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Abstract 
 
 

Earth sciences is undergoing a gradual but massive shift from description of the earth 

and earth systems, toward process modeling, simulation, and process visualization. This 

shift is very challenging because the underlying physical and chemical processes are 

often nonlinear and coupled. In addition, we are especially challenged when the processes 

take place in strongly heterogeneous systems. An example is two-phase fluid flow in 

rocks, which is a nonlinear, coupled and time-dependent problem and occurs in complex 

porous media. To understand and simulate these complex processes, the knowledge of 

underlying pore-scale processes is essential. This dissertation focuses on building 

transport property simulators in realistic pore microstructures. 

These pore-scale simulators will be modules of a computational rock physics 

framework, which will also include other simulators, such as acoustic, elastic, electrical 

and NMR property simulators. This computational environment can significantly 

complement the physical laboratory, with several distinct advantages: (1) rigorous 

prediction of the physical properties, (2) interrelations among the different rock 

properties in a given pore geometry, and (3) simulation of dynamic problems with 

coupled and nonlinear physical processes. This dissertation is initiative for the 

computational rock physics framework, which is a new paradigm of quantitative models 

for coupled, nonlinear, transient and complex behavior of earth systems. 
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A rigorous pore-scale simulator requires three important traits: reliability, efficiency, 

and ability to handle complex microgeometry. We implemented single-phase and two-

phase flow simulators using the Lattice-Boltzmann (LB) algorithm, since it handles very 

complex pore geometries without idealization of the pore space. The single-phase flow 

simulator successfully replicates fluid flow in a digital representation of a real sandstone 

sample, and predicts permeability very accurately. This rigorous calculations result from 

the unique characteristics of the LB algorithm: high angular coverage with 18 velocity 

directions in 3D. This high angular coverage enables the Lattice-Boltzmann method to 

accurately solve the non-slip boundary condition without extensive meshing of the pore-

grain boundaries in complex pore microstructures. There are two important length scales 

in digital porous media for the LB flow simulation: grid spacing (dx) and sample size (L). 

Although optimal choices of these scales are strongly dependent of the pore size 

distribution of the sample, we found following values are reasonable for well sorted and 

homogeneous sedimentary rocks in terms of mean pore size (a): dx=a/10 and L=10a.  

Two applications using the single-phase flow simulator are also proposed: a 

permeability estimation technique from thin sections, and flow-dependent diagenesis 

modeling. The permeability estimation technique consists of two key components – 

stochastic 3D porous media construction and flow simulation using the LB method. This 

technique successfully predicted accurate permeabilites of seven sandstones from thin 

sections. The LB simulator, again, is very robust even with the stochastically 

reconstructed pore structures with statistical noises. The most important part is the 

stochastic construction of porous media from thin sections. We use a sequential indicator 

simulation technique with porosity and the autocorrelation function as simulation 

parameters. Although this indicator-based simulator works well with our sandstone 

samples, higher statistics, such as multipoint correlation functions, are essential for better 

3D constructions and for other rock types. The flow-dependent diagenesis modeling is a 

basic framework for delineating trends of transport properties with a given diagenetic 

process. The immediate implication of this method will be incorporating more realistic 

diagenetic mechanisms, such as chemical deposition and dissolution. These two 
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applications show potential applicability of this robust pore-scale simulator to modeling 

complex, coupled and dynamic systems. 

We extended the single-phase LB algorithm to two-phase systems and implemented 

two-phase LB flow simulator. The two-phase flow simulator replicates many two-phase 

flow phenomena, such as Laplace’s law, capillary pressure, and snap-off in a pore 

doublet. We observed intermittent flow and nonlinearity between fluid flux and pressure 

gradient, which suggest that the extended Darcy’s law is not always valid. A simple 

mixed-wet system was also successfully simulated. The simulator is also ready for 

exploring a wide range of two-phase flow phenomena more rigorously, including the 

effect of wettability, capillary pressure and hysteresis, and relative permeability 

estimation from thin sections. 

To overcome the long calculation time of fluid flow simulations, parallel single-phase 

and two-phase flow simulators were also implemented for efficient and accurate 

calculation of fluid flow properties of rocks. We developed four optimization techniques 

customize for the LB algorithm. These optimizations give much better performance than 

a generic parallelization of the LB flow simulation. The optimized code runs 12 times 

faster with 14 processors than its serial counterpart, while the generic parallel code is 

only 4 times faster. With this efficient parallel two-phase flow simulator, we investigated 

the representative elementary volume for two-phase flow simulation. We found that 

L=10a is not big enough to represent two-phase fluid flow of the whole rock. We suggest 

that the length scale of a digital rock should be greater than 20 time the mean pore size 

(L=20a) for two-phase flow simulation. These efficient parallel implementations can help 

us efficiently simulate very time-consuming applications, which involve multiple two-

phase flow simulations, such as diagenesis modeling with two-phase flow and capillary 

pressure curve simulation. 
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Chapter 1  

Introduction 
 

“There is one thing even more vital to science than intelligent 

methods; and that is, the sincere desire to find out the truth, 

whatever it may be.” (C. S. Pierce) 

 

1.1 Rationale behind Pore-scale Modeling 

A macroscopic physical property of matter depends on its constituents’ microscopic 

physics. Understanding and simulating the underlying microscopic physics is very useful 

for determining macroscopic physical properties, as we can see from the advances in 

material sciences and biology that have resulted from quantum and molecular simulations. 

As geophysicists, our primary interest lies in determining and predicting physical 

properties of rocks, which are the main components of the complex and evolving earth 

crust. At our scale of interest, minerals and pore space are the microscopic constituents of 

rocks. Thus understanding and simulating pore-scale physics is the key to accurate 

determination and prediction of physical properties of rocks. Especially, nonlinear and 

coupled problems, such as two-phase fluid flow in porous media, are very difficult to 

handle without understanding the pore-scale physics.  

Transport properties are probably the most important parameters in many geophysical 

and engineering situations, including hydrothermal systems, pollutant migration, under-
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ground storage of fluids and CO2, nuclear repositories, and of course oil reservoirs. 

Because of the complexity of porous media, modeling and calculation of transport 

properties are often very challenging without simplification or modification of the pore 

geometry. The primary objective of this dissertation is building rigorous pore-scale 

simulators for transport properties in realistic pore microstructures. We pay special 

attentions to three aspects in developing the rigorous pore-scale simulators: reliability, 

efficiency and ability to handle complex microgeometry.  

These rigorous pore-scale simulators will be modules of a computational rock physics 

framework, which will also include simulators for other physical properties, such as 

acoustic and elastic properties, electrical conductivity, and NMR response. This 

dissertation is the initiative of the computational rock physics framework, which is a new 

paradigm of quantitative models for coupled, nonlinear, transient and complex behavior 

of earth systems. 

1.2 Computational Rock Physics  

A new computational experimentation environment, the computational rock physics 

framework, is shown in Figure 1.1. The computational rock physics framework is based 

on digital representations of rocks, which consist of minerals and fluids, and may evolve 

with time. It also contains modular physical property simulators, with which we can 

directly simulate physical properties of rocks. This computational environment can 

significantly complement the physical laboratory, with several distinct advantages: (1) 

rigorous prediction of the physical properties, (2) interrelations among the different rock 

properties using shared digital porous media, and (3) simulation of dynamic problems 

with multiple physical responses. 

Three physical property simulators were completed in this work, a single-phase flow 

simulator (permeability), an electrical property simulator (electrical conductivity), and a 

two-phase-flow simulator (relative permeability). Furthermore, two applications using the 

single-phase flow simulator were proposed: (1) a permeability estimation method from 

thin sections, and (2) diagenesis modeling with fluid flow. These two applications show 

the potential applicability of the robust pore-scale simulators to more complex multi-
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physics simulations, which involve nonlinear and coupled processes. To overcome the 

long calculation time of flow simulations, parallel single-phase and two-phase flow 

simulators were also implemented. Customized optimizations for the Lattice-Boltzmann 

algorithm give very good performance. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1.1: Schematic diagram of the computational rock physics framework.  
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1.3 Transport Properties and Pore-scale Simulation 

Because of the complexity of pore geometry, the modeling and calculation of 

transport properties are often very difficult. Thus the transport properties of rocks have 

been estimated experimentally in laboratories or through the use of empirical relations. 

Laboratory experiments can be slow and costly, and empirical relations have not proved 

to be always effective for many complex processes, such as multiphase flow. As modern 

computing power increases, numerical simulation techniques have been introduced as an 

alternative solution. However, implementation of the differential equation can become 

very complicated with complex geometry of porous media. Either simplification of the 

geometry or extensive meshing is generally required. A robust and simple tool that can 

handle complex pore space without over-simplification of the pore geometry is essential. 

The Lattice-Boltzmann method (LBM) has the strength to handle complex pore 

geometry without any modification of the complex pore structure (Cancelliere et al., 

1990; Ladd, 1994a; Martys and Chen, 1996; Koponen et al., 1998). It can solve the 

Navier-Stokes equation accurately with real pore geometries. It has been shown that the 

LBM can give an accurate solution equivalent to the one by the finite-element method 

(Kandhai et al., 1998 and 1999) without extensive meshing. It has also been shown that 

the LBM gives more accurate solutions that a finite-difference method (Ladd, 1994b). 

Another advantage with the LBM is simple implementation. Moreover, most operations 

in the LBM are local, thus it is ideal for parallel implementation. Chapter 2 covers the 

details on transport properties and rationale for choosing the LBM as our algorithm for 

fluid flow simulations. 

1.4 Chapter Description  

The following is a brief description of each chapter in this dissertation. 

Chapter 1 presents the background and motivation of pore-scale simulations for 

physical rock properties. It describes a new computational experimentation environment, 

computation rock physics. The benefits of the Lattice-Boltzmann (LB) method for fluid 

flow simulators are also briefly covered. 
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Chapter 2 provides the theoretical background of transport properties. It focuses on 

the need for a robust numerical algorithm for fluid simulation at the pore scale, and why 

we choose the LB method for our flow simulations. The advantages of the LBM over 

other numerical method are discussed. 

Chapter 3 describes the details on the LB method, including history, brief theoretical 

background and implementation. It also shows several numerical experiments to verify 

that the implementation replicates laboratory measurements and theoretical predictions. 

Two important scales for the simulation, grid spacing and sample size, are discussed. 

Chapter 4 presents a method of permeability estimation from thin sections, which 

consists of the stochastic construction of 3D porous media from thin section images, and 

direct flow simulation for permeability estimation. The construction process includes a 

stochastic simulation technique based on indicator simulators. The method is then 

compared with a conventional permeability prediction method using two-point spatial 

correlation without flow simulation.  

Chapter 5 presents flow-dependent diagenesis modeling, which is a basic tool for 

delineating trends of transport properties. It shows how permeability and electrical 

conductivity change during different diagenetic histories. This chapter also presents a 

new LB implementation using sparse matrix inversion. The new implementation shows 

better convergence in low-porosity and low-permeability rocks.  

Chapter 6 describes two-phase flow simulation using the LB method. It presents the 

implementation of the two-phase flow simulator by extending the single-phase algorithm. 

It then shows numerical experiments for verification of the implementation, and 

simulation results on a digital Fontainebleau sandstone sample. The effect of initial 

distribution of two fluids and future applications are also covered. 

Chapter 7 presents parallel implementations of single-phase and two-phase flow 

simulators. It describes various optimization techniques customized for the LB algorithm. 

Our parallel code with these optimizations especially customized for the LB algorithm 

performs much better than a conventional parallel implementation. Using the parallel 

two-phase flow simulator, the elementary representative volume (REV) for two-phase 

fluid flow is explored and discussed. 
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Chapter 2  

Transport Properties in Porous Media 
 
 

2.1 Introduction 

Porous media, such as rocks in the earth, consist of pore space and a solid matrix. The 

pore spaces are usually connected, which allows fluid flow and mass transfer to take 

place. Permeability and electrical conductivity, as well as other parameters, are strongly 

influenced by the pore structure and pore-scale physics. In fact, we can determine the 

transport properties of a porous medium exactly if we can solve the physical equations on 

a real pore space. However, this approach requires a detailed description of the pore 

geometry, which is rarely known. Even if it were known, the mathematics and 

computation would become impractical. Thus it is common to ignore the microscopic 

mechanical details and to describe porous media with volume-averaged laws that treat a 

porous medium as a macroscopically homogeneous continuum. At this scale, the 

transport properties of rocks have been estimated experimentally in laboratories or 

through the use of empirical relations. However, the experiments can be slow and costly 

and the empirical relations have not always proved to be effective for many complex 

processes, such as multiphase flow. As modern computing power increases, numerical 

simulation techniques have been introduced as an alternative solution. Network modeling 

(Fatt, 1956; Bryant et al., 1993) is one widely used technique, which simplifies the pore 
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space into pores and connecting bonds. This simplification gives two benefits: a 

reasonable amount of pore geometry information can be incorporated, and the flow 

simulation is simple enough for very large networks. The most significant limitation of 

this approach is dividing the pore structure into discrete pores and pore throats, which 

arbitrarily alter the real pore structure. The finite-element method (FEM) is robust and 

accurate, but requires extensive meshing and special numerical libraries. The finite-

difference method (FDM) is simple to implement, but does not give as accurate solutions 

as the FEM does. A simple method that can calculate the transport properties accurately, 

and can handle complex pore space without over-simplification of the pore geometry is 

essential for building our rigorous transport property simulators. 

This chapter briefly reviews transport properties of rocks, hydraulic permeability and 

electrical conductivity. It will cover the governing equations and empirical relations with 

other pore geometry parameters, such as porosity, specific surface area and tortuosity. 

This chapter then will discuss the need for numerical simulation techniques and cover a 

few techniques including the Lattice-Boltzmann method (LBM). Finally, the benefits of 

the LBM, which is the main reasons to choose the LBM for our simulator, will be 

described. 

2.2 Background of Transport Properties 

Permeability is a measure how easily fluid flows through a given porous medium. 

The mechanics of the flow is given by the Navier-Stokes equation: 

uuuu 2)()( ∇+−∇=⋅∇+ ηρρ P
dt
d ,     (2.1) 

where ρ is density, u is the velocity, ∇P is pressure gradient and η is the dynamic 

viscosity of the fluid. Permeability can be defined by Darcy’s law: 

η
〉∇〈⋅−=〉〈

PΚq ,        (2.2) 

where 〈q〉 and 〈P〉 are volumetric averages of fluid flux and pressure, and Κ is the 

permeability tensor. The equation can be reduced to 
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dx
dPqx η

κ−=〉〈         (2.3) 

in the 1D case, when the pressure gradient is only applied along the x-direction. 

Since permeability of rocks is difficult to measure or simulate, empirical relations are 

often used to estimate permeability through other pore structure parameters that can be 

measured more easily. Kozeny and Carman (Carman, 1961) provided a good empirical 

relation between fluid permeability and other measurable properties of porous media. The 

derivation is based on flow through a pipe with radius R. The flux in the pipe can be 

written as 

dx
dPRqAQ

η
π
8

4
−==        (2.4) 

where Q is the volumetric flow rate and A is the cross-sectional area. Comparing with 

Darcy’s law (Equation 2.3), the effective permeability becomes 

88

224 R
A
R

A
R









== ππκ .       (2.5) 

The porosity φ, and the specific area S for the pipes are expressed as 

,2,
2

A
RS

A
R ππφ ==        (2.6) 

then the Kozeny-Carman relation becomes (Mavko et al., 1998) 

2
3

22

3
dB

S
B

τ
φ

τ
φκ ==        (2.7) 

where B is a geometric factor, τ is the tortuosity, and d is a characteristic length scale of 

pores. Another widely used variation of the Kozeny-Carman relation is, 

naφκ = .         (2.8) 

The coefficient a and the exponent n are empirically determined. Although these 

empirical relations are intended to relate permeability with other more easily measurable 

parameters, the relation frequently introduces empirical parameters that are very difficult 

to quantify. Tortuosity and the geometrical factor B are still not very easy to quantify in 
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realistically complex pore structures. Extensive details of this empirical relation and other 

variations can be found in Mavko et al. (1998), Guéguen and Palciauskas (1994), and 

Walsh and Brace (1984). 

The effective (macroscopic) electrical conductivity of porous media can be expressed 

by Ohm’s law: 

)()()()()( rVrrrr ∇−== σσ EJ ,      (2.9) 

where J is electrical current density (flux), σ is the local conductivity, E is the electrical 

field, and V is the electrical potential. For time-independent electrical flux, the equation 

for charge conservation becomes 

.0)]()([)( =∇⋅−∇=⋅∇ rVrr σJ                 (2.10) 

The pore-scale potential function V(r), can be computed by solving Equation 2.10 using 

the input parameter σ(r) for rock and fluid. The effective conductivity is then computed 

from 

Veff ∆
><−= Jσ                   (2.11) 

where σ eff is the effective electrical conductivity of the rock and < J > is the volumetric 

average flux. The differences in conductivity between mineral grains are usually very 

small compared to the differences in conductivity between the minerals and saline water. 

Therefore a water-saturated rock can be regarded as a two-component medium: solid 

grains and saline water. Since the conductivity of grains is much smaller than that of the 

fluid, the effective conductivity of a rock saturated with fluid will be proportional to the 

conductivity of fluid σ w as follows: 

F
w

eff
σσ =                    (2.12) 

where F is known as the formation factor (Archie, 1942).  

Since detailed information on pore microstructure is not usually known, we have to 

rely on empirical relations between the formation factor and porosity. One widely used 

relation is the so-called Archie’s law,  
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m
o

m FF −− −== )(or φφφ                 (2.13) 

where φo is percolation porosity. The exponent m varies approximately from 1.3 to 2.5 for 

most sedimentary rocks and is close to 2 for sandstones. Archie’s laws is sometimes 

written as,  

m
o

m aFaF −− −== )(or          φφφ                (2.14) 

where a is an empirical constant close to 1.  

Since electrical conductivity is usually easier to measure than permeability in situ or 

in the laboratory, there have been efforts to relate permeability to electrical conductivity. 

Walsh and Brace (1984) modified the Kozeny-Carman relation using the formation 

factor:  

22

2

SFc
φκ = ,                 (2.15) 

where c is another geometrical factor, with c = 2 for circular pores and c = 3 for flat 

cracks. There are many other variations of the empirical relations (Mavko et al., 1998; 

Guéguen and Palciauskas, 1994; Walsh and Brace, 1984). However, no single relation 

could fit all different data from different rock samples.  

2.3 Why Lattice-Boltzmann Flow Simulation 

Figure 2.1 shows laboratory measurements of porosity and permeability for several 

types of sandstones with clay contents less than 5%. Several empirical relations are 

superimposed on laboratory measurements with different exponents (Equation 2.8). We 

first notice that the permeability ranges very widely, spanning several orders of 

magnitude even with the same porosity. Some data sets can be fitted with an empirical 

relation, while some others are impossible to fit with these empirical curves. In addition, 

these empirical relations give very little physical explanation about the relation between 

permeability and microstructure of porous media. It is clear that we need to consider 

pore-scale physics to find a rigorous relation between permeability and other pore 

geometry parameters. This pore-scale physics will also help us understand which pore 

geometry parameter has the most effect on permeability in a specific rock type. However, 
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this problem is very difficult to solve analytically because of the complexity of the 

geometry and the governing equations. Thus numerical simulation is a practical choice. 

Several techniques such as network modeling, finite element and finite difference 

methods and the Lattice-Boltzmann method have been used for simulating fluid flow in 

porous media. 
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Figure 2.1: Permeability measurements from different types of sandstone. Diamonds are 

Fontainebleau sandstones, bars are Troll sandstones, open squares are Ottawa sands, 
and circles are from Klimentos and McCann (1990). Solid lines are Kozeny-Carman 
curves with different parameters (Equation 2.8). 

 

 

The main idea of network models is to represent a complex pore structure as a simple 

network. This network has a certain amount of pore structure information, such as 

connectivity and pore size distribution. At the same time, it provides a model in which 

simple flow calculations can be made. The network consists of nodes that represent pore 

junctions and bonds that connect nodes as capillary conduits. Network models were 

initially introduced to study capillary pressure (Fatt, 1956) on regular 2D or 3D grid 
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structures. Modern network models are more representative of real pore structures 

(Bryant et al., 1993; Bakke and Øren, 1997; Liang et al., 1999 and 2000; Dillard et al., 

2000). The biggest limitation of network models is the need to divide the pore space into 

discrete pores and pore throats. In real pore space, the distinction between pores and 

throats is not very clear, so the choice of the distinction is always somewhat arbitrary. 

The bottom line is that a network model is not a real pore space.  

Several other techniques using finite-element methods (FEM) or finite-difference 

methods (FDM) have been introduced. Adler et al. (1990) used an alternating-direction-

implicit (ADI) finite-difference scheme on simulated 3D porous media to solve the partial 

differential equation for Stokes flow of a Newtonian fluid. Saeger et al. (1995) solved the 

Stokes equation using the finite-element method. Generally, the FEM involves quite 

complicated meshing for media with complex geometry. The FDM can use simple 

regular grid structures, but requires very fine grid structure for accurate calculation with 

complex geometry (Ladd, 1994b). The complex pore structure is often simplified to solve 

the problem with these methods. Moreover, multiphase flow at the pore scale is very 

challenging with these conventional methods (Rothman, 1988). 

The Lattice-Boltzmann (LB) method, on the other hand, chooses a different approach. 

The LB method is based on cellular automata theory, which describes a complex system 

by the interaction of a massive number of cells following simple local rules (Doolen, 

1990; Chen et al., 1992b; Chopard and Droz, 1998). The rules in the Lattice-Boltzmann 

method recover the Navier-Stokes equation at the macroscopic scale (Ladd, 1994a and 

1994b; Rothman and Zaleski, 1997). While other methods, such as network models, the 

FEM or the FDM, discretize the model and the governing equations (top-down approach), 

the Lattice-Boltzmann method recovers the governing equation from the rule in the 

discrete model (bottom-up). The biggest advantage of the Lattice-Boltzmann method is 

that it is readily applied to any arbitrary discrete geometry (Cancelliere et al., 1990; Ladd, 

1994a; Martys and Chen, 1996; Koponen et al., 1998). In addition, it describes fluid flow 

in porous media very accurately. This strength comes from the characteristics of the LB 

algorithm. Although the LB method uses a regular Cartesian grid like the FDM, one node 

has 18 different velocity directions in 3D. This high angular coverage can give an 
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accurate boundary condition on the pore-grain boundaries, equivalent to the one by the 

FEM with extensive meshing. In essence, the LBM can simulate fluid flow with the high 

accuracy of the FEM but with the simplicity of the FDM (Sangani and Acrivos, 1982; 

Ladd 1994b; Kandhai et al., 1998 and 1999; Fredrich et al., 1999). The LBM has a very 

significant advantage when the pore structure becomes complex. Another advantage with 

the LB method is that the implementation is very simple, and portable for different 

computer platforms. It is also ideal for parallel implementation, since most operations in 

the LB method are local. Lastly, it may be easier to incorporate more mesoscopic physics, 

such as mass transfer, chemical reaction and diagenesis, in the LB method than in the 

Navier-Stokes equations themselves, since the lattice Boltzmann equation is closely 

related to the continuum Boltzmann equation of nonequilibrium statistical mechanics 

(Succi, 2001). For certain applications, such as multiphase flow in porous media, there is 

a growing consensus that the LB method is a strong contender for the best fluid-

simulation approach currently available (Fredrich et al., 1999; Succi, 2001). 
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Chapter 3  

Single-phase Lattice-Boltzmann Flow 

Simulation 
 
 

3.1 Introduction 

This chapter covers theoretical background and implementation of two numerical 

simulation methods: the Lattice-Boltzmann method for single-phase fluid flow simulation 

and a finite element method for the electrical conductivity simulation. We will focus on 

the details of the Lattice-Boltzmann method (LBM) for single-phase flow simulation in 

this chapter. The two-phase Lattice-Boltzmann simulation technique, which is extended 

from the single-phase algorithm, will be described in Chapter 6. We used the Diffpack 

software library (Langtangen, 1999) for the finite element method to simulate the 

electrical conductivity of porous media, by simply solving Equation 2.10. Details on the 

finite element method will not be covered in this work, since it is a well-established 

technique and it is not the focus of this dissertation. We will describe extensive numerical 

experiments and compare the results with laboratory measurements and theory. The main 

objective of this chapter is to show the feasibility and applicability of the LBM. 

The LBM is based on statistical (macroscopic) description of microscopic phenomena. 

It describes fluid motion as collisions of imaginary particles (Figure 3.1), which are much 



CHAPTER 3. SINGLE-PHASE LATTICE-BOLTZMANN FLOW SIMULATION 15 

 

bigger than the real fluid molecules. These particles have nearly nothing in common with 

real fluids, but they show almost the same behavior at a macroscopic scale. In fact, the 

LBM have been shown to recover the Navier-Stokes equation at the macroscopic scale 

(Frisch et al., 1986; Chen el al., 1992a; Ladd, 1994a). Because the LBM describes 

macroscopic fluid flow by the collective behavior of many fictitious molecules but not by 

full molecular dynamics, it is referred to as a mesoscopic description of microscopic 

physics (Figure 3.1). 

The biggest advantage of the LBM comes from its unique derivation (Figure 3.2). 

While other methods, such as network models, the finite-element method (FEM) and the 

finite-difference method (FDM), discretize the model and the governing equations (top-

down approach), the Lattice-Boltzmann method recovers the governing equation from the 

rules in the discrete model (bottom-up approach). Since originated from the discrete 

lattice, we do not have to discretize the governing equation of the model; i.e. it is readily 

applied to any arbitrary discrete geometry.  

3.2 Theory and Implementation 

3.2.1 Cellular Automata Theory 

Cellular automata (CA) theory is an idealization of a physical system in which space 

and time are discrete, and the physical quantities take only a finite set of values. In brief, 

cellular automata can describe a complex system by the interaction of a massive number 

of cells following simple local rules. At the end of 1940s, von Neumann suggested an 

abstraction of self-reproducing mechanisms using a fully discrete universe made up of 

cells (von Neumann, 1966). Each cell is characterized by an internal state and evolves in 

discrete time steps according to a simple rule that is a function of the states of 

neighboring cells. HPP (Hardy-Pomeau-de Pazzis) lattice gas models were developed in 

the 1970s (Hardy et al., 1973 and 1976). These models consist of simple and fully 

discrete collections of particles moving and colliding on a two-dimensional square lattice 

so as to conserve momentum and particle number. Because the HPP does not have the 

property of isotropic relaxation of the stress tensor, it was replaced by the famous FHP 

(Frisch-Hasslacher-Pomeau) model (Frisch et al., 1986). 
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Figure 3.1: Schematic description of the Lattice-Boltzmann method. This mesoscale 
physical model (shown in the center column) shows the same macroscopic behavior 
as micorscale physics does. 

 

 

Figure 3.2: Schematic diagram for top-down and bottom-up approaches. 
 
 

Frisch et al. (1986 and 1987) showed that their model follows the behavior of the 

Navier-Stokes equation of hydrodynamics in the long-time and large-scale limits, in spite 

of the discrete dynamic description of the model (Chen et al., 1992a; Ladd, 1994a). These 

two limits are related to low Mach and Knusen numbers (Qian et al., 1997; Ladd, 1994a). 

Simply, the low Knusen number means that the grid spacing is much smaller than 
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characteristic length scale (e.g. mean pore size), and the low Mach number means that the 

fluid velocity is much smaller than the speed of sound. These models are often referred to 

as lattice-gas automata (LGA) since they were initially developed as theoretical models to 

study fundamental statistical properties of an interacting gas. 

LGA fluids represent idealized N-body systems. The time evolution can be performed 

exactly without any approximations or round-off errors. However, the LGA has several 

weaknesses. Due to Boolean dynamics, the LGA generates much noise in the local 

distribution, even in steady state. Since the velocity field of the LGA is quite noisy, one 

has to average large patch of cells (e.g. 32×32 squares) over several consecutive time 

steps. This process slows down the algorithm and requires finer lattice structure. In 

addition, the LGA has little flexibility to adjust parameters in order to describe a wide 

range of physical situations. After one chooses a collision rule, the viscosity is fixed. If 

we want to change the viscosity of the fluid, a new collision rule must be implemented.  

3.2.2 Lattice Boltzmann Method   

The Lattice-Boltzmann method (LBM) describes the state quantity (particle density) 

as a continuous function. The density of a particle is no longer a Boolean variable but a 

probability of presence that is ranged continuously in the interval [0,1]. There are several 

lattice models (D’Humières et al., 1986); we use a face-centered hypercube (FCHC) grid 

in this study (Higuera et al., 1989). In order to have isotropic relaxation of the stress 

tensor required by fluid equations, the grid should be formed in 4D and be projected into 

2D or 3D (D’Humières et al., 1986; Chen et al., 1992a). The FCHC grid used in this work 

has 24 different velocity directions in 4D, which are expressed as permutations of (±1, ±1, 

0, 0). After projection, the 2D FCHC has 8 velocities (Figure 3.3) and the 3D FCHC has 

18 different velocities (Figure 3.4). More details about the FCHC and other variations can 

be found in D’Humières et al. (1986), Higuera et al. (1989), Ladd (1994b), Nannelli et al. 

(1992), and Chen et al. (1992a). 

The Navier-Stokes equation can be recovered by solving the discrete Boltzmann 

equation for the particle density distribution, ),( tni r  at time t and a location of r. The 

subscript i denotes each different direction, which is defined by the velocity vector, ic . 

Then the local mass density ρ, momentum density j, and momentum flux tensor ∏  are 
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expressed as follows: 

,),(),( ∑=
i

i tnt rrρ              (3.1) 

,),(),( ∑=
i

ii tnt rcrj              (3.2) 

,),(),( tncct
i

iii rr ∑=∏ βααβ             (3.3) 

where αiv  is the α component of velocity vector ic . 

 

 

 

 

 

 

 

 

Figure 3.3: The eight velocities in the two-dimensional FCHC model (on the left) and 
mass associated with each of these directions.  

 

 

 
Figure 3.4: Eighteen possible particle directions in 3D FCHC. Bold lines denote the lines 

in which two particles may travel simultaneously. 
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The time evolution of the distribution function ),( tni r  is described by the discrete 

Boltzmann equation:  

,),(),()1,( ttntn iiii rrcr Ω+=++      (3.4) 

where ),( ti rΩ  is a collision operator. Then )1,( ++ tn ii cr  is the distribution of mass 

density at the next time step. This evolution of the distribution function is a two-step 

process consisting of collision and propagation. In the collision step, the mass and 

momentum are redistributed by the collision operator at each lattice node. The updated 

distribution at location r streams to the neighboring location, icr +  in the propagation 

step.  

Exact collision operators have been derived for several different lattice-gas models 

(Frisch et al., 1987). However, linearization of the collision operator is useful for 

numerical calculations (Higuera et al., 1989). After linearization, the linearized collision 

operator (L) satisfies the following eigenvalue equations (Ladd, 1993): 
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   (3.5) 

where off(·) denotes the off-diagonal part of the tensor, (·). The first two equations follow 

from the conservation of mass and momentum, and the last two equations describe the 

isotropic relaxation of the stress tensor. The eigenvalues Bλλ and  are related to the shear 

and bulk viscosities. After setting up the eigenvalues according to the properties of the 

fluid, the post-collision distribution is expressed by 

)3())((    

),(),(
2

3210 cacctrccacjaa

ttn

iiiii

ii

ρρ ααβαβααβαα −∏′+−∏′++

=Ω+ rr
  (3.6) 

where ∏′  is an updated momentum flux tensor. The new distribution can be obtained 

after determining the coefficients, a0, a1, a2, and a3, according to the properties of the 

fluid. 

The two-step process is repeated until the distribution reaches steady state. After 

steady state is achieved, the local flux (q) can be calculated as follows: 
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.)()( ∑= iin crrq        (3.7) 

From the local flux, we calculate a volume-averaged flux. Then, the macroscopic 

permeability is calculated by Equation 2.3. In summary, the algorithm for the single-

phase Lattice-Boltzmann method is as follows: 
 

(1) Calculate local density, momentum and stress by Equation 3.1-3.3. 

(2) Calculate post-collision distribution by Equation 3.6 (collision step.) 

(3) Apply a force according to the pressure gradient (∇P). 

(4) Move the distribution to neighboring nodes by Equation 3.4 (propagation step) 

(5) Repeat (1)-(4) until steady state. 
 
The external force is implemented as perturbation of density distribution after collision 

(Ladd, 1994a; Martys et al., 1999; Halliday et al., 2001). The non-slip boundary 

condition of fluid flow is implemented by the well-known bouncing-back scheme (Ladd, 

1994a; Inamuro et al., 1995; Maier et al., 1996). We use a no-flow boundary condition at 

sidewalls of the sample, which are perpendicular to the pressure gradient direction. For 

the inlet and outlet areas, we use a periodic boundary condition, i.e. outflow at the outlet 

becomes inflow at the inlet, since it is easy for mass conservation. To eliminate a 

boundary effect with this periodic boundary condition, we mirror 3D cube of porous 

media, in which we have the same geometry at the inlet and the outlet.  

The algorithm is easy and simple to implement. The operation count is linear to the 

number of pore nodes where the fluid resides. Regardless of the complexity of the pore 

structure, the operation count per iteration is the same for the same number of pore nodes. 

The biggest advantage of the Lattice-Boltzmann method is that it can handle complicated 

pore geometry without simplifications or modifications (Ladd, 1994b; Spaid and Phelan, 

1997). It is also easy to incorporate external fields, such as pressure gradients or gravity. 

In addition, since most intensive numerical operations are local, calculations can be 

parallelized to take advantage of modern multiprocessor computers. Other advantages of 

the LBM were already covered in the last of Chapter 2.  

Many studies have successfully applied the LBM to a wide range of fluid phenomena: 

single-phase flow (Bosl et al., 1998; Keehm et al., 2001), two-phase flow (Rothman and 
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Keller, 1988; Gunstensen and Rothman, 1993), colloidal particles (Ladd, 1993), liquid-

gas phase transition (Shan and Chan, 1994), Rayleigh-Tayler instability (Nie et al., 1998) 

and flow in random fiber webs (Koponen et al., 1998). The LBM has also been applied to 

other types of simulation: electrical conductivity (Küntz and Mareschal, 1997), elastic 

properties (Küntz et al, 1997), and wave propagation (Chopard et al., 1997).  

3.3 Verification of the Implementation 

This chapter shows results of numerical experiments with simple porous models, the 

results of which are known from laboratory measurements or from theory. Both electrical 

conductivity and permeability are simulated and verified by laboratory measurements or 

by theory.  

3.3.1 Flow through Pipe 

The first model is a simple cylindrical tube model. Figure 3.5 shows three different 

cylindrical pore structures with different diameters. All of them have the same porosity. 

The local fluid velocities are normalized by the maximum in the largest pipe. The fluid 

velocity has a parabolic profile like in the Poiseuille flow. This laminar Poiseuille flow 

has an exact analytic solution for the cylindrical pipes as follows: 

x
PRQ

∂
∂=

η
π
8

4
         (3.8) 

where η is the dynamic viscosity, R is a radius of the tube and xP ∂∂ /  is a pressure 

gradient. After applying Darcy’s law (Equation 2.3), the permeability (κ) for the tube is 

given by 

A
R

8

4πκ =  .        (3.9) 

where A is the cross-sectional area. Figure 3.6 shows calculated permeability from the 

LBM simulation (dots) and predicted permeability from Equation 3.9. The simulated 

values show excellent agreement with the theoretical prediction. The small discrepancy at 

small diameter comes from the discretization effect. 
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Figure 3.5: Three pipe models with the same porosity (upper row) and corresponding 
cross-sectional flux distributions (lower row). The local flux values are normalized 
by the maximum from the biggest pipe model. 
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Figure 3.6: Simulated permeability by the Lattice-Boltzmann method (dots) and the 

theoretical prediction (solid line). 

LBM 
Theoretical 
prediction 



CHAPTER 3. SINGLE-PHASE LATTICE-BOLTZMANN FLOW SIMULATION 23 

 

3.3.2 Transport properties of Random Dense Packs of Spheres 

Random dense packs of spheres are very useful for testing an implementation of fluid 

flow, for several reasons. Firstly, they are reasonable first approximations to real 

sandstones, and yet are well defined mathematically. Secondly laboratory measurements 

can be easily obtained with sintered glass beads, and both theoretical formula and 

laboratory measurements are widely available (Wong et al., 1984; Roberts and Schwartz, 

1985). Thirdly, a wide range of porosities can be obtained both in the laboratory using 

sintered glass beads, and in simulations by uniform growth or shrinking of the spheres of 

the packing. Thus they are good models to test a new implementation for fluid flow 

simulation. 

We use Finney’s pack for our digital porous model (Finney, 1970). Finney’s pack is 

random, dense and spherical packing of precision ball bearings. It contains more than 

8,000 identical ball bearings with a radius of 1mm. The spatial coordinates of the bearing 

centers have been experimentally measured and are available in the digital format. We 

select a rectangular domain from the pack, which will be our digital rock sample for flow 

simulation. Figure 3.7 shows an example of a random dense pack of spheres and a 3D 

digital rock sample obtained by digitization of the pack. The cube is 8mm on each side 

and has 100×100×100 grid structure. The grid spacing was chosen to be smaller than 

0.1mm, which is equivalent to more than 20 grid points per sphere diameter. The effects 

of sample size and grid size are briefly covered in Bosl (1999) and will be covered in 

detail later in this chapter and in Chapter 4. 

Laboratory measurements of permeability and electrical conductivity using sintered 

glass beads were obtained from Schlumberger-Doll Research Lab (Roberts and Schwartz, 

1985). Three sizes of glass beads were used, whose diameters are 48.5µm, 96.5µm and 

193.5µm, and whose porosities range from 2.5% to 40%. Each sample contains only one 

size of glass beads. To eliminate the scale effect from different sizes of glass beads, all 

permeability values are normalized by the square of the diameters, which makes the 

permeability dimensionless. The Lattice-Boltzmann flow simulations and finite-element 

electrical conductivity simulations were performed with identical sphere packings. The 

wide range of porosity was obtained by uniform expansion or shrinking of the spheres. 
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Figure 3.7: (a) A random dense pack of identical spheres (Finney, 1970). The porosity is 
about 37%. (b) 3D digital representation of the pack with 100×100×100 grid structure. 

 

 

Figure 3.8(a) shows simulated permeability from the numerical flow simulation and 

laboratory measurements. The agreement between simulated values and laboratory 

measurements is exceptionally good. The electrical conductivity by the FEM simulator 

also shows very good agreement with laboratory measurements in Figure 3.8(b). 

Figure 3.9 shows Archie’s law (Equation 2.14) superimposed on the calculated and 

laboratory measured electrical conductivity. We clearly see that the measured formation 

factors are not explained by a single Archie’s law. Roberts and Schwartz (1985) and 

Wong et al. (1984) measured the electrical conductivity of sintered glass beads, and 

showed the same results – the exponent in Archie’s law is smaller at high porosity. The 

simulated values show exactly the same trend, which suggests that the numerical 

simulations replicate the laboratory measurements very accurately. A cross plot of 

permeability and formation factor is shown in Figure 3.10. Simulated values show good 

agreement with laboratory measurements. A solid line denotes an empirical relation curve 

(Equation 2.15). The empirical relation fits both data sets very well. One advantage of 

our pore-scale simulations on porous media is shown in Figure 3.11. After simulations, 

we obtain the local hydraulic flux and electrical current, which can be used for exploring 

and comparing the details of fluid flow and electric current at the pore scale. 

(a) (b) 
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Figure 3.8: (a) Permeability by the numerical flow simulation using the Lattice-

Boltzmann method (solid line) and laboratory measurements with sintered glass 
beads (circles). (b) Electrical conductivity by the FEM numerical simulation and 
laboratory measurements. Notations are the same as (a). 
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Figure 3.9: Formation factors from laboratory measurements (circles) and the FEM 

simulation (diamonds). Two curves with different exponents in Archie’s law 
(Equation 2.14) are superimposed on the data.  
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Figure 3.10: Cross plot of permeability and formation factor. A solid line denotes an 
empirical relation (Equation 2.15 in the form of κ ∝ φ 2/F 2). 

 

 

 

 
Figure 3.11. Comparison between (a) local electric current, (b) local hydraulic flux. 

Electric current distribution is given by the finite-element method (FEM) and 
hydraulic flux distribution by the LBM.  

(a) (b) 
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3.3.3 Permeability Simulation on a Digitized Fontainebleau Sandstone 

For this last example, we use a digital sample of a real rock. Recent advances in 

imaging techniques using X-ray microtomography make it possible to obtain 3D pore 

structures at high resolution. The digital rock sample was reconstructed from X-ray 

images of Fontainebleau sandstone at 7.5µm spatial resolution. Cubic subsets of the 

digital rock sample are used in other chapters of this dissertation. One subset of the 

digital Fontainebleau sandstone is shown in Figure 3.12 with 100×100×100 cells.  

The LBM flow simulation is performed on cubic subsets of the digital rock with 

different resolutions to investigate the digitization effect. To determine the digitization 

effect, we need to define a few length scales. Let a be mean pore size and dx be grid 

spacing. We will investigate three digital rocks with different resolution scales: dx=a/5, 

dx=a/10, and dx=a/20, respectively. Figure 3.12(b) shows calculated permeabilities of 

different resolutions of rocks, compared to laboratory measurements.  

Knackstedt and Zhang (1994), and Zhang et al. (2000) showed that the simulated 

permeability using the Lattice-Boltzmann method would be overestimated with a coarse 

grid resolution. They showed that the calculated permeability converges to true 

permeability when the grid spacing is infinitely small. The estimated permeability would 

increase very gradually as the grid spacing increases until the grid spacing cannot resolve 

characteristic pore scale.  

