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Abstract

Geophysical prospecting consists of making a quantitative inference about subsurface

properties from geophysical measurements. Due to many ineluctable difficulties, observed

data are almost always insufficient to uniquely specify the rock properties of interest.

Hence, inevitable uncertainty remains after the estimation. The sources of the uncertainty

arise from many factors: inconsistency in data acquisition conditions, insufficient available

data as compared to the subsurface complexities, limited resolution, imperfect dependence

between observed data and target rock properties, and our limited physical knowledge.

While the uncertainty has been identified for a long time, quantitative framework to dis-

cuss the uncertainty has not been well established.

The objective of this dissertation is to quantify uncertainty of rock property estimation

and to reduce it by using multiple seismic observables. Using existing laboratory data and

rock physics model parameters, we establish the general relationships between rock prop-

erties and pairs of seismic attributes. We show how optimal selections of seismic attributes

allow us to better distinguish different rock property effects. One of the novel innovations

in this work is to combine statistical formulations—information theory and Bayes decision

theory—with rock physics models to quantitatively describe the dependence of seismic at-

tributes on several important rock properties. Various sources of uncertainty about rock

property estimation are quantified using the developed formulations. Furthermore, We pro-

pose a method of combining stochastic simulations and Bayes inversion to quantify the

uncertainty about the dependence between seismic observables and target rock properties,

caused by ignorance of other rock properties. We apply this method to explore scale effects
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on sand/shale ratio estimation from seismic reflectivity. One of the new results of this in-

vestigation is to show from the full probability density function that the effective medium

average tends to overestimate the sand/shale ratio when reservoirs are randomly layered.

The proposed framework of quantifying information given by seismic data will serve as a

decision making guideline in various exploration stages.

v



Acknowledgements

I have been blessed with friends and professors during my stay at Stanford. I would like

to thank all the people in and out of the school who made my last student life pleasant and

successful. Without their encouragement and support, this dissertation would have been

impossible.

I wish to express my foremost gratitude to my adviser, Gary Mavko. His having the

door open to me for stimulating discussions, generosity with new ideas, and always pin-

pointing and cheering advices have kept me highly motivated for research. Gary showed

me how to give such an entertaining lecture and how to live as a researcher in such an

enjoyable way.

Amos Nur’s everlasting hunger for new researches and his ways to ask questions taught

me how to anticipate what happens next. He attracted many good students and visitors to

SRB from all over the world, whom I associated with. I greatly appreciate the comments

and suggestions from Jack Dvorkin. Many ideas of this dissertation occurred to me from

the discussions in the seminars led by Jack, as well as the class Jack taught and I TA’ed.

I am also indebted to Jerry Harris who first accepted me to join Stanford and has been

supporting me ever since. Jon Claerbout and Biondo Biondi allowed me to participate in

some of the activities of Stanford Exploration Project, and have reminded me to be open-

minded to different perspectives of exploration geophysics. Special thanks go to Tapan

Mukerji, who always gave clearcut answers to all the questions I brought every two hours

everyday for the past three years. Margaret Muir has been such a great help whenever I

needed some assistance.

vi



I am grateful to all my friends in Stanford Rock Physics Laboratory. Keeping com-

pany with the friends from diverse background disciplines and cultures was an exciting and

priceless experience, and has made my viewpoint broader than before. The sunny Cali-

fornian sky and the even sunnier fellows, Alex, Andres, Carlos, Diana, Elizabeth, Emma,

Ezequiel, Haibin, Madhumita, Mario, Mike, Per, Sandra, Wendy, and Youngseuk, have

mitigated the stress from my work.

Noboru Tezuka of JNOC had propelled me to pursue the higher educational opportu-

nity, before I jumped over the Ocean to Stanford in 1997. My dear geologists, Yasuhisa

Kanehara, Hideki Hayakawa, and Takeshi Nakanishi, had opened my rather engineer-like

eyes to the wonderland of earth sciences, in front of seismic sections and over drinks.

Last but not least, I could not thank more to my mother, Choko, and my father, Toshio,

for instilling in me the importance of learning and diligence, and for their unceasing assis-

tance. They have been my great spiritual support.

The data from the Alba oil field used in chapter 7 of this dissertation was provided

by Chevron U.K. and the Alba partners. In particular, I acknowledge John Toldi and Rex

Hanson from Chevron for their helpful information about the data. Financial support of this

work was from JNOC and the sponsors of Stanford Rock Physics and Borehole Geophysics

Project.

vii



Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

2 Interpreting Rock Properties on Seismic Attribute Domains 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Effect of Rock Property Changes on Bulk Modulus and Porosity . . . . . . 9

2.3 Effects of Rock Properties on Seismic Attribute Pairs in Gulf Coast Data . . 12

2.3.1 Diagenesis and Texture . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Pressure Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Pore Fluid Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Discrimination of Rock Physics Effects . . . . . . . . . . . . . . . 19

2.4 Rock Physics Effects in North Sea Sandstones . . . . . . . . . . . . . . . . 21

2.5 Parameterization of Rock Physics Relations . . . . . . . . . . . . . . . . . 26

2.5.1 Rock Physics Model Parameters in The K � � Domain . . . . . . . 26

2.5.2 Dependence of Rock Physics Model Parameters on Rock Properties 30

2.5.3 Rock Physics Model Parameterization in Seismic Attribute Domains 31

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



3 Elastic Properties of Sandstones and Carbonates: The Vp � Vs Relations and

Their Implication About Pore Structures 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 Vp � Vs Relations of Sandstones and Carbonates . . . . . . . . . . 46

3.2 Extensions of Hashin-Shtrikman Bounds . . . . . . . . . . . . . . . . . . . 47

3.2.1 Hashin-Shtrikman Bounds . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Bounds in the K � � Domain . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Bounds of the Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . 49

3.2.4 Bounds in the Vp � Vs Domain . . . . . . . . . . . . . . . . . . . . 51

3.3 Stiffness Indices: Parameters to Extract the Pore Structure Information . . . 54

3.3.1 Bounding Average Method . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Stiffness Indices of Sandstones and Carbonates . . . . . . . . . . . 55

3.3.3 Rock Physics Models in the Stiffness Index Domain . . . . . . . . 57

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Information and Uncertainty in Rock Property Estimation 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Using PDFs to Describe the State of Knowledge . . . . . . . . . . . . . . . 62

4.2.1 Uncertainty About Rock Properties . . . . . . . . . . . . . . . . . 63

4.2.2 Dependence Between Rock Properties . . . . . . . . . . . . . . . . 65

4.3 Estimation of Non-Parametric PDFs . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Retrieving PDFs of In-situ Conditions . . . . . . . . . . . . . . . . 68

4.3.2 Coordinate Transform . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Deriving PDFs From Physical Modeling . . . . . . . . . . . . . . . 73

4.4 Non-linear Statistical Measures of Uncertainty and Information . . . . . . . 77

4.4.1 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Bayes Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Comparison With Linear Measures . . . . . . . . . . . . . . . . . 83

4.5 Source of Information in Rock Property Estimation . . . . . . . . . . . . . 86

4.5.1 Sources of Information . . . . . . . . . . . . . . . . . . . . . . . . 86

ix



4.5.2 No Source of Information . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Rock Physics Effects on Estimation Uncertainty in Various Scenarios 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Sources of Uncertainty in Rock Property Estimation . . . . . . . . . . . . . 100

5.2.1 Limited Information . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.2 Sensitivity of Seismic Properties on Target Rock Properties . . . . . 103

5.2.3 Heterogeneity of Reservoirs . . . . . . . . . . . . . . . . . . . . . 104

5.2.4 Errors in Seismic Attributes . . . . . . . . . . . . . . . . . . . . . 107

5.3 Optimal Seismic Attributes for Rock Property Estimations . . . . . . . . . 109

5.3.1 A Strategy to Find Optimal Seismic Attributes for Reservoir Prop-

erty Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.2 Optimal Seismic Attributes for Various Scenarios . . . . . . . . . . 118

5.3.3 Blind Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Scale Effects in Rock Property Estimation 124

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Scale Dependence of Seismic Velocities in Layered Media . . . . . . . . . 126

6.2.1 Ray Theory Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.2 Effective Medium Theory Limit . . . . . . . . . . . . . . . . . . . 126

6.3 Seismic Forward Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.1 Periodically Layered Model . . . . . . . . . . . . . . . . . . . . . 129

6.3.2 Randomly Layered Model . . . . . . . . . . . . . . . . . . . . . . 131

6.3.3 Effect of Layer Thickness on Reflectivity . . . . . . . . . . . . . . 133

6.3.4 Dependence of Reflectivity on Sand Ratio . . . . . . . . . . . . . . 134

6.4 Bayes Inverse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5 Estimation of Sand/Shale Ratio in North Sea Data . . . . . . . . . . . . . . 138

6.5.1 Reservoir Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5.2 Forward Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.3 Scale Effect on PDFs . . . . . . . . . . . . . . . . . . . . . . . . . 143

x



6.5.4 Bayes Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5.5 Value of Additional Shear Measurement . . . . . . . . . . . . . . . 146

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Comparison Between P-P and P-S Seismic Information in the Alba Oil Field 149

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.2 Alba Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Rock Physics Diagnostics of the Alba Sandstone . . . . . . . . . . . . . . 152

7.2.1 The Alba Sandstone Compared with Other Sandstone Data and

Rock Physics Models . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2.2 Sandstones Below and Above the OWC . . . . . . . . . . . . . . . 154

7.3 Separability of Lithology and Pore Fluids Using P-P and P-S Seismic Data

in Error-Free Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.3.1 The Vp � Vs Relation . . . . . . . . . . . . . . . . . . . . . . . . 159

7.3.2 Impedances from P-P Surveys . . . . . . . . . . . . . . . . . . . . 159

7.3.3 Impedances from P-S Surveys . . . . . . . . . . . . . . . . . . . . 162

7.4 Impedance Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4.1 Seismic and Well Log Data . . . . . . . . . . . . . . . . . . . . . . 164

7.4.2 P-P Data Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.4.3 P-S Data Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4.4 Facies and Fluid Prediction Using P-P and P-S Impedances . . . . . 176

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Bibliography 181

A Using Time-Reversed Acoustics to Discriminate Intrinsic Absorption from

Scattering Attenuation 189

A.1 Introduction - Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.2 Time Reverse Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

xi



A.3.2 Derivation of Attenuation Coefficients . . . . . . . . . . . . . . . . 194

A.4 Seismic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.4.1 Modeling Specifications . . . . . . . . . . . . . . . . . . . . . . . 195

A.4.2 Modeling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.5.1 Advantages of the Proposed Method . . . . . . . . . . . . . . . . . 201

A.5.2 Further Simplification . . . . . . . . . . . . . . . . . . . . . . . . 202

A.5.3 Problems in Practice . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B Approximated Formulations of Seismic Attributes 205

xii



List of Tables

2.1 Geological information of North Sea sandstones used in the study. . . . . . 23

2.2 Dependence of rock physics model parameters on rock property changes. . 31

3.1 Properties of constituents used for elastic property modeling. . . . . . . . . 49

4.1 Probability of correct/false prediction estimated from the pdf, p(Vp; F luid). 83

4.2 Dependence of the Bayes Error on prior probability. . . . . . . . . . . . . . 88

4.3 Reduction of information entropy about porosity by seismic velocity ob-

servations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Estimation errors of Bayes and minimum-Mahalanobis-distance discrimi-

nant criteria in Ip � Is and ��� �� domains. . . . . . . . . . . . . . . . . 91

5.1 Information about pore fluid given by one, two, and three parameters. . . . 102

5.2 Information about pore fluid given by velocities and the corresponding

Bayes errors in pore fluid prediction for cases A and B in Figure 5.4. . . . . 105

5.3 Information about pore fluid given by velocities and the corresponding

Bayes errors in pore fluid prediction for case A and B in Figure 5.5 . . . . . 105

5.4 Information and the Bayes error of pore fluid prediction from Vp and Vs,

derived from the pdfs in Figure 5.6. . . . . . . . . . . . . . . . . . . . . . 109

5.5 Assumed errors of individual attributes. . . . . . . . . . . . . . . . . . . . 114

6.1 Reservoir model parameters for seismic forward modeling, taken from typ-

ical values in a North Sea field. . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Mutual information about the sand/shale ratio given by P-wave reflectivity

only, S-wave reflectivity only, and both of P- and S-wave reflectivities. . . . 148

xiii



7.1 Information about facies provided by P-P impedances at error-free conditions.162

7.2 Information about facies provided by P-P near and P-S impedances at error-

free conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Information about facies provided by P-P near and far offset seismic

impedances derived from seismic data. . . . . . . . . . . . . . . . . . . . . 173

7.4 Information about facies provided by P-P near-offset and P-S seismic

impedances derived from seismic data. . . . . . . . . . . . . . . . . . . . . 175

A.1 Properties of materials consisting of the core models. . . . . . . . . . . . . 195

A.2 Forward modeling specifications. . . . . . . . . . . . . . . . . . . . . . . . 195

A.3 Estimated quality factors from forward modeling. . . . . . . . . . . . . . . 201

xiv



List of Figures

2.1 Schematics of various rock property effects on seismic velocity. . . . . . . 7

2.2 Effects of rock property changes on the K � � relation in Han’s sandstone. 10

2.3 Effects of four rock property changes on the K � � relation. . . . . . . . . 11

2.4 Effects of four rock property changes on the Vp � � relation. . . . . . . . . 12

2.5 The effects of porosity changes on combinations of seismic attributes in

water-saturated conditions at an effective pressure of 40 MPa. . . . . . . . . 15

2.6 Clay content dependence on combinations of seismic attributes in water-

saturated conditions at an effective pressure of 40 MPa. . . . . . . . . . . . 16

2.7 Contour maps of porosity and the clay content in the AIp � EI and �� �

domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Effective pressure dependence of combinations of seismic attributes in

water-saturated conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 The fluid saturation dependence of combinations of seismic attributes at an

effective pressure of 40 MPa. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Summary of rock physics effects on seismic attributes. . . . . . . . . . . . 22

2.11 Seismic attribute crossplots of four North Sea sandstones. . . . . . . . . . . 24

2.12 Interpretation of three rock physics effects, diagenesis, the textural varia-

tion, and the pressure in six attribute domains. . . . . . . . . . . . . . . . . 25

2.13 Contours of constant-K� curves in the K � � domain. . . . . . . . . . . . 27

2.14 Contours of constant-� curves in the K � � domain. . . . . . . . . . . . . 28

2.15 Contours of constant-�pore curves using Berryman’s self-consistent ap-

proximation (1980). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.16 Modified Voigt lines for various clay content. . . . . . . . . . . . . . . . . 30

xv



2.17 Rock physics model parameters in Vp � Vs domain. . . . . . . . . . . . . . 33

2.18 Rock physics model parameters in �� � domain. . . . . . . . . . . . . . . 34

2.19 Rock physics model parameters in the AIp � Vp=Vs domain. . . . . . . . . 36

2.20 Rock physics model parameters in the AIp � EI domain. . . . . . . . . . . 37

2.21 Rock physics model parameters and rock physics effects observed in Han’s

data in the AIp � EI domain. . . . . . . . . . . . . . . . . . . . . . . . . 38

2.22 Rock physics model parameters in AVO crossplot. . . . . . . . . . . . . . . 39

2.23 Rock physics model parameters and rock physics effects observed in Han’s

data in the AV O domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Sandstone and carbonate in five seismic attribute domains. . . . . . . . . . 45

3.2 Vp � Vs relation of water-saturated sandstone. . . . . . . . . . . . . . . . . 46

3.3 Vp � Vs relations of water-saturated limestone. . . . . . . . . . . . . . . . . 46

3.4 Physical realization of Hashin-Shtrikman bounds. . . . . . . . . . . . . . . 48

3.5 Hashin-Shtrikman upper and lower bounds of the bulk modulus and the

shear modulus for water-saturated quartz sandstone. . . . . . . . . . . . . . 48

3.6 Hashin-Shtrikman bounds for water-saturated quartz sandstone in theK��

domain (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Hashin-Shtrikman bounds for water-saturated quartz sandstone in theK��

domain (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Hashin-Shtrikman bounds of the Poisson’s ratio for water-saturated quartz-

sandstone as a function of porosity. . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Hashin-Shtrikman bounds for water-saturated quartz sandstone in the Vp�

Vs domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Hashin-Shtrikman bounds for water-saturated limestone in the Vp � Vs do-

main. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.11 Hashin-Shtrikman bounds for water-saturated quartz sandstone in the Vp�

Vs � � domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12 Bounding average method. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.13 Sandstone data and the corresponding Hashin-Shtrikman upper and lower

bounds in the K � � domain and in the �� � domain. . . . . . . . . . . . 55

xvi



3.14 Stiffness indices of sandstones. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.15 Carbonate data and the corresponding Hashin-Shtrikman upper and lower

bounds in the K � � domain and in the �� � domain. . . . . . . . . . . . 56

3.16 Stiffness indices of carbonates. . . . . . . . . . . . . . . . . . . . . . . . . 57

3.17 Stiffness indices of four contact models. . . . . . . . . . . . . . . . . . . . 58

3.18 Stiffness indices of inclusion models. . . . . . . . . . . . . . . . . . . . . . 59

4.1 Probability density functions of porosity in two reservoirs, A and B. . . . . 63

4.2 Probability density functions of porosity with complete knowledge and

complete ignorance about porosity. . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Vp � � relations of a North Sea reservoir. . . . . . . . . . . . . . . . . . . 66

4.4 Bivariate pdf of Vp and �, p(Vp; �) of a North Sea reservoir. . . . . . . . . . 66

4.5 The conditional pdf of porosity given a velocity and the marginal pdf of

porosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Probability density functions to express information given by erroneous data. 70

4.7 Observed discrete data and the bivariate pdf of Vp and Vs of gas and water-

saturated sandstones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Changes of bin sizes in coordinate transform of probability mass function. . 74

4.9 The pdfs of Vp for brine-saturated and oil-saturated reservoirs,

p(Vp; f luid = brine) and p(Vp; f luid = oil). . . . . . . . . . . . . . . . . 76

4.10 The conditional pdfs Vp given fluids. . . . . . . . . . . . . . . . . . . . . . 81

4.11 The Bayes interpretation errors. . . . . . . . . . . . . . . . . . . . . . . . 82

4.12 Comparison between the Bayes decision criterion and the minimum-

Mahalanobis-distance discriminant criteria. . . . . . . . . . . . . . . . . . 85

4.13 Hashin-Shtrikman bounds of Vp for quartz-water aggregate. . . . . . . . . . 87

4.14 The trivariate pdf of porosity, Vp, and Vs, p(�; Vp; Vs), in a North Sea reservoir. 89

4.15 Conditioning of porosity pdf by Vp and Vs information, corresponding to

the trivariate pdf in Figure 4.14. . . . . . . . . . . . . . . . . . . . . . . . 90

4.16 The bivariate pdfs of Ip and Is, for brine and gas sand and the equivalent

pdfs in (��; ��) domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.17 Information transfer in Markov chain. . . . . . . . . . . . . . . . . . . . . 93

xvii



4.18 Information transfer in geophysical data processing. . . . . . . . . . . . . . 95

5.1 The process of rock property estimation from seismic data. . . . . . . . . . 99

5.2 The trivariate pdf of Vp, Vs, and density for gas- and water-saturated sand-

stones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 The bivariate pdf of Vp and Vs for gas- and water-saturated (blue) sandstones.101

5.4 The pdfs of Vp and Vs for gas- and water-saturated sands. . . . . . . . . . . 104

5.5 The pdfs of Vp and Vs for gas- and water-saturated sandstones. . . . . . . . 106

5.6 The bivariate pdfs of Vp and Vs for gas- and water-saturated sand with dif-

ferent measurement errors. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Well log profile of a Tertiary turbiditic reservoir in the North Sea. . . . . . . 110

5.8 Four cross-plots of seismic attributes in a North Sea reservoir. . . . . . . . 111

5.9 Univariate and bivariate pdfs at the in-situ condition in a North Sea reservoir.113

5.10 Univariate and bivariate pdfs at a seismic observation in a North Sea reservoir.114

5.11 Information about lithofacies carried by single and pairs of seismic at-

tributes, I(faciesjattributes), in a North Sea reservoir. . . . . . . . . . . . . 112

5.12 Well log profile of an Australian sandstone. . . . . . . . . . . . . . . . . . 116

5.13 Univariate and bivariate pdfs at the seismic observation in an Australian

reservoir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.14 Information about lithofacies carried by single and pairs of seismic at-

tributes in an Australian reservoir. . . . . . . . . . . . . . . . . . . . . . . 118

5.15 The pdfs of seismic attributes for three different pore fluids in a North Sea

reservoir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.16 Information about pore fluids carried by single and pairs of seismic at-

tributes in a North Sea reservoir. . . . . . . . . . . . . . . . . . . . . . . . 120

5.17 Information about pore fluids carried by single and pairs of seismic at-

tributes in an Australian reservoir. . . . . . . . . . . . . . . . . . . . . . . 120

5.18 Information about porosity carried by single and pairs of seismic attributes

in a North Sea reservoir. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.19 Information about porosity carried by single and pairs of seismic attributes

in an Australian reservoir. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xviii



5.20 Success ratio of blind tests. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1 Dependence of acoustic velocity on the ratio of the wavelength relative to

the scale of layering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Schematic geometry of the numerical simulation. 200 m-thick reservoir,

consisting of interbedded sand and shale is at a depth of 2,000 m. . . . . . . 128

6.3 Periodically layered reservoir models. . . . . . . . . . . . . . . . . . . . . 129

6.4 Reflected seismograms simulated from the periodically layered reservoir

models in Figure 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Reflection amplitudes at the top reservoir as a function of interbedded layer

thickness, picked from Figure 6.4. . . . . . . . . . . . . . . . . . . . . . . 131

6.6 Examples of layered reservoir models from a Poisson process. . . . . . . . 132

6.7 Layer thickness distribution in reservoir models from a Poisson process of

average thickness of 1 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.8 Zero offset reflected waves simulated from the reservoir models shown in

Figure 6.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.9 Distributions of reflectivity for various average interbedded thickness. . . . 134

6.10 Distributions of reflectivity for various sand/shale ratio. . . . . . . . . . . . 135

6.11 Gamma ray profiles in three North Sea wells. . . . . . . . . . . . . . . . . 138

6.12 Sand-shale layering in three North Sea wells. . . . . . . . . . . . . . . . . 139

6.13 Experimental semivariograms at three wells and the model variogram. . . . 140

6.14 Ten realizations of reservoir models from a sequential indicator simulation

based on the variogram model shown in Figure 6.13. . . . . . . . . . . . . 140

6.15 Simulated reflection seismograms for the ten reservoir models in Fig-

ure 6.14 with the stationary variogram model from the wells. . . . . . . . . 141

6.16 Distribution of reflectivity for different sand/shale ratio simulated from the

reservoir models with stationary vertical correlation. . . . . . . . . . . . . 142

6.17 Bivariate pdf of reflectivity and the sand/shale ratio. . . . . . . . . . . . . . 143

6.18 pdfs at well-log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.19 Conditional pdfs of the sand/shale ratio given P-wave reflectivity. . . . . . . 145

6.20 Trivariate pdf of P and S reflectivity and sand/shale ratio. . . . . . . . . . . 146

xix



6.21 Conditional pdfs of sand/shale ratio given P-wave and S-wave reflectivity

pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1 Alba Field location map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Well log profiles of the Alba reservoir at well 1. . . . . . . . . . . . . . . . 153

7.3 The Vp � � relation of the Alba sandstone (well 1) combined with several

other sandstone data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4 The Alba sandstone (well 1) compared with rock physics model curves. . . 155

7.5 The Vp � � relation of the Alba sandstone and shale at four different wells. 155

7.6 The Vp � Vs relation of the Alba sandstone (well 1) plotted with other

sandstone data and three linear regression lines. . . . . . . . . . . . . . . . 156

7.7 The Vp�� relation of the two facies of the Alba reservoir—above the OWC

and below the OWC—at well 1. . . . . . . . . . . . . . . . . . . . . . . . 157

7.8 The Vp�� relation of the two facies of the Alba reservoir—above the OWC

and below the OWC—at well 1 overlain by Dvorkin and Nur’s cementation

curves and constant pore stiffness curves. . . . . . . . . . . . . . . . . . . 157

7.9 The Vp�� relation of the two facies of the Alba reservoir—above the OWC

and below the OWC—at various wells. . . . . . . . . . . . . . . . . . . . . 158

7.10 The Vp � Vs relation of the Alba sandstone and shale. . . . . . . . . . . . . 160

7.11 The relation between the P-wave acoustic impedance (AIp) and the elastic

impedance at an incidence angle of 30 degrees (EI(30)), for oil sand, brine

sand, and shale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.12 The univariate and bivariate pdfs of the acoustic impedance (AIp) and the

elastic impedance at an incidence angle of 30 degrees (EI(30)), for oil

sand, brine sand, and shale. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.13 The relation between the P-wave acoustic impedance (AIp) and the pseudo-

impedance from P-S seismic data at a reflected angle of 22 degrees

(Ips(22)), for oil sand, brine sand, and shale. . . . . . . . . . . . . . . . . . 163

7.14 The univariate and bivariate pdfs of the P-wave acoustic impedance (AIp)

and the pseudo-impedance from P-S seismic data at a reflected angle of 22

degrees (Ips(22)), for oil sand, brine sand, and shale. . . . . . . . . . . . . 163

xx



7.15 A SW-NE seismic section (section A) from P-P near offset stack. . . . . . . 165

7.16 A SW-NE seismic section (section A) from P-P far offset stack. . . . . . . . 165

7.17 A SW-NE seismic section (section A) from P-S far offset stack. . . . . . . . 166

7.18 Water-saturation profile of the Alba reservoir—the longitudinal section

(NW-SE) which go through well 1—after oil production, output from the

flow simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.19 Water-saturation and P- and S-wave velocities profile at well 1 before and

after oil production, extracted from the eclipse output in Figure 7.18. . . . . 167

7.20 The bivariate pdf of the P-wave acoustic impedance and the elastic

impedance for the reservoir condition after production. . . . . . . . . . . . 168

7.21 Well log and seismic correlation at well 1. . . . . . . . . . . . . . . . . . . 169

7.22 The acoustic impedance at section A, derived from the near-offset stack

seismic section in Figure 7.15 . . . . . . . . . . . . . . . . . . . . . . . . 169

7.23 The elastic impedance profile at section A, derived from the far-offset stack

section in Figure 7.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.24 A comparison of the well-log-derived and seismic-derived impedances at

well 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.25 AIp � EI(30) cross-plot of the entire section A. . . . . . . . . . . . . . . . 172

7.26 Estimated bivariate pdfs representing seismically observed acoustic and

elastic impedances (thin outer contours). . . . . . . . . . . . . . . . . . . . 173

7.27 The P-S pseudo-impedance at section A, derived from the far-offset stack

section in Figure 7.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.28 A comparison of the well-log-derived and seismic-derived impedances at

well 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.29 AIp � Ips(22) cross-plot of the entire section A. . . . . . . . . . . . . . . . 175

7.30 Estimated bivariate pdfs representing seismically observed acoustic and P-

S pseudo- impedances (thin outer contours). . . . . . . . . . . . . . . . . . 176

7.31 Lithology and pore fluids at section A, predicted by a combination of the

acoustic and elastic impedances. . . . . . . . . . . . . . . . . . . . . . . . 177

7.32 Lithology and pore fluids at section A, predicted by a combination of the

acoustic impedance and the P-S pseudo-impedance. . . . . . . . . . . . . . 178

xxi



7.33 Comparisons of predicted facies from seismic impedances and actual ob-

servations at wells 5 and 1. Refer to Figure 7.31 for the legend. . . . . . . . 179

A.1 Schematic picture of time-reversed acoustics. . . . . . . . . . . . . . . . . 191

A.2 Schematic picture of the proposed method. . . . . . . . . . . . . . . . . . . 193

A.3 Waveforms for Model 1: Heterogeneous and Elastic model. . . . . . . . . . 197

A.4 Waveforms for Model 2: Homogeneous and Visco-Elastic model. . . . . . 198

A.5 Waveforms for Model 3: Heterogeneous and Visco-Elastic model. . . . . . 200

xxii



Chapter 1

Introduction

The objective of geophysical measurements is to estimate spatial distributions of sub-

surface properties. In exploration geophysics, subsurface properties of interest include the

reservoir architecture, porosity, fluid saturation, pore pressure, lithology, and permeability.

In the procedure of the subsurface property estimation, it is usual that geophysicists first

produce spatial distributions of seismic attributes from observed seismic data, such as seis-

mic velocity, impedance, amplitude, and traveltime, through data processing and inversion.

Then from the derived seismic attributes, we estimate subsurface properties of interest us-

ing rock physics theories and/or statistical methods, along with well-log data. In spite of

our hope and efforts of accurately estimating subsurface properties, the estimation—both

the first process from observed seismic data to seismic attributes, and the second from

seismic attributes to subsurface properties—is almost always non-unique and subject to a

significant amount of uncertainty (Tarantola and Valette, 1982; Mavko and Mukerji, 1998;

Claerbout, 1999). The uncertainty arises because of many inevitable causes; inconsistent

data acquisition conditions, limited availability of data as compared to the subsurface het-

erogeneity, restricted bandwidth of seismic waves, imperfect dependence between seismic

attributes and subsurface properties, insufficient rock physics knowledge, and many others.

The uncertainty in geophysical prospecting has been identified for a long time. However,

until recently, data quality had been too poor and available data had been too sparse to

1



CHAPTER 1. INTRODUCTION 2

quantitatively discuss the uncertainty. Hence, quantitative framework to describe the un-

certainty has not been well established.

One simple but powerful way of increasing information and therefore reducing uncer-

tainty about rock properties, is using more than one seismic attribute for an estimation.

Recent advancements in seismic data acquisition and processing techniques have enabled

us to obtain non-conventional seismic data in addition to conventional P-P reflection pro-

files, and thereby provide us with multiple seismic attributes. For example, a new seismic

tool of ocean bottom multicomponent receivers enables us to obtain P-S converted wave

data and provides us with new seismic attributes of the P-S reflectivity and the P-S pseudo-

impedance. Combinations of different seismic observables convey more information about

subsurface properties than single observables. The goal of this thesis is to understand the

relation between rock properties and multiple seismic attributes, and to quantify their de-

pendence.

Chapter 2 explores the relationships between rock properties and combinations of seis-

mic attributes. Rock physics research, both theoretical and experimental, has enabled us to

understand the relations between rock properties and seismic velocities (Hilterman, 1998;

Mavko et al., 1998). However, the effects of rock properties on other attributes and on

the dependences between attributes are much less investigated. In order to understand the

rock property effects on several combinations of seismic attributes, we use laboratory data

samples from various geological conditions. Our results show that rock properties indis-

tinguishable by an attribute pair can be distinguished by optimal selection of a different

attribute pair. Moreover, we show that some rock physics model parameters describe well

the experimental relations between rock properties and seismic attributes, and help us ex-

trapolate the limited laboratory measurements. The established relationships between rock

properties and seismic attributes will enable us to better interpret rock properties from mul-

tiple seismic observables. In chapter 3, by focusing on the dependences of Vp�Vs relations

on lithology, we investigate how the relation between seismic attributes can tell us about

the microstructures of rocks.

