eliminate the strong 

impact of the acquisition footprint on the seismic amplitudes, as I present in Chapter 4, 

sections 4.3 and 4.4.  
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Figure 5.6: Map with the near-offset stack of PP reflectivity at the top of the reservoir for 

large superbins (1600 ft).  

 
Figure 5.7: Map with the far-offset stack of PP reflectivity at the top of the reservoir for 

large superbins (1600 ft).  
 

Figure 5.8 shows the difference between the near- and far-offset reflectivity, stacked 

over all azimuths, at a time slice corresponding to the top of the reservoir. 
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Figure 5.8: Map with the difference between the near- and the far-offset PP reflectivity 

stacks over all azimuths at the top of the reservoir for large superbins (1600 ft).  
 

In the hypothesis of a nearly vertical set of fractures, as the FMI data from a nearby 

well suggests, the reflectivity at far offsets varies with azimuth. At a fixed angle of 

incidence, the variation of the reflectivity with azimuth can be approximated by a cosine 

function (Teng, 1998). I use a least-square cosine fitting procedure to describe the 

observed azimuthal variation of the reflectivity at far offsets, as presented in the previous 

chapter, section 4.5. I take into account the measurement errors associated with the 

reflectivity, by using a bootstrap method to derive the uncertainty in the parameters 

describing the sinusoidal variation with azimuth: the mean value of the reflectivity, the 

amplitude of the oscillation, and the phase. More details on the procedure are given in 

Chapter 4.  

I define the azimuthal anisotropy of reflectivity to be the amplitude of the oscillation. 

This amplitude is given by the absolute difference between the maximum and the 

minimum values in the azimuthal variation of the reflectivity at far offsets, as follows: 

 A= |Rmax – Rmin|.                                                    (5.18) 

Rock-physics modeling shows that, at a fixed angle of incidence, this amplitude 

increases with increasing crack density, as I show later in this chapter.  
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Figure 5.9 shows the distribution for the mean values of the azimuthal reflectivity 

anisotropy at the top of the reservoir, determined in Chapter 4. 

 
Figure 5.9: Map with the mean values of the azimuthal reflectivity anisotropy (A) at far 

offsets at the top of the reservoir. Superbin size is 1600 ft.  
 

Figure 5.10 shows the distribution of the standard deviation associated with the mean 

values of the azimuthal reflectivity anisotropy from Figure 5.9, determined by using a 

bootstrap method (Chapter 4, section 4.5). 

 
Figure 5.10: Map with the standard deviation for the azimuthal reflectivity anisotropy (A) 

at far offsets at the top of the reservoir. Superbin size is 1600 ft.  
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As the geological model for this carbonate reservoir suggests, I consider two 

hypotheses: a vertical set of fractures, and a random distribution for fracture orientations. 

In the hypothesis of randomly oriented fractures, the data space consists of the near- 

and the far-offset reflectivity, presented in Figures 5.6 and 5.7, respectively.  

Using Tarantola’s (1987) formulation, we can express the uncertainty about the data 

using a probability density function over the data space. In this example, I assume the 

PDF to be a correlated bivariate normal distribution, as follows: 

ρD(RN, RF) = Gaussian (RN, RF, RNobs, s2, RFobs, s2, r),                              (5.19) 

where RN represents the near-offset reflectivity and RF is the far-offset reflectivity. RNobs 

and RFobs are the observed data values, which represent the means of the Gaussian 

bivariate function. The standard deviation, s, of the near- and the far-offset reflectivity is 

assumed the same over the entire survey, equal to a percentage of the mean value of 

reflectivity at the top of the reservoir. In Equation 5.19, r represents the correlation 

coefficient between the near- and the far-offset reflectivity. This correlation coefficient is 

estimated from the data to be 0.6. 

For the case of a vertical set of fractures, the data space is represented by the 

azimuthal anisotropy of reflectivity at far offsets, presented in Figure 5.9, together with 

the difference between the near- and the far-offset reflectivity, stacked over all azimuths, 

presented in Figure 5.8. In this case, the probability density function over the data space 

is assumed as follows: 

ρD(A, G) = Gaussian (A, Aobs , sA
2) Gaussian (G, Gobs, sG

2),                     (5.20) 

where A is the azimuthal anisotropy of reflectivity at far offsets. Aobs are the observed 

values from Figure 5.9, which are considered to be the means of the Gaussian function, 

with the standard deviation sA presented in Figure 5.10. G represents the difference 

between the near- and far offset reflectivity. Gobs are the observed values, presented in 

Figure 5.8, which are considered to be the mean of the Gaussian function, while sG is the 

standard deviation of the difference between the near- and far-offset reflectivity. Equation 

5.20 implies that the variables A and G are independent. This assumption may be 

justified, since the data shows a very small correlation coefficient between these 

variables. In this case the joint PDF over the data space is given by the product between 
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the two marginal distributions. The standard deviation squared, sG
2, of the variable G, 

corresponds to the variance of the difference between the near- and far-offset reflectivity, 

and it is given as follows: 

sG
2 = Var (G) = Var(RN-RF) = Var(RN) + Var(RF) - 2Cov(RN, RF) = 2s2 - 2r/s2,  (5.21) 

where s represents the standard deviation of the near- and far-offset reflectivity, and r 

represents the correlation coefficient between the near- and far-offset reflectivity, 

estimated from the data. 

5.5.1.2 Prior geological information 

Rocks undergoing fracturing exhibit increased fracture density with increased strain 

(Nelson, 1985). Therefore, large fracture densities are usually associated with the 

presence of faults. Fracture density increases in the proximity of faults, and it decreases 

away from them. Outcrop studies show that the decrease of the fracture density with 

increasing distance from a fault may follow an exponential law (Davatzes, 2003).  

Figure 5.11 presents a map with the distribution of the mean values of fracture 

density at the top of the fractured reservoir. This spatial distribution is based on the 

geological interpretation of a fault from seismic data (Figure 5.12).  In the proximity of 

the fault, the expected crack density is larger than away from the fault. Outcrop 

observations can help in calibrating the initial distribution of the mean values for fracture 

density in relation to the fault observed from seismic data. However, the fracture density 

values from outcrops should be transformed to the corresponding reservoir stresses. 