We observe the same results in Figure 3.12. As the grid is coarser and coarser, the 

calculated permeability increases. Although all our choices of grid spacing give 

reasonable predictions of permeability, the grid spacing of dx=a/5 has non-negligible 

overestimation. In homogeneous sandstone samples, such as our Fontainebleau sandstone 

sample, we found that a grid spacing with dx=a/10 is a reasonable choice for single-

phase flow simulation. There is another important scale, the size of digital rock sample. If 

a digital sample is not big enough to represent fluid flow of the whole rock, the calculated 

value will be meaningless. This issue will be covered in Chapter 4 (representative 

elementary volume for single-phase fluid flow). 

The comparison between the calculated permeability by the LBM and the laboratory 

measurements shows very good agreement, especially with the fine grid. Even with the 
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medium grid, the discrepancy between the LBM simulation and laboratory measurement 

are only 10%. From the results of numerical experiments, we concluded that the LBM 

gives us a very accurate permeability prediction and is a very robust tool for flow 

simulation in complex pore structures.  
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Figure 3.12: (a) A microtomographic digital rock from a Fontainebleau sandstone sample. 

Dark area denotes pore space. Lab-measured porosity and permeability are 15.2% 
and 1100 mD, respectively. (b) Simulated permeabilities with different resolutions of 
discretization versus laboratory measurements. 

 

3.4 Conclusions 

We have provided a brief background and implementation of the Lattice-Boltzmann 

method. The biggest benefit of the method is that it can naturally handle very complex 

pore geometry, which is ideal to explore the pore-scale physics of fluid flow. We 

observed that the numerical simulators – the Lattice-Boltzmann method for fluid flow 

simulation and the finite element method for electrical conductivity simulation – can 

replicate fluid flow and electric current for various models successfully and accurately. 

Calculated permeability and electrical conductivity showed excellent agreement with 

laboratory measurements or predictions by theory.  

There are two important length scales in digital porous media for the LB flow 

(a) (b) 
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simulation: grid spacing (dx) and sample size (L). The grid spacing should be small 

enough to realistically resolve the grain-pore boundary condition, and the sample size 

should be big enough to represent fluid flow of the whole rock. Although optimal choices 

of these scales are strongly dependent of the pore size distribution of the sample, we 

found that dx=a/10 and L=10a are reasonable choices for well sorted and homogeneous 

sedimentary rocks in terms of mean pore size (a). As long as we satisfies these two 

conditions, the LBM gives very accurate results on flow simulation.  

 

 

 
 
 



 

30 

 

 

Chapter 4  

Permeability Estimation from Thin 

Sections 
 
 

4.1 Abstract 

This chapter introduces a new methodology for estimating permeability from thin 

sections. The method is based on two key components – constructing 3D porous media 

from 2D thin sections and a direct 3D flow simulation using the Lattice-Boltzmann 

method. From the thin section, statistical parameters such as porosity and autocorrelation 

function are calculated through image processing. We generate 3D porous media using a 

geostatistical method of sequential indicator simulation conditioned to the thin section. 

We then perform flow simulations on those 3D realizations without idealizing or 

simplifying the complex pore geometry. The Lattice-Boltzmann method can successfully 

handle realistic and very complicated 3D pore geometries. We apply our method for 

seven thin sections of sandstone samples from the Daqing oil field. Estimated 

permeabilities show excellent agreement with laboratory measurements. We then 

compare ours to another method of permeability estimation based on thin sections 

without flow simulation. Our method gives better results and is less sensitive to statistical 

noise from thin sections. More importantly, our method does not require any empirical 
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calibration parameters. The proposed method is a more direct and robust technique for 

the estimation of permeability from thin sections. 

4.2 Introduction 

The prediction of permeability remains one of the most important challenges in 

quantitative rock physics. Many relatively successful and common methods are empirical 

ones, such as the Kozeny-Carman relation based on simple cylindrical pore geometry 

(Carman, 1961). These models have been widely applied because they are easy to use and 

are simple to understand (Dullien, 1992; Mavko and Nur, 1997). However, these models 

are difficult to relate in detail to real rocks and sediments. Furthermore, these models are 

only valid for a certain property, in this case, fluid-flow in rocks. We may need a totally 

different model to calculate other physical properties, such as elastic moduli or NMR 

response. Thus, it is very crucial to have common sharing model – digital representations 

of real rocks – not only for accurate prediction of physical properties, but also for 

interrelations among the different physical responses. Though we have imaging 

techniques using X-ray microtomography for obtaining 3D pore structures at high 

resolution, it is still a very expensive and time-consuming task. Thin sections, though it is 

2D, are widely available and are very easy to obtain. To predict permeability from thin 

sections has great impact on oil reservoirs and underground systems. Two main 

objectives of this study are (1) to build 3D porous media from thin sections, which will 

be sharing objects for other physical property simulations, and (2) to estimate 

permeability from the 3D porous media extended from thin sections. 

Walsh and Brace (1984) related the permeability to porosity, a geometrical factor, the 

formation factor and the specific surface area. They applied the relationship for low 

porosity and low permeability granites. These kinds of relationships provide a way of 

relating the permeability of porous media to other rock parameters, such as porosity, 

specific surface area, tortuosity and grain size. However, most of these parameters are not 

easy to measure from samples or thin sections. Porosity is the main controlling parameter 

in the relationship and is relatively easy to measure, while the specific surface area, the 

next important parameter, is very difficult to measure accurately from thin sections. 
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Debye et al. (1957) and Berryman (1987) suggested a relationship for estimating the 

specific surface area from spatial correlation functions of thin sections. Blair et al. (1993) 

calculated the porosity and the specific surface area of sandstone thin section using 

Berryman’s formula (Berryman, 1987), and then estimated permeability using the 

relationship by Walsh and Brace (1984). Estimated permeability agreed well with 

laboratory measurement. However, the calculation of the specific surface area from 

images is sensitive to the resolution of thin section images. A small change in image 

resolution gives a relatively large error in estimated permeability. Though the porosity 

and the specific surface area may be estimated from thin sections, the formation factor 

and the geometrical factor in their formula are not directly measurable from thin sections. 

Empirical estimates or laboratory measurements are required for these parameters.  

Adler et al. (1990) chose a different approach. They measured porosity and 

autocorrelation function from binary thin sections and generated 3D structures based on 

the unconditional truncated Gaussian method. Adler’s stochastic simulation uses a two-

step process: first simulating a Gaussian random field with right correlation and then 

truncating it at an appropriate threshold. The threshold is chosen so as to give the right 

porosity. Truncating the continuous Gaussian field creates a binary 3D cube by assigning 

0 and 1 to values below and above the threshold, respectively. One slight complication 

comes in at the estimation of the correlation function from the binary thin section, since 

the correlation of the binary image is not the same as that of the Gaussian random 

function. Adler et al. (1990) then applied an alternating-direction-implicit (ADI) finite 

difference scheme to the simulated 3D porous media to solve the partial differential 

equation for Stokes flow of a Newtonian fluid. Five Fontainebleau sandstone samples 

were used for their study, and estimated permeability agreed reasonably well with 

laboratory measurements. However, the size of simulated cubes does not seem to be big 

enough to represent fluid flow of the whole rock. Moreover, the use of the Gaussian 

random function for the correlation of the binary images is not always appropriate. As 

pointed out at the end of Chapter 3, the FDM method is not as good as the LBM for flow 

simulation. 

Liang et al. (1999) suggested a similar Gaussian truncation method to generate 3D 
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porous media from thin sections. However, they processed 3D pore geometry further into 

skeletons by a thinning algorithm that can preserve connectivity. They then perform 

network modeling from the skeleton to estimate permeability. Even though they start 

with the full 3D pore geometry, they ultimately simplify it into a network, because they 

use network modeling for flow simulation.  

Our method uses a technique based on binary images of thin sections. However, 

rather than resorting to an empirical relation or network modeling, we generate 

realizations of 3D porous media by conditional sequential indicator simulation with 

statistical parameters from the 2D binary image. Since we want binary 3D porous media, 

an algorithm based on a binary indicator function rather than the continuous Gaussian 

function is more natural and straightforward. After obtaining multiple stochastic 

realizations, we perform fluid flow simulations using the Lattice-Boltzmann method on 

the simulated 3D pore geometries. Finally, we estimate the permeability from the 

computed fluid flux. The Lattice-Boltzmann method is robust enough to handle very 

complicated simulated 3D structures with statistical noise. Seven different thin section 

samples from the Daqing oil field were used for this study (Prasad and Nur, submitted).  

In the following sections, we will show the procedures for generating 3D porous 

media from thin sections by image processing and stochastic simulation, and finally 

estimating permeability by the Lattice-Boltzmann flow simulation. Laboratory 

measurements are compared to the numerically estimated permeability. We also compare 

our method to the one by Blair et al. (1993). We find that our method shows better 

agreement with laboratory measurements and is less sensitive to statistical error from thin 

section imaging. In addition, we should emphasize that our method needs no adjustable 

constant or empirical calibration parameters.  

4.3 Method 

4.3.1 Data 

Thin sections were obtained from Daqing oil field sandstone samples. They are 

relatively clean sandstones with clay content between 4-10%. Laboratory measurements, 

including porosity and permeability, were made on cores of one-inch diameter and two-
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inch length. Porosity and Klinkenberg-corrected air permeability were measured at room 

pressure and at 5.5 MPa confining pressure under controlled room temperature. The 

porosity varies from 20% to 30% and the range of the permeability is 40 mD to 1,700 mD 

(Table 4.1). 
 
 

Table 4.1: Porosity and permeability values from laboratory measurement and from 
the flow simulation with 3D porous media simulated from thin sections. 

Porosity (%) Permeability (mD) Sample No. Laboratory Estimation Difference Laboratory Estimation Difference 
1 30.0 28.7 1.3 1,766 1,679   87 (  4.9%) 
2 26.9 27.8 0.9 1,030 1,431 401 (38.9%) 
3 25.2 25.6 0.4 818 946 128 (15.6%) 
4 28.1 29.0 0.9 591 566   25 (  4.2%) 
5 23.4 24.7 1.3 295 320   25 (  8.5%) 
6 22.0 20.8 1.2 91 101   10 (11.0%) 
7 20.1 20.0 0.1 39 61   22 (56.4%) 

 
 

4.3.2 Image Processing 

Thin sections were obtained from sandstone samples saturated by epoxy. The pore 

space is clearly distinguishable since the epoxy was dyed blue. Images of thin sections 

were made with an optical microscope. The position of the image was randomly chosen 

from the thin section in order to prevent operator bias. In each thin section, multiple 

images were taken and we chose one based on the quality of the image. Figure 4.1 shows 

thin section images (Samples #2-#7). Blue color denotes pore spaces and others are 

grains. The images consist of 600×400 pixels and yellow scale bars denotes 1mm. From 

the color image of the thin section, a binary image can be obtained using simple image 

processing (Figure 4.2). We converted the true color image into an index image and 

selected proper indices for grains and pore space. 

The binary image can be represented by an indicator function f(r), 





=
otherwise,0
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)(

r
rf      (4.1) 

where r denotes a spatial location within the binary image.  
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   (a) Sample #2                                             (b) Sample #3 

      
 

   (c) Sample #4                                             (d) Sample #5 

      
 

   (e) Sample #6                                             (f) Sample #7 

      
 

Figure 4.1: Scanned images from an epoxy-saturated thin section. Blue color denotes 
pores. Yellow scale bars denote 1mm. Samples #2-#7 are shown here and Sample #1 
is shown in Figure 4.2. The sample numbers correspond to the one in Table 1.  
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  (a)                                                                     (b) 

 
Figure 4.2: (a) Scanned image from an epoxy-saturated thin section (Sample #1). Blue 

color denotes pores. The yellow scale bar denotes 1mm. (b) Binary image after image 
processing. The pore space appears in black. 

 

 

The porosity φ and the autocorrelation function A(h), (i.e. the two-point correlation 

function) can be defined by the statistical averages, denoted by , 

)(rf=φ         (4.2) 

)()()( hh += rfrfA        (4.3) 

where h is a lag vector between two data points. Two important properties of the 

autocorrelation function of the binary image are (Blair et al., 1993) 

φ=)0(A           (4.4) 

2)(lim φ=
∞→

h
h

A .        (4.5) 

The autocorrelation function can be easily obtained using Fourier transforms, 

})}({)}({{)( *1 rfFrfFFA ×= −h      (4.6) 

where }{},{ 1 ⋅⋅ −FF denotes Fourier and inverse Fourier transforms and * denotes the 

complex conjugate. Figure 4.3 shows a 2D autocorrelation function of the binary image 

shown in Figure 4.2(a). Two orthogonal 1D autocorrelation functions (horizontal and 

vertical) in Figure 4.3(b), indicate that the binary image is nearly isotropic since the 

difference is negligible. The autocorrelation length (a) is shown in Figure 4.3(b), which is 
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the length from the origin until the autocorrelation function stop decreasing. The 

autocorrelation of this sample is about 20 grid units. The porosity measured from the 

binary image is 0.29. We can see that Equations (4.4) and (4.5) are successfully verified 

in Figure 4.3(b). 
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Figure 4.3: (a) 2D autocorrelation function from the binary image. (b) Horizontal and 

vertical autocorrelation functions (1D). The autocorrelation length (a) of this sample 
is about 20 grid units. 
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Figure 4.4: (a) Different square areas from a thin section image for estimating statistical 

parameters. a is is the autocorrelation length. (b) Porosity given by different lengths 
of squares. Different lines denote different locations of the squares. (c) Auto-
correlation functions from squares of different areas. When L is greater than 10a, 
autocorrelation functions from different sized squares are very close to each other. 
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When a rock is homogeneous, the statistical averages can be replaced by volume 

averages. If it is also isotropic, the volume (3D) averages can be replaced by surface (2D) 

averages. Under these conditions, the use of thin sections can be justified. Estimation of 

statistical parameters from images requires the choice of image lengths much larger than 

the correlation length. Otherwise the estimates are not statistically representative and are 

affected by local fluctuations. This is shown in Figure 4.4. Squares of different sizes were 

chosen from the binary image for the calculation of the statistical parameters. Porosity is 

shown in Figure 4.4(b). Lengths of the squares (L) are normalized by the autocorrelation 

length (a). Different lines denote different choices of the origin point of the square. When 

L/a is very small, porosity fluctuates. However, it converges to a constant value that is 

very close to laboratory measurement when L/a is greater than 10. The autocorrelation 

function in Figure 4.4(c) also shows behavior very similar to that of porosity. When the 

size of the binary image (L) is greater than 10a, we can safely assume it is a 

representative elementary area. We also tested the isotropy of rock samples by comparing 

these statistical parameters of two orthogonal thin sections from one core sample. Both 

porosities and autocorrelation functions from two orthogonal thin sections are very close 

to each other. Thus the assumptions of isotropy and homogeneity are valid with our 

samples. We used thin section images whose sizes are no less than 20a for accurate 

estimation of statistical parameters: porosity and autocorrelation function. All porosities 

from thin sections show good agreement with laboratory measurements and the 

differences are less than 2%. This porosity estimation should be carefully performed 

since all following procedures are strongly dependent on the estimated porosity. 

4.3.3 2D to 3D Porous Media by Stochastic Simulation 

From image processing of thin section data, we obtained spatial statistical parameters 

of the binary image – porosity and autocorrelation function. To simulate stochastic 

realizations of 3D porous media, we used a geostatistical approach (Deutsch and Journel, 

1998). We first performed variogram modeling. The variogram has nearly the same 

meaning as the autocorrelation function, except that it reflects the dissimilarity of data in 

spatial distribution instead of similarity. 

The variogram is given by (Deutsch and Journel, 1998), 
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where N(h) is the number of pairs of data locations with a vector h apart. The variogram 

of the thin section image is related to the autocorrelation function as follows: 

)()0()( hh AA −=γ .       (4.8)  

The raw experimental variogram computed from the images using Equation 4.7 is then 

modeled by an exponential function to ensure positive-definiteness of the variogram 

model. The exponential variogram is given as follows: 





 −−= )3exp(1)(

a
c hhγ       (4.9) 

where a is called as “practical range” in geostatistics. Figure 4.5 shows variograms along 

different directions and the variogram model. The variogram model is the best fit for both 

X- and Y-variograms with a nonlinear least-squares data fitting by the Gauss-Newton 

method. 
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Figure 4.5: Variogram modeling. Circles denote X-variogram (horizontal) and squares Y-

variogram (vertical). Gray solid line is a variogram model using an exponential 
function.  
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Using the variogram model, multiple realizations of 3D porous media were simulated 

conditioned to the thin section. Since our image is represented by an indicator random 

function, f(r), indicator-based simulation algorithms are most appropriate and 

straightforward. The algorithm was the sequential indicator simulation (SISIM) from the 

geostatistics software library (GSLIB) by Deutsch and Journel (1998). In this algorithm, 

all the nodes in the 3D cube are visited along a random path. At each node, a local 

conditional cumulative distribution function (ccdf) for f(r) is estimated. This ccdf is 

conditioned to the 2D image as well as all previously simulated nodes along the random 

path. The estimation of the ccdf is done by indicator kriging. A value for f(r) is drawn 

from the local ccdf. This value is retained as conditioning data and we proceed to the next 

node along the random path. When all the nodes are visited, we have one realization of 

the 3D binary field with the correct spatial statistics. 

Figure 4.6 shows a simulated 3-D porous medium. Since our implementation requires 

a periodic boundary condition along the flow direction, the same conditional data from 

the thin section image were included at both ends of the cube. Then we do not need to 

mirror the 3D cube. It saves memory and calculation time. We generated no less than 10 

different realizations of simulated 3-D cubes for each thin section. We then calculated 

statistical parameters of the simulated 3D porous media to verify that the simulated 

realization has the same statistical properties. Three 2D cross sectional areas were chosen 

from a simulated realization (Figure 4.7). The variograms of three cross sections are very 

close to the variogram model as seen in Figure 4.7(b). Hence, as expected, the simulated 

3D realization has the same statistical properties as the thin section. 

4.3.4 Permeability Estimation by Lattice-Boltzmann Flow Simulation 

Since the stochastically simulated 3D porous media from thin section have quite complex 

geometry and also may contain statistical noise from the simulation, a robust flow 

simulation technique, which can not only handle this complexity, but also can give 

reliable calculation results, is essential. The Lattice-Boltzmann method for numerical 

flow simulation can be an excellent choice, since it can handle complex pore geometry 

without any modifications or simplifications (Ladd, 1994b; Spaid and Phelan, 1997; Bosl 

et al., 1998; Keehm et al., 2001). 
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Figure 4.6: (a) Conditional data for the sequential indicator simulation. The slices on both 

ends of the cube have 100×100 pixels and are obtained from the binary image of a 
thin section. (b) Isosurface plot of a 3D realization by the squential indicator 
simulation. 
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Figure 4.7: (a) Cross-sectional areas of a simulated 3D realization. Three areas (XY, YZ 

and ZX planes) were chosen to verify that the simulated 3D porous media have the 
same statistical properties. (b) Variograms of those three areas. The variograms of 
simulated areas of 3D porous media are close to the variogram model. 
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Figure 4.8 shows the distribution of local fluid flux after the flow simulation. Local 

fluxes are calculated by Equation 3.7, and normalized by the maximum value. The 

effective flow paths and their complexity can be clearly seen in cross-sectional plots.  

The permeability, which is a macroscopic property, can be calculated by Darcy’s law 

(Equation 2.3). Figure 4.9 shows estimated permeability for Sample #1. The laboratory 

measurement is shown as a square symbol. Cross symbols are permeability estimations 

from stochastic realizations, and a circle is the averaged value. In this sample, the 

porosity difference between the thin section and the laboratory measurement is about 

1.3%. The average permeability is almost identical to measurement value.  

Results from all seven thin sections can be found in Table 4.1. Porosity and 

permeability estimations are reasonably consistent with laboratory measurements. Figure 

4.10 shows calculated permeability for all seven thin sections used in this study. They are 

also compared to the laboratory measurements. All estimated values reflect very good 

agreement with laboratory measurements. The correlation coefficient between estimated 

permeability and laboratory measurement is 0.96, which implies excellent estimations. 

 

 

 

 
 

Figure 4.8: (a) Local mass flux by the Lattice-Boltzmann flow simulation. Flux values 
are normalized by the maximal value. (b) Cross-sectional plots of the high flux area. 

(a) (b) 
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Figure 4.9: Permeability estimation by the Lattice-Boltzmann flow simulation on 

stochastically generated 3D porous media. Laboratory measurement is shown as a 
square. Estimated permeabilities from different 3D realizations are in cross symbols 
and a circle is an averaged permeability estimation. 
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Figure 4.10: Calculated permeabilities versus laboratory measurements for all seven 

samples used in this study. 
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4.4 Comparison to the Specific Surface Area Method 

Kozeny and Carman (Carman, 1961) provided a theoretical relation between fluid 

permeability and other measurable properties of porous media (Equation 2.7). Walsh and 

Brace (1984) derived a similar formula relating permeability to porosity, formation factor 

(F) and the specific surface area:  

22

2

SFc
φκ = ,                 (4.10) 

where c is another geometric factor, with c = 2 for circular pores and c = 3 for flat cracks. 

This is a different version of Kozeny-Carman relation, where the formation factor 

replaces the tortuosity, which is hardly measurable.  

Blair et al. (1993) suggested that Equation 4.10 would be useful for estimating 

permeability from thin sections. They extracted statistical parameters from thin section 

image analysis to obtain porosity and the specific surface area. They then estimated 

permeability using Equation 4.10,  

To determine the specific surface area, Blair et al. (1993) used a relationship between 

the specific surface area and the spatial correlation functions (Berryman, 1987; Berryman 

et al., 1987). Under the assumption of homogeneous and isotropic media, the angular-

averaged correlation function is given by 

>+<= )()()( hrfrfhA  ,      (4.11) 

where h=h . Berryman showed that the specific surface area S, can be expressed as 

(Berryman, 1987), 

)0(4 AS ′×−= ,        (4.12) 

where )0(A′ is the slope of the two-point correlation function at the origin. Although 

Equation 4.12 is an exact analytical derivation, the subtlety comes when dealing with real 

discretized image data. Since we have discrete binary images from thin sections, the first 

derivative becomes a finite difference. In order to have a good approximation, we need to 

have very high-resolution images. This will usually involve a more sophisticated device, 

such as SEM, and more computing time for image processing. As the resolution increases, 
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the whole scanning area becomes smaller and the porosity prediction becomes more 

difficult, since the small scanning area may not have the representative elementary area, 

as discussed in the previous section (see also Figure 4.4). In addition, the estimation of 

the specific surface area is sensitive to the image resolution. If the resolution is too low, 

the specific surface area is underestimated and the permeability will be overestimated, 

and vice versa. Blair et al. (1993) suggested that the optimal resolution for obtaining the 

specific surface area is such that the autocorrelation length (a) is two orders of magnitude 

larger than the discrete grid size (dx), i.e., a ≅ 100×dx. However, even a slight change in 

resolution will significantly change the permeability estimation. Other parameters, the 

formation factor (F) and the geometric factor (c), need to be obtained from sources other 

than the 2D images, such as laboratory measurements or empirical relations.  

We applied Blair et al.’s (1993) method to our data set for comparing our method to 

theirs. Figure 4.11 shows the schematic procedures of their method. Since this method 

requires much higher resolution for determining the specific surface area, the total size of 

the binary image (Figure 4.11) was smaller than the one we used (Figure 4.2). For 

porosity calculation, we used lower resolution images with larger total areas for better 

statistics. Figure 4.11(d) shows the angular averaged autocorrelation function and 

estimation of )0(A′ . We also use the empirical relation 2−= φF  for the formation factor, 

and the geometrical factor (c) is assumed to be 2, as Blair et al. (1993) suggested for 

sandstone samples. After obtaining all parameters, the permeability can be calculated by 

Equation 4.10. Predicted values are shown in Figure 4.12 as squares. Red dots denote 

estimated permeability by our method for comparison. Both show a reasonably good 

match, but our method gives better agreement. More importantly, our method does not 

require any assumptions regarding the formation factor and the geometrical factor. 

Another interesting observation in Figure 4.12 is that two methods show very similar 

trends in permeability estimations. When one overestimates permeability, the other also 

overestimates. This implies that the error trend must have come from a common source: 

the statistical parameters from the thin section image. Since the thin section cannot 

represent the whole rock exactly, there are always small fluctuations between the 

statistical parameters of the image and those from the whole rock. Although both 
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methods use the autocorrelation function as one of statistical parameters, the specific 

surface area method uses the first derivative of the two-point correlation function, which 

is more sensitive to the statistical errors from thin section images. On the other hand, our 

method uses the autocorrelation function itself and may be less sensitive to the statistical 

errors, because the derivative is not involved. Thus, our method is more robust against 

the errors from thin sections. 
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Figure 4.11: Steps of estimating the specific surface area as suggested by Blair et al. 

(1993). (a) High resolution scanned image. (b) Binary image. (c) Autocorrelation 
function. (d) Angular averaged autocorrelation function and estimation of the slope 
near the origin. 
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Figure 4.12: Permeability estimations from the seven thin sections by Blair et al.’s (1993) 

method (squares) and ours (dots). 

 

 

4.5 Discussion 

Although techniques and devices have been improved and permeability measurement 

has become a standard procedure in the laboratory, it is still a time-consuming task. 

Therefore there have been many attempts to relate permeability to other easily 

measurable parameters. The well-known Kozeny-Carman relation is one of these 

attempts. Since permeability is a function of only pore geometry, finding parameters 

characterizing the pore geometry is the main task for the permeability estimation. 

Porosity, tortuosity, specific surface area, and characteristic pore length are a few 

suggested parameters. Some parameters are very difficult to measure and are sometimes 

replaced by other parameters, such as formation factor. 

Obtaining these characterizing parameters from thin sections is of great value, since 

thin sections are relatively easy to obtain and are widely available. In homogenous rocks, 
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the porosity and autocorrelation function (the two-point correlation function) are the most 

widely used parameters to characterize the pore geometry. Permeability estimation from 

these statistical parameters can be categorized into two groups; using theoretical relations 

usually based on the Kozeny-Carman relation (Group I), and performing flow simulation 

on stochastically generated 3D porous media (Group II). Both groups have shown 

relatively good results on permeability estimation, especially for sandstone samples 

(Adler et al., 1990; Blair et al., 1993; Liang et al., 1999; Hilfer and Manwart, 2001).  

Group I usually requires parameters that cannot be easily obtained from thin section 

images. The estimation of the specific surface area based on first derivative of the two-

point correlation function is sensitive to the statistical errors. Group II usually uses the 

truncated Gaussian method, which has difficulty determining the right threshold. 

Indicator-based simulation techniques may be more natural and straightforward for 

stochastic simulation of 3D porous media reconstruction. Moreover it is almost 

impossible to incorporate multiphase and anisotropic media in the truncated Gaussian 

method, while simulations based on indicator algorithms can handle easily. Flow 

simulation techniques are also important for permeability estimation. The Lattice-

Boltzmann algorithm handles complex pore geometry very well, even with statistical 

noise from stochastic simulation.  

Although we have very good agreement between our permeability estimation and 

laboratory measurements, our data are quite limited: thin sections from fairly clean and 

well sorted sandstone samples. If a porous medium has two distinct pore scales (e.g., a 

rock with microporosity), the autocorrelation function may not generate 3D porous media 

close enough to the real rock. We need more complicated variogram models that can 

capture these different length scales in pore geometry. Even if we can have good 3D 

realizations of porous media, flow simulation will be also very difficult with multiple, 

highly disparate scales. We need to have a very fine grid structure to resolve the 

micropores, and the size may be too big to fit on even modern computers. Multiscale 

analyses or parallel computing can be future solutions for this problem. More statistics 

from thin sections will help construct better 3D realizations. In addition to porosity and 

the two-point correlation function, many studies try to incorporate more statistical 
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parameters in 3D reconstruction, such as the lineal-path function (Yeong and Torquato, 

1998a and 1998b; Manwart et al., 2000; Torquato, 2001), the chord-distribution function 

(Roberts and Torquato, 1999), and multipoint correlation functions (Torquato and Stell, 

1982; Caers and Xianlin, 2002). Reconstruction of textures from multi-level wavelet 

coefficients and steerable directional filters is another promising approach (Simoncelli 

and Portilla, 1998; Heeger and Bergen, 1995). 

4.6 Conclusions 

The Lattice-Boltzmann flow simulation on reconstructed 3D porous media by 

stochastic simulation is a good combination for permeability estimation from thin 

sections. It seems quite remarkable that direct flow simulations on stochastically 

generated 3D porous media provide very good agreement with laboratory measurement 

over such a wide range of permeability.  

We found that determining the porosity and the autocorrelation function from thin 

sections should be carefully performed, since all following procedures are strongly 

dependent on these statistical parameters. For better statistics of these parameters, the 

image size should be greater than 10 times the autocorrelation length ( aL 10≥ ). Another 

important scale factor is the grid spacing (dx). To accurately estimate permeability, the 

Lattice-Boltzmann flow simulation requires at least 10 grid points within a characteristic 

pore length ( 10/adx ≤ ). The sequential indicator simulation successfully generates 

multiple realistic 3D porous media and does not seem to be very sensitive to the 

statistical error. The Lattice-Boltzmann flow simulation shows its strength in handling 

these complicated 3D pore geometries. The estimated permeability shows very good 

agreement with laboratory measurements.  

Permeability prediction by the specific surface area from two-point correlation (Blair 

et al., 1993) gives good estimates of permeability. However, estimation of the specific 

surface area is dependent on image resolution and is very sensitive to changes in 

resolution. The error in estimation is about 2-3 times higher than with our proposed 

method. Both methods show similar trends of the deviation from laboratory 

measurements. This implies that the statistical parameters from the thin section do not 
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fully represent the whole rock. Practically this cannot be avoided. The results indicate 

that the proposed method is less sensitive to the small discrepancy between thin sections 

and rock samples. In addition, our method does not require any other empirical or free 

parameters.  

The most important part of this method is constructing 3D porous media from thin 

sections, because it is a difficult and non-unique problem. However, predicting 

permeability from thin sections has great importance for oil reservoirs and underground 

systems since thin sections are widely available and are very easy to obtain. Moreover, 

constructed 3D porous media, if reasonably representative for the whole rock, will be 

sharing objects for other physical property simulations. Relative permeability estimation 

from thin sections will have much bigger impact on many fields of science and 

engineering. We already showed several recent attempts to use higher statistics in the 

previous section, such as multipoint correlation functions. Stochastic reconstruction of 

3D porous media from thin sections using higher statistics is a very challenging but 

essential module for physical process simulations of rocks.  
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Chapter 5  

Diagenesis Modeling and Transport 

Properties of Rocks 
 
 

5.1 Abstract 

This chapter presents a model to simulate diagenesis in porous media and its impact 

on transport properties. The model combines the Lattice-Boltzmann flow simulation with 

pore filling mechanisms. Eight different mechanisms related to diagenesis controlled by 

fluid flow, were tested. The transport properties (permeability and electrical conductivity) 

were calculated during the evolution of pore geometry. After investigating the transport 

properties in each mechanism, four distinct groups were categorized: (1) grain boundary 

group, (2) low-flux group, (3) high-flux group and (4) random filling group. In the grain 

boundary group, the diagenesis or pore alteration happens first at pore nodes with the 

neighboring grain nodes. In low- and high-flux groups, the alteration occurs first at pore 

nodes with the lowest and the highest fluxes, respectively. The random filling group 

randomly fills up the pore node with grains.  

The boundary group showed very high correlation with empirical relations such as the 

Kozeny-Carman relation and Archie’s law. Since the empirical relations are based on 

statistics derived form real data, the grain boundary can be regarded as a realistic 
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approximation to the diagenetic process of sedimentary rocks. The low-flux group 

showed very small changes in permeability even in the latter stages of the diagenetic 

process. For this case, electrical conductivity decreases faster than permeability as 

porosity decreases. The high-flux group is the most efficient in reducing permeability, 

since pore filling starts at the region with high flux. With a few percent of porosity 

reduction, the effective fluid flow can be practically negligible. Random filling showed 

an intermediate behavior between high-flux and boundary groups. At early pore filling 

stages, the permeability decreases very rapidly, followed by a trend very similar to the 

boundary group.  

The main bottleneck of simulating evolving pore geometry lies in the slow 

convergence of the Lattice-Boltzmann flow simulation when the pore geometry is close 

to percolation. One of the innovations in this work was to change the iterative Lattice-

Boltzmann algorithm of the flow simulation to a sparse matrix form. The matrix method 

shows better convergence when the pore geometry is close to percolation. Another 

benefit of the matrix version is predicting convergence before the actual flow simulation, 

by calculating a condition number of the kernel matrix. This modeling enables us to 

efficiently explore and delineate diagenesis mechanisms and their effects on transport 

properties of porous media. Even though this model is too simple to represent a realistic 

diagenesis in sedimentary rocks, the same framework can be used with more complex 

and realistic diagenetic processes. 

5.2 Introduction 

Diagenesis is defined as chemical, physical, and biological changes that affect 

sediments after its initial deposition, including turning the sediments into rocks. During 

diagenesis, the porosity of the sediment typically decreases. Other physical properties, 

such as seismic velocity, permeability and electrical conductivity, are also changed. One 

main focus of rock physics is to find quantitative relations between porosity and other 

physical properties during diagenesis.  

Although some recent works (Rimstidt and Barnes, 1980; Nagy and Lasaga, 1991) 

suggest that reaction-dependent kinetics control the diagenesis of most sedimentary rocks, 
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a real diagenetic process would involve both reaction-dependent and flow-dependent 

mechanisms. An important motivation for flow-dependent diagenesis is to understand the 

formation of gas hydrates. Xu and Ruppel (1999) suggest that all natural gas hydrates 

systems are advection dominant, which means they are in the flow-dependent diagenesis 

regime. Results of these studies imply that flow-dependent diagenetic mechanisms would 

be more appropriate to explain the formation of gas hydrates. Xu and Ruppel (1999) also 

provide results of numerical simulations using mass and energy balances of the hydrate 

layers in the ocean, treated as an effective medium. They do not take into account the 

changes in pore geometry. Aharonov and Rothman (1996) present a dynamic model for 

growth of pore-scale structures in sedimentary rocks. They focus on a reaction-dependent 

mechanism to relate the growth of pore structures to fractal dimensions (Aharonov and 

Rothman, 1996; Aharonov et al., 1997).  

This chapter will present procedures and results of flow-dependent diagenetic 

modeling. Our model is a very efficient way to investigate the relation between evolving 

pore-geometry and transport properties. Implementation of a sparse-matrix version of the 

Lattice-Boltzmann flow simulation method will follow. This variant avoids the 

convergence problems of standard iterative version of the Lattice-Boltzmann flow 

simulation in low porosity and low permeability rocks. 

5.3 Diagenesis Modeling 

The modeling of diagenesis consists of flow simulation and pore-filling processes 

iterated in tandem. We start with a digital structure of pore geometry defined on a 3D 

grid. Then a numerical flow simulation using the Lattice-Boltzmann method (LBM) is 

performed on this digital pore geometry. Diagenesis or cementation is simulated by 

changing selected pore nodes into grain nodes. We will call this “pore filling”. The 

criteria for pore filling are based on the fluid flux distribution obtained from the 

numerical flow simulation step. We then obtain a new pore geometry, which will be used 

as an input for the next flow simulation. This procedure is repeated until porosity or 

effective permeability reaches zero. The LBM is used in this modeling because it can 

handle very complicated pore geometry, and is also sensitive enough to detect the change 
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of fluid flow due to small changes in pore structures (Chopard and Droz, 1998). The 

LBM is a very appropriate tool for modeling flow-dependent diagenesis. To explore and 

simulate a wide range of diagenetic kinetics, eight different pore-filling mechanisms were 

chosen. The pore nodes to be filled were determined by [1] grain boundary (filling pore 

nodes near grain boundary), [2] low flux regions (filling pore nodes with low flux), [3] 

high flux regions (filling pore nodes with high flux), [4] low flux regions among 

boundary nodes (filling nodes near grain boundary, but one with low flux first), [5] high 

flux areas among boundary nodes (filling nodes near grain boundary, but one with high 

first), [6] low flux regions weighted by neighboring grain nodes (filling nodes with low 

weighted flux), [7] high flux regions weighted by neighboring grain nodes (filling nodes 

with high weighted flux), and lastly [8] random pore filling. The weighted flux means the 

flux multiplied by a weighting factor, which is related to the effect of neighboring grain 

nodes. In this study, the weighting factor is simply the sum of the number of nearest 

neighboring grain nodes. This is an attempt to incorporate both the grain boundary and 

the fluid flux effects into pore-filling decision, although it is not very realistic. In the case 

[7], for example, the pore filling occurs at the pore nodes with high flux area, but 

preferably near the grain boundary. In the end, we found no difference in permeability 

and electrical conductivity of the cases [2], [4], and [6]. The cases [3], [5] and [7] also 

show almost no difference. 

For each pore-filling scheme, two transport properties of rocks, permeability and 

electrical conductivity, were calculated at every incremental stage of the evolving pore 

geometry. The eight different diagenetic simulation schemes were applied to synthetic 

and real digital pore geometry including a sinusoidal tube model, Finney’s random 

sphere-pack model (Finney, 1970) and a digital Fontainebleau sandstone obtained by X-

ray microtomography. The three digital rocks are shown in Figure 5.1. Interestingly, the 

three different pore structures showed very similar behaviors in permeability and 

electrical conductivity. Moreover, the eight different mechanisms of pore filling can be 

classified into four groups: grain boundary (Group I), low-flux (Group II), high-flux 

(Group III) and random filling (Group IV). Figure 5.2 shows a cross-sectional view of the 

flux distribution of fluid flow and filled pore nodes for the four groups of pore filling 
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  (a)                                          (b)                                          (c) 

mechanisms at an intermediate stage of the process. The arrows are local fluid velocities 

calculated at the initial stage, and the red pixels denote the pore filling areas according to 

each group. 

 

 

 

 

 

 

 

 

 

Figure 5.1: Three digital pore structures used in the study. (a) A sinusoidal tube, (b) a 
random dense pack of identical spheres (Finney’s pack) and (c) a digital Fontainbleau 
sandstone sample. 

 
Group I (Grain boundary) Group II (Low−flux)

Group III (High−flux) Group IV (Random filling)

 
Figure 5.2: Flux distribution of fluid mass (arrows) in a sphere-pack model and filled 

pore nodes (red area) according to the different pore-filling mechanisms. Gray area 
indicate the initial grains. 
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Figure 5.3 shows the computed permeability as a function of porosity for each pore-

filling mechanism. The black line with dots denotes an empirical relation (Mavko et al., 

1998), κ /d 2 ∝φ 3, where κ denotes permeability, φ porosity, and d is a characteristic grain 

or pore dimension. The power of 3 appears to be appropriate for very clean materials. 

Group I shows a trend very close to the empirical relation. Since the relation was derived 

from theoretical models and real data, it represents the average behavior of most 

sedimentary rocks. This implies that the grain boundary may be the most important factor 

in diagenesis of many sedimentary rocks. As we might expect, Group II shows the least 

decrease in permeability as porosity decreases, since low-flux areas do not affect 

permeability whether they are filled or empty. Group III shows the most efficient 

mechanism for reducing permeability. After only a few percent of pore nodes were filled, 

the permeability practically dropped to zero. Group IV shows intermediate behavior 

between Group I and III. Permeability rapidly decreases during early pore filling stages, 

but after that it slows down and exhibits a curve similar to that of Group I. 

Figure 5.4 shows the electrical conductivity vs. porosity of the same pore structures 

used in Figure 5.3. The low and high flux-related mechanisms show very similar results 

to those of permeability. However, Group I and IV show reversed trends in permeability 

and electrical conductivity, i.e. as porosity decreases, the electrical conductivity of Group 

I decreases faster than that of Group IV. Since the random filling mechanism scatters the 

filled pore nodes, it effectively increases the surface area with very little change in 

porosity. Thus, the permeability decreases much faster than the electrical conductivity. 

We can observe this effect by the fact that the electrical conductivity of Group IV 

decreases almost linearly as porosity decreases. The thin black line denotes Archie’s law, 

F = bφ−m, where σr = σw/F, b is a proportionality coefficient, F is the formation factor and 

σr, σw are the electrical conductivity of the saturated rock and brine, respectively. The 

power m usually varies in the range of 1.5 to 2.5 in most sedimentary rocks. In Figure 5.4 

the value of 2 was chosen, which is known to be appropriate for very clean sandstone 

rocks (Guéguen and Palciauskas, 1994). As was the case for permeability, Archie’s law is 

very close to the electrical conductivity of Group I. This also supports the idea that the 

grain boundary is a very important controlling factor in the diagenetic process in most 



CHAPTER 5. DIAGENESIS AND TRANSPORT PROPERTIES 57  

 

sedimentary rocks. 

Because electrical conductivity measurements in the laboratory or in situ are 

relatively easy, the ability to deduce permeability from electrical conductivity is a major 

goal in many applications (Guéguen and Palciauskas, 1994). Therefore, it is important to 

compare both transport properties in each diagenetic mechanism. Wong et al. (1984) 

suggested the relation, κ ∝ F−n, and showed that there was good agreement with sintered 

glass bead data when n=2. Figure 5.5 shows the cross plot of permeability and electrical 

conductivity. Group I appears to be matched with a line of n=1.5. Group II has a smaller 

exponent than Group I. Group III and IV may have higher exponents than 3, which 

means that in these cases, the permeability is a lot more sensitive to changes in pore 

geometry than the electrical conductivity is.   
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Figure 5.3: Permeability in different pore filling mechanisms. 
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Figure 5.4: Electrical conductivity of different groups. Notations are same as in Figure 

5.2. 
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Figure 5.5: Cross plot of permeability and electrical conductivity. Dotted lines show the 

power laws (κ ∝ F−n) with n=1.5, 2 and 3, respectively. 
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Figure 5.6 shows permeability and electrical conductivity as functions of porosity. In 

this figure, each group is plotted in a separated sub-figure. To compare the changes in 

permeability and electrical conductivity, we used the relation, κ ∝ F−2. Both values were 

normalized by their maxima; the results clearly show which decreases faster as porosity 

decreases. Permeability decreases faster with high flux and random filling groups. 

Electrical conductivity (F−2) decreases faster with low flux group as porosity decreases. 

In boundary group, both have the same trends. These results can be very useful to 

determine the main diagenetic cause of a specific formation of rocks, if measurements of 

permeability and electrical conductivity are available. On the other hand, it will allow us 

to determine preliminary trends of permeability as a function of porosity, if we know the 

main controlling diagenetic mechanism and electrical conductivity.  

 

Figure 5.6: Permeability and electrical conductivity curves for each group. For 
comparison, 1/F2 is used for electrical conductivity values. Legend in the last subplot 
is the same for all subplots. 
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5.4 Lattice-Boltzmann Method with Matrix Inversion 

During the diagenetic modeling, the pore space eventually loses the connectivity, i.e. 

percolation. When the evolving pore geometry is close to percolation, it is very difficult 

for fluid to flow though the pore geometry. As a consequence, the LBM flow simulation 

shows very slow convergence. This happens especially in the high-flux diagenesis 

mechanisms. Figure 5.7 shows an example of this problem. The calculated permeability 

oscillates because the pore geometry is difficult to flow through. There are two typical 

problems: (1) the simulation takes very long time, and (b) the simulation may converge to 

local minima. We found that the convergence problem can be bypassed by reformulating 

the iterative scheme into a matrix formulation as described below.  

In order to form a matrix version of the Lattice-Boltzmann method, we need to recall 

the algorithm (see Chapter 3 for details). 

 

(1) Calculate mass and momentum.    

(2) Collision step: redistribute the mass. 

(3) Apply a force according to the pressure gradient (∇P). 

(4) Propagation step: the mass is shifted around the lattice. 

(5) Repeat (1)-(4), until steady state is reached. 

 

Let k
in  be the particle density in the i-direction at the k-th node, and ci is the velocity 

vector in this direction (Ladd, 1994a). Then the mass and momentum at node k, are   

∑∑ ==
i

i
k
i

i

kk
i

k nn cj,ρ .      (5.1) 

The post-collision particle density distribution (Equation 3.6) can be expressed with a 

linear combination of the pre-collision particle density distribution, 

[ ] [ ]∑=
+ j t

k
jijt

k
j nCn

)()1(
      (5.2) 

or in the matrix form, 

[ ] [ ] )()1( t
k

t
k nCn =+        (5.3) 
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where Cij is a collision matrix and (t) denotes the time step. Now, we can combine all 

nodes into one column vector (N) and express the equation as, 
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or  

)()1( tt NBN =+         (5.5) 

where B is a block-diagonal matrix. At step (4) of the algorithm, we need to propagate 

this new mass distribution to neighboring nodes, i.e., to permute the column vector N. 

The permutation is easily implemented, simply by permuting the rows of the matrix. Let 

the permuted matrix be B′. Then the whole algorithm turns into a simple matrix equation, 

( )fNBN +′=+ )()1( tt        (5.6) 

after including the force term (f). To have the accurate non-slip boundary condition, the 

mass distribution should be evaluated after applying half of the force (fh), since the 

boundary is located in the middle of the line between the grain node and the pore node in 

a discrete grid. Details can be found in Ladd (1994a). Lastly, we can write the algorithm 

as the following matrix equation: 

( ) hhtt ffNBN ++′=+ )()1( .       (5.7) 

At steady state, N(t) = N(t+1), giving 

( ) ( )  ,hfIBNIB +′−=−′       (5.8) 

or equivalently, 

bxA = ,        (5.9) 

where A=(B′−I), x=N, and b=−(B′+I)fh. In solving this system of linear equations, the bi-

conjugate-gradient stabilized (BiCGS) method was used. We tested the new algorithm 

and the results were identical to those of the iterative method. The new method was 
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applied to the same model that exhibited a problem in Figure 5.7. The calculation time of 

the matrix method is equivalent to 1000 iterations of the iterative method.  

We used the matrix method for the diagenetic modeling with high flux related 

mechanisms. In that case, the matrix version converged to the real flow distribution faster 

than the iterative method. However, there are some drawbacks in the new method. First, 

it requires much more memory (about ten times more) than the iterative method. 

Secondly, the calculation times of the two methods were not much different in most cases. 

In high porosity and high permeability rocks, the iterative method converges faster than 

the matrix version, since the model is easy to converge and the matrix version requires 

the extra calculation cost of setting up a large sparse matrix. For better performance of 

the matrix version, we may use a carefully designed pre-conditioner for the matrix 

inversion to achieve faster convergence. For the high-flux related diagenesis schemes, the 

matrix method is more efficient and converges faster than the iterative one.  
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Figure 5.7: Comparison between iterative version and matrix version of Lattice-
Boltzmann method. Matrix version converges to the right value. The calculation time 
of matrix version is about same as 1000 iterations of iterative version. 
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After finishing this study, we found that Verberg and Ladd (1999) introduced a 

similar matrix formulation of the Lattice-Boltzmman algorithm, but utilized a direct 

solution of time-independent equations, rather than usual temporal evolution to steady 

state. The key idea was to solve for the steady-state mass and momentum density directly, 

rather than allow them diffusively in time. They reported the computational efficiency is 

1-2 order of magnitude greater than the conventional Lattice-Boltzmann method. A 

drawback of this method is that it requires approximately 50% more memory than the 

conventional one.  

5.5 Conclusions 

The flow-dependent diagenesis simulation provides a simple but fundamental model 

to explore the relation between transport properties and diagenesis. The empirical 

relations (the Kozeny-Carman relation and Archie’s law) show good correlation with 

boundary-related mechanisms (Group I), and this implies that grain boundary may be a 

very important factor in diagenesis of most sedimentary rocks. Low-flux related 

diagenetic mechanisms (Group II) gives almost no change in permeability until 

considerable decrease of porosity, while the electrical conductivity is more sensitive to 

the diagenetic processes than permeability. In high-flux related diagenetic mechanisms 

(Group III), permeability decreases very rapidly and becomes negiligible with a few 

percent reduction of porosity. The permeability decreases much faster than the electrical 

conductivity as porosity decreases. The random pore filling (Group IV) shows a linear 

decrease in electrical conductivity. The permeability decreases quickly at early stages of 

diagenesis, and then has a similar trend to the boundary related diagenesis mechanisms. 

A matrix version of the LBM was implemented and applied to the pore geometries with 

high-flux related diagenetic mechanisms and showed better convergence. The flow-

dependent diagenetic modeling in this study, combined with the new LBM 

implementation using a sparse matrix inversion, is a basic framework for delineating 

trends of transport properties with a given diagenetic process. The immediate implication 

of this method will be incorporating more realistic diagenetic mechanisms, such as 

chemical deposition and dissolution. 
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Chapter 6  

Two-phase Lattice-Boltzmann Flow 

Simulation 
 
 

6.1 Abstract 

This chapter presents implementation and simulation results of the two-phase Lattice-

Boltzmann method (LBM). In the previous chapters, we have seen that the single-phase 

LBM estimates absolute permeability of porous media very accurately and efficiently. 

The method is extended to two-phase flow simulation by introducing surface tension and 

wettability. We will show some characteristics of the two-phase LBM method and results 

of numerical simulations. The implementation was verified by various numerical 

experiments. Our implementation honors physical two-phase flow phenomena, such as 

Laplace’s law and contact angles. The successful replication of a drainage-type snap-off 

indicates that our method properly describes capillary pressure. We applied our method 

to realistic pore geometry, a microtomographic Fontainebleau sandstone. Both steady 

state and unsteady state simulations were performed, and we could successfully obtain 

relative permeability and effective flux as a function of time and location. We observed 

the nonlinearity between pressure gradient and effective flux through the steady-state 

simulation. This nonlinearity is easily predictable, since two-phase fluid flow is mainly 
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controlled by capillary pressure, which is not linearly related to the pressure gradient. The 

unsteady-state simulations showed very realistic replacement of one phase by the other, 

for drainage as well as imbibition. They, however, share limitations of laboratory 

experiments, such as the outlet end effect. 

After verifying that the two-phase LBM can simulate two-phase fluid flow through 

porous media, we investigated the effect of initial distribution of two fluids. In the steady 

state simulations, the non-wetting phase relative permeability is more sensitive to initial 

distributions of two fluids than is the wetting phase relative permeability, which is almost 

unaffected by initial distributions. With the unsteady-state simulations, we investigated 

the change in sweep efficiency due to different initial distributions. When the non-

wetting phase is discontinuous and isolated in the pore space (patchy saturation), the 

imbibition efficiency is poor and the residual oil saturation is high. 

The results show that two-phase Lattice-Boltzmann implementation can simulate 

realistic two-phase fluid flow in complex pore geometries, which could complement or 

replace difficult and time-consuming laboratory measurements. In addition, it can help us 

understand the pore-scale physics and determine appropriate macroscopic relations in 

two-fluid systems. Lastly, the two-phase simulator can be a module for more complex 

applications, such as capillary pressure curve simulation, relative permeability estimation 

from thin sections and diagenesis modeling with two-phase fluid flow. 

6.2 Introduction 

Two-phase flow in porous rock has considerable economic and scientific importance 

in typical oil reservoirs. However, the description of two-phase flow phenomena is far 

more complicated than single-phase fluid flow, because it involves more physical forces, 

surface tension and wettability. Laboratory measurements of relative permeability are 

very difficult to perform and are also very time-consuming and costly. An alternative way 

is to obtain relative permeability through numerical flow simulations. We have already 

seen the advantages and disadvantages of various numerical flow simulation techniques 

in Chapter 2. The Lattice-Boltzmann flow simulation technique is chosen in this study for 

the same reasons as in the single-phase flow simulations. Briefly, the Lattice-Boltzmann 
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method is comparatively simple to implement and very robust for complicated rock 

geometries. It has been successfully applied for two-phase flow simulations (Gunstensen 

and Rothman, 1993; Olson and Rothman, 1997). In this work, we will focus on following 

objectives. 

 

(1) To implement two-phase Lattice-Boltzmann flow simulators. This is done by 

extending the single-phase algorithm by incorporating surface tension and 

wettability to the discrete Lattice-Boltzmann equation. 

(2) To verify the implementation through several idealized numerical experiments, 

the results of which have been shown by laboratory measurements or are known 

from theory. 

(3) To perform feasibility and applicability tests for the simulations with realistic and 

complex pore geometries. 

(4) To investigate the effect of initial distributions of two fluids both in steady state 

and unsteady state simulations as one of applications using this implementation. 

 

6.3 Algorithm and Implementation 

The Lattice-Boltzmann method for single-phase flow describes fluid flow as 

collisions of mass particles in a lattice, as we have already seen in Chapter 3. In two-

phase flow implementations, we follow almost the same procedures as in the single-phase 

simulation, except that we have two different types of particles representing two 

immiscible fluids, and we need to calculate surface tension and wettability, as well as 

pressure gradient. We will briefly see the algorithm and implementation of two-phase 

Lattice-Boltzmann method. Extensive details can be found in Rothman and Zaleski 

(1997), and Chopard and Droz (1998). 

The two immiscible fluids – non-wetting and wetting fluids, are commonly called red 

and blue particles respectively, as they were introduced by Rothman and Keller (1988). 

This concept is roughly equivalent to have color-dyed fluids, which allows us to see the 

fluid motion but does not affect the fluids themselves. Interactions between these two 
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colors (species) are the key ingredient of two-phase fluid flow. For instance, an 

immiscible two-phase flow can be simulated with a local interaction between particles 

with the same type and a local repulsion between particles of different types. For this 

reason, a color gradient is computed using the color densities of nearest neighboring 

nodes. The direction of this gradient determines the local interface between two fluids. 

Then the post collision density distribution of each fluid is chosen so that a particle of a 

given color preferentially moves in the direction where the same color species reside. 

Mass and momentum of each type of fluid should be conserved during these procedures. 

Let Ri and Bi be the non-wetting (red) and wetting (blue) phase density distributions. 

Then the total density distribution, ni is expressed as follows:  

iii BRn +=  .        (6.1) 

The local color gradient (f) is the direction-weighted sum of difference between red and 

blue density distributions of neighboring nodes, and can be expressed as follows:  

∑∑ +−+=
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The perturbation of density distribution due to surface tension can be express as 

(Rothman and Zaleski, 1997), 
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Equation 6.3 will be more apparent when we consider a 2D hexagonal case. Then the 

perturbation becomes, 

θ2cos),(
2

),( tAtCi rfr = ,      (6.4) 

where θ is the angle between f and ci. Essentially, the perturbation is chosen to remove 

mass from the density distribution moving parallel to the interface and add mass to the 

density distribution moving in the normal direction while conserving mass and 

momentum. Equation 6.3 has a scaling parameter A, to adjust the surface tension. This 

will be covered in detail later in this section. Now, the discretized Boltzmann equation 

(Equation 3.5) becomes, 
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Figure 6.1: Schematic diagram of the surface tension calculation. (a) Initial state. Gray 
color denotes non-wetting fluid and white denotes wetting fluid. The target node is at 
the center, which is half non-wetting fluid and half wetting fluid. (b) Calculation of 
the local gradient from the distribution of neighboring nodes. Arrow denotes the 
direction of local surface tension. (c) Final state. The two fluids are redistributed by 
the local surface tension. Note that the total mass distribution of the node is deformed 
by the surface tension force. 
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We have a new density distribution, and the next step is to redistribute the density 

distribution to minimize the diffusion of one type of fluid into the other. This involves 

finding 'and' ii BR  that satisfies the following equation: 
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The new collision rule for two-phase immiscible fluid flow is shown in Figure 6.1 

and is summarized as follows: 
 

(1) Perform a single-phase collision (Equation 3.4). 

(2) Calculate the local color gradient using the color densities of neighboring nodes 

(Equation 6.2). 

(P1 – P2) 

(a) (b) (c) 
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(3) Perturb the density distribution (Equation 6.5). 

(4) Separate the two fluids (Equation 6.6) 
 
The whole algorithm of the two-phase LBM can be obtained by simply replacing the 

collision step in Chapter 3 with this new collision rule. 

To find the relation between the parameter A and macroscopic surface tension, we use 

the mechanical description of surface tension (Rothman and Zaleski, 1994) with a flat 

interface between wetting and non-wetting phases. 

∫
∞

∞−

−= dnPP TN )(γ        (6.7) 

where PN and PT are the normal and tangential components of the momentum flux tensor, 

n is the normal to the interface, and γ is the surface tension. Detailed derivation in a 

FCHC (Face-Centered Hyper Cube) lattice can be found in Gunstensen et al. (1991). The 

surface tension in the Lattice-Boltzmann method is 

ρ
λ

γ cnA8−= ,        (6.8) 

where λ is an eigenvalue of the collision operator, nc is the number of velocity vectors 

(nc=24 for FCHC) and ρ is density. 

6.4 Verifications  

In this section, the implementation of the two-phase Lattice-Boltzmann method is 

applied to many different idealized situations in which the results are already known from 

theory or laboratory measurements. This will show that the implementation is valid and 

applicable for real physical two-phase flow in porous media. 

6.4.1 Capillary Pressure 

A common experiment for capillary pressure between two immiscible fluids is to use 

spherical bubbles of non-wetting fluid (Gunstensen and Rothman, 1992). In this case, the 

capillary pressure is given by Laplace’s equation (Dullien, 1992),   
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Figure 6.2: (a) Four different sizes of non-wetting bubbles in a sea of wetting-phase fluid. 

(b) Capillary pressure vs. reciprocal of bubble radius. Simulated values (dots) agree 
well with the theoretical prediction (solid line). 
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R
PP outin

γ2=−         (6.9) 

where Pin and Pout are pressures inside and outside of the bubble and R is the radius of the 

bubble. Four different sizes of bubbles (Figure 6.2a) are used for the numerical 

experiments. Figure 6.2(b) shows the capillary pressures for four different bubbles. The 

theoretical prediction of the capillary pressure is calculated by Equation 6.8 and is shown 

as a solid line. The simulated values (dots) are obtained by simply calculating pressures 

inside and outside after the numerical simulations. The numerical flow simulation results 

show very good agreement with the theoretical prediction. Small discrepancies come 

from the discretization effect of the bubble. This numerical experiment shows that our 

implementation honors Laplace’s law for capillary pressure. 

6.4.2 Wettability and Contact Angle 

Two-phase fluid systems in porous media always involve a solid phase; hence three 

interfacial tensions are involved (Figure 6.3). In equilibrium, the horizontal forces are 

balanced as follows: 

,cos  or,

,cos
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γ
γγθ

θγγγ
−

=

+=
       (6.10) 

where γsw is interfacial tension between the solid and water, γso is interfacial tension 

between the solid and oil, γow is interfacial tension between oil and water, and θ  is the 

contact angle.  

 

 

Figure 6.3: Equilibrium at a line of contact (Craig, 1971). 
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Figure 6.4: Different wettabililty situations in porous media: (a) competely water-wet, (b) 
water-wet, (c) neutral-wet, and (d) oil-wet systems. 

 

 
Figure 6.5: Wettability test with a simple box model. (a)Initial model has two layers of 

immiscible fluids separated horizontally. (b), (c) and (d) show simulated results for 
neutral wettability, weak wettability and strong wettability, respectively. 
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Figure 6.4 shows different wettability situations in porous media. Clean sandstones 

are usually water-wet, however, most of reservoir rocks are not completely water-wet. To 

confirm that the implementation of two-phase flow simulations by the Lattice-Boltzmann 

method can represent a wide range of wettability situations, a simple model of a box 

containing two immiscible fluids is used (Figure 6.5). The wetting phase is located in the 

upper half and the non-wetting phase is in the lower half of the box. As the wettability 

increases, the meniscus is deformed and successfully shows different wettability 

situations. In the neutral wettability case, it shows the right contact angle of 90°. 

Figure 6.6 shows a very similar situation to Figure 6.5. In this case, the non-wetting 

phase is initially located at the bottom-center of the box. With neutral wettability, the 

contact angle shows 90° as theory predicts. As the wettability increases, the contact angle 

decreases accordingly, and eventually the non-wetting phase is separated from the bottom 

and forms a spherical bubble. Therefore the implementation not only replicates the right 

contact angles but also handles a wide range of wettabilities. 

 

  

 
Figure 6.6: Contact angles by the two-phase Lattice-Boltzmann simulation. Each plot is 

shown as a cross-sectional view. Initially the non-wetting fluid is located at the 
bottom center of the box. As wettability increases, the contact angle decreases 
accordingly. Eventually the non-wetting phase is detached from the bottom and 
forms a spherical bubble. 
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6.4.3 Two-phase Flow through Pipes 

In the previous sections, we have seen that the two-phase LBM can represent 

interfacial tensions properly. Now we will include an external driving force, a pressure 

gradient, which causes the two fluids to flow through porous media. Figure 6.7 shows 

simple pipe models with three different diameters. We used the same values of pressure 

gradient and wettability for all models. The left column shows imbibition in which the 

wetting fluid replaces the non-wetting fluid and the right column shows drainage where 

the non-wetting fluid is pumped into the wetting-fluid-saturated system. As the diameter 

of the pipe increases, we can observe that the contact angles decrease accordingly 

because the capillary pressure decreases (Equation 6.9). It is also observed that the 

contact angle at imbibition (θ1) is greater than that at drainage (θ2). This is the well-

known contact angle hysteresis (Dullien, 1992). We can also observe the capillary 

pressure in this simple model. Figure 6.8 shows the pressure profiles along the samples. 

The profile lines, A-A' and B-B' are shown in Figure 6.7. The pressure in the non-wetting 

phase is always higher than that in the wetting phase because of the capillary pressure 

near the interface. The simulation successfully shows the capillary hysteresis.   

6.4.4 Simple Mixed-wet System 

The algorithm of the Lattice-Boltzmann method also enables us to have a very 

complex mixed-wet system. This would be very useful for simulating two-phase fluid 

flow through mixed-wet porous media. The model (Figure 6.9) is a simple pipe with 

different wettabilites of the solid phase. The first half of the solid is water-wet, while the 

other is oil-wet. The pore is initially saturated with oil and water is pumped from the left-

hand side. Until the meniscus between oil and water meets the boundary between water-

wet and oil-wet solids, it is convex to the water phase. However, as soon as the meniscus 

reaches the boundary, it becomes convex to the oil phase. This is a very simple mixed-

wet system. However, the two-phase LBM can handle more complicated mixed-wet 

situations. Actually we can assign a different wettability to each node. 
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Figure 6.7: Imbibition (left column) and drainage (right column) through pipes. Fluid is 

pumping from the left-hand side of the pipe. Each row has a pipe of a different radius. 
Note that the contact angle at imbibition is different from that at drainage. The two 
lines (A-A' and B-B') in the middle row are for the pressure profiles in Figure 6.8. 
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Figure 6.8: Pressure profiles along the pipe model for imbibition and drainage. Dots are 

pressure values from the simulation. The A-A' and B-B' lines are from Figure 6.7. 
Black solid line denotes a constant pressure drop. 
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Figure 6.9: Two-phase flow in a mixed-wet system. Plots are shown in cross-sectional 

views of a pipe model. The solid part has two regions of different wettability. The left 
half is water-wet and the right half is oil-wet. Initially the pore is filled with oil, and 
water is pumped from the left-hand side. Time in the title of each plot is in the 
simulation unit. The meniscus between oil and water changes when it meets the 
boundary between the water-wet and oil-wet solid. 