Due to the non-unique relation between observed seismic data and objective rock prop-

erties, any estimates of rock properties derived from seismic data is no more than one pos-

sible answer satisfying given data and given conditions. Data available to us almost never
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give sufficient information to specify the subsurface properties of interest. Hence, quan-

titatively understanding the dependence between seismic attributes and rock properties—

how seismic data constrain our information about target rock properties—is crucial. Chap-

ter 4 explores statistical formulations of information theory and Bayes decision theory to

describe the dependence between seismic attributes and rock properties of interest (Mid-

dleton, 1960; Ash, 1965; Fukunaga, 1972; Duda and Hart, 1973). The formulations us-

ing probability density functions enable us to integrate uncertainties arising from various

causes, and to evaluate the information about rock properties provided by seismic data. The

results show that acquired data, physical theories, and geological knowledge are sources of

information about rock properties, which reduce uncertainty of their estimation. However,

data manipulations do not bring about any new information if the process is a Markov

chain (Cover and Thomas, 1991).

Information provided by seismic data is influenced by many factors. The factors in-

clude type and number of seismic attributes, sensitivity of the attributes to the objective

properties, natural variability of the target rock properties, and accuracy of derived seismic

attributes. In chapter 5, we apply the formulation developed in chapter 4 and quantitatively

discuss how information carried by seismic data is influenced by these factors. We show

that the selection of optimal attributes is variable, depending on target rock properties.

No single choice of attributes is optimal for estimating all rock properties. The proposed

framework of quantifying information given by seismic data will serve as a decision making

guideline in various exploration stages.

Chapter 6 proposes a method of evaluating uncertainty about rock property estimation

caused by ignorance of other properties, specifically, the scale effect on the relation be-

tween seismic reflectivity and the sand/shale ratio of reservoirs. Any seismic properties is

dependent on the scale of heterogeneity of the media (Mukerji, 1995). Hence, ignorance

of the scale increases uncertainty about the rock property estimation. A combination of

stochastic simulation and seismic forward modeling enables us to non-parametrically re-

alize Bayes inversion. The method establishes a bivariate probability density function to

describe the relation between seismic reflectivity and the sand/shale ratio when scale of

heterogeneity of a reservoir is variable (Tarantola and Valette, 1982; Gastaldi et al., 1998).

The generality of the proposed method makes it applicable to any estimation problems
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which are accompanied by uncertainty.

In chapter 7, we explore well log and seismic data from the North Sea and investigate

how the P-S converted wave seismic data constrain rock properties as compared to the con-

ventional P-P data. Results from quantitative investigation of the well data show that a

combination of P-P near and far offset impedances is as informative as a combination of

P-P near and P-S impedances, when the measurements are error-free. However, a compar-

ison of the impedances derived from seismic data reveals that the P-S impedance is more

informative, confirming the effectiveness of P-S surveys in reservoir characterization in the

field investigated in this study.



Chapter 2

Interpreting Rock Properties on Seismic

Attribute Domains

Abstract

Developments in seismic data acquisition and processing, especially in multi-

component techniques, have enabled us to extract various seismic attributes from seismic

data than before. Hence, physical understanding of the relation between seismic attributes

and rock properties is becoming more crucial for seismic interpretation.

In this chapter, we investigate existing laboratory and well data in relation to rock

physics models so that we may better understand the effect of rock property changes on

various seismic attributes and the interdependence between attributes. Our results show

that a combination of seismic attributes enables us to interpret rock properties even when

more than one rock property is variable. Furthermore, rock properties indistinguishable in

some attribute domains can be distinct by optimal selection of seismic attributes. We find

that the Vp � Vs and AVO attribute combinations can predict pore fluids even when other

rock properties are uncertain. On the other hand, combinations of acoustic impedance and

elastic impedance (non-zero offset impedance) may separate two geological processes, di-

agenesis and textural variation.

5
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We then explore the dependence of several rock physics model parameters, pore stiff-

ness, Biot coefficient, pore aspect ratio, and critical porosity, with respect to the rock prop-

erty changes. We find that contours of pore stiffness and Biot coefficient approximate tex-

tural variation, whereas constant-aspect ratio and constant-critical porosity curves mimic

diagenetic trends. The rock physics model parameters help us extend our understanding of

rock physics to various attribute domains and serve as physical bases in interpreting rock

properties from seismic attributes.

2.1 Introduction

2.1.1 Motivation

Estimating the spatial distribution of heterogeneous reservoir properties, such as poros-

ity, lithology, and pore fluids, from seismic data is critical for economic oil field develop-

ment and management. For the purpose of seismic interpretation away from wells where

only seismic data are available, the relation between rock properties and seismic properties

must be well established. Effects of individual rock properties on P-wave velocity, as well

as on bulk modulus, have been studied extensively in rock physics (Mavko et al., 1998;

Hilterman, 1998). Figure 2.1 concisely summarizes effects of various rock properties on

the seismic velocity.

When seismic attributes are influenced by more than one rock property, as in many

cases, a single seismic attribute may not be enough to predict a particular objective rock

property reliably. For example, porosity estimation from seismic velocity becomes diffi-

cult when the clay content is variable. Furthermore, predictability of fluid saturation from

velocity suffers when the pore pressure is unknown.

Use of two or more seismic attributes in rock property estimation allows us to extract

more information from seismic data than single attributes. During the past decade, the im-

provements in data acquisition and processing methods have enabled us to extract seismic

information beyond conventional zero-offset P-wave reflectivity. The recently developed

data acquisition methods include long offset surveys to obtain AVO attributes for large
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Figure 2.1: Schematics of various rock property effects on seismic velocity. (Modified
from Hilterman (1998) )

incidence angles, ocean bottom surveys to acquire converted wave P-S data, and 9 com-

ponent land surveys to record full elastic wavefields. Thanks to this progress, many kinds

of seismic attributes are becoming available for rock property estimation. However, the

inter-relations among different attributes are less understood, and only empirical statistical

correlations of seismic attributes and target rock properties at calibration wells are usually

emphasized in seismic reservoir property estimation (Kalkomey, 1997).

In this chapter, we extend existing rock physics knowledge of reservoir properties to

various seismic attributes and pairs of attributes. Using well-log and laboratory data, we

explore the signatures of important rock properties on various seismic attribute domains,

so that we may better understand how the rock properties influence the interdependence
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among these attributes. The rock properties that we investigate include diagenesis, textural

variation, pressure, and pore fluids. We will see that combinations of seismic attributes

help us to interpret rock properties more reliably, even when more than one rock property

is variable. Our results show that rock property effects indistinguishable in some attribute

domains can be distinctive by optimal selection of attributes. Furthermore, we interpret

the rock property effects in terms of several rock physics model parameters, such as pore

stiffness, Biot coefficient, pore aspect ratio, and critical porosity. The model parameters

provide us with the physical validation of the rock property effects in seismic attribute

domains identified in the laboratory data, and enable us to extend laboratory observations

to field seismic attributes.

In chapter 4, we will introduce statistical formulations, information theory and Bayes

decision analysis, to quantify the dependence between rock properties and seismic at-

tributes. Combination of the results from this chapter—rock physics—and chapter 4—

quantitative formulation—will provide a guideline for quantitative interpretation of seismic

attributes.

2.1.2 Chapter Outline

In section 2.2, we summarize effects of four important rock properties (i.e., diagenesis,

textural variation, pressure, and pore fluids) on theK�� (bulk modulus - porosity) domain,

where many rock physics theories have been investigated and many rock property effects

are relatively well understood. Section 2.3 explores effects of the individual rock properties

across five different seismic attribute domains. We use laboratory sandstone data from

the Gulf of Mexico measured by Han (1986) and show how porosity, clay, pressure, and

saturation can be distinguished in different attribute domains. We also investigate the rock

property seismic signatures in North Sea sandstone data and find similar characteristics as

identified in Han’s data. In section 2.5, we introduce several rock physics model parameters

and summarize their relationships with the rock properties in the K � � domain. We then

extend the model parameters to seismic attribute domains so that we may better understand

the effects of rock property changes in each domains.



CHAPTER 2. INTERPRETATION ON ATTRIBUTE DOMAINS 9

2.2 Effect of Rock Property Changes on Bulk Modulus

and Porosity

Various rock property effects on the K � � (Bulk modulus - porosity) relation have

been extensively studied by many rock physicists (Mavko et al., 1998; Hilterman, 1998).

Figure 2.2 shows typical examples of the K � � dependence of four major rock prop-

erty changes identified in Han’s sandstone data (1986). The samples are well-consolidated

sandstones from the Gulf Coast. The samples have various porosities (3% to 30%), as

well as various clay contents (0% to 55%). Ultrasonic measurements of these samples

were performed at a range of effective pressures from 5 MPa to 40 MPa in both dry and

water-saturated conditions.

We divide the entire data into subgroups and investigate the effect of each single rock

property on the K � � relation, while other rock properties are maintained constant. In the

data set, decreasing porosity with the remaining properties (i.e., clay content, pressure, and

pore fluid) maintained constant mimics trends of increasing diagenesis (e.g., cementation

and mechanical compaction). Similarly, increasing the clay content within a sub-group

having the same sampled depth, effective pressure, and pore fluid, but with variable porosi-

ties, approximates textural variation (i.e., good sorting to poor sorting).

When the variation of porosity is controlled by diagenesis, the K � � relation tends to

have a steep slope, as shown in Figure 2.2-A. This effect can be described by the modified

Voigt line (Nur et al., 1995) or by Han’s regressions (1986). On the other hand, when the

variation of porosity is due to the textural variation, the bulk modulus is less sensitive to

the porosity. The K � � relation is flatter and can be mimicked by the modified lower

Hashin-Shtrikman bound (Hashin and Shtrikman, 1963; Dvorkin and Nur, 1996; Avseth

et al., 1998a; Avseth et al., 2000) as shown in Figure 2.2-B. The effective pressure trend

in the K � � relation is quasi-vertical, since increasing an increment of effective pressure

stiffens rocks with a little decrease of the porosities (Figure 2.2-C). Furthermore, the pore

fluid trend is vertical in the K � � domain; a change in the fluid bulk modulus does not

directly influence the porosity, but it changes the bulk modulus of the rock (Figure 2.2-D).

The four rock physics effects are schematically summarized in Figure 2.3. According
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Figure 2.2: Effects of rock property changes on the K � � relation in Han’s sandstone:
A) Diagenesis effect (Increasing depth) for different clay content subgroups (water-
saturated samples with an effective pressure of 40 MPa), B) Textural variation (In-
creasing clay content) for different depth subgroups (water-saturated samples with an
effective pressure of 40 MPa), C) Pressure (Increase effective pressure), and D) Pore
fluid (From dry to water-saturated samples at an effective pressure of 40 MPa).

to the critical porosity model (Nur et al., 1991; Nur, 1992; Nur et al., 1995), rocks gen-

erally have porosities lower than their critical porosities, �c, where they change from the

suspension state to load-bearing state. The critical-porosity point and the mineral point are

the high-porosity and zero-porosity end members of these rocks, respectively. The K � �

relation follows a linear trend from the critical porosity point to the mineral point, if diage-

nesis controls the porosity decrease. In contrast, the K�� relation can be approximated by

modified lower Hashin-Shtrikman bounds when the porosity is controlled by the textural
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Figure 2.3: Effects of four rock property changes on the K � � relation. Two important
geological effects, diagenesis and texture, have different slopes; Diagenesis, mimicked
by the modified Voigt model, produces a steeper slope than the textural variation, mim-
icked by the modified Hashin-Shtrikman bounds. Pressure varies bulk stiffness with
little influence on the porosity, while fluid only affects the bulk stiffness. MV and
HSLB denote the modified Voigt model and the Hashin-Shtrikman lower bound, re-
spectively.

variation. Effective pressure increases the bulk modulus with small decrease of the poros-

ity. The pore fluid only influences the bulk modulus without any change of the porosity.

A combination of porosity and bulk modulus enables us to interpret these different rock

properties, since each effect has a different slope in the K � � domains. However, when

only the bulk modulus is available and two or more rock properties are variable, the rock

property interpretation is non-unique.

The rock physics effects on the Vp�� domain are similar to those on the K�� domain,

since Vp and K are usually well correlated. Hence, these effects can also be characterized

by arrows of different slopes as in Figure 2.4. Measurement of Vp only may not be enough

to identify the types of rock property causing the velocity change, again. For example,

high-porosity, cemented, and well-sorted sandstones may have similar Vp as low-porosity,
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un-cemented, and poorly-sorted sandstones, as indicated by two circles in Figure 2.4. These

two facies are indistinguishable only from Vp.

2.3 Effects of Rock Properties on Seismic Attribute Pairs

in Gulf Coast Data

In this section, we derive various seismic attributes from Han’s measurements of P-

and S-wave velocities and density, to investigate the effects of rock properties on various

combinations of attributes. Five typical pairs of attributes are investigated, including, Vp �

Vs, ��� (Lamé’s constant-shear modulus),AIp�Vp=Vs (P-wave acoustic impedance-Vp=Vs

ratio), AIp � EI(30) (P-wave acoustic impedance - Elastic impedance at 30 degree angle
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of incidence (Mukerji et al., 1998)), and G�RC(0) (AVO gradient-AVO intercept). These

attributes are nonlinear transforms of the measured basic observations, namely, Vp; Vs, and

density. For AVO attributes representing boundary properties, homogeneous shaly caprock

is assumed. Elastic and acoustic impedances, AVO coefficients, and P- and S-velocities can

be directly derived from seismic data, and hence are of practical importance.

Our purpose is extending our understanding about the effects of the four rock properties

discussed in Figure 2.3 to various seismic attribute domains, so that we may better interpret

the rock properties from observed seismic attributes. We investigate rock physics effects

on multiple seismic attribute domains, which may be expressed as

@Attributes

@RockProp:

����
const:otherprop:

(2.1)

i.e., partial derivative of seismic attributes with respect to a rock property, while other rock

properties are maintained constant. Using multiple attributes, we hope to distinguish the

individual rock property effects, which is impossible from only one seismic observable.

Later in section 2.4 we perform a similar investigation on another sandstone data from the

North Sea, and compare the results with this section.

2.3.1 Diagenesis and Texture

We first investigate effects of two major classes of geological processes that affect

porosity—diagenesis and textural variation—on the five pairs of attributes, namely, Vp�Vs,

� � �, AIp � Vp=Vs, AIp � EI(30), and G � RC(0). As shown in Figure 2.2-A, we as-

sume that the diagenetic trend in Han’s data is mimicked by varying porosity with the

other properties maintained constant. Similarly, we presuppose that the textural variation

in Han’s data is mimicked by varying the clay content with the depth maintained constant,

as in Figure 2.2-B.
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Effect of Porosity (Diagenesis)

In Figure 2.5, the arrows show the overall trajectories of the points when porosity is

decreased in each subgroup having the same clay content and the same measurement con-

ditions (water-saturated samples at a constant effective pressure of 40 MPa). This effect

may be expressed as �@A

@�
jclay, whereA is each pair of attributes.

In the cross-plots of Vp � Vs and G � RC(0) in Figures 2.5-A and E, the parallel and

slightly overlapped arrows show the stationarity of the porosity effect in these domains with

respect to the clay content. In contrast, the directions of the arrows are radially variable in

the ��� domain (Figure 2.5-B); data corresponding to higher clay content are characterized

by a steeper slope of �with respect to �. TheAIp�Vp=Vs plot (Figure 2.5-C) shows that the

Vp=Vs ratio decreases when porosity decreases. The nearly vertical arrows in AIp�EI(30)

demonstrate that EI(30) is not sensitive to porosity changes in this data set (Figure 2.5-D).

Effect of Clay Content (Texture)

The dependence of attributes on clay contents in different depth subgroups is shown by

arrows in Figure 2.6. These lines may be expressed as @A

@clay
jdepth=age.

In the Vp � Vs and G � RC(0) domains (Figures 2.6-A and E), the orientation of the

clay effect is similar to the effects of porosity in Figure 2.5. In contrast, in the ���, AIp�

Vp=Vs, and AIp � EI(30) domains (Figures 2.6-B,C, and D), the clay effects are oblique

to the porosity effects, when the sample is relatively shallow. This difference implies the

separability of the porosity and clay effects in these domains for shallow rocks. Figure 2.6

shows that the Vp=Vs ratio for shallow samples increases when the clay content increases.

This observation is consistent with the dependence of the Vp=Vs ratio on sorting identified

by Avseth et al. (1998a); poor sorting increases the Vp=Vs ratio. For deep samples, however,

the Vp=Vs ratio slightly decreases as the clay content increases.

For the ��� andAIp�EI(30) domains, in which the data are more scattered than in the

other three, the contours of porosity and clay content are illustrated as shown in Figure 2.7.

For the AIp�EI(30) domain (Figures 2.7-A and C), porosity decreases towards the upper

right, and the clay content increases towards the right. These results show that in Han’s

data, the elastic impedance is a good indicator of shaliness, while acoustic impedance is

more dependent on porosity. In contrast, in the � � � domain (Figures 2.7-B and D),
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Figure 2.7: Contour maps of porosity and the clay content in the AI p � EI and � � �
domains

porosity decreases towards the upper right and clay content increases towards the upper

left. These contours are purely empirical, and therefore, only valid within the data analyzed

here.

2.3.2 Pressure Change

We discuss the dependence of seismic attributes on effective pressure, as shown in

Figure 2.8. The arrows show the trajectories of increasing the effective pressure in each

sample.

In all domains, the pressure effects are small compared to the total variation caused by
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Figure 2.8: Effective pressure dependence of combinations of seismic attributes in water-
saturated conditions. Arrows show the trajectories of increasing the effective pressure
in each clay content subgroups. The pressure effect depends on the clay content in the
� � � domain. The effects of pressure are generally small compared to the scatter of
the data.
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diversity of porosity and clay content. Figure 2.8 shows that the directions of the pressure

effect are almost uniform within each attribute domain, except in ��� (Figure 2.8-B). The

dependence of � on the effective pressure varies with the clay content; if the clay content is

large, the � increases with the effective pressure. In contrast, � decreases with the effective

pressure if the sample is clean. As a result, the arrows showing the pressure effect rotate as

the clay content changes.

The observation in Figure 2.8-B means positive @�

@P
for large clay contents and negative

@�

@P
for small clay contents. Considering � = K �

2

3
�, where K and � are the bulk and

shear modulus, respectively, dependence of the Lamè’s constant on the effective pressure

(P ) can be expressed as

@�

@P
=

@K

@P
�

2

3
�

@�

@P
(2.2)

Hence, we can deduce that @K

@P
> 2

3
�
@�

@P
(i.e., the bulk modulus is more sensitive to pressure

than the shear modulus) for small clay contents and @K

@P
< 2

3
�
@�

@P
(i.e., the shear modulus is

more sensitive to pressure than the bulk modulus) for large clay contents.

2.3.3 Pore Fluid Effect

In this section, we discuss the relation between seismic attributes and pore fluids. Fig-

ure 2.9 shows five cross-plots of the same data as in Figure 2.2. Arrows represent the effect

of increasing water saturation on each porosity subgroup. In Figure 2.9, the water-saturated

samples are clearly separated from the dry samples in any of the five attribute domains. The

directions of arrows imply that the Vp=Vs ratio and the elastic impedance are more sensitive

to pore fluids than AIp. The fluid effect becomes greater for more compliant rocks with

greater porosity.

2.3.4 Discrimination of Rock Physics Effects

We combine the results from the previous sections to investigate which pairs of at-

tributes can best discriminate the various rock properties of interest. Figure 2.10 summa-

rizes typical trends of the four different rock physics effects, porosity (diagenesis), clay
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content (texture), effective pressure, and pore fluid, in the five seismic attribute domains,

borrowed from Figures 2.5 through 2.9.

According to Figures 2.10-A and E, the Vp � Vs and G � RC(0) domains have sev-

eral similar features: the trends for variation in porosity, the clay content, and the effective

pressure are similar, while the pore fluid trend is roughly perpendicular to these three prop-

erties. Therefore, discrimination among the former three effects might be difficult, whereas

the pore fluid effect might be more separable from others. That is, even when porosity, clay

content and/or pressure are diverse, pore fluid prediction can be possible in these domains.

In the AIp � Vp=Vs cross-plot (Figure 2.10-C), the pore fluid trend is again roughly

perpendicular to the other three effects. In addition, the clay trend can be distinguishable

from the porosity and pressure trends at the shallow depth (soft rock matrix), although its

direction is similar to the two at the deeper depth (stiff rock matrix).

The �� � and AIp � EI(30) cross-plots share similar features. The porosity and clay

effects are parallel to each other at the deeper depth, but oblique at the shallow depth, where

their separation might be possible. However, the pore fluid trend is normal to none of the

three rock physics effects and almost parallel to the clay content variation at the shallow

depth. Therefore, when any of the three properties has large variability, the prediction of

pore fluid becomes more difficult in these domains. The pressure trend in the ��� domain

is very characteristic; it rotates as the clay content decreases.

2.4 Rock Physics Effects in North Sea Sandstones

We analyze well and laboratory data from the North Sea in a way similar to that dis-

cussed in section 2.3. The data include ultrasonic laboratory measurements of high poros-

ity deltaic sandstone of early to middle Jurassic age (Strandenes, 1991) and middle to late

Jurassic shallow marine poorly consolidated sandstone (Blangy, 1992). Well log data of

Paleocene turbiditic sandstone consisting of cemented and unconsolidated facies (Avseth

et al., 2000) are also analyzed. The information about the analyzed data are summarized in

Table 2.1.

Figure 2.11 shows the North Sea data plotted in the five seismic attribute domains, as

well as in the K � � domain. The Gulf Coast sandstone investigated in section 2.3 are
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Name Age Depos. Env. Depth (km)

NS High porosity Early/Middle Jurassic Deltaic 2.5
NS Poorly consolidated Middle/Late Jurassic Shallow marine 1.5

NS Paleocene Paleocene Deep sea turbidite 2

Table 2.1: Geological information of North Sea sandstones used in the study.

overlain.

We interpret trends of three effects, diagenesis, the textural variation, and the effective

pressure. The upper-right envelop of the entire data set in theK�� domain (Figure 2.11-A)

is assumed as the diagenesis trend. Also, trends of porosity decrease within individual data

set are assumed as the trends for the textural variation, i.e., good sorting to poor sorting.

The pressure trends are derived only from the laboratory data, in which measurements at

several effective pressures are available. Figure 2.12 consists of the same data plots as in

Figure 2.11, as well as the interpretation of the three rock physics effects highlighted by

arrows.

The effects of the three rock property changes on the seismic attribute domains are

consistent with those identified in the Gulf Coast sandstone as in Figure 2.10. In the Vp �

Vs and AVO domains (Figures 2.11 B and F), the data are linearly well correlated. The

trend of the three effects for diagenesis, texture, and pressure, are along similar directions.

In the AIp � Vp=Vs domain, the increase of the Vp=Vs ratio due to poor sorting can be

apparently identified. The ��� and AIp�EI domains show more conspicuous separation

of the diagenesis trend from the textural trends in the North Sea (Figure 2.12) than in the

Gulf Coast data (Figure 2.10). In both data sets, � and EI are characterized by strong

dependence on the texture, while � and AIp are more influenced by diagenesis. The �� �

domain, again, produces distinctive pressure dependence. Increasing the effective pressure

increases � when � is small, whereas it decreases � when � is large.

The two sandstone facies indistinguishable only from the bulk modulus—high-porosity,

cemented, and well-sorted sandstone and low-porosity, un-cemented, and poorly-sorted

sandstone—can be separable by using combinations of seismic attributes.
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sandstone is also overlain. Colored data are values measured at 20 MPa and black data
are at 30 MPa.
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separated by using pairs of seismic attributes.
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2.5 Parameterization of Rock Physics Relations

Rock physics models predict rock property relations for idealized geometries of con-

stituent phases under particular physical conditions. Measured rock properties, such as the

bulk modulus and porosity, are used to estimate unknown parameters of individual rock

physics models by data fitting. For example, by observing the Vp�� relation, a pore aspect

ratio may be estimated using self-consistent models (Berryman, 1980) or a cement fraction

may be predicted from the cementation model (Dvorkin and Nur, 1996). Some physical

parameters, such as pore stiffness and Biot coefficient, represent mechanical properties of

porous rocks under particular conditions.

Rock physics model parameterization also helps us understand effects of rock property

changes in individual seismic attribute domains. A constant rock physics model parameter

corresponds to a curve in a two-attribute domain, and a set of parameters produces a set of

curves in the domain. Different parameterizations produce different sets of curves, hence

observed properties can be interpreted in several different ways.

2.5.1 Rock Physics Model Parameters in The K � � Domain

In this section, we investigate the characteristics of four rock physical model

parameters—pore stiffness, Biot coefficient, pore aspect ratio, and critical porosity—and

their behaviors in the K � � domain.

Pore Stiffness, K�

Among several measures of compressibilities of porous media, the pore stiffness of a

rock is defined as the ratio of the fractional change in the pore volume, vp, to an increment

of the applied external hydrostatic stress, �, at a constant pore pressure, Ppore (Zimmerman,

1991; Mavko et al., 1998).

1

K�

=
1

vp

@vp

@�

�����
Ppore

=
1

�

h 1

Kdry

�

1

Ko

i
(2.3)
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where Kdry and Ko are dry frame bulk modulus of the rock and the bulk modulus of the

constituent mineral, respectively.

Contours of constant-K�=Ko curves in the K � � domain are depicted in Figure 2.13.

The curves are a set of hyperbolas that go through the mineral point, (�;K) = (0; Ko).

The curve for K� = 0 matches the lower Hashin-Shtrikman bound exactly. The constant-

K� curves may violate the upper Hashin-Shtrikman (HS) bound for large K� and/or large

porosity. Comparison of Figure 2.13 with Figures 2.2 and 2.3 shows that constant-K�
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Figure 2.13: Contours of constant-K� curves in the K � � domain. HSUB and HSLB are
the Hashin-Shtrikman upper and lower bounds, respectively.

curves mimic trends of textural variation at a constant age or a constant degree of diagene-

sis. Diagenesis and effective pressure correspond to an increase in K�.

Biot Coefficient, �

The Biot coefficient, �, is defined as the ratio of pore volume change, �vp, to the bulk

volume change, �V , at a constant pore pressure, due to an incremental applied external
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hydrostatic stress.

� =
�vp

�V

�����
Ppore

=
�Kdry

K�

= 1�
Kdry

Ko

(2.4)

As clear from the definition, � is a negative measure of the pore stiffness, i.e. increasing �

corresponds to softening the rock’s matrix frame.

Contours of constant-� lines in the K � � domain are shown in Figure 2.14. They

are similar to constant-K� curves in Figure 2.13, but steeper at low porosities and flatter

at higher porosities. The line for � = 1 is exactly the same as the constant-K� line for

K� = 0, and matches the lower HS bound. Curves of constant-� mimic trends of textural
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Figure 2.14: Contours of constant-� curves in the K�� domain. Note that � is a negative
measure of stiffness.

variation, as do the curves of constant-K�. Increases of diagenesis and effective pressure

correspond to a decrease in �.

Pore Aspect Ratio, �pore

The self-consistent models, as well as differential effective medium models, predict

elastic moduli of aggregates whose pores and grains are modeled by spherical/ellipsoidal
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inclusions (Berryman, 1980; Mavko et al., 1998). The K � � relations of Berryman’s self-

consistent approximation for various pore aspect ratios, �pore, are shown in Figure 2.15.

Overlain on the curves are Han’s Gulf Coast sandstone data (1986), grouped by the clay

content.
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Figure 2.15: Contours of constant-�pore curves using Berryman’s self-consistent approxi-
mation (1980). The aspect ratio of the grain phase is maintained to be 1. Overlain are
Han’s sandstone data (1986), colored by the clay contents. The constant-� pore curves
mimic the constant-clay content trends of Han’s data.

A rock with very thin crack, i.e., �pore � 0, approaches the HS lower bound. Up to

�pore = 1, increasing the pore aspect ratio increases the rock’s bulk modulus. Curves

of constant-�pore are roughly parallel to the diagenesis trend in Figure 2.3. The textural

variation, i.e., poor sorting or more clay content, corresponds to a decrease in �pore. On the

other hand, increasing effective pressure corresponds to an increase in �pore, which can be

explained by a closing of the thin cracks and an increase in the average pore aspect ratio.

Critical Porosity, �cr

Nur (1992) and Nur et al. (1991; 1995) found that the relation between elastic mod-

ulus and the porosity of rocks in the load-bearing state can be approximated by a linear

trend, whose one end is the mineral modulus and the other end is the suspension at the
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critical porosity. The critical porosity, high-porosity end member, and the average min-

eral modulus, zero-porosity end member, are variable depending on the clay content of the

rock (Marion, 1990; Mavko et al., 1998).
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Figure 2.16: Modified Voigt lines for various clay content. The high-porosity end member,
critical porosity, and zero-porosity end member, mineral point, is dependent on the
clay content; The critical porosity decreases and mineral bulk moduli, modeled by
Hill’s average, decreases as the clay content increases. Overlain are Han’s sandstone
data colored by the clay contents.

As mentioned by Nur et al.(1991; 1995), modified Voigt lines approximate trends of

porosity decrease controlled by diagenesis. Poor sorting corresponds to a decrease in the

critical porosity of the modified Voigt model (Marion, 1990). Increasing effective pressure

is mimicked by an apparent increase in the critical porosity.

2.5.2 Dependence of Rock Physics Model Parameters on Rock Prop-

erties

We summarize the dependence of the four rock physics model parameters on changes of

three rock properties (i.e., diagenesis, textural variation, and effective pressure) in Table 2.2,

based on the patterns recognized in Figures 2.13 through 2.16.
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Model Parameters
Rock Property Directions K� � � �cr

Diagenesis Increasing Depth/Age * + � �

Texture Poor Sorting � � + +

Pressure Increasing Effective Pressure * + * *

Table 2.2: Dependence of rock physics model parameters on rock property changes. The
pressure effect on the critical porosity is only apparent.

Changes in the rock physics model parameters, for a fixed porosity, are related to ma-

trix stiffness or softness of rocks. However, their behavior with respect to the three rock

property changes are variable. The relations in Table 2.2 are used to interpret dependence

of rock properties in seismic attribute domains in section 2.5.3.

2.5.3 Rock Physics Model Parameterization in Seismic Attribute Do-

mains

We extend the contours of the four rock physics model parameters in the K�� domain

(as shown in Figures 2.13 through 2.16) to the five seismic attribute domains, Vp�Vs, ���,

AIp � Vp=Vs, AIp � EI , and G � RC(0) (as discussed in sections 2.3 and 2.4). We then

compare the characteristics of the model parameters with the trends of each rock property

change in each attribute domain.

For the conversion of the contours for K�, �, and �cr, the dry Poisson’s ratio is assumed

to be equal to the mineral Poisson’s ratio (Picket, 1963), i.e.,

�dry = �min (2.5)

This assumption tends to under-predict the Poisson’s ratio of sandstones (Walton, 1987).

Since the self-consistent models, per se, predict shear modulus for each pore aspect ratio,

the conversion of the constant-�pore contours is straightforward. Because of the different

assumptions in the relation between bulk and shear modulus in the �pore contours and other

three model parameters, two separate data points in a domain may correspond to a single
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point in another domain.

Vp � Vs domain

Figure 2.17 shows four sets of contours for the pore stiffness (K�), the Biot coefficient

(�), the pore aspect ratio (�pore), and the critical porosity (�cr) in the Vp � Vs domain.

On the whole, three model parameters, i.e., K�, �pore, and �cr, produce contours

roughly parallel each other, while constant-� contours are roughly perpendicular to the

other three sets of contours. According to Table 2.2, the trends along �pore and �cr con-

tours represent trajectories of diagenesis for different textures. Approaching towards the

mineral point along these trends correspond to a decrease in �.

If the effective pressure increases and K�, �cr, and �pore increase, the three contours

shift towards lower right, and the Vp=Vs ratio thereby decreases. In contrast, Table 2.2

shows that poor sorting decreases �pore and �cr, maintaining � to be nearly constant, which

is realized by moving towards upper left along the � contours, hence increasing the Vp=Vs

ratio.

�� � domain

Figure 2.18 shows the same four sets of contours in the �� � domain.

Contours of �cr and �pore (for large �pore) in Figures 2.18-D and C, respectively, mimic

trends for diagenesis identified in Figures 2.10 and 2.12. These trends correspond to an

increase in � contours in Figure 2.18-B, which is consistent with Table 2.2. Also, constant-

K� contours in Figure 2.18-A approximate textural variations in Figures 2.10 and 2.12.

Contours of K� and �pore are convex-shaped and non-linear. Their peaks where both

K� and �pore are small, correspond roughly to the clay-rich zone of Han’s data observed in

Figure 2.7-D. In addition, the convexity of the K� and �pore contours explains the intrigu-

ing behavior of the effective pressure in both Han’s data and the North Sea data (Figures 2.8

and 2.12); the effective pressure increases K� and �pore, as well as shear modulus, �, mak-

ing a rotation in the � � � relation. The monotonous increase of � and rather chaotic be-

havior of � by pressure can also be understood by � contours; effective pressure decreases

� and, hence, increases �, but does not have a fixed effect on �.
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Figure 2.17: Rock physics model parameters in Vp � Vs domain.
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AIp � Vp=Vs domain

Figure 2.18 shows the same four sets of contours in the AIp � Vp=Vs domain.

Again, contours of �cr and �pore for large �pore mimic diagenetic trends of clean sand-

stone. The diagenetic trends in Figure 2.5-C correspond to an increase inK� in Figure 2.19-

A, as well as a decrease in � in Figure 2.19-B. These observations are consistent with Ta-

ble 2.2. The textural variation is mimicked by � contours for high porosities, although not

for low porosities. The increasing pressure shifts data towards stiffer matrix (i.e., larger

Kphi, �pore, and �cr, and smaller �) and decreases the Vp=Vs ratio.

AIp � EI domain

Figure 2.20 shows the four sets of contours in the AIp � EI domain. Contours of �cr

and �pore (for large �pore) in Figures 2.20-C and D not only mimic the diagenetic trend of

clean sandstones in Figures 2.5 and 2.12, but also imply little dependence of EI on the

diagenesis effect. In Figure 2.21, the rock physics model parameter contours are overlain

onto arrows for the rock physics effects observed in Han’s data, borrowed from Figure 2.10-

D. The rotating trend for textural variation depending on the depth of the samples is well

mimicked by the curved K� contours. The effective pressure acts normal to the � contours

and increasing K� and �pore.

AVO Gradient - AVO Intercept domain

The characteristics of the contours in the AVO domain shown in Figure 2.22 are similar

to the Vp � Vs domain in Figure 2.17. In Figure 2.23, the rock physics model parameter

contours are overlain onto arrows for the rock physics effects observed in Han’s data, bor-

rowed from Figure 2.10-E. The linear trend for diagenesis is mimicked by the constant �cr

and constant �pore contours for large �pore. The dense intervals of the �cr contours imply

little effect of textural variation in the domain. The diagenesis and effective pressure are

realized by crossing the � contours towards the mineral point, i.e., stiffer matrix.

Pore Fluid Effect

Since the four rock physics model parameters explored in this section are measures of

the pore and matrix stiffness of rocks, they are not suitable for investigations of pore fluid
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Figure 2.22: Rock physics model parameters in AVO crossplot.
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effects on seismic attributes.

Gassmann’s theory states that substitution of pore fluid to stiffer one increases bulk

modulus but maintains a constant shear modulus. Mavko and Mukerji (1995) proposed

a simple method to realize Gassmann’s substitution in the K � � domain using constant

K� contours: Gassmann fluid substitution is equivalent to jumping K� contours with the

porosity held constant. The shear modulus is, of course, unchanged.

In contrast, stiffening of the matrix bulk modulus, either caused by diagenesis, textural

variation, or effective pressure, is almost always accompanied by stiffening of the shear

matrix stiffness. Because of this inherent difference, the parameters representing pore ma-

trix stiffness do not describe the pore fluid effect, unless we look only at bulk stiffness

properties. Actually, comparison of Figure 2.9 and Figures 2.17 through 2.22 shows that

substitution to stiffer pore fluid corresponds to a decrease in apparent K� in multi-attribute

domains.

2.6 Conclusions

We investigated the dependence of physical seismic attributes on rock property changes,

using laboratory and well log measurements. Our results show that each seismic attribute

pair is good at predicting different rock properties. Combinations of Vp � Vs and AVO

attributes (i.e.,G�RC(0)) are helpful in predicting pore fluids even if other rock properties,

such as porosity, clay content, and the effective pressure, are heterogeneous. However,

discrimination among porosity, clay content, and pressure is difficult in these domains.

The � � �, and AIp � EI(30) cross-plots can discriminate diagenesis and pressure effect

from textural variation, though uncertainty about porosity, clay content, and pressure may

make fluid detection erroneous. In particular, the AIp � EI and G � RC(0) pairs are of

practical significance, since both can be directly derived from seismic data.

The investigation of rock physics model parameters, pore stiffness, Biot coefficient,

pore aspect ratio, critical porosity, provided us with physical understanding of the depen-

dence of seismic attributes on rock property changes; constant-pore stiffness and constant-

Biot coefficient curves tend to mimic the textural variation, while constant-aspect ratio and



CHAPTER 2. INTERPRETATION ON ATTRIBUTE DOMAINS 42

constant-critical porosity contours approximate the diagenetic trends. The model param-

eters also help us extrapolate the observed relations between rock properties and seismic

attributes to whole attribute domains.



Chapter 3

Elastic Properties of Sandstones and

Carbonates: The Vp � Vs Relations and

Their Implication About Pore Structures

Abstract

The importance of S-wave information in addition to P-wave is becoming more widely

recognized with emerging advancements in multi-component data acquisition and process-

ing techniques. Better prediction of lithology from multiple seismic observables is one

of the expected outcomes. Hence, greater understanding of Vp � Vs relations of various

rock types is essential. Vp and Vs of typical reservoir rocks are known to be well corre-

lated as well as dependent on lithology; sandstones tend to have linear Vp � Vs relations,

while carbonates’ are quadratic. Although these distinctive characters have been observed

in many measurements, the physical reason for the difference, except the obvious one of

mineralogy, is not well understood.

In this chapter, we first extend the definitions of Hashin-Shtrikman bounds to the Vp�Vs

domain and show that Vp and Vs of monomineralic rocks must be well correlated. We

then amplify the bounding average method to introduce bulk and shear stiffness indices

(wk and w�), which extract information about pore structure and pore stiffness of rock

matrices. Investigation of the stiffness indices of various sandstone and carbonate samples

43
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reveals a conspicuous distinction between the two rock types; bulk stiffness indices for

sandstones are greater than or equal to the shear indices, while carbonates have greater

shear indices than bulk indices. Comparison of this result with various rock physics models

in the stiffness index domain leads to the conclusion that the difference of sandstones and

carbonates in the Vp � Vs relation is due to either the difference in their pore shape or the

difference in tangential stiffness at the grain-to-grain contacts.

3.1 Introduction

3.1.1 Motivation

Lithology is one of the important factors influencing seismic signatures, in addition

to porosity, pore fluid, textural variation, and pressure, which are explored in chap-

ter 2. Figure 3.1 shows the distributions of seismic attributes for various types of two

typical reservoir rocks: sandstone and carbonate. The plotted data include Gulf Coast

well-consolidated sandstone (Han, 1986), North Sea high-porosity sandstone (Strandenes,

1991), North Sea poorly-consolidated sandstone (Blangy, 1992), tight-gas sandstone from

East Texas (Jizba, 1991), limestone (Cadoret, 1993; Lucet, 1989; Yale and Jamieson, 1994),

dolomite (Geertsma, 1961; Yale and Jamieson, 1994), and chalk (Brevik, 1995). The indi-

vidual attribute domains produce different distributions for each rock type. For example, in

the Vp�Vs domain in Figure 3.1-A, sandstones and carbonates have obliquely crossing lin-

ear trends, while the distribution of the two rock types are the most scattered inAIp�Vp=Vs

domain, shown in Figure 3.1-C.

In this chapter, we discuss how inter-dependence between seismic signatures carries

information about the internal properties of rocks. We focus on the Vp � Vs relations of

sandstones and carbonates and investigate the inherent difference in micro-structures be-

tween the two rock types. The physical insight of the Vp � Vs relations can lead to better

understandings of the behaviors of sandstones and carbonates in various seismic attribute

domains, shown in Figure 3.1.

We explore the elastic properties of the two rock types in relation to the Hashin-

Shtrikman bounds (Hashin and Shtrikman, 1963). We first amplify the Hashin-Shtrikman
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bounding theory and reveal that Vp and Vs of monomineralic rocks must be well correlated.

We then extend the bounding average method (Marion and Nur, 1991) to define stiffness

indices; parameters which quantify the bulk and shear stiffnesses of pore structures. By

comparing existing laboratory data with rock physics theories in the stiffness index do-

main, we interpret the difference in micro-structure between sandstones and carbonates.

3.1.2 Vp � Vs Relations of Sandstones and Carbonates
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Vp � Vs relations of sandstones and carbonates from various data sources are shown

in Figures 3.2 and 3.3. Overlain on these figures are linear and non-linear regressions

proposed by several authors (Castagna et al., 1985; Castagna et al., 1993; Han, 1986). In

both rock types, Vp and Vs are well correlated. The relation tends to be linear in sandstones

and quadratic in carbonates. In spite of these and many similar observations, the physical

reason for these distinctive characteristics is not yet well understood.

3.2 Extensions of Hashin-Shtrikman Bounds

3.2.1 Hashin-Shtrikman Bounds

Hashin-Shtrikman (HS) bounds (Hashin and Shtrikman, 1963) define the upper and

lower limits of elastic moduli of isotropic aggregates. In monomineralic rocks consisting

of a mineral phase as the stiffer constituent and a fluid phase as the softer constituent,

bounds of bulk and shear moduli are given by

KHS� = K1 +
f2

(K2 �K1)�1 + f1(K1 +
4

3
�1)�1

(3.1)

�HS� = �1 +
f2

(�2 � �1)�1 +
2f1(K1+2�1)

5�1(K1+
4

3
�1)

(3.2)

where K, �, and f represent the bulk modulus, shear modulus, and volume fraction of

each constituent for either of the phases, denoted by suffixes 1 and 2. The upper bound is

realized when the mineral phase is termed 1 in Equation 3.2 and forms the outer shell of

the concentric spheres in Figure 3.4. The lower bound is realized when the mineral phase

is termed 2 and is in the inner core in Figure 3.4.

The upper and lower bounds of bulk and shear moduli for water-saturated sandstone

(quartz-water mixture) are shown in Figure 3.5 as examples. The parameters in Table 3.1

are used hereafter. Figure 3.5 includes data from ultrasonic laboratory measurements

of well-consolidated Gulf Coast sandstone (Han, 1986), high-porosity North Sea sand-

stone (Strandenes, 1991), and poorly-consolidated North Sea sandstone (Blangy, 1992).

The data are plotted certainly within the upper and lower bounds.
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Figure 3.4: Physical realization of Hashin-Shtrikman bounds.
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Figure 3.5: Hashin-Shtrikman upper and lower bounds of the bulk modulus (A) and the
shear modulus (B) for water-saturated quartz sandstone. Data points from ultrasonic
laboratory measurements are overlain onto the bounds.
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Constituents K (GPa) � (GPa) � (g/cc)
Quartz 36.6 45.0 2.65
Water 2.25 0 1.0

Table 3.1: Properties of constituents used for elastic property modeling.

3.2.2 Bounds in the K � � Domain

We combine the HS bounds of bulk and shear moduli and define HS bounds in the

K � � domain as shown in Figure 3.6. For a given porosity, the possible extent of (K;�)

is within a rectangle defined by (KHS�; �HS�) as the lower left corner and (KHS+; �HS+)

as the upper right corner (Berryman, 1995). As the porosity changes, the rectangle slides

up or down since the HS bounds depend on porosity. The envelope of the rectangles for all

the porosity outlines the overall HS bounds in the K � � domain.

Figure 3.7 show the bounds overlain by the data shown in Figure 3.5. The real data

cover limited region near the center within the bounds. Figure 3.7 shows that HS bounds

do not allow arbitrary combination of bulk and shear moduli; shear moduli close to the

upper end member (the mineral shear modulus) may not coexist with bulk moduli close to

the lower end member (the fluid bulk modulus), though bulk moduli close to the upper end

member (the mineral bulk modulus) can coexist with shear moduli close to the lower end

member (the fluid shear modulus, i.e., 0).

3.2.3 Bounds of the Poisson’s Ratio

A straightforward extension of the K � � bounds using Equation 3.3 leads to bounds

of the Poisson’s ratio, shown in Figure 3.8.

� =
K=�� 2=3

2K=�+ 2=3
(3.3)

Equation 3.3 states that the Poisson’s ratio is a deterministic function of K=�, the slope of

the line connecting a point and the origin in the K � � domain. Hence the Poisson’s ratio

has large values when the (K;�) stays in the upper-left quadrant in the K �� domain, and
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Figure 3.6: Hashin-Shtrikman bounds for water-saturated quartz sandstone in the K � �
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bounds for the bulk modulus (KHS+ and KHS�) and the shear modulus (�HS+ and
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domain. Top and bottom rectangles inside the thick outline in C are bounds of (K;�)
when the porosities are 0.1 and 0.7, respectively.

small values when the (K;�) stays in the lower right quadrant. The bounds in Figure 3.8

show that the Poisson’s ratio can be smaller than that of the low-porosity end member

(the Poisson’s ratio of the mineral) in intermediate porosities. More generally, Poisson’s

ratios of mixtures can be either greater or smaller than the Poisson’s ratios of the end

members, depending on the pore structures. Although the possible range of the Poisson’s

ratio of elastic materials is �1 < � � 0:5 from energy considerations, Figure 3.8 shows

that the Poisson’s ratio of an isotropic quartz-water mixture has narrower bounds, about

�0:324 � � � 0:5. That is, HS theory limits the lower possible values of the Poisson’s

ratio. The Poisson’s ratio of most natural reservoir rocks are greater than 0, such as the data

points overlain on Figure 3.8.
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Figure 3.7: Hashin-Shtrikman bounds for water-saturated quartz sandstone in the K � �
domain. Data points from ultrasonic laboratory measurements are overlain onto the
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3.2.4 Bounds in the Vp � Vs Domain

Furthermore, Equation 3.4 enables us to extend the bounds in the K � � domain to the

bounds in the Vp � Vs domain in Figure 3.9.

Vp =

s
K + 4

3
�

�
; Vs =

r
�

�
(3.4)
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Figure 3.9: Hashin-Shtrikman bounds for water-saturated quartz sandstone in the V p � Vs
domain. Data points from ultrasonic laboratory measurements are overlain onto the
bounds.

The wedge-shaped outline in Figure 3.9 defines the HS bounds in the Vp � Vs domain;

(Vp; Vs) pairs of clean wet sandstone must be within the outline. The narrowly confined

configuration of the bounds indicates that the Vp and Vs of sandstone must be well corre-

lated (Takahashi et al., 1999c). Furthermore, as shown by laboratory data points overlain

onto the bounds, the Vp and Vs of natural rocks are located along a linear trend and cover a

limited region within the bounds.

Figure 3.10 illustrate the HS bounds in the Vp�Vs domain for water-saturated limestone

and chalk (calcite-water mixture). The difference of mineralogy makes the bounds for

limestone and chalk fatter than the bounds for quartz-sandstone in Figure 3.9. The well-log

and laboratory data overlain on the bounds in Figure 3.10 shows that Vp and Vs of natural

limestone and chalk cover limited distribution within the bounds.

Figure 3.11 is the complete description of the Hashin-Shtrikman bounds for water-

saturated quartz sandstone, shown in three dimension, Vp, Vs, and porosity. The wedge-

shaped volume defines all possible elastic properties of a quartz-water mixture. The thinly

limited volume of the wedge implies a high correlation between Vp, Vs, and porosity. The

HS bounds in any two dimensions is a projection of the three-dimensional bounds.
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Figure 3.11: Hashin-Shtrikman bounds for water-saturated quartz sandstone in the V p �

Vs�� domain. The volume inside the blue surface is the physically realizable combi-
nation of Vp, Vs, and porosity.
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3.3 Stiffness Indices: Parameters to Extract the Pore

Structure Information

3.3.1 Bounding Average Method

According to Marion and Nur (1991), values of elastic moduli relative to the corre-

sponding HS upper and lower bounds (w in Equation 3.5) carry information about the

stiffness of pore structures.
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Figure 3.12: Bounding average method. The ratio of d relative toD represents the stiffness
of the pore structure.

w =
M �M�

M+
�M�

=
d

D
(3.5)

where M is the elastic modulus of a sample and M+ and M� are the corresponding HS

upper and lower bounds, respectively. Elastic moduli of monomineralic rocks, in general,

are dependent on 1) mineralogy, 2) porosity, and 3) geometric details of the pore structure.

The index, w, which ranges from 0 to 1, extracts and quantifies the information about the

pore geometry; values close to 0 and 1 indicate softer and stiffer pore microstructures,

respectively. Marion and Nur used this method to approximate Gassmann’s theory and

estimated bulk moduli after fluid substitution.
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3.3.2 Stiffness Indices of Sandstones and Carbonates

We extend the bounding average method to extract information about the pore structure

in relation to the shear stiffness, as well as about the bulk stiffness. We apply Equation 3.5

to bulk and shear moduli of various sandstone and carbonate samples and derive the bulk

and shear stiffness indices, wk and w�. Since wk and w� are quasi-independent of miner-

alogy, the wk � w� relation enables us to compare the pore structures of sandstones and

carbonates. The data we use consist of well-consolidated sandstones (Han, 1986), high-

porosity sandstones (Strandenes, 1991), poorly-consolidated sandstones (Blangy, 1992),

limestone (Cadoret, 1993; Lucet, 1989; Yale and Jamieson, 1994), chalk (Urmos and

Wilkens, 1993; Brevik, 1995), and dolomite (Geertsma, 1961; Yale and Jamieson, 1994)

from various regions.

From Figures 3.13 and 3.15, we derive the stiffness indices—w in Equation 3.5—using

the corresponding HS bounds for bulk and shear moduli. Figures 3.14 and 3.16 show

cross-plots of wk and w� for the sandstones and carbonates, respectively.
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Figure 3.13: Sandstone data and the corresponding Hashin-Shtrikman upper bound
(HSUB) and lower bound (HSLB) in the K � � domain (A) and in the � � � do-
main (B).

A comparison of sandstones and carbonates in the stiffness index domain shows a con-

spicuous distinction between the two rock types (Takahashi et al., 1999c). In sandstones,
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bulk stiffness indices, wk, are greater than or equal to shear indices, w�, whereas w� are

greater than wk in carbonates. This is in contrast to the overlap of the Vp � Vs relations

of the same two data sets in Figure 3.1-A. The difference shows that pore structures of the
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Figure 3.16: Stiffness indices of carbonates. The distribution is mainly in the lower-right
quadrant.

sandstones are stiffer for volumetric deformations than for shear, while the carbonate pore

structures are stiffer for shear deformations. The distinction in the wk � w� domain gives

rise to the different behaviors in their Vp � Vs relations; distribution of the wk � w� of car-

bonates in the lower-right quadrant makes their Vp � Vs near the curved lower-right bound

in Figure 3.10, while the centered wk � w� of sandstones gives rise to a linear Vp � Vs

relation. We can also observe relatively large shear moduli of carbonates by comparing the

K�� and ��� relations as shown in Figures 3.13 and 3.15. However, the stiffness indices

amplifies the difference between sandstones and carbonates.

3.3.3 Rock Physics Models in the Stiffness Index Domain

We investigate the relation between the stiffness indices of various rock physics models,

including both contact models and inclusion models (Wang and Nur, 1992), so that we

may physically interpret the distinction between sandstones and carbonates observed in

Figures 3.14 and 3.16.
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Contact Models

The contact models we explore include the Hertz-Mindlin model (Mindlin, 1949), Wal-

ton’s infinitely rough grain surface model and perfectly smooth grain surface model (1987),

and Dvorkin and Nur’s cementation model (1996). In the four models considered, Walton’s

smooth surface model assumes slippery grain-to-grain contacts with no tangential stiffness,

whereas grain-to-grain contacts are completely locked together with infinite tangential stiff-

ness in the other three models.
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Figure 3.17: Stiffness indices of four contact models, the Hertz-Mindlin model, Walton’s
smooth contact model, Walton’s rough surface model, and Dvorkin and Nur’s cemen-
tation model.

Figure 3.17 shows that the models with locked contacts have greater w� than wk, while

the smooth contact model has greater wk than w�. The wk � w� relation for sandstones

in Figure 3.14 remain between the two groups, implying a mixture of smooth and rough

contacts in natural rocks (Bachrach, 1998). This observation is consistent with the fact that

models with locked contacts tend to over-predict the Vs of sandstones (Dvorkin and Nur,

1996). In contrast, carbonates are well mimicked by the rigid contact models.

The difference in the contact shear rigidity can be explained by the relatively high dia-

genetic potential of carbonates; chemical activeness of carbonate minerals tends to create

more cementation and dissolution in carbonates, making grain-to-grain contacts bonded to-

gether (Anselmetti and Eberli, 1997). On the other hand, quartz cementation in sandstones
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occurs in later stages of diagenetic process (Surdam et al., 1993).

Inclusion Models

Figure 3.18 summarizes wk � w� relations of two inclusion models, the self-consistent

model (SC) (Berryman, 1980) and the differential effective medium model (DEM) (Berry-

man, 1992), for various pore aspect ratios. Depending on the pore aspect ratio, the inclusion
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Figure 3.18: Stiffness indices of inclusion models. Different colors represent different pore
aspect ratios. Solid and dashed lines are for the self-consistent model and the differen-
tial effective medium model, respectively.

models cover a wide range of wk �w�, comparable to the extent of natural rocks observed

in Figures 3.14 and 3.16. Using the inclusion models, we can explain different wk�w� re-

lations of sandstones and carbonates by their pore shapes. Sandstones are well predicted by

spherical or prolately-ellipsoidal (needle-like) inclusions, i.e., wk � w�, whereas oblately-

ellipsoidal (penny-shaped) inclusions mimic carbonates, i.e., wk < w�.

3.4 Conclusions

We explored Vp � Vs relations of sandstones and carbonates to infer information about

their pore structures. By combining the bounds defined for the bulk and shear moduli, we
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extended the Hashin-Shtrikman theory and showed that the Vp�Vs relation of monominer-

alic rocks must be well correlated. We then introduced bulk and shear stiffness indices, wk

and w�, which quantify information about pore structure and enable comparison between

sandstones and carbonates. Using the stiffness indices, we revealed that the pore structures

of sandstones are stiffer in compression than in shear, i.e., wk � w�, whereas the pore

structures of carbonates are stiffer in shear than in compression, i.e., w� > wk. Finally,

investigation of the stiffness indices of various rock physics models showed that either the

difference in the types of grain-to-grain contacts or the difference in the pore shapes could

be responsible for the different Vp � Vs relations of sandstones and carbonates.



Chapter 4

Information and Uncertainty in Rock

Property Estimation

“Any physical theory is a kind of guesswork. There are good guesses and bad guesses. The

language of probability allows us to speak quantitatively about some situation which may

be highly variable, but which does have some consistent average behavior.

: : :

Our most precise description of nature must be in terms of probabilities.”

— Richard Phillips Feynman

Abstract

Subsurface property estimation from geophysical measurements is always subject to

uncertainty because of many inevitable difficulties in data acquisition, processing, and in-

terpretation. In this chapter, we present methods to express quantitatively information and

uncertainty in rock property estimation from seismic data. Probability density functions en-

able us to describe quantitatively the state of knowledge about objective rock properties and

the relationships between rock properties, including their inherent uncertainty. We present

a procedure to retrieve pdfs from available data by taking account of the spatial sampling

and the measurement error. We also discuss how to extend available data to establish the

pdfs of non-observed physical conditions.

61
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After exploring non-linear statistical measures of information and uncertainty, such as

information entropy, mutual information, and the Bayes error, we discuss what gives us

information about rock properties and what does not. Investigations using the statistical

measures reveal that information about rock properties cannot be gained by mere data ma-

nipulations. Instead, geophysical data, physical theories, and geological knowledge bring

us information and reduce uncertainty about rock properties.

4.1 Introduction

Estimation of subsurface properties from geophysical data is inherently subject to un-

certainty. Hence, geophysical prospecting is a process that reduces uncertainty, thereby

increasing information about objective subsurface properties rather than finding absolutely

correct values of rock properties. In order to reduce uncertainty about subsurface prop-

erties, we acquire geophysical data, apply adequate physical laws, and combine available

geological knowledge.

In this chapter, rock property estimation problems and their inherent uncertainty are

quantitatively expressed by statistical formulations of probability theory and information

theory (Tarantola and Valette, 1982; Tarantola, 1987). In these theories, the probability

density function (pdf) is used to express the “state of knowledge” about our objectives, that

is, how well we know the objectives and how uncertain our objectives are. We also discuss

how to estimate the pdf from available data, with emphasis on the physical implication of

the estimation. Finally, using the statistical formulations, we quantitatively investigate the

sources of information in rock property estimation.

4.2 Using PDFs to Describe the State of Knowledge

In estimation problems, the probability density function, pdf, expressed by the likeli-

ness of each parameter value, provides us with the complete and quantitative description

of the “state of knowledge”, information and uncertainty about objectives (Feynman et al.,

1963; Gouveia et al., 1996; Gouveia, 1996; Scales and Snieder, 1997; Scales and Tenorio,

1998).
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4.2.1 Uncertainty About Rock Properties

The two curves in Figure 4.1 illustrate the pdfs of porosity of two different reservoirs.

The probability density values represent the likeliness of each porosity value in each reser-
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Figure 4.1: Probability density functions of porosity in two reservoirs, A and B. The pdfs
represent “state of knowledge” about porosity. Reservoir A has larger uncertainty
about porosity than reservoir B.

voir. The peaks of the functions correspond to the mostlikely porosities, and the ranges

where the functions have non-zero values show possible ranges of porosity values. In

reservoir A, the pdf has a smoother and broader shape, while the distribution is more peaky

and taller in reservoir B. A comparison of the pdfs reveals a difference in uncertainty. The

uncertainty in porosity is greater for reservoir A than for reservoir B, since porosity values

close to the peak are more probable in B, while possible porosity has a wider range in A.

Using the pdf, we can express a perfect knowledge about a porosity value by the Dirac’s

delta function (Gouveia et al., 1996), i.e., p(�) = Æ(� � �o), as shown in Figure 4.2-A.
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This occurs when we are completely sure that the porosity is equal to �o, which is virtually

impossible in geophysical prospecting. On the other hand, complete ignorance of porosity

can be described by the uniform function, p(�) = const:, over the entire porosity range.

From the physical definition, porosity of any rock must be in the range 0 � � � 1, hence

the uniform prior is p(�) = 1, as in Figure 4.2-B. The uniform function represents the case

when all possible porosity values are equally likely; we have the least knowledge about

porosity.
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Figure 4.2: Probability density functions of porosity with complete knowledge (A) and
complete ignorance (B) about porosity, described by the Delta function and the uni-
form function, respectively.

In spite of our hopes and efforts, no geophysical measurement can provide us with

perfect knowledge about subsurface properties. This limitation is because of restricted

data acquisition geometry, random and coherent noise, our limited physical knowledge, the

large complexity of Nature, and many other inevitable difficulties. Hence, practical and
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reachable objectives of geophysical prospecting are constraining the knowledge about sub-

surface properties and minimize their uncertainty, rather than aiming for absolutely correct

values of subsurface properties. In view of this point, unique values are not sufficient to

describe the answers of our estimation, but the pdfs are needed to describe the answers.

Furthermore, rock properties expressed by pdfs, along with considerations of their eco-

nomical values, are essential input for the decision analysis and the risk analysis. Typically

in oil exploration and development, the pdf of oil reserves of undrilled prospects is esti-

mated from the pdfs of individual reservoir properties, before it is used to evaluate whether

the prospect is worth drilling (Steinmetz, 1992).

4.2.2 Dependence Between Rock Properties

Probability density functions are also helpful in describing the dependence between two

or more subsurface parameters that are non-linear and non-unique. When we deal with real

data, the relations between rock properties are rarely well fit by deterministic functions,

but they are usually scattered (such as the Vp-porosity relation of a North Sea reservoir in

Figure 4.3).

The scatter in Figure 4.3 illustrates the range of Vp that can correspond to one porosity

value, as well as the range of porosity possible for one Vp. Because of the diversity, a linear

regression line poorly describes the Vp � � dependence. The dispersions of rock property

relations are often due to geological heterogeneity within the reservoir. In other words,

the variability of rock properties other than these plotted (i.e., pore pressure, clay content,

and types of saturating fluid) causes scattering. Since the geological heterogeneity is the

inherent characteristic of many reservoirs, we need to take it into account in rock property

estimation.

Using pdfs, we can fully describe the dependence between two or more rock properties,

including its inherent non-uniqueness and non-linearity. Figure 4.4 is a bivariate pdf of

porosity and P-wave velocity, p(Vp; �), derived from the scattered data in Figure 4.3. The

broadness of the pdf expresses the non-uniqueness of the relation.

Also, bivariate pdfs contain a full description of the individual properties, comprising

two dimensions of the pdfs. Given the bivariate pdf in Figure 4.4, p(Vp; �), the univariate
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Figure 4.4: Bivariate pdf of Vp and �, p(Vp; �) of a North Sea reservoir. The broad shape
describes inherently non-deterministic relations between porosity and V p.
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pdf of porosity can be derived by the integration along the Vp dimension as

p(�) =

Z
p(Vp; �)dVp (4.1)

p(�), shown in Figure 4.5, is the marginal pdf of the bivariate pdf, which expresses a prior

state of knowledge about porosity without Vp observations. Typical regression lines predict

unique values of porosity for a given velocity, as shown in Figure 4.3. For example, for

an observed velocity of 2.83 km/s, the predicted porosity is 0.31. In contrast, from the

bivariate pdf, the estimate of porosity can be given by the conditional pdf of porosity given

the velocity, p(�jVp), as shown in Figure 4.5. In fact, a deterministic relation, such as the

linear regression in Figure 4.3, can be expressed using a Delta function as an extreme case,

p(Vp; �) = Æ(Vp�3:4685+2:0625�). Graphically, the conditional pdf is realized by taking

a horizontal section of the bivariate pdf along the given velocity, followed by normalization.
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Figure 4.5: The conditional pdf of porosity given a velocity and the marginal pdf of poros-
ity. Velocity data condition porosity information and reduce its uncertainty.