In this example, I assume a smooth exponential decay for the mean fracture density 

with increasing distance from the fault, as we can observe in Figure 5.11. The expected 

fracture density in the proximity of the fault is assumed to be 0.07. This value 

corresponds to an upper value for the crack density of a reservoir at 2 km depth, based on 

the shear-wave data collected by Crampin (1994), as I discuss in Chapter 2 (Figure 2.19). 
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Figure 5.11: Map with the interpolated a priori spatial distribution of the mean value of 

fracture density at the top of the reservoir, based on the geological interpretation of a 
fault.  

 

.  
Figure 5.12: Amplitude map at the top of a fractured carbonate reservoir, with the 

interpreted fault. Bin size is 200 ft. 
 

Of course, there is a large uncertainty about these mean values of fracture density 

presented in Figure 5.11, which is quantified through the local a priori probability 

density functions. I estimate the local prior PDF for fracture density at each grid point, 

using the Maximum Entropy Principle, presented in the preceding section. At each spatial 

location, the a priori PDF for fracture density is given by a truncated exponential over the 

interval 0.02 to 0.12, with the expectation given by the local mean values from Figure 

5.11. 

Interpreted fault 

Interpreted fault 
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Therefore, the prior PDF on the model parameter, represented by the crack density e, 

is expressed as follows: 

ρM
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)(  .                                       (5.22) 

In Equation 5.22, e represents the crack density as described in Hudson’s (1981) penny-

shaped crack model. The lower value of the interval for which the PDF is defined 

corresponds to a small degree of fracturing, while the upper value of 0.12 is slightly 

larger than the limit of validity for the Hudson’s model, and it corresponds to a high 

degree of fracturing for the reservoir conditions. 

The constants c and k from Equation 5.22 are to be determined at each special 

location, such that the function in Equation 5.22 satisfies the condition of a PDF (its 

integral is 1), and such that its expectation is equal to the local mean, derived from the 

geological interpretation, presented in Figure 5.11. 

5.5.2 Theoretical PDF:  Rock-physics stochastic modeling  

 
Rock-physics theories (Mavko et al., 1998) provide the link between the fracture 

parameters and the seismic data. 

This section presents the rock-physics fracture modeling and stochastic simulations to 

describe the theoretical relations between the fracture parameters and the PP reflectivity 

attributes, taking into account the natural variability of the target rock properties. 

I use Hudson’s (1981, 1997) penny-shaped crack model to predict the elastic 

properties of the fractured media. I also use Vavrycuk’s and Psencik’s (1998) 

approximation for weak contrast and weak anisotropy to compute the reflectivity 

variation with incidence angle and azimuth from the top of the reservoir, in the case of a 

vertical set of fractures. I use the Zoeppritz (1919) equations in the case of randomly 

oriented fractures. 

For example, in the hypothesis of a vertical set of aligned fractures, we can write 

generically the relation between the fracture parameters and the elastic properties of the 

fractured media:  
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where Cbot and denbot represent the elastic stiffness matrix and the density of the fractured 

reservoir rocks, modeled with a single set of aligned cracks. The input parameters in 

Hudson’s model are the P-wave velocity, the S-wave velocity, and the density (VP
bot, 

VS
bot, densitybot) of the unfractured isotropic rocks, the crack density (e), the aspect ratio 

of the cracks (α), and the bulk modulus (Kfl) of the fluids saturating the fractures.  

After I derive the elastic properties of the fractured media, I use the approximation 

from Vavrycuk and Psencik (1998) to compute the reflectivity at the interface between 

the reservoir, modeled with a set of vertical fractures, and the cap rocks. The relation 

between the fracture parameters and the reflectivity attributes can be written as follows: 
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In Equation 5.24, the function f represents symbolically the approximation for the 

reflectivity variation with incidence angle and azimuth, at the interface between the 

reservoir and the cap rocks. Ctop and dentop are the elastic stiffness matrix and the density 

of the cap rocks. If the cap rocks are isotropic, the elastic properties can be fully 

described by the P- and S-wave velocities (VP
top, VS

top). The function g represents 

Hudson’s theory, symbolically shown in Equation 5.23. RN, RF and A represent the 

reflectivity attributes: the near- and far-offset reflectivity, as well as the azimuthal 

anisotropy of reflectivity at far offsets (Equation 5.18). 

Theoretically, given a set of elastic parameters corresponding to the cap and the 

reservoir rocks, we can predict uniquely the near- and far-offset reflectivity, as well as the 

amplitude of the sinusoidal variation of the reflectivity at far offset as a function of 

azimuth. However, the relations between the fracture parameters and the reflectivity 

attributes are uncertain, because of approximations in the theory, and, more importantly, 

because the subsurface rock properties are naturally variable. When deriving the relations 

between the fracture parameters and the reflectivity attributes, I ignore the uncertainties 

due to theoretical approximations, and I account for the uncertainty due to natural 

variability of the target rocks. Therefore, I run Monte Carlo simulations on the input 
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parameters in Hudson’s model (1981).  As already mentioned, the input parameters are 

the crack density (e), aspect ratio (α) of the ellipsoidal cracks, defined as the ratio 

between the small and the long semiaxes, the bulk modulus of the saturating fluid (Kfl), 

and the VP
bot, VS

bot
  and densitybot of the unfractured background rocks.  

To estimate the theoretical PDF, which describes the uncertain relations between the 

fracture parameters and the observable parameters due to natural variability, I use a 

uniform distribution for fracture density, between 0.02 and 0.12. This represents a 

relevant interval for the fracture density. The lowest value of the interval corresponds to 

practically intact rocks, while the upper value corresponds to a relatively large degree of 

fracturing, especially for a reservoir at approximately 2 km depth, as I discuss in Chapter 

2 (Figure 2.19). For the aspect ratio of the penny-shaped cracks I also use a uniform 

distribution, on a logarithmic scale (from 0.001 to 0.1). More details about Hudson’s 

model are given in Chapter 2.  

For the unfractured matrix properties  (VP, VS, density), I derive the distributions from 

the well-log data. Figure 5.13 presents in the upper panels the histograms for the VP
bot 

 

VS
bot,  and densitybot of the clean limestones in the reservoir, obtained from the well-log 

data from a nearby well. The lower panels in the same figure present the probability 

distribution functions (PDF) of the P-wave velocity, S-wave velocity and density derived 

from the histograms.  

