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ABSTRACT

One of the least understood aspects of seismic wave propagation 1in the
earth 1s the absorption or dissipation of wave energy into heat. This study

presents results relating to four aspects of this problem.

The first 1s the development of a mathematicail description for the gen-
eral elastic response and wave propagation in materials where the specific
loss or Q factor is exactly independent of frequency. From the fundamental
constraints of linearity and causality, relations for the frequency-dependence
of velocity and for the evolution of transient pulses are developed. The case
where Q varies slowly with frequency is also treated. as well as the effeacts

of Q on reflection coefficients at interfaces between two different materials.

Next we take a close look at one particular mechanism for the dissipation
of energy, thermal relaxation. This mechanism, which affects compres#ional
waves more than shear waves, is highly sensitive to the state and the nature
of the pore fluids. When the pore fluid 1s water, a rapid increase of
attenuation with temperature is expected, up to the boiling point. When the
paore space contains mixtures of gas and liquid phases, the attenuation is sen-
sitive to pore pressure and gas saturation in a manner that complements the
dependence of vgfoc1ty on these variables. Especially Tlarge losses are
expected when small amounts of gas are introduced into an otherwise ligquid-
saturated rock. Solubility of the gas in the liquid and phase transitions
leads to an even greater absorption.

The third section deals with wave propagation in media where attenuation
and velocity are spatially heterogenecus. Finite-difference solutions to the
wave equation, similar to those used in the oil-explioration 1industry 1in the
migration of seismic reflection data, are developed to include the effects of
absaorption, as well as arbitrary spatial heterogeneities. This makes it pos-

sible to model the seismic response for geologically realistic situations.

Finally, methods are developed to extract information about spatial vari-
attions of attenuation and velocities from seismic reflection data. The
approach used 1s similar to that used 1in medical tomegraphy. The application

of the inversions to amplitude and traveltime data from unstacked common-
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midpoint reflection data, yields detailed pictures of the subsurface. The
interpreted attenuation and velocity anomalies show correlations with diffrac-

tions observed on the common-offset reflection sections.
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Chaptsar 1

INTRODUCTION

One of the fundamental aspects of elastic wava propagation in all materi-
als, and in rocks in parttcular, 1s the absorpt1oﬁ and irreversiblie conversion
of wave energy into heat. A large body of experimental knowledge indicates
that the distance that a wave propagates in any rock is roughly proportional
to the wavelength. Although the fraction of energy dissipated during each
cycle 1s, thus, nearly independent of frequency, the loss 1in rocks 1s highly
variable from one rock to another and it is also sensitive to changes in the
environmental conditions. The specific loss factor, Q, has, for example, been
known to change by several orders of magnitude when a nominally dry sample 1is

placed under vacuum.

The uitimate resolution that can be achieved in any seismic experiment is
related to the intrinsic attenuation. For a given signal-to-noise ratio, the
resolution is basically a function of Q. As an example, it has been suggested
that the use of shear waves in reflection seismology might give better reso-
lution than obtained using P-waves, because the lower velocity of S-waves
would 1mply shorter wavelengths. This hope was not realized since the
attenuation for shear waves is usually no less than for P-waves, and the

usable propagation distance is thus no greater when measured in wavelengths.

In recent years it has been recognized that attenuation and velocity are
related in such a way that a full understanding of traveltimes or other obser-
vations that have traditionally been used to infer velocities requires a
knowledge of the absorption properties. This applies particularly when the
mechanical response of the same material is measured at widely separate fre-
quencies or time scales. For example, information about the response of the
mantle comes from plate tectonics, postglacial upliift, Chandler wobble, free
oscillations and body waves. In order to relate observations in one of those
bands to those in another, the effects of anelasticity must be accounted for.

A similar situation exists 1in exploration seismology where one wants to
relate observations from reflection experiment in the range of a few tens. of
hertz, results from well logs at a few kilohertz and ultrasonic measurements



on cores at frequencies around one megahertz.

In order to estimate attenuation from observational data, it is necessary
to make some assumptions about the velocity structures. Numerous smail-scale
inhomageneities can cause apparent attenuation through scattering and intrabed
multiple refiections [Schoenberger and Levin, 1978]. In ést1mat1ng attenua-
tion and velocity from observations, there is considerable trade-off between
absorption and velocity 1n that a given set of observations may often be
satisfied either by a simple attenuattion structure and a compiex velocity
structure, or a mors <complex attenuation structure and a simpler velocity
structure. It follows that in order to obtain optimum estimates of either
velocity or attenuation, an estimate of the other 1s also needed.

In the first chapters of this thesis, the constraints of 1linearity and
causality are applied to obtain fundamental relations between velocities at
different frequencies when the specific laoss factor, or Q, 1s either 1ndepen-
dent of, or silowly varying with, frequency. The implications for transient

pulse propagation and reflections are explored in some detail.

Chapter V presents a close look at a particular_mechanism for absorption
in heterogeneous maaia. thermal relaxation and phase transitions involving
pore fluids. This is 8 well-known mechanism for absarption 1in solids; how-
ever, our results indicate that the presence of fluids will greatly increase
the effect of this loss mechanism. A review of other mechanisms is given by
Mavko et al. [1979].

In Chapter VI, numerical techniques for the computation of wave propaga-
tion in inhomogeneous media are developed which include the effects of absorp-
tion. The approach chosen for this turns out to be advantageous for wave-
field extrapaelation 1n heterogeneous media even whan the effects of absorption
are not included, and has been extensively used to migrate reflection data
collected by the Consortium for Continental Reflection Profiling (COCORP)
[Lynn et al. 1979; Lynn, 1979].

In the final chapter methods are developed to determine details of the
spatial vartiations of wave-propagation parameters above & strong reflecting
horizon from multichannel seismic reflection data. The theory 1{s equally
applicable to attenuation and velocity. Application of these inversion



methods to data from a producing gas field shows a detailed pattern of ampli-
tude and velocity variations which correlate with each other and with reflec-

tions observed on common-offset seismic sections.

Not only is it desirable from a theoretical viewpoint to consider velo-
city and attenuation together, but 1t also turns out thgt same of the methods
that work best for madeling or inversion of attenuation alse give very good
results when applied to velocity data.



Chapter II

CONSTANT Q -- WAVE PROPAGATION AND ATTENUATION

A fundamental feature associated with the propagation of stress waves 1n
all real materials is the absorption of energy and the resulting change 1n the
shape of transient.waveforms. Although a large number of papers have been
written on the absorption of seismic waves in rocks, little, if any, general
agreement exists about even the most fundamental properties of the processes
1nv019ed. Table 2.1 shows a summary of the basic features of some of the dif-

ferent attenuation theories.

Early laboratory work on absorptisn in rocks showed the loss per cycle or
wavelength to be essentially independent of frequency. Since at that time no
known linear theory could fit this observation, Born [1941] proposed that the
loss was due to rate~independent friction of the same kind as observed when
two surfaces slide against each other. Kolsky [13956] and Lomnitz [1957] gave
linear descriptions of the absorption that could account for the observed
frequency-independence and were also consistent with other independent obser-
vations of the transient creep in rocks and the change in shape of pulses pro-
pagating through thin rods. Despite this and the fact that a satisfactory
nonlinear friction model for attenuation has never been developed to the point
where meaningful predictions could be made about the propagation of waves,
nonlinear friction is commonly as§umed to be the dominant attenuation mechan-
ism, especially in crustal rocks [McDonal et al., 1958, Knopoff, 1964; White,
1966; Gourdon and Davis, 1968; Lockner et al., 1977; Johnston and Toksoz,
19771].

A different type of theory for attenuation has been advocated by Ricker
{1953, 1977]. In his model the absorption is described by adding a single
term to the wave equation. Because of this simplicity, the theory of the pro-
pagation of transient waves has been further developed than for the other
theories. For this reason, wavelets based on the Ricker theory have been com-
monly wused in the computation of synthetic seismograms [Boore et al., 1971;
Munasinghe and Farnell, 1973], although the frequency-dependence of Q that 1s

implied by the model contradicts practically all experimental observations.
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In this paper, we will discuss some of the data Ricker interpreted as in sup-

port of his theory.

Recently, there has been renewed interest in the effects of anelasticity
on wave propagation in rocks. Liu et al. [1376] found that the change 1in the
elastic moduli implied by attenuation over the frequency range covered by
seismic body waves and free oscillations, was about an order of magnitude
greater than the uncertainty in the measurements. The models used by Liu et
al. [1976], as well as all of the other nearly constant Q (NCQ) models, have
included at least one parameter that is in some way related to the range of
frequencies over which the model gives Q nearly independent of frequency. How
this cutoff 1s chosen appears to be quite arbitrary and the physical implica-
tions of the cutoff parameters are different between the models of Lomnitz
[1957], Futterman [1962], Strick [1967], and Liu et al. [1976].

In this paper a linear description of the attenuation 1s given, that
features Q exactly independent of frequency, without any cutoffs. The constant
Q (CQ) model is mathematically much simpier than any of the NCQ models: it is
completely specified by two parameters, 1. e. phase velocity at an arbitrary

reference frequency, and Q.

Most of the NCQ papers have described wave phenomena 1n the frequency-
domain and have restricted their analysis to cases where Q 1s large (Q > 30).
In contrast, the s{mp11city of the CQ description allows the derivation of
exact analytical expressions for the various frequency-domain properties, such
as the complex modulus, phase velocity, and the attenuation coefficient, that
are valid over any range of frequencies and for any posttive value of Q. In
this paper more emphasis will be placed on the time-domain description of
transient phenomena, and exact expressions for the creep and relaxation func-
tions and scaling relations for the transient wave pulse will be given. In
addition, approximate expressions will be given for the impulse response, as a
function of time, that results from a delta-function excitation.

We will also show that when the frequency range 1s restricted and the
losses are small, the results obtained from the various NCQ theories. approach
the same 1imit as those obtained from the CQ theory.



Derinitions and Background

Seismic attenuatien 1s commenly characterized by the quality parameter Q.
It is most often defined in terms of the maximum energy stored during a cycle,
divided by the energy lost during the cycle. When the 1loss 1is large this
definition becomes 1impractical; O0°Connell and Budiansky [1978] suggested a
definition in terms of the mean stored energy W and the enargy loss AW, dur-

ing a single cycle of sinusocidal deformation.

Anv

e = W

(2.1)

When this definition is used, Q 1s related to the phase angle between stress
and strain, 8§, according to

= tan & (2.2)

Pl

The fact that amplitude-dependence of the propagation velocity and Q at
strains less than ll)'6 has not been observed, strongly suggests that at these
amplitudes the material response is dominated by linear effects, or 1n other
words, the strain that results from a superposition of two stress functions is
equal to the sum of the strains that result from the application of each
stress function separately. When two effects are 1tnearly related, the rela-
tionship may be expressed through a convelution. Thus the relationship
between stress and strain in a linear material may be expressed as

e(t) = m(t) = «(t) (2.3)
a(t) = s(t) = ¢(t) {2.4)

where e¢(t) 1is the stress as a function of time, &(t) is the strain, and m(t)
and s(t) are real functions that vanish for negative time. The convolution
operator * is defined by

[ ]
F(t) » g(t) = JSF(t-t')g(t')dt' (2.5)



The relationship between stress and strain given in (2.3) and (2.4) was first
given by Boltzmann [1876]. Our notation differs from Boltzmann’s original
notation only in that the functions m{(t) and s(t) may include generalized
functions such as the Dirac delta function or its derivatives. Combination of
(2.3) and (2.4) 1mplies that m(t) and s(t) must satisfy the condition

3(t) = m(t) * s(t) (2.6)

where 8(t) 1is the Dirac delta function.

Manipulations involving convolutions are usually facilitated by the use
of the Fourier transform. We will use lower case letters to designate func-
tions of time and capital letters for their Fourier transforms according to
the definition

Flw) = JF(t) e g (2.7)

- 00
The inverse Fourier transform is then given by

F(t) = %;fs(..) L (2.8)

Bracewell [1965] gives a discussion of the formalism required for the exten-

sion to generalized functions.

Using the convolution theorem [Bracewell, 1965; p. 108], equations (2.3),
(2.4) and (2.6) may be rewritten:

Pw) = M(w)E(w) (2.9)
E(w) = S{w)Z(w) (2.10)
1 = Mw)S{w) (2.11)

where Z(w) 1s the Fourier transform of the stress, E(w) 1{s the Fourier
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transform of the strain, and M(w) and S(w) are the Fourier transforms of m(t)
and s{t). Thus, the stress and the strain are in the frequency-domain related
through a multiplication by a modulus M(w) or compliance S(w) just as in the
purely elastic case, the anly difference being that the modulus may be complex
and freguency-dependent. This relationship 1s commonly referred to as the
correspondence principle. By the substitution of a unit steb' function inta
(2.3) and (2.4), 1t 1s easily shown that m(t) and s(t) are the first time
derivatives of the reslaxation and creep functions, where the relaxation func-
tion, ikt). is the stress that results from a unit step in strain, and the

creep function, ¥(t), 1s the strain that results from a unit step in stress.

When the stress-strain relations are combined with the equilibrium equa-
tion, the resulting one-dimensional wave equation has a solution that may be

written in a form analaegous to the classical case:

U(t,x) = expl7(wt-kx)] (2.12)
where
kK = o [M—(ﬁ-)-]z (2.13)

and p 1is the density of the material.

The Constant Q Modal]

The development so far has bean completely general; nc assumptions other
than 1linearity and causality have been made about the properties of the
material. We will now examine a particular form for the stress-strain rela-
tionships and show ¢that 1t 1leads to a Q that is independent of Frequancy.
Frequency-independent Q implies that the loss per cycle {is independent of the
time scale of oscillation; therefore it might seem reasonable to try a
material that has a creep function that plots as a straight 1ine on a log-log
plot, or

wt) @ ¢t
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For the sake of convenience ih subsequent manipulations, we will use a creep

function of the form

1 v )27
wt) = 0 t <0

T ts the gamma function which 1in all cases of interest to us has a value
close to unity and to is an arbitrary reference time introduced so that
when t has the dimension of time, M0 will have the dimension of modulus. Some
of the properties of a material that has this creep function are discussed by
Bland [1960, p.54]. Response functions of this form have also been used to
model dielectric 1losses in solids [Jonscher, 18977]. Differentiation of the

expression in (2.14) yields

29 [t 27,
s(t) = MOI'(1+2~,) [ﬁ] ? t>0 (2.15)
s{t) = 0 t <0
Taking the Fourier transform we get
S(w) = ;—-’2 (2.16)
0%
where
1
“0 = to (2.17)

Using (2.11) we get

2 | |21
Mw) = Mo[hﬂ = H0|s;l expl iwy sgn(w)] (2.18)
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where

[}
—

sgn(w) w>0 (2.19)

n
]
—

sgn{w) w <0

Taking the inverse Fourier transform of M(w) and integrating, we get the

relaxation function

M -2y
- 0 t
¥(t) = TTTTE;T[—i t>0 (2.20)

Figure 2.1 shows a plot of the constant Q creep function (2.14), and figure
2.2, of the relaxation function (2.20), for several values of Q. Equation
(2.18) shows that the argument of the modulus and thus the phass angle beween
the stress and the strain, 1s 1independent of frequency; therefore, 1t follows
from the definittion of Q (2.2) that Q 1s independent of frequency:

§ =+ tan(wn) . (2.21)
or
1 -1(1 ~ 1
¥y = ; tan Eﬂ -~ ;6 (2.22)

The approximation is valid when 0-2 << 1. Since both the creep and relaxation
functions vanish for negative time, no strain can precsda applied stress, nor

can any stress precede applied strain; the material 1s causal.