The conditional pdf represents the state of knowledge about porosity after observing

a Vp of 2.83 km/s. The mostlikely porosity for a given velocity is the one that maximizes the

conditional pdf, p(�jVp), which is �m:l: = 0:32 for Vp =2.83 km/s. A comparison between
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the conditional pdf (p(�jVp = 2:83)) and the marginal pdf of porosity (p(�)) in Figure 4.5

demonstrates that uncertainty about porosity is reduced by the velocity observation, since

the conditional pdf has a sharper and narrower shape than the marginal pdf. The width

of the conditional pdf expresses the remaining uncertainty after the velocity observation,

i.e., velocity observation does not guarantee a unique porosity value, but it conditions or

constrains our knowledge about porosity. We describe precise and quantitative measures

of uncertainty in section 4.4.

4.3 Estimation of Non-Parametric PDFs

Probability density functions represent our knowledge about subsurface properties.

They should be consistent with measured data, rock physics theories, and our geologi-

cal ideas about objective rocks. In seismic reservoir characterization, well data along with

rock physics models may be used to build pdfs.

4.3.1 Retrieving PDFs of In-situ Conditions

If we allow ourselves to describe subsurface properties with a pdf, data acquisition of

physical properties can be considered as sampling from the pdf. Assuming that measured

data are non-biased samples from the pdf, we can retrieve the pdf by smoothing their sample

histograms. The smoothing is to account for the following two different physical limitations

of available data: spatial sampling and measurement errors.

Spatial Interpolation

Data we obtain are properties of discrete points in a large volume of target rocks. Well

data, in general, are sparse laterally, although they are densely sampled in the vertical

direction.

When sampling is relatively sparse for a heterogeneous target rock, properties of the tar-

get are not well represented by the data. Therefore, the data samples need to be interpolated

to recover the pdf, which must picture the properties of the whole target. Mathematically,

a complete continuous function can be retrieved from its samples by convolution with the
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sinc function, sincx = sin�x

�x
, when the sampling interval is uniform (Bracewell, 1921).

However, since pdfs cannot have negative values, a Gaussian function is often used (Silver-

man, 1986) because of its similarity to the sinc function, as well as the positiveness. The

width of the smoothing function should be consistent with the sparseness of data sampling.

Measurement Errors in Data Acquisition

Any subsurface physical measurement, including well logs, involves measurement er-

rors due to imperfect acquisition conditions and limited resolution of acquisition tools.

Hence, data we acquire may not completely represent even the properties of the sampled

points. In order to describe the incompleteness of the measurement rigorously, we can

again use a pdf.

The two pdfs of porosity shown in Figure 4.6 are information given by a single mea-

sured porosity of 0:3 with different measurement errors. When the error is small, as in A,

only porosity values close to the measured value of 0:3 are likely. A wider range of porosity

values are possible when the error is large, as in B. The shape of the error function can be

arbitrary, depending on the types of errors in the measurement system. In many cases, a

Gaussian function may be used whose width is consistent with the measurement error.

Smoothing discrete data to build pdfs is often done with very little physical consid-

eration of the two points above. However, it should be noted that the smoothing with a

specific function is equivalent to assuming that errors and interpolation are represented by

the particular smoothing function.

4.3.2 Coordinate Transform

Some rock properties are interrelated to each other by deterministic physical relations.

For example, the acoustic impedance is defined as the product of density and velocity, and

the bulk modulus can be given by Vp, Vs, and density. In fact, any two pairs of elastic prop-

erties can be exactly derived from any other pairs (Mavko et al., 1998). In rock property

estimation, we sometimes use those relations back and forth to change variables in order
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Figure 4.6: Probability density functions to express information given by erroneous data.
Measured porosity of 0:3 can be described by a pdf with a high peak if the error is
small (A). The pdf becomes broad when the expected error is large (B).

to compare observed data with other data or with theoretical models. The coordinate trans-

formation of probability density functions (pdfs) and probability mass functions should be

conducted with consideration of the following points.

Probability Density Function

If we want to transform a pdf in one coordinate to a mathematically equivalent one in a

new coordinate system, the coordinate transform should observe the following relation:
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If a random variable, N, is a function of another random variable, M, as N = N(M),

and if we can assume one-to-one correspondence between the M and N domains, the

multi-dimensional pdf inM domain, p(m), and the equivalent pdf in theN domain, p(n),

are related by

p(m) = p(n)
��� @n
@m

��� (4.2)

In a non-linear coordinate transform when the Jacobian,
���@m
@n

���, is not constant, the con-

figuration of the pdf is different from one coordinate system to another. Furthermore, linear

statistical characters, such as mean, variance, standard deviation, correlation coefficient,

covariance, etc. are variant with respect to the non-linear transform. On the other hand,

non-linear measures, such as Bayes error, information entropy, and mutual information,

which are described in the next sections, are invariant with a non-linear change of vari-

ables.

Likewise, a stationary smoothing function in one domain changes to a non-stationary

function in another domain when the transform is non-linear. When building pdfs in two

non-linearly related domains, we may be tempted to first coordinate transform discrete

data, before smooth-filtering in the two different domains. However, the two pdfs created

from this procedure are not equivalent to each other, because physical assumptions of errors

and interpolation become different unless the smoothing function observes Equation 4.2.

The correct procedure is to smooth discrete data and create the pdf in one domain, then

transform the coordinate of the pdf, using Equation 4.2.

Figure 4.7 shows an example of the equivalent pdfs in two different domains, Vp � Vs

and Vp=Vs ratio-�ts (S-wave slowness). Since the Vp=Vs ratio and �ts can be deterministi-

cally derived from Vp and Vs, the transforms are no more than mathematical manipulations.

Hence, the significance of the two pdfs in terms of predictability of rock properties are

exactly equivalent, in spite of their different appearances.

Probability Mass Function

Although probability density functions are variant with respect to non-linear coordinate

transforms, probability mass functions are invariant, if discretization of the pdfs in the two
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domains are equivalent. When a probability mass function, P (mi), is defined using Vi, the

ith sub-volume of theM domain, as

P (mi) =

Z
� � �

Z
m2Vi

p(m)dm (4.3)

the probability mass function is transformed to theN domain as

P (mi) =

Z
� � �

Z
n2Ui

p(m(n))
��� @n
@m

���dm
=

Z
� � �

Z
n2Ui

p(n)dn

= P (ni) (4.4)

where Ui is the sub-volume ofN equivalent to Vi in theM domain. Equation 4.4 states that

probabilities of the corresponding bins in the two domains are identical, i.e., the probability

mass function is invariant with respect to non-linear coordinate transforms if the bins are

transformed appropriately to the corresponding ones.

Figure 4.8 shows changes of bin sizes by a non-linear transform, from the Vp � Vs

to the Vp=Vs � �ts domain. The boxes of same colors are corresponding bins in each

domain. Although the probability density functions are variant with respect to the non-

linear transform, as discussed earlier, the probabilities within each corresponding bin are

identical, since the change in bin size takes care of the changes of the probability densities.

4.3.3 Deriving PDFs From Physical Modeling

Since the number of data are usually limited as compared to the volume of target rocks,

we may not be able to obtain data for every possible physical condition of the targets, espe-

cially in terms of the time dimension when changes in the physical state are expected after

data acquisition. One common example is the prediction of seismic velocity after fluid

injection in feasibility studies of seismic reservoir monitoring. Sometimes the difference

in physical conditions between the past measurement, whose data are used to establish the
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Figure 4.8: Changes of bin sizes in coordinate transform of probability mass function. Be-
cause of the non-linearity of the relation between the two coordinates, V p-Vsin A and
Vp/Vs-�ts in B, the corresponding bin sizes vary.

pdf, and the future measurement, whose data will be used for predicting rock properties,

can be significant. Typically, pdfs of seismic responses, which will be used for rock prop-

erty estimation, are predicted from pdfs established from well log measurements. In such

cases, the difference of resolution between the two tools, sonic and surface seismic, can be

significant. In these two situations, physical modeling helps extend the available data base

to predict the pdf at unobserved physical conditions.
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Deterministic Model

If the relations between observed data and data in non-observed conditions are deter-

ministically described by theoretical equations, such as Gassmann’s equation in fluid sub-

stitution problems, derivations of the pdf at new physical conditions are simple coordinate

transforms. For example, in a case of estimating the P-wave velocity of an oil-saturated

reservoir from data of the same reservoir saturated with brine, the oil reservoir’s Vp is a de-

terministic function of the brine reservoir’s Vp, as Vpoil = G(Vpbrine) (G being Gassmann’s

equation), if the porosity, the compressibilities of brine and oil, the densities of brine and

oil, and the bulk modulus of the mineral are exactly known. Therefore, the relation between

the two pdfs is

p(Vpbrine) = p(Vpoil)
��� @Vpoil
@Vpbrine

��� = p(G(Vpbrine))G
0(Vpbrine) (4.5)

In order to obtain the pdf, p(Vp; f luid), which may be used to predict fluid types from

Vp, we also need to consider the prior probabilities as

p(Vp; F luid = oil) = p(VpjF luid = oil)p(F luid = oil) = p(Vpoil)p(oil) (4.6)

p(Vp; F luid = brine) = p(VpjF luid = brine)p(F luid = brine) = p(Vpbrine)p(brine)

(4.7)

where p(oil) and p(brine), the prior probabilities of oil and brine, respectively, represent

information about fluid types prior to the Vp observations. Figure 4.9 shows an example of

a data-derived pdf, p(Vp; F luid = brine), and a pdf derived from Gassmann’s modeling,

p(Vp; F luid = oil).

Probabilistic Model

More generally, rock property relationships may be defined by a combination of many

theories or given by experimental relations. When physical properties in unobserved condi-

tions,m, are modeled from observed physical properties, n, the relation betweenm and n

can be expressed by a multi-dimensional pdf, p(m;n) (Tarantola and Valette, 1982; Taran-

tola, 1987). The pdf of rock properties in unobserved conditions can then be derived by
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Figure 4.9: The pdfs of Vp for brine-saturated and oil-saturated reservoirs, p(Vp; f luid =
brine) and p(Vp; f luid = oil). The pdf of the oil reservoir is derived from Gassmann’s
modeling using Equation 4.5. The area under the brine pdf is larger than the area under
the oil pdf, observing p(brine) > p(oil).

taking the marginal pdf of the multivariate pdf as

p(m) =

Z
� � �

Z
p(m;n)dn =

Z
� � �

Z
p(mjn)p(n)dn (4.8)

In practice, when the pdfs have arbitrary form, the integration in Equation 4.8 can be

accomplished by Monte Carlo simulations (Omre and Tjelmeland, 1997; Tjelmeland and

Omre, 1997; Takahashi et al., 1999a; also discussed in chapter 6 of this thesis), in which

many sampled realizations out of the pdfs are used for physical forward modeling. Equa-

tion 4.8 reduces to Equation 4.5 when the physical modeling is described by deterministic

equations.
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4.4 Non-linear Statistical Measures of Uncertainty and

Information

Statistical formulations with pdfs help us express our state of knowledge about rock

properties and the relationships between rock properties. It is useful to have parameters

that represent certain characters of the complete pdfs. In this section, we discuss non-linear

statistical measures of information and uncertainty, information entropy, mutual informa-

tion, and the Bayes error.

4.4.1 Information Theory

Information theory, introduced by Shannon (1948), has been developed extensively in

the communication industry and deals with the data transmission and the data compression.

At the same time, because of its all-encompassing inference, the theory has been amplified

in physics and statistics, as well as applied to computer science and economics (Ash, 1965;

Cover and Thomas, 1991; Gouveia et al., 1996).

Since geophysical prospecting, from a certain viewpoint, is a process of increasing in-

formation about subsurface properties, many ideas in information theory help us to under-

stand and describe its problems (Mavko and Mukerji, 1998; Takahashi et al., 1999b). We

apply the theory to quantify information and uncertainty in subsurface property estimation.

Information Entropy

In information theory, uncertainty is quantified by a parameter called information en-

tropy. Information entropy about a random variable,M, is defined as

H(M) = �

X
i

P (mi) loge P (mi) (4.9)

where P (mi) is the probability mass function ofM defined in Equation 4.3.

In the example shown in Figure 4.1, the entropy value is 4:17 in reservoir A and 3:63 in

reservoir B, showing that the uncertainty is greater in A. Minimum and maximum values

of the information entropy occur for complete knowledge and complete ignorance about
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objectives, as shown in Figure 4.2. Information entropy is invariant with respect to non-

linear coordinate transforms, since the probability mass function is invariant if each bin is

correctly transformed to the equivalent one in the other domain.

Since the information entropy is defined from the probability mass function, not from

the probability density function, it is not unique to a pdf, but it depends on how we dis-

cretize a given pdf to produce the mass function (Middleton, 1960). Bin sizes in the dis-

cretization should be consistent with the expected accuracy of the estimation. The entropy

values increase when the bin sizes are decreased.

Relative Entropy

Relative entropy represents the difference of uncertainty of a pdf relative to a reference

pdf, and it is free from discretization.

D(pjjq) = �

Z
p(m) log

e

p(m)

q(m)
dm (4.10)

where p(m) is the pdf of objective properties,m, and q(m) is a reference pdf in theM do-

main. As the reference, the uniform function, q = const:, is often used, which corresponds

to the complete ignorance about the objectives.

Although the pdf is variable with respect to non-linear coordinate transformations, the

relative entropy is invariant. This can be demonstrated by

D(p(m)jjq(m)) = �

Z
p(m) loge

p(m)

q(m)
dm

= �

Z
p(n)

��� @n
@m

��� loge p(n)
��� @n
@m

���
q(n)

��� @n
@m

���dm
= �

Z
p(n) log

e

p(n)

q(n)
dn

= D(p(n)jjq(n)) (4.11)

i.e., the relative entropy in the M domain, D(p(m)jjq(m)), is equivalent to the relative

entropy in theN domain, D(p(n)jjq(n)).
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Mutual Information

Observation of geophysical data reduces uncertainty about objective rock properties. In

the example shown in Figures 4.4 and 4.5, a velocity observation of 2.83 km/s decreases

information entropy from H(�) = 3:44 to H(�jVp = 2:83) = 3:06. The reduced entropy

represents the information provided by the velocity data.

Likewise, the dependence between properties can in general be quantified by the ex-

pected entropy decrease of one property by observing the other, which is called mutual

information. The mutual information of random variablesM andD is defined as

I(MjD) = H(M)�H(MjD) (4.12)

where H(M) is the entropy of M and H(MjD) is the conditional mean entropy of M

givenD defined by

H(MjD) = �

X
j

P (dj)H(HjD = dj) = �

X
j

X
i

P (mi;dj) loge P (mijdj) (4.13)

The conditional mean entropy, H(MjD), is the expected entropy of M when D is given.

Hence mutual information expresses difference in uncertainty about M before and after

knowingD.

The mutual information may be normalized to show the information relative to the

uncertainty at the prior state as

In(MjD) = I(MjD)=H(M) = 1�
H(MjD)

H(M)
(4.14)

0 � In(MjD) � 1; * 0 � I(MjD) � H(M)

Since H(M) is the information required to predict the target rock properties, the normal-

ized information represents completeness of the estimation.

In the example in Figures 4.4 and 4.5, mutual information about porosity carried by Vp,

I(�jVp), is 0:22 and the normalized information, In(�jVp), is 0:07. Seismic velocity does

not constrain porosity very much in this case. Since the mutual information is derived from

the information entropy, it is invariant with respect to coordinate transforms.
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4.4.2 Bayes Decision Theory

Pdfs provide us with not only the mostlikely prediction of rock properties for given

data, but also with the reliability of the predictions and the probability of their errors (Duda

and Hart, 1973; Box and Tiao, 1992; Houck, 1999). The following example describes the

decision criterion and its error when discriminating oil sand from brine sand using seismic

P-wave velocity.

Bayes Decision Criterion

Each curve in Figure 4.9 shows the pdfs of Vp for brine sand and oil sand, p(Vp; F luid =

brine) and p(Vp; F luid = oil), from a North Sea reservoir. The area under each curve

represents the marginal probability of each pore fluid, i.e.,

p(brine) =

Z
p(Vp; F luid = brine)dVp (4.15)

p(oil) =

Z
p(Vp; F luid = oil)dVp (4.16)

The larger area under the brine pdf than the oil pdf—p(brine) > p(oil)—represents an

a priori assumption that brine sand is more likely to exist than oil sand without velocity

observation.

From the pdfs, the conditional pdf of pore fluid given an observed Vp can be derived as

p(F luidjVp) =
p(Vp; F luid)

p(Vp)
=

p(Vp; F luid)P
i
p(Vp; f luidi)

(4.17)

In the example in Figure 4.9 with two possible fluid types, brine and oil, the probability

of each fluid type for a given Vp is

p(brinejVp) =
p(Vp; F luid = brine)

p(Vp; F luid = brine) + p(Vp; F luid = oil)
(4.18)

p(oiljVp) =
p(Vp; F luid = oil)

p(Vp; F luid = brine) + p(Vp; F luid = oil)
(4.19)

Two curves in Figure 4.10 show the probabilities of the two pore fluids for all possible Vp.
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Figure 4.10: The conditional pdfs Vp given fluids. The conditional pdfs intersect each
other at Vp = 2:67, which is the decision boundary between prediction of oil and gas.

The Bayes decision criterion states that, for any given Vp, the mostlikely pore fluid is

the one with the largest p(F luidjVp) (Duda and Hart, 1973). More generally, when we

estimate a set of rock properties, m, from a set of observables, d, the mostlikely estimate

ofm for any given d is the one that has maximum conditional pdf, p(mjd). In the example

in Figure 4.10, Vp= 2.67 km/s ( =Vpth ) is the decision boundary of Bayes criterion; oil sand

should be predicted when Vp < Vpth, while brine sand should be predicted when vp > Vpth.

Bayes Estimation Error

Overlap of the pdfs in Figure 4.9 implies that the rocks with the two different saturating

fluids can have the same Vp. Therefore, perfect prediction of pore fluids from Vp only is im-

possible. This is true for any geophysical rock property estimation; geophysical data do not

allow perfect predictions of rock properties, but there are always inevitable interpretation

errors. The Bayes decision criterion of selecting the maximum likelihood rock properties

guarantees minimum prediction errors, as compared to other decision criteria.

In Figure 4.11, colored areas under the pdfs represent the probabilities of errors for the
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example in Figure 4.9. They are either predicting brine when the true fluid is oil (A), or

predicting oil when the true fluid is brine (B). In this case, the probability of error is
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Figure 4.11: The Bayes interpretation errors. Dashed line is the decision boundary of fluid
prediction. The interpretation errors happen either when predicting brine for true fluid
of oil (A, false negative) or when predicting oil for true fluid of brine (B, false positive).

p(errorjVp) = p(brinejVp); if p(oiljVp) > p(brinejVp) i:e:; Vp < Vpth (4.20)

p(errorjVp) = p(oiljVp); if p(brinejVp) > p(oiljVp) i:e:; Vpth < Vp (4.21)

The average probability of making any prediction error can be written as

p(error) =

Z
Vp<Vp

th

p(Vp; F luid = brine)dVp +

Z
Vp

th
<Vp

p(Vp; F luid = oil)dVp (4.22)

Table 4.1 summarizes probabilities of correct and wrong predictions in the example.

The Bayes error can be considered a negative measure of dependence between objective

rock properties and observed physical properties. When the observed properties completely

depend on the objective properties, there is no error. On the other hand, a Bayes error of
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Observed Velocity Vp < Vpth Vpth < Vp p(F luid)

p(ojVp) > p(bjVp) p(bjVp) > p(ojVp)

Predicted Fluid Oil Brine

True: Oil 0:267 0:033 0:300

Correct False negative error
True: Brine 0:017 0:683 0:700

False positive error Correct

Total 0:284 0:716 1:000

Table 4.1: Probability of correct/false prediction estimated from the pdf, p(V p; F luid).

0:5, in this example of two possible categories, implies there is no information about the ob-

jectives provided by the observation. (More generally, the Bayes error for non-informative

data is 1=n when there are n possible categories of rock properties.) In addition, the Bayes

error is invariant with respect to non-linear coordinate transform, as discussed later.

When a particular reservoir property is economically more favorable than others, such

as the example above in which oil sand is more preferable than brine sand, it is valuable

to make the distinction between false positive errors and false negative errors (Duda and

Hart, 1973; Houck, 1999). False positives are errors when predictions of more favorable

properties turn out to be false, which corresponds to Equation 4.20 in the example. On

the other hand, false negatives are when predictions of unfavorable property turn out to be

false, such as Equation 4.21. The distinction between the two types of errors is important

when evaluating economical impacts of decisions, especially when the economical values

of the two errors, which may be quantified by loss functions, are asymmetric. In such cases,

the decision boundary may not be at the intersection of the two conditional pdfs (Fukunaga,

1972).

4.4.3 Comparison With Linear Measures

So far, non-linear measures of uncertainty, information entropy and relative entropy,

measures of dependence between parameters, mutual information and Bayes error, and

non-linear Bayes decision criterion have been described. In this section, they are compared
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with the common linear statistical counterparts: variance, covariance, linear regression, and

discriminant analysis using Mahalanobis distance (Fukunaga, 1972).

We use an example from a North Sea reservoir to show the advantages of the non-

linear measures as compared to their linear counterparts. Contours in Figure 4.12-A show

the bivariate conditional pdfs of Vp and Vs for six different lithofacies found in a North Sea

reservoir. The pdf was estimated from the discrete samples overlain on the contours. Colors

in Figures 4.12-B and C show the predicted facies for each pair of Vp and Vs, according to

the Bayes criterion and minimum-Mahalanobis-distance classifier, respectively.

The advantages of non-linear measures as compared to linear correspondents can be

summarized below.

� Flexible representation of the state of knowledge of rock properties.

Non-linear measures are based on non-parametric pdfs, which allow complete and

flexible description of rock properties. As shown in Figure 4.12, pdfs can honor

arbitrary rock property relations in observed data.

� Non-linear dependence can be analyzed.

Mutual information and the Bayes error quantify the dependence between non-

linearly and non-uniquely related variables, which are characteristic of most natural

rocks.

� Categorical properties can be used.

Rock properties can be categorical, such as lithofacies and pore fluid types, as well

as continuous, while variance and covariance only work for continuous properties. In

the example, the dependence between the two velocities and lithofacies can be quan-

tified by the mutual information, I(lithofaciesjVp; Vs) = 1:38, or the normalized

information, In(lithofaciesjVp; Vs) = 0:23.

� Invariance with respect to change of variables.

Linear measures, as well as linear discriminant criterion, are variable with respect to

non-linear coordinate transforms, while the non-linear measures and Bayes criterion

are invariant.
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Figure 4.12: Comparison between the Bayes decision criterion and the minimum-
Mahalanobis-distance discriminant criteria. Contours in A show the bivariate pdf
of Vp and Vs for six different lithofacies, derived from the overlain discrete data. B
and C show predicted lithofacies at each (Vp; Vs) pair from the Bayes criteria and the
minimum-Mahalanobis-distance criteria, respectively.
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� Bayes criteria guarantee minimum estimation error.

For a given pdf, the Bayes decision criterion guarantees minimum prediction error.

In Figure 4.12, the prediction error using the Bayes and the minimum-Mahalanobis-

distance criteria are 17% and 26%, respectively. Minimum-Mahalanobis-distance

classifier gives the best result only if the pdfs are Gaussian functions, when the deci-

sion criteria are equivalent to the Bayes criteria.

More importantly, the estimation of a non-parametric pdf explicitly requires consider-

ation of the effects of spatial sampling, measurement errors, and the prior pdf, which are

very often overlooked in linear analyses.

When available data are insufficient as compared to the heterogeneity of target rocks, or

when we deal with multiple (more than five) rock properties at once, however, estimation

of the pdfs can be highly difficult. In such cases, we may decide that only simple statistical

parameters of the data, such as mean, variance, and covariance, are reliable, when the linear

measures work as well as the non-linear ones.

4.5 Source of Information in Rock Property Estimation

The main objective of geophysical prospecting is to increase information, thereby re-

ducing uncertainty about target subsurface properties. Using statistical formulations dis-

cussed earlier, we quantitatively discuss what brings us information in rock property esti-

mation and what does not.

4.5.1 Sources of Information

Rock Physics Theories

Rock physics theories constrain our knowledge about subsurface rock properties. Abso-

lute constraints come from physical definitions of parameters. For example, porosity must

observe 0 � � � 1 by definition. Moreover, most rocks have porosity values less than the

critical porosity, �cr, introduced by Nur et al. (1991; 1992; 1995), i.e., 0 � � � �cr.
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Other theories also define bounds of rock properties for certain conditions. For exam-

ple, the Hashin-Shtrikman theory defines bounds of elastic moduli of isotropic aggregates

for given volume fractions (Hashin and Shtrikman, 1963). Figure 4.13 shows the upper

and lower bounds of Vp for wet sandstone (i.e., mixtures of quartz and water) as a function

of porosity. The theory helps us infer bounds of porosity for an observed seismic velocity,

even when we have no porosity information. As illustrated in Figure 4.13, if we know the
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Figure 4.13: Hashin-Shtrikman bounds of Vp for quartz-water aggregate. The bounds limit
possible range of porosity for given velocity. When V p is 4 km/s and it is known that
the target rock is clean wet sandstone (quartz-water mixture), porosity must be lower
than 0:609.

rock is sandstone, quartz-water mixture, and when the measured Vp is 4 km/s, the theory

limits the possible range of porosity to 0 � � � 0:6094 and reduces information entropy

from 6:91 to 6:41.

Other rock physics theories predict rock property relationships for well-defined condi-

tions, such as Gassmann’s prediction of elastic moduli after fluid substitution (Gassmann,

1951; Mavko et al., 1998). These theories help estimate the pdfs of rock properties in

non-observed physical states, as discussed in section 4.3.3.
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Prior Geological Information

Geophysical subsurface property estimation is usually a very under-constrained and ill-

posed problem because of the large heterogeneity of the objectives compared to available

information. Hence, the prior geological knowledge is used either explicitly or implicitly

to condition the estimation.

Some implicit assumptions which are frequently presupposed in seismic data process-

ing are random vertical layering in deconvolution and velocity increase with depth in veloc-

ity estimation. Additionally, local geological knowledge may be established from outcrop

data, well data, and regional stratigraphy, from which we may estimate the prior probabili-

ties to reduce uncertainty. Further investigation of the example in Figure 4.11 and Table 4.1,

in which pore fluids are estimated from velocity measurements, show the influence of the

prior probability on uncertainty. In the previous example, the prior probabilities of oil and

brine were assumed to be 0:3 and 0:7. Table 4.2 summarizes the Bayes errors of pore fluid

prediction, as well as the mutual information about pore fluid given by the velocity, when

the prior probabilities are changed and the conditional pdf, p(VpjF luid), is kept identical.

p(oil) p(brine) Total Bayes Error (%)
0:3 0:7 5:0

0:15 0:85 3:4

0:05 0:95 1:6

0:00 1:00 0:0

Table 4.2: Dependence of the Bayes Error on prior probability.

The Bayes error decreases as the difference between the prior probabilities for the two

fluids becomes greater. When existence of oil is geologically impossible, such as when

there is no source rock to produce oil or when the up-dip of the reservoir is found wet, the

prior probability of oil is 0, hence there is no uncertainty about the pore fluid.

Measured Data

Measured data are the most important information in reducing uncertainty about rock

properties. Two or more types of measured data may reduce the uncertainty even more.
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The reduction of uncertainty by additional data can be shown by an example from the

North Sea, in which the relationships between the porosity, Vp, and the Vs of the reservoir

are described by a trivariate pdf in Figure 4.14. Conditioning of porosity information by

velocities is summarized in Figure 4.15. The unconditioned prior pdf changes to narrower

and taller conditional pdfs, p(�jVp) and p(�jVp; Vs), by velocity information. The velocity

observation decreases the information entropy of porosity, as shown in Table 4.3.

Figure 4.14: The trivariate pdf of porosity, Vp, and Vs, p(�; Vp; Vs), in a North Sea reser-
voir. The surface corresponds to an iso-probability-density contour of the trivariate
pdf.

Data Information Entropy about Porosity
- 3.44

Vp=2.83 3.06
Vp=2.83 Vs=1.34 2.89

Table 4.3: Reduction of information entropy about porosity by seismic velocity observa-
tions.
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Figure 4.15: Conditioning of porosity pdf by V p and Vs information, corresponding to the
trivariate pdf in Figure 4.14.

4.5.2 No Source of Information

Data Manipulation

Recently, transforms of observed data to other coordinates have been used for rock

property discrimination. Such transforms include (Vp; Vs) to (�=�; �=�) = (1=(Vp
2
�

2Vs
2); Vs

2=(Vp
2
� 2Vs

2)), or P- and S-impedances (Ip and Is) to (��; ��) = (I2
p
�

2I2
s
; I2

s
) (Berryman, 1999; Goodway et al., 1999) (� and � denote Lamé’s elastic constant

and shear modulus, respectively). However, from the information-theoretic view point,

these data manipulations do not increase information about rock properties.

Invariance of Prediction Error

The lack of additional information gained by data manipulations is demonstrated by

the invariance of the Bayes prediction error, with respect to non-linear coordinate trans-

formation. The following example attempts to distinguish oil sand from brine sand in the

(Ip; Is) domain and in the (L;M) domain, where L and M are any functions of Ip and Is,

as L(Ip; Is) and M(Ip; Is). If the Bayes criterion predicts oil sand when (Ip; Is) 2 R and
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brine sand when (Ip; Is) 2 �R), the total Bayes error in the (Ip; Is) domain can be related to

the total Bayes error in the (L;M) domain as

pIp;Is(error) =

ZZ
R

p(brine; Ip; Is)dIpdIs +

ZZ
�R

p(oil; Ip; Is)dIpdIs

=

ZZ
S

p(brine; L;M)dLdM +

ZZ
�S

p(oil; L;M)dLdM

= pL;M(error) (4.23)

where S is an area in the (L;M) domain corresponding to R in the (Ip; Is) domain. Equa-

tion 4.23 states that the Bayes error is invariant when we change variables from (Ip; Is) to

any domain that can be derived from (Ip; Is) alone. Figure 4.16 shows the bivariate pdfs of

oil sand and brine sand in the (Ip; Is) and in the (��; ��) domains. The latter is produced

by data manipulation of the former, observing Equation 4.2.

In spite of the different shapes of the pdfs, each one is no more than a non-linearly

stretched version of the other. The Bayes errors in both domains, as well as estimation

errors of the minimum-Mahalanobis-distance discriminant, are summarized in Table 4.4.

The minimum-Mahalanobis-distance discriminant produces different estimation errors in

Domain Bayes Error (%) Error of MD-based Discriminant (%)
Ip � Is 5:4 6:3

��� �� 5:5 7:2

Table 4.4: Estimation errors of Bayes and minimum-Mahalanobis-distance discriminant
criteria in Ip � Is and ��� �� domains.

the two domains, since it is based on the covariances of the pdfs which are variant with

respect to non-linear coordinate transforms. However, the difference in the Bayes errors is

smaller than discretization errors of the computation, showing the invariance of the Bayes

error. In addition, the Bayes errors are smaller than the linear correspondent in both do-

mains.
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Figure 4.16: The bivariate pdfs of Ip and Is, for brine and gas sand (A) and the equivalent
pdfs in (��; ��) domain (B). In spite of the different shapes, the ability to discriminate
pore fluids is identical.

Data Processing Inequality

As Cover and Thomas (1991) correctly state, “ No clever manipulation of data can im-

prove the inference that can be made from the data.”, the data processing inequality in the

information theory explicitly shows that no information can be gained by data manipula-

tions.

If random variables,X;Y, and Z, form a Markov chain in that order, information about
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X given byY is greater than or equal to the information aboutX given by Z.

If X! Y! Z

then I(X;Y) � I(X;Z) (4.24)

X,Y, and Z form a Markov chain if and only if

p(x; zjy) = p(xjy)p(zjy) (4.25)

i.e.,X and Z are conditionally independent givenY.

In practice, Markov chains can be found in cases when we simply manipulate observed

data to produce other parameters, as in Figure 4.17. For example, it happens when we

compute a pair of attributes, L and M , only from measured P and S impedances, Ip and Is,

by mere manipulation. In that case, subsurface rocks (X), impedances (Y), and attributes

after manipulation (Z) form a Markov chain, since only information contained inY and no

other information is used for deriving Z. In this case, the information about the rocks given

X Subsurface Rock

Data Acquisition

Y Measured Data

Z Manipulated Data

Data Manipulation
Coordinate Transform

Figure 4.17: Information transfer in Markov chain.

by the measured impedances, I(XjY), is greater than or equal to the information given by

the attributes derived from the impedances, I(XjZ). That is, data manipulation does not

increase information. In the example in Figure 4.16, in which variables are transformed
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from (Ip; Is) to (��; ��),

I(fluidjIp; Is) = I(fluidj��; ��) = 0:56 (4.26)

i.e., the information given by the impedances, Ip and Is, is equal to the information given

by the derived attributes, �� and ��.

In chapter 2, we discussed rock property effects in various seismic attribute domains.

The pairs of attributes explored in chapter 2 are not products of data manipulations from

other pairs, hence each of them carries different information. For example, AVO attributes

can not be determined from Vp and Vs only, but density values are needed.

It should be noted that the data processing inequality does not apply to general geo-

physical data processing. Essentially, most data processing in geophysics are not mere

data manipulations, but procedures to combine information from measured data, physics

theories, and geology. For example, in seismic data processing, migration a priori assumes

particular wave propagation patterns from a scatterer, based on the physics of waves. In

the same way, deconvolution a priori assumes that reflected waves are approximated by the

convolution model. In addition in many processing procedures, noise is suppressed under

the assumption of its randomness and unbiased character. In those cases, data processing

attaches additional information to measured data, information that comes out of a priori

physical and geological assumptions, as shown in Figure 4.18, i.e., subsurface properties

(X), measured data (Y), and processed data (Z) do not form a Markov chain.

Non-Physical Attributes

Recent developments in seismic technology have enabled us to use multiple seismic at-

tributes for the interpretation of rock properties (Brown, 1996; Chen and Sidney, 1997). Al-

though some attributes are reported to be advantageous in rock property estimation (White,

1991; Dilay and Eastwood, 1995; Lewis, 1997), most of the seismic attributes have poorly

established physical relationships with rock properties. In many cases, empirical statistical

correlation between seismic attributes and objective rock properties are established from

well data. Then the seismic attributes that have high statistical correlation with objective

properties are selected for seismic interpretation.
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Figure 4.18: Information transfer in geophysical data processing.

According to Kalkomey (1997), small numbers of calibrating well data can result in

spurious good correlations between rock properties and seismic attributes, even when they

do not have any dependence. This is because the estimation of true reservoir statistics be-

comes difficult when available data are limited. It becomes virtually impossible for high

dimensional pdf when we deal with many rock properties at once. Selection of seismic at-

tributes from only empirical statistics can lead to incorrect rock property prediction. Hence,

physical relationships between seismic attributes and rock properties need to be empha-

sized, especially when the number of calibrating data are limited.

4.6 Conclusions

In this chapter, we explored the methods to quantify information and uncertainty in

rock property estimation. Probability density functions enable complete representation

about our knowledge about objective rock properties, and thereby are suitable to describe

estimated rock properties, as well as the relations between rock properties. We also present

a procedure to establish pdfs about rock properties from available data with emphasis on

the physical implications.

Non-linear statistical parameters, such as information entropy, mutual information,

and the Bayes error, provide us with measures of uncertainty and information about non-

linearly and non-uniquely dependent rock properties. Investigation using these parameters
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clearly revealed that uncertainty about rock properties cannot be reduced by data manip-

ulations. Instead, data acquisition, physics, and geological knowledge bring information

about rock properties. Popular linear statistics can lead to spurious conclusions unless they

are used with enough awareness about their limitations.



Chapter 5

Rock Physics Effects on Estimation

Uncertainty in Various Scenarios

Abstract

In seismic exploration, seismic attributes are usually used as interim products in esti-

mating reservoir properties from seismic data. Important factors affecting the predictability

of reservoir properties from seismic attributes include types and numbers of available seis-

mic attributes, sensitivity of the seismic attributes to the target reservoir properties, natural

variability of the reservoir properties, and accuracy of deriving the seismic attributes. In this

chapter, we use statistical formulations presented in chapter 4 and quantitatively investigate

how these factors influence the uncertainty of reservoir property estimation. Furthermore,

using probability density functions of various seismic observations derived from well data,

we quantify information about reservoir properties, namely, lithofacies, pore fluid, and

porosity, carried by each attribute. As optimal attributes, we choose those which convey

maximum information.

Application of these methods serves as a quantitative decision analysis guide for evalu-

ating various data acquisition, processing, and interpretation options. It can help to analyze

which kinds of additional data would best reduce the uncertainty about reservoir properties.

97
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5.1 Introduction

Estimation of rock properties consists of making an inference of the rock properties

using available information. Figure 5.1 systematically summarizes the process of estimat-

ing rock properties from seismic data. From data acquisition and processing, we obtain

processed seismic volumes, which are the reflectivity profiles of 5 dimensions or more (x,

y, z, offset, azimuth, time, etc.). Then seismic attributes (e.g., velocities, impedances, and

AVO attributes) are extracted from the processed data through various inversion techniques.

Finally, seismic attributes (including the reflectivity profiles obtained in the first step) are

used for rock property estimation, along with well data and rock physics theories. In this

procedure, seismic attributes act as interim products to connect seismic data and target rock

properties. Unfortunately, geophysicists sometimes skip the second step (from seismic at-

tributes to target rock properties) and consider attributes as final products. The attributes

provide us with information extracted from the seismic data in a form that is ready for rock

property estimation.

The estimation uncertainty of target rock properties from seismic attributes is related to

1) types and numbers of available seismic attributes, 2) sensitivity of the seismic attributes

to the target rock properties, 3) variability of the target rock properties, 4) accuracy of

measurement of the seismic attributes, and many other factors. Quantitative understanding

of the uncertainty is essential in making exploration and production decisions.

In this chapter, we use the quantitative measures of information presented in chapter 4

and explore how the estimation uncertainty of reservoir properties is related to individual

sources. We define pdfs from laboratory and well data for various estimation scenarios,

reservoir conditions, measurement conditions, and from these we quantify information and

uncertainty of the reservoir properties. Furthermore, we explore which kinds of seismic

attributes are appropriate for various rock property estimation scenarios, e.g., estimation

of lithofacies, pore fluid, and porosity. The methods proposed in this chapter enable us

to incorporate rock physics into decision making in various stages of oil exploration and

production.
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Figure 5.1: The process of rock property estimation from seismic data. Seismic data acqui-
sition and processing produce processed seismic data (top). The processed data consist
of reflection profiles, which are multidimensional. From the data, seismic attributes,
such as impedance or AVO coefficients, are extracted through inversion procedures.
Then from the seismic attributes, rock properties, e.g., porosity, lithofacies, and fluid
saturation, are estimated using rock physics theories and statistical methods.
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5.2 Sources of Uncertainty in Rock Property Estimation

Measured data, rock physics theories, and geological knowledge are what give us in-

formation about subsurface properties, as discussed in chapter 4. Chapter 2 described how

seismic attributes extracted from seismic data are dependent on rock properties. In this

chapter, we combine the methods proposed in chapters 2 and 4 and quantitatively explore

the effects of individual sources of uncertainty.

For several scenarios of pore fluid prediction—e.g., distinction of gas-saturated reser-

voir from water-saturated reservoir—we establish pdfs using Han’s laboratory sandstone

data (1986). We then quantify the information and uncertainty of the pore fluid prediction

in each scenario using the non-linear statistical measures that were presented in chapter 4.

5.2.1 Limited Information

Elasticity theory describes wave propagation through most rocks and thereby is the

basis of most seismic analysis. Under the assumption of elasticity and isotropy, any com-

bination of three seismic parameters, such as Vp, Vs, and density, completely describe the

seismic signatures of rocks, as long as none of the three can be deterministically derived

from the other two. Once the combination of three elastic properties is given, we can derive

any other elastic property, e.g., � (Lamé’s constant), � (shear modulus), and � (Poisson’s

ratio). Hence, perfect measurements of any three seismic properties provide us with the

maximum information about rock properties seismic data carry. In other words, there is

an inevitable upper limit of information that we can extract from seismic data, even when

the measurements are error-free. Furthermore, use of less than three seismic measurements

would mean abandoning part of the limited information seismic data can convey.

The two clouds in Figure 5.2 are the trivariate pdf of Vp, Vs, and density for gas- and

water-saturated sandstones, derived from Han’s data set (1986). We suppose they represent

the pdfs of error-free measurements for pore fluid prediction. Hence the diversity of the

pdfs comes from the natural variability of the reservoir properties. Figure 5.3 shows the

corresponding bivariate pdfs of Vp and Vs, as well as the univariate pdfs of Vp, and Vs. The

bivariate pdfs are projections of the trivariate pdf along the density axis and the univariate

pdfs are projections of the bivariate pdfs.
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Figure 5.2: The trivariate pdf of Vp, Vs, and density for gas-saturated (red) and water-
saturated (blue) sandstones. The surfaces represent iso-probability-density surfaces of
the pdfs.
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Figure 5.3: The bivariate pdf of Vp and Vs for gas-saturated (red) and water-saturated
(blue) sandstones. The univariate pdfs of Vp (right) and Vs (top) are also shown.
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The univariate pdfs in Figure 5.3 show overlaps for gas and water, although the pdfs

become much more separated in the bivariate case. Also from the comparison between the

trivariate and the bivariate pdfs, we can observe that higher dimensional pdfs (i.e., more in-

formation) have smaller overlap between gas-sand clouds and water-sand cloud than lower

dimensional pdfs. Table 5.1 summarizes statistical measures of the predictability for one,

two, and three measurements, in terms of mutual information and the Bayes errors.

Attributes used Mutual Information Normalized Inf. Bayes Error
I(fluidjAttributes) In(uidjAttributes)

Vp 0.01 0.02 0.453
Vs 0.01 0.02 0.445

Vp, Vs 0.41 0.59 0.127
Vp, Vs, � 0.53 0.76 0.069

Table 5.1: Information about pore fluid given by one, two, and three parameters. Bayes
errors in pore fluid prediction using one, two, and three parameters are also shown.

According to Table 5.1, the more measurements we use for classification, the more in-

formation we can extract, hence the less estimation errors. Although individual single mea-

surements of Vp and Vs provide little information about pore fluids, the combination of the

two enables their distinction. Three measurements (adding density information) give the

most information and the least Bayes error. Since any additional seismic properties can be

deterministically derived from the three, and the three measurements are assumed error-free

in this case, no information can be added by further seismic measurements. However, even

the three measurements cannot perfectly predict pore fluids in this case—the normalized

information is less than 1 and the Bayes error is greater than 0—because the dependence

between pore fluid types and the three attributes are not complete.

In practical situations, using more than three measurements can be beneficial, since no

measurement is error-free. Additional measurement with higher data quality and/or denser

data sampling can bring supplemental information about rock properties and reduce their

uncertainty via redundancy.

For rocks which have more complicated characteristics than isotropic and elastic me-

dia, a possible way to increase the information extractable from seismic data is to use more
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rigorous physical models. For example, measuring seismic wave attenuation enables us

to employ viscoelastic models for absorptive rocks, and to extract information about pore

fluids (e.g., permeability). Hence, additional measurement of quality factors, Q, increases

the dimensionality of the information from three to four. Alternatively, if the rocks are

anisotropic, measuring seismic properties in more than one orientation expands the maxi-

mum extractable information from seismic data.

5.2.2 Sensitivity of Seismic Properties on Target Rock Properties

Predictability of rock properties from seismic attributes depends on the sensitivity of

the seismic attribute value to the target rock properties—how much the attributes are varied

by a change in the rock property. The following example shows how the uncertainty of pore

fluid prediction is influenced by the sensitivity between pore fluids and seismic velocities.

Figure 5.4 shows the pdfs of Vp and Vs for gas- and water-saturated sandstones with low

porosity (A) and high porosity (B), derived from Han’s data set (1986). The low-porosity

data and the high-porosity data have identical porosity variability (�0:05), but different

mean porosity values ( �� = 0:10 in A and �� = 0:25 in B). Error-free measurements of the

attributes are again assumed.

In these data, the sensitivity of velocities to pore fluids is greater in high-porosity sand-

stone than in low-porosity. Consequently, the separation between the gas-sand cloud and

the water-sand cloud is larger in B than in A, although the porosity ranges of the two cases

are identical. Table 5.2 summarizes statistics of the pore fluid detection in both cases.

Table 5.2 shows that information about pore fluid carried by seismic velocities is larger

in high porosity (B) than in low porosity (A), quantitatively illustrating better prediction

of pore fluid in higher porosity. In both cases, the combination of Vp and Vs drastically

decreases the uncertainty about pore fluids.

The example above focuses on the impact of porosity on the pore fluid dependence of

velocities. In general, however, rock properties other than porosity (e.g., rock matrix stiff-

ness, overburden pressure, pore pressure, depth, the difference in fluid compressibilities,

etc.) also influence the sensitivity of seismic velocities on pore fluids.
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Figure 5.4: The pdfs of Vp and Vs for gas- and water-saturated sands. A is when the
porosity range is 0:05 � � � 0:15 and B is when 0:20 � � � 0:30

5.2.3 Heterogeneity of Reservoirs

The relation between a rock property and seismic attributes becomes scattered when

rock properties other than the objectives are heterogeneous, as discussed in chapter 4. For
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Mutual Inf. Normalized Inf. Bayes Error

Vp
A Low � 0.00 0.00 0.468
B high � 0.00 0.00 0.48

Vs
A Low � 0.01 0.01 0.451
B high � 0.04 0.05 0.395

Vp and Vs
A Low � 0.34 0.49 0.164
B high � 0.46 0.66 0.106

Table 5.2: Information about pore fluid given by velocities and the corresponding Bayes
errors in pore fluid prediction for cases A and B in Figure 5.4.

example, Figure 2.5 illustrates that the relation between seismic attributes and porosity can

be variable depending on the clay content. The heterogeneities of reservoirs make rock

property prediction non-unique and difficult.

Figure 5.5 shows pdfs of Vp and Vs for gas- and water-saturated sandstones of the same

reservoir rocks with different variabilities in porosity, defined from Han’s data. The mean

porosities of the two reservoirs are identical ( �� = 0:32, though porosity variations are

�0:02 in A and �0:08 in B). Perfect measurements with no error are assumed. The statis-

tics of the pore fluid prediction in both cases are summarized in Table 5.3.

A B
Attributes M. Inf. N. Inf. B. Error M. Inf. N. Inf. B. Error

Vp 0.51 0.73 0.074 0.30 0.44 0.174
Vs 0.24 0.35 0.241 0.11 0.16 0.324

Vp, Vs 0.69 1.00 0.000 0.69 1.00 0.00

Table 5.3: Information about pore fluid given by velocities and the corresponding Bayes
errors in pore fluid prediction for case A and B in Figure 5.5

In both cases, the combination of Vp and Vs data makes a perfect distinction between

water sand and gas sand, since variability in porosity scatters the data along the direction

approximately perpendicular to the fluid effects in the Vp-Vs domain, as discussed in chapter
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Figure 5.5: The pdfs of Vp and Vs for gas- and water-saturated sandstones. A has a smaller
porosity variability than B, although the mean porosities are the same in both cases.

2. The univariate pdfs of Vp in Figure 5.5-A (right), as well as the statistics for Vp in

Table 5.3-A, show that prediction of pore fluid using only Vp gives relatively good results

when the formation variability is small. Hence, additional Vs information has little impact

on the prediction in case A. In case B, on the other hand, prediction error using only Vp is
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relatively large because of the broad overlaps of the pdfs. In this case, additional Vs data

have a great effect on the prediction and significantly increase the predictability of pore

fluids.

Although the difference between cases A and B are assumed to be due to the variability

of reservoirs, it can also be considered as another scenario—the influence of geological

knowledge. Well data and geological information may suggest specific distribution of rock

properties and may define local pdfs as A for a sub-region of the entire reservoir, when

the pdfs for the entire reservoir is estimated as B. In this case, the geological knowledge

provides us with information about constraints on the intrinsic variability and reduces un-

certainty about the pore fluid prediction, as summarized in Table 5.3.

5.2.4 Errors in Seismic Attributes

Seismic measurement and processing introduce errors related to ambient and coherent

noise, geophone coupling, limited acquisition geometry, limitations in computer abilities,

etc. A big issue is velocity estimation in laterally heterogeneous environment (Claerbout,

1999). As discussed in chapter 4, when these errors can be rigorously expressed by pdfs,

we can include the errors into our information and uncertainty analysis. According to Fig-

ure 4.6, a pdf corresponding to a measured data value becomes broad when the measure-

ment error becomes large. Simple assumptions are often made such as zero-mean Gaussian

functions (Silverman, 1986).

Figure 5.6 shows the bivariate pdfs of Vp and Vs for the same gas- and water-saturated

sandstones when measurement errors are different. The error pdfs are assumed to be Gaus-

sian functions with different covariances. The error pdf for each case (i.e., a pdf corre-

sponding to a measured sample) is illustrated in the lower-right of each plot.

The statistics of the pore fluid prediction in the three cases are summarized in Table 5.4.

The comparison of the statistics in A and B—pdfs with the same configurations but differ-

ent width—demonstrates that an increase in measurement errors decreases the information

provided by the measurement, and increases the estimation error. Case C shows that an

uncorrelated error drastically increases the estimation uncertainty. It should be noted that

the small uncorrelated measurement errors (C) make the prediction more difficult than the
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Figure 5.6: The bivariate pdfs of Vp and Vs for gas- and water-saturated sand with different
measurement errors. The error pdfs are Gaussian functions shown by contours in the
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while the error is uncorrelated in case C. The correlation coefficient of the error is
equal to the sample correlation coefficient in A and B. Standard deviations of the error
pdfs along the Vp and the Vs axes are summarized in Table 5.4
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large correlated errors (B). Knowledge about the error correlation conveys information.

�error
Vp

(m/s) �error
Vs

(m/s) M. Inf. N. Inf. B. Error

A correlated 115 152 0.37 0.54 0.143
B correlated 186 253 0.30 0.44 0.183
C uncorrelated 115 152 0.09 0.13 0.336

Table 5.4: Information and the Bayes error of pore fluid prediction from V p and Vs, derived
from the pdfs in Figure 5.6.

The width of error pdfs should be consistent with the specifications of the data ac-

quisition, processing, and inversion used to derive the particular seismic attributes. The

errors in attributes can be evaluated from the sensitivity between the attributes and the data,

along with errors in the data space. For example, by exploring the traveltime equation

for reflected waves, Uzcategui (1998) estimated the accuracy of seismic velocity analysis

as a function of the frequency of the wave, the target depth, average subsurface velocity,

and the maximum offset. Precise evaluations of the measurement/processing/inversion er-

rors, as well as the relation between errors in different attributes, are difficult in practice.

However, the framework for incorporating the errors as pdfs into the uncertainty analysis

presented in chapter 4 is general and can be applied to arbitrary types of errors.

5.3 Optimal Seismic Attributes for Rock Property Esti-

mations

Recent developments in seismic technology have enabled us to use seismic data not

only for structural interpretation, but also for reservoir property estimation. Although

many types of seismic attributes are used in practice, quantitative guidelines about which

attributes should be used in particular conditions have not been well established.

Figure 5.7 shows well log profiles from a North Sea Tertiary turbiditic reservoir. These

data points are also plotted in Figure 5.8 in four different combinations of seismic attributes.

The colors represent six different siliciclastic facies within the reservoir, from clean sand

to pure shale. The clustering and separability of the facies are different in each of the
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attribute planes, since each pair contains different information. The question of which

seismic attributes to use under which conditions is crucial for more reliable rock property

estimation.
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Figure 5.7: Well log profile of a Tertiary turbiditic reservoir in the North Sea. Six silici-
clastic lithofacies are displayed in colors and Roman numerals: IIa: cemented sand,
IIb: unconsolidated sand, IIc: laminated sand, III: interbedded sand and shale, VI: silty
shale, V: pure shale.

In this section, we develop a strategy to find optimal seismic attributes for predicting

particular reservoir properties, such as lithofacies and pore fluid types, combining rock

physics and statistics. By using the concept of mutual information presented in chapter 4,

we quantify the information about rock properties carried by seismic attributes (Ash, 1965;

Cover and Thomas, 1991). Well data from the North Sea and Australian oil fields are used

for the investigation.

The attributes studied are those that have established physical relations to either the

interval properties of the reservoir, such as velocity and impedance, or the contrast of rock

properties at certain boundaries, such as reflectivity and AVO attributes.
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Figure 5.8: Four cross-plots of seismic attributes in a North Sea reservoir. A-D for V p-Vs,
acoustic impedance-Vp/Vs ratio, acoustic impedance-elastic impedance (see appendix
2), and AVO gradient-AVO intercept domains. The individual attribute domains show
different behaviors. Refer to Figure 5.7 for the facies correspondence to the colors.

5.3.1 A Strategy to Find Optimal Seismic Attributes for Reservoir

Property Prediction

The uncertainty of reservoir property estimation from seismic data is caused by two

factors. The first is the imperfect dependence of rock properties and seismic properties.

The second is the incompleteness of seismic attribute estimation from seismic data.

The strategy that we develop to quantify the information carried by seismic attributes

consists of the following three major steps. The first step is estimation of the pdfs of seismic

properties at in-situ reservoir conditions. The second step is evaluating errors of the forth-

coming seismic data acquisition/processing/inversion of deriving seismic attributes from
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observed data, and updating the pdfs. The final step is deriving the mutual information.

We first measure the information about lithofacies carried by seismic attributes, using

the North Sea well data shown in Figure 5.7.

Step 1: Estimate PDFs of Attributes In-situ Conditions

From Vp, Vs, and density measurements at the well, we derive pdfs of seismic properties

in perfect measurements for five lithofacies observed at the wells. Assuming that the well is

representative of the entire reservoir, we interpolate the scattered data points (e.g., as shown

in Figure 5.8) to account for errors and lateral sampling of well log measurements, and

estimate univariate and bivariate pdfs of the seismic properties. These seismic properties

include linear and nonlinear transforms of the measured basic observations (Vp, Vs, and

density), such as impedance, reflectivity, and elastic modulus. We assume homogeneous

shaly caprock for properties representing boundary properties, such as reflectivity and AVO

gradient. Four examples of the pdfs are shown in Figure 5.9.

In Figure 5.9, RC(0) and RC(30) denote the P to P reflectivity at normal and 30 degree

incidence, respectively. �tp is the P-wave slowness, and PR is the modified AVO gradi-

ent defined by Hilterman (1989) (refer to appendix 2 for the definition). The lithofacies

populations are distributed differently in different domains. Overlaps of each lithofacies

demonstrate the non-uniqueness of the relation between seismic properties and lithofacies

even in the error-free condition. The univariate pdfs of Vp has well separated peaks for the

different facies, shaly sand (blue) and cemented sand (green), while the pdf of the Vp/Vs ra-

tio shows more overlap between the facies. Similarly, the bivariate pdfs in �tp � PR are

more separated than in RC(0) � RC(30). The pdfs imply more separability of lithofa-

cies in Vp and �tp � PR than in Vp/Vs and RC(0) � RC(30), respectively, in error-free

measurements.

Step 2: Estimate PDFs at Seismic Observation

Since the resolution and quality of seismic data are limited, attributes derived from

seismic data may not describe the true values of the seismic properties, but can be erroneous

representations of the properties. We assume errors in each seismic attribute as uncorrelated

zero-mean Gaussian functions with 95% confidence intervals, as in Table 5.5.
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Figure 5.9: Univariate and bivariate pdfs at the in-situ condition in a North Sea reservoir.
Vp and PR��tp show more separated peaks than Vp=Vs and RC(0)�RC(30).

We smooth the pdfs at the in-situ condition (e.g. as shown in Figure 5.9) according to

the assumed errors in Table 5.5. The estimated pdfs for seismic observations are shown

in Figure 5.10. The pdfs at seismic accuracy are smoother and have more overlaps than at

well log accuracy, showing that lithofacies estimation from seismic data is more uncertain

than from acoustic well log data.

Step 3: Quantify Information

Finally, using the pdfs at seismic accuracy, we derive the mutual information carried

by attributes, I(faciesjattributes), which are summarized in Figure 5.11. In this par-
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Attribute Vp Vs AIp AIs EI(30) RC(0) RC(30) G PR

Method Stacking Inversion Conventional Processing AVO
Data P S P S P

Error (%) 15 20 7.5 12 10 7.5 10 12 12

Table 5.5: Assumed errors of individual attributes. The difference between the max-
imum and minimum observed attribute values are multiplied by the listed values and
used as the 95% confidence intervals of Gaussian functions. The processing method
and necessary data to derive each attribute are also listed. AIp: P-wave acoustic
impedance, AIs: S-wave acoustic impedance, EI(30): elastic impedance at the 30
degree incidence, RC(0): zero-offset reflectivity, RC(30): reflectivity at the 30 de-
gree incidence, G: AVO gradient by Aki and Richards approximation (1980), PR:
AVO gradient by Hilterman’s approximation (1989).
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Figure 5.10: Univariate and bivariate pdfs at a seismic observation in a North Sea reservoir.
The pdfs are smoother than in well log accuracy, shown in Figure 5.9.
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Figure 5.11: Information about lithofacies carried by single and pairs of seismic attributes,
I(faciesjattributes), in a North Sea reservoir. Attributes related to the volumetric stiff-
ness, Vp, AIp, and RC(0), are good information carriers about lithofacies.

ticular Tertiary turbiditic reservoir that includes cemented and unconsolidated sand, Vp,

AIp (P-wave acoustic impedance), and RC(0) (P-wave normal incidence reflectivity) are

the most informative single attributes, which are related to the volumetric stiffness of the

reservoir. On the other hand, single attributes related to the Vp/Vs ratio, such as EI(30)

(elastic impedance), G (AVO gradient by Aki and Richards (1980)), and PR (AVO gra-

dient by Hilterman (1989)) are the least informative. All pairs of attributes provide more

information than single attributes, which is consistent with the discussion in section 5.2.1.

However, the differences between individual pairs of attributes are relatively small. This

is because all the selected six pairs consist of both P-wave-related and S-wave-related at-

tributes.

Optimal Seismic Attributes for Lithology Prediction in a Australian Reservoir

We also analyze the information about lithofacies carried by attributes using well data

from Australia. Well log profiles in Figure 5.12 shows rather homogeneous characteristics

of the reservoir and large contrast of the properties between the reservoir and the overlying

shale. Relatively high velocity in the reservoir zone, below a sharp porosity boundary
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around 2040 m, suggests stiff matrix frame of the reservoir rock. It is in contrast to the

North Sea sands, where the reservoir sand have a relatively soft matrix frame. We select the

optimal seismic attributes to classify sand from shale, following the procedure explained

earlier.
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Figure 5.12: Well log profile of an Australian sandstone. Sharp boundary in porosity and
density logs corresponds to the top of the reservoir.

Figure 5.13 shows examples of the estimated pdfs of sand and shale facies of the Aus-

tralian reservoir. Figure 5.14 summarizes the mutual information about lithofacies provided

by seismic attributes in the reservoir.

In the Australian reservoir, Vs, Vp, and G (AVO gradient) are better single information

carriers about lithology, and Vp-Vs is the most informative pair. In contrast, attributes re-

lated to the Vp/Vs ratio, EI(30) and RC(30) (reflectivity at 30 degree of incidence), cannot

distinguish sand from shale very well. Figure 5.13-B shows EI(30) is almost independent

of the lithofacies.

The mutual information about lithofacies classification of the North Sea and the Aus-

tralian case cannot be directly compared, since the number of lithofacies are different.

However, from a comparison between Figures 5.11 and Figure 5.14 we can conclude that P-

and S-velocities are better information carriers about lithofacies than P- and S- impedances
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Figure 5.13: Univariate and bivariate pdfs at the seismic observation in an Australian reser-
voir. Vp shows clear separation between the sand and the shale, while they are over-
lapped in EI(30).

in the Australian case, while the impedances are more informative than the velocities in

the North Sea case. That is, the types of best attributes depend on local rock properties.

Figures 5.11 and 5.14 can become quantitative input to decision analysis in exploration

strategy making. The estimated information about lithofacies given by each attributes,

along with cost estimates to obtain them, help us to decide which attributes—which acqui-

sition/processing methods—to be used for lithofacies estimation.
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Figure 5.14: Information about lithofacies carried by single and pairs of seismic attributes
in an Australian reservoir. Vs, Vp, and G are good information carriers.

5.3.2 Optimal Seismic Attributes for Various Scenarios

In this section, we apply the procedure presented in section 5.3 to rock properties other

than lithofacies, namely, pore fluid and porosity, and investigate optimal seismic attributes

for these scenarios.

Fluid Detection

We first study the information about pore fluid conveyed by various attributes. By ap-

plying Gassmann’s formula and following the same procedure as described in section 5.3,

we establish pdfs of sandstones saturated with three different pore fluids; brine, oil, and

gas. That is, we derive seismic attributes in the unobserved conditions by extrapolating

available data using Gassmann’s theory.

Examples of the pdfs from the North Sea data are displayed in Figure 5.15. The fluid ef-

fect on seismic attributes, in general, is small as compared to the diversity of the pdfs. This

causes large overlaps between the pdfs and makes pore fluid detection from seismic data

difficult. Figures 5.16 and 5.17 summarize the information about pore fluids conveyed by

single and pairs of seismic attributes in the North Sea, derived from the pdfs in Figure 5.15,
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Figure 5.15: The pdfs of seismic attributes for three different pore fluids in a North Sea
reservoir. EI(30) is more sensitive to pore fluids than Vp.

as well as the Australian fields.

In the North Sea field, AIp, EI(30), RC(0), and RC(30) are the most informative

single attributes about pore fluids. They depend on the density and/or the Vp/Vs ratio. In the

Australian field, the information is generally smaller than the North Sea case, since a stiff

matrix frame keeps elastic moduli of the reservoir insensitive to pore fluids, as discussed

in section 5.2.2. (The mutual information of the two fields can be compared since the

uncertainty about pore fluid prior to seismic observation is considered identical, i.e., the

same three fluids are considered possible in the two fields.) Hence, the attributes that are

sensitive to density, such as Vs, AIp, RC(0), and AIs�AIp, are better information carriers

than others in the Australian field.



CHAPTER 5. ROCK PHYSICS AND UNCERTAINTY 120

Vp Vs AIp AIs EI(30) RC(0) RC(30) G PR
0

0.05

0.1

0.15

0.2

0.25
A: Single Attributes

In
fo

rm
at

io
n

Vs−Vp AIs−AIp EI(30)−AIp RC(0)−G RC(30)−RC(0) RC(0)−PR
0.1

0.2

0.3

0.4
B: Pairs of Attributes

In
fo

rm
at

io
n

Figure 5.16: Information about pore fluids carried by single and pairs of seismic attributes
in a North Sea reservoir. Attributes related to density and/or Vp/Vs, such as AIp,
EI(30), RC(0), and RC(30), convey more information than others.
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Figure 5.17: Information about pore fluids carried by single and pairs of seismic attributes
in an Australian reservoir. Attributes dependent on density, V s, AIp, and RC(0) are
good information carriers.
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Porosity Prediction

We next quantify the information about porosity of sandy facies carried by attributes.

Figures 5.18 and 5.19 summarize estimated values of mutual information, I(�jattributes).

For the purpose of porosity prediction in sands, AIp and RC(0) are the best single infor-

Vp Vs AIp AIs EI(30) RC(0) RC(30) G PR
0

0.1

0.2

0.3

In
fo

rm
at

io
n

A: Single Attributes

Vs−Vp AIs−AIp EI(30)−AIp RC(0)−G RC(30)−RC(0) RC(0)−PR
0.2

0.4

0.6

0.8

In
fo

rm
at

io
n

B: Pairs of Attributes

Figure 5.18: Information about porosity carried by single and pairs of seismic attributes in
a North Sea reservoir. Attributes dependent on volumetric stiffness, AI p, RC(0), and
Vp, convey more information than others.

mation conveyers in both the North Sea and the Australian fields. All of the selected pairs

of attributes carry approximately the same information, except Vp-Vs. The mutual informa-

tion is greater in the rather homogeneous Australian reservoir than the North Sea reservoir

that comprises several lithofacies, although the overall sensitivity of attributes to porosity

is similar in the two reservoirs.

5.3.3 Blind Tests

In statistical data mining, optimal choice of attributes is often made on the basis of

performance on a test set of the data. The test set is a subset of the data kept aside from the

training set. To verify that the mutual information indeed represents the ability of seismic

attributes to predict rock properties, we perform blind classification tests for lithofacies
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Figure 5.19: Information about porosity carried by single and pairs of seismic attributes
in an Australian reservoir. Attributes dependent on volumetric stiffness, AI p, RC(0),
and Vp, convey more information than other.

prediction and pore fluid detection. Using the North Sea well, we choose 80 percent of the

data as training data and derive the pdfs of lithofacies, as described in section 5.3. We then

classify lithofacies of the remaining 20 percent test data, compare the predicted facies with

the true facies, and estimate the success rate of the prediction. We also conduct similar test

classification for pore fluid detection. Figure 5.20 shows success ratios of the blind tests.

The results are consistent with Figures 5.11 and 5.16, i.e., the larger the mutual information,

Vp EI(30) Vp−Vs AIp−EI(30)
0.5

0.7

0.9
(1) Facies Discrimination

Vp EI(30) Vp−Vs AIp−EI(30)
0.3

0.5

0.7
(2) Fluid Detection

Figure 5.20: Success ratio of blind tests. The results are consistent with Figures 5.11
and 5.16, i.e., the greater the information, the more successful prediction.
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the more successful the classification, and the better the performance on the test data.

5.4 Conclusions

In this chapter, we quantitatively investigated how uncertainty in rock property esti-

mation is influenced by individual sources of uncertainty. We showed that combinations of

seismic attributes that can improve the predictability of rock properties, although there is an

upper limit of information that seismic data can carry. The upper limit is due to imperfect

dependence between seismic attributes and target rock properties. We also demonstrated

that the predictability of rock properties from seismic attributes depends both on the sensi-

tivity of the rock properties to the attributes, and the natural variabilities of the target rock

properties. Furthermore, errors in deriving seismic attributes cause uncertainty in rock

property estimation.

Using information theory, we then proposed a strategy to quantify the information con-

veyed by seismic attributes. Well data analysis showed that each seismic attribute and each

pair of attributes carries different information about rock properties. Moreover, optimal

seismic attributes for particular rock property prediction may differ from one field to an-

other. In the particular cases of the North Sea and the Australian field, AIp and RC(0) are

good information carriers for predicting lithology, pore fluids, and porosity. While pairs

of attributes are usually better than single attributes, in some situations the small incre-

mental information by additional attributes may not offset additional cost of acquiring the

attributes. Application of the proposed methods serves as a quantitative decision analysis

guide for evaluating various data acquisition and processing options.



Chapter 6

Scale Effects in Rock Property

Estimation

Abstract

The scale of heterogeneity in the subsurface is one of the most important factors af-

fecting seismic signatures. This chapter discusses how the fine-scale interbedding of sand

and shale within a reservoir influences seismic reflectivity. Results from normal incidence

seismic forward modeling demonstrate that reservoirs with identical average properties can

give rise to a wide range of reflectivity, depending on the scale and distribution of layering.

Although the reflectivity relies on the average reservoir property, its dependence is non-

unique. This non-uniqueness prevents us from deterministically predicting rock properties

from seismic reflectivity.

Combining Bayes inversion and stochastic simulation, we evaluate how seismic reflec-

tivity can constrain the sand volume fraction of a reservoir. Assuming that all layer con-

figurations statistically consistent with the spatial characteristics observed in the well are

equiprobable, we establish a generalized relation between reflectivity and sand/shale ratio

by seismic forward modeling. For a given seismic reflectivity, a probability density function

(pdf) of possible sand/shale ratios is delivered as the answer, instead of one deterministic

value. According to the results, the effective medium approximation in interpreting seismic

reflectivity may result in systematic overestimation of the sand/shale ratio, if the reservoir

124
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is randomly layered. The solution of the proposed method, a pdf of the sand/shale ratio,

provides us with a quantitative and physical measure of uncertainty caused by small-scale

heterogeneities.

6.1 Introduction

Subsurface geological formations have a wide scale range of heterogeneity, from micro-

scopic and pore scale to macroscopic and sedimentary basin scale (Weber and Van Geuns,

L.C., 1990). Seismic wave propagation is influenced by this diversity of the scale of het-

erogeneity, which makes rock property estimation non-unique, increasing the uncertainty.

Marion et al. (1994), Watanabe et al. (1989), and Watanabe and Sassa (1995), among many

others, demonstrated through both experiment and numerical modeling that the effective

velocity of stratified media depends on the relation between wavelength and the scale of

layering. This chapter extends their work to see how random interbedding affects seis-

mic reflectivity, one of the most commonly used seismic attributes for predicting reservoir

characters.

By combining Bayes theory and stochastic simulation, we propose a method to quantify

how observed seismic reflectivity can constrain estimates of the sand/shale ratio of reser-

voirs, when the layer configurations are unknown. In general reservoir characterization,

many subsurface properties (e.g., porosity, clay content, pore fluid saturation) as well as

small scale heterogeneities, influence seismic signatures and make rock property estima-

tion uncertain. Although this chapter focuses on only one aspect of the non-uniqueness of

one seismic attribute—the effect of small scale layering on reflectivity—the Bayes method

proposed in this work is general and can be applied to any rock property prediction from

seismic attributes, when dealing with non-uniqueness and uncertainty.
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6.2 Scale Dependence of Seismic Velocities in Layered

Media

The way seismic waves propagate through the Earth depends on the relation between

the wavelength, �, and the scale of heterogeneity, d, of the media (Marion et al., 1994).

6.2.1 Ray Theory Limit

When the wavelength is considerably smaller than the scale of heterogeneity, i.e.,

� � d, the wave propagation may be described by ray theory. The effective velocity

perpendicular to the layers is given by

VRT =

� NX
i=1

fi

Vi

��1

(6.1)

where fi and Vi are the volume fraction and velocity of the ith constituent material, respec-

tively.

6.2.2 Effective Medium Theory Limit

When the wavelength is significantly larger than the scale of heterogeneity, i.e., �� d,

the effective velocity is

VEMT =

s
MEMT

�ave
(6.2)

where �ave is the average density and MEMT is the effective P-wave modulus of the

medium. If the wave propagation is normal to the layers, MEMT is the Backus average—

the harmonic average of the P-wave moduli—of the constituent materials, Mi, as

MEMT =

� NX
i=1

fi

Mi

��1

(6.3)
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By the nature of averaging, VRT is always greater than VEMT . Given a layered medium

with constant volume fraction of constituent materials, VRT and VEMT correspond approxi-

mately to the upper and lower bounds of the velocity, respectively, although at intermediate

scales, � � d, Rayleigh and Mie scattering can give rise to velocities below VEMT and

above VRT (Aki and Richards, 1980; Mavko et al., 1998).

Figure 6.1 shows the dependence of acoustic velocity on the wavelength relative to

the scale of layering, observed in the ultrasonic transmission experiment by Marion et

al. (1994).
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Figure 6.1: Dependence of acoustic velocity on the ratio of the wavelength relative to the
scale of layering. All samples had the same volume fractions of two constituents (steel
and plastic), but each one had different scale of layering (Modified from Marion et al.
(1994))

Although all the measured velocities are for the models with equal volume fractions

of two constituent materials, steel and plastic, velocities are variable depending on �=d,

the ratio of the wavelength relative to the scale of layering. When the wavelength is small

compared to the scale of layering, i.e., �=d is small, the velocity is larger and close to the

ray theory prediction. In contrast, when the wavelength is large relative to the scale of

layering, i.e., �=d is large, the velocity is smaller and close to the effective medium theory

prediction.
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6.3 Seismic Forward Modeling

Since subsurface formations have a broad scale range of heterogeneity, neither ray the-

ory nor effective medium theory can perfectly describe the wave phenomena. In order

to clarify the dependence of seismic reflectivity on the scale of heterogeneity in layered

media, we conduct normal incidence P-wave seismic modeling.

Our reservoir models simulate a Tertiary turbiditic reservoir in the North Sea (Avseth

et al., 1998b). The depth to the top reservoirs and the total thicknesses of the reservoirs are

2,000 m and 200 m, respectively, for all models. The reservoirs are composed of interbed-

ded sand and shale with various scales of layering, as well as variable volume fractions of

the two facies.

2000 m

200 m

Figure 6.2: Schematic geometry of the numerical simulation. 200 m-thick reservoir, con-
sisting of interbedded sand and shale is at a depth of 2,000 m. Normal incidence
surface reflection survey is simulated.

Elastic parameters of sand and shale layers are kept constant. They are taken from

typical values of well data in the field, as listed in Table 6.1.

Facies Vp(km/s) Vs(km/s) � (g/cc)
Sandstone 3.0 1.6 2.1

Shale 2.3 1.0 2.25

Table 6.1: Reservoir model parameters for seismic forward modeling, taken from typical
values in a North Sea field.
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6.3.1 Periodically Layered Model

First we investigate the scale dependence of seismic amplitude using periodically lay-

ered reservoir models. Figure 6.3 shows ten reservoir models with the identical sand/shale

ratio (50%) but different scales of layering. The sand and shale layer thicknesses are kept

constant within each reservoir model. In the models, interbedding layer thickness changes

from 2.5 m to 100m.
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Figure 6.3: Periodically layered reservoir models. The sand/shale ratios of all models are
50%. The gray color is shale and the white represents sand. Only reservoir intervals
of the models are displayed; homogeneous shale over-lies the reservoirs.

We carry out one-dimensional seismic forward modeling using the reservoir models

to simulate zero offset surface seismic surveys. For the simulation, we use the invariant

imbedding method introduced by Kennet (1974; 1983) to obtain the exact reflection seis-

mograms, including all orders of multiple reflections. The input wavelet is a zero phase

Ricker wavelet with a center frequency of 30 Hz, which is equivalent to a wavelength of 77

m and 100 m in the shale and the sand layers, respectively.

Figure 6.4 shows eight reflected seismograms simulated from the eight reservoir mod-

els in Figure 6.3. In both the thin and thick layer limits, the seismograms show two clear
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Figure 6.4: Reflected seismograms simulated from the periodically layered reservoir mod-
els in Figure 6.3. The seismograms show two clear peaks corresponding to the top and
bottom reservoir in the thin-layer and thick-layer limits. However, the waveforms are
chaotic in the intermediate layer thicknesses.

peaks corresponding to reflections from the top and bottom of the reservoir. In the interme-

diate layer thicknesses, however, interference of reflections from multiple layer boundaries

makes the seismograms chaotic. The amplitudes of the top reservoir reflectors are picked,

as shown by � marks, and plotted in Figure 6.5.

When the interbedded thickness, d, is smaller than 5 m, the reflectivity is almost con-

sistent with the effective medium theory limit: the reflectivity between the overlying shale

and the effective medium with a sand/shale ratio of 50%. In contrast, if d is large enough,

the reflectivity is as predicted by the ray theory limit: the reflectivity between the overly-

ing shale and the homogeneous sand. When d increases from the effective medium theory

limit, the reflectivity increases and has a peak at around d = 25 m, when d = �=4. The

thickness corresponds to the tuning thickness, when the maximum constructive interfer-

ence occurs (Widess, 1973). At this thickness, resonance of multiple reflections makes

amplitudes larger than the ray theory limit.
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Figure 6.5: Reflection amplitudes at the top reservoir as a function of interbedded layer
thickness, picked from Figure 6.4. The reflectivity is consistent with the ray theory
and the effective medium theory limits in the thick-layer and thin-layer limits. The
reflectivity is maximum when interbedded thickness is a quarter of the wavelength,
corresponding to the tuning thickness.

6.3.2 Randomly Layered Model

Next we explore the scale dependence of reflectivity using randomly layered models.

Using Monte Carlo simulation, we create 1,000 realizations of reservoir models for a fixed

average layer thickness and sand/shale ratio. The individual layer thicknesses within the

reservoirs are drawn from an exponential probability distribution with particular average

values. In this case, the sand/shale stratifications follow a statistical model called a Poisson

process. We keep the caprock as a homogeneous shale for all the models. Figure 6.6 shows

ten examples of layered reservoir models, in which the average layer thickness (1 m) and

the sand/shale ratio (50%) are identical. In a Poisson process, the distribution of individual

layer thickness follows an exponential distribution, as shown in Figure 6.7.

We carry out normal incidence seismic modeling in the same way as explained in sec-

tion 6.3.1. Figure 6.8 displays ten seismograms simulated from the reservoir models in

Figure 6.6. Although the reservoir models in Figure 6.6 share the same average statistics,

an average layer thickness of 1 m and a sand/shale ratio of 50%, the recorded waveforms

are considerably variable. The individual layer thicknesses are significantly smaller than

the wavelength (�=d � 102 on average) in these models. However, waves propagate in
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Figure 6.6: Examples of layered reservoir models from a Poisson process. The sand ratios
are 50% and the average layer thicknesses are 1 m. The gray is shale and the white is
sand.
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Figure 6.7: Layer thickness distribution in reservoir models from a Poisson process of av-
erage thickness of 1 m. The histogram follows an exponential function.

complicated ways in the randomly layered models. We pick amplitudes of the top reservoir

reflectors from all the realizations, as shown by � marks in Figure 6.8.
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Figure 6.8: Zero offset reflected waves simulated from the reservoir models shown in Fig-
ure 6.6.

6.3.3 Effect of Layer Thickness on Reflectivity

First, we fix the sand/shale ratio, change the average layer thickness of the Poisson

process, and investigate the dependence of the reflected amplitude on the average layer

thickness. The curves in Figure 6.9 show the probability density functions, pdfs, of ampli-

tude for a fixed sand/shale ratio of 50% and different average layer thicknesses, from 1 m

to 50 m. Every distribution of reflectivity is computed from 1,000 simulated seismograms.

When the average layer thickness is the smallest, 1 m, the pdf of reflectivity has a

peak around 0.043, which almost corresponds to the effective medium limit. As the layer

thickness increases, the effective medium peak collapses and the distribution of reflectivity

gradually shifts towards larger values. When the average thickness is over 10 m, a sharp

peak appears, which corresponds to the ray theory limit. Although the two major popula-

tions of reflectivity can be well explained by the effective medium and ray theory limits,

the randomness of layering makes the distribution of reflectivity diverse.

An intriguing point is that reflectivity outside high-frequency and low-frequency

bounds is possible, i.e., the reflectivity can be either smaller than the effective medium
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Figure 6.9: Distributions of reflectivity for various average interbedded thickness. Two
peaks of reflectivity correspond to the ray theory and the effective medium theory
limits. The reflectivity can be either smaller than the effective medium theory limit or
larger than the ray theory limit, because of the random layering.

limit, or larger than the ray theory limit. This is in contrast to to the velocity of the trans-

mitted wave, whose upper and lower bounds with respect to the scale of layering are given

by the two theories (Marion et al., 1994).

6.3.4 Dependence of Reflectivity on Sand Ratio

In order to investigate the dependence of reflectivity on the sand/shale ratio, we next

fix the average layer thickness to be 1 m (�=d � 102) and vary the sand/shale ratio of

reservoir models from 0% to 100%. Each curve in Figure 6.10 shows the pdf of reflectivity

for different sand/shale ratios, picked from 1,000 simulated seismograms.

The two peaks on both sides show the reflectivity values of two limits when the

sand/shale ratio is 0% and 100% (average layer thickness is not 1 m in these two limit

cases). As the sand/shale ratio increases from 0%, the peak gradually collapses and the dis-

tribution shifts towards larger reflectivity. The distribution is the most dispersed when the

sand/shale ratio is intermediate, and it becomes sharper as the sand/shale ratio approaches
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Figure 6.10: Distributions of reflectivity for various sand/shale ratio. The reflectivity is
non-uniquely dependent on sand/shale ratio.

100%. The drift of the distribution implies that the reflectivity definitely depends on the

sand/shale ratio. However, as the broad shapes of the pdfs implies, their relationship is

non-deterministic and non-linear (Takahashi et al., 1999a).

6.4 Bayes Inverse Theory

In seismic reservoir characterization, we would like to estimate reservoir properties,

such as the sand/shale ratio, from seismic attributes, such as reflectivity. Since the resolu-

tion of seismic data is limited, the seismic reflectivity represents the average character of

a reservoir over a finite volume. As the results of our seismic forward modeling demon-

strate, the dependence of reflectivity on the sand/shale ratio is non-unique if the layer con-

figuration is variable. This non-uniqueness must be accounted for in any estimate of the

sand/shale ratio for a given reflectivity. Because of the non-unique dependence, the perfect

estimation of the sand/shale ratio from only seismic reflectivity is impossible. However, the

reflectivity constrains the sand/shale ratio of a reservoir. One of the goals of this chapter is
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to physically quantify the constraints.

General inverse problems deal with estimation of physical models from observed

data (Tarantola, 1987). As discussed in chapter 4, using the probability density function

(pdf) of subsurface properties, we can completely describe solutions of inverse problems

including their inherent uncertainty (Tarantola and Valette, 1982; Box and Tiao, 1992). The

problem of quantifying the constraint of reflectivity on the sand/shale ratio is equivalent to

obtaining the conditional pdf of the sand/shale ratio (s) given reflectivity (r), which is de-

noted by p(sjr). Bayes formulation in Equation 6.4 below enables us to replace inverse

problems, estimation of the sand/shale ratio from a reflectivity, with forward problems, a

sand/shale ratio to reflectivity.

p(sjr) =
p(rjs)

p(r)
p(s) = const: � p(rjs) � p(s) (6.4)

where p(rjs) is the conditional pdf of reflectivity given the sand/shale ratio, which is called

the likelihood function in the Bayes theory and provides us with the relation between the

sand/shale ratio and reflectivity. The last term, p(s), is the prior pdf which is the information

about sand/shale ratio independent of seismic reflectivity data. Gastaldi et al. (1998) used

the Bayes approach to estimate reservoir thickness from seismic amplitude and reservoir

isochron under tuning conditions. By applying the Bayes inversion to a number of synthetic

models, L�ortzer (1990) predicted lithology, porosity, and pore fluid from observed seismic

velocities and evaluated their uncertainties.

As discussed in the previous section, even in our simplified reservoir models, the rela-

tion between the sand/shale ratio and reflectivity is non-unique because of the variability of

layer configurations. Hence, p(rjs) is not simple and cannot be deterministically described.

However, the following decomposition allows us to evaluate p(rjs), since, in our models,

seismic forward modeling provides us with a reflectivity value for each specific pair of a

sand/shale ratio and a layer configuration.

p(rjs) =

Z
p(r; lyrjs)dlyr =

Z
p(rjlyr; s)p(lyrjs)dlyr (6.5)

In practice, estimation of p(rjs) is possible by the combination of stochastic simulation
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and forward modeling (Takahashi et al., 1999a). The process is described as follows:

1. Produce a large number of equiprobable layered reservoir models, flyr1; lyr2; :::;

lyrNg for a fixed sand/shale ratio, s1, such that p(lyrjs) in Equation 6.5 is constant.

When we can assume certain spatial statistical characters for the reservoir, geostatis-

tical simulation will help create the equiprobable models.

2. Conduct seismic forward modeling for a set of a sand/shale ratio and a layer model,

s1 and lyr1, and pick the reflected amplitude, r(lyr1; s1).

3. Repeat step 2 for all layer models, lyri; i = 1:::N .

4. Integrate the picked amplitudes for all the layered models, fr(lyr1; s1); r(lyr2; s1);

:::; r(lyrN ; s1)g. Normalization of the sum will produce the conditional pdf of reflec-

tivity given a sand/shale of s1, p(rjs = s1).

5. Repeat the step 1 through 4 for all possible sand/shale ratios, s1 to sk. Combina-

tion of all the conditional pdfs, fp(rjs1); p(rjs2); :::; p(rjsk)g produces the likelihood

function, p(rjs).

In general geophysical prospecting, we may need to estimate some rock properties,m,

from geophysical data, d, without knowing other rock properties, n, which influence the

relation between m and d. One simple example is the estimation of porosity from seismic

velocity without knowing its lithology, which affects the porosity-velocity relation. In deal-

ing with these problems, the following generalization of Equations 6.4 and 6.5 enables us

to obtain the constraints ofm given by d, including the uncertainty caused by the ignorance

of n.

p(mjd) = const: � p(djm) � p(m) (6.6)

p(djm) =

Z
p(d;njm)dn =

Z
p(djn;m)p(njm)dn (6.7)

Equations 6.6 and 6.7 are very general formulations and can be applied to any estima-

tion problems which are accompanied by uncertainty (Tarantola and Valette, 1982).



CHAPTER 6. SCALE EFFECTS IN ROCK PROPERTY ESTIMATION 138

6.5 Estimation of Sand/Shale Ratio in North Sea Data

By applying the method proposed in section 6.4, we evaluate the constraints of the

sand/shale ratio given by seismic amplitudes. We use well data from a North Sea oil field,

where a Tertiary turbidite reservoir consists of interbedded sand and shale facies (Avseth et

al., 1998b).

6.5.1 Reservoir Model

Figure 6.11 shows gamma ray profiles at three wells in the field. Wells 1, 2, and 3

are located at the feeder channel, the center of the lobe channel, and the margin of the

lobe, respectively. As we progress from well 1 to 3, proximal to distal facies, the reservoir

becomes more shaly.
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Figure 6.11: Gamma ray profiles in three North Sea wells.

We classify the interval to either sand or shale facies, using the gamma ray logs. Fig-

ure 6.12 shows interpreted facies at each well. We assume that any configuration of layered

reservoir models which statistically has the same spatial character as seen at the three wells

is possible in the inter-well region. We use the semivariogram, 2nd order statistics, of the
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Figure 6.12: Sand-shale layering in three North Sea wells. The black color is shale and the
white is sand. The gray is non-reservoir facies.

wells to investigate their spatial statistical characters. Figure 6.13 shows experimental in-

dicator semivariograms of sand facies along the vertical direction, derived from the three

wells. Our model of the vertical spatial correlation, also shown in Figure 6.13, is a spherical

model with a range of 3 m and a nugget effect of 0:15 (Goovaerts, 1997).

(z) = 0:15 + 0:85 � Sph(
z

3
) (6.8)

We create 1,000 equiprobable reservoir models with the identical spatial variability for

a fixed sand/shale ratio, using a geostatistical algorithm of the sequential indicator simu-

lation (Deutsch and Journél, 1998). This method constrains both the 1st order (sand/shale

ratio) and the 2nd order (spatial correlation) statistics of the layered models. Figure 6.14

shows ten examples of the simulated reservoir models with a sand/shale ratio of 50%.

In this study, we assume no lateral continuity of the reservoir models, i.e., any layer

model are assumed possible as long as it shares the 1st and 2nd order statistics with the

wells.
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Figure 6.13: Experimental semivariograms at three wells and the model variogram.
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Figure 6.14: Ten realizations of reservoir models from a sequential indicator simulation
based on the variogram model shown in Figure 6.13. The sand/shale ratio is 50%.

6.5.2 Forward Modeling

We perform one-dimensional seismic modeling to obtain reflected seismograms for all

of the reservoir models in the same manner as in section 6.3.2. Figure 6.15 shows examples
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of simulated reflected seismograms, corresponding to the models in Figure 6.14.
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Figure 6.15: Simulated reflection seismograms for the ten reservoir models in Figure 6.14
with the stationary variogram model from the wells.

We vary the sand/shale ratio from 0% to 100%, repeat the above procedure, and pick

the amplitudes from all the simulated seismograms. Figure 6.16 summarizes the pdfs of

reflectivity derived from the forward modeling. Each curve illustrates the conditional pdf,

p(rjs = si) in Equation 6.5. A comparison of Figure 6.16 and Figure 6.10 demonstrates

the dependence of the reflectivity distribution on the spatial variability models. Figure 6.10

is for the layered media distributed by a Poisson process, while Figure 6.16 is for layered

media with a stationary spatial variogram from the wells.

By merging all the conditional pdfs, p(rjs = si), for various sand/shale ratios, we

establish the bivariate pdf of the sand/shale ratio and reflectivity, p(r; s), shown in Fig-

ure 6.17. The bivariate pdf completely describes the dependence between reflectivity and

the sand/shale ratio, including uncertainty of the relation caused by random thin layer-

ing. While the overall feature of the distribution exhibits a positive correlation between

reflectivity and the sand/shale ratio, the broad shape of the distribution manifests the non-

uniqueness of their relationship. Reflectivity values at the three well locations are also plot-

ted by � marks in Figure 6.17. These observed data are just possible realizations among
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Figure 6.16: Distribution of reflectivity for different sand/shale ratio simulated from the
reservoir models with stationary vertical correlation.

the whole coverage of the bivariate pdf. The reflectivity at well 3 is almost at the peak of

the distribution, while the reflectivities at wells 1 and 2 are close to the high reflectivity

limit.

By combining stochastic simulation and seismic forward modeling, we actually extrap-

olated the reflectivity-sand/shale relation from the three observations to all the possible

layer configurations of the reservoir. This extrapolation is physically justified and cannot

be accomplished by purely statistical methods. In addition, the two dashed lines over the

contour map display the reflectivity in the effective medium theory limit (Backus average)

and the most likely reflectivity, for all sand/shale ratios. The effective medium limit curve

lies lower than the most likely curve, which corresponds to the ridge of the distribution. It

implies that the effective medium average tends to overestimate the sand/shale ratio of a

randomly layered reservoir.
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Figure 6.17: Bivariate pdf of reflectivity and the sand/shale ratio. Three � marks show
the reflectivity at the three wells. The two dashed lines display the effective medium
approximation of the reflectivity and the most likely reflectivity at each sand/shale
ratio.

6.5.3 Scale Effect on PDFs

The bivariate pdf in Figure 6.17 can be considered the relation between seismic reflec-

tivity and the sand/shale ratio at the seismic wavelength scale, since it is created through for-

ward modeling mimicking surface seismic surveys. In contrast, since the well log tool sees

the small scale characteristics of the reservoir, the pdf at the well log scale is a smoothed

version of the properties of the two constituent rocks, i.e., pure sand and pure shale, as

shown in Figure 6.18,

The plot on the left in Figure 6.18 is the bivariate pdf corresponding to Figure 6.17 at the

well log scale. The contrast of the elastic properties of the constituent rocks in Table 6.1

gives rise to the bimodal distribution of the pdfs. The peak of the contour in the upper

right is for the pure sand, while the other peak in the lower left is for the pure shale. The

broadness of the pdfs represent measurement errors. At the seismic scale, however, the

pdf is continuous over the entire range of sand/shale ratios, because any volume fraction

mixture of the two rock types can coexist within the seismic scale. In addition, reflectivity
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Figure 6.18: pdfs at well-log scale. Bivariate pdf of reflectivity and the sand/shale ratio
(left), and the conditional pdfs of reflectivity for sand and shale facies (right). The
univariate conditional pdfs are projections of the bivariate pdf onto the reflectivity
axis.

at the seismic scale is influenced by the layer configuration, while the reflectivity at the

well log scale is only a function of the interval elastic properties. Additional uncertainty

about the layer configuration makes the seismic scale pdf broader than the well-log scale

pdf, increasing uncertainty about the sand/shale ratio estimation. Furthermore, the seismic

scale pdf in Figure 6.17 shows that reflectivities can be higher than both of the reflectivities

of the constituent rock types, since reflected wave can constructively interfere each other

in some layer configurations.

6.5.4 Bayes Inversion

Finally, assuming the prior pdf of the sand/shale ratio to be uniform, i.e., p(s) = const:,

we obtain p(sjr), the conditional pdf of the sand/shale ratio given reflectivity, which is our

answer to the inverse problem. The conditional pdf for each given reflectivity is shown

in Figure 6.19. This can be realized by taking sections of the bivariate pdf in Figure 6.17

along horizontal lines corresponding to specific reflectivity values, before normalization.
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Figure 6.19: Conditional pdfs of the sand/shale ratio given P-wave reflectivity.

The conditional pdfs display how the seismic reflectivity constrains the sand/shale ra-

tio estimation. When the reflectivity is 0, the sand/shale ratio is always 0% and there is

no uncertainty. As the reflectivity increases, the distribution broadens and shifts towards

larger sand/shale ratios. The distribution is the widest—hence the uncertainty about the

sand/shale ratio is maximum—when the reflectivity is intermediate. The distribution sharp-

ens again and the peak approaches 100%, as the reflectivity approaches 0:1. As a whole,

the sand/shale ratio is not tightly constrained by seismic reflectivity.

Since geological formations tend to be laterally continuous, we may be able to assume

certain lateral continuity of layer configuration, instead of no lateral continuity in this ex-

ample. In such cases, the bivariate pdf of the sand/shale ratio and reflectivity in Figure 6.17

will be constrained by the additional information about the lateral continuity, and the an-

swer of the estimation, p(sjr), will become less uncertain.
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6.5.5 Value of Additional Shear Measurement

As discussed in chapter 4, one method of increasing the information about rock prop-

erties is to acquire additional geophysical data. In this section, we investigate how S-wave

reflectivity, in addition to P-wave data, constrains the sand/shale ratio.

S-wave velocities and densities of the sand and shale layers listed in Table 6.1 are

used for modeling. We follow the same procedure as in the earlier section to establish the

trivariate pdf of P- and S-wave reflectivity and the sand/shale ratio. For each layered models

produced from geostatistical simulation, such as those shown in Figure 6.14, we conduct

P-wave and S-wave normal incidence modeling and pick P and S amplitudes. Figure 6.20

shows an iso-contour surface of the trivariate pdf, p(rp; rs; s). Similar to Figure 6.17, the
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Figure 6.20: Trivariate pdf of P and S reflectivity and sand/shale ratio. The green blimp-
shaped envelope is an iso-contour surface.

pdf is characterized by a positive correlation between the sand/shale ratio and reflectivities.

The inner part of the blimp-shaped pdf has a higher probability. Projection of the trivariate

pdf onto the rp� s domain produces the bivariate pdf of P-wave reflectivity and sand/shale
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ratio in Figure 6.17.

Again assuming the uniform prior pdf of the sand/shale ratio, we estimate the condi-

tional pdfs of the sand/shale ratio given P- and S-wave reflectivities, as in Figure 6.21.

A comparison of Figure 6.21 with Figure 6.19 demonstrates that uncertainty about the
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Figure 6.21: Conditional pdfs of sand/shale ratio given P-wave and S-wave reflectivity
pairs.

sand/shale ratio is reduced by additional shear data, since each distribution is narrower and

more peaky in Figure 6.21 than in Figure 6.19. However, due to the high correlation of P

and S reflectivity, there is significant redundancy between information brought by P and S

data.

Using a statistical parameter of mutual information defined in Equations 4.12 and 14,

we quantify information about the sand/shale ratio given by P reflectivity only, S reflectivity

only, and both P and S reflectivities, as shown in Table 6.2. Information given by two

reflectivities is greater than the information given by either single reflectivities. That is, the

combination of P and S information decreases the uncertainty about the sand/shale ratio.
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Mutual Inf. Normalized Mutual Inf.
P only 0.78 0.30
S only 0.63 0.25
P and S 0.99 0.38

Table 6.2: Mutual information about the sand/shale ratio given by P-wave reflectivity only,
S-wave reflectivity only, and both of P- and S-wave reflectivities.

6.6 Conclusions

This chapter demonstrated the dependence of seismic reflectivity on the scale of reser-

voir stratification. The results from the seismic forward modeling showed that random

thin-layering within reservoirs makes the relationship between reflectivity and the aver-

age rock property non-unique. By applying Bayes inversion, we proposed a strategy to

describe the relation between seismic data and rock properties, including the inherent non-

uniqueness of the relation. The bivariate pdf, derived through combinations of stochastic

simulations and seismic forward modeling, represented the dependence of reflectivity and

sand/shale ratio. This includes the uncertainty caused by ignorance of layer configuration.

The comparison of the seismic-scale pdf and the well log-scale pdf showed that the scale

effect makes the pdf broader, hence increases uncertainty about the sand/shale prediction.

According to our results, the effective medium average may result in systematic overesti-

mation of sand/shale ratio if the layering within the reservoir is random. Our solution to

the estimation problem, pdfs of rock properties given seismic data, is a truthful expression

of information provided by seismic data and allows us to analyze the uncertainty of rock

property estimation problems quantitatively and physically.



Chapter 7

Comparison Between P-P and P-S

Seismic Information in the Alba Oil

Field

Abstract

Converted shear (P-S) wave seismic data from multicomponent ocean bottom surveys

have gained considerable industry attention, as they offer subsurface shear information

more directly than the conventional P-P AVO analysis. Using P-S and P-P seismic data and

well-log data from the Alba Field in the UK North Sea, we explore the significance of P-S

data in rock property estimation.

We first diagnose the Alba reservoir using the Vp-porosity relation and compare it with

rock physics models. Our results show that the porosity variation in the reservoir is well

mimicked by a constant pore stiffness line, and thereby is controlled by the textural varia-

tion. A comparison of brine-saturated and oil-saturated sands disclose evidence of deceler-

ation of cementation due to the oil accumulation in reservoirs—the water-saturated sands

show systematically greater Vp and smaller porosity than the oil-saturated sands.

Quantitative investigation of the dependence of seismic impedances on lithology and

pore fluids shows that the P-P near offset impedance (AIp) is a better classifier of pore

fluids than the P-P far offset impedance and the P-S pseudo-impedance. In contrast, the

149
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P-P far offset impedance (EI) and the P-S pseudo-impedance (Ips) distinguish lithology

well. A combination of impedances from P-P near and far offset data (AIp � EI) turns

out to be as good a rock property predictor as does a combination of impedances from P-P

near offset and P-S converted wave data (AIp � EI), when the impedance measurements

are error-free.

By comparing well-derived impedances and the impedances inverted from seismic data,

we show that the errors of deriving the P-P far offset impedance is greater than the errors

for the P-S pseudo-impedance. We estimate bivariate pdfs of impedances for three possible

facies, define Bayes classification criteria, and predict the facies from the AIp�EI combi-

nation, as well as from theAIp�Ips combination. The prediction from theAIp�Ips is more

consistent with a blind well and other geological information and confirms the advantage

of using P-S converted wave data for rock property estimation in the Alba Field.

7.1 Introduction

This chapter explores the information about rock properties provided by P-S seismic

data as compared to conventional P-P data, using well log and seismic data from the North

Sea.

7.1.1 Motivation

Use of S-wave information in addition to P-wave information often enables us to better

predict rock properties from seismic data, and ocean bottom seismic acquisition survey has

thereby attained considerable industry attention as a tool to obtain converted wave S-wave

data (MacLeod et al., 1999). On the other hand, conventional P-P data can indirectly pro-

vide us with shear information. Hilterman (1989), Castagna and Backus (1993), and many

others have reported that AVO analysis is useful in predicting pore fluids and lithology.

Mukerji et al. (1998) recently presented that pseudo-impedance derived from non-zero off-

set P-P data includes indirect shear information of layer intervals and can therefore be a

good indicator of pore fluid and lithology.

Although both the ocean bottom P-S surveys and the conventional far-offset P-P
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streamer surveys bring about S-wave information in addition to P-wave information, the

costs of these two types of surveys are significantly different, i.e., ocean bottom surveys

are much more expensive than streamer surveys. Hence, it is an important question for

exploration companies to decide which of the surveys to carry out.

In this chapter, we use P-P and P-S seismic data, as well as well-log data, of the Alba

Field in the UK North Sea, and investigate how the two different seismic data can help us

to predict lithology and pore fluids.

7.1.2 Alba Field

The Alba Oil Field (Figure 7.1), located in the UK North Sea, elongates along a NW-

SE axis. The oil reservoir is 9 km long, 1.5 km wide, and up to 90 m thick at a depth of

1,900 m subsea (Mattingly and Bretthauer, 1992; Newton and Flanagan, 1993; Lonergan

and Cartwright, 1999; MacLeod et al., 1999).

Figure 7.1: Alba Field location map (from MacLeod et al, 1999). Green outline shows the
extent of oil sand. Well locations are marked.

The producing reservoir consists of unconsolidated high-porosity turbiditic sandstone
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of Eocene age. The oil-bearing reservoir sand and the overlying shale have a very low P-

wave acoustic impedance contrast, but make a significant S-wave velocity contrast. Hence

the reservoir delineation using only normal incidence P-P seismic data is very difficult, and

therefore the ocean bottom P-S converted wave survey was conducted.

We first explore well data and diagnose basic rock properties of the reservoir sandstone.

We then estimate seismic attributes of the oil sand, brine sand, and shale from the well data,

and quantitatively investigate how each facies is separated in different attribute domains,

using the methods presented in chapters 4 and 5 in this thesis. We perform seismic inversion

of the P-P and P-S seismic data and predict lithology and pore fluids from the derived

impedances.

7.2 Rock Physics Diagnostics of the Alba Sandstone

In this section, we diagnose rock properties of the reservoir and compare them with

several rock physics models using data from the key well (well 1), drilled in the northern

part of the main channel.

7.2.1 The Alba Sandstone Compared with Other Sandstone Data and

Rock Physics Models

Figure 7.2 shows vertical profiles of several rock properties at well 1. The boxcar-

like volume-shale log shows massive and structureless characteristics of the reservoir. The

sandstone has an average porosity of 35% and permeability of approximately 5 D. As the

water saturation profile shows, the reservoir interval of this well is mostly oil saturated, with

a thin water rim at the bottom section. The boundary between overlying shaly caprock and

the oil-bearing sandstone has large contrasts in porosity, density, and Vs, but a very small

contrast in Vp. In contrast, the oil-water contact (OWC) is characterized by a large increase

in Vp and a small increase in Vs.

We use the well data to investigate fundamental rock properties of the reservoir in sev-

eral rock physics domains. Figure 7.3 shows the Vp-porosity relation of the Alba sandstone,

as well as other sandstone data from various ages and geological settings listed in Table 2.1.
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Figure 7.2: Well log profiles of the Alba reservoir at well 1. Lithology and pore fluid
interpretation are shown on the rightmost column.

All the data are at an effective pressure of approximately 20 MPa. Gassmann’s fluid substi-

tution are performed such that the data represent properties for water-saturated conditions.

In Figure 7.3, the Alba sandstone shows a good correlation between Vp and porosity;

the Vp slightly increases as the porosity decreases. As shown in Figure 2.4, the shallow

Vp � � trend of the Alba sandstone can be explained by variation in sorting. Figure 7.4

shows a comparison of the Alba sandstone with rock physics model curves. A constant K�

curve for K�=Ko = 0:5 (Ko is the mineral bulk modulus) well mimic the porosity variation

of the Alba sandstone controlled by sorting.

Figure 7.5 summarizes the Vp � � relations of sand and shale observed at several wells

in the field, including well 1. The sand and shale clouds from each well overlap each other.

Minor differences of the distributions between different wells can be explained by the depth

of the reservoir at each well, i.e., wells 1, 3, and 4 are deeper than well 2, and hence have

larger velocities and lower porosities.
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Figure 7.3: The Vp�� relation of the Alba sandstone (well 1) combined with several other
sandstone data. The data include Gulf Coast sands measured by Han (1986), North Sea
high porosity sands (Strandenes, 1991), North Sea poorly consolidated sands (Blangy,
1992), and North Sea Paleocene cemented and unconsolidated sands (Avseth, 2000).

Figure 7.6 shows the Vp� Vs relation of the Alba sandstone, as well as other sandstone

data. All sand facies are for water-saturated conditions; Gassmann’s fluid substitution is

conducted for the originally oil-saturated zone. The Vp�Vs relation of the Alba sandstone

stays within the linear trend along with other sandstones. The trend is well predicted by

Castagna’s linear regression line (Castagna et al., 1993).

7.2.2 Sandstones Below and Above the OWC

We investigate the Vp � � relation of the sandstone in more detail. We divide the

reservoir into two groups: the zone originally oil-saturated (i.e., above the original OWC)

and the zone originally water-saturated (i.e., below the original OWC). The different P-

wave velocities between these two zones in the original data in Figure 7.2 are mostly due

to the difference in fluid compressibilities (i.e., oil versus water) (MacLeod et al., 1999). In

this section, however, we investigate the Vp� � relation of the two zones after normalizing
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Figure 7.5: The Vp � � relation of the Alba sandstone and shale at four different wells.
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the fluid compressibility discrepancy using Gassmann’s theory (Gassmann, 1951; Johnstad

and Dvorkin, 1999), and interpret the remaining difference in terms of cementation rate.

Figure 7.7 shows the Vp � � relation of the two groups if they are in water-saturated

condition, i.e., Gassmann’s fluid substitution is performed for originally oil-saturated facies

above the OWC. The sandstone below the OWC is characterized by a higher Vp and a lower

porosity than the sandstone above the OWC. Since both of the plotted data are for water-

saturated conditions, the difference of the two groups due to fluid compressibilities has

been removed, and Figure 7.7 highlights the difference in matrix properties.

One possible reason for the difference between the two facies is the prevention of quartz

cementation due to oil accumulation above the OWC. According to Worden et al. (1998),

oil emplacement in sandstone reservoirs halts quartz cementation either when silica is

sourced externally or internally. In Figure 7.8, we overlay curves for the cementation

model (Dvorkin and Nur, 1996) over the data.

The cementation model curves (red) are for three different critical porosities of 0.32,

0.35, and 0.38, an average contact number of 8, and the grain coating cementation scheme.
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and below the OWC—at well 1. The plotted data are for water-saturated condition
after Gassmann’s substitution for oil zone.
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conditions.
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Increasing cementation increases Vp and decreases porosity along the trends. The differ-

ence between the two facies can be explained by the difference in cement fractions; the

below-OWC facies has higher cement fractions by 2%. The constant pore stiffness (K�)

curves (gray) mimic the trends within each group, corresponding to constant cementation

rates.

Figure 7.9 shows similar comparison between sandstones above the OWC and sand-

stones below the OWC, using multiple well data shown in Figure 7.5. Sandstone data
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Figure 7.9: The Vp�� relation of the two facies of the Alba reservoir—above the OWC and
below the OWC—at various wells. The plotted data are for water-saturated conditions.
Squares are sandstone below the OWC and small dots are above the OWC. Colors
represent different wells.

below the OWC, observed at wells 1 and 3, have systematic distributions at the upper left

of the total population—lower porosity and higher Vp—indicating their higher cementation

rate. Figures 7.7, 7.8, and 7.9 display possible halts of quartz cementation due to oil em-

placement in the reservoir. Several authors have reported that the internal characteristics

of the Alba sandstone is massive and structureless (Newton and Flanagan, 1993; Lonergan

and Cartwright, 1999), which supports our hypothesis that the difference in matrix prop-

erties below and above the OWC in Figures 7.7 and 7.9 is of diagenetic origin. However,

it is still possible that the difference below and above the OWC is due to the difference in
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depositional characteristics rather than the cementation effect.

7.3 Separability of Lithology and Pore Fluids Using P-P

and P-S Seismic Data in Error-Free Conditions

In this section, we explore how lithology and pore fluids can be predicted from seismic

observables, using the key well data. From the basic observations of Vp, Vs, and density at

the well, we derive seismic attributes that could potentially be estimated from P-P seismic

data, as well as P-S seismic data. We quantify the predictability of rock properties using

the methods presented in chapters 4 and 5, namely information theory and Bayes decision

theory. In this section, we do not take account of measurement errors of seismic data, dis-

cussed in section 4.3.1. Hence this section assumes perfect measurements of each seismic

attribute at error-free conditions.

7.3.1 The Vp � Vs Relation

Figure 7.10 shows the Vp � Vs relation of the Alba sandstone and shale. Sandstone

at two different fluid conditions—brine saturated (Sw = 100%) and oil saturated (Sw =

10%)—are plotted after the Gassmann’s fluid substitution of the original well data.

Figure 7.10 shows clear separation of the three facies—oil sand, brine sand, and shale—

when both Vp and Vs are available. A comparison of the oil and brine sands shows that Vs

is barely influenced by the fluid change, while Vp can separate the oil and brine sands. On

the other hand, we can distinguish the shale from the two sands using only Vs. Vp of the

shale and the oil sand overlap each other, while the brine sand can be discriminated from

the shale using Vp. These basic observations confirm that a combination of P- and S-wave

data enables better prediction of lithology and pore fluids in the Alba Field.

7.3.2 Impedances from P-P Surveys

Figures 7.11 and 7.12 show the relation between the P-wave acoustic impedance

(AIp) and the elastic impedance at an incidence angle of 30 degrees (EI(30)), the two
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Figure 7.10: The Vp � Vs relation of the Alba sandstone and shale. Two fluid conditions
of the sandstone—brine saturated and oil saturated—are displayed.

impedances available from conventional near and far offset P-wave seismic surveys. The

angle chosen for the elastic impedance (30 degrees) corresponds to the average incidence

angle at the depth of the Alba sandstone (2,000 m), for the available P-P far-offset partial

stack. Figure 7.11 is the scatter plot of the well data and Figure 7.12 is the bivariate and

univariate pdfs of AIp and EI(30) derived from the well data.

Table 7.1 summarizes statistics of facies prediction. They are derived from the pdfs in

Figure 7.12 and are for error-free measurement of the impedances. Both AIp and EI(30)

are good discriminators of pore fluids, i.e., oil sand from brine sand. However, EI(30) is

more sensitive to lithology than AIp. This result is consistent with the observation in the

Gulf Coast data discussed in section 2.3.1. A combination of the two impedances enables

almost perfect facies discrimination for all cases, when their measurements are perfect and

error-free.



CHAPTER 7. P-P vs. P-S SEISMIC IN ALBA 161

4 5 6 7 8

5

6

EI(30)

A
Ip

(g
/c

c⋅
km

/s
)

Oil Sand

Brine Sand

Shale

Figure 7.11: The relation between the P-wave acoustic impedance (AI p) and the elastic
impedance at an incidence angle of 30 degrees (EI(30)), for oil sand, brine sand, and
shale.
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elastic impedance at an incidence angle of 30 degrees (EI(30)), for oil sand, brine
sand, and shale.
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Attribute Success Rate Mutual Inf. Normalized Inf.
I(faciesjattribute) In(faciesjattribute)

A: Discrimination of three facies (oil sand, brine sand, and shale)
AIp 0.67 0.39 0.35

EI(30) 0.93 0.91 0.83
AIp & EI(30) 1.00 1.08 0.98
B: Discrimination of pore fluids (oil sand and brine sand)

AIp 0.94 0.53 0.76
EI(30) 0.99 0.66 0.95

AIp & EI(30) 0.99 0.67 0.97
C: Discrimination of lithology (sand and shale)

AIp 0.60 0.03 0.05
EI(30) 0.92 0.49 0.71

AIp & EI(30) 1.00 0.68 0.98

Table 7.1: Information about facies provided by P-P impedances at error-free conditions.

7.3.3 Impedances from P-S Surveys

We modify the approximated form of the P-S pseudo-impedance by Mukerji and

Mavko (1999) and derive a new and more robust approximation of the P-S pseudo-

impedance for cases when the average Vp=Vs ratio of the overlying layers is available.

The approximate form is given as Equations B.15, B.16, and B.17, in appendix B.

Figures 7.13 and 7.14 show the relation between the P-wave acoustic impedance (AIp)

and the P-S pseudo-impedance. The angle of S-wave reflection chosen for the pseudo-

impedance (22 degrees) corresponds to the average S-wave reflection angle at the target

depth for the available P-S far-offset partial stack. We assume an average Vp=Vs ratio of

1.8—the same value as used in the converted wave data processing.

Table 7.2 summarizes success rates of facies prediction, as well as information about

facies provided by the P-P near and P-S impedances. The statistics in Table 7.2 are derived

from the pdfs in Figure 7.14 and are for error-free measurement of the impedances.

Figures 7.13 and 7.14 illustrate that the P-S pseudo-impedance has virtually no sensi-

tivity to pore fluid change, although it is a good lithology discriminator. Table 7.2 displays

that a combination of the two impedances enables almost perfect facies discrimination. A
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Figure 7.13: The relation between the P-wave acoustic impedance (AI p) and the pseudo-
impedance from P-S seismic data at a reflected angle of 22 degrees (I ps(22)), for oil
sand, brine sand, and shale.
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Figure 7.14: The univariate and bivariate pdfs of the P-wave acoustic impedance (AI p)
and the pseudo-impedance from P-S seismic data at a reflected angle of 22 degrees
(Ips(22)), for oil sand, brine sand, and shale.
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Attribute Success Rate Mutual Inf. Normalized Inf.
I(faciesjattribute) In(faciesjattribute)

A: Discrimination of three facies (oil sand, brine sand, and shale)
AIp 0.67 0.39 0.35

Ips(22) 0.66 0.59 0.54
AIp & Ips(22) 0.99 1.06 0.97
B: Discrimination of pore fluids (oil sand and brine sand)

AIp 0.94 0.53 0.76
Ips(22) 0.51 0.00 0.00

AIp & Ips(22) 0.94 0.67 0.96
C: Discrimination of lithology (sand and shale)

AIp 0.60 0.03 0.05
Ips(22) 0.98 0.63 0.92

AIp & Ips(22) 0.99 0.67 0.97

Table 7.2: Information about facies provided by P-P near and P-S impedances at error-free
conditions.

comparison between Tables 7.1 and 7.2 shows that the impedances from P-P seismic data

are as good of information carrier about pore fluids and lithology as are the impedances

from P-P near and P-S data, in the cases when error-free impedance measurements are

available.

7.4 Impedance Inversion

7.4.1 Seismic and Well Log Data

The 3D seismic data available for this study were acquired using 4-component ocean-

bottom receivers—hydrophones and 3-component geophones—after 4 years of oil produc-

tion and water injection. Figures 7.15 and 7.16 are seismic profiles of P-P near and far

offset partial stacks, respectively, for a SW-NE section (section A). The section A trans-

versely cuts through the Alba reservoir around well 1. In addition, on the southeast (left) of

the reservoir is an isolated wet sand body, where well 5 was drilled (Newton and Flanagan,

1993).
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Figure 7.15: A SW-NE seismic section (section A) from P-P near offset stack.
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Figure 7.16: A SW-NE seismic section (section A) from P-P far offset stack.

The far offset stack corresponds to a 30 degree incidence angle at the target depth

around 2,000 m. The P-P near stack in Figure 7.15 does not show a clear image of the Alba

reservoir, although the wet sand in the southwest provides a weak amplitude anomaly. The

P-P far stack in Figure 7.16 provides us with a weak amplitude anomaly as well, at the Alba

sand.
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In contrast, the P-S far-offset partial stack of section A in Figure 7.17, corresponding

to a 22 degree reflection angle at the target, captures the image of the two sand bodies,

although the frequency content of the P-S data is lower than the P-P data.

Alba Reservoir (Oil Sand)

Wet Sand

Well 1Well 5 Prj.SW NE

Figure 7.17: A SW-NE seismic section (section A) from P-S far offset stack.

The reservoir fluid conditions at the well-log data acquisition—before oil production—

and at the time of seismic data acquisition—after 4 years of oil production—are different.

Hence, we estimate well log profiles at the seismic acquisition, using outputs from reservoir

flow simulation and performing Gassmann’s fluid substitution. Figure 7.18 is the water-

saturation profile—a vertical section cutting through well 1—at the time of seismic data

acquisition (after oil production), output from the fluid-flow simulation. We extract the

water-saturation profile at well 1 and estimate P- and S-wave velocities after oil production,

as displayed in Figure 7.19. Figure 7.19 shows that the oil-water contact has risen from

around 1,965 m to around 1,935 m due to the 4 years of oil production, although about 25%

of residual oil remains in the swept zone. The change in velocities due to the production is

relatively small because of the residual oil (Domenico, 1976; Murphy, 1982).

According to the corrected velocity and density logs at well 1, we derive bivariate pdfs

of the acoustic impedance and the elastic impedance after oil production, as in Figure 7.20.

In Figure 7.20, the brine sand pdf is for the zone below the OWC in Figure 7.19 after

production, where the water-saturation is 25%. Because of the residual oil, the brine pdf
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Figure 7.18: Water-saturation profile of the Alba reservoir—the longitudinal section (NW-
SE) which go through well 1—after oil production, output from the flow simulation.
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Figure 7.19: Water-saturation profile at well 1 before and after oil production (A), ex-
tracted from the eclipse output in Figure 7.18. P- and S-wave velocities before and
after the production are shown in B and C. The velocities after oil production is esti-
mated by Gassmann’s modeling using the water-saturation profiles in A.
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Figure 7.20: The bivariate pdf of the P-wave acoustic impedance and the elastic impedance
for the reservoir condition after production. The three bivariate pdfs are for oil sand,
brine sand (Sw = 25%), and shale.

and the oil pdf overlap each other and their discrimination is difficult.

We use the corrected velocity and density logs for calibration in seismic inversion per-

formed in sections 7.4.2 and 7.4.3. Figure 7.21 is the correlation between the corrected

well log and seismic section at well 1. The reflection at the top of the reservoir is not clear,

although we can identify the positive and nearly flat reflector corresponding to the oil-water

contact at around 2,010 ms.

7.4.2 P-P Data Inversion

Using the fluid-corrected well data to build a initial model, we conduct seismic inver-

sion to derive seismic impedance profiles. We use only one well (well 1) for the calibra-

tion, where Vp, Vs, and density logs are available. A commercial software by Hampson

Russell is used for the inversion. We create an initial impedance model from the well

data—a horizontally layered model—and update the model using only seismic data as a

constraint. A sparse spike inversion algorithm is used for the inversion, which tends to

produce impedance models which are blocky along the vertical direction.
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Figure 7.21: Well log and seismic correlation at well 1. Vp and density profiles on the
right are for the condition after oil production, borrowed from Figure 7.19. Synthetic
seismic trace in the middle produced from the Vp and density log are compared to the
near-offset stack seismic data on the left. The curve shown in the seismic data is the
deviated well trajectory of well 1.

Figure 7.22 shows an example of estimated acoustic impedance along section A, cor-

responding to the near-stack seismic section in Figure 7.15. Similar to the seismic section
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Figure 7.22: The acoustic impedance at section A, derived from the near-offset stack seis-
mic section in Figure 7.15
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in Figure 7.15, the impedance section does not show clear images of the sand bodies, be-

cause of the low impedance contrast between the shale and sands, as shown in Figure 7.20.

However, dispersed low-impedance patches indicate sandy facies around the two wells, 1

and 5.

We derive the pseudo-density—defined in Equation B.8—at well 1, invert the far-offset

stack seismic data, and estimate the elastic impedance profile, following the same proce-

dure as the near-offset stack. An example of the elastic impedance profile at section A,

corresponding to the seismic section in Figure 7.16, is shown in Figure 7.23. The low elas-
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Figure 7.23: The elastic impedance profile at section A, derived from the far-offset stack
section in Figure 7.16

tic impedance layer around a depth of 1,950 m in Figure 7.23 corresponds to sandy facies.

However, the low-impedance zone is much more laterally continuous than the expected

sandstone (Newton and Flanagan, 1993).

Figure 7.24 is a comparison of the well-log-derived and seismic-derived impedances

close to the well location. In the well log profile in Figure 7.24-A, the top of the Alba reser-

voir at a depth of 1,900 m—a boundary between the overlying shale and the oil sand—is

characterized by a significant decrease in the elastic impedance and a small decrease in

the acoustic impedance. Both the acoustic and elastic impedances slightly increase at the
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Figure 7.24: A comparison of the well-log-derived and seismic-derived impedances at well
1. A shows the acoustic impedance (blue) and the elastic impedance (green) plotted
against the true vertical depth. Two curves in B are derived by taking the vertical
moving averages of A. A time window approximately equal to a quarter of the seis-
mic wavelength (30 m) is used for the averaging. C shows the acoustic and elastic
impedances derived from near-offset and far-offset P-P partial stacks, respectively.

OWC. At the bottom of the reservoir, the greater cementation rate and higher water satura-

tion make a spiky anomaly in the acoustic impedance. In addition, the elastic impedance

gradually changes from the lower values of the sandy facies to the higher values of the

underlying shale. Figure 7.24-B shows vertically averaged impedance curves derived from

Figure 7.24-A. A 30 m wide moving window is used for averaging, which almost corre-

sponds to the seismic resolution—a quarter of the dominant seismic wavelength. Since

the Alba reservoir is thicker than the seismic resolution, the averaged well-log impedances

capture major characteristics observed in the well-log impedances in Figure 7.24-A: sig-

nificant decrease in the elastic impedance within the reservoir zone, small drop at the top

of the reservoir and slight increase at the OWC in the acoustic impedance. The impedances

derived from seismic inversions in Figure 7.24-C mimic the averaged well impedances in

Figure 7.24-B. The blocky shapes of the seismic impedances are due to the algorithm used

for the inversion.
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Figure 7.25 is a cross-plot of the acoustic impedance and elastic impedance of the en-

tire section A, shown in Figures 7.22 and 7.23. The bivariate pdfs, borrowed from Fig-

ure 7.20 and corresponding to error-free measurements, are overlain on the scatter data.

The impedances from seismic inversion are much more widely distributed than the three
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Figure 7.25: AIp � EI(30) cross-plot of the entire section A. The bivariate pdfs for oil
sand, brine sand, and shale, borrowed from Figure 7.20 are overlain on the scattered
data.

pdfs derived from well data. We assume that the discrepancy between the pdfs and the

scattered data is due to measurement, processing, and inversion errors of the impedances

derived from seismic data. The major causes of the errors include imperfect data quality,

insufficient well control, and poor correlation between the well and seismic data due to the

weak reflection from the reservoir. As discussed in section 4.3.1, the errors in deriving seis-

mic attributes can be approximated by applying smoothing filters to the pdfs of error-free

conditions.

We estimate the error function such that the smoothed pdfs covers most of the scattered

data of section A. Figure 7.26 shows the estimated pdfs for oil sand, brine sand, and shale,

corresponding to seismically observed impedances. Table 7.3 summarizes the statistics of

facies prediction using the P-P impedances from seismic data.
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Figure 7.26: Estimated bivariate pdfs representing seismically observed acoustic and elas-
tic impedances (thin outer contours). Scatter impedance data of section A, derived
from seismic inversion, and bivariate pdfs for error-free measurements, derived from
well data, are overlain.

Attribute Success Rate Mutual Inf. Normalized Inf.

AIp & EI(30) 0.83 0.22 0.34

Table 7.3: Information about facies provided by P-P near and far offset seismic
impedances derived from seismic data.

7.4.3 P-S Data Inversion

We follow the similar procedure as the P-P data and invert the P-S far-offset partial

stack. We derive the P-S pseudo-impedance at well 1, using the robust approximation as

shown in Equation B.15. We use the impedance derived at well 1 only to build an ini-

tial model and update the impedance model using only P-S seismic data as the constraint.

Figure 7.27 shows the P-S pseudo-impedance profile at section A. Even though the initial

impedance model is horizontally layered, the estimated impedance section in Figure 7.27

includes discontinuous low-impedance anomalies. Figure 7.28 shows a comparison be-

tween the impedances derived from well 1 and from seismic data. In Figure 7.28, the P-S
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Figure 7.27: The P-S pseudo-impedance at section A, derived from the far-offset stack
section in Figure 7.17
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Figure 7.28: A comparison of the well-log-derived and seismic-derived impedances at well
1. A shows the acoustic impedance (blue) and the P-S pseudo-impedance (red) plotted
against the true vertical depth. The two curves in B are derived by taking vertical
moving averages of A. A time window equal to a quarter of the seismic wavelength
(30 m) is used for the averaging. C shows the acoustic and P-S pseudo-impedances
derived from P-P near-offset and P-S far offset partial stacks, respectively. The acoustic
impedance curves in A-C are the same as in Figure 7.24.
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Figure 7.29: AIp � Ips(22) cross-plot of the entire section A. The bivariate pdfs for oil
sand, brine sand, and shale are overlain on the scattered data.

pseudo-impedance decreases at the top of the reservoir—from the overlying shale to the oil

sand. The impedance, again, slightly decrease at the OWC, before it jumps up at the bottom

of the reservoir. The seismically derived impedance clearly captures the characteristics at

the top of the reservoir, although the small change of the impedance at the OWC is not

seen.

Figure 7.29 is a cross-plot of the acoustic impedance and the P-S pseudo-impedance for

the entire section A, derived from Figures 7.22 and 7.27. The distribution of the scattered

points relative to the pdfs in Figure 7.29 is more limited than in the case of AIp � EI(30)

in Figure 7.25. In the same way as Figure 7.26, we estimate pdfs representing seismically

derived impedances such that the pdfs contain most of the scattered data of section A.

Table 7.4 summarizes statistics of facies prediction, derived from the pdfs in Figure 7.30.

Attribute Success Rate Mutual Inf. Normalized Inf.

AIp & EI(30) 0.88 0.39 0.61

Table 7.4: Information about facies provided by P-P near-offset and P-S seismic
impedances derived from seismic data.
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Figure 7.30: Estimated bivariate pdfs representing seismically observed acoustic and P-
S pseudo- impedances (thin outer contours). Scatter impedance data of section A,
derived from seismic inversion, and bivariate pdfs for error-free measurements, derived
from well data, are overlain.

A comparison between Tables 7.3 and 7.4 shows that the combination of AIp and Ips

allows better prediction than the combination of AIp and EI , when the impedances are

derived from seismic data. Since the facies separability of the two impedance combina-

tions are almost equal in error-free conditions as shown in Figures 7.12 and 7.14, as well

as in Tables 7.1 and 7.2, the different ability of facies prediction is due to more erroneous

estimation of the P-P far-offset impedance than the P-S pseudo-impedance. P-wave prop-

agation is more influenced by by fluids in the overlying layers than S-wave, and is more

likely to be attenuated (Cadoret, 1993; Mavko et al., 1998). The fluid effects may degrade

the quality of the P-P data more than the P-S data.

7.4.4 Facies and Fluid Prediction Using P-P and P-S Impedances

We use the established pdfs of seismic impedances for the estimation of lithology and

pore fluids. In this study, we use few geological constraints for the facies prediction other

than the seismic impedances and well log data from well 1, such that we can make a fair
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Figure 7.31: Lithology and pore fluids at section A, predicted by a combination of the
acoustic and elastic impedances.

comparison between the P-P impedances and the P-S pseudo-impedance.

We first use the two impedances available from P-P surveys—the acoustic and elastic

impedances—for the facies prediction. From the non-parametric pdfs of AIp � EI(30)

for the oil sand, brine sand, and shale, as shown in Figure 7.26, we define the Bayes cri-

teria for facies prediction. Based on the well-log data, we assume the prior probabilities

for oil sand, brine sand, and shale to be 0.1, 0.1, and 0.8, respectively. We select the fa-

cies giving the maximum posterior probabilities—probabilities after observing the seismic

impedances—as most likely. From the impedance profiles in Figures 7.22 and 7.23 and the

established Bayes criteria, we predict lithology and pore fluids at section A, as shown in

Figure 7.31. Following the same procedure, we also predict lithology and facies using a

combination of the acoustic impedance and the P-S pseudo-impedance, as shown in Fig-

ure 7.32. In Figures 7.31 and 7.32, the distributions of the sandy facies are controlled by

the elastic impedance and the P-S pseudo-impedance, respectively, rather than the acoustic

impedance. On the other hand, pore fluids within the sandstone are mainly determined by

the acoustic impedance.

Figure 7.33 compares the predicted facies from seismic impedances and the actual ob-

servations at wells 1 and 5. Well 1 was drilled into the northern part of the main Alba
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Figure 7.32: Lithology and pore fluids at section A, predicted by a combination of the
acoustic impedance and the P-S pseudo-impedance.

channel, where a 70 m-thick massive sandstone was discovered and 40 m of oil column

is expected at the time of the seismic data acquisition (Figure 7.19). Well 5 encountered

several thin brine sand layers which are not connected to the main Alba channel (Newton

and Flanagan, 1993). Since we used only the data from well 1 for building initial models

in seismic inversion, the comparisons of the prediction and the observation at well 5 can be

considered as blind tests.

Prediction results from theAIp�Ips(22) combination in Figure 7.32 are more consistent

with the well observations than the results from theAIp�EI(30) combination. A relatively

thick oil sand on top of a brine sand is predicted around well 1, and several thin brine sand

layers are identified at well 5. Figure 7.32 realizes the discontinuity between the main Alba

channel (around well 1) and the isolated sand body at well 5. However, the predicted sands

are more widely distributed along the lateral direction than is expected (Mattingly and

Bretthauer, 1992), possibly due to the strong footprint of the horizontally layered initial

impedance model in the seismic inversion, as well as the general lack of the horizontal

resolution in surface seismic surveys. On the other hand, the AIp � EI(30) combination

poorly predicts the lithology and pore fluids, as shown in Figure 7.31. The comparison

between the predicted facies to well data and other geological information exhibits that the
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Figure 7.33: Comparisons of predicted facies from seismic impedances and actual obser-
vations at wells 5 and 1. Refer to Figure 7.31 for the legend.

combination of the P-P near-offset and P-S pseudo-impedances predicts lithology and pore

fluids better than the combination of the P-P near and far offset impedances.

Although this result shows effectiveness of combining P-S data and P-P data, even

better prediction can be possible by including additional information. Pre-stack depth mi-

gration of both P-P and P-S data will allow us to correlate different impedance sections

better and reduce uncertainty caused by the mis-match between different data. The reser-

voir shape can become more geologically reasonable by adding the geological knowledge

about the sedimentary facies and environment. Although the predicted pore fluids in Fig-

ures 7.31 and 7.32 include unreasonable distributions—brine sands over oil sands, these

will vanish by using the information about the spatial order of individual facies (Eberle,

1998).
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7.5 Conclusions

In this chapter, we explored P-S and P-P seismic data and well data of the Alba Oil

Field and investigated how the P-S converted data help us to predict lithology and pore

fluids. The results from rock physics diagnostic analysis showed the Vp-porosity relation of

the Alba sandstone is well described by a constant pore stiffness curve, hence the porosity

variation within the sand is controlled by the textural difference. The water-saturated sands

show greater Vp and smaller porosity than the oil-saturated sands. These differences are

explained by different cement fractions in the cementation model, and support a hypothesis

that oil emplacements into sandstones slow down cementation.

By using statistical measures of information discussed in chapters 4 and 5, we in-

vestigated the dependence of the seismic impedances—P-P near and far offset and P-

S impedances—on the lithology and pore fluids. We showed that the P-P near offset

impedance is not very informative about lithology discrimination in the Alba Field. In con-

trast, the P-S pseudo-impedance and P-P far offset impedance are good lithology predictors.

Our results showed that if perfectly error-free measurements are available, a combination

of the P-P near and far offset impedances (AIp � EI) predicts lithology and pore fluids

as well as a combination of the P-P near offset impedance and the P-S pseudo-impedance

(AIp � Ips).

Having performed seismic inversion for the P-P and P-S seismic data, we compared

the well-derived impedances and seismically derived impedances, and established pdfs of

impedances for the oil sand, brine sand, and shale. We defined Bayes decision criteria from

the pdfs and predicted lithology and pore fluids from the AIp � EI combination, as well

as from the AIp � Ips combination. The prediction result from the AIp � Ips combination

is more consistent with a blind well and other geological information than the AIp � EI

combination, which confirms the effectiveness of P-S converted shear data in the Alba

Field.
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Appendix A

Using Time-Reversed Acoustics to

Discriminate Intrinsic Absorption from

Scattering Attenuation

“All truths are easy to understand once they are discovered; the point is to discover them.”

— Galileo Galilei

A.1 Introduction - Motivation

This appendix presents a new method of distinguishing two physical phenomena which

give rise to amplitude decays in seismic wave propagation through rocks.

Waves propagating through the Earth are always subject to the amplitude attenuation.

Two different physical phenomena which brings about attenuation almost always coexist:

intrinsic absorption and elastic scattering. Intrinsic absorption is a transform of wave en-

ergy to thermal energy, which is composed of several physical phenomena, including pore

fluid-related mechanisms of Biot global fluid flow (Biot, 1956), squirt local flow (Mavko

and Jizba, 1991), heterogeneity of saturation (Cadoret, 1993), and many others (Mavko,

1979; Mavko et al., 1998; Bourbié et al., 1987). On the other hand, elastic scattering is

a redistribution of wave energy due to heterogeneity of elastic properties of media, which

causes apparent amplitude decays (Aki and Richards, 1980).

189
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In spite of the differences in their mechanisms, both intrinsic absorption and scattering

share similar phenomenological outcomes: each one has velocity dispersion at a charac-

teristic frequency, when the amplitude decay is at a maximum (Mavko et al., 1998). The

characteristic frequency of scattering attenuation depends on the scale of heterogeneity,

while rock properties that influence characteristic frequency of the intrinsic absorption are

various and depend on the mechanisms causing the attenuation. Since subsurface prop-

erties of the Earth have a wide range of heterogeneity from microscopic to macroscopic

scale (Weber and Van Geuns, L.C., 1990), virtually all practical frequencies of waves are

subject to elastic scattering. Therefore, if a rock is absorptive, both effects are likely to

coexist.

However, separation of the two effects, if possible, will enable us to extract more infor-

mation about subsurface rock properties, since the individual mechanism is relatively well

understood. For example, the intrinsic attenuation coefficient brings about information on

fluid-related properties (e.g., permeability and porosity) and scattering attenuation factor

is related to the scale of subsurface heterogeneity. There have been many attempts to dif-

ferentiate intrinsic absorption from scattering. By assuming proportionality between com-

pressional and shear attenuation coefficients, as well as constant Poisson’s ratio, Menke

and Dubendorff (1985) numerically separated attenuation for scattering and intrinsic ab-

sorption. Blair (1996) estimated the two attenuation coefficients from his acoustic velocity

measurements using vibrational resonance and pulse transmission, under assumptions of

constant and non-constant-Q models, as well as a simple functional form for the scatter-

ing coefficient. Furthermore, from the coda energy decay of telesismic data, Mayeda et

al. (1992) evaluated intrinsic and scattering attenuation using Monte Carlo simulations.

Although these works successfully separated intrinsic and scattering attenuation, most of

them have to do with simplification of physical phenomena and are valid for specific mod-

els, hence not general.

In contrast, the method proposed in this work focuses on the inherent difference be-

tween the two effects: Intrinsic absorption transforms wave energy to heat, while scattering

redistributes wave energy. Therefore, the method is general and it does not require specific

model for absorption nor scattering.

In this appendix, we first describe the basic concept of time-reversed acoustics. We then
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present the experimental procedure of the proposed method and the derivation of the ab-

sorption and scattering quality factors. After verifying the method through seismic forward

modeling, we summarize advantages of the method compared to conventional approaches

and discuss simplification of the method. Finally, we conclude with a discussion about

problems in its implementation.

A.2 Time Reverse Acoustics

The key concept of separating intrinsic and scattering attenuation is what is called time-

reversed acoustics. Fink (1999) presented a concise summary of the technique. Figure A.1

explains basic idea of the method.

Figure A.1: Schematic picture of time-reversed acoustics. Forward propagation experi-
ment (Step 1) in the left and the backward propagation experiment (Step 2) in the
right. (From Fink (1999))

Time-reversed acoustics consists of two experiments. In Step 1 shown on the left of

Figure A.1, a wave pulse is emitted from a point source, and the waves transmitted though

a medium are recorded at the surrounding receivers. When the medium is heterogeneous,

the waveforms may be deformed. Then the recorded waveform at each receiver is flipped

with respect to the time axis and re-emitted to the medium, which is Step 2 shown on the
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right of Figure A.1. The wave fronts converge towards the original source point as shown

by inward arrows and reproduce the original input wave form which was emitted in Step

1. Fink implemented this concept in laboratory measurements, in which he successfully

recovered the input waveforms.

Time-reversed acoustics is an elegant consequence of the reciprocity of wave phenom-

ena. In fact, the time-reversed acoustics, focusing wave energy by back propagation, is

nothing but the fundamental of all the migration techniques in seismic data processing (Yil-

maz, 1987; Claerbout, 1993). Other practical applications extend from the detection of sub-

marines in the ocean to breaking up kidney stones by acoustic energy focusing in medical

science.

A.3 Proposed Method

We apply time-reversed acoustics to one of the important problems in rock physics:

the distinction of intrinsic absorption from elastic scattering. This method presupposes an

ideal condition and a geometry of typical core measurements, as shown in Figure A.2. We

assume wave propagation through cores is one-dimensional, that is, the wavelength is far

greater than the core diameter.

A.3.1 Procedure

� Input a pulse wave (W) from one side of a core (side 1) and record the transmitted

wave (T) at side 2, as well as the reflected wave (R) at side 1.

� Time reverse the two waveforms, T andR, to produce Rev(T) and Rev(R), where

Rev denotes flipping data with respect to the time axis.

� Simultaneously input Rev(T) and Rev(R) from side 2 and side 1, respectively, and

record the output waveform (D) at side 1.

� Compare the peak amplitudes ofW andD.

In the ideal case when the sample is heterogeneous and perfectly elastic, the recorded

waves (T andR) are distorted and differ from the original input,W. However, the retrieved
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Time Reversal

21
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Figure A.2: Schematic picture of the proposed method.

waveform (D) is exactly the same as the time-reversed version of the original input (W),

since the time reversal experiment focuses all the energy back. Hence, the peak amplitude

ofD is exactly the same as that ofW in this case.

When a sample is both absorptive and heterogeneous, the amplitudes of recorded waves

are decayed by the two phenomena. However, in the retrieved wave after time-reversal

experiment,D, all the scattered energy is focused back. Hence the difference in amplitude

between W and D is only due to the intrinsic absorption. Therefore, we can compute

intrinsic attenuation coefficient, �i, as in section A.3.2.
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A.3.2 Derivation of Attenuation Coefficients

The difference in the amplitudes of the retrieved wave and the input wave, AD and AW,

respectively, is only to the intrinsic absorption. Hence they are related by

AD = AW exp[��i(2d)] (A.1)

where �i is the intrinsic attenuation coefficient of the sample and d is the sample length. In

Equation A.1, �i is multiplied by 2d, since the retrieved wave propagates through the core

twice. Equation A.1 can be rewritten in terms of �i as

�i =
1

2d
ln
AW

AD
(A.2)

Under an assumption that attenuation coefficients for intrinsic absorption and elastic

scattering, �i and �s, respectively, are additive, i.e., �a = �i + �s (�a represents apparent

attenuation coefficient), we can describe the amplitude of the transmitted wave, AT, as

AT = AW exp[��ad] = AW exp[�(�i + �s)d] (A.3)

Given �i from a time-reversed experiment, �s can be derived from a comparison be-

tween the input wave amplitude and the transmitted amplitude as

�s = �a � �i =
1

d
ln
AW

AT
� �i (A.4)

Furthermore, from the apparent attenuation coefficient and the attenuation coefficients

for intrinsic absorption and scattering, we can calculate the corresponding quality factors

as

1

Qa

�

�aV

�f

1

Qi

�

�iV

�f

1

Qs

�

�sV

�f
(A.5)

where f is the dominant frequency and V is the effective velocity of the sample.
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A.4 Seismic Modeling

In this section, we show numerical examples of estimating the intrinsic and scattering

quality factors using the proposed method.

A.4.1 Modeling Specifications

We simulate two wave propagations described in the procedure in section A.3.1, as well

as depicted in Figure A.2: Step 1 consists of an input of the wavelet (W) and recording of

the reflection (R) and the transmission (T). Step 2 is after the time reversal manipulation

and comprises simultaneous input of Rev(R) and Rev(T) and recording ofD.

For the following seismic modeling, we use the invariant imbedding method (Kennet,

1974; 1983) to realize complete wave propagation, including all orders of multiple reflec-

tions. Absorptive boundary conditions with no reflection are assumed on both sides. All

of our core samples are 2.5 cm long, consisting of layers of either elastic or visco-elastic

materials. The properties of the constituents are listed in Table A.1. As input waves, we use

Constituents Velocity (km/s) Density (g/cc) Q�1 (�10�3)

c1 2.0 2.0 0 Elastic
c2 3.0 3.0 0 Elastic
c3 2.0 2.0 9.0 Visco-Elastic

Table A.1: Properties of materials consisting of the core models.

a Ricker wavelet with a center frequency of 500 KHz. Other specifications of the modeling

are listed in Table A.2.

Core Length 2.5 cm
Input Wavelet Zero phase Ricker

Center Frequency 500 KHz
Time Sampling Interval 80 ns

Record Length 2.62 ms

Table A.2: Forward modeling specifications.
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A.4.2 Modeling Results

According to the procedure explained in section A.3.1, we conduct seismic forward

modeling for three core models, estimate their quality factors, and compare them with true

values.

Model 1: Heterogeneous and Elastic

First, we create a randomly layered elastic model, consisting of interbedded c1 and c2

in Table A.1, whose average layer thicknesses are 0.25 mm. In this model, the quality factor

for intrinsic absorption (Q�1
i

) is 0. The resulting waveforms are shown in Figure A.3.

As mentioned, the input wave is a Ricker wavelet shown in Figure A.2-1), which is

W in Figure A.2. The first experiment (Step 1) outputs the transmitted wave, 2), and

reflected wave, 3). Since heterogeneity within the sample causes scattering attenuation, the

amplitude of the transmitted wave is smaller than that of the input. From the comparison

between 1) and 2), the apparent inverse quality factor of �a = 9:6 � 10�3 can be derived

using Equation A.3. Then the transmitted and reflected waves are flipped along the time

axis to make time-reversed waves in 4) and 5), before they are input back to the sample.

Finally, the output, waveform D in Figure A.2, is recorded as 6). Comparison of 1) and

6) shows exact re-production of the input waveform by the backward propagation (Step

2), in spite of the chaotic input waves shown in 4) and 5). The peak amplitudes of 6)

and 1) are identical, and Equation A.2 gives an estimate of Q�1
i

of 0:0, which is the true

value. In addition, the difference between Q�1
a

and Q�1
i

gives a quality factor for scattering,

Q�1
s

= 14:6� 10�3.

Model 2: Homogeneous and Visco-Elastic

The second model is homogeneous and absorptive, consisting of the material c3 in

Table A.1. In this mode, there is no scattering and the quality factor for intrinsic absorption

is equal to that of c3, i.e., Q�1
i

= 9:0� 10�3. Six waveforms from the numerical modeling

for Model 2 are shown in Figure A.4.

The transmitted wave in 2) has a similar shape with the the input, 1), since the medium

is homogeneous and the intrinsic attenuation constant is relatively small. The ratio of the
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Figure A.3: Waveforms for Model 1: Heterogeneous and Elastic model.
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Figure A.4: Waveforms for Model 2: Homogeneous and Visco-Elastic model.
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amplitudes in 1) and 2) gives an apparent inverse quality factor of Q�1
a

= 9:5�10�3. In 3),

no reflected energy is recorded because of the homogeneity. Backward propagation after

time reversal does not change the waveform significantly either, as shown in 6). Compari-

son of the input and the retrieved amplitudes predicts a Q�1
i

of 9:2� 10�3, and an estimate

of the scattering quality factor, Q�1
s

= 0:3� 10�3, near the true value.

Model 3: Heterogeneous and Visco-Elastic

The third model consists of layered elastic and visco-elastic materials, c1 and c3. Thick-

nesses of the individual layer are exactly identical to Model 1, i.e., replacing layers of ma-

terial c2 in Model 1 with c3 makes the Model 3. The true Q�1
i

of the model is 4:3� 10�3.

Figure A.5 is the summary of the six simulated waveforms.

The transmitted wave in 2) is distorted and its amplitude is decayed. The apparent

inverse quality factor (Q�1
a

) is 17:7 � 10�3, which is much greater than the true intrinsic

inverse quality factor because of scattering. The retrieved waveform after the time-reversed

experiment is similar to the input wave, although noisy. From Equation A.2, the estimated

inverse quality factor for intrinsic absorption (Q�1
i

) is 3:6 � 10�3, which is near the true

value. In addition, the difference between estimated Q�1
i

and Q�1
a

gives a Q�1
s

of 14:1 �

10�3.

Summary of Modeling

Table A.3 summarizes the results of our seismic modeling. The apparent quality factor,

which we observe in a conventional transmission measurement, does not allow the separa-

tion between intrinsic absorption and scattering. On the other hand, the proposed method

using time-reversed acoustics correctly predicts the inverse quality factors in all of the three

models. In addition, the estimated Q�1
s

for Models 1 and 3—models with the same veloc-

ity configurations but different quality factors—are almost equal. This result reveals that

the scattering quality factor only depends on velocity structures and is independent of the

intrinsic absorption.
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Figure A.5: Waveforms for Model 3: Heterogeneous and Visco-Elastic model.
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Model True Value Apparent Value TRM Estimate
# Property Q�1

i
Q�1
s

Q�1
a

Q�1
i

Q�1
s

1 Heterogeneous Elastic 0 - 14.6 0.0 14.6
2 Homogeneous Visco-Elastic 9.0 0 9.5 9.2 0.3
3 Heterogeneous Visco-Elastic 4.3 - 17.7 3.6 14.1

All values must be multiplied by 10�3

Table A.3: Estimated quality factors from forward modeling.

A.5 Discussions

This section discusses advantages and disadvantages of the proposed method, as well

as further simplification of the method using deconvolution.

A.5.1 Advantages of the Proposed Method

The most profound advantage of the proposed method compared to conventional ap-

proaches is its generality. It is because the method takes advantage of the inherent differ-

ence of the two phenomena: intrinsic absorption is transform of wave energy to heat, hence

irreversible, while scattering is redistribution of wave energy, hence reversible. Therefore,

the proposed method does not require a specific model for intrinsic absorption nor a simple

functional form for the scattering coefficient.

One possible alternative to the proposed method might be conducting only the forward

propagation experiment (Step 1) and comparing the input wave energy and the output wave

energy, the sum of the transmission and reflection. The difference between the input and

the output corresponds to the energy dissipated by intrinsic absorption. However, strictly

speaking, this method requires knowledge of seismic impedances at the two ends of the

core in order to convert measured amplitudes to the wave energy. In contrast, the pro-

posed method requires no conversion of wave amplitudes to energy, hence no knowledge

of impedances.

Furthermore, the separation of absorption from scattering using energy comparison suf-

fers much from random noise during experiments, since the noise energy of every time
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sample may sum up and result in masking the genuine difference of the input and the out-

put wave energy. On the other hand, the proposed method is less influenced by the random

noise because the amplitude is picked only at the peak value, when the S/N ratio is the

greatest.

A.5.2 Further Simplification

In this section we analytically describe the proposed method and look for simplification

of the proposed procedure.

In Step 1 of the procedure, the input waveform (W) and the outputs (T and R) are

related as

T(!) =W(!) � I12(!) (A.6)

R(!) =W(!) � I11(!) (A.7)

where I12 and I11 are impulse responses of the transmission (input at side 1 and record

at side 2), and the reflection (input at side 1 and record at side 1), under the assumed

conditions. (Waves are described in the frequency domain.)

In the frequency domain, the time reversal of a wave is realized by taking the complex

conjugate as

Rev(T(!)) = T�(!) Rev(R(!)) = R�(!) (A.8)

Using Equation A.8, we can describe Step 2 as

D(!) = T(!)� � I21(!) +R(!)� � I11(!) (A.9)

If the impedances at sides 1 and 2 are identical, the reciprocity states that

I12 = I21 (A.10)
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Hence, Equation A.9 can be rewritten as

D(!) = T(!)� � I12(!) +R(!)� � I11(!) (A.11)

Deconvolution allows us to retrieve impulse responses from the input and output waves

in the ideal case (Yilmaz, 1987). From the outcome of Step 1, represented by Equation A.6

and A.7, I12 and I11 can be recovered as

I12(!) =W(!)�1
�T(!) (A.12)

I11(!) =W(!)�1
�R(!) (A.13)

Although the complete recovery of the impulse response is difficult in practice, the

deconvolution allows us to skip Step 2, the time-reverse experiment;D is obtainable, since

all terms on the right side of Equation A.11 can be given. Hence, only forward propagation

experiment (Step 1) enables us to make the comparison betweenD andW, and to estimate

the intrinsic and scattering attenuation coefficients.

A.5.3 Problems in Practice

Section A.5.1 summarizes the advantages of the proposed method. However, there are

several difficulties in implementing the method in the laboratory.

� Boundary conditions

Although completely absorptive boundary conditions are assumed in the numerical

modeling, there exists significant reflected energy at both sides of the core samples in

real measurements. If wave energy once recorded by the transducer is reflected back

into the sample, the energy will eventually return to the edge and will be recorded

again. Multiple recording of the same wave energy makes amplitude comparison

erroneous.

� Three-dimensional wave propagation

If the wave propagation within a sample is three dimensional, i.e., when the wave-

length is far smaller than the core diameter, the phenomena becomes complicated.
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Wave amplitudes are influenced by spherical divergence, in addition to the absorp-

tion and scattering decay. Moreover, wave propagation oblique to the sample axis,

as well as reflections at the circumference, requires three-component receivers to

recover the wavefield perfectly.

� Controlling source waveforms

The input waveforms in Step 2 of the proposed procedure must be exactly identical to

the time-reversed version of the recorded waves in Step 1, which are nearly arbitrary.

Deficit reproduction of the waveforms results in incomplete retrieval of the final out-

put. However, recent laboratory equipment may allow flexible waveform inputs to a

required level.

These problems may or may not be significant to our objective, estimation of quality

factors. The impacts of these effects on the estimation must be quantified through numerical

modeling. Furthermore, the influences of these incomplete conditions may be relaxed by

additional assumptions wave wave propagations. (Although the assumptions may cost the

generality of the method, the deficit is not critical as long as they are for compensation of

incomplete conditions.)

A.6 Conclusions

In this appendix, we proposed a method of discriminating the intrinsic absorption from

the elastic scattering, applying time-reversed acoustics. In contrast to conventional ap-

proaches which have to involve simplifications of models for absorption and scattering, the

proposed method focuses on the inherent difference between the two mechanisms, and is,

consequently, very general. Our numerical modeling demonstrated correct predictions of

true quality factors and verified the advantages of the method. The implementation of the

proposed method will help us separate of the two effects and contribute to better under-

standing of wave attenuation phenomena in rocks.



Appendix B

Approximated Formulations of Seismic

Attributes

This appendix presents the approximated forms of seismic attributes used in this thesis,

including a new robust formulation of P-S pseudo-impedance derived in section B.

P-P Offset Reflectivity

For the calculation of offset reflectivity, the approximated form by Aki and

Richards (1980) is used. P to P Reflectivity at an incidence angle of � is given by

Rpp(�) =
1

2
(
�Vp
�Vp

+
��

��
) + [

1

2

�Vp
�Vp

� 2
�Vs
2

�Vp
2
(
��

��
+ 2

�Vs
�Vs

)] sin2 � +
1

2

�Vp
�Vp

[tan2 � � sin2 �]

(B.1)
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where �Vp, �Vs, and �� are contrasts of, and �Vp, �Vs, and �� are the averages of Vp, Vs, and

density between the boundary as

�Vp = Vp2 � Vp1 �Vs = Vs2 � Vs1 �� = �2 � �1 (B.2)

�Vp =
1

2
(Vp2 + Vp1) �Vs =

1

2
(Vps + Vps) �� =

1

2
(�2 + �1) (B.3)

P-P AVO Gradient

Aki and Richards approximation in Equation B.1 leads to an AVO gradient, G, as

G =
1

2

�Vp
�Vp

� 2
�Vs
2

�Vp
2
(
��

��
+ 2

�Vs
�Vs

) (B.4)

Hilterman’s approximation (1989) of AVO gradient, PR, is given by

PR =
��

(1� ��)2
(B.5)

where �� and �� are the contrast and the average of Poisson’s ratio between the boundary

as

�� = �2 � �1 �� =
1

2
(�2 + �1) (B.6)

P-P Offset Impedance (Elastic Impedance)

Elastic impedance is an analogue of acoustic impedance in non-zero offset case. In this

thesis, the definition by Mukerji et al. (1998) based on the Aki and Richards approximation

of reflectivity is used.

EI(�) = exp[2

Z
R(�)dt]

= Vp
1+tan2 ��1�4(Vs=Vp)2 sin2 �Vs

�8(Vs=Vp)2 sin2 � (B.7)

where � is the incident angle and R(�) is the reflectivity at incident angle �.
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For practical inversion of P-P offset data to obtain the offset impedance, pseudo-density

defined by Equation B.8 should be input into inversion software.

�(�) = Vp
tan2 ��1�4(Vs=Vp)2 sin2 �Vs

�8(Vs=Vp)2 sin2 � (B.8)

P-S Pseudo-Impedance by Mukerji and Mavko

Similar to the P-P offset impedance (elastic impedance), Mukerji and Mavko (1999) de-

rived an approximation of P-S converted wave offset impedance. The formulation by Muk-

erji and Mavko starts from the Aki and Richards approximation of P-S reflectivity (1980):

Rps =�

sin �p

2 cos �s

��
1� 2

�Vs
2

�Vp
2
sin2 �p + 2

�Vs
�Vp

cos �p cos �s

�
��

��

�

�
4
�Vs
2

�Vp
2
sin2 �p � 4

�Vs
�Vp

cos �p cos �s

�
�Vs
�Vs

�
(B.9)

where �p and �s are P-wave incidence angle and S-wave reflection angle at the target bound-

ary, respectively. These two angles are related by the Snell’s law:

sin �p =
~Vp
~Vs

sin �s (B.10)

where ~Vp= ~Vs is the average Vp=Vs ratio above the target.

With an assumption

�Vp
�Vs

=
~Vp
~Vs

(B.11)

An integration of Equation B.9 leads the following approximated form of the P-S

impedance:

Ips(�s) = �aVs
b (B.12)
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where �s is the angle of the reflected S-wave and a and b are given by

a =
tan �s

(Vs=Vp)

�
2 sin2 �s � 1� 2 cos �s

q
(Vs=Vp)2 � sin2 �s

�
(B.13)

b =
4 tan �s

(Vs=Vp)

�
sin2 �s � cos �s

q
(Vs=Vp)2 � sin2 �s

�
(B.14)

If the assumption in Equation B.11 is not valid, i.e., when �Vp= �Vs is large, or when �s is

large, Equation B.12 can give unreasonable complex values.

Robust P-S Pseudo-Impedance

When the average Vp=Vs ratio of the overlying layers ( ~Vp= ~Vs) is known, we can derive

a more robust form of the P-S pseudo-impedance than Equations B.12 through B.14. From

Equation B.9, we deduce another approximation of the pseudo-impedance in the same form

as Equation B.12 as

Ips(�s; �p) = �aVs
b (B.15)

where

a =
sin �p

cos �s

�
2
V 2
s

V 2
p

sin2 �p � 1� 2
Vs

Vp
cos �p cos �s

�
(B.16)

b =
4 sin �p

cos �s

�
V 2
s

V 2
p

sin2 �p �
Vs

Vp
cos �p cos �s

�
(B.17)

�s and �p must observe Equations B.10 for the given ~Vp= ~Vs. This formulation is more robust

than Equations B.12 through B.14.
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