The VP, VS, and density properties derived from the well logs for both reservoir and 

cap rocks are upscaled to seismic wavelengths. The upscaling is performed on the well 

data using Backus (1962) averages for the bulk and shear moduli, and volumetric 

averages for density (Mukerji, 1995). 

The distributions for the seismic properties (VP, VS, and density) for both reservoir 

and cap rocks are assumed representative and stationary over the area of study.  
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Figure 5.13:  Upper panels: VP VS and density histograms derived from the well logs for 

the unfractured background rock properties. Lower panels: Corresponding probability 
density functions (PDFs). 

 

The Monte Carlo procedure consists of randomly drawing correlated sets of VP
bot, 

VS
bot,  and densitybot from the distributions derived from the well logs for the unfractured 

background rock properties, and also from the assumed distributions for the crack density  

(e) and the aspect ratio (α) of the ellipsoidal cracks. I assume fractures to be saturated 

with gas. For each realization of a set of VP
bot,VS

bot,  and densitybot, together with the crack 

density and the aspect ratio of the cracks, I compute the elastic properties for the 

fractured medium, using Hudson’s model. If we repeat this procedure many times, we 

obtain a large number of realizations of elastic properties for the modeled fractured 

medium, which spans the intrinsic natural variability of the target rock properties.  

For each realization, I again randomly draw a correlated set of VP
top,VS

top, and 

densitytop from the distribution corresponding to the cap rocks. Then, I compute the 

reflectivity at 0 and 40 degrees, stacked over all azimuths, corresponding to the near-
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offset reflectivity (RN) and the far-offset reflectivity (RF). I also compute the difference 

between the near- and far-offset reflectivity (RN-RF), as well as azimuthal anisotropy of 

reflectivity at 40 degrees (A), using equations from Vavrycuk and Psencik (1998). 

 
Figure 5.14:  Histograms for the modeled reflectivity attributes. Top-left panel: 

Azimuthal anisotropy of reflectivity (A), evaluated at a 40 degree angle of incidence. 
Top-right panel: difference between the near- and far-offset reflectivity (RN –RF). 
Bottom-left panel: Near-offset reflectivity (RN) Bottom-right panel: Far-offset 
reflectivity (RF). 

 

Figure 5.14 presents the histograms for the four different reflectivity attributes (RN, 

RF, RN-RF, and A) theoretically modeled, using the procedure described above.  For 

comparison, Figure 5.15 presents the histograms for the same reflectivity attributes 

obtained from the seismic data. In both figures, the top-left panel presents the histogram 

for the azimuthal anisotropy in reflectivity at far offsets. We can observe that the 

theoretical and data-derived distributions are very similar. This suggests that the range of 

the crack density used in the modeling is relevant for this reservoir. The distributions for 

the near- and far-offset reflectivity presented on the bottom panels of both Figure 5.14 

and 5.15 also agree reasonably well. 
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Figure 5.15:  Histograms for the seismic reflectivity attributes derived from the real data. 

Top-left panel: Azimuthal anisotropy in reflectivity (A), evaluated at a 40 degrees 
angle of incidence Top-right panel: difference between the near- and far-offset 
reflectivity (RN –RF). Bottom-left panel: Near-offset reflectivity (RN) Bottom-right 
panel: Far-offset reflectivity (RF). 

 

Figure 5.16 presents a 3D scatter-plot for the Monte Carlo realizations for sets of 

crack density, corresponding azimuthal anisotropy of reflectivity (A) at far offsets, and 

the difference between the near- and far-offset reflectivity (RN –RF).  

 
 
Figure 5.16:  3D scatter-plot for the 50,000 Monte Carlo realizations of sets of crack 

density (e), corresponding azimuthal anisotropy of reflectivity (A) at far offsets, and 
difference between the near- and the far-offset reflectivity (RN –RF).  

A 

RN-RF 
crack density (e) 
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From Figure 5.16, we can observe, as expected, that the azimuthal anisotropy in 

reflectivity at a fixed angle of incidence increases with crack density. Figure 5.17 

presents the same scatter-plot for the Monte Carlo realizations as Figure 5.16, but 

projected in the plane of crack density and the difference between the near and the far 

reflectivity (RN-RF). We can observe that the rock-physics fracture modeling predicts that 

the difference between the near- and far-offset reflectivity increases with crack density. 

This observation is in accordance with the modeling results presented in Chapter 3, where 

I show that the gas-filled fractured zones move the AVO gradient to larger negative 

values as compared to the AVO gradient of the unfractured rocks. 

 
Figure 5.17:  Scatter-plot for the 50,000 Monte Carlo realizations of sets of crack density 

(e) and the corresponding difference between the near- and the far-offset reflectivity 
(RN –RF).  

 

Based on these 50,000 realizations of sets of crack density and reflectivity attributes, I 

derive the theoretical joint PDF, presented in Figure 5.18 as slices at constant A values. 

This theoretical PDF describes the relations between the fracture density and the 

observable data, represented by the reflectivity attributes, assuming a single set of vertical 

fractures. I denote this theoretical PDF as Θ(e, A, G), where G is given by the difference 

between the near- and far-offset reflectivity (RN-RF). 

RN-RF 
crack density (e) 
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Figure 5.18:  Theoretical Joint PDF based on the 50,000 Monte Carlo realizations of sets 

of crack density (e), corresponding azimuthal reflectivity anisotropy (A), and 
difference between the near- and the far-offset reflectivity (RN –RF).  The PDF is 
presented as slices at constant A values. 

 

I also consider the case of isotropic distribution of fracture orientations, 

corresponding to the highly fractured, brecciated zones. In this case, I use Hudson’s 

(1981) model for isotropic distribution of the crack normals, and also Zoeppritz (1919) 

equations to derive the observable parameters, represented by the near- and far-offset 

reflectivity. 

For both the isotropic and anisotropic fracture distributions, I assume the fractures to 

be saturated with gas.  

In the next section, I present the results of integrating the prior information about 

fracture density with the reflectivity attributes from the 3D seismic data set, for 

hypotheses of both isotropic and anisotropic distribution of fractures. 

5.5.3 A posteriori fracture density distribution  

 
To obtain the updated distribution of fracture density at each spatial location, we need 

to combine the prior information, the reflectivity attributes affected by errors, and the 

theoretical information about the relations between the crack density and the seismic 

attributes, as presented in the previous sections. 

crack density (e) RN-RF 

A 
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I first obtain the updated fracture density distribution in the geological hypothesis of a 

vertical set of aligned fractures. 

Figure 5.19 presents a map with a posteriori spatial distribution of the posterior 

expected values for fracture density at the top of the reservoir, conditioned only on the 

azimuthal anisotropy of reflectivity at far offsets (A). 

 
Figure 5.19:  Map of the expected values for crack density derived from the a posteriori 

distribution, obtained by constraining the a priori information with the azimuthal 
anisotropy of reflectivity at far offsets (A), in the hypothesis of a vertical set of 
aligned fractures.  

 

We observe a relatively higher fracture density in the proximity of the fault that 

penetrates the carbonate reservoir, sketched in Figure 5.19. We can also observe the 

asymmetric distribution of the expected crack density with respect to the fault, with 

higher values of fracture density in the hanging wall. This result is in agreement with 

outcrop observations that suggest higher fracture density in the proximity of the fault, 

especially in the hanging wall (Florez, 2003). We can also observe zones of higher 

fracture density away from the fault. These zones may also correspond to possible 
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subseismic faults. Also, the expected posterior values for the crack density are 

significantly larger than the prior values, presented in Figure 5.11, which were calibrated 

using Crampin’s (1994) collection of field data (Chapter 2) The stochastic rock physics 

modeling predicts a large correlation coefficient between the crack density and the 

azimuthal anisotropy in reflectivity, equal to 0.96. Therefore, the theory predicts that the 

azimuthal anisotropy in reflectivity is very constraining, such that the prior distribution 

for fracture density does not play a crucial role in the final results, in this case. 

However, if I consider larger uncertainty in the data, the impact of the prior 

information is more significant. For example, Figure 5.20 presents a map with a 

posteriori distribution of the expected values for fracture density at the top of the 

reservoir, conditioned on the azimuthal anisotropy of reflectivity at far offsets (A), whose 

standard deviations of the measurement uncertainty are one order of magnitude larger 

than the ones derived from the bootstrap procedure (Chapter 4). 

 
Figure 5.20:  Map of the expected values for crack density derived from the a posteriori 

distribution, obtained by constraining the a priori information with the azimuthal 
anisotropy of reflectivity at far offsets (A), in the hypothesis of a vertical set of 
aligned fractures. Standard deviations of the measurement uncertainty are one order 
of magnitude larger than those in Figure 5.10. 



CHAPTER 5: Quantitative Data Integration                                                                                172 

 

We can observe that, when the measurement uncertainty is significantly larger, the 

prior information has a bigger impact on the posterior distribution of the crack density. 

The expected posterior values of crack density from Figure 5.20 are significantly closer 

to the prior values, than the ones from Figure 5.19.  

Next I obtain the distribution for the posterior expected values of fracture density at 

the top of the reservoir, conditioned on the difference between the near- and far-offset 

reflectivity (G= RN-RF), presented in Figure 5.21. 

 
Figure 5.21:  Map of the expected values for crack density derived from the a posteriori 

distribution, obtained by constraining the a priori information with the difference 
between the near- and far-offset reflectivity (G), in the hypothesis of a vertical set of 
aligned fractures. 

 
From Figure 5.21 we observe that, by conditioning on the difference between the 

near- and the far-offset reflectivity, the expected values for fracture density along the 

fault are small. This is because along the fault the difference between the near- and far-

offset reflectivity is small (Figure 5.8), and the rock-physics modeling predicts lower 

fracture density for smaller differences between the near- and far-offset reflectivity, as we 

can see in Figure 5.17.  This result apparently contradicts the geological hypothesis of 
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larger fracture densities along the fault. One explanation may be that the fault acts as a 

scattering feature for the seismic waves, generating small amplitudes for the near-offsets, 

such that the difference between the near- and the far-offset reflectivity is itself small. On 

the other hand, the theoretical relations between the fracture properties and the seismic 

amplitudes derived through rock-physics fracture modeling and stochastic simulations 

correspond to effective medium theory, and they do not account for phenomena such as 

scattering.  

However, we can still observe relatively higher fracture density in the proximity of 

the fault, especially in the hanging wall, as well as away from the fault (Figure 5.21). On 

average, the expected crack-density values obtained by combining the prior information 

with the difference between the near- and far-offset reflectivity (G) are smaller than the 

expected values for crack density obtained by combining the prior information with the 

azimuthal anisotropy of reflectivity at far offsets (A). This is because the stochastic rock 

physics modeling predicts a smaller correlation coefficient between the crack density and 

G (0.63), than between the crack density and A (0.96). Therefore, the impact of the prior 

crack density distribution on the posterior distribution obtained by conditioning on G is 

more significant than on the posterior distribution obtained by conditioning on A.  

I also obtain the updated distribution of the expected values for fracture density at the 

top of the reservoir using jointly both reflectivity attributes: the azimuthal anisotropy of 

reflectivity at far offsets (A), and the difference between the near- and far-offset 

reflectivity (G).  

Figure 5.22 presents the posterior expected values of fracture density jointly 

conditioned on both attributes. We can see that the distribution of the expected values for 

the crack density at the top of the reservoir conditioned on both attributes A and G is 

dominated by the reflectivity anisotropy (A) at far offsets. This is because the rock-

physics fracture modeling and stochastic simulations predict higher correlation between 

the crack density and A than between the crack density and G. 
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Figure 5.22:  Map of the expected values for crack density derived from the a posteriori 

distribution, obtained by jointly constraining the a priori information with both the 
azimuthal anisotropy of reflectivity at far offsets (A) and the difference between the 
near- and far-offset reflectivity (G=RN-RF), in the hypothesis of a vertical set of 
aligned fractures.  

 

However, if I consider the measurement uncertainty in the reflectivity anisotropy (A) 

to be one order of magnitude larger, then the posterior distribution for the expected 

values of crack density, conditioned both on A and G in Figure 5.23, is significantly 

different from the distribution in Figure 5.22. In this case, the impact of the prior 

information is more important. The values of fracture density are smaller, closer to the 

prior values of crack density. 
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Figure 5.23:  Map of the expected values for crack density derived from the a posteriori 

distribution, obtained by jointly constraining the a priori information with both the 
azimuthal anisotropy of reflectivity at far offsets (A) and the difference between the 
near- and far-offset reflectivity (G=RN-RF), in the hypothesis of a vertical set of 
aligned fractures. Standard deviations of the measurement uncertainty are one order 
of magnitude larger than those in Figure 5.10. 

 

At each spatial location, I obtain not only the expected value of crack density, but the 

posterior probability density function (PDF). Figure 5.24 shows the prior PDF (red) for 

the crack density at a randomly chosen location, and also the a posteriori PDF after 

conditioning separately on A (black) and G (green), as well as the a posteriori PDF after 

jointly conditioning on A and G (blue).  
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Figure 5.24:  Probability density function for crack density at a randomly chosen location 

at the top of the reservoir. Red: A priori PDF for fracture density. Black: A posteriori 
distribution, conditioned only on the azimuthal anisotropy of reflectivity (A) at far 
offsets Green: A posteriori distribution for crack density conditioned only on the 
difference between the near- and the far-offset reflectivity (G). Blue: A posteriori 
distribution for crack density jointly conditioned on A and G. 

 

The a posteriori distribution of crack density represents the updated measure of 

uncertainty after I combine the prior, the experimental and the theoretical information 

available. The standard deviation of the a posteriori distribution is a good measure for 

uncertainty when the posterior distribution is Gaussian. For example, Figure 5.25 

presents the standard deviation about the expected values for fracture density from Figure 

5.22, evaluated from the posterior PDF at each spatial location. 

Prior PDF 
 P(e) 

 A posteriori PDF, 
conditioned only on A 
 P(e|A) 

A posteriori PDF, jointly 
conditioned on A and G 
 P(e|A,G) 

A posteriori PDF, 
conditioned only on G 
 P(e|G) 
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Figure 5.25:  Map of the standard deviation about the expected values for crack density 

from Figure 5.21, derived from the a posteriori distribution obtained by jointly 
constraining the a priori information with both the azimuthal anisotropy of 
reflectivity at far offsets (A) and the difference between the near- and far-offset 
reflectivity (G=RN-RF), in the hypothesis of a vertical set of aligned fractures.  

 

However, a more general way of expressing the uncertainty about the fracture density 

is through probability maps. At each grid point we can determine the probability that the 

fracture density exceeds a certain threshold. The probability that the fracture density 

exceeds a value of 0.09 is calculated at each grid point from the posterior PDF, as 

follows: 

∫
∞−

−=>
09.0

)(1)09.0( deeeP Mσ  .                                             (5.25) 

For example, Figures 5.26 shows the probability map for crack density exceeding a 

value of 0.09, based on jointly conditioning the prior PDF on the azimuthal reflectivity 

anisotropy (A) and the difference between the near- and the far-offset reflectivity (G). 
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Figure 5.26: Probability map for fracture density exceeding a value of 0.09, obtained by 

jointly conditioning on the azimuthal reflectivity anisotropy (A) at far offsets and the 
difference between the near- and far-offset reflectivity (G). Geological hypothesis: a 
vertical set of aligned fractures. 

 

From Figure 5.26 we can see that the probability of the fracture density exceeding a 

value of 0.09 is relatively small, except in two zones. Therefore, in the hypothesis of a 

vertical set of aligned fractures, the areas of higher probability of fractures are the ones 

highlighted in red on the probability map from Figure 5.26.  

Figure 5.27 presents the same probability map as in Figure 5.26, but in this case the 

measurement uncertainty in the reflectivity anisotropy (A) is one order of magnitude 

larger. We can see that in this case, the probability that the fracture density exceeds the 

value of 0.09 is much lower, since the impact of the prior information, which indicates 

smaller fracture density values, is more significant.  
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Figure 5.27: Probability map for fracture density exceeding a value of 0.09, obtained by 

jointly conditioning on the azimuthal reflectivity anisotropy (A) at far offsets and the 
difference between the near- and far-offset reflectivity (G). Geological hypothesis: a 
vertical set of aligned fractures. Standard deviations of the measurement uncertainty 
are one order of magnitude larger than those in Figure 5.10. 

 

We can also obtain at each spatial location, the probability that the fracture density is 

smaller than a certain threshold. For example, Crampin (1994) suggests that a fracture 

density of 0.04 corresponds to a relatively small degree of fracturing. Therefore, it is 

important to evaluate at each location the probability that the fracture density is smaller 

than this value. In this way we can estimate the risk of drilling a new well in a zone of 

small fracture density. 

Figure 5.28 shows a probability map for fracture density being smaller than 0.04, 

after combining the prior information with the azimuthal anisotropy in the reflectivity at 

far offsets, and the difference between the near- and far-offset reflectivity. The 

highlighted zones in red from Figure 5.28, correspond to the areas where the probability 

that the fracture density is smaller than 0.04 is high. If the permeability of the reservoir is 
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dominated by the open fractures, then these areas should be avoided for drilling 

production wells. 

 
Figure 5.28: Probability map for fracture density being smaller than a value of 0.04, 

obtained by jointly conditioning on the azimuthal reflectivity anisotropy (A) at far 
offsets and the difference between the near- and far-offset reflectivity (G). Geological 
hypothesis: a vertical set of aligned fractures. 

 

I also consider the geological hypothesis of randomly oriented fractures, which may 

correspond to brecciated zones in the proximity of possible subseismic faults. In this 

case, I combine the prior information about fracture density from geological 

interpretation with the near- and the far-offset reflectivity attributes.  

Figure 5.29 presents a map with the expected values of crack density after 

conditioning the prior information on the far-offset reflectivity (RF). 
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Figure 5.29:  Map of the expected values for crack density derived from the a posteriori 

distribution obtained by constraining the a priori information with the far-offset 
reflectivity (RF), in the hypothesis of randomly oriented fractures. 

 

We can observe relatively larger crack density values in the hanging wall of the fault, 

schematically represented in Figure 5.29, as well as away from the fault.  

Figure 5.30 presents a map with the expected values of crack density after 

conditioning the prior information on the near-offset reflectivity (RN). In the vicinity of 

the fault, we observe a very good agreement between the geological hypothesis of higher 

fracture densities associated with the interpreted fault, and the actual near-offset 

reflectivity data. The seismic amplitudes are significantly smaller along the fault, 

implying that the assumed randomly oriented cracks have higher density in this area. 

However, there may be other phenomena associated with the interpreted fault, such as 

scattering, which are not accounted for by the theory used in this case. 
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Figure 5.30:  Map of the expected values for crack density derived from the a posteriori 

distribution, obtained by constraining the a priori information with the near-offset 
reflectivity (RN), in the hypothesis of randomly oriented fractures. 

 

If I assume independence between the near- and far-offset reflectivity, I can derive 

the updated distribution of the crack density conditioned on both the near- and far-offset 

reflectivity, by simply multiplying each of the individual posterior probability density 

functions (PDF), as presented in section 5.3.5. Equation 5.26 is derived from Equation 

5.13, showing that the a posteriori PDF conditioned on RN and RF, σΜ(e|RN,RF), is 

proportional to the a posteriori PDF conditioned on RN, σΜ(e|RN) multiplied by the a 

posteriori PDF conditioned on RF, σΜ(e|RF). In Equation 5.26, ρM(e) represents the prior 

PDF for fracture density. 

σΜ(e|RN,RF)=
)(

1
eMρ

σΜ(e|RN)σΜ(e|RF)                                       (5.26) 

Figure 5.31 presents a map with the expected values of the crack density computed 

from the a posteriori PDF, σΜ(e|RN,RF), assuming independence between the variables 

RN and RF  (Equation 5.26). 
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Figure 5.31:  Map of the expected values for crack density derived from the a posteriori 

distribution, assuming independence between the near- and far-offset reflectivity 
(Equation 5.26). Geological hypothesis: randomly oriented fractures. 

 

If I jointly condition the prior information about fracture density on both the near- and 

the far-offset reflectivity, without assuming independence, I obtain a different distribution 

for the expected values of crack density at the top of the reservoir, presented in Figure 

5.32. In this case, the correlations between the near- and the far-offset reflectivity are 

taken into account, by using the general framework of the methodology presented in 

section 5.3.4.  

By comparing Figures 5.31 and 5.32, we can observe that, assuming independence in 

this case leads to a different distribution for the expected crack density than is derived by 

jointly conditioning on the near- and far-offset reflectivity. The correlation coefficient 

between the near- and far-offset reflectivity calculated by rock-physics stochastic 

simulations is 0.86. This value shows a significant correlation between the variables, and 

that is why the assumption of independence does not hold in this case. Therefore, if the 
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variables that we condition on are not independent, deriving the a posteriori PDF for the 

model parameters using Equation 5.26 may be misleading. 

 
Figure 5.32:  Map of the expected values for crack density derived from the a posteriori 

distribution obtained by jointly constraining the a priori information with both the 
near- and far-offset reflectivity, in the hypothesis of randomly oriented fractures. 

 

I also use the difference between the near- and far-offset reflectivity, (G=RN-RF), to 

obtain the updated crack density distribution. Figure 5.33 presents the map with the 

expected values of crack density after conditioning the prior information on the 

difference between the near- and far-offset reflectivity (G).  

For the geological hypotheses of a single set of vertical fractures and of randomly 

oriented cracks, the distributions of the expected fracture density at the top of the 

reservoir, obtained by combining the prior information with the difference between the 

near- and far-offset reflectivity stacked over all azimuths, are very similar, as we can see 

from Figures 5.21 and 5.33.  
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Figure 5.33:  Map of the expected values for crack density derived from the a posteriori 

distribution obtained by constraining the a priori information with the difference 
between the near- and far-offset reflectivity (G), in the hypothesis of randomly 
oriented fractures. 

 

Next, I obtain the updated distribution of fracture density at the top of the reservoir by 

jointly conditioning the prior PDF on both the far-offset reflectivity (RF) and the 

difference between the near- and far-offset reflectivity (G).  Figure 5.34 presents the map 

with the expected values of fracture density jointly conditioned on both reflectivity 

attributes (RF and G). 
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Figure 5.34:  Map of the expected values for crack density derived from the a posteriori 

distribution obtained by jointly constraining the a priori information with both the 
far-offset reflectivity (RF) and the difference between the near- and far-offset 
reflectivity (G), in the hypothesis of randomly oriented fractures. 

 

By comparing Figures 5.32 and 5.34, we can observe that the distributions for the 

posterior expected fracture densities obtained by jointly conditioning on RN and RF 

(Figure 5.32) are practically identical to those obtained by jointly conditioning on RF and 

the difference RN-RF (Figure 5.34). This result is expected, suggesting that data 

manipulation does not bring new information. The two different pieces of information 

used in both cases are the near- and far-offset reflectivity.  

However, data manipulation may play a role in obtaining independent variables, such 

that we can use the independence assumption to derive the a posteriori PDF on the 

fracture parameters. For example, Figure 5.35 presents the updated distribution for the 

expected values of fracture density derived by assuming independence between G and RF, 

by using the Equation 5.13, from section 5.3.5, as follows: 



CHAPTER 5: Quantitative Data Integration                                                                                187 

 

σΜ(e|G,RF)=
)(

1
eMρ

σΜ(e|G)σΜ(e|RF).                                       (5.27) 

 
Figure 5.35:  Map of the expected values for crack density derived from the a posteriori 

distribution by assuming independence between the far-offset reflectivity (RF) and the 
difference between the near- and far-offset reflectivity (G), using Equation 5.27. 
Geological hypothesis: randomly oriented fractures. 

 

In this case, the map of the expected values for fracture density at the top of the 

reservoir, derived by assuming independence between RF and G (Figure 5.35), is very 

similar to the map obtained by jointly conditioning the prior PDF of fracture density on 

RF and G (Figure 5.34). This suggests that the variables RF and G (RN-RF) can be 

considered independent. Their correlation coefficient calculated based on the rock 

physics modeling and stochastic simulations has a small negative value of -0.18. This is 

why the distribution for the expected values of the crack density derived based on RF and 

G by assuming independence is almost the same as the distribution for the expected 

crack-density values jointly conditioned on the G and RF. 
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For both geological hypotheses of isotropic and anisotropic distribution of cracks, the 

prior information about the fracture distribution for this reservoir does not play a crucial 

role in the final results of the integration. This is because the rock-physics fracture 

modeling predicts that the seismic data is very constraining compared to the prior 

uncertainty about the fracture density. However, the prior information can sometimes 

have a significant impact on the posterior distribution of the model parameters. This 

happens when the uncertainty in the data and/or in the theoretical PDF, due to natural 

variability of the rock properties, are comparable with the prior uncertainty on the model 

parameters. 