To investigate the propagation of waves in the constant Q@ wmaterial, the
modulus given by (2.18) may be substituted into the solution to the aone-
dimensional wave eguation, given by (2.12) and (2.13); the result may be writ-

ten as
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e-axeiu(t~x/c)

u(t,x) (2.23)
where
y
w

c = ¢ ;; (2.24)
a = tan [;—l]sgn(u)% (2.25)

EQ 1
2 ( )
4 ] 2.26

0 cos[%zi

Since ¢ is slightly dependent on frequency. constant Q s not exactly
equivalent to assuming that « is proportional to frequency, as is often

assumed in the l11terature. It is clear from (2.24) that c0 is simply the

phase velocity at the arbitrary reference frequency In the final section

0
of the paper, we discuss the 1low- and high-frequency 1limits for the phase
velocity and the modulus, and the short- and long-term behavior of the creep

function.

An alternative to (2.23) is to write the solution to the wave equation as

X

U(x,t) = expliwlt - (2.27)
¢ (iw)?
s
where <, is a constant related to "n by
by
M| -y
€ = | = (2.28)

Use of the complex velocity notation, as in (2.27), often simplifies the alge-
bra, e.g. 1n the derivation of reflection coefficients or when modaling wave

propagation in two or three dimensions.
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As most wave phencmena encountered in seismology are transient in nature,

a time-domain description of wave propagation is often more useful for model-

ing or comparisaon with data than a frequency-domain description.

The waveform

that results from a delta-functicn source, the impulse response, fs particu-
larly useful since the waveform that results from an arbitrary source is
obtained by simply convolving the source with the impulse response. The
Fourier transform of the impulse response, b(t), is obtained by omitting the
et term tn (2.12) or (2.23):
Bla) = o e TWX/C (2.29)
By the substitution of (2.24) and (2.25) into (2.29), we get
Xy | -« vy
B(w) = exp{- — |— [tan[——] + 1 sgn(w)] (2.30)
c o 2
0 0
The 1mpulse response may be obtained by taking the inverse Fourier transform
of B(w) given by (2.30). Although we do not have an analytical expression
for b(t), we will present a useful approximate relation and some exact scal-
ing relations. We will rewrite (2.30) as
Blw) = 81('u1) (2.31)
where
w, = tlu (2.32)
Xaay ]
tl = tu::_ (2.33)
1 . 1
B-T-_-;-..l+;6 (2.34)
and
Bl(o) = exp{-|u|1-7[tAnE§1J + 1 sgn(a)]} (2.35)
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It now follows from the similarity theorem [Bracewell, 1965; p. 101] that faor
any homogeneous material, the 1impulse response at any distance x from the

source will be given by

b(t.x) = 1~ b [ (2.36)

t, 1t )
1 1

Equations (2.36) and (2.33) 1mply that in a given material, the traveltime T,

the pulse width ¢, and the pulse amplitude A are related according to

8
T x ¢ %- o< [—5} : (2.37)

where any consistent operational definitions for the traveltime and pulse
width may be used. The proportionality between traveltime and pulse width may

be expressed as

r o= (@ (2.38)

where C(Q) 1is a function that depends only on Q. We will show that C(Q) is
nearly constant for Q > 20. Figure 2.3 shows a plot of the function bl(t).

for several values of Q.

In order to illustrate the scaling relations, seismograms due to 1impul-
sive sources at several distances are plotted on a common set of axes in fig-
ure 2.4. Figure 2.5 shows the same information but scaled according to dis-
tance, by dividing the time by the distance and multiplying the displacement
by the distance. Velocity dispersion has the effect of delaying the pulses
from the more distant sources more than would be expected for a constant pro-
pagation velocity. To further 1llustrate the dispersion, figure 2.6 shows the
results of the same kind of numerical experiment as figure 2.5, for a.Q of
1000 and covering a larger range of distances. It may be concluded from fig-
ures 2.5 and 2.6 that the dispersion due to the anelasticity is directly
observable in the time domain when the traveltime, in a homogeneous material,
can be measured to within half a pulse width over a ratio of 10 in distance.
This applies to high Q as well as to low Q materials. To measure this effect
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Q = 1000. This shows that the dispersion effect, relative to the pulse width,
is independent of Q when Q >> 1.



22

in the earth would, however, require a careful control over the spattal varia-

tion in velocity.

The required control may be obtained when the wave travels the same path
more than once. Waves reflected off the core-mantle interface may satisfy this
condition for stations near the source. Assuming an average -Q = 160 and a
traveltime of 936 seconds for one pass of Sc¢S [Jordan and Sipkin, 1977], we
obtain by a substitution into (2.34) a value for 8 = 1.0020. Equation
(2.37) implies then that doubling the distance will result in a total travel-
time of 1874.8 secands for $¢S,, which 1s 2.6 secands 1longer than would be

2
expected 1f the dispersion were not present.

Approximations for Time-Domain Wavelets

So far we have made no assumptions about the value of Q (other than Q >
0), or the ranges of frequencies and traveltimes invoived. Although we have
been able to derive exact expressions for all frequency-domain properties of
the wave propagation, we do not have exact analytical expressions for time-
domain wavelets or impulse responses. While modern computer techntiques (e.g.
the fast-Fourier-transform algortthm) make 41t relatively easy to transform
data to the frequency domain and back, it is still useful to study the time-
domain waveform, especially since much of earthquake data is still recorded in
an analog form. The need for a convenient time-domain representation 1s
demonstrated by the fact that wavelets based on the Votgt-Ricker model are
often used by workers who do not accept the freguency-dependence of Q implied
by that model [e.g. Boore et al., 1371; Munasinghe and Farnell, 1373].

Strick [1967] applied the causality requirement to the propagation of a
wave pulse, and found a form for the propagation function that satisfies this
requirement. The constant Q transfer function (2.23), 1s a special <case of
Strick’s function. Later Strick [1970] usad the method of steepest descent to
approximate the time-domain impulse response. His expression has, in the

notation used in this paper, the form

(l-9) cst

-1/4}-% 1/
bo(t.x) = {qut[L%:%lz] ’} exp{_ ¥ [gl-zzx] 1}
s
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where bs(t.x) denotes Strick’s approximation to the impulse response, and <
is defined by (2.28). By rearranging this expression, it may be written as

-8 N
by(t.x) = [;’i] 4 T T g (1-9) T
S

exp[-v(l-v)(l"’)/’t:'l/’] (2.39)

where

By differentiation we get the approximation for the differentiated <{mpulse

response, bsv(t,x):

cs 21ts

b, (t.x) = [—-"-] pbs(t.x)[u-y)”"t;”" . .2 % (2.40)
It is evident from inspection of these expressions that they do obey the
correct scaling relations given by (2.37). Figures 2.7 and 2.8 show a compar-
ison between the waveshapes computed by the fast-Fourier-transform-method and
those computed using the steepest-descent approximation. They show an excel-
lent agreement for the early part of the pulse, which includes most of the
higher-frequency information, while the steepest-descent approximation
underestimates the low-frequency amplitudes in the later part of the pulse.
This 1s not surprising since the assumptions involved in the steepest descent
approximation break down at very low frequencies. This agreement contrasts
with the result of Minster [1978a], who in his Figure 3 shows significant
differences between arrivals computed using FFT methods and those computed

using analytical expansions.

So far we have only considered the pulse propagation 1in homogeneous
materials and given scaling relations appliicable to materials with the same
value of Q. As the waveshapes plotted in figure 2.3 show a great deal of

similarity for different values of Q, it should be possible to give scaling
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relations for different values of Q as well as for different distances.

Wwhen Q7% << 1, the tangents in (2.22) and (2.25) may be replaced by
their arguments. Thus (2.23) and (2.25) may be written as

c

Bla) = exp{ - gﬁ-‘-- 1w 5-} o (2.41)
where

(2.42)

By use of the Maclaurin-series expansion of the exponential function, equation
(2.42) may be written as '

— 3 1l e+ —=1In|—| ¢ ==f=— Tn)~—1| + ..... . (2.43)
<, Q @y Zl[ro :'0:]

When all the frequencies cof interest satisfy the condition

<< 1 : (2.44)

1n|-2
o

L
= 0

sufficient precision may be maintained by only including the first two terms
of the expansion given in (2.43). The result is the dispersion relation given
by many of the NCQ papers [e.g. Kanamori and Anderson, 13977]. Using the
approximation indicated in (2.43), and dropping all terms involving the second
or higher powers of 1/Q, squation (2.41) becomes

B'(w) = exp<i- ﬁ'—[mq- i- -1 n -3]} (2.45)
{ co 2Q Q @y

The similarity and shift theorems [Bracewell, 1365; p. 101] may now be used to
relate the approximate impulse response b'(t) that has B'(w) as its Fourier
transform, as indicated by the following relations:
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b'(t) = rbi(t‘) (2.46)
where
' L. ..t
) t' a2 rt - Q+ : ln“o _ (2.47)
c.Q
0
r = " (2.48)

and bi(t) is the inverse Fourier transform of
B.(w') = expd- ..'[1- sgn(e') - + lnlu'l] (2.49)
1 2 r

As long as the condition g1Qen by (2.44) holds, 1t 1s possible to obtatin
waveshapes for matertials with different Q as well as different traveltimes by
a combination of scaling and shifting of a single pulse shape. In particular,
it follows from (2.46) and (2.48) that the amplitude of the pulse will be
approximately proportional to Q. This result, combined with the exact scaling
relations (2.37), 1impltes that the function C(Q), defined by (2.38),
approaches a constant value as Q becomes large. In order to test the wuseful-
ness of (2.38), we have evaluated nﬁmerically the value of C(Q). The results
are plotted 1n figure 2.3, for two pulse-width definitions and three different
traveltime definitions. These curves show that the value of C(Q) 1s practi-
cally independent of Q, for Q greater than about 20. The similarity of the
pulse shape for different values of Q implies that the pulse broadening along
the wave path may be summed and (2.38) written as

- a7 . dt :
r = J'C(Q)a— - CJ'Q—- (2.50)

This relation may provide the basis for a practical method for inverting
models for the anelastic properties of rocks in situ when the wave sources
are sufficiently impulsive and the waves are recorded on broadband 1instru-
ments. The ambiguities 1involved in using the pulse breadth in this manner,

are far less than those involved 1in the use of amplitudes in a narrow
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frequency band, since a number of purely elastic effects, such as focusing
from curved interfaces, can have large effects on the amplitudes of seismic
signals. This approach alsa has the advantage over spectral methods that the
measurement may be done on a clearly defined phase of the waveform [Gladwin
and Stacey, 1974]. It should be noted that equations (2.38) and (2.50)
apply for other pulse-width measures than rise time. but th; ‘value of C€(Q)

will of course be different.

Field Measurements of Attenuation

There have been relatively few field studies of the propagation of tran-
sient wave pulses 1in rocks. Gladwin and Stacey [1374] found that the rise
time ¢, which they defined as the maximum amplitude divided by the maximum
slope on the seismogram, could be fitted by an expression of the form

r = 7+ CL (2.51)

0" Q

whers o indicates the rise time of the source and C was a constant with a
value of 0.5320.04 This value 1is in reasonably good agreement with the
value of 0.485 for large Q opredicted on the basis of the CQ theory (figure

2.9).

McODonal et al. [1958] parformed experiments in wells drilled ints the
Pierre shale formation near Limon, Colorade. Fourier analysis of their data
indicated that individual Fourier components of the waveforms decayed exponen-
tially in amplitude with distance and that this decay was proportional to fre-
gquency. The attenuation per 1000 feet was given in decibels as 0.12 times fre-
quency. Substituting this value 1into (2.41) and using a velocity of 7000
feet/s gives Q equal to 32. This result was obtained at depths of several hun-
dred feet. Deep reflections indicated that the attenuation decreased with
depth with the average attenuation down to a depth of 4000 feet corresponding
to a Q of qpprox1mate1y 100. Their waveforms did not show a large amount of
broadening over a ratic of 5 in traveltimes; this indicates that the saurces
were long compared to the impulse response of the wave path so the assumption
of a delta function source is not appropriate. However, if the rise times of
the waveforms shown 1n figures 2.3 and 2.6 of McDonal et al. [1958], are
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FIG. 2.9. Plot of the function C(Q) defined by equation (2.39). Each pair
of curves was computed using a pulse-width measure: the rise-time definition
of Gladwin and Stacey [1974]), i.e. maximum amplitude divided by maximum slope.
The top pair of curves applies to the impulse response b(t), and the lower
curve applies to its derivative. The lower curve in each pair was computed
using as traveltime T the arrival time of the peak of the pulse, and the
upper was computed using the arrival time of maximum slope. The asymptotic
values are 0.485 and 0.298.



30

Fitted to the expression (2.51), a reasonable fit may be obtained using C = .5
and Q = 30. Thi1s 1{s consistent with the first part of the source being

approximately a delta function in velocity or a step function in displacement.

Ricker [1953, 1977] described experiments done in 1948 in the same forma-
tion. Waveforms wers recorded by three gsophones at depths-of 422, 622 and
822 feet, for shots at depths less than 300 feet in adjacent wells. Figure
2.10 shows a plot of pulse width vs. traveltime [Ricker 1977; Figure 15.23].
Ricker fitted this data by a function of the form

r = at? (2.52)

This relation 1s 1n direct conflict with equatien (2.37), as well as the
experimental result of Gladwin and Stacey [1974]. According to Ricker [1977,
pl88], this observation is the strongest, if not the only evidence supporting
the applicability of his theory to seismic waves. By inspection of figure
2.10 1t appears that the data could just as well be fitted by a function of
the form (2.51) used by Gladwin and Stacey [1974]. McDonal et al. [1958] cri-
ticized Ricker’s experiment on the basis that each shot was recorded by no
more than three geophones, and that waveforms from different shots wers not
comparable because, "One cannot shoot a second time in the same hole because
the same hole 1s not there any more.” This 1s probably the reason for some of
the scatter in Rickar's data, particularly from the 300-foot shots. This
error can be reduced, however, by adjusting the parameter o in (2.51) for
each shot, provided that 1t 1s recorded by at least two geophones. Thus we
have fitted the wavelet breadth data to a model given by
dT

r = 901¢CJ'-°-— (2.53)

In order to facilitate the integration, the traveltime data were fitted to the

form

2

2
g-xs) (2.54)

T = a(xg-xs) + b(x

where xg 1s the depth to the geophone and X is the depth to shot. This
expression implies that the velocity as a function of depth will be given by
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FIG. 2.10. Pulse width as a function of traveltime in Pierre shale. Data from
Figure 15.23 1in Ricker [1977]. Geophones are at depths of 422, 622, and 822
feet. Sources are at 25-foot 1intervals at depths  from 100 to 300 feet.
Numbers ind-icate sources, 1 for 100 feet, to 9 for 300 feet.
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FIG. 2.11. The data 1in figure 2.10, after subtraction of the 1initial pulse
widths, compared with predicted pulse widths faor Q = 32. Both Q and the source
widths were determined by simultaneous least-square inversion.



33

Vv s a + 2bx (2.5%)

As Ricker did not specify which of the data points were obtained from the sams
shot, 1t was only possible to determine the source widths for each shot depth.
For the pulse-width measure used by Ricker, the value of the parameter C 1in
(2.53) is approximately unity. Figure 2.11 shows a plot of the data from fig-
ure 2.10, with the source width subtracted, compared to a straight line with a
slope of 1/Q = 1/32. The data points for the geaophone at 622 feet tend to be
above the curve; this can be explained by attenuation decreasing with depth.
This result implies that both Ricker's data and the data of McDonal et al. are
consistent with the linear constant Q model, and both give the same value for
Q. This 1s particularly significant 1n 1ight of the fact that they inter-
preted their data very differently, and that neither of them considered a con-
stant or near constant linear attenuation in the interpretation of their data.
~The apparent conflict between the observations of Ricker [1953] and McDonal et
al. [1958] has been noted by many authors including Gladwin and Stacey [1374],
Retiter and Monfort [1977], and Bless and Ahrens [1977].

Comparison with Nearly Constant Q Theories

Lomnitz [1956] investigated the transient creep in rocks at low stress
levels. He found that the shear strain resulting from.a step in applied stress
could be described to within the experimental error with a creep function of

the form

wt) = ,11—-[1 + g In(1+at)] (2.56)
0

where a is a frequency much greater than the sample rate or the time resoiu-
tion of the experiment. He found that the fit to the data was insensitive to
the value of a, as long as it was large. For Q greater than about 20, (2.56)
is approximately equal to the CQ creep function (2.14). By using the first two
terms from the MaclLaurin series expanstion of the exponential function, (2.14)

may be rewritten

wt) = ﬁ-—exp[Zq ln(i-t-)] -~ .-4-1-[1 +_:o-ln[r]]
0 0 0
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When t_ <{( t this 1s approximately equal to

0
wt) = Fi-[l + ;%ln [11-%“ (2.57)

Later, Lomnitz [1957,1962] used his cresp law and the superpﬁsftion principle
to derive a model for wave attenuation with Q approximately independent of
frequency for large Q. Pandit and Savage [1973] measured Q for several rock
samples with Q ranging from 30 to 300 and found good agreement between values
determined at sonic frequencies and those derived from transient creep meas-~

urements over several tens of seconds.

Kolsky [1956] did experiments on the propagation of ultrasonic pulses in
polymers and found the pulse width to be proportional to traveltime. To model
his data, he used a viscoelastic model with Q approximately independent of
frequency and with a phase velocity that varied according to

< 1 " .
Eo— S o0 ln[q] (2.58)

Equation (2.58) follows from (2.43) when the condition given 1in (2.44) s
satisfied. Futterman [1962] arrived at the same formula by imposing causality
on the wave pulse and assuming the parameter @ in (2.29) to be exactly pro-

partional ta frequency over ‘a restricted range of frequenciss.

There are two difficulties inherent in Futterman’s approach, which neces-
sitate 1imits on the range where Q is nearly constant, at both low and high
frequencies. Collins and Lee [1956] showed that the assumption of a nonzero
1imit for the phase velgcity as frequency approcaches zero, implies that Q must
approach infinity at zero frequency. Futterman’'s formulation was based on a
finite value of the refractive index at zero frequency and is thus incompati-
ble with constant Q, where the phase velacity has no nonzera 1imit as fre-
quency approaches zero. It can also be shown [e.g. Azimi et al. 1968], that «
proportional to frequency at high freguencies leads to a violation of causal-
1ty.
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It appears that these timitations, which are peculiar to Futterman's
approach, have led many workers to assume that a physically realizable formu-
lation with Q exactly independent of frequency was not possible. L1u et al.
[1976] and Kanamori and Anderson [1977] have used viscoelastic distributions
to derive dispersion relations of the form shown in equation (2.58). Viscoe-
lastic density functions are discussed in appendix A, and it is shown how the
constant Q model can be derived from distributions of dashpots and springs.

Discussion

Of the two assumptions that provide the basis for the constant Q model,
linearity 1s the more fundamental, and it has also been more frequently ques-
tioned in the 1{iterature than the frequency-independence of Q. Nonlinear,
rate-independent friction was originally proposed [e.g. Born, 13941] to explain
the frequency-independence of Q, since at that time no simple 1linear models
were available that could account for this observation. As'summarized in table
2.1, all of the nonlinear friction mechanisms that have been proposed have
several features in common. These include the dependence of the effective
elastic moduli on strain amplitude, the prOportiona11£y of 1/Q to strain at
low amplitudes, the frequency-independence of both Q and the moduli, the dis-
tortion of waveforms and cusped stress-strain loops, and the absence of any
transient creep or relaxation. Mindlin and Deresiewicz [1953] analyzed the
losses due to friction between spheres in contact, and found the attenuation
to be proportional to amplitude at low amplitudes. White [1966] claimed that
the introduction of static friction into this model had the effect of making Q
independent of amplitude. This claim cannot be correct since it may be shown
{(Mavko, 1978] that static friction cannot increase the loss. Walsh [1966]
considered the sliding across barely closed elliptical cracks and found the
loss for closed cracks with zero normal force to be independent of amplitude.
However, this model cannot, as shown by Savage [1963], explain loss indepen-
dent of amplitude for the whole rock. The required distributions of elliptical
cracks would imply that the effective elastic modult of the rock, as functions
of conf]n1ng pressure, are discontinuocus at all values of confining pressure.
Mavko [1978] has considered a more general case of non-elliptical cracks and
found the attenuation to depend on amplitude in much the same manner as in the

contact sphere model of Mindlin and Deresiewicz. A1l of the above models
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feature a decrease in the effective moduli with strain ampiitude due to the
increase 1in area of the sliding surfaces. Decrease of both velocity and Q,
similar to what would be expected on the basis of the above models, has been
observed in laboratory studies of rocks, [Gordon and Davis, 1968; Winkler et
al., 19791, but only at strains greater than about 10°% to 10°°. At Tlower
strains both Q and wave velocities are found to be independent of amplitudes.

The dependence of the wave velocity on frequency 1s such that 1t 1s dif-
ficult to separate 1t from the effects of spatial heterogeneities. There fis,
however, an increasing amount of evidence 1in support of the frequency-
dependence of the elastic moduli. Seismic models for the whole earth show
much improved agreement with the free oscillation data, when the frequency-
dependence of the elastic moduli 1{s taken into account [Anderson et al.,
19771, It is alsoc well established that for many rocks the elastic moduli
derived from ultrasonic pulse measurements are significantly greater than the
moduli derived from low-frequency deformation experiments [Simmons and Brace,
1965]. This difference 1s generally larger for lossy materiails. Gretner
[1961] analyzed well logging data from several oil wells in Canada and found
statistically significant differences between observed traveltimes from sur-
face sources to geophones in wells and traveltimes predicted on the basis of
high-frequency continuous velocity 1logs. Strick [1371] showed that these
differences could be'exblained by the dispersion associated with linear

attenuation with Q nearly independent of frequency.

Brennan and Stacey [1977] measured both Q and elastic moduli 1in low-
frequency deformation experiments, at strains of 10-6. and found the moduli to
vary with frequency as predicted by l11nearity. The stress-strain Jloops were
elliptical althaugh earlier experiments at larger amplitudes showed cusped

stress-strain loops [McKavanagh and Stacey, 1974].

Because the principle of superposition doss not apply to the nonlinear
solid friction models, it is difficult to predict their effects on the propa-
gation of transient stress pulses. Walsh [1966] pointed out that the losses
due to friction cannot be described through the use of compiex moduli although
this 1s frequently attempted [e.g. Johnston and Toksoz, 1377]. It 1s -easily
shown [e.g. Gladwin and Stacey, 1974] that the use of complex frequency-

independent moduli leads to acausal waveforms that arrive before they are
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excited. Savage and Hasegawa [1967] used the stress-strain hysteresis loops
implied by several different friction models, to model wave propagation. The
results showed significant amounts of distortion, which have never been

observed experimentally.

From these observations 1t may be concluded that at strain amplitudes of
.1nterest in seismology, the propagation and attenuation of waves are dominated
by linear effects, with some nonlinear effects showing up at strains of 10-5
or greater. This amplitude corresponds to a stress amplitude of § bars, since
the ambient seismic noise level is on the order of 1[)-11 in strain, and stu-
dies of earthquake source mechanisms 1indicate stress changes of 1 - 100 bars
(Hanks, 1977]; it is evident that nonlinear effects can only be significant

very near the source.

While a good case can be made for the 1linearity of the absorption of
seismic energy at low amplitudes, no such simple answer can be given to the
question of the frequency-dependence of the attenuatian. Theoretical models
of specific attenuation mechanisms are often formulated in terms of relaxation
times, each of which implies a creep function that is a decaying exponential.
A model that has a single relaxation time is often referred to as the standard
linear solid and has Q proportional and inversely proportional to frequency at
high and low frequencies, respectively. Cases where inertial effects may play
a role, such as in the flow of low-viscosity fluids [(Mavko and Nur, 1973],
feature even stronger variation of attenuation with frequency. It may be
shown [Kjartansson, 13978] that 1n materials with sharply defined hetero-
geneities (e.g. grain boundaries or pores), that absorption due to processes
controlled by diffusion, such as phase transformations or thermal relaxation,

3
2

" -
leads to Q proportional to w’ and o at high and low frequencies, even for

uniform distributions of tdentical pores or crystals.

For these types of mechanisms, the approximate frequency-independence of
Q that 1s observed indicates distributions of time constants, associated with
the individual absorbing elements. It may be shown, for example, that the fre-
quency at which maximum absorption occurs for mechanisms involving the diffu-
sion of heat, is inversely proportional to the square of the minimum dimension
of the inhomogeneities involved. The empirical observation that Q, 1in solids,

varies much more slowly than even the square root of frequency, is thus an
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expression of the statistical nature of the inhomogeneities. It {s interest-
ing that dielectric losses 1n solids show the same type of frequency-

dependence as do the energy Josses in stress waves [Jonscher, 1977].

While Q 1s probabliy not strictly independent of frequency, there 1s no
reason to believe that any of the band-limited nedr-constant Q. theories better
approximate the wave propagation in real materials than the conétant Q model.
Therefore, nothing 1s gained 1n return for the mathgmat1ca] complexity and
potential inconsistency in using, for example, the absorption band model of
Liu et al. [1976].

Strick [1967] obtained a transfer function for wave propagation, of which
the constant Q 1is a special case. He rejected the CQ case, however, on the
basis that the lack of an upper bound for the phase velgcity was in viglation
of causality. Strick’'s three-parameter model 1s equivalent to the CQ model,
with an additional time delay applied to the waveform. Strick [1970] computed
waveforms for his models, and found that the detectable onset of the signal
always arrived significantly later than the applied time shift. He termed
this delay “pedestal” and attributed to it significance that has been subject
to some cnﬁtroversy‘ For the CQ case, the "pedestal" arrives when the source
is excited. Minster [1978b] argued that the presence of the “"pedestal" was an
indication of the need for a high-frequency cutoff of the type built into the
mode]l of Liu et al. This "pedestal" controversy points to a limitation shared
by all of continuum mechanics; no cantinuum model, including the CQ model, can
have any significance at wavelengths shorter than the molecular separation nor
at periods longer than the age of the universe. This covers approximately 32
orders of magnitude 1n frequency, which for a Q of 100 1mplies a change in
velocity of about 26X. The possibility that some ‘“"calculable" energy might
arrive 26% earlier than any detectable energy, is hardly a sufficient reason
to introduce a high-frequency cutoff. Calculable values of physical parame-
ters, outside the obsarvable range are common in other fields, such as 1in
solutions to the diffusion equation and in statistics. Minster [1978b] and
Lundquist [1977] suggest that the cutoff should be at periods between 0.1 and
1 seconds for the mantle. Such cutoffs have never been observed for any of the
racks that have been studied in the laboratory, where the range of frequenctes

extends up to about one megahertz.
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Lomnitz's [1957] attenuation model has often been criticized [Kogan,
1966; Liu et al., 1376; Kanamori and Anderson, 1977] on the basis that the
lack of an upper bound for the transient creep would not permit mountains or
large-scale gravity anomaltes to last through geologic time. Since the Lom-
nitz creep function is practically equivalent to the constant Q creep function
for large values of time and Q, this criticism applies equally to the constant
Q model. However, it does not pass the test of substituting numbers into the
expressions (2.56) or (2.14). For example, for a material with a Q of 100,
the strain that results from the application of a unit stress is only about
33% larger over a period of one billion years, than for the first millisecond
of applied stress. Thus, neither the constant Q theory, nor any of the NCQ
theories can explain the large strains required by plate tectonics. The fact
that brittle deformation only takes place in the uppermost part of the crust,
with the exception of localized areas of unusually rapid tectonic activity,
may indicate that over geologic time most of the earth deforms as a viscous
fluid with Q for shear near 2zero. The assumption, implicit in the band-
Timited NCQ model of Liu et al. [1976], that Q approaches infinity outside the
range of observations, is thus particularly inappropriate for low-frequency
shear deformations in the mantle.

Conclusions

Contrary to what has often been assumed in the past, it 1is possible to
faormulate a description of wave propagation and attenuation with Q exactly
independent of frequency, that 1s both 1inear and causal. The wave propaga-
tion properties of materials can be completely specified by only two parame-
ters, for example, Q and phase velocity, at an arbitrary reference frequency.
This simplicity makes it practical to derive exact expressions describing, in
the frequency-domain, the wave propagation for any positive value of Q. The
dispersion that accompanies any linear energy absorption leads to a propaga-
tion velocity of any transient disturbance that is not only a function of the
material, but also of the past history of the wave. Review of available data
indicates that the assumption of 1linearity 1s well justified for seismic
waves, but it 1is likely that Q is weakly dependent on frequency. There is,
however, no indication that any of the NCQ theories that we have discussed

provide a better description of the attenuation in actual rocks than the

constant Q theory does.



Chapter III

MODELS FOR FREQUENCY-DEPENDENT Q@

An internally consistent model for the anelasticity and wave propagation
of a 1linear material with Q exactly independent of frequency has been given.
The constant Q model fits the properties of most rocks well, especially over
the two or three orders of magnitude in frequency involved in most experi-
ments. Considering the complexity of solids, and rocks in particular, there
is, however, no reason to believe that the Q of all rocks is exactly indepen-
dent of frequency, nor that there is any other simple wuniversal law that
describes it. All of the previous nearly constant Q models (except for
Strick’s 3- and 4-parameter models [Strick, 1967]) had sharp cutoffs on Q,
that have never been observed in rocks. In this chapter I will show how the
constant Q (CQ) model may be generalized to 1include the effects of arbi-
trarily weak variations of Q with frequency. This generalization should be
useful in correlating data over wide ranges of frequency, such as from ultra-
sonic pulse measurements to the seismic band or from the seismic range to the
time scales involved in the Chandlier wobble, post-glacial and post-seismic

rebound, and tectonics.

Theary

Figure 3.1 shows four simple viscoelastic models that are treated in most
standard texts on viscoelasticity. Table 3.1 gives a summary of the proper-
ties of those models, and 1/Q is plotted in figure 3.2. We have wused the
definition of Q as the ratio between the real and imaginary parts of the com-
plex modulus function [0’Connell and Budiansky, 1978]. The Voigt and the
Maxwell models are specified by two parameters and the other two by three.
A11 the models feature a 1/Q that is proportional to either frequency or

inverse frequency over most of the frequency ranges shown.

The CQ model can be specified by a modulus function of the form

M(w) = no(f..)" (3.1)
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where 8 is related to Q by

Q = cot(%g (3.2)

and # 1s in the range
0 £8 s1 (3.3)
The 1imi1ting cases are classical elasticity and Newtonian viscosity. It 1is

clear that physical realizability 1s maintained 1f the viscous elements in
the models shown 1in f1gura 3.1 are replaced by constant Q elements. Table 3.2
lists a summary of the resulting 3- and 4-parameter models. The expressions
in table 3.2 reduce to those 1in table 3.1 when 8 = 1. Examples of the

frequency-dependence for these models are shown in figures 3.2 through 3.5.

It 1s apparent from the figures that a wide range of data with Q smoothly
varying with frequency can be fitted with these simple models. Should these be
insufficient to fit a particular set of observations the models can be
expanded as needed but given the experimental difficulties in measuring Q it
is unlikely that th1slu1ll happen often.
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FIG. 3.2. Logarithmic plots of Q as a function of frequency relative to the
transition frequency for the models shown in figure 3.1.
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FIG. 3.3. Logarithmic plot of Q for a generalized Maxwell’'s model for
values of B equal to 0.8, 0.4 and 0.2.
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Chapter IV

REFLECTIONS DUE TO CONTRAST IN Q

Reflaction and transmission coefficients are derived for anelastic
materials by matching d1sp1aceménts and tractions across the interfaces just
as in the elastic case. The stress at any point in a linear material may be
found by convolving the strain with & modulus filter; the requirements of
causality and physical realizability are satisfied when the integral of the
modulus is an impedance function [Claerbout, 1976]. Specializing to mano-

chromatic plane waves at normal incidence, with an interface at z = 0, we have

c2 OU(w,2)

() = m(w) *e(w) = -p 32

(4.1)

where ¢ is stress, ¢ is strain, U is displacement, m is the modulus filter,

is density, and ¢ 1s a velocity-11ke quantity, defined by

w) = “'ﬁ“') (4.2)

Equation (4.1), when combined with the equilibrium equation, leads to a wave
equation, which .has the same form as the usual wave equation, except c enters
as a fiiter in the time domain or as a frequency-dependent compiex function 1in
the frequency domain. Plane-wave solutions to the wave equation may be writ-

ten as the incident, reflected, and transmitted wave displacements:

u.i = exp[iu t - 35 (4.3a)
1]

Ur = R explie|t + EEJ (4.3b)
L | 1))
. 277

Ut = T exp|lw|t - - (4.3c)
i 2]

At the interface, z=0, continuity of the displacements implies that
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U +U = U (4.4)

or

T = 1+R oo (4.5)

Substituting equation (4.1) 1into (4.2), and imposing continuity on the

stresses, we get

plcl - Rplc1 = szcz (4.6)

This cambined with (4.5) gives

p,C, = p.C
RN R
171 272

The form of ¢ depends on the particular material. The response of most rocks
is well approximated by the constant Q formulation [Kjartansson, 1378], where

¢ has the form

[ = C0[1—“]1 ' (4.8)

where w, is an arbitrary reference frequency and 4 is related to Q by

1
g - tan(wy) (4.3)

Substitution of (4.8) into (4.7) gives

1%1 (1w} 7,77,
P2%02|%
R = < : (4.10)
21%01 (1) 7177, .1
P2%2 %0

This shows that when the Q for both media are the same, the reflection
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coefficient 1s real and independent of Frequency. The power series expansion

for the natural lagarithm, given by

1 _ o 1-x . 1{1-x)3 | 1(1-x)5
3 In x = rrvilg 3[1+x] - S[T:QJ * v (4.11)
may be used to rewrite (4.10):
p.C , .
1 1701 1 T 1 .3 1 .5
- —— - - - - =R” + ..... 4,
3 ln[ﬂcoz] +3 (11 12) ln[%] = R+ 3 R™ + g R + (4.12)

When R 1s small we can neglect third and higher powers of R. Then equation
(4.12) reduces to

P.Cr.=PaAC
R 1‘c01+ 2c02 - _;_(11_72>-|n “_“_ + 1{_(,1_.'2)5911(“) (4.13)
P1%01*°2%2 0

Thus the reflection may be treated as a sum of two contributions: a real
frequency-independent part and a frequency-dependent part that depends on the
Q contrast and 1s simtlar to a Hilbert transform of the incident wave, except

that 1t 1s one-s1ded (causal) in the time domain.

Discussion

McDonal et al. [13958] measured attenuation in water-saturated shale in
situ. They observed Q values of about 30 for P-waves and 10 for S-waves. The
laboratory results of Winkler and Nur [1979] indicate that Q may be an order
of magnitude more sensitive than velocity to changes in conditions such as
saturation or pore and confining pressures, and that .-P-wave attenuation in
partially saturated rocks may be much greater than in fully saturated or dry
rocks. This raises the possibility that a substantial portion of the reflec-

tions observed 1in some areas are caused by changes in Q rather than elastic
impedance.



Chapter V

ATTENUATION DUE TO THERMAL RELAXATION
IN POROUS ROCKS

Thermal relaxation s a well-known mechanism for the absaorption of elas-
tic energy 1in solids. Zener [1948] presents a review of its effects on the
anélasticity of metals. Savage [1965] and Armstrong [1979] have treated
seismic attenuation due to thermal relaxation in dry granular rocks. A
closely related effect 1s the energy conversion caused by stress-induced phase
transitions. Vaisnis [1968] has applied this mechanism to seismic absorption

in areas of the mantle containing partial melt.

In this paper we will extend the results of these authors. The frequency
dependence will be discussed in greater detail and the magnitude of the loss
will be estimated for several cases, such as poroﬁs rocks where the pore
volume is occupied by gases or 1iquids, or mixtures of both, with and without
phase transitions. Particularly large losses are predicted for rocks con-
taining mixtures of ‘tiquid and gas at high pore pressures, water-saturated
rocks at high temperatures and rocks containing partial melt. Each of those

cases i1s of interest in the exploration for energy resources.

In the last few years 1t has been established that pore fluids play a
major role in determining seismic velocities [Nur and Simmons, 1969; Domenico,
1376]1. It has also been discovered that even minute amounts of volatiles can
dramatically increase the absorption in rocks [Pandit and Tozer, 1970; Titt-
man et al., 1972; Tittman, 1978)]. Winkler and Nur [1979] have 1investigated
the effects of a number of variables - including pore and confining pres-
sures, the degree of saturation, and the nature of the pore fluid - on
attenuation for both shear and compressional modes of deformation. They found
that the introduction of small amounts of gas phases in water-saturated rocks
led to a large 1{ncrease 1n the attenuation associated with compressional
deformations. We will investigate the role of thermal relaxation 1in these

observations.

The magnitude of thermoelastic effects is closely related to the thermal

expansivity of the material. The thermal expansivity of gases is typically

55



56

about an order of magnitude greater than the thermal expansivity of 1liquids,
which 1s about an order of magnitude greater than that of soliids. Since ther-
mal relaxation is known as d mechanism responsible for significant absorption
in metals [Zener, 1948], it would not be surprising to find it playing some
role in the absorption in porous fluid or gas-saturated rocks. In contrast to
previous 1investigations of thermal relaxation in rocks, which have considered

its effects on dry rocks, we will examine in detail the role of pore fluids.

Physical Principles of ths Tharmoslastic Effact

It 1s known from elementary thermodynamics that any material with a
nonzero thermal expansivity will be less compressible under adiabatic condi-
tions. when it is thermally isclated. than under isothermal conditions. Adia-
batic compression is accompanied by a temperature change, which depends on the
thermal and elastic properties of the material. Because for all wavelengths
and frequencies of 1interest in seismology the flow of heat from the peak to
the trough of a wave traveling in a homogensous medium may be neglected
[Savage, 1965], wave propagation 1is contraolled by the adiabatic properties af

the rock.

In contrast, in a heterogeneous medium such as a porous rock, we can
distinguish between two or three kinds of adiabatic raspuhsas. When a sudden
pressure change is appliied to a material with heterogeneous thermoelastic pro-'
perties, each pore of grain responds adiabatically, producing a spatially
heterogeneous temperature change. This results 1n local heat flow from
regions of higher than average stress or greater than average thermal expan-
sivity to regions of lesser stress or expansivity. As the tesmperature differ-
ences relax, some additional strain takes place. The deformation may still be
considered adiabatic, now based on the average properties rather than on the
local microscopic properties. Furthermore, when more then two phases of the
same component, e.g. steam and water, are present, thermal equilibrium is not
a sufficient condition for thermodynamic equilibrium, as one of the phases may
have become unstable. Equilibrium 1in response to a pressure increase 1implies
some wmass transfer from the less dense phase to the denser phase, accompinfed

by a release or absorption of the latent heat for the transfaormation.
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We will first derive an exact solution for the mechanical response of an
idealized heterogeneous medium, that is, & rock with a random distribution of
flat pores of uniform thickness. The result enables us to draw some conclu-
sions about the frequency dapendence of the attenuation in rocks with more
complicated structures and about the relationships between the magnitude of
the absorption and the modulus defect. The modulus defect is defined as the
relative change in modulus between the high-frequency unrelaxed and the Ilow-

frequency relaxed 1imits.

An Exact Solution

The process of conversion of wave energy into heat may be described 1in
detail when the geometry of the inhomogeneity 1s known. For simple geometries
this may be done analytically. Here we consider the case of a flat inclusion
in an otherwise homogeneous medium. A random distribution of such inclusions

w11l show similar behavior when the inclusions are uncorreiated.

The geometry is illustrated in figure 5.1. Notation and definitions of
the parameters we will be using are given in table 5.1. An instantaneous
application of a small pressure change P implies a proportional change in tam-

perature T by an amount

it
-

b P | (5.1)

throughout the rock. If T varies 1in space, flow of heat across finite tem-
perature gradients will take place, with a resuliting increase in entropy and
an irreversible conversion of mechanical energy into heat. Spatial variations
in T can result either from inhomogeneities in P or b, or both. 1In a dry rock
with an irreguiar distribution of pores and cracks, one might expect inhomo-
geneities in P to dominate since stress concentrations will be present at
grain boundaries and the edges of cracks. This case has been considered by
Savage [1965]. In fluid-saturated rocks the fluid will support much of the
compressional stress in the vicinity of flat cracks. S1ncé the stress heating
coefficient b 1is typically an order of magnitude greater for liquids than

solids, we might expect inhomogeneities in b to play a significant role here.



FIG. 5.1. Geometry of rock mode! used in diffusion solution.

parameter symbal definition

isothermal bulk modulus K -V 9
av)T
as

heat capacity c T[a_T]P

thermal expansivity a

QO
—4

<fr
—
2

o

Q
<

Fad
[
<
-
Im
<

(7]

adiabadic bulk modulus

stress heating b V[%,—]s
daT , a°T
diffusivity D It / -3
dy
thermal conductivity k Dpc

TABLE 5.1. Notation and definitions faor thermal parameters.
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For the geometry in figure 5.1 both the material properties as well as
the strain e and the temperature depend only on y. For flat {inclusions the
pressure is uniform. The heat flow will thus be described by the one-

dimensional diffusion equation, which has the form

2 R
dT T dp )
—— g [ m—g b —— (5~2)
dt ayz gt

wvhen the adiabatic heating effect 1s incluced. Equation (5.2) may be used to
solve for the temperature when the diffusivity D is locally constant. At
interfaces, continuity of temperature and heat flow must also be satisfied.

Given the temperature, the strain e is obtained from

¢ = %(-p + a(T-T ) (5.3)

Thus, from a knowledge of the diffusivity, heating coefficient, and therwal

expansivity, we can determine the temperature and strain response to any
applied stress function, P(t).

When the applied pressure is a sinusoidal function of time

Tat

P = P : (5.4)
Equation (5.2) becomes
ZA
T = DL 4 jub (5.5)
3 2
Y
where
T-7T
A
T = _-I;-o- (5.6)

Similarly, equation (5.3) becomes
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S{a) = % + a% (5.7)

where S(w) is a complex, frequency-dependent compliance, e/P. when S(w) is

known the attenuation parameter Q is obtained from

- tand o cImCS(e)]

1 )
Q * "Re[S(w)] (5.8)

where § is the phase angle between stress and strain. O0°'Connell and Budiansky
[1978] discuss the relationship between this and various other definitions for

Q that have been used in the l1iterature.

A general salution to (5.5) has the form

A L : )
T = Alcos h[% (1«11)’] * A2 exp[-% (10?2)%] +b (5.9)
where
2
d .
fl = E_, (5.10)
1
2
d .
P (5.11)
2 DZ

Symmetry considerations imply that A

0 for |y|] < 4. The condition that T

2
be bounded for large y implies that A1 = 0 for y > d. The sclution may there-
fore be written as
Y -
T = Alcos h[d (1url) ] + b1 ..... lyl < d (5.12)
T = A, exp|-1X (iwr %] + b Iyl > d (5.13)
2 p ? 9 eeen .

A1 and AZ are determined by imposing continutity of temperature and heat

flow at the interface. Continuity of temperature implies
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Alcos h[(1afl)%]kz exp[-(iutz)%] = b, -0b (5.14)

and continuity of heat flow:

h Ay h,A L

AL (Ctur )51 n[(ml)"'] < -2 ()t e)_tp[-('lufz)‘] (5.15)

where h1 and h2 are the thermal conductivities. Solving (5.14) and (5.15) we
get:

b_-b

2 1 )
A s - {(5.16)
1 h,(r,)% L
% Ll L
cos h[('lurl) ] + hz['z] sin h[(hnz) ]
h1 " % sin h[(fufl)%]
AZ = - Al Py P : 5T {5.17)
212 exp[—(1afz)4]

By subtracting the initial adiabatic strain from the total strain given 1n
Equation (%5.7), and integrating over y, we obtain the total displacement, U,
per unit of applied pressure caused by the relaxation of temperature differ-

ences.

h. e
Zd[nl - u—l—l](b 'bl)

h,» 2
2°2 )
u - » ; " (5.18)
(1«71) cot h[(1url) ] +* r('lurl)z
where r 1s given by
h, (e.1%
: =F1_,.1.] (5.19)
2( 2
Equation (5.18) may be rearranged to get
2
3 (b,-b,)
U . 2d Ul T2 (5.20)

To,¢y (1391)%cot h[z;ufl)%] v r('lufl)55
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where uss has been made of the relation

b = == (5.21)
The Taylor-series expansion of the hyperbolic cotangent fuﬁct1on imp1l1es
s s‘
s cot h(s) = 1+ T e {(5.22)

It follows from equations (5.20) and (5.22) that the displacement U ranges
from

2d

L

Al =

(bl-bz)z (5.23)

to zero as frequency goes from 2ero to infinity, and that the imaginary com-

ponent vanishes at both limits.

From our definition for Q, equation (5.8), it follows that when

au << Uo : : (5.24)

where U° is the initial displacement, the attenuation fs approximately gtven
by

1 ImU(ew) :
6. = = (5.25)
o
The ratis
AM Al ;
- q (5.26)

is often referred to as the modulus defect. It follows from (5.8) that the
attenuation, as a function of frequency, may be obtained by multiplying the
imaginary part of the inverse of the denominator in equation (5.20) by the

modulus defect.
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Frequency dapendence. Figure 5.2 shows the normalized attenuation M/QAM,
as a function of frequency, for three different values of r. One may approxi-
mate the response of a more complicated rock by adding the creep due to each
crack thickness; a result for three different crack thicknesses is shown in

figure 5.3.

Inspection of equations (5.20), (5.22) and (5.25) shows that the attenua-
tion 1s proportional to the square root of frequency at frequencies much less
than 1/1-1 and is inversely proportional to the square root of frequency at
high frequencies. Most previous work on linear attenuation mechanisms in
rocks [Vaisnis, 1968; Savage, 1966; White, 1975; Dutta and Ode, 1979] has
assumed that diffusion~controlled mechanisms could be treated as either a sin-
gle exponential decay (relaxation time), or a limited distribution of relaxa-
tion times, referred to as absorption bands [Kanamori and Anderson, 1977: Min-
ster, 1978]. Figure 5.4 shows the curve from figure 5.2 for r = 1. Ffor com-
parison a plot of the attenuation due to a single relaxation of the standard
1inear solid [Zener, 1348] 1s also shown. The comparison shows clearly that
the attenuation for this idealized rock model is spread out over a much
wider range of frequencies than is the attenuation due to a single relaxation
time, and the maximum attenuation 1s just about half the attenuation for the
standard 1inear solid model. The diffusion solution has the attenuation
decreasing with 'square root of frequency, u%. away from the peak, while the
standard linear solid goes as frequency to the first power, . Strictly
speaking, it can therefore be concluded that an infinite distribution of stan-
dard linear solid elements would be required in order to describe the. loss
caused by any mechanism controlled by diffusion, even in a rock where all the
inhomogeneities are of the same size and shape. An actual rock will of course
contain a wide range of sizes and shapes; consequently an even broader range

of relaxation times would be required to describe 1ts mechanical response.

.

Thermal parameters faor different matertals of interest in seismology are

11sted 1n table 5.2. A1l of the materials 1isted have diffusivities of the

order of 1 mmzls; this implies that inhomogeneities with dimensions on the

order of one millimeter will contribute most to the absorption of seismic

waves. As the characteristic time constants, v and ¢_, are proportional to

1 2
the crack thickness squared, a relatively narrow distribution of pore sizes

will cause loss over a wide range of freguencies.
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FIG. 5.2. Normalized attenuation M/QAM, as a function of normalized fre-
quency or.. Curves for three diffarent values of the thermai-impedance

ratia r (5.19) are shown.
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FIG. 5.3. "Normalized attenuation, as a function of frequency for a rack where
the pore space is equally divided between cracks with B equal to 0.1, 1 and
10 seconds. The value of r 1s unity.
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FIG. 5.4. Comparison between the standard linear solid and the diffusion
solutton.
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Magnituds sstimation. The problem of determining the loss caused by any
particular physical mechanism may be split into two parts, the esstimation of
the modulus defect, and the frequency dependence. [t 1s often possible to
estimate the modulus defect quite accurately, while a deterministic solution
for the frequency dependence requires & detailed know1odgi of the distribu-
tion and dimensions of the inhomogeneities responsible for the loss. In the
remaining secttons of this paper reversible thermodynamics will be used to
estimate the modulus defect. A rough estimate of the range of frequencies
invelved may then be used to estimate the magnitude of the attenuation by a
superposition of ssveral 1loss peaks, as in figure 5.3. An alternative is to
use the known general relationships between frequency dispersion and attenua-
tion. For example, the assumption of a frequency-independent Q [Kjartansson,
1979] implies that

M) » |2y )

ﬁ-%? = [;:] (5.27)
where

%— = tan(wy) (5.28)

In the case where Q >> 1, this may bs rewritten:

M(u)-H(ao)

2 » )
——"T::)—_ a E‘ln(:;) (5.29)

Thus a change in modulus when the attenuatien is approximately independent of
frequency aver six orders of magnitude is related to 1/Q by

» AM

1 1 AM .
-o- = ———(—-;Tﬁ— o a-i- (5.30)
2 In{lo

This result could also have been derived from figure 5.3.
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The Magnitude of Thermoelastic Effects

In this section relations for the effective bulk modulus of rocks under
various conditions will be developed and used to estimate the magnitude of
loss due to thermoelastic effects. The high-frequency unrelaxed case 1s the
simplest, as it implies periods too short for any thermal interactions to take
place. Effects of porosity on the mechanical response of rocks have been
treated by many authors. This includes both treatments where the pore space 1is
assumed to be a distribution of elliptical inclusions or voids [Eshelby,
1957: Walsh, 1965; O°'Connell and Budiansky, 13974], cracks of more general
shapes [Mavko and Nur, 1978], or voids 1left between contacting spheres
[Gassmann, 1951b; Mind1in and Deresewich, 1953]. These treatments all have it
in comman that the effective rock properties are derived from a detailed
knowledge of the pore geometry as well as the intrinsic rock properties. Many
of the‘models feature a strong dependence on poorly constrained parameters,

for example aspect ratios.

In the present context we are interested in how the effective properties
change as the response of the pore fluid changes, rather than in the absalute
value of the effective moduli. A simple and elegant result derived by Gassmann
[1951a] is ideally suited to this purpose. Gassmann's expression gives the
effective bulk modulus in terms of the intrinsic bulk modulus of the rock
matrix 2, the .bulk modulus of the dry rock frame E, the bulk modulus of the
fluid E. and the porosity ¢:

kK = KKR) (5.31)
K+R
where
R - K(KR) (5.32)
#(K-K)

The pore geometry enters into this expéession only through its effect on
the frame modulus (K) and the porosity. Both parameters can be measured
directly, as well as the intrinsic moduii of the pore fluid and the rock

matrix.
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In our use of Gassmann's relations, two assumptions are 1implicit. We
will assume that the rock matrix has a zero thermal expansivity. As shown in
table 5.2, the thermal expansivity of the rocks 1is at least an order of magni-
tude less than the thermal expansivity of the fluids, except for water at tem-
peratures near 49C. Attenuation due to thermal effects is so-small when the
rock and fluid have comparable thermal expansivities, that it will probably be
masked by other mechanisms, such as viscous dissipation. When the expansivi-

ties are greatly different, however, attenuation may be substantial.

Shear effects. Equation (5.31) gives only relations for the bulk
modulus, and 1s derived on the assumption that the rock 1s 1sotropic on a
macroscopic scale and that the pore-fluid pressure is uniform throughout the
pore volume. This implies that all the pores are connected and neglects the
viscosity of the pore fluid. These assumptions are probably quite good for
rocks where well-connected round pores are dominant. Gassmann's theory has
been used successfully in the interpretation of seismic data for sedimentary

materials [Brown and Korringa, 19751.

Winkler [1979] found that both the shear velocity and the attenuation in
a porous Vycor glass are much less ssnsitive to changes in the pore fluid
than compressional velocity and attenuation. In contrast, experiments with
granite samples showed stignificant dependence of both shear and compressional
properties on the state of the pors contents. For a rock that contains an
isotropic random distribution of 17solated flat cracks, both shear and bulk
moduli will depend on the bulk modulus af the pore fluid [Kerringa et al.,
19798]. Mavko and Nur [1979] have estimated that the effects of the pore
fluids on the shear response in rocks containing flat crack may be about half
the effect on compressional deformations.

Estimation of erfactive bulk moduli. We seek expressions for the adia-
batic bulk modulus of pore fluids under various conditions. We have chosen to
express the results in terms of parameters that may be measured under condi-
tions of either constant pressure or temperature. Thus we will express the
adiabatic bulk modulus K' and the rate of temperature increase with pressure
b in terms of the isothermal bulk modulus K, the density p or the specific
volume V, the heat capacity at constant pressure ¢, and the coefficient of

thermal expansivity @. The parameters are defined in table 5.1.
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One of Maxwell'’'s relations [Kelly, 1373, p. 142)] enables us to write the

stress heating coefficient, b, as
aT av ;
o = ([&)s - (G (8.33)

In the absence of any phase transitions this becomes

v
b o= 0P . I8, ‘1"-:- (5.34)
a_T']P

In order to get the adiabatic bulk modulus K' we may write
oV v V) (9T -
&) - @+ Geles (5.35)

Using the definitions in table 5.1, this reduces to

ab (5.36)

xlr-'
n

Py Lol
]

Equations (5.34) and (5.36) may be applied to heterogeneous systems. as
tong as no phase transitions take place. The {sothermal bulk modulus and the
iscbaric expansivity and heat capacity are not defined 1n the presence of
phase transitions: this case will be treated separately. The parameters used
will now be the effective parameters, Ke. @ S, and Ve. for the system that
is being analyzed. For a porous rock where the matrix has no thermal expan-
sivity, a specific volume Vr' heat capacity Cps and porosity ¢, and a pore
space containing a mixture of two fluids, indicated by subscripts 1 and 2
where the mass fraction of the first fluid is x, we have the following rela-
tions for the effective parameters of the pore mixture:

Ve = le * (l-x)V2 (5.37)

% = TR + X (5.38)

1 _l{xvl (1-x)v2]
e el 1 2
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1 A
«, = v [leal . (1-x)v2¢2] (5.39)
V‘(1-¢)cr

(5.40)
Ve

€, * xc, + (l-x)cz +

Watar-saturated rock. We wi1ll first consider a rock saturated with

11quid water. In this case x = 1, V° = Vl. Ke = Kl. a, * a and

c = ¢

v
11-¢ :
. T v-—r < (5.41)

¢ r

Thus the only difference between the unrelaxed Vhigh-frequency limits, where
there is no therméT interaction, and the fully rﬁlaxed Timit, is an increase
in the affective heat capacity of the 1iquid; the rock matrix acts as a heat
sink. The second term 1in equation (5.41) will tend to dominate when ¢<<{l. For
low-porosity rocks the relaxed case is ue11-apbrox1mated by using the isother-
mal bulk modulus for the fluid.

Keenan et al. [1969] give an empirical equation of state that fits the
observed behavior of 11qu1d' water and stesam at pressufes less than 100 Mpa
(1000 bar) and at temperatures less than 10000C. Differentiation of this
equation yields an internally consistent set of thermodynamic parameters for
water and steam. Figure 5.5 shows a plot of the isothermal and adiabatic bulk
moduli of water, as functions of temperature, at the boiling pressure. At
room temperature there is 1ittle difference between the two curves, but the
difference 1ncreases rapidly at higher temperatures. Another notewarthy
feature on this plot is the rapid decrease of both the isothermal and adia-

batic bulk moduli at temperatures above 100°C.

Figure 5.6 shows P-wave velocities for three different rocks as functions
 of temperature at a pore pressure of 10 Mpa (100 bar). The rocks have the same
intrinstic matrix velocity (6.5 km/s) and the same dry P-velocity (1.5 km/s),
with Poisson ratiaos of .25 and .2, respectively. Porosities were chosen so as
to give saturated velocities of 2, 3, and 4 km/s. Two curves are shown for
each rock, one for the unrelaxed case and one for the relaxed case.
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FIG. 5.5. Adiabatic and isothermal bulk moduli of water, as functions of tem-
perature, at boiling pressure.



74

a

V,
(km';s) 3 3 S
2 N

0 ' 100 200 300
TEMPERARTURE (°C)

FIG. 5.6. P-wave velocities for three different rocks saturated with Tliguid
water, plotted vs. temperature. The upper curve 1n esach pair is the unre-
laxed, the lower -is the relaxed velocity. The three rocks have the same dry
velocity, 1 km/s, and the same matrix material with a P-velocity of 6.5 km/s.
Porosities were chosen to give maximum saturated velocities of 2, 3 and 4
km/s. Pore pressure is 10 MPa.
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Figure 5.7 shaws the attenuation obtained by applying equation (5.30) to
the results from figure 5.6. A1l three curves show a strong increase in
attenuation with temperature. The example with the lowest porosity and the
highest saturated velocity shows stronger temperature dependence than the
other; this 1s due to an increase in the fraction of the total strain energy

that 1s stored in the pore fluid as its compressibility increases.

The examples in figures 5.6 and 5.7 were computed for specified values of
the dry and saturated velocities. For comparison with in-situ obsarvations,
it may sometimes be more desirable to specify porosity rather than dry velo-
city since the latter may be more readily estimated. Figure 5.8 shows a con-
tour plot of the attenuation, predicted as a function of porosity and tempera-
ture, for a rock with a saturated velocity of 4 km/s and an intrinsic velacity
of 6.5 km/s. As before, a strong dependence of attenuation on temperature is
indicated, but at high temperatures the attenuation increases as porosity (and
the dry velocity) decreases.

Gas and 11quid. The second example that we will consider 1is for rock
where the pore space contains a mixture of a gas phase and 1iquid water, such
that the two materials do not 1nteract except through the Flow of heat from
one to the other. Figure 5.9 shows relaxed and unrelaxed velocities for three
different rocks, chosen to have properties similar to those used by ODomenico
[{1974], as representat1Ve of sand reservoir rocks at depths of 600, 1800 and
3000 meters (2000, 6000, and 10000 feet). The corregpond1ng attenuation
values are plotted in figure 5.10. The gas is assumed to be an ideal gas with
the ratio between the adiabatic and 1isothermal bulk wmoduli 4 = 1.4, the
theoretical value for a diatomic gas. The density was assumed to be that of

air, a = 0.029kg/mol. The other parameters are given by

RT A
vV = ;F (5.42)
K = P ‘ (5.43)
a = % (5.44)
c R (5.45)

(y-1)a
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FIG. 5.7. Attenuation as a function of temperature for the conditions in fig-
ure 5.6.
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FIG. 5.8. Attenuation for water-saturated rocks, as a function of temperature
ahd porosity, for rocks with a P-wave velocity of 3.5 km/s at 65 C and an
1ntr1ns1c matrix velocity of 6.5 km/s.
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FIG. 5.9. Computed relaxed and unrelaxed P-wave velocities for rocks con-
taining a mixture of gas and water. Rock parameters are the same as used by
Domenico [1974], as representative of conditions in sand reservoirs at depths
of 2000, 6000 and 10,000 feet.
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FIG. 5.10. Attenuation for the rocks in figure 5.9.
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where R is the gas constant, 8.314 J/mol. The gas parameters are combined
with those for water using equations (5.37)-(5.40) and then substituted into

Gassmann’'s formula (5.31).

Qur results show the same qualitative dependence of- velocity on gas
saturation as was reported by Domenico [1974].'uh11e there {is a substantial
drop 1in velocity as small amounts of gas are introduced 1into water-saturated
rock; there is little difference in velocity between rocks with 10X and 100X
of the pore volume gas. for all of the cases shown. Attenuation .increases as
gas 1s introduced into the pore space, resachss a peak, and then falls off and
is minimum when no water is laft 1n the pores. The gas saturation at the peak
is roughly proportional to the pore pressure. The examples in figure 5.10
show a large change in attenuation as the gas fraction changes from 5% to
100%, while the velocity is virtually unchanged over this range. This may be

of interest in exploration for natural gas and geothermal resources.

Winkler and Nur [1979) and Frisillo and Stewart [1979] present laboratory
results showing the same qualitative features, but with the attenuation peak
occurring when the gas saturation is between 102 and 30%. This discrepancy
between our theoretical and these experimental results may be caused by
microscopic inhomogeneities 1in the pore space. The pore space may consist of
both wide pores and relatively flat cracks, which are not all connected at the

sonic and ultrasonic frequencies used in these experiments.

Systems with more than one phase. In the presence of phase transitions
we can no longer use equation (5.35) since (GV/aP)T is not finite. To get the
effective adiabatic bulk modulus we may write

v AL .
[ﬁ]s - (’a‘r’]s[ﬁ" s (5.46)
Use of the Maxwell's relation (5.33) yields the Clausius-Clapeyron equation

A T(V,-V,)

T
P L

(5.47)

[-%

12

where le is the latent heat released in the transition from state 1 to state
2. The other factor on the left side of (5.46) is abtained by writing
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[%]s ['g'\%r.x * [5?' T.x[g"l;']s * [%]P.T[%]S (5.48)
The first term in (5.48) 1s abtained from equations (5.39) and the second
term from (5.38) and (5.47). For the final term we have
[%:_]P.T = Wpmvp v (5.49)
The f1inal factor, (ax/ar)s. is obtained by writing
[g_?')s 0 [%SC-]P.T[%]S * [g—?']P.x * ['g%] ['g%]s (5.50)

Through the use of Maxwell’s fourth relation [Kelly, 1973], this becomes

[g_’r(']s )

Substitution of equations (5.48) and (5.

the bulk modulus give the result

Fay L

where b 1s given by equation (5.47) and
(5.37), (5.39), and (5.40).

Ve have applied equation (5.52) to

the pore space contains a mixture of

laxed velocities are shown as functions

Figure 5.12 shows the corresponding

steam into a water-saturated rock results in a drop of the

modulus, to a value

[8)e. * [87)e s 57
aT JP,x aTjP,x8T)S -
921 (5.51)
axjp,T
51) into (5.46) and the definition of
1 bzc
rau 2b¢e + vy (5.52)
e e
Ve. @y and ce are given by equations

two cases. One 1s a porous raock where
water and steam. The relaxed and unre-
of mass fraction steam in figure 5.11.
attenuation. The introduction of any

effective relaxed

that is essentially the same as the modulus of the dry

rock. This results in attenuation that is much greater than when phase transi-

tions are absent.
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FIG. 5.11. Relaxed and unrelaxed P-wave velocities for a rock containing a
mixture of water and steam at a temperature of 200 C. The dry velocity is 2
km/s and the saturated velocity is 3 lzm/s.
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FIG. 5.12. Attenuation for the conditions in figure 5.11.



84

Another case where phase transitions are expected to play a significant
role 1is in rocks that contain partial melt. Carmichael et al. [1877] give
equations of state for several minerals that satisfy measured heat capacities
and the observed dependence of melting temperature on pressure up to about 4
GPa (40 kbar). They give empirical relations for (1) the dependence of the
specific volume on both temperaturs and pressure, and (2) heat capacity and
the latent heat of fusion at room pressure. The empirical expressions are
read1ly 1integrated to obtain the Gibbs free energy as a function of tempera-
tures and pressure. The Gibbs free energy may be used to compute the melting
temperature, and differentiated to yield the heat capacity at any pressure.
The resulting set of thermodynamic parameters is guaranteed to be finternally
consistent; this 1s 1mportant because equations (5.36) and (5.52) involve
differences between terms of similar size. Figure 5.13 shows the effective
bulk modulus for a mixture of solid and liquid olivine (fayalite), for three
different cases: unrelaxed without any phase transitions or heat flow; thermal
equilibrium without any phase transitions, and both thermal and phase equili-
bria. Figure 5.14 shows the attenuation, both with and without phase transi-
tions. In these examples we have neglected the effects of the shear strength
of the solid phase. The effect of the shear strength of the rock 1s to reduce
the difference between the relaxed and unrelaxed effective moduli, and thus
the attenuation at low melt fractions. unless the melt surrounds the sglid
grains or is in the form of very thin films. The effecfs of other melt confi-
gurations are treated in detail by Mavko [1973].

Implications for Exploration

Hydrocarbons. Most of the cases where we have predicted significant
absorption due to thermal effects are of interest in the explaration for
energy resources. The calculations for water and gas mixtures should give an
indication of the degree of losses that might be expected in rocks that con-
tain gas. Our results for this case, as shown in figure 5.10, indicate that
thermal relaxation will be respansible for a significant amount of absaorption
when gas 1s present 1in small amounts, and that the 1Joss will be strongly
dependent on the degree of gas saturation, even in the range where the wave
velocities are insensitive to the amount of gas present. The resultis from

figure 5.10 would have been virtually the same had an incompressibile 11iquid
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FIG. 5.13. Bulk modulus of olivine as a functien of massfraction melt, at a
pressure of 2 GPa. Shown are the unrelaxed bulk modulus {top curve), the
thermally relaxed without phase transitions, and the completely relaxed bulk
modulus including the effects of phase transitions (bottom).
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FIG. 5.14. Attenuation for alivine under the same conditions as 1in figure
5.13.

Upper curve is the attenuation when phase transitions are included; the

lower curve shows the attenuation caused by heat flow without any phase tran-
sitions.
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been used instead of water; the loss is controlled primarily by the properties
of the gas. As most gases have properties similar to 1deal gas, the results
from figure 5.10 do apply to any gas-liquid mixtures, as long as the gas does
not dissolve in the ligquid. Any solubility of the gas in the liquid will have
the effect of lowsring the relaxed bulk modulus and thus increasing the
absorption. This may be the case in most, if naot all cases 1involving hydrocar-
bons in s1tu, whether the fluid is brine or o0il. Consequently, the calcula~
tions in figure 5.10 should be considered lower bounds for the absorption due
to thermal relaxation. The actual response of oil-gas or brine-gas mixtures

may be more l1ike the response of water-steam mixtures (figure 5.12).

It has been noted in the 1iterature that anomalously low amplitudes are

sometimes associated with gas 2ones [Sheriff, 1975; Dobrin, 1376].

Geothermal. Several of the conditions that result in significant thermal
losses are related to features of 1interest 1n geothermal exploration. Some of
the larger concentrations of geothermal energy are associated with recent
igneous activity. Observations of P-wave absorption may aid in the location of
zones of partial melt at depth, and thus delineate potential sources of heat.

Geothermal energy is utilized in three different forms, each of which is
presently of roughly the same economic significance. Low-temperature thermal
waters, with temperature at depth ranging from 65°¢c to 2oo°c. are useful as a
direct source of heat for space heating and various-industr1a1 processes. If
the pore pressure at depth is anywhere close to hydrostatic, the water will be
in the 11quid state and boiling will only take place very near the surface.
The results from figures 5.6-5.8 are relevant to those circumstances, and
imply that the absorption will increase almost linearly with temperature, at
temperatures from 50°¢ to 200°c.

The results of our calculations for liquid water are alsg applicable to
high-temperature geothermal systems. Figure 5.15 shows the boiling temperature
of water, as a function of pore pressure. Beiling temperature of 180° s
reached at a depth of about 100 m, 1f the pore pressure 1s hydrostatic. At
higher temperatures the boiling point curve does level off toward the critical
point at 374% and a pressure of 22.1 MPa. It is thus possible that high-
temperature water-dominated systems could reach the boiling pressure at

depth, even 1f the pore pressures are close to hydrostatic. This would result
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FIG. 5.15. Bo1ling temperatures of water as a function of pressure.



Chapter VI

FINITE-DIFFERENCE MODELING AND MIGRATION IN MEDIA WITH LATERALLY VARIABLE
ATTENUATION AND VELOCITY

The expressions derived 1in the previous chapters make 1t possible to
describe wave propagation in rocks for monochromatic waves, including the
effects of absorption. While the theory for the finite-difference modeling of
waves 1n the frequency domain has been developed in detail [Claerbout, 1971,
1976], 1ts use appears to have been rather 1imited. As the properties of the
earth may be considered time-invariant for the duration of seismic experiments
and linear at seismic amplitudes, no generality is lost by Fourier transform-
ing over time. There are several advantages in working in the frequency
domain. Each Fourier component of the seismogram may be propagated
separately, which can simplify manipulations of large datasets compared to
time-domain methods. A time shift over a non-integer number of sampling
intervals consists in the frequency domain of a simple multiplication.
Perhaps the greatest advantage of the frequency domain 1s that all time
derivatives are evaluated exactly by a simple multiplication. This becomes
increasingly important as more accurate equations involving higher +time
derivatives are used. This also makes it possible to include the effects of

anelasticity at 1ittle or no additional cost.

Wave-Field Extrapolation

It 1s shown by Claerbout [1976, p. 196] that the scalar wave equation for

constant density

1
Pzz + Pxx = _ZPtt (6.1)
v
where the subscripts denote partial derivatives, becomes
R._.+ R _+ 2imR_ + (mz-ﬁz)R = 0 (6.2)
22 XX 2 ’

89
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when R is defined by

Rix.z.0) = o™ B(y 2 u) (6.3)
o -1 co.

P(x.z.uw) = JP(x.z.t)e 1®% gt (6.4)

m = -4:- (6.5)

A s -§ (6.6)

In the derivation of this result, v has been assumed to be 1{ndependent of x
and 2z, while v may be a function of both x and 2. Since we are using a m1nu€
sign in the forward Fourier transform [Bracewell, 1965]. the signs in equa-
tions (6.5) and (6.6) ares different from those used by Claerbout [1376].

The Rzz term is eliminated if each term in equation (6.2) 1is differen-
tiated with respect to 2z, multiplied by 1/2m, and added to the original

equation. The result 1is

1 1 = 1,2 =2
EE'Rzzz - Eﬁ'Rxxz + Rzz + 21mRz * Eﬁ-(m m )Rz (6.7)

2 =2 im dm
+(m-m)R¢-;—dzR = 0

\

It should be noted that we have not made any approximations yet: equation

(6.7) 1s simply the scalar wave equation in a shifted coordinate frame.

For waves traveling in approximately the same direction as the coordinate
frame 1s shifted, Rzzz should be small in relation to the other terms. If 1t
is dropped, the result

i — i 2 -2 2 -2 im dm
r Rxxz + Rzz + aimRz + Eﬁ-(m -m )Rz + (m"=m )R + — iz Q = 0 (6.8)

will be first order in 2. The dispersion relation i1s shown in figure 6.1. As

shown 1in figure 6.1, the dispersion relation for equation (6.8) starts to
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FIG. 6.1. The dispersion relation for equation (6.8). Each plot shows the
kz/m as a function of kx/m. For comparison the semicircle 1is also shown.
The accuracy of equation (6.8) is quite acceptable for 0.7m < W < 1.5m.
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deviate significantly from the correct value when m and m differ by more than

50 percent,

In many cases this is not 3 serious limitation. [ bhave used equation
(6.8) extensively to model and migrate seismic sections, without any difficul-
ties. If 1t 1s assumed that the coefficients in equation (6:1) are locailly
constant, one may set m = m and then apply a time shift at each depth
step. This assumption that the coefficients are locally constant is commonly
made, s8.g. when a wave equation is derived to satisfy a particular dispersion

relation.

Thus one can get the wave field P(z+Az) from P(z) by setting

R(z) = P(2) (6.9)

and solving

i

Imix.2) xxz Rkt 2im(x,2)R = 0 (6.10)

far R(2+AZ), and then applying the time shift

P(z+A2) = exp[1m(x.z)Az]R(z+Az)' ' (6.11)

Equation (6.10) is simpler to code than equation (6.8) and has a more
accurate dispersion relation, but does not treat the effects of velocity gra-
dients as accurately as equation (6.8). Baoth equatians fit on the finite-
diffarence star described by Claerbout {1376, p. 184-189] and may be salvad

using the Crank-Nicoisan schems.

Exploding Rsflector Modsl

Most migration and modeling techniques use an imaging principle based an
the exploding reflector model. Two basic assumptions are invelved. The first
is that the the CMP stacked section is equivalent to a zero-offset section.

The second assumption is that a zera-offset section may be madeled by placing
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sources on all the refiectors at t = 0 and continuing the resulting wave
field to the surface, using half the true velocity. This has been discussed
by various authors [e.g. Stolt, 1978], but it 1is wusually assumed that the
velocity depends only on depth. We will explore the extent to which the
exploding reflector model is valid when lateral variations 1in velocity are
present. The results may be extended to non-zero offsets; this leads to an
accurate method for the computation of synthetic seismograms for all offsets.

For simple reflectivity structures this method is very economical.

Theory

We will assume that the reflection seismogram can be approximated by a
distribution of point scatterers, 1mbedded 1in a variable velocity medium.
This assumption 1s vaiid when the reflection coefficients are small and
independent of the angle of incidence. When this is the case, seismograms can
be computed for arbitrary reflectivity structures by superposition of the
seismograms resulting from each reflector point. The seismogram, sSg.
recorded at ¢ from a source at s, may be considered as a convolution of the
shot waveform W (as it would be recorded by the recording instrument). the
propagation from the source to the reflector (P, the reflectivity R and the
propagation from the refliecter to the geaphone ,Pg, In the frequency domatin

this may be written as follows:

Sy * W sPLR P (6.12)

In the case of zero offset reciprocity impliies that

sP, s rpg (6.13)
and
S = WR .p (6.14)
9% T ’

Reciprocity may also be used to obtain nonzero offsets when P is known
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for all reflector points and surface locations. For & single point scatterer
this regquires no more computation than the upward continuation of the wave
field due to a point source at depth. When the veloctity structure 1s such
that 'Pg consists of a single spike, with traveltime to and amplitude

A, 1t is easy to ses that rP:

is a spike arriving at Zta with an amplitude
Ao. Thus one may approximate rP: by stretching r.Il’g and applying a time-

dependent gain to correct for geometric spreading.

The conditien that rPg be a spike is not necessary in all cases - for
example, 1f the rate of disstpation is proportional to frequency (constant Q)
a plane-wave pulse 1is broadened in a homogeneous medium such that the seismo-
gram at any distance 1is obtained by a stretching and scaling of a single
seismogram [Kiartansson, 1979]. Because of the freguency-dependence of the
velocity, the scaling factor is not exactly proportional to distance. This
does not apply for other dissipation laws, such as that treated by Ricker
{1353, 1977].

The obsarved seismogram is a linear function of the reflectivity 1n the
subsurface (for small reflection coefficents). The convolution of a trace on
itself is a non-Tinear operation and must therefors be performed for each
reflector point separately. The time stretching is a linear operation so it
can be performed for all the traces and reflectors together, 1mplicitly by
using half the true velocity. When a linear operator such as the wave equa-
tion is used to compute rPg. a great saving in computational effort can

result from superposing the reflsctors before the wave extrapolatian.

The convolution cannot be replaced by time stretching when more than two
raypaths connect the reflector and the surface point. This can happen when
azv/ax2 # 0 or when the interfaces between layers of different velocitties

are curved.

Impilementation

Thus, when modeling a zero-offset section on the computer wusing the
exploding reflector model, one can start with a blank upgoing wave field below
the lowest reflector, then use equations (6.9), (6.10) and (6.11) to continue

the wave field up towards the surface. Since a delta function at t=0 has a
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Fourter transform that is simply a constant, independent of frequency, one can
then model the exploding reflectors by adding the reflection coefficient to
all of the frequencies, at each z-step. The time section is then obtained

by inversely Fourier transforming the results at the surface.

Migration of zero-offset data 1s simply the inverse of the above: one
starts by Fourier transforming the time section, and then continuing each fre-
quency down, using either a negative v or Az. The value of the wave field at
t=0 is then extracted at each depth by summing over the real part of all the
frequencies. An optional step that removes the effect of the wraparound in the

FFT is to then subtract the value of the reflector from the wave field.

Both modeling and migration can be performed by taking one frequency at a
time through all the 2-steps, or taking all the frequencies through one z-step
at a time. It 1s, however, only possible to subtract the reflectars from the
migrated wave field when all the frequencies are taken together. In situa-
tions where both the reflector and velocity map, and the Fourier transform of
the wave field, are too large to fit in the main memory of the computer, disk
input and output are minimized by using some combination of the above -- that
is, either taking as many frequencies as will fit intoc memory through all the
Z-steps, or keeping as much of the velocity and reflector structure as fits in
memory, while iaking all the frequencies through that part of the structure.
Using this last arrangement we have been able to take full advantage of the
speed of the SEP array processor for migrattions of several hundred traces of
COCORP data [Lynn et at., 1973].

Examplas

We will show two such axamples. Figure 6.2 shows the exploding reflector
seismogram for & point scurce near a vertical interface. The velocity on the -
left of the interface is one-third what it is on the right. The depth of the
point scatterer 1s 5 times 1ts distance from the vertical interface. Figure
6.3 shows the result computed using equation (6.3) for the same earth struc-

ture. The strongest arrival on figure 6.3 1is not present at all in the
Aexploding reflector approximation. Note also that the relative amplitudes are
different between the two figures. Figure 6.4 shows the raypaths 1included in

figures 6.2 and 6.3. The velocity structures used 1n these figures are
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FIG. 6.2. Exploding reflector zera-offset section for a point scatterer at a
depth of five times its distance from a vertical velocity contrast of 3 to 1.

Computed using monochromatic 45-degrae wave equation. Raypaths are shown 1in
figure 6.4a,b.



FIG. 6.3. Zero-offset
using equation (6.3).
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section for same earth model as figure 6.2, computed
A1l the raypaths shown in figure 6.4 are now included.
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(a) (b) (c) : (d)

FIG. 6.4. Raypaths for the model in figures 6.2 and 6.3. The exploding
reflector model includes only (a) and (b).

»n 1. E; l ! i I

Ei 1 o EEES [ | -

S 1E | | 1 1 -
8] o C o4 0B -8 1

distance

FIG. 6.5. Velocity along the sections in figures 6.6 and 6.7. Velocity is
independent of depth.
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probably not too realistic from a geologic point of view. Figure 6.5 shows a
somewhat more realistic velocity model. For computational convenience we have
assumed a velocity that 1s 1independent of depth, but very similar effects
would be expected for point scatterers below a curved i{nterface between two
layers with different velocities, e.g. below a depression in the seafloor.
Figure 6.6 shows the exploding reflector result for the velocity function
shown 1n figure 6.5. The source is at a depth that 1s 1.3 times the width of
the computed model. Figure 6.7 shows the correct zero-offset section. As

before there are significant differences.

Attenuation

A first-order property of all matertals, especially rocks, 1s the absorp-
tion of eIéstic energy, and the resulting change in the shape of transient
waveforms. Most available data is consistent with the assumption that the
energy 1s absorbed by a linear process, and that the energy loss per cycle is
independent of frequency. In Chapter II we have seen that these conditions
are satisfied by a model that implies a complex, frequency-dependent velocity
of the form

v = vn(m)" (6.15)

where 4 is related to the seismic quality factor Q by

= tan(wey) (6.186)

o)

The possible range for 9y 1s 0 {9y < % and for Qi1s w> Q> 0 . The 1l1m~
iting cases correspond to classical elasticity and Newtonian viscosity. Since
the coefficients in the Crank-Nicolson scheme are complex, even for a purely
elastic model, the only additional computation, which results from the substi-
tution of equation (6.14) into eithsr (6.5) or (6.6), is 1n the computation of
the coefficients. Appendix B contains FORTRAN listings of an in-core version
of a zero-offset diffraction program, which can handle arbitrary velocity and
Q structures and the corresponding migration program. Except for the 1nput

and output routines, these programs should run on other FORTRAN systems.
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FIG. 6.6. Exploding-reflector-model zero-offset section for a point scatterer
at a depth of 1.3 times the width of the section. Velocity is independent of
depth and varies as shown 1in figure 6.5 along the section.
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FIG. 6.7. Zero-offset section computed using equation (6.3) for the same

earth structure as in figure 6.6.
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Figures 6.8-6.11 show examples of outputs produced by these programs, as well

as the large dataset array processor versions.

Discussion

It 1s routine practice [e.g. Burdick and Helmbarger, 1978] in the compu~
tation of synthetic earthquake seismograms, ¢to compute a ssismogram for a
purely elastic earth model, and then convolve the result with a response func-
tion of the kind presented in Chapter II. This is valid when all the
arrivals present on the seismogram have suffered the same amount of attenua-
tion, but 1s not even approximately valid for reflection seismagrams unless
it is assumed that a1l the attenuation takes place in the near-surface layers.
Since the waveforms, especially at shorter periods, are often dominated by the
attenuation impulse response, 1t seems worthwhile to 1include attenuation 1in

the madeling of seismic sections.

Similarly, removal of the attenuation effects, along with the diffrac-
tions, 1in the migration of seismic data, should help isolate the path-
independent source waveform, and thus contribute to increasing the resolution
of the results. However, the removal of attenuation effects is an inherently
unstable process, especially in the presence of naise, so careful filtering of
the high frequencies 1s required, and the results are 11ke1y to be sensitive
to the quality and processing history of the data. An alterpative discussed
by Robinson [1979], is to remove only the phase shifts caused by anelasticity
dispersion; this may be valuable in obtatning a zero-phase output in deconvo-

lution.

Although an understanding of the seismic attenuation may help us get
sharper pictures of the subsurface, that is not the only reasan for trying to
measure and model it. Thers are both laboratory [Winkler and Nur, 1979] and
theoretical reasons, such as given in Chapter V and by Mavko and Nur [19791],
to believe that there is some unique information about the 1ithology and such
parameters as the temperaturs, poraosity, pore prassure, and ths amount of
saturation that can be extracted from a knowledge of the seismic attenuation
parameters, especially when they are integrated with other geophysical infor-
mation. None of the methads that have been discussed 1n this chapter are

applicable to the probliem of estimating Q directly from data. The ability to
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compute accurate synthetic seismograms for trial models of the Q structure
should be valuable 1in comparing the varijous methods for estimating Q and
establishing the validity of the results.
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(lih g
6.8a 6.8b
-|“ |“| "
Il
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FIG. 6.8. Modeling and migration using the programs 1l1isted 1in appendices.
The zero-offset section observed at the surface from the reflector shown in
6.8d, for the velocity structure shown in 6.8c, is shawn in 6.8a. Anelasti-
city with Q = 20 was used. The ve'scity at a unit frequency is 1 in the
upper layer and 2 below. The result of a migration of the section in 6.8a is
shown 1in 6.8b. Most of the lass in resclution is because anelasticity was
included 1n the forward calculation, but net in the wmigration. Parameters

used were as follow: 128 timepoints, 64 traces, 64 depthpoints., At of 0.06,
Az of 0.06, and Ax of 0.1.
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Chapter UVII1

ANALYSIS OF VARIATIONS IN AMPLITUDES AND
TRAVELTIMES WITH OFFSET AND MIDPOINT

Lateral variations in rock properties cause complex variations of ampli-
tudes and traveltimes with offset on common-midpoint gathers. A theory for
the interpretation and inversion of these complex variations 1is presented.
The application of the theory to seismic data from a producing gas field shows
correlations of interpreted velocity and amplitude anomalies with diffractions

observed on common-offset sections.

Conventional processing of high quaiity seismic data involves a high
degree of data reduction. The stacking process implies assumptions about the
conditions where the data was collected, such as the absence of rapid ‘tateral
variations 1in velocity or absorption. A great deal af information will be
lost 1in stacking when such variations are present, especially 1f the
signal-to-noise ratio is good on the unstacked data. In this report examples
of such data are presented along with methods for the1r01nversion.

The dataset used 1s a seismic line across the Grand Isle gas field off
the shore of Lnﬁisiana. The data was made available to the Stanford Explora-
tion Project by Dr. Ralph Shuey of Gulf Science and Technology Company in
Pittsburgh. Recording parameters for the line are listed in table 7.1. Typi-
cal common-midpoint gathers are shown in figures 7.1-7.5, and a common-offset
section of the fifth offset is shown in figure 7.6. These plots show a number
of interesting features. One of the most striking is the rapid and seemingly
irregular changes 1n the amplitude of the bright spot reflection at 2.3

seconds, with offset.

109
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TABLE 7.1. SHOOTING GEOMETRY

(all dimensions in feet)

Energy source Airgun
Source depth 30
Shot interval 82
Group interval 164
Nsar geophone 743
Far geophone 8498
Cable length 7756
Fold 48
Filter 5-144 Hz

These ampliitude variations are much too strong to be explained by ths angle-
dependence of the reflection coefficient, or the destructive and constructive
interference betwesn closely spaced raflactors. Many of the amplitude
anomalies shown 1n figurs 7.8 correlate for several reflsctors: for example,
the amplitude vartations around midpaint 287 appear to be present on all visi-
ble reflectors from about 1.5 seconds down to the bottom of the section. This
points towards transmission effects in the overlying rocks as the most plausi-
ble explanatton. ‘In' order to investigate this further, the power in each
trace for the intarval from 1.5 to 3 seconds was 1integrated for each midpaint,
and for all the offsets. After this was done, it became apparent that some of
the offsets had systematically higher or lower ampiitudes than the others. In
order to remove this effect, esach offset was normalized by dividing by the
median power for that particular offset. The logarithm of this result 1s plot-
ted in figure 7.7, as normalized amplitude versus midpoint and offset.

High ampiitudes show up dark on the plot; amplituds vartiations caused by
variable reflectivity along the reflectors should show as vertical rectangles
on the plot, while variations caused by shot amplitudes should have a 45-
degree slope. The black streak on the left stide of the plot 1s caused by twa
shot locations with no data - the tapes containing garbage. Close inspection
reveals a large number of small amptitude fJuctuat1ons that are parallel to
the streak caused by the bad data; thess are undoubtedly caused by variations
in the shot amplitude.
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FIG. 7.6. A common-offset section for the fifth offset. Shot receiver dis-
tance 1{s 320 meters (1070 feet) and trace spacing 1s 25 meters (82 feet). The
amplitude pattern and details of the shape of the bright-spot reflector change
from offset to offset. Note the good signal-to-noise ratic and the d1ffraction
patterns in the first second of data. '

FIG. 7.7. The logarithm of the power is plottsd versus midpoint and offset.
The power was integrated over a window that extended after NMO from 1.5 to 3
seconds. Systematic offsst dependence was removed by dividing the power at
each offset by the median power for that offset.

FIG. 7.9. Traveltime anomalies are shown versus midpaint and offset. The
times shown were obtained by crosscorrelation with a sum trace, after time
shifts applied as in figure 7.8. The window length was 1.024 seconds. Black
indicates delays.

FIG. 7.15. Result of applying the iterative-median inversion to the amplitude
data plotted 1in figure 7.7. The depth scale is relative to the depth of the
bright spot which 1s approximately 8000 feet. The interval from the bright
spot to the surface was divided into 16 layers. Black on this plot indicates

low amplitudes (high absorption).

FIG. 7.16. Black indicates 1low velocities. The result of applying the
iterative-median inversion toc the amplitude data. Slowness 1s displayad in
the same manner as the absorption in figure 7.15.
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One potential explanation for the amplitude variations, as they are
observed on individual midpoint gathers, is that they are caused by variations
in shot strength or by variatiens of the properties of the sea bottom.
Inspection of figure 7.7 shows that this does not suffice to explain some of
the larger features visible on the plot. The large amplitudes (dark on the
plot) occur 1in bands that have significantly steeper slope than the shot
effects. There 1s also a bimodal distribution of slopes, since bands that geo
either left or right with offsst occur with about the same frequency.

A closer look at figures 7.1-7.5 shows 1in addition to the amplitude
effects, deviations from hyperbolic moveout. Figure 7.8 shows the gather from
figure 7.2, after a time-independent time shift was applied to the traces, as
appropriate for an NMO of an event at 2.3 seconds with an RMS velocity of 7000
feet/secand. The plot shows deviations in traveltime of aimost 20 ms, even
though there is excellent match at the Far and near offsets. Figure 7.3 shows
a plot of time shifts, as determined by crosscorrelations with the sumtrace
for each gather, for all the shots and all the offsets, using a one-second
time window. This plot shows the same qualitative features as in figure 7.7,
but there 18 a great deal more naise, some of which is probably caused by

cycle jumps in the crosscorrelation.

Theory

A theoretical framewark for the i{nterpretation of midpoint-offset
anomalies of the type we have shown will be presented. Our earth model is
shown in figure 7.10. We assume that our observations may be related to some
quantity d(h,y) that 1is the 11ne 1integral along the raypath of some rock
parameter w{z,y). Earth model assumed. The value of the vertical coordinate,

2, 1s zero at the reflector and z° at the surface.
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FIG. 7.10. Earth model assumed. The value of the vertical coordinate, 2z,
is zero at the reflector and z, at the surface.

For example, the traveltime is the integral of the slowness 1/v:

ds
t = Sy (7.2)

Another example 1s the ampl{itude decay of a monochromatic wave due to absorp-
tion: ‘

A = axp[-J&(z.y)ds] : (7.2)

where A is the amplitude and a 1s related to the intrinsic quality factor Q by

(7.3)

where f is frequency. The dispersion that is a consequence of causality has

the effect of making the veloctity v slightly dependent on frequency.

For a broad-band source in a medium where Q is independent of frequency,
the width of a pulse = is given by

r = ¢ J (7.4)

ds
Q(z.y)v(z,y)
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where ¢ is a constant that depends on the particular measure of pulse width
used [Kjartansson, 1979]. These three different types of observations may be
treated with the same tools if refractions caused by lateral variations 1n
velocity are neglected. The effects of velocity variations with depth may be
accounted for by the application of a coardinate transformation. For velocity
variations of a few percent or less, the effect of ray bending on the total
path length 1s small. The assumption of lateral variations an the order of a

few percent or less appears well-justified for the present dataset.

‘If 1t 1s further assumed that the measurements are appropriate for pri-
mary reflections from a single reflector, or a group of closaly spaced reflec-
tors with dips small enough to justify the assumption that the reflector point
is directly below the midpoint (migration is ﬁot necessary), then we may refer

to figure 7.10, and write

2 (h2+zz)%
o 2 2
d(h.y) = [ , v(z.y-h;—é + u(z.y+h;—) dz (7.5)
0 "] o ]

Since the average offset effect has been removed through the normalization and
NMO of the data in figures 7.7 and 7.9, we may drop the caosine factor in equa-
tion (7.5):

o
d(h,y) = [ [w(z.y-h ;50 + w(z,y+h ;5)] dz (7.8)
o 0 [

If the function w(z,y) 1s specified, for example, on a discrete grid, equation
(7.6) may be used to model the observations. Figure 7.11 shows the result of a
forward calculation from the model shown in figure 7.12. Linear interpolation
betwean adjacent y points 1in esach layer was used. The general character of
the synthetic 1s quite similar to that of the data. Equation (7.6) may be
Fourier-transformed over the midpoint coordinates; the result is

2
[}

z
D(h.ky) = 2 i' cos(h ;: ky) H(z.ky)dz (7.7)
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FIG. 7.11. A synthetic midpoint-offset display. computed by evaluating the
integral 1n equation (7.6) numerically, for the structure shown in figure
7.12.
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The form of the integrand in (7.7) 1s a Fourier transform from the 2-domain
to the h-domain, except for the integration 1imits. Thus 1t is readily seen
that the component of the observations which changes most slowly with offset
is controlled by the material closest to the reflector, and that the near
offsets provide information about the leng wavelength componenté of W, while
the far offsets provide the short spatial wavelength information.

Observations at a particular offset h are most sensitive to wavelengths
in depth on the order of hky/zo. This implies that measurements do not con-
tain information about velocity layers with tangent of dip less than zolhm.
where hm is the maximum half-offset. The maximum observable dip is similarly
1imited by the near-offset.

Equation (7.7) may be solved numerically if the interval from the reflec-
tor to the surface 1s divided 1nto nz layers and the integral replaced by a

sum. The result 1s a set of simultaneous equations of the form

d = Aw (7.8)

where d 1s a vector of " ocbservations for a particular ky, and v 1s a vector

of n, values of the function U(z.ky). The A matrix is given by

a,, = 2 Az cos(2Z ank_i3) (7.9)
id Zo Y
Equation (7.8) may be solved for w using standard least-square methods. In

the process of 1implementing the solution we found 1t necessary to constrain
the solution, since the matrix ;T: 1s highly singular for low ky values for
the reasons discussed above, even when n, 13 less than - General methods
for introducing constraints into the matrix A are discussed by Claerbout

(1976]. We chose to minimize the norm N given by

N = 578+ 433 (7.10)

where

e = Aw - d , : (7.11)
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and ¥ is chosen empirically. The norm N 1is minimized by solving

(ATA + y1) = A'G (7.12)

Figure 7.13 shows the results from applying the wavenumber domain (WD) 1nver-
sion to the synthetic in figure 7.11. Comparison with figure 7.12 shows that
much of the low-dip infermation has been lost, while the steeply dipping com-
ponents of the original model were recovered reasonably well. When the
wavenumber-domain inversion was applied to the data from figures 7.7 and 7.9,
the output was severasly contaminated by the impulse responses of the spikes in
the data, some of which were caused by instrument errors or cycle jumps in the
crasscorreliations. One possible way to deal with this would be to run the
inversion, compute a synthetic from the result, compare the synthetic to the
data, and set data where the residual exceeds a selected threshold equal to
the computed value, and then repeat the process as often as needed. Conver-
gence shauld be very rapid.

Another possible solution would be to apply an iterative solution tech-
nique to the data in the time domain and, rather than minimizing the sum of
the residuals squared or the L2 narm, minimize the sum of the absolute values,
the L1 norm. The L1 norm gives much better results than the L2 norm when deal-
ing with data of uneven quality [Claerbout and Muir, 1973; Claerbout, 1376].
The method that we have chasen may be considered a modification of either the
Simultaneous Iterative Reconstruction Technique (SIRT) that has been used 1in
the field of medical tomography [Dines and Lytle, 1379], or the Gauss-Seidel
method used by Wiggins, et al. [1976] to determine residual statics correc-
tions. These methods proceed as follows: A model is used to compute a syn-
thetic, which 1s then subtracted from the data to get the residual error.
Then the mean residual for all data that are affected by each model parameter
is divided by the number of layers and added to that model point. This pro-
cedure is repsated several times. Our modificatiaon of this algorithm consists
simply of replacing the mean in the second step by a median. This has proved
very effective in eliminating the undesired effects of spikes in the data.
Figure 7.14 shows the result of applying the median - iterative method (MI) to
the synthetic 1n figure 7.11. The result is similar to the result of the WD

inverstion shown tn figure 7.13, except that some of the artifacts related to
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the ends of the data on figure 7.13 are absent on figure 7.14. The combined
effect of the model calculation and the inversion is in both cases to f1lter
out dips that are outside the range of dips for the rays that sampled the

model.

Inversion of Field Data

We applied the MI inversion to the amplitude data in figure 7.7, as well
as to the traveltime data. The application of the inversion to the amplitude
data rests on two assumptions, that the amplitude fluctuations are caused by
absorption, and that the waves are sufficiently band-11mited so that equation
(7.2) is applicable. Since the data were not deconvolved, it 1is to be
expected that the combined effects of water bottom multiples and shot waveform
would result in a highly peaked spactrum and amplitude decay similar to that
of a monochromatic wave. This assumption could be made more appropriate By
using only the power in a narrow spectral window. Besides absorption, the
most 1ikely candidates for the causé of the amplitude fluctuations are
scattering and focusing effects caused by Tateral variations in velocity. It
is d1ifficult to see how scattering could account for amplitude changes by a
factor of three, at frequencies as Tow as 25 Hz. A1l the reflectors above the
bright spot are weak in comparison to the bright spot; consequently all of the
transmission coefficients should be close to unity. Focusing from small scale
velocity structures can easily result 1n Targe amplitude variations. As a
working hypothesis we are assuming that the effects of raybending on ampli-
tudes may be neglected. The validity of this assumption remains to be tested.

Figure 7.15 shows the result of the inversion of the amplitude data. The
most noteworthy feature of this display is the band of alternating peaks and
lows that start near the surface around midpoint 100, reach a depth of about
one-quarter the depth to the reflector around midpoint 200, and get gradually
shallower toward the right side of the section. Inspection of figure 7.6 shows
a4 series of diffractions at corresponding locations. These diffractions are
much less noticeable on the conventional stacked section than on the unstacked
data. Since the field data does not carry information about components of the
earth model that dip less than the rays at maximum offset, the long wavelength

components of the velocity structure are not shown.
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We are unable to conclude anything about magnitude of attenuation; only
changes over distances less than a cable length are indicated. One constraint
that must be satisfied, however, is that the attenuatiocn be non-negative.
From laboratory data [Winkler and Nur, 1979], it 1s known that attenuation 14s
very sensitive to small changes in the state of the rocks and the pore fluids,

and can easily change to several times its minimum value.

Figure 7.16 shows the result of applying the inversion to the traveltime
data shown in figure 7.9, The noise Tevel is considerably greater than in the
amplitude inversion, but the same genera) features are shown. A clear corre-
lation between peaks {in slowness and low attenuation values 1s evident from
the inversions. This is somewhat surprising since higher velocities tend to be
associated with lower attenuation in rocks under most, but not all conditions.
Laboratory results [Winkler and Nur, 1979; Winkler, 1979; Frisillo and
Stewart, 1979] show that attenuation first increases, reaches a peak, and then
decreases as gas or air is introduced into a liquid-saturated rock, while P-
wave velocity drops with incrsasing gas saturation. If focusing effacts have
significant effects on thae amplitude anomalies, the tendency would be for the
rays that cross through high-velocity lenses to diverge. Further work is
needed to determine.to what extent this can explain the observed amplitude

anomalies.

The main exception from this correlation is the large shallow anomaly
around midpoint 110, that shows both time delays and low amplitudes for rays
crossing 1t. This 1s as would be expected on the basis of the laboratory data
if this regton contained a diffuse pocket of gas, perhaps connected by faults
with the producing gas reservoir that gives rise to the bright-spot reflec-
tion,

We have not calibrated the output of the inversions. Most of the observed
features appesar to be localized and have dimensions that are similar to the
spatial resolution of the data. This 1s in part because the low dip components
of the anomalies have been lost. The observed variations in traveltimes are
actually quite small - about 10 milliseconds out of a total traveltime of
more than 2 seconds, thus a 5X change in velocity over cne-tenth of the path
could account for the observed affects. A typical amplitude anomaly may be

about a factor of 3 1in amplitude at 25 Hz; this dimplies an average
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differential Q of about 150 for the whole path or 15 if the attenuation takes

place over one-tenth of the path.

Conclusions

The results of this study show that a substantial amount of 1information
is carried 1n the unstacked seismic data, 1in both the ampiitudes and travel-
times of events. The amplitudes carry information about both velocity and
intrinsic absorption:; the relative importance of the two contributions is
sti111 uncertain. Several different techniques are available to analyze this
information: we have demonstrated that a relatively simplistic approach can
give valuable results when applied to high-quality seismic data. There are a
number of ways to improve on some of the assumptions that we have made, and
this should result in a correspanding improvement of the results. The vele-
city and attenuation information thus obtained should be useful, both in the
geologic interpretation of the prospects and to improve the stacking and
migration of the data.



Appendix A

VISCOELASTIC MODELS

In the literature on viscoelasticity, it 1is common to describe the
behavior of materials through networks of springs and dashpots, often charac-
terized by either relaxation or retardation spectra. It has been claimed that
only attenuation models given in terms of such networks are physically realiz-
able, and models derived by other means have been termed "ad hoc" [e.g. Min-
ster, 1978a].

While it is possible to give physical models for attenuation that can not
be modelled by spring-dashpot networks, [e.g. Nur and Mavko, 1979], the formu-
lation of viscoelastic models in terms of relaxation spectra is often useful.
Gross [1953] has summarized the relationships between the various functions
that have been used to characterize viscoelastic materials. In his notation
the retardation frequency density function, N(s), is related to the creep

function according to

® -t
Wt) = - S N(s)e °° ds (A-1)
0

and the relaxation frequency density function, N(s), is related to the relax-

ation function according to

© -t
t) = SN(s)e °° ds (A-2)
[+

Kanamori and Anderson [1977] used a a relaxation function of the form

1

N(s) = As s, <s <s, (A-3)

1

N(s) = 0 elsewhere

to derive an absorption band NCQ model. The constant Q model may be specified

133
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by

Mo sin(2wy) 1

Ms) = (st )27 s (A-4)
Using the definition of the gamma function and the identity
MNz)M(l-2) = —F— (A-5)

sin(wz)

the constant Q relaxation function (2.20) is readily obtained. Since the
constant Q model is mathematically a special case of the power law models of
Strick [1967] and Azim1 et al. [1968], 1t follows that those models also have
spring-dashpot representations.
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Appandix B

LISTING OF FINITE-DIFFERENCE PROGRAMS

The programs listed here were used to obtain the results .
shown 1in figure 6.8. These programs should be portable,
except for the input-output routines.

Finite-difference modeling program, that
uses the monochromatic wave equation:

|
----Q + Q + 2mi Q = 0
2nm XXz XX 2

Velocity, anelasticity and reflectivity may be
arbitrary functions of x and z.

An 1improved approximation for the second derivative
is used (variable beta), see FGDP, p. 222.

A zero-offset time section is obtained by inversely
Fourier transforming the output of this program.
Dip filtering 1s included (see FGDP, p. 225).

Einar Kjartansson, September 1978.

complex wave(64,64),t(64),d(64),a(64),b(64),e(64),F(64)
complex aa{64),bb(64)

complex cv0(64), cexp,cmplix

complex m,shift,cc3,ccl,rr3,rrl,bab,ra,dipflt

complex abp(64),cbp(64)

real ql(64).vel(64),ref(64),.gam(64)

equivalence (a(2),abp(l)) , (a(l),cbp(2))

Read in parameters and set constants.
call rdparm(nom,nx,nz,dom,dx,dz,vis)
rrl = (0.,.5)/dz
rr3 = (0.,2. )kdx%dx/d2
dipflit = (0.,1.)%vis
beta = .14
Clear upgoing wave field.
do 20 fom = 1,nom

do 20 ix = 1l,nx

wave (1x,1iom) = (0.,0.)

Take the wave field up through the structure.

do 100 41zinv = 1,nz
iz = nz - izinv + 1

135
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40

ononoan

(1]

70

100

Get velocity, 1/Q and reflectivity.

call rdvst(1z,nx,vel)
call rdgst(iz,nx,ql)
call rdrst(i1z,nx,ref)

do

do

40 ix = l,nx

gampi = atan{ql(ix))

ev0(ix) = cexp{(0..-.5)=gampi)/vel{ix)
gam( i1x) = gampi/3.141592654

100 iom = 2,nom

om = (1om-1)kdom

Apply time shift and
compute coefficients.

do 50 ix = 1l,nx

m = -omek(l.-gam(ix))sev0(ix)

shift = cexp{(0.,1.)xmwdz)

t(ix) = shiftx(wave(ix,1om)+ref(ix))
ma=m+ dipflt/vel(ix)

cc3d = rr3sm

ccl = rrl/m + betaxcc3

aa(1x)= (.5,0.) - ccl

a(ix) = aa(ix)- (1..0.)

bb(1x) = cecl + cel - (1.,0.) - ce3

b(ix) = bb(ix) + (2..0.)

Absorbing side condition.

bab = macmpIx(0..,dx*.25)

ra = ((1.,0.)+bab) / ((1.,0.)-bab)
b{1l) = b{1) + raxa(l)

bb(1l) = bb(1l) + rakaa(l)

b{nx) = b{nx) + rawa(nx)

bb(nx) = bb(nx) + rakxaa(nx)

Solve Crank-Nicolson matrix equation.

a(1l) = bb(1)#»t(1) + aa(2)%t(2)
d{nx) = bb(nx)xt(nx) + aa(nx-1)xt{nx-1)
do 70 ix = 2, nx=-1
d(ix) = bb(ix)»t(ix)+aa(ix-1)wt({ix-1)+aa(ix+1)wt{ix+1)
call cvtri(abp,b,cbp,nx,t,d,s,f)
do 100 ix = 1,nx
wava(ix,1om) = t(ix)

Output the result.

stop
end

“call wrwave(nx, nom,wave)
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Finite-difference migration program, that
uses the monochromatic wave equation:

i
--e=Q + Q + 2mi Q = 0
2m XX2 XX z

Velocity may be an arbitrary function of x and z.
Anelasticity is not included in this program.

An 1mproved approximation for the second derivative

is used (variable beta), sees FGDP, p. 222.

The 1input to this program is the Fourier tranform of a
zero-offset section.

Dip filtering 1s included (see FGDP, p. 225).

Einar Kjartansson, September 1978.
Bullet proof version, E.K. april 1979.

compiex wave(64,64),t(64),d(64),a(64),b(64),e(64),F(64)
complex aa(64),bb(64),ref(64)

complex cexp,cmplx

complex shift,ccd,ccl,rr3,rrl,bab,ra,dipf1t

complex abp(64),cbp(64)

equivalence (a(2),abp(l)) . (a{l).cbp(2))

real m,vel({64)

Read in parameters and set constants.

call rdparm(hom,nx,nz.dom,dx,dz.v1s)

rrl = (0...5)/dz

rr3 = (0.,2.)%dxkdx/dz

dipfit = (0.,1.)%vis

beta = .14

Read the Fourier transform of the surface wave field.
call rdwave(nx,nom,wave)

Continue the wave field down.

do 150 1z = 1,nz

Get the velocity and clear the reflector sum.
The velocity is taken to be negative in migration.

call rdvst(iz,nx,vel)

do 40 1ix = 1,nx
ref(ix) = (0.,0.)

do 100 1om = 2,nom
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= (1om=1)%dom

Apply time shift and
compute coefficients.

0000

do 50 ix = 1,nx
m = om/vel(ix)
shift = cexp((0.,1.)smndz)
t(ix) = shiftxwave(ix,iom)

mam«+ dipfit/vel(ix)
cc3 = rpr3am
ccl = rrl/m + betaxcc3
aa{ix)= (.5,0.) - cecl
a(ix) = aa(ix)- (1.,0.)
bb(1x) = cecl + cel - (1.,0.) - cc3
50 b{ix) = bb(ix) + (2.,0.)

(2]

Absorbing side condition.

bab = mwcmp1x(0.,dx=.25)

ra = ((1.,0.)+babd) / ((1.,0.)-bab)
b(1) = b(1) + ra=xa(l)

bb(1) = bb(1l) + raxaa(l)

b{nx) = b(nx) + raxa(nx)

bb(nx) = bb(nx) + rakaa(nx)

[4]

Solve Crank-Nicolson matrix equatien.

d(1) = bb(1)»t(1) + aa(2)»t(2)
d{nx) = bb{nx)*t{nx) + aa{nx- 1)*t(nx 1)
do 70 1x = 2, nx-1
70 d(ix) s bb(ix)xt(ix) + aa{ix-1)=t(ix-1) + aa(1x+1)mt(1x+1)
call cvtri(abp,b,cbp,nx,t,d,a,f)
do 100 ix = 1,nx

n

Sum to get wave field at t = 0.

ref(ix) = ref(ix) + t(ix)
100 wave(ix,iom) = t(1x)
do 110 ix = 1,nx

c
c Subtract wave field at ¢t = 0 to remove wraparound.
c

ref(ix) = ref(ix)/nom

de 110 1om = 1,nom
110 wave(ix,.iom) = wave(ix.iom) - ref(ix)
150 call wrref(1z,nx,ref)

stop
end
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10

20
30

10

subroutine rdparm{nom,nx,nz,dom,dx,dz,vis)
Suboutine to generate parameters.

nom = 64

nx = 64

nz = 64

dt = .06

dom = 2.%3.141592654/(nom*dt)
dx = .1

dz = .06

vis = dom

return

end

subroutine rdvst(iz,nx,vel)
Subroutine to generate velocity model

real vel({nx)

do 10 1ix = 1,nx

vel(ix) = 1.

do 20 1ix = 1,12

vel(ix) = 2.

return

end

subroutine rdqst(iz,nx,ql)
Subroutine to generate Q modetl

real ql(nx)

do 10 ix = 1l,nx

ql(ix) = 1./20.

return

end

subroutine rdrst{iz,.nx,ref)
Subroutine to generate reflectar structure.

real ref(nx)

if (12 .ne. 48 ) goto 20

do 10 ix = 1,nx

XX = (nx + 1.)%.5 « {x

ref(ix) = exp(-1.%xx*xx)

return

do 30 ix = l,nx

ref(ix) = 0.

return

end

subroutine rdwave(nx,nom,wave)
Subroutine to read in the Fourier transformed wave field.

complex wave(64,64)

integer uopen, uread

logicalxl fn(100)

call fname(’.frq’,fn)

if = uopen(fn.0)

do 10 1om = 1,nom

ir = uread(if,wave(l,iom).512)

return

end

subroutine wrwave(nx,nom,wave)
Subroutine to write on disk the wave field.

complex wave(64,80)
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integer uwrite,ucreat
logicalxl fn(100)
call fname('.frgq’,fn)
if = ucreat(fn,"0664)
do 10 tom = 1,nom
10 ir s uwrite(if,wave(l,iom),512)
return
end
subroutine wrref(1z,nx,ref)
c Subroutine to write reflector structure on disk.
complex ref(nx)
real rref(64)
logicalsl fn(100)
integer ucreat,uwritse
if (1flag .eq. 1) goto 20
iflag = 1
call fname('.rst’,fn)
if = ucreat(fn,"0644)
20 do 30 ix = 1,nx
30 rref(ix) s ref(ix)
nw = uwrite(1f,rref,nx*4)
return
end
subroutine cvtri(a,b,c,n,t.d,e,f)
(3 Solve a tridiagonal matrix squation with
< complex and variable coefficients
implicit complex ( a-h,o0-2)
dimsnsion t(n).d(n).f(n).e{n).al{n).b{n).c{n)
nl = n-l
e(l) = -a(l)/b(1)
F(1) = d(1)/8(1)
do 10 i = 2,.nl
den = b(1)+c(1)wa(1-1)
e{i) = -a(i)/den
10 F(1) = (d(1) = c(1)wF(1=-1))/den
t(n) = (d{n)- c{n)xf{nl))/{b(n)+c{n)=e(nl))
do 20 § = 1,nl
i=n-3§
20 t(1) = (1) *t(1+1) + F(41)
return
end
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