 

6.4.5 Drainage-type Snap-off 

Another well-studied model of immiscible displacement, the so-called pore doublet 

model, is a little more complicated. A typical pore doublet consists of two tubes with 

different diameters, joined at both ends (Figure 6.10). Since the capillary pressure is 

inversely proportional to the radius of the tube, the capillary pressure of the smaller tube 

is greater than that of the bigger tube. Drainage-type snap-off occurs when the external 
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pressure gradient is big enough to overwhelm the capillary pressure of the bigger tube, 

but is not big enough for the smaller tube. Theory and laboratory experiments show that 

under this condition the wetting phase in the smaller tube is trapped while that in the 

bigger tube is replaced by the non-wetting phase (Lenormand et al., 1983; Chatzis and 

Dullien, 1983). Figure 6.10 shows that the two-phase Lattice-Boltzmann method 

successfully replicates the drainage-type snap-off, which tells us that the method 

describes capillary pressure phenomena of porous media accurately. 
 
 
 

          
 

          
Figure 6.10: Drainage-type snap-off in a doublet. (a) Initial stage. Pore space is 

completely saturated with water (wetting phase). (b) After 5000 iterations. Oil is 
replacing water in the system. (c) After 10000 iterations. (d) Final stage. There is a 
continous oil phase through the bigger pore, while the water phase is trapped in the 
smaller pore. 

 

6.5 Two-phase Flow Simulation in Porous Media 

This section presents two-phase flow simulations in realistic and complex porous 

media. The microtomographic Fontainebleau sandstone sample was used in the study. 

Details of the sample have been covered in Chapters 3 and 4. 
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6.5.1 Relative Permeability and Two-phase Flow Simulation 

There is no widely accepted macroscopic relation in two-fluid systems. However, if 

two fluids were macroscopically separated in porous media, each phase would satisfy 

Darcy’s equation:  
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where the subscripts w and n denote wetting and non-wetting fluids and Pc is the capillary 

pressure. The new parameters, κrw and κrn are called relative permeabilities for the 

wetting and non-wetting phases, respectively. Although Equations 6.11 is used for most 

practical modeling, there are many issues regarding its applicability. First of all, the 

equations implicitly assume that the two fluids flow independently each other through the 

porous media. Coupling between two fluids or any flow-driven changes in the interface 

geometry are limited in this approach. The coupling between two fluids has been studied 

and the results are quite controversial – from negligible to significant (Olson, 1995). A 

modification of Darcy’s law with coupling terms has been suggested (Gunstensen and 

Rothman, 1993). Secondly and more fundamentally, it is unclear why the two-fluid 

system with non-linear capillary force would obey a linear relation between the flux and 

pressure gradient (Adler and Brenner, 1988). Although there are many issues with 

Equation 6.11, we will use the equation to address calculated relative permeability from 

the two-phase flow simulation. However, in most parts of this chapter, we will use a 

normalized flux of each phase, since the normalized flux is straightforward to measure 

and it is approximately the same as relative permeability. The definition of effective flux 

can be found in the next section (Equation 6.12). 

There are a couple of assumptions for non-wetting and wetting fluids in this study. 

The viscosities and densities of two fluids are assumed to be the same. Therefore, the 

non-wetting and wetting phases are not oil and water, since we used the same viscosity 

and density for both fluids. However, they are called oil and water for more clear 

discussion. The assumption for using the same viscosity for two fluids is not due to 
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limitations of the Lattice-Boltzmann algorithm. It is done to simplify the model for faster 

calculations, since two very distinct viscosities of fluids will require almost an order of 

magnitude larger calculation time. There are a few recent efforts incorporating different 

viscosities of fluids in the Lattice-Boltzmann method (Langaas and Yeomans, 2000; 

Orlandini et al., 1995).  

There are typically two kinds of laboratory measurement techniques for two-phase 

fluid flow and relative permeability estimation – steady state and unsteady state methods. 

Both techniques were implemented and simulated, although the numerical 

implementations are a little different from the laboratory measurement techniques. 

Details on each simulation technique are covered in the following sections. 

6.5.2 Steady State Simulation 

Figure 6.11 shows a schematic diagram of the steady-state simulation technique. In 

the steady-state laboratory measurement (Tiab and Donaldson, 1996), two fluids are 

premixed with a pre-defined ratio and are pumped into the core sample. The simulation 

methods in this study are very similar to the laboratory experiment, although there are a 

few differences. In the numerical simulation, we simply assign pre-determined volumes 

of two fluids in the pore nodes and let them flow under a given pressure gradient with 

periodic boundary condition. There can be an issue regarding the initial distribution of 

two fluids, since different initial distributions may lead to different final status. This issue 

will be covered in the later sections. 

 

 

  
Figure 6.11: Schematic diagram of the steady-state simulation of two-phase fluid flow. 
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Figure 6.12: Distribution of two fluids after the steady-state simulation. White parts 

denote solid grains and greenish yellow denotes pore structure filled with water. The 
oil phase is shown in red. 

 

 

Figure 6.12 shows the final distribution of two fluids in the Fontainebleau sandstone 

sample after a two-phase flow simulation. The solid grains are shown as white. Green 

geometry is the pore structure filled with water, and red denotes the oil phase. We can see 

how complexly the two fluids are distributed. The calculation time for a typical pore 

geometry of 128×128×128 nodes is from a few hours to a day on a PC workstation with a 

1.7GHz Pentium4 processor. The relative permeability curves are obtained from the 

steady state flow simulation as functions of water (wetting phase) saturation (Sw). Figure 

6.13 shows series of normalized flux curves, which are given by 
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where qsw and qsn are fluxes from single phase flow simulations with wetting and non-

wetting fluids, respectively. The normalized flux is the horizontal flux along the pressure 

gradient direction, divided by the flux from the single-phase flow simulation under the 
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same pressure gradient. This is approximately the same as the relative permeability, if the 

pressure gradient of the wetting phase (Equation 6.11) is not much different from that of 

the non-wetting phase.  

As seen in Figure 6.13, we observe that relative permeability curves change with 

pressure gradient. This implies that the flux (flow rate) of each fluid is not linear with the 

pressure gradient, which shows that the extended Darcy’s law for two-phase flow 

(Equation 6.10) is not completely valid. This nonlinearity is quite obvious because the 

controlling force for two-phase fluid flow, capillary pressure, is not linear. Another 

observation is that the oil phase has bigger changes in relative permeability, while the 

water phase does not show a significant difference in relative permeability due to the 

change in pressure gradient. Furthermore, the oil relative permeability increases as the 

pressure gradient increases, while the water relative permeability seems to decrease, 

though the amount is very small. This nonlinearity between the flux and pressure gradient 

is greater at intermediate to high water saturation. 
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Figure 6.13: Normalized flux for non-wetting and wetting phases. Different symbols 

denote normalized flux values under different pressure gradients. The non-wetting 
phase shows higher sensitivity to the change in pressure gradient than the wetting 
phase. 
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     (a)          (b) 

      
 

      
 

      
 

Figure 6.14: Two-phase flow in a Fontainebleau sandstone (a) under low pressure 
gradient, and (b) under high pressure gradient. Fluid flows from right to left. Color 
notations are the same as in Figure 6.12. Each gray arrow represents a time lapse of 
5000 iterations. 
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Figure 6.14 shows the nonlinearity more clearly. Two series of snapshots from a 

steady-state flow simulation are shown. The water saturation is about 90%; the oil phase 

loses connectivity and is trapped in the big pore space. Column (a) is under a low 

pressure gradient and Column (b) is under a pressure gradient high enough to drive the 

oil phase against the capillary pressure. Three snapshots at each column were taken 5000 

iterations apart. Column (a) shows that nothing happens during the simulation. The oil 

phase is trapped and stays in the big pores. However, with the high pressure gradient, the 

oil blobs can go through pore throats and flow with water. Due to the capillary pressure, 

which is a function of pore geometry and types of fluids, the relative permeability is not 

linear to pressure gradient. The non-linearity effect is bigger at high water saturation, 

when the oil phase loses continuous connectivity. 

6.5.3 Unsteady State Simulation 

The unsteady state technique in the laboratory (Tiab and Donaldson, 1996) mimics oil 

migration and production in oil reservoirs. Initially the rock sample is fully saturated with 

water. Oil is pumped into the sample and water is drained until no more water is 

produced (drainage). The saturation at this point is often called irreducible water 

saturation. Then the sample is jacketed and allowed to adjust to capillary equilibrium. 

After achieving equilibrium, water is pumped into the sample (imbibition), and the 

volumes of the two fluids at the inlet and outlet are measured. The unsteady-state 

numerical simulation of this study is almost the same as the laboratory measurement 

technique. The simulation also consists of two stages, drainage and imbibition. Figure 

6.15 shows a schematic diagram for the unsteady-state simulation. 

Again, we use the same rock sample, and the rock is assumed to be completely water-

wet. Figure 6.16 shows snapshots during the simulation. A small portion of the rock 

sample (lower right portion of Figure 6.12) is chosen for a more clear view of two-fluid 

flow. The color notations are the same as in previous figures. The drainage simulation is 

shown from (a) to (d). Initially the sample is completely water-saturated, and then the oil 

phase replaces water in big and well-connected pores first, and forms finger-type shapes. 

Finally no more water is produced and the drainage simulation is finished. 
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Figure 6.15: Schematic diagram of the unsteady state simulation of two-phase fluid flow. 
 
 
 
 

Figure 6.16(e) shows the irreducible water saturation, which is about 35%. The 

imbibition simulation is presented from (f) to (g). Water, which is the wetting phase in 

this system, replaces oil in a different way. It pushes the oil phase in a so-called piston-

like way. Since the capillary pressure helps water replace oil, imbibition is a more 

efficient mechanism than drainage. Figure 6.16(h) shows the end of the imbibition 

simulation. In the upper part of the figure, we can see the residual oil saturation, which is 

about 10%. These snapshots show realistic two-phase flow through complex pore 

geometries. 

The relative permeability (≈ normalized flux) is shown in Figure 6.17. The oil flux in 

the drainage case shows an interesting result; it stays almost the same for water 

saturations of 70% to 50%. Figure 6.18 shows the reason for this phenomenon. Within 

this range of saturations, a significant portion of the oil phase moves perpendicular to the 

pressure gradient direction. Therefore the effective flow along the pressure-gradient 

direction does not increase and stays almost the same. The normalized flux curves from 

the imbibition in Figure 6.17(b) show the very linear trends for both oil and water phases. 

Commonly, the relative permeability curves are much smaller than these linear trends 

(see Figure 6.13). – 
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Figure 6.16: Snapshots during an unsteady-state simulation; drainage (a-d), irreducible 

water (e) and imbibition (f-h). Fluid flows from right to left. The blue in (e) denotes 
water. The other color notations are the same as in Figure 6.12. 
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Figure 6.17: Normalized flux curves from the unsteady-state simulation.  

 

 

 

   
 

   
Figure 6.18: Detailed snapshots during drainage. Note that the movement of the oil phase 

is perpendicular to the direction of the pressure gradient.  

(a) T=40000 (b) T=41000 

(c) T=42000 (d) T=43000 
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According to Craig (1971), the unsteady-state method has two serious limitations: (1) 

The pressure gradient or is flow rate has to sufficiently high to eliminate outlet end 

effects; and (2) viscous oils are generally used to obtain relative permeabilities over a 

wide saturation range. Otherwise, the imbibition displacement would be piston-like with 

high flow rates. The linear trend of normalized flux curves comes partially from these 

limitations. However, since we can control the full range of parameters, such as 

interfacial tensions and pressure gradient, we did change these sets of parameters to see 

the differences. Though there were small differences in normalized flux curves upon 

changing the parameters within reasonable ranges; the changes were not significant. 

Another cause of the linear trend is that the rock sample is not big enough to capture all 

possible two-phase distributions in pore geometry. In other words, the size of the digital 

rock sample is not big enough to represent the two-phase fluid flow of the whole rock. 

This issue will be covered in detail in Chapter 7. 

6.5.4 Representative Elementary Volume and Grid Spacing 

In Chapters 3 and 4, we discussed the representative elementary volume (REV) for 

porosity and absolute permeability. To deal with the length scale consistently, the 

autocorrelation length or two-point correlation length (a) has been used, which is an 

approximate measure of mean pore size. When a rock is isotropic and homogenous, a 

small portion of a rock, greater than 5a in length, accurately represents the whole rock 

well in terms of porosity. Absolute permeability, on the other hand, requires a bigger 

REV to represent fluid flow through the rock. Although the REV strongly depends on the 

homogeneity and isotropy of the rock, we found that a sample size with a length of 10a or 

greater represents the permeability of the whole rock quite well. 

However, two-phase flow through porous media is much more complicated, since we 

have two immiscible fluids and they are controlled by the nonlinear force, capillary 

pressure. The force balance is a function of not just pore geometry; it depends also on 

local fluid saturation. The continuity of a fluid, especially for the non-wetting phase, also 

has a significant effect on the flow rate. Thus, two fluids can have very different 

distributions depending on the details of pore geometry. In other words, the two-phase 

fluid flow is affected strongly by the arrangement of pore size distribution and 
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connectivity. Even if a digital rock sample is big enough to represent porosity, the 

autocorrelation function and single-phase fluid properties, the sample does not 

necessarily represent the two-phase fluid properly. It is almost impossible to quantify 

how big the sample should be. However, it is obvious that we need a bigger sample for 

the two-phase flow simulation to capture all possible two-fluid situations in the pore 

geometry, such as trapped oil, irreducible water saturation, and continuity of old phase. 

On the other hand, the two-phase flow simulation requires finer grid structures 

(higher resolution of pore geometry). There are two interfaces in two-phase flow 

simulations – the interface between two immiscible fluids and pore/grain boundary – 

while the single-phase flow simulation requires only one interface – the pore-grain 

boundary. To describe the two interfaces properly, we need to use a finer grid structure. 

We learned that a grid spacing of 1/5 the mean pore length (dx = a/5) is not fine enough 

to describe two-phase flow. The grid spacing should be dx = a/10 or less. If the pore size 

distribution is very broad, smaller grid spacing should be used, since small pores or pore 

throats play a significant role in two-phase flow. Thus we need to run much bigger 

problems in two-phase flow simulations than in single-phase flow simulations. If we 

double the size of a digital rock and reduce the grid spacing by half, the total size 

increases by four times in 1D and by 64 times in 3D. Even with rapidly increasing 

modern computing power, this size is almost prohibitive. One approach to this dilemma 

would be parallel implementations, which will be described in Chapter 7. The grid 

spacing and size of digital rock samples used in this chapter is very close to the minimum 

to satisfy these conditions. More details will be covered in Chapter 7. 

6.5.4 Summary 

This section has shown that the two-phase LBM represents realistic two-fluid flow in 

complex pore geometry reasonably well. Both the steady state and unsteady state 

simulations can replicate laboratory measurements. Moreover the LBM can handle two-

phase flow more easily, since we can obtain all parameters locally in a rock, such as 

pressure, saturation and flux as a function of location and time. Through the numerical 

experiments, we found that the implementation of the two-phase Lattice-Boltzmann 

method can be a good candidate for calculating relative permeability and also for 
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exploring the pore-scale physics of two-phase fluid flow.  

6.6 Effect of Initial Distribution of Two Fluids 

This section will show the potential of two-phase Lattice-Boltzmann implementation 

for exploring the pore-scale physics of two-phase fluid flow in real rock  

The spatial distribution of pore fluids can have a significant impact on physical 

properties of rocks. For example, elastic properties of a rock with uniform saturation of 

fluids may be very different from those with patchy saturation (Sengupta, 2000). 

Similarly, the original distribution of two fluids in a pore structure will have a significant 

effect on how the two fluids flow and eventually what the relative permeabilities will be. 

We will investigate the change in relative permeability (normalized flux) due to the 

different initial geometry of two fluids.  

In the steady-state simulation, we assigned wetting and non-wetting fluids in the pore 

geometry according to the initial saturation. To investigate changes in relative 

permeability due to different initial distributions of two fluids, three different kinds of 

initial distributions are used; (1) boundary coating with wetting fluid, (2) random 

distribution, and (3) patchy saturation. The boundary scheme assigns the wetting phase 

into nodes near the grain boundary. This scheme mimics the affinity of the wetting phase 

for the grains (wettability), and the affinity is weighted by an inverse of the distance of 

the nearest grain node. As a result, the wetting phase is located on small pores or pore 

throats and the non-wetting phase is at the center of big pores. The random scheme 

simply assigns the wetting and non-wetting phase randomly. The patchy scheme would 

put the non-wetting phase at the center of the rock sample. Figure 6.19 shows initial and 

final fluid distributions of these three schemes with a wetting phase saturation of 50%. 

The left column of Figure 6.19 shows initial distributions, and final distributions are 

shown in the right column. Although the initial distributions of two fluids are very 

different, the final distributions are quite similar for the boundary and the random 

schemes, while the patchy scheme shows a very different final distribution.  

Three sets of relative permeability curves from different initial distributions of two 

fluids are shown in Figure 6.20. The first thing we notice is that there are bigger 
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differences in the non-wetting phase than in the wetting phase. The second observation is 

that the differences in relative permeability among different initial distributions get larger 

as the wetting-phase saturation increases. The difference in relative permeability of the 

non-wetting phase becomes really significant when the wetting phase saturation is greater 

than 50%. The difference increases until Sw = 70%, then decreases and converges toward 

zero. The main reason for this difference in oil relative permeability is the connectivity of 

the oil phase.  
 

 
Figure 6.19: Initial (left column) and final (right column) distributions of two fluids in 

Fontainebleau sandstone by (a) boundary, (b) random, and (c) patchy schemes. The 
wetting fluid saturation is 50% for all cases. Color notations are the same as in 
previous figures.  
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Figure 6.20: Relative permeability curves from different initial distributions of two fluids. 

Different initial distributions of fluids are denoted by different symbols. The non-
wetting phase permeability is more sensitive to the change of initial distribution of 
two fluids. 

 

 

 

As shown in Figure 6.19, the final distribution of the patchy case shows the best 

connectivity of the oil phase, since it is initially continuous. The boundary scheme and 

random scheme show very similar final distributions overall. However, in detail, the 

amount of oil phase that was initially located in small pores in the random scheme is 

higher than in the boundary scheme. Once the non-wetting phase is disconnected, there 

can be two consequences. If enough of the non-wetting phase is supplied, the non-wetting 

phase can move to next pore. Otherwise, it will be trapped in the pore and cannot 

contribute to the flux. 

Figure 6.21 shows the discontinuity of the non-wetting phase in different initial 

distributions of two fluids with a high water saturation (Sw) of 70%. The first plot, (a) 
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shows the high flux area from a single-phase flow simulation. The high flux area 

represents the main path of fluid flow. The next three plots, (b) (c) and (d), are the final 

distributions of two fluids from the boundary, random and patchy cases, respectively. 

Obviously, in the random initial distribution, most non-wetting phase is trapped in pores 

and the continuity of the non-wetting phase is very poor. The boundary case shows better 

continuity. Much of the non-wetting phase is located along the main pore paths. However, 

the non-wetting phase is still discontinuous. On the other hand, the patchy case shows 

excellent continuity of the non-wetting phase through the sample. This good continuity 

helps the non-wetting phase have a significant relative permeability even in very low 

non-wetting phase saturation.  

 
 
 

 
Figure 6.21: Final distributions of two fluids with Sw=70%. (a) High flux pore path from 

a single-phase flow simulation. (b) Boundary case. (c) Random case. (d) Patchy case. 

 

(a) (b) 

(c) (d) 
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The continuity of the non-wetting phase plays a significant role in the magnitude of 

relative permeability for the non-wetting phase. The next question is what a physically 

reasonable initial distribution of two fluids would be. It should be closely related to the 

condition of previous oil migration. The random distribution would not be a naturally 

occurring scenario. The patchy and boundary schemes would be more realistic scenarios, 

though the pressure and temperature conditions would have a considerable effect on the 

distributions of two fluids. The change in wettability over time would also be an 

important factor. Boundary and patchy types can probably be found in the same rock and 

at the same time. The main conclusion of this section is that the initial distribution of two 

fluids will have a significant impact on relative permeability. However, considering that 

our rock model has just a couple of effective paths for fluid flow, we need to investigate 

whether the current model is representative for the whole rock. This will be discussed in 

the next section. 

The next example uses the unsteady-state simulation. We investigate the effect of 

initial two-fluid distribution on the sweep efficiency. Two different initial distributions of 

fluids are shown in the top row of Figure 6.22. The left-hand side is patchy-type 

saturation, where the oil phase is located at the center of the sample, while the right-hand 

side shows a final distribution from the imbibition simulation. Both have initially about 

65% water saturation. This is one simple description of patchy saturation. First of all, the 

sample size is too small to represent a reasonable situation of patchy saturation. Secondly 

the patch would not have a sharp boundary as shown in Figure 6.22. However, we would 

like to get a rough idea of how this subtle difference in initial distributions will affect the 

sweep efficiency. As the simulation proceeds, the oil phase is replaced by the water phase. 

Final distributions of two fluids from both cases show noticeable differences. The 

residual oil saturation from patchy saturation is slightly larger than from drainage 

simulation, and the locations of residual oil are also very different. The sweep efficiency 

also shows a slight difference.  
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                       (a)                                                                    (b) 

   
 

   
 

   
 

Figure 6.22: Imbibition simulations on (1) a sample with patchy saturation, and (2) a 
sample from a drainage simulation.  
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Figure 6.23 shows the saturation change during the drainage simulation. The water 

replaces oil more efficiently in the sample from the drainage simulation. The figure also 

shows more clearly about the difference in residual oil saturation. From this simple 

example, we observe that the computational code can simulate the subtle details of two-

fluid distributions in pore geometry realistically and that two-phase flow phenomena can 

be more complicated with all these minor details. At macroscopic scale, the details may 

contribute in a predictable way; however, we really need to understand the dynamics at 

pore scales to understand two-phase flow more thoroughly.  

 

 

 

Figure 6.23: Saturations curves for sweep effeciency. The two initial conditions come 
from imbibition simulation and from patchy saturation.  

 

6.7 Future Applications and Implications 

We have seen that the two-phase Lattice-Boltzmann implementation can simulate 

two-phase fluid flow in real pore geometries. We also showed a simple application: the 
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effect of initial distribution of two fluids on relative permeability and sweep efficiency.  

The implementation is now ready for more complicated applications of two-phase 

fluid flow in porous media as a module. In Chapters 4 and 5, we could use our methods to 

calculate absolute permeability, estimate permeability from thin sections, and model 

diagenesis modeling with single-phase fluid flow. These applications are possible 

because the Lattice-Boltzmann method can handle very complex pore geometries without 

any modification or simplification. By the same token, the two-phase Lattice-Boltzmann 

flow simulator can be applied to the same applications: prediction of relative permeability 

from thin section and diagenesis modeling with two-phase fluid flow.  

The prediction of relative permeability has a big impact on industrial applications, 

since relative permeability is probably the most important parameter in oil reservoirs, and 

the measurements are very difficult and time-consuming. Prediction of relative 

permeability from thin sections will be a big innovation in the oil industry if it is 

reasonably accurate. Diagenesis modeling with two-phase fluid flow will be more 

appropriate than with single-phase fluid flow, since underground situations involve 

multiphase fluid conditions, and diagenesis mechanisms are strongly influenced by two-

phase fluids in porous media.  

Another important application is capillary pressure curve simulation. The capillary 

pressure curve is a more direct and standard measurement in oil reservoirs for 

quantitative determination of reservoir rocks. The numerical simulation of the capillary 

pressure curve can be easily done with the two-phase Lattice-Boltzmann flow simulator 

by simply repeating the simulation with different macroscopic pressure gradients. 

6.8 Conclusions 

We developed and implemented two-phase Lattice-Boltzmann flow simulators. We 

then performed two-phase flow simulations on digital rock samples to understand the 

links between pore geometry and relative permeability. The main results are as follows: 

 

(1) The implementations simulated the steady-state measurement of relative 

permeability reasonably well and are still much more cost-effective than actual 
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laboratory measurements, even though the calculation time is longer than for the 

single-phase flow simulation. 

(2) Two-phase LBM can simulate realistic two-phase flow in porous media and 

replicate many two-phase flow phenomena, such as Laplace’s law, contact angle, 

capillary pressure, and snap-off in a pore doublet. 

(3) Nonlinearity between flux and pressure gradient was observed through steady-

state simulation and can be explained by the fact that the controlling force, 

capillary pressure, is not linear. 

(4) The effect of initial distributions of two fluids on relative permeability is bigger 

for oil than water, especially when the oil saturation is low i.e., the oil phase is 

discontinuous. Patchy saturation would have a considerable impact on oil 

recovery by affecting both sweep efficiency and residual oil saturation. 

(5) The two-phase LBM can be a tool to explore two-phase flow at pore scales in 

complex, realistic pore geometry, and can compliment many laboratory 

measurements that are very difficult or time-consuming.  

(6) A few immediate applications using the two-phase LBM include relative 

permeability estimation from thin sections, diagenesis modeling with two-phase 

fluid flow, and capillary pressure curve simulation. 
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Chapter 7  

Parallel Lattice-Boltzmann Flow 

Simulations and Its Implications  
 
 

7.1 Abstract 

Numerical flow simulations using the Lattice-Boltzmann method have drawn great 

attention, as they can simulate various fluid flow situations that are difficult in the 

laboratory. However, these simulations are very computation-intensive and time-

consuming even with modern computing power, especially for two-phase fluid flow in 

porous media. Since parallel machines are now widely available and most parts of the 

Lattice-Boltzmann algorithm are local operations, a parallel implementation is a good 

solution for more efficient simulations. The main bottleneck in parallel algorithms is the 

communication overhead. To minimize the communication overhead, we developed 

several optimization schemes, which are customized for the Lattice-Boltzmann algorithm. 

The most important one is a non-overlapping boundary scheme. In a typical parallel 

implementation, each partition shares boundary nodes, which need to communicate with 

other partitions. However, each node in the Lattice-Boltzmann method has a density 

distribution containing several floating-point elements, but only a few elements of the 

distribution need to communicate. The non-overlapping communication scheme does not 
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require sharing nodes: it simply sends and receives only the necessary elements out of the 

total distribution. We can save approximately 80% communication cost with this non-

overlapping boundary scheme. Secondly, a simple bisectional partitioning is not 

appropriate, as our pore structure is a very complex unstructured mesh. We used a graph 

partitioning method, which enables us to minimize the partition boundaries. The graph 

partition method gives us a small boundary area between partitions, which is usually 

located at pore throats. This reduces the communication cost by more than half. Finally, 

we implemented optimized communication ordering and weighted graph partitioning. 

One partition generally needs to communicate with many neighboring partitions, and 

each pair has a different size of data to communicate. Since the next iteration is only 

possible when the communication finishes, a poor ordering of communication will cause 

many processors to be idle. Communication ordering minimizes the idle time by finding 

an optimized order of communication pairs. The weighted graph partitioning also 

minimizes the idle time by improved communication balancing. Each of these 

optimizations gives 20-30% reduction in total communication time. With all the 

optimized schemes, we can achieve very good performance on both a shared-memory 

machine and a distributed-memory machine. The optimized two-phase simulation code 

could achieve a speedup of 12 with 14 processors, while non-optimized code gave only 4 

times faster code with 14 processors.  

With efficient parallel implementation, we can perform two-phase flow simulations 

on bigger pore geometries to investigate the representative elementary volume (REV) for 

two-phase flow. We found that the REV for two-phase fluid flow is larger than that for 

single-phase fluid flow. The reasonable size for two-phase flow simulation would be 

larger than 20 mean pore size (L=20a). In addition, we can attack more complex 

problems with the efficient parallel implementations, such as capillary pressure curve 

simulations, diagenesis modeling with two-phase fluid flow, and estimation of relative 

permeability from thin sections. These applications require a set of two-phase flow 

simulations and can be simulated efficiently with these parallel implementations of the 

two-phase Lattice-Boltzmann method.  
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7.2 Introduction 

The development of a computationally efficient two-phase Lattice-Boltzmann 

simulator for relative permeability prediction is an important technical contribution, as it 

is based on fundamental physics and it can handle complex pore geometry. The capability 

to use the real pore structure geometry is a particular strength of the model, compared to 

the more widely used pore network simulators. In addition, it can complement many 

difficult and time-consuming laboratory measurements of two-phase flow. We have 

already seen in the previous chapter that two-phase flow simulation can replicate physical 

two-phase fluid flow in realistic and complex pore structures. However, the computation 

time of the two-phase flow simulation is still quite large even with modern computers. In 

addition, we need a finer grid structure of our digital rock in two-phase flow simulations 

than in single-phase flow simulations, because we need to resolve two interfaces – the 

grain/pore boundary and the boundary between wetting and non-wetting fluids, while the 

single-phase flow simulation needs to resolve just the grain/pore boundary. This requires 

a more robust and efficient implementation that can handle the bigger problem and can 

finish the calculation in a reasonable amount of time. With the recent and wide 

availability of parallel machines and standardized libraries (Geist et al., 1994; Karypis 

and Kumar, 1998a; Gropp et al., 1999; Chandra et al., 2000; Balay, et al., 2002), the 

parallel implementation of two-phase flow simulation could be a good solution. In 

addition, the algorithm of the Lattice-Boltzmann flow simulation has many local 

operations, which do not require communication, and are well suited for parallelization.  

There have been a few studies on parallel Lattice-Boltzmann flow simulations. 

Skordos (1995) implemented two different parallel codes for single-phase flow 

simulation – one with the Lattice-Boltzmann method and the other with an explicit finite 

difference method. He used a common partitioning method, simple bisectional 

decomposition. He investigated how the total problem size, the size of each partition and 

number of processors affect performance. He had about 50% of efficiency with more than 

15 processors. In other words, the parallel code with 20 processors ran about 10 times 

faster than its serial counterpart. Amati et al. (1997) used a parallel Lattice-Boltzmann 

code for turbulent channel flow. They used up to 512 processors on Quadrics, a family of 
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parallel Single Instruction-Multiple Data (SIMD) machines. They could achieve 

performance close to ideal linear speedup due to the efficient communication between 

processor nodes. Martys et al. (1999) performed multiphase flow simulations on an SGI 

Onyx with 12 R10000 processors and an IBM SP2 with 37 RS/6000 processors. They 

could also achieve good speedups, slightly below the ideal linear speedup.  

Most previous studies followed the general parallelization approach and special 

classes of parallel machines. In this work, we will focus on optimizations customized for 

the Lattice-Boltzmann algorithm, not just parallelizing a pre-existing serial code. In 

addition, our implementation focuses on good performance with distributed-memory 

machines, such as cheaper and standard PC clusters. 

 

(1) Minimization of data to be communicated: non-overlapping partition. 

(2) Minimization of the boundary between partitions: graph-partitioning method. 

(3) Minimization of the waiting (idle) time: ordering of communication pairs and 

weighted graph-partitioning. 

 

Each optimization scheme will be covered in detail and the performance increase at 

each optimization will follow later in this chapter. 

7.3 Motivations 

The direct motivation of the parallel implementation came from the simulated relative 

permeability curves. Figure 7.1 shows a digital Fontainebleau sandstone sample that is 

used for two-phase flow simulations. The actual sample size used for the two-phase flow 

simulation is represented by colored boxes, the length scale (L) of which is about 10 

times the autocorrelation length or characteristic pore size (a). From many single-phase 

simulation experiments, we are confident that this size of digital rock can represent the 

single-phase fluid flow of the whole rock. However, the relative permeability curves in 

Figure 7.1 tell us a different story. The choice of the digital rock sample location can give 

quite different relative permeability results. Since the Fontainebleau sandstone is very 

isotropic, homogeneous and well sorted, we have a good reason to believe that the 
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relative permeability of the sample should be more or less homogeneous as well. One 

possible explanation of the discrepancy is that the size of the digital rock sample may not 

be sufficient to represent the two-phase fluid flow of the whole rock 
 
 

Figure 7.1: Pore geometry of a Fontainebleau sandstone (top). The green, blue and red 
boxes denote the size of the digital samples for two-phase flow simulations. The 
length scale of the sample (L) is about 10a (a: autocorrelation length). The relative 
permeability curves from different digital rock samples (bottom). The non-wetting 
relative permeability is sensitive to the choice of the rock sample location. 
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Figure 7.2: The effective fluid path in a Fontainebleau sandstone sample. Green color 

denotes pores, and blue areas are effective flow paths where the local flux is not 
negligible. 

 

 

The representative elementary volume (REV) is the minimal volume of pore 

geometry, the statistical average of which represents a macroscopic property. The basic 

idea of REV was briefly covered in Chapter 4. We have seen that the size of L>7a is 

representative for porosity and the size of L>10a is usually representative for absolute 

permeability in Chapter 4. Figure 7.2 suggests that the size of L≈10a may not represent 

the whole rock in terms of relative permeability. The blue areas in the figure are regions 

with non-negligible flux from a single-phase flow simulation. We can see this sample has 

two effective fluid paths. Since two-phase fluid flow is controlled by a nonlinear force, 

the capillary pressure, this size of sample probably is not big enough to represent two-

phase fluid flow of the whole rock. In other words, these small samples cannot represent 

all possible situations of two-phase fluid of the whole rock, such as trapped oil, 

irreducible water or snap-offs. In order to check the REV, we need to perform two-phase 

flow simulations on larger samples, which are almost prohibitive to run on a single 

computer. This is one of the main reasons to implement efficient parallel Lattice-

Boltzmann flow simulators.  
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7.4 Overview of Parallel Implementation with MPI 

Before the details of the parallel implementation, general parallel implementation 

techniques and libraries are briefly covered in this section. More detailed information 

about parallel methods and interfaces can be found in Golub and Ortega (1993), Culler et 

al. (1998), Dongarra et al. (1999), and Fosdick et al. (1999).  

7.4.1 Parallel Machine Architecture 

We intend to achieve two objectives with parallel computing: faster calculation speed 

and ability to run larger problems, which are very difficult or impossible to achieve on 

single-processor machines. Although there are many kinds of parallel machines, we can 

categorize them into two types: shared-memory machines and distributed-memory 

machines. A shared-memory machine contains multiple processors, and all processors 

share one large main memory (Figure 7.3). Since the processors are connected into a 

BUS or a switch, the latency and bandwidth are good. However, the cost of building a 

shared memory machine would be very high and the architecture is complex. On the 

other hand, a distributed-memory machine consists of multiple computers connected in a 

network, which will cause poor latency and bandwidth of memory. However, it is very 

cost-effective, and we can build large clusters more easily. 

 
 
 

 

Figure 7.3: Two typical parallel machines: (a) a shared-memory machine and (b) a 
distributed-memory machine.  
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We used both types of machines to test the parallel implementations. The shared 

memory machines are a Sun Enterprise 6500 with sixteen 400MHz UltraSparc II 

Processors and 16 Gigabytes of memory, and a Dell Precision Workstation with dual 

1.7GHz Xeon processors and 1 Gigabyte of memory. The distributed memory machine 

consists of sixteen identical PC-clones, each of which has one 1.4 GHz Athlon processor 

and 1 Gigabytes of memory. The distributed memory machine has a Linux operating 

system, with each processor connected to a 100Mbit network switch. 

7.4.2 MPI (Message Passing Interface) 

There are several interfaces for the parallel implementation, including MPI (Message 

Passing Interface), PVM (Parallel Virtual Machine), HPF (High Performance Fortran), 

OpenMP and Pthread (Geist et al., 1994; Gropp et al., 1999; Chandra et al., 2000). The 

first three are message-passing interfaces and the last two belong to shared-memory 

programming. Shared memory programming interfaces are exclusively for shared 

memory machines and cannot be used on distributed memory machines, while message-

passing interface can be used on both types of machine. More detailed information about 

each interface can be found in Culler et al. (1998). We used MPI over other interfaces for 

several reasons (MPI Forum, 1994; Pacheco, 1997). (1) It is the only message-passing 

library that can be considered a standard. (2) There is no need to modify the source code 

when porting codes from one platform to another. (3) Vendor implementations should be 

able to exploit native hardware to optimize performance. (4) A variety of 

implementations are available, both by vendors and in public domain. Although MPI 

provides more than 200 functions for parallelization, normal codes are likely to use only 

a few functions, which gives us an easy way to have parallel implementations. 

7.4.3 General Parallel Implementation 

There are several approaches to make a problem parallel. SIMD (Single Instruction-

Multiple Data) and MIMD (Multiple Instruction-Multiple Data) are among these. The 

SIMD approach is a more straightforward and better-performing scheme, and was chosen 

in this study. With the SIMD scheme, we partition a whole data structure into several 

sub-blocks (or partitions) and assign each sub-block to a different processor. Each 
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processor handles its own dataset with the same algorithm. When a processor needs data 

from other partition(s), we use a point-to-point communication provided by MPI. 

We start with a simple example of digital data structures in a 2D grid (Figure 7.4(a)). 

We will call a grid point a node. The brief flowchart of a general parallel implementation 

begins with partitioning the whole domain into smaller partitions. We have four partitions 

in the example. Each partition will be assigned to a different processor to apply an 

algorithm. Now we can see the partitions should ideally be as close to the same size as 

possible (load balancing). If the sizes of partitions are quite heterogeneous, a processor 

with less data will finish its calculation earlier and will wait until other processors finish 

their calculations. Thus we are wasting processor time with idle processors.  

When an operation is local, each processor will take care of its own data. However, 

each node will need neighboring nodes at a certain point. The most common example is a 

2nd-order finite-difference operator on a discrete grid. The finite-difference operator 

requires the information of neighboring nodes. If the neighboring node is located on 

another partition, this will require communication between the partitions. A common 

approach for the communication is to introduce shared nodes or so-called ghost nodes at 

the boundary (Figure 7.4(b)). Now each partition has two kinds of nodes: local nodes that 

were originally assigned to the partition and shared nodes from neighboring partitions. 

When the value of a shared node is modified, other partitions that share the node should 

update their value with the modified one. Many numerical simulations including the 

Lattice-Boltzmann method involve iterative algorithms to solve physical equations. Thus 

data communication is required at every iteration. Since the communication is a very 

expensive operation, minimization of communication is the main task for parallel 

programming. The bottom line for better performing parallel codes is to have a good 

partitioning method that gives a perfect load balance with minimal communication cost. 

In most cases with regular grid structures, bisectional partitioning gives good 

performance. 

Even after we have the optimal partitioning, there is another important optimization – 

the order of communication. As seen in Figure 7.4, Partition I has shared nodes with all 

other partitions. Assume that Partition II, III and IV are tying to communicate with 
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Partition I at the same time. If Partition II happens to communicate with Partition I first, 

Partition III and IV simply will be idle and wait for their turns. It would be much better if 

Partition III communicates with IV during this time. This simple example shows how the 

ordering of communications will impact the performance of a parallel implementation. In 

our example in Figure 7.4, it is relatively easy to achieve optimal ordering. However, the 

optimization of ordering is more complicated with unstructured grids, which is the case 

with the Lattice-Boltzmann algorithm 
 
 
   (a)             (b) 

   
Figure 7.4: (a) Four partitions for 2D digital data. (b) Partitions with sharing layers. Red 

square denotes the area of Partition 1.  
 
 

7.5 Parallel Lattice-Boltzmann Method 

In the previous section, we mentioned general parallel procedures with a simple 

example. There are several differences between the general parallel implementation and 

the implementation of the parallel Lattice-Boltzmann method. 

First of all, each node in Lattice-Boltzmann simulation has a distribution of values 

instead of one value. With a 3D FCHC (face-centered hypercube) grid, there are 18 

floating-point elements at each node. At the communication step, however, we do not 
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need all the elements. Instead, each neighboring node needs only a few elements 

depending on the node geometry. If we use the sharing-node partition, all elements 

including the unnecessary ones will be sent and received. To avoid this unnecessary 

communication, we developed a non-overlapping partition scheme, in which only the 

necessary elements of a boundary node are communicated. This reduces the total 

communication to about 1/5 of the original size.  

Secondly, the grid structure of our pore geometry is not regular. Although we use a 

regular grid (FCHC) in describing pore geometry, we use only the pore nodes not the 

grain nodes. Figure 7.5 shows a typical digital rock, and only the pore nodes, shown in 

red, will be in the grid structure. Thus the grid for the Lattice-Boltzmann flow simulation 

is unstructured, or irregular. Due to the complex grid geometry, the role of partitioning 

becomes much more important. We used a graph-partitioning algorithm (Karypis and 

Kumar, 1998a; 1998b; 1998c) that enables us not only to minimize the communication 

but also to have a good load balance among partitions. 

Finally, since the grid is unstructured, the size of the communication between each 

pair will be different. We developed a method to find an optimized ordering of 

communications and used a weighted graph partitioning method (Karypis and Kumar, 

1998a) to minimize the idle (waiting) time during communication. 
 

 

 
Figure 7.5: Pore geometry of a Fontainebleau sandstone. Gray denotes pore.  
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7.5.1 Non-overlapping Boundary 

There are two typical steps in the Lattice-Boltzmann method – collision and 

propagation (see Chapter 3). In the collision step, we create a new density distribution by 

the discrete Boltzmann equation. The actual communication occurs in the propagation 

step, where each element of the distribution moves to a neighboring node. Figure 7.6 

describes the procedures schematically in a 2D FCHC grid, each node of which has eight 

elements. Figure 7.6a shows the initial density distribution of the center node. The center 

node has a new distribution at the collision step, and each element of the distribution 

propagates to the corresponding neighboring nodes at the propagation step. 

Figure 7.7 shows how non-overlapping partition can be achieved. We simply move 

necessary elements from one partition to the other, in this case, only six elements from 

Partition I to Partition II. If we choose to use the sharing-nodes scheme, we need to send 

24 elements to Partition II, since each node contains eight elements in 2D. In this simple 

2D example, the non-overlapping partition scheme reduces the size of the communication 

to 1/4 of the original size. This reduction is even better with a 3D grid. The size of 

communication is reduced to 1/5~1/6 in a 3D FCHC grid, which saves more than 80% of 

the communication bandwidth. 

 

 

Figure 7.6: Procedures of the Lattice-Boltzmann algorithm in a 2D FCHC grid. (a) Initial 
state of the density distribution. (b) Collision step. (c) Propagation step. 

 
 

 (a)        (b)          (c) 
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Figure 7.7: Schematic diagram of the non-overlapping partition geometry. 

 

 

We have an extra cost for the non-overlapping boundary scheme. We need to 

calculate the mapping indices for the elements at boundary nodes, since this 

communication is now element-based, not node-based. However, this is a one-time 

calculation for the entire simulation, while the communication occurs in every iteration. 

Thus the extra cost is generally negligible compared to the benefit in communication.   

7.5.2 Graph Partitioning 

A good partitioning algorithm is necessary to achieve good load balancing while 

minimizing communications. However, finding an optimal partitioning is a very difficult 

problem (Smith et al., 1996) with unstructured grids. Therefore we usually choose a 

heuristic approach to obtain an optimal partitioning. We used a Metis graph-partitioning 

algorithm (Karypis and Kumar, 1998a; 1998b), which is a multilevel partitioning method. 

Figure 7.8 shows partitioning results with a simple bisectional partitioning and with the 

Metis graph partitioning. The graph partitioning method gives more complex partition 

structures than the bisectional partitioning method.  

Partition I Partition II

Communication 

Solid grain



CHAPTER 7. PARALLEL LATTICE-BOLTZMANN FLOW SIMULATIONS 111  

 

 

     
 

Figure 7.8: (a)Bisectional partitioning and (b) Metis partitioning with eight partitions. 
Different colors denote different partitions. 

 
 

 

Figure 7.9: Example of bisectional paritioning and graph partitioning on a small digital 
pore geometry. The graph partitioning method set the partition boundary that has 
smallest area (pore throats) with good load balancing. 
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Figure 7.9 shows the benefits of the graph partition clearly. We can easily see that the 

graph partitioning method set partition boundaries at the pore throat, which can minimize 

the area of the boundary. The partition boundaries with the graph partitioning method are 

much smaller than those with the bisectional partitioning. Figure 7.10 shows load 

balancing and communication cost from both bisectional partitioning and Metis 

partitioning. Metis gives us a significant reduction of communication as well as perfect 

load balancing.  
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Figure 7.10: Load balances and sizes of communication by the bisectional partitioning 

and the Metis graph partitioning. (a) Graph partition gives perfect load balancing, 
while the bi-sectional partitioning shows more than 10% fluctuation in the number of 
nodes of each partition. (b) The communication cost is really reduced by the graph 
partitioning method, by almost an order of magnitude. The communication size 
means the number of data to be communicated. 

 
 
 

7.5.3 Optimized Communication Order 

From the Metis graph partitioning, we have optimized partitions with all 

communication information. Table 7.1 shows the communication size of each pair of 

partitions. For example, the size of communication between Partition 1 and Partition 2 is 
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345. The sizes of communication are quite different, and now the communication order 

has quite a big impact on the parallel performance. To have an idea about the importance 

of communication ordering, we will consider an example (Table 7.2). At Step 1, each 

processor performs a communication with its partner given in Table 2 (Figure 7.11). The 

problem arises at Step 2. Processors 1 and 2 have already finished the communication 

and are waiting for their next partners, while processors 3 and 4 are still doing the first 

communication between them. It would be better for processors 1 and 2 to find other 

available processors instead of waiting for processors 3 and 4. The goal of 

communication ordering is essentially to find an optimal communication order to 

minimize idle time during communications. 
 
 
 

Table 7.1: Size of each communication pair. P1 denotes Partition 1 from 8 partitions.   

  P1 P2 P3 P4 P5 P6 P7 P8 
P1 0 345 189 472 251 0 206 154 
P2 345 0 0 1450 240 0 627 198 
P3 189 0 0 2406 11 35 574 215 
P4 472 1450 2406 0 219 0 0 94 
P5 251 240 11 219 0 1173 140 285 
P6 0 0 35 0 1173 0 21 496 
P7 206 627 574 0 140 21 0 922 
P8 154 198 215 94 285 496 922 0 

 

 
 
 

Table 7.2: An example of communication ordering. 

 Communication Pairs 
Step 1 (P1, P2)  (P3, P4)  (P5, P6)  (P7, P8)  
Step 2 (P1, P3)  (P2, P4)  (P5, P7)  (P8, P8)  
Step 3 (P1, P4)  (P2, P3)  (P5, P8)  (P6, P7)  
Step 4 (P1, P5)  (P2, P6)  (P3, P7)  (P4, P8)  
Step 5 (P1, P6)  (P2, P5)  (P3, P8)  (P4, P7)  
Step 6 (P1, P7)  (P2, P8)  (P3, P5)  (P4, P6)  
Step 7 (P1, P8)  (P2, P7)  (P3, P6)  (P4, P5)  
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                               <Step 1>                                                      <Step 2> 

Figure 7.11: Schematic diagram of communication by the order given in Table 2. 
 
 
 
Finding the optimal ordering of the communication is also a very difficult problem. 

However, we can choose a heuristic approach as follows. 
 

(1) Define an extra parameter for each partition, a cumulative sum of communication 

time. Set it zero as an initial value. 

(2) Find the biggest number of communication from Table 7.2 and make it the first 

step. 

(3) Find next available biggest communication until the first step is filled up. 

(4) To find the second step, find the smallest cumulative sum of communication, then 

find the next available smallest cumulative sum. This combination is the earliest 

available combination after step 1. 

(5) Update the cumulative sum in the following manner. If the two cumulative sum 

values of these two partitions are different, it means the one with the smaller 

cumulative sum should wait until the other partition is available. Thus the final 

cumulative sum should be a maximal value between the cumulative values from 

these two partitions. Update both cumulative sum values with the maximal value. 

(6) Repeat (4)-(5) until all communications are completed. 
 
Table 7.3 shows an example of finding an optimal communication order by the procedure 

described above. Figure 7.8 shows the total communication time of each processor with 

the optimized order (diamonds) and non-optimized order in Table 7.2, which is regarded 

P1

P3 P4

P2

2406

345 P1

P3 P4

P2

2406

Wait Wait
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as the best order when the all communication sizes are the same. The optimized ordering 

gives about 20% less communication time. In unstructured or irregular grids such as the 

one in the Lattice-Boltzmann method for our case, the sizes of the communication pairs 

are quite heterogeneous. Thus the optimized ordering will give a non-negligible 

performance increase. 

 
 

Table 7.3: Procedure to find an optimal order of communication with eight partitions. 
Numbers in parentheses are partition numbers. The number outside parenthesis is 
a cumulative communication size in a given partition and at a given step.  

 P1 P2 P3 P4 P5 P6 P7 P8 
Step 1 (1)345 (1)345 (4)2406 (3)2406 (6)1173 (5)1173 (8)922 (7)922 
Step 2 (7)1128      (1)1128  
Step 3  (8)1120      (2)1120 
Step 4  (7)1755     (2)1755  
Step 5 (8)1282       (1) 1282
Step 6 (5) 1533    (1)1533    
Step 7      (8)1778  (6)1778 

 
 
 

7.5.4 Communication Balancing – Weighted Graph Partitioning 

Even with optimized communication ordering, the efficiency of communication 

becomes worse as the heterogeneity of the communication sizes increases. Thus making 

the communication sizes as homogenous as possible is very helpful for efficient 

communication (communication balancing). We can use a weighted graph partitioning 

(Karypis and Kumar, 1998a) for balancing the communication number. Briefly, the 

weighted graph partitioning tries to balance the communication sizes at the cost of less 

load balancing. Usually the cost of load balancing is much smaller than the advantage 

from better communication balance. Table 7.4 shows the comparison between un-

weighted and weighted graph-partitioning schemes. Since the next calculation is only 

possible after the all communications are finished, the maximum communication time is 

important. The weighted graph partitioning gives about 20% less communication time. 

This reduction is graphically shown in Figure 7.12. 
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Figure 7.12: Total communication size at each partition by a conventional ordering 

(circles),  the optimized ordering (diamonds) and the optimized ordering with a 
weighted graph partitioning (squares). 

 

 

Figure 7.13 summarizes all the optimizations. Each optimization was applied on the 

top of the previous optimization. Brief observation on the section is as follows: 

 

(1) The non-overlapping partition method reduces the communication cost the most 

among four optimizations. Note the line breaks at the y-axis in Figure 7.13. The 

communication with the non-overlapping partition is about six times smaller that 

that with the conventional shared boundary partition.  

(2) Graph partitioning gives another big improvement in reducing the communication 

cost, which is more than three times smaller than with a simple bisectional 

partitioning. The improvement depends on the geometry of pore structure.  

(3) Optimization of order minimizes the overall waiting (idle) time. It does not give a 

big improvement. However, we found that we can get 20-30% smaller 

communication cost using the optimized ordering. 
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(4) Weighted graph partitioning gives better communication balance and eventually 
more efficient communication. It usually gives 20-30% less communication cost. 
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Figure 7.13: Improvement of total communication sizes with each optimization. 
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Table 7.4: Communication balance with weighted and unweighted graph partitioning. 

Total communication size (number of data) 
  Weighted graph partitioning Unweighted graph partitioning 

P1 3724 1617 
P2 3652 2860 
P3 3443 3430 
P4 2667 4641 
P5 1937 2319 
P6 1484 1725 
P7 1560 2490 
P8 2181 2364 

 
 

7.6 Algorithms for Parallel LBM Flow Simulations 

After completing partitioning and communication mapping, we need to parallelize the 

Lattice-Boltzmann flow simulation algorithms for both single-phase and two-phase flow. 

From the partitioning and optimization, we already obtained information about the 

partition geometry and mapping index tables for communication between partitions. 

Parallel implementation using MPI is now quite straightforward. We can parallelize the 

code by simply adding the communication routine when necessary. The parallel 

algorithms of the Lattice-Boltzmann method are as follows: 
 
Single-phase flow simulation 

(1) Partitioning and set up the communication indices (serial operation) 

(2) Collision step (local operation) 

(3) Apply force term (local operation) 

(4) Propagation step (communication) 

(5) Repeat (2)-(4)  

 
Two-phase flow simulation 

(1) Partitioning and set up the communication indices (serial operation) 

(2) Collision step (local operation) 

(3) Calculating interfacial tension (communication) 

(4) Apply force term (local operation) 
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(5) Propagation step (communication) 

(6) Repeat (2)-(5) 

 
We need one communication per iteration with single-phase flow simulation, while 

two-phase simulation requires two communications per iteration, since we need 

neighboring information twice per iteration – when calculating the interfacial tensions 

and when performing the propagation. In addition, the two-phase simulation has more 

data to communicate, since each node has two kinds of fluids. We will see how the extra 

communication step and more data affect performance in the next section. 

7.7 Simulations and Results 

We applied our optimized parallel implementations to simulate two-phase fluid flow 

in X-ray tomographic Fontainebleau sandstone samples (Figure 7.5). Digital rock 

samples with sizes of 256×128×128 and 512×256×256 were used for two-phase flow 

simulations. The actual size of the bigger sample is about 4mm×2mm×2mm. Calculation 

time is measured only for the flow simulation part; i.e. file I/O and other preprocessing 

procedures were excluded in measuring calculation time for fair comparison. Three 

machines described in the previous section were used: a Sun workstation with 16 SparcII 

processors, a PC with dual Xeon processors and PC clusters with AMD Althon 

processors. 

Performance or Speedup (Sp) is a measure of parallel computing performance, which 

is given as follows: 

p
p t

tS 1= ,         (7.1) 

where p is the number of processors, tp is the calculation time by p processors and t1 is 

the calculation time by a single-processor code.  In the ideal linear speedup, the speed up 

will be equal to p; i.e. the parallel code runs p times faster than the single-processor 

counterpart. Similarly, the efficiency is expressed as follows: 

.
p

S
E p

p =          (7.2) 
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Figure 7.14 shows calculation time for single-phase and two-phase flow simulations. 

Red circles are from the Sun workstation, blue squares from the PC clusters and black 

stars from the dual Xeon PC. Unfortunately, the Sun workstation was not 100% free of 

other users during two-phase flow simulations. We could use up to 14 processors from 

the 16-node PC cluster. The dual-Xeon PC was used just for benchmarking performance. 

We can notice how well modern personal computers perform compared to the Unix 

workstation. In the following figures, we will show results only from the Sun workstation 

(shared-memory machine) and the PC cluster (distributed-memory machine).  
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Figure 7.14: Calculation times of single-phase flow simulation (left) and two-phase flow 

simulation (right).  

 

Figure 7.15 shows the speedup results from the shared-memory machine and the 

distributed-memory machine. We can observe very interesting results, especially from 

single-phase flow simulations. Speedup curves exceed the ideal speedups; i.e. the 

performance with p processors is more than p times bigger than the single-processor 

performance. This looks unphysical, however this is frequently observed and is called 

super-scalability or superlinear speedup (Parkinson, 1986; Helmbold and McDowell, 

1989; Agrawal et al., 1994). Two main reasons for superlinear speedup are shown in 

Agrawal et al. (1994). The first reason is that in search problems, the termination time 
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can be reduced when several searches are executed at the same time. The second one is 

the more efficient utilization of resources by multiprocessors. Our super-scalability 

mainly comes from the second reason: the better reuse of cache in the system. Modern 

processors usually have several levels of cache for fast access of memory. When the 

problem size becomes smaller, the possibility of all necessary data being in the cache 

increases. As a result, the same operation on a small dataset will finish a lot faster than 

one on a bigger dataset. The speedup of single-phase simulation on the shared memory 

machine with 16 processors is about 30. The speedup results of two-phase flow 

simulation do not show super-scalability, because of the larger and more complicated 

data structures. However, they are close to the ideal speedups. This is a surprising result, 

considering the amount of data that we need to communicate per iteration. Our 

optimizations give a really big impact on the performance of parallel simulations. 

Another promising observation is that the performance by the distributed memory 

machine is very good, actually better than the one by the shared memory machine. Even 

with a very cost-effective and simple parallel machine such as the PC cluster, we can 

have more than 80% efficiency with two-phase flow simulations (Figure 7.16). The effect 

of optimization in the simulation will be covered in detail in the next section. 
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Figure 7.15: Speedup results for single-phase flow simulation (left) and two-phase flow 

simulation (right). So-called super-scalability is observed on both a shared-memory 
machine and a distributed-memory machine with the single-phase flow simulation.  
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Figure 7.16: Efficiency curve from single-phase flow simulations (left) and from two-

phase flow simulations (right). Either case has an efficiency better than 80%. 
 
 

Figure 7.17 shows snapshots of drainage and imbibition simulations with a bigger 

rock sample than the one we used in Chapter 6. The whole simulations took 8 hours with 

14 processors, while it took about three days with a single-processor machine. We could 

also perform a single-phase flow simulation with a much larger pore structure, 

512×256×256 grid size, which cannot be run on most single-processor machines. The 

parallel implementations with optimization schemes can perform flow simulations much 

more efficiently and can also solve larger problems. 

Now we can go back to the question of the REV for two-phase flow simulation. We 

used a bigger pore structure, doubling the length of each side (Figure 7.18). The pore 

structures came from the same Fontainebleau sandstone as in previous chapters, and we 

have two different pore structures from different locations. The length scale of the bigger 

sample (L) is about 20a. The relative permeability curves from each sample are shown at 

the bottom of Figure 7.18. Both non-wetting and wetting relative permeability curves are 

quite similar to each other, even though the two samples are from the different locations. 

This may mean that this sample size can represent the whole rock in terms of two-phase 

fluid flow. It is clear that the length scale of L=10a is not big enough to represent the 

relative permeability of the whole rock.  
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Figure 7.17: Two-phase flow in a Fontainebleau sandstone. Isosurface plots for (a) 

drainage and (b) imbibition. The red part is imbibed oil and green denotes pores filled 
with water. The sample size is about twice bigger than one that we used in Chapter 6. 

(a) Drainage (b) Imbibition 
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Figure 7.18: Bigger digital rock sample for testing the representative elementary volume 
for two-phase fluid flow (top). Relative permeability curves on two different bigger 
rock samples (bottom). 
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We preliminarily recommend the size of L=20-30a for two-phase flow simulations. 

We also tried finer grid spacing (dx=a/20), but the difference in relative permeability 

between two fine (dx=a/20) and coarse (dx=a/10) grid spacing was almost negligible with 

our Fontainebleau sandstone samples. It seems that dx=a/10 is fine enough to resolve two 

interfaces (pore-grain interface and interface between two fluids) with our well-sorted 

sandstone samples. Care should be taken in choosing grid spacing with a wide range of 

pore size distribution, such as poorly sorted sandstones. 

7.8 Effect of Optimizations 

We have already seen that the implementations have very good performance both on 

shared-memory machines and a distributed memory machine. Now we will compare the 

performance of the optimized codes with un-optimized codes to see how the 

optimizations affect performance. Three cases were considered for the comparison of 

performance: sharing boundary partition, non-overlapping partitioning with a simple 

bisectional partitioning, and full optimizations – non-overlapping partition, weighted 

graph partitioning, and optimized ordering of communication. The PC cluster machine is 

used for the comparison of performance.  

Figure 7.19 shows the results from single-phase flow simulations. The graph 

partitioning gives about 20-30% better performance than the bisectional partitioning 

(black arrow). The effect of non-overlapping partition is much bigger (gray arrow). The 

speedup by the shared boundary partition is less than 4 with 14 processors, while the 

speedup of the fully optimized code is very close to 14, which is the ideal linear speedup. 

The results of two-phase flow simulations show similar results to the single-phase flow 

case (Figure 7.20). 

Figure 7.21 shows the effect of each optimization more clearly. The efficiency curves 

show that the sharing boundary scheme has less than 30% efficiency. In the right-hand 

side of the figure, the communication time by the shared boundary partition is more than 

70% of the total calculation time, while the full-optimized code spends only 10% of its 

calculation time in communication. This effect will be much bigger as the number of 

processors increases. 
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Figure 7.19: Performance results from single-phase flow simulations. Circles denote 

results from the shared boundary partition scheme, diamonds from a bisectional 
partitioning with non-overlapping partition scheme, and squares from full 
optimizations. The arrows denotes the performance increase from each optimzation. 
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Figure 7.20: Performance results with two-phase flow simulations. Notations are the 

same as in Figure 7.19. 
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Figure 7.21: Comparison of efficiency (left) and communication time (right) with two-

phase flow simulations. The communication time is normalized by total calculation 
time. With the shared boundary partition, the simulation will spend 70% of the total 
calculation time in communication. 

 

7.9 Conclusions 

We implemented parallel codes for the simulations of single-phase and two-phase 

fluid flow by the Lattice-Boltzmann method. In spite of the communication overhead, the 

performance of the parallel codes is good and very promising for further applications. 

The good performance comes from the customized optimizations for the Lattice-

Boltzmann algorithm. The optimized code runs 12 times faster with 14 processors than its 

serial counterpart, while the generic parallel code is only 4 times faster. With this 

efficient parallel two-phase flow simulator, we investigated the representative elementary 

volume for two-phase flow simulation. We found that L=10a is not big enough to 

represent two-phase fluid flow of the whole rock, although this size is big enough for 

representative single-phase flow of the whole rock. We preliminary suggest that the 

length scale of a digital rock should be greater than 20 mean pore size (L=20a) for two-

phase flow simulation. 

In terms of optimizations, our new development, the non-overlapping partition 

scheme has the greatest effect on the performance. We observe that the communication 



CHAPTER 7. PARALLEL LATTICE-BOLTZMANN FLOW SIMULATIONS 128  

 

cost is almost an order of magnitude smaller with this optimization. The Metis graph 

partitioning also has a big impact on the performance of the parallel codes. We observed 

that the graph partitioning method set partition boundaries at the pore throat, which can 

minimize the area of the boundary. The ordering of communication and communication 

balancing by a weighted graph partitioning has smaller effects than the first two. 

However, they non-negligible performance increase, and the effect would be bigger as 

the number of partitions increases. These efficient parallel implementations can help us 

efficiently simulate very time-consuming applications involving multiple two-phase flow 

simulations, such as diagenesis modeling with two-phase flow and capillary pressure 

curve simulation. 

The parallel paradigm is now very widespread (Golub and Ortega, 1993; Culler et al., 

1998; Dongarra et al., 1999; Fosdick et al., 1999). Both software and hardware is getting 

mature and easy to use. The implementation is not very complicated thanks to many good 

parallel libraries. As modern processors become faster, dependence of performance on 

cache also becomes more important. As we have seen the super-scalability from the 

better cache reuse, we can obtain good increase of performance even without well-

designed parallel implementations. However, a little customization of parallel 

implementation may have a big impact on the scalability. Without several optimizations 

for minimizing communications, our parallel implementation would not scale well.  
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