To conclude, in this section I show examples of integrating the prior information 

about fracture density with seismic-reflectivity attributes from a 3D seismic data for a 

fractured carbonate reservoir, under two geological hypotheses. The first hypothesis is 

that the fractures are vertical, aligned and more-or-less regularly spaced, such that they 

generate an azimuthally anisotropic medium. The second hypothesis is that the fractures 

occur in swarms associated with possible subseismic faults, and they are more randomly 

oriented, such as in brecciated areas.   

Under both geological hypotheses I highlight the zones of higher fracture density at 

the top of the reservoir by conditioning the prior PDF of fracture density on different 

reflectivity attributes. The final result is represented by the a posteriori PDF of the 

fracture density at each spatial location. The posterior PDF of fracture density provides us 

with a complete measure of uncertainty after integrating the available geological, 

theoretical, and seismic information. 

5.6 Conclusions 

 
This chapter presents a way of integrating prior geological information with seismic 

data for improved subsurface property estimation, using statistical rock-physics within 

the framework of an inverse problem, as defined by Tarantola (1987). I illustrate the 

method with fracture characterization. The rock-physics theories provide the link 

between the fracture parameters and the seismic data, while the statistical approach 
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allows us to integrate quantitatively all the various types of information derived from 

geology, theory, well-log and seismic measurements.  

The most general way to express mathematically the state of knowledge about the 

fracture parameters is through probability density functions. The language of Probability 

Theory allows us to account for the measurement errors and for the uncertainty in the 

relation between the fracture parameters and the seismic data due to natural variability of 

the target rock properties. This approach enables us to also estimate the uncertainty about 

our predictions, and to quantify the value of each type of information in reducing this 

uncertainty.  Therefore, this method can have a significant impact on risk and decision 

analysis.  

The methodology for quantitative data integration provides a new framework for 

estimating the subsurface rock properties and the uncertainty of our estimations, 

emphasizing the key importance of the rock physics theories in linking geological 

observations and seismic measurements. In this approach I use stochastic simulations 

together with deterministic rock-physics theories to estimate the uncertainty between the 

fracture parameters and seismic data due to natural variability of the rock properties. The 

well-log data represents an essential piece of information for calibrating the seismic 

properties of the target rocks.  The natural variability of the rock properties is derived 

from the well-logs. Therefore more logged wells can help in better estimating the 

variability of the target rock properties. 

To summarize, there are three different types of information that we need to integrate 

quantitatively: 1) the prior information on the fracture parameters, which often comes 

from geology, 2) the results of some experiments, often represented by the seismic data, 

and 3) the theoretical relation between the fracture parameters and the experimental data, 

which is given by the rock-physics theories, and calibrated using well-log data.  The 

solution to the integration methodology is obtained by combining the prior, the 

experimental, and the theoretical information, to derive the a posteriori state of 

knowledge (Tarantola, 1987) of the fracture parameters.  The a posteriori probability 

density function represents the updated measure of uncertainty about the fracture 

parameters after conditioning the prior information with the observed seismic data.  
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An important component of the integration methodology is the prior information on 

the fracture parameters. This chapter also presents a method to estimate the prior 

uncertainty about the fracture parameters, using a probability density function derived 

from the maximum entropy principle (Jaynes, 1983). This principle allows us to assign 

probabilities that are maximally uninformative, while still incorporating the information 

that one actually possesses. Therefore, we can estimate the a priori PDF based on a set of 

constraints imposed by geological interpretation.  

In this chapter I emphasize not only the theoretical approach of combining prior 

geological information with seismic data, but I also present the practical steps of the 

methodology for quantitative data integration, giving an example from a fractured 

carbonate reservoir of gas in eastern Texas.  

Based on the geological information about the reservoir, I consider two geological 

hypotheses. The first hypothesis is that the fractures are vertical and aligned, such that 

they generate an anisotropic medium. The second hypothesis is that the fractures occur in 

swarms associated with possible subseismic faults, and they are more or less randomly 

oriented, such as in brecciated zones. 

In the example presented in this chapter, the model parameter is the fracture density. 

The prior distribution for the expected values of fracture density at the top of the 

reservoir is derived based on the interpretation of a major fault, resolved by the seismic 

data. The uncertainty about the prior values of fracture density is estimated using the 

Maximum Entropy Principle. 

The observable data parameters used in this example are represented by various 

reflectivity attributes, such as the near- and the far-offset reflectivity, and also the 

azimuthal anisotropy of reflectivity at far offsets. The uncertainty in the reflectivity data 

is assumed to be Gaussian. 

The theoretical relations between the fracture parameters and the observable data are 

derived using rock physics modeling and stochastic simulations, in both geological 

hypotheses of isotropic and anisotropic fracture distributions. The theoretical PDFs 

represent the uncertainty in the relation between the fracture density and seismic 
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attributes due to natural variability, and it is assumed representative for the entire study 

area. 

Finally, I combine the prior information, the reflectivity attributes and the theoretical 

information to obtain the a posteriori distribution of fracture density at each spatial 

location. From the a posteriori PDF on the fracture density we can compute the posterior 

expected values. The integration methodology predicts in both hypothesis of isotropic 

and anisotropic distribution of fractures relatively higher fracture density values in the 

proximity of the fault. However, I also highlight zones of higher fracture density away 

from the fault, possibly associated with smaller, subseismic faults, which may have not 

been predicted otherwise.  

The a posteriori PDF derived at each spatial location represents a complete measure 

of uncertainty, from which we can derive, for example, the probability that the fracture 

density is smaller than certain thresholds. In this way we can assess the risk of drilling a 

new well in an area with small fracture density. These probability maps can serve as a 

decision-making guideline for reservoir management.  
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Chapter 6 

Conclusions  
 
 
 

In this thesis I design a methodology for quantitative integration of prior geological 

information with seismic data, using rock physics theories (Mavko et al., 1998), within 

the framework of an inverse problem, as defined by Tarantola (1987). This method is 

general and can be applied for estimating various subsurface rock properties, using rock 

physics theories.  In this dissertation, I illustrate the method with fracture characterization 

of a gas reservoir in eastern Texas. 

The fracture parameters analyzed in the thesis are the fracture density, fracture 

orientation, and the type of fluid saturating the fractures, with an emphasis on the fracture 

density.  The data parameters are the reflectivity attributes from a 3D seismic data set 

acquired over a fractured carbonate reservoir. 

Rock physics theories provide the quantitative link between the fracture 

characteristics (model parameters) and the seismic measurements (data parameters). 

Although there are many published papers on elastic fracture models, little work has been 

done on testing the reliability of these models for seismic fracture characterization.  

Therefore, I explore the validity of the theoretical models by comparing their predictions 

with lab ultrasonic velocity measurements on simulated fractured media, whose 

geometric characteristics are known. Based on the comparison of the various fracture 



CHAPTER 6:  Conclusions  193 

 

models with lab measurements presented in Chapter 2, I conclude that either Hudson’s 

(1981, 1997) models or Schoenberg’s (1980, 1983) model can be used interchangeably to 

characterize the effective elastic properties of fractured media.  Also, from the 

comparison of the theoretical predictions with the laboratory results, I conclude that the 

limit of validity for fracture density of Hudson’s model of 0.1 represents a relatively large 

degree of fracturing at realistic reservoir pressures.  I also analyze the collection of field 

data on shear-wave anisotropy as a function of depth, collected by Crampin (1994) from 

different authors. I use Hudson’s fracture models to obtain the distribution of different 

fracture parameters from the field data, assuming that the observed shear-wave 

anisotropy is due to the alignment of fractures. From the analysis of this data, I observe a 

practical upper bound for the shear-wave anisotropy, and implicitly for the fracture 

density, that decreases with depth. This result puts valuable prior constraints on the 

fracture density as a function of depth, and helps calibrate the input parameters of the 

rock physics models. 

In seismic fracture characterization, the relationship between the fracture parameters 

and the seismic attributes, given by rock physics theories (Chapter 2), is non-unique, due 

to the natural variability of the unfractured reservoir rocks, as well as of the cap rocks. 

Therefore, in order to assess the uncertainty in seismic interpretation of fracture density, 

fracture orientation, and fluid type, caused by the geologic variability of the target rocks, 

I use Monte Carlo simulations on the input parameters of the deterministic fracture 

models.  Chapter 3 presents the results for the fracture modeling and stochastic 

simulations, based on the well logs for a fractured carbonate reservoir in eastern Texas.  I 

derive the natural variability of the unfractured reservoir and cap rocks from the well-log 

data, which is an essential piece of information for calibrating the seismic properties of 

the target rocks.  From the well-log data, I observe that the fractures are preferentially 

associated with the clean limestones, with small a amount of shale and low porosities, but 

high velocities. The reservoir is heterogeneous, and based on the rock physics analysis 

from well data, I consider that it exhibits three main types of facies: 1) the unfractured 

clean limestones, 2) the shaly limestones, less likely to get fractured, and 3) the clean, 

fractured limestones.  I show that both interval and interface seismic attributes may be 
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useful to differentiate the gas-filled fractures from the other heterogeneities in the 

reservoir.  However, the brine-filled fractures are more difficult to distinguish, due to the 

smaller compressibility in comparison with that of the gas.  Also, the interface properties, 

such as the reflectivity from the top of the reservoir, are more useful seismic attributes 

than the interval properties, because the reservoir thickness is relatively small.  

Therefore, the data parameters I consider are various reflectivity attributes from a 3D 

seismic data set acquired over the carbonate reservoir in eastern Texas (Chapter 4). In the 

geological hypothesis of a single set of aligned fractures, I use the amplitude variation 

with azimuth (AVAZ) at far offsets to determine the fractures’ strike.  I use a bootstrap 

method (Efron and Tibshirani, 1998; Teng, 1998) to estimate not only the mean fracture 

orientations, but also the uncertainty in fractures’ strike due to the measurement errors in 

the reflectivity data.  I find good agreement between the fracture orientation derived from 

seismic AVAZ and the fracture orientation derived from the well logs.  In addition, the 

mean fracture strikes determined from AVAZ are approximately parallel to the maximum 

horizontal stress in the region.  

Finally, the main contribution of the thesis is the methodology for integrating prior 

geological information with seismic data, using rock physics theories (Chapter 5).  I give 

an example of combining quantitatively the prior information on fracture density, 

obtained from the geological interpretation of a fault at the top of the reservoir, with 

reflectivity attributes derived from the 3D seismic data set presented in Chapter 4.  I also 

show a method to estimate the prior uncertainty in the fracture density values using the 

Maximum Entropy Principle (Jaynes, 1983). I consider the geological hypotheses of 

isotropic distribution of fractures, which may correspond to brecciated areas associated 

with subseismic faults, as well as a single set of vertical aligned fractures, which 

generates an anisotropic medium, as suggested by well-log data. The final result of this 

approach is the posterior distribution of fracture density, after integrating the geological, 

the seismic and the rock physics information, for both geological hypotheses considered. 

The integration methodology predicts relatively higher fracture density values in the 

proximity of the interpreted fault at the top of the reservoir, which is consistent with the 

prior geologic information. In addition, I also highlight zones of higher fracture density 
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away from the fault, possibly associated with smaller, subseismic faults. Those zones are 

not known a priori. 

Finally, I emphasize the impact of the prior geological information in comparison 

with that of the seismic data on the final results for fracture density distribution.  The 

method allows us to derive the posterior expected values for fracture density, as well as 

the associated uncertainty, after integrating the prior geological information, the seismic 

data, and the rock physics theoretical information. The posterior uncertainty is illustrated 

using probability maps, as presented in Chapter 5. For example, these probability maps 

help us delineate the areas in the reservoir where the fracture density exceeds different 

thresholds with certain probabilities. Therefore, the probability maps can serve as a 

decision-making guideline for reservoir development.  
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