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ABSTRACT

Pressure solution, which has long been a very active area of research in the earth
sciences, is one of the principal deformation mechanisms in crustal rocks, and it is often
responsible for the dissolution and removal of huge volumes of rock. It causes porosity
loss through compaction and cementation, fluid migration on scales up to that of tectonic
basins, and is a major influence on reservoir structure at depth. Still, many aspects of the
pressure solution process remain unexplained. Stylolites are a long-standing puzzle in
pressure solution research. In the first part of this thesis, I develop a theoretical description
of their initiation and growth. I suggest that a stylolite forms as an elastic-energy driven
instability on a pressure solution surface, when the maximum principal stress is very much
greater than the other principal stresses. Linear stability analysis shows, that the
wavelength of the instability is determined by the relative values of the effective principal
stresses, by the surface energy of the rock or mineral, and by the active transport
mechanism. Next, I show that a small solubility difference between two surfaces, that
come together to form a pressure solution surface, can cause only one surface (the slightly
more soluble one) to dissolve, while leaving the other almost unaffected. This is facilitated
by diffusive coupling between the two surfaces; the fluid at the thin contact is very close to
saturation, therefore, the small extra amount dissolved from the slightly more soluble
surface, can easily diffuse across to the other surface, and fully saturate the adjacent fluid
layer, thus severely inhibiting its dissolution. This result explains the relatively large relief
of stylolites, as well as another previously unexplained pressure solution phenomenon:
pitted pebbles. Next, these theoretical results are incorporated into a computer simulation
of stylolite growth and propagation. It is shown that within the stress domains predicted
by the linear stability analysis, a small initial perturbation of a pressure solution surface will
grow in amplitude, and propagate along the surface, provided the elastic energy driving the
instability can overcome the resultant increase in surface energy.

In the second part of this thesis, I study the effects of pore-space microstructure on
fluid permeability, and acoustic velocities in sandstones. I derive porosity-velocity,
porosity-permeability, and porosity-formation factor relationships in clean sandstones, by
making the simplifying assumption of uniform porosity reduction (UPR), and by using the
concept of effective porosity. UPR means that, in a sandstone, the pore shapes remain
essentially constant as porosity is reduced by diagenesis. Effective porosity is the well-
connected part of the pore-space, which serves to transmit fluid. All formulas match the
data well, and the formulas that relate porosity to permeability and formation factor, agree



better with experimental Fontainebleau sandstone data, than the established forms of the
Kozeny-Carman equation, and Archie’s law. Next, I extend the UPR and effective
porosity concepts, by employing them, in conjunction with three-dimensional network
modeling, to explain systematic scatter in Fontainebleau porosity-permeability data. The
modeling suggests that this scatter is a result of an increasing variability in tortuosity at
small effective porosities. Finally, the model is modified to include clay in the pore-space,
and I use it to derive formulas that give high and low permeability estimates, using
porosity, clay content, and grain size as input. The equations are then successfully tested
on a set of 72 shaly sandstones, and I find that the measured permeabilities almost always
fall between the two estimates. The log-average, of the high and low estimates, predicts
the measured permeability of all the data, to within an order of magnitude.

In the final chapter of the thesis I explore the applicability of the Saint-Venant principle
to cylindrically anisotropic bodies. Axisymmetrical stresses in an infinitely long hollow
isotropic circular cylinder (plane strain) quickly approach their asymptotic values as the
external radius increases. This is not the case if the cylinder is even slightly anisotropic --
asymptotic solutions (for an infinitely large external radius) do not exist. I show that if the
cylinder is stiffer in the radial direction than in the tangential direction, the internal stresses
increase infinitely with increasing external radius. If, on the other hand, the cylinder is
stiffer in the tangential direction than in the radial direction, then at any fixed point inside

the cylinder, the stresses approach zero as the outer radius increases.



CHAPTER 1

INTRODUCTION

General

Pressure solution is an extremely important deformation mechanism in crustal rocks.
In many geological settings, it is responsible for the dissolution and removal of huge
volumes of rock, resulting in porosity loss through compaction and cementation, fluid
migration on a variety of scales -- up to that of tectonic basins (Trurnit, 1968), and in the
formation of a variety of geological features. The physical concept of pressure solution,
that subjecting a mineral to stress enhances its solubility, has been recognized now for well
over a century (Thompson, 1862), yet, some of the most important aspects of this process
remain unexplained. Stylolites, which are geometrically irregular pressure solution
surfaces, are an example of a persistent area of controversy in pressure solution research.
The first part of my thesis is dedicated to developing a theoretical description of their
initiation and growth.

In the second part of this thesis, I study the effects of pore-space microstructure on
fluid permeability, and acoustic velocities in sandstones. The idea behind this work is, that
as a rock evolves, through cementation, clay deposition, pressure solution, and other
geological processes, some of the characteristics of its pore-space are maintained. I use
this concept to develop a set of models that relate the porosity of a rock, to its acoustic and
transport properties.

Finally, I consider the elastic problem of a cylindrically anisotropic body subjected to
external loading. The results are closely related to the decay of boundary conditions and, in
general, to the problem of applicability of Saint-Venant’s principle to anisotropic solids.

Description of Chapters

Chapter 2, suggests that stylolites form as a morphological instability of a pressure
solution surface. The instability is driven by the elastic strain energy, and resisted by the
surface energy. Using linear stability analysis, I demonstrate that a pressure solution
surface becomes unstable if the stress tangential to it is greater, or else, if it is much
smaller, than the normal stress. The latter condition applies to the formation of stylolites,
and the instability wavelength is related to the stress state, the surface energy, and the active
transport mechanism. Therefore, it may, in the future, be possible to relate stylolite



Chapter 1. Introduction 2

morphology to the three-dimensional paleo-stress field. This work was done together with
Amos Nur and Einat Aharonov.

In Chapter 3, I study diffusive coupling between two similar surfaces that come
together to form a pressure solution contact. The total amount of material dissolved
depends on the normal stress. However, I show that if the contact is sufficiently thin, a
very small solubility difference between the two surfaces, can result in very asymmetric
dissolution. The slightly more soluble surface dissolves, while the less soluble surface
remains almost unaffected. This result explains the often large relief of stylolites, and the
occurrence of pitted pebbles, which are another, previously unexplained, pressure-solution
related phenomenon. The work presented in this chapter was done in collaboration with
Amos Nur.

Chapter 4 brings together, and applies, the theory developed in Chapters 2 and 3, to a
computer simulation of stylolite propagation and growth. Using a finite element code, I
compute the stress field of a pressure solution contact, that has a small initial heterogeneity.
The results are employed to calculate the dissolution at each point along the contact, the
geometry is then altered accordingly, and the steps repeated. The simulation results
confirm the major conclusions of the linear stability analysis, and they show that as a
stylolite grows in amplitude, it also propagates along the pressure solution seam. Finally, I
test the effect of different parameters, such as solubility, surface energy, and elastic
moduli, on the morphology of the simulated stylolite. Amos Nur worked with me on this
research.

In Chapter 5, I show that porosity-velocity, porosity-permeability, and porosity-
formation factor relationships in clean sandstones, can be easily predicted, if: a) one
assumes that pores in the rock shrink uniformly, and b) the effective porosity is related to
transport properties instead of the total porosity. The formulas that relate porosity to
permeability and formation factor, agree better with experimental Fontainebleau sandstone
data, than the established forms of the Kozeny-Carman formula, and Archie’s law. Jack
Dvorkin and Amos Nur helped me with the work presented in this chapter.

Chapter 6 extends the uniform porosity reduction (UPR) and effective porosity
concepts, by using them in conjunction with three-dimensional network modeling, to
explain a systematic scatter in Fontainebleau porosity-permeability data. The modeling
suggests that this scatter is a result of an increased variability in tortuosity at low effective
porosities. The model is then modified to include clay in the pore-space, allowing me to
derive formulas that give high and low permeability estimates for a set of 72 shaly
sandstones (using porosity, clay content, and grain size as input). The measurements
almost always fall between the proposed estimates, and their log-average predicts the
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permeability of almost all data to within an order of magnitude. It also predicts the
permeabilities somewhat better than other, well established methods, that require more
input. Amos Nur and Jack Dvorkin worked with me on this research.

Chapter 7 addresses the important problem of the applicability of the Saint-Venant
principle to anisotropic bodies. I show that if a cylinder, that is subjected to external
loading, is stiffer in the radial direction than in the tangential direction, the internal stresses
actually increase away from the loaded boundary. If, on the other hand, the cylinder is
stiffer in the tangential direction than in the radial direction, then the stresses decay rapidly
away from the boundary. Jack Dvorkin and Amos Nur helped me with this work.

REFERENCES

Thompson, J., 1862, On crystallization and liquefaction, as influenced by stresses tending
to change of form in the crystals: Proc. Roy. Soc. London, 11, 473-481.
Trurnit, P, 1968, Pressure solution phenomena in detrital rock: Sedim. Geol., 2, 89-114.



CHAPTER 2

STABILITY ANALYSIS OF A PRESSURE SOLUTION SURFACE

ABSTRACT

I present a linear stability analysis of a pressure solution surface subjected to a non-
hydrostatic stress field. A small sinusoidal perturbation is imposed on an initially flat
solid/fluid interface, and the consequent changes in elastic strain energy and in surface
energy are calculated. The results demonstrate that if the far-field lateral stresses are either
greater, or much smaller than the fluid pressure, the perturbed configuration has a lower
strain energy than the initial one. For wavelengths greater than a critical wavelength this
energy decrease may be large enough to offset the increased surface energy. Under these
conditions, the perturbation will grow unstably. If these conditions are not met, the surface
becomes flat. The growth rate and the wavelength of the maximally unstable mode depend
on the mechanism of matter transport. I calculate the growth rate for the case where
diffusion along the interface is rate limiting, and determine the maximally unstable
wavelength, i.e., the wavelength that will grow fastest. The instability discussed in this
chapter may account for the formation of stylolites, as well as other pressure solution

phenomena, such as roughening of grain contacts and phase-change boundaries.

INTRODUCTION

Pressure solution is a very important deformation mechanism in crustal rocks. It may
result in strains greater than 50% and in a variety of geologic features such as stylolites,
pitted pebbles, slip cleavages, marl-limestone alterations, and sutured grain contacts
(Stockdale, 1922; Alvarez et al., 1978; Robin, 1978; Englender, 1981; Gratier, 1983;
Ricken, 1986). Several researchers have shown that the pressure solution mechanism can
also be activated and studied in the laboratory (Sprunt and Nur, 1977; Rutter, 1983; Urai,
1985; Gratier and Guiguet, 1986; Tada and Siever, 1986; Spiers and Schutjens, 1990,
Hickman and Evans, 1991, 1992). The physical concept of pressure solution, that
subjecting a mineral to stress enhances its solubility, has been recognized now for well
over a century (Thompson, 1862; Sorby, 1863). However, despite a vast amount of
research, it has so far proved very hard to develop an adequate understanding of this
process. Difficulties arise because pressure solution involves phase transformation and
material transport in stress fields and geometries that change with time and are often very



Chapter 2. Stability Analysis of a Pressure Solution Interface 5

complicated. =~ More recent theoretical progress in the thermodynamics of non-
hydrostatically stressed solid-fluid interfaces (e.g., Paterson, 1973; Green, 1984; Lehner
and Bataille, 1985; Heidug, 1991; Heidug and Leroy, 1994; Leroy and Heidug, 1994)
provides the tools and insight to resolve many of these problems. Still, some of the most
fundamental mechanisms and phenomena associated with pressure solution remain
unexplained.

Stylolites are among the least well-explained of all pressure solution phenomena.
Although mechanisms have been proposed that account for them as a manifestation of
pressure solution localization (e.g. Ortoleva et al., 1987; Merino et al. 1983; Dewers and
Ortoleva, 1990), no satisfactory explanation has been given for their characteristic irregular
geometry. In this chapter, I lay a foundation for understanding the nucleation and growth
of stylolites, by analyzing the stability of a stressed pressure solution surface. This is done
by imposing a small sinusoidal perturbation on an initially flat solid/fluid interface that is
subjected to stress. Assuming that no work is exchanged with the environment, the energy
variation caused by this perturbation consists of a: a change in the elastic strain energy of
the solid, and b: a change in the free surface energy. If the system has thereby achieved a
lower energy state, the perturbation will grow, otherwise it decays and the interface
becomes flat. The analysis shows that growth can occur only for perturbation wavelengths
greater than a critical wavelength, which is determined by both the stress state and the
surface energy value. The rate of the growth or decay depends also on the manner of
matter transport, e.g. diffusion along an interfacial film, or dissolution/precipitation into the
bulk fluid. The proposed instability may play an important role in other geological
processes such as roughening of grain boundaries and fracture surfaces. More generally, it
may apply to any phase transformation or reaction at a stressed interface where at least one
of the phases is elastic. The analysis also suggests that the morphology of the instability
may be determined by the stress, and conversely, the stress may be deduced from the
morphology.

ELASTIC ANALYSIS

In this section, as well as the next, I follow the procedure used by Srolovitz (1989) to
analyze the stability of laterally stressed thin films. The analysis is generalized by allowing
the surface to be in contact with a fluid that has non-zero pressure. To determine the effect
of surface evolution on the elastic stresses in the solid, let us consider an initially flat solid

slab, lying on the x -z plane, and constrained in the z direction (Figure 1). I induce a
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state of uniform biaxial stress in the slab by applying a lateral stress P, at x = 0,/, and by

exposing the solid to fluid at pressure P, at y = 0. The resulting strains are:

Exx = E [ E v
1-v2 vil+v
8yy=( z )Rz‘ (E )Fi M)

where E and v are the Young’s modulus and Poisson ratio. The elastic strain energy is

_(1-v?)
¢ 2E

r2ep?-2-pp). @

Next, we assume that the solid/fluid interface obtains a small-amplitude sinusoidal profile
h(x) = Hsin(kx), 3)

such that Hk <<1. The stress field in the solid is a superposition of a hydrostatic and a
deviatoric component. To calculate the deviatoric stress, we search for an Airy stress
function of the form

(B -PR)y’
2

b - + (A + B y)e™ sin(nkx), @
n=1

where A, and B, are constants that can be determined from boundary conditions. Since

we are assuming that Hk << 1, only the first term of the infinite series in equation (4) has
to be considered. The deviatoric stress components can then be written,

G,y = 3°®/3y* = (B, - B,) - i[2B - k(A + By)|e ™7 sin(kx),
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3,y = 9°®/ox? = -k*(A+ By)e™ sin(kx),

5,y = —0°®/0xdy = -k B - k(A + By) ™ cos(kx). (5)

The components of the deviatoric stress that are normal and tangential to the interface are
given by

~ o2 ~ 2 ~ .
0,, =0,sin“a+0,cos"a-20, sinacosa,

20+G ysinza + 26xy sinacosa.,

O = O, COS y

-~ - - . - 2 .2
Oy = (0 - Gxx)smoccosa + oxy(cos o - sin a), (6)

where o = tan_l(ah/ dx). The deviatoric stresses &,, and O must vanish at the

solid/fluid boundary. Therefore, assuming again that Hk <<1, we obtain
A=0and B=-(B-P)H. 0

Adding the hydrostatic component, and again using the small amplitude assumption, we
find that along the interface, to first order in Hk

Oy = B +2(P, - B,)Hksin(kx),

G,, =Pv, G, =0. 8)

Therefore, the change in elastic energy at the solid/fluid boundary resulting from the
perturbation imposed on the surface is
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S 2(1—v2)(

.= ==2(R - R)(R - =R ) Hisink) ©)

\ )

To maintain the constant stress boundary condition at x = 0,/, some work must be done by
or on the system, however this work term is second order in Hk, and can be left out of the
present discussion.

X
Figure 1: A small sinusoidal perturbation is imposed on an initially flat surface that is
subjected to lateral stress, Fj and fluid pressure F,.
KINETICS
The chemical potential at the boundary can be written as (Asaro and Tiller, 1972)
u(s) = o + Q(yx(s) +u, - B,). (10)

Here s is the coordinate along the solid/fluid interface, p is the chemical potential of a

reference flat interface, ©Q the atomic volume, y the interfacial energy density, and the

curvature X is defined as

K = -3%h/ x> [1 +(ah/ax)2]_3/2. (11)
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Unless the fluid pressure is negligible compared to the other stresses acting on the system,
0,,,€2 is much larger than u,Q, and therefore the latter term is often neglected in theoretical
analyses. However, we are interested in the chemical potential difference driving the
instability, which is the chemical potential difference between the flat and the wavy surface
configurations. In this case the ©,,Q term cancels out because ©,, is constant at the
solid/fluid interface. Note also that the total amount of work the solid surface exchanges
with the fluid is the same for the flat and the wavy cases because of the geometrical
symmetry of the perturbation. The chemical potential difference driving the instability can

therefore be reduced to

du(s) = Q(vx(s) + du, ) (12)

If diffusion is the rate determining step, we use the Nernst-Einstein equation:
-1 (13)

Here V is the atomic diffusion velocity along the interface, D is the interface diffusivity,
and pT is the thermal energy (p is Boltzmann’s constant). The resulting change rate of
profile is (Mullins, 1957)

2
o _ _2_%8_‘2‘, (14)

where { is the number of atoms per unit area. By substituting equation (9) into equation

(12), and eliminating terms in K that are second order in Hk we find that

B -PB) B -—YP) - vk |QHksin(kx). (15)
1-v ")

2
§u=[£(1_;’_)
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To first order in Hk, ds = dx, therefore substitution of equation (15) into equation (14)
yields

ZO_E'V_).( )(3___1») yk}szsz%in(kx). (16)

()

Finally, by combining equations (3) and (16), we find that for a short time the sinusoidal

perturbation amplitude will grow as exp(yt) where

Y=

2(1;\’2)(3_1)‘})(P-—P) Yk]( zﬁ)k3. 17)

To calculate the critical wavelength, A, we simply set ¥ = 0, and obtain

0=

nEy ( )

P-PWB-——P . 18
e G CRetd] 1s)
A sinusoidal perturbation whose wavelength is smaller than A, will be smoothed out by
diffusion along the interface. If the perturbation wavelength is greater than A, diffusion
will allow it to grow. Itis interesting to note that if P, =z A, = (v/1 - v)FE,, there will be no
growth irrespective of the value of y. The reason is that for these stress-states, the elastic

strain energy at the perturbation troughs is smaller than at the crests. The growth exponent
Y has a maximum for A, =4Ay/3, therefore a perturbation with this wavelength will

grow fastest . These results are summarized in Figure 2, where I used numerical values
that are typical for a quartz-water system at 300°C: D=10"m?/s,

Q=23x10"m3/mol, E=08x10''N/m?, v=0.1, and y =0.5J/m? (Holland and
Malinin, 1979; Lehner and Bataille, 1985). If dissolution/precipitation is the rate
determining step it can be shown (Srolovitz, 1989) that A, remains the same as in the
diffusion-controlled case, but now Ay, = 24g.

In this section, I have calculated the kinetics for the fundamental case of a stressed solid
surface in contact with its own solution. It was assumed that diffusion takes place
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predominantly along the solid/fluid interface. This assumption is valid if, for example, the
fluid layer is very thick compared to the wavelength of the perturbation, or if it is very thin
and not in contact with any other sources and sinks of material. Let us.consider a simple
model of a stylolite, where a thin fluid layer separates two solid-fluid interfaces. In that
case, the thermodynamic force driving the instability is the same as the one in the single-

interface system I analyzed, and therefore A, is the same too. However, the kinetics are
now different because diffusion can also take place across the fluid layer, therefore A, is

different.

o ;fi[ ’vi |
gy
11t -fmmq!ﬁ ﬂ'f}!,"f fr‘! W

iy

Figure 2: Two instability domains for a stressed solid/fluid interface: the first is when the
horizontal stress is greater than the vertical stress, and the second is when it is very
small compared to the vertical stress. Surface energy establishes a cutoff for short
wave-lengths. The vertical load in this example is 10MPa, and k is in m™
Negative values of growth exponent (i.e. perturbation decays) are omitted.
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DISCUSSION OF RESULTS

The evolution of the perturbed surface is dictated by a competition between the elastic
strain energy and the free surface energy of the system. When P, > P, (the first instability
mode), the strain energy is greatest at the “troughs” and least at the “crests” of the
sinusoidal perturbation (Fig. 1). This will cause the instability to grow provided that the
driving forces overcome the surface tension. To illustrate the second mode of instability,

let us consider simple case where P, >0, P, =0. The fluid pressure is everywhere normal

to the surface, and therefore it has a component that tends to squeeze the crests, and pull
apart the troughs of the perturbed surface. Superposed on the general state of Poisson
extension of the solid, this leads to greater extension at the troughs than at the crests, and
again the perturbation grows, provided that the driving forces are strong enough to
overcome the surface tension. When superposed on a general state of compression (e.g.,
when P, is only slightly larger than P), the extra amount of compression at the crests and
extension in the troughs leads to greater strain energy at the crests than at the troughs, and
the perturbation decays.

GEOLOGICAL IMPLICATIONS

A well-known and often used model for a pressure solution contact is the one proposed
by Weyl (1959), where a thin continuous water film is assumed to exist between the two
solid surfaces. For the system to be mechanically stable, this film must be able to support
shear stresses (Rutter, 1983), so it is believed that this water is strongly adsorbed to the
mineral surfaces or, in some instances, to the surface of an intervening clay layer. Because
the analysis presented in this chapter assumes that the fluid phase is free and unstructured,
care must be taken in directly applying its results to this type of interface. However, I
believe that the type of instability described for the case P,/F, <(v/1-v) is the one driving
stylolite and microstylolite growth. I suggest that under these conditions of stress, i.e. a
minimum principal stress that is much smaller than the maximum principal stress, stylolites
may develop. If F/F, is larger, the pressure solution surface remains flat. These
conclusions are consistent with tension gashes that are often associated with stylolite
seams, and tend to be perpendicular to them (Bushinskiy, 1961; Fletcher and Pollard,
1983; Raynaud and Carrio-Schaffhauser, 1992). I have also run numerical simulations on
models where a thin interface layer is allowed to have non-zero shear strength (work in
progress), and found that interface perturbations grow unstably, provided that F,/P, is
small. Other types of geological phenomena may result from the interface instability for the
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stress-states where F/P, >1. This instability may, for example, increase surface

roughness in grain and fracture surfaces undergoing pressure solution, and also affect the
morphology of surfaces where a stress-sensitive reaction or phase change are taking place,
and at least one of the phases is elastic.

CONCLUSIONS

I have analyzed the stability of a pressure solution surface subjected to a non-
hydrostatic stress field by imposing a small sinusoidal perturbation on an initially flat
solid/fluid interface. If the far-field lateral stresses are either greater, or much smaller than
the fluid pressure, the perturbed configuration has a lower strain energy than the initial one.
For wavelengths greater than a critical wavelength this energy decrease may be large
enough to offset the increased surface energy. If these conditions are met, then the
perturbation will grow unstably. If they are not, the surface will become flat. I have also
derived the growth rate for the case where diffusion along the interface is rate limiting, and
determined the maximally unstable wavelength, i.e. the wavelength that will grow fastest.
I'believe that this instability may account for the formation of stylolites and other pressure
solution phenomena, such as roughening of grain contacts and phase-change boundaries.
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CHAPTER 3.

ELASTIC STRAIN ENERGY AS A CONTROL IN THE EVOLUTION OF
ASYMMETRIC PRESSURE SOLUTION CONTACTS

ABSTRACT

Subjecting a water-rock system to load can enhance the rock solubility by (1) increasing
normal pressure at the dissolving surface and (2) raising the elastic energy of the rock. For
pressure-solution surfaces, such as grain contacts, solution seams, and stylolites, the
pressure term in the chemical potential equation is orders of magnitude larger than the
strain-energy term. Thus, the contribution of the strain energy to the overall solubility of
the system is very small. Indeed, it is most often ignored. Still, I show that the elastic
strain energy at a pressure-solution interface, can have a profound effect on the manner in
which it evolves. The mechanism I propose is the following: inducing a discontinuity in
elastic strain energy across a pressure solution interface (e.g., by changing its curvature)
can cause one side to become slightly more soluble than the other. Part of the material that
is thus dissolved may diffuse the short distance across the fluid layer and raise the
saturation in the vicinity of the less-soluble surface. If the fluid layer was already close to
saturation, the dissolution at the less-soluble surface may thus be severely slowed down or
even halted. Therefore, although the strain-energy difference across the interface has a
negligible effect on the total amount of material that is dissolved there, it may cause only
one side to dissolve. In this way, the formation of stylolites can be facilitated by
heterogeneities in the elastic-strain-energy difference along a pressure-solution interface.

INTRODUCTION

One of the most puzzling aspects of pressure solution, is that rock on one side of a
dissolution interface commonly appears to have undergone extensive pressure solution, but
the rock on the other side appears almost unaffected. A dramatic example is the occurrence
of pitted pebbles, in which one pebble is penetrated by another, so that a deep dissolution
depression is created in the “host” pebble, but the “guest” pebble does not undergo
substantial dissolution itself (Trurnit, 1968). Stylolites also exhibit this type of behavior;
column heights have been reported to be useful in many instances as estimators of the total
thickness of material that has been removed at a pressure-solution interface (e.g., Delair
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and Leroux, 1978). Such estimates imply that at least the highest columns have been
relatively resistant to pressure solution; if not, the approach would significantly
underestimate the total rock thickness dissolved. In fact, such concerns led to speculation
that a new physical process, analogous to spontaneous polarization in ferromagnetism, was
responsible for setting up “domains” along the stylolitic pressure-solution interface, in
which dissolution occurs only on one side of the interface, or on the other (Guzzetta,
1984). However, no mechanism was offered.

To some extent, the differential dissolution across a pressure-solution interface can be
accounted for by various means. An almost intact shell fragment at the top of the stylolite
column may be inherently less soluble than the host rock; indeed it may have promoted the
nucleation of a stylolite. Different strain energies in material on either side of a pressure-
solution interface can also induce solubility differences. However, taken by themselves,
these differences cannot account for the lopsidedness sometimes observed in nature,
especially for those cases in which both sides of the interface have a similar composition.

To resolve this paradox, I propose the following mechanism: along a thin, water-
permeated interface, where a small solubility difference exists between the two adjacent
surfaces, solutes diffusing from the more soluble surface can inhibit, and even completely
stop, the dissolution on the less soluble surface. Thus, despite the very small solubility
difference, one side of the interface (the one with the greater elastic strain energy, for
example) can do most, or all, of the dissolving while the other side is “shielded” from
dissolution. In this chapter, I present a simple model to better understand the factors
controlling this induced dissolution-shielding effect. The discussion will show that the
proposed effect can, in principle, induce the type of polarization envisioned by Guzzetta
(1984).

MECHANISM

In this section, I present a phenomenological model of solute diffusion at a pressure-
solution contact. The motivation is to examine the effect of diffusive mass transfer within
the contact region on the relative solubilities of the adjacent interfaces. Generally, the
physical chemistry of surface processes is extremely complex, and it is a subject of
extensive research. No attempt is made here to address many important issues that should
be a part of any comprehensive model of a pressure-solution contact. My goal is simply to
illustrate the proposed dissolution-shielding effect.

The tendency of a material to dissolve in a fluid is affected by the existing solute
concentration. If one raises the solute concentration in that fluid, the dissolution slows
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down until, at the saturation concentration, it stops. Additional increase in the saturation
may cause precipitation to ensue. This behavior can be expressed by the relationship
(Lasaga, 1981)

g __ b -
e CRDE )

where n is the normal to the dissolving surface,c is the solute mass fraction in the fluid,
¢, is the saturated mass fraction, A is a mass transfer coefficient, and D is the diffusivity.

Let us now consider two identical parallel mineral surfaces on the x-Z plane that
extend to infinity in the z direction and are semi-infinite along the x axis (Fig. 1). The
system is loaded with a compressive vertical stress, and the surfaces are separated by a thin
water film. The vertical load is balanced by hydration forces, which are a consequence of a
“structuring” of water molecules in the thin film (Israelachvili, 1991). We immerse this
system in a large water reservoir where the background solute concentration is zero.
Initially, the solute concentration in the water film is also zero. As the system approaches
quasi-steady-state conditions, however, the solute concentration within the film increases

because lateral diffusion in and out of the film is constrained by its thinness.

Figure 1: Diffusion across a pressure solution interface: applying lateral stress to the top surface causes
material to go into solution and diffuse across the water film, raising the saturation at the unstressed

surface, and inhibiting its dissolution.

Next, the top surface is loaded parallel to the x direction. Because the thin fluid film
partially decouples non-normal tractions, the strain energy increases more on the top
surface than on the bottom one. This strain-energy difference induces a solubility
difference between the surfaces. As a result, extra material dissolves from the top surface,
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and some of the resulting solutes diffuse towards the bottom surface and inhibit, to a
degree, any dissolution that might be taking place there. To examine the effect of this
mechanism on the quasi-steady-state behavior of the system, and how it is coupled to the
overall diffusive flow, I solve the following diffusion problem:
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dc
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Here, ¢y and cg, are the saturation concentrations at the bottom and top surfaces
respectively, b is the film thickness, and h = hy/D. The full solution of this set of

equations is written out in the Appendix as an infinite series. Assuming a very thin film, I
can truncate the series and obtain a first-order expression for the concentration of solute in
the water film adjacent to the bottom surface:
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Equation (3) shows that near the edge of the water film (x =0), the solute saturation is
determined by the background saturation of the reservoir, which in this case is zero.
Because the concentration of solute is constant at the edge of the water film, there is no flux
between the top and bottom surfaces, and therefore from equation (1), the ratio of the total
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material dissolved at the bottom surface to the material dissolved at the top surface is simply
cso/csp. When x>> W , the solution becomes oversaturated with respect to the
bottom surface, and material can only be dissolved at the top surface. The bottom surface
is thus “shielded” or may even be a site of precipitation. Over time this dissolution-
shielding will cause the boundary to migrate in the direction of increasing y. To estimate
the length scale at which dissolution-shielding becomes appreciable, I consider
measurements made by Rimstidt and Barnes (1980). They reported that for a saturated

silica-water system, hy = 10" 'ms™!. The diffusivity of the structured water in a thin film

has been estimated to be four to five orders of magnitude lower than that of bulk water
(Rutter, 1983), therefore D =~ 1074 m3s1, Assuming a water-film thickness of

1-10nm, we can see that the length scale /b/2h is on the order of 10°m-10"%m.

Contact lengths on this scale and larger are certainly found in rocks undergoing pressure
solution. Furthermore, if we consider a more realistic scenario, where the background
saturation in the reservoir is nonzero, we conclude that even smaller contacts can exhibit
dissolution shielding.

The main result in this section is that a small solubility contrast may cause highly
asymmetric dissolution at a pressure-solution contact. There are many implications to this
result. Consider, for example, the anticrack model proposed by Fletcher and Pollard
(1981). The authors create their anticrack by cutting out a thin elliptical lamina
(representing the dissolved material) from an elastic medium, and then bringing the walls of
the resultant crack into perfect contact along the major axis of the ellipse. The anticrack
now propagates in response to the self-stress concentrations at its tips. If the lamina is
symmetric, the propagation is in-plane. However, if the dissolution is asymmetric, i.e.,
there is more dissolution on one side of the anticrack than on the other, the removed lamina
is also asymmetric. In this case, the principal stress directions at the anticrack tip are
rotated relative to the anticrack plane, and the propagation direction is no longer in-plane.

DISCUSSION

In this section I continue to study the implications of the proposed dissolution-shielding
effect. The chemical potential pthat drives dissolution at the interface between a solid and
a free fluid can be written as (Asaro and Tiller, 1972)

1
W= o =0, Q2+ Eoijsijg +YKQ, C))
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where  is the intrinsic chemical potential of the solid, €2 is the specific atomic volume,
y is the surface-energy density, K is the surface curvature, c and € are the stresses and
the strains, and » is the normal to the interface. Heidug (1995) generalized equation (4) to
account for a structured water film, by including a hydration potential in the chemical
potential term, and by noting that the normal stress is supported by the sum of the
hydrostatic pressure and the hydration forces in the film. The second term on the right-
hand side of equation (4) represents work exchanged between the solid and the fluid when
mineral dissolves or precipitates, the third term is the elastic-strain-energy term, and the

fourth term is a surface-energy term. Because ¢; <<1, the work term in equation (4) is

typically orders of magnitude larger than the strain energy term. For this reason, the
contribution of the elastic strain energy to the overall pressure-solution rate at a pressure-
solution contact is generally ignored. However, the elastic strain energy can be a very
significant component of the solubility difference across the contact. Because the water
film partially decouples non-normal tractions, the nonhydrostatic loading induces a strain-
energy discontinuity across the contact. The normal traction, on the other hand, has to be
continuous. Therefore, if it is assumed that both top and bottom surfaces have the same
composition and that the water film separating them is very thin, their solubility difference

is simply given by
ou = %a(ansn)sz - y(6x)R. (5)

If we assume that the water film is also very thin compared to the length scale associated
with the curvature, then the surface-energy term in equation (5) can be ignored, and we are
left with

ou =~ %a(onsm Jle] (6)

Let us now consider the contact between two different-sized elastic spheres that are
composed of the same material and are pressed together in the direction of a vector
connecting their centers. The elastic-strain-energy density is greater on the surface of the
large sphere than on the surface of the smaller sphere. As we have seen in the previous
section, even a small difference in solubility can sometimes determine the relative
proportions of materials dissolved and removed on either side of a pressure solution
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contact. Thus, the greater strain energy on the surface of a large sphere (or pebble or grain)
can cause it to be penetrated by a sphere with a smaller radius of curvature. Another
example is an undulating pressure-solution contact. If the maximum effective principal
stress is much larger than the other effective principal stresses, a mineral-water interface
becomes unstable to perturbations in its geometry, and an undulating contact can develop
spontaneously (Gal et al., 1998). The instability is driven by the elastic strain-energy,
which is relatively high at the “valleys” of the perturbation, and low at its “ridges”.
Consequently, one obtains domains of elastic-energy difference along the undulating
contact, where a ridge with a relatively low elastic strain energy, is directly opposite a
depression with a relatively high elastic strain energy. These may be the “polarized
dissolution domains”, anticipated by Guzzetta (1984), that facilitate stylolite growth.

The amount of material removed at a pressure-solution contact, by dissolution at the
interfaces between the solid and the fluid, followed by diffusion out of the contact, is a
function of the normal stress (Rutter, 1983; Lehner and Bataille, 1985). The contribution
of the elastic strain energy to the total amount of material removed from the contact is
negligible. However, by the dissolution-shielding mechanism I have described, the elastic
strain energy can determine the proportion that each of the adjacent surfaces contributes to
that total amount. This effect can cause grain-boundary migration, and facilitate the
development of pitted pebbles and other pressure-solution phenomena such as stylolites. I
believe that it needs to be considered in any evaluation of deformation resulting from

pressure solution.
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APPENDIX

FULL SOLUTION OF DIFFUSION EQUATION

The full solution to the diffusion problem defined by equation (2) is

€ = Csp JBy +co(1—hb)+cyg, 2 h —hix
=( 0 b) 2—h0b by g ( (ly)—xSIIl(K ))e hi )

where,

2
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and A; are the roots of the equation
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CHAPTER 4

GROWTH AND PROPAGATION OF STYLOLITES

ABSTRACT

I propose that stylolites originate as a result of an elastic strain energy discontinuity
across a pressure solution interface. Assuming that the interface, which is approximately
normal to the maximum principal stress, has a low shear strength, a small perturbation will
become unstable and grow provided the local tangential stress it experiences is tensile.
This condition occurs, for example, if the regional stress field is extremely non-hydrostatic,
or at grain contacts, when the pore fluid pressure is low. Furthermore, I suggest that a
single perturbation can induce other perturbations, or °‘satellites’, at its periphery, that
grow, and in turn produce their own satellites. Thus, a perturbation does not only grow in
amplitude, but it also propagates along the seam.

To explore these ideas, I conducted computer simulations of stylolite nucleation and
growth. Starting with a single ‘bump’ at a pressure solution surface, I compute the stress
using a finite element code, and use the calculated chemical potential to determine the
differential dissolution at each point. The geometry of the interface is then changed
accordingly, and the steps repeated. The results support the mechanism described above,
and they also show that: a) the stylolite seam tapers off towards its ends, i.e. the height of
individual columns decreases, b) one effect of surface energy at the pressure solution
interface is to eliminate the shorter perturbation wavelengths, c) a more soluble rock can
penetrate a less soluble rock, provided the radius of curvature at the contact is small
enough, and d) when two adjacent rock units do not have the same stiffness, the compliant
one undergoes more dissolution, and the whole seam may sag. Finally, I suggest that
stylolites eventually stabilize because, as they grow, the normal stress falling on the
pressure solution interface decreases, until presumably, other ‘flatter’ pressure solution

seams are activated and take up the strain.
INTRODUCTION

Stylolites are geometrically irregular pressure solution interfaces in rock, where both
sides exhibit mutual interpenetration. They may appear as micro-stylolites at grain
contacts, or form stylolite seams that can propagate through rock for tens of meters or more

26
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(Bushinskiy, 1961; Dunnington, 1967). The individual indentations generally point in the
direction of maximum compressive stress, which usually (but not always) is approximately
normal to the seam (Stockdale, 1922; Heald, 1955). Pressure solution at stylolite seams
may result in strains as large as 50% that can, in places, greatly exceed crustal deformation
achieved by other means, such as folding and faulting (Alvarez et al., 1978).

Many rock types contain stylolites (Park and Schot, 1968), but it is in limestones and
sandstones where they are the most common and striking. In these rocks, stylolites can
have a tremendous impact on reservoir structure and fluid transport. The seams are usually
marked by an insoluble residue that often forms a permeability barrier. Also, the vast
amount of cement, produced by dissolution at pressure solution seams, causes porosity
loss and compartmentalization in the host reservoirs. Stylolites are indicative of the history
of their geological setting: Trurnit (1968) has pointed out that the large vertical strains
associated with stylolite formation, must have caused pore fluid migration on scales up to
that of whole tectonic basins. Stylolite columns are frequently used to infer the direction of
the maximum compressive stress, and for this reason, they are also frequently associated
with, and roughly perpendicular to, tension gashes (Bushinskiy, 1961; Elliot, 1973;
Rispoli, 1981; Fletcher and Pollard, 1981). Later, I will discuss this point further, in view
of the findings reported here.

Understanding how stylolites form, and why they evolve the unique geometries we
see, has long been a major challenge, as well as an issue of controversy. Some of the most
important ideas were put forward by Stockdale (1922), who recognized stylolites in
Indiana limestone as post-lithification pressure solution phenomena, Fletcher and Pollard
(1981) who showed that the stress and strain fields associated with stylolites, and their
manner of propagation, can be explained by modeling them as anticracks, and Dewers and
Ortoleva (1990), who used reaction/transport and mechanical modeling to explore
conditions that would favor localized versus pervasive pressure solution. However, no
one has yet successfully explained some of the most difficult questions that are raised by
the occurrence of stylolites: how can one reconcile their strikingly irregular geometry with
our knowledge of pressure solution physics? How do they form, and do they stabilize? In
this chapter, I attempt to answer some of these questions.

I suggest that stylolite growth is driven by elastic strain energy differences in rock on
either side of boundary layer that has a low shear strength. This boundary layer may be a
water film as proposed by Weyl (1959), a clay parting holding adsorbed water (Rutter,
1983), or a channel-island type boundary structure (Raj, 1982). I show that when the
maximum principal stress is normal to the boundary layer, a small perturbation at the
interface can grow, provided that the stress normal to the boundary is very high compared
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to the lateral stress. Furthermore, it is demonstrated that this perturbation can induce the
formation of ‘satellite’ perturbations adjacent to itself, and so propagate laterally as well as
increase in amplitude. I use computer-assisted simulation to study some representative

cases.
STYLOLITES: NUCLEATION AND PROPAGATION

In Chapter 2, I have shown that a mineral surface, undergoing pressure solution, can
become morphologically unstable under certain stress conditions. This instability is driven
by variations in the elastic strain energy, causing one part of the surface to become more
soluble than another. Let us now consider a pressure solution interface, and model its
elastic properties as those of a low shear-strength (high Poisson ratio) linear-elastic layer
separating two mineral surfaces. I introduce a small profile fluctuation in the boundary
layer, by having a small ‘bump’ in one material project into a depression in the other. If I
now apply uniaxial loading perpendicular to the layers, the mineral layers undergo lateral
Poisson dilation. The boundary material, however, cannot support a large shear stress,
and so its stress state is close to hydrostatic -- and equal in magnitude to the uniaxial load.
As a result the bump is compressed by the boundary material, while the depression is
dilated. Because these fluctuations are superposed on the generally extensional state of
strain, we find that the bump has a smaller net elastic energy, and so is less soluble, than
the depression it fits into. Under these conditions, the perturbation can grow, provided,
that the resultant change in surface energy, is no greater than the elastic energy difference
driving this growth. Notice also, that the elastic strain energy in the mineral above the
boundary layer, and adjacent to the bump, is lower than the one in the mineral directly
below (Figure 1a). This strain energy discontinuity will enable differential dissolution
across the interface, and consequently two ‘satellites’ will form, one on each side of the
bump, growing in the opposite sense to the parent bump. This process will repeat,
satellites growing and inducing their own satellites, and in this way, the perturbation not
only grows in amplitude over time, but it also propagates along the seam. Figure 1b shows
the strain energy field after two pairs of satellites have began to grow.

Let us now apply compressive stress at the horizontal boundaries, but still maintain the
vertical stress as the maximum principal stress. Compressive stresses will concentrate near
the top of the perturbation, and will counter-act the tensile stresses and strains that were
driving its growth. The net result is to lower the elastic strain energy above the
perturbation and increase it below. At a critical ratio of horizontal to vertical boundary
loads, the perturbation amplitude begins to decay (see Chapter 2)
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Figure 1: The elastic strain energy in the initial configuration (a), and after two time
steps (b). Note the oscillatory pattern of strain energy contrasts.
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COMPUTATIONAL METHOD AND ASSUMPTIONS

To examine the ideas outlined above, I ran computer simulations of stylolite nucleation
and growth. I begin with a two-dimensional linear-elastic system, consisting of two thick
parallel layers, that have the same elastic moduli, and are separated by a low shear-strength
thin layer. A small perturbation is introduced into this thin boundary, by letting a bump
from the bottom layer, project into a depression in the top layer, while maintaining the
boundary between them continuous. The stress field is then computed using a finite
element code, and I calculate the chemical potential on either side of the boundary using the
equation (Asaro and Tiller, 1972)

W(s) = Ho + Q(YK(s) + e — Oy )- 1)

Here s is the coordinate along the solid/fluid interface, p, is the intrinsic chemical
potential of the unstrained material, Q is the atomic volume, 7y is the interfacial energy
density, K the curvature of the surface, u, the elastic strain energy, and o©,, the stress
normal to the boundary. For stress regimes that allow the formation of pressure solution
contacts, this last term dominates the right-hand side of Equation (1), and therefore
determines, together with a transport factor, the total flux of material out of the contact
(Lehner and Bataille, 1985). Next, at each point along the boundary where ©,,, and
therefore i(s), exceed an assumed threshold, material is removed. The total amount of
material removed at these points is directly proportional to the local value ofc,,. To
determine the amount each one of the two adjacent surfaces contributes to this total, I
consider their solubility difference. If ©,, remains constant across the boundary, the
chemical potential difference between the two surfaces is

ou(s) = oy, + Q.(y&c(s) + 6ue) . 2

We saw, in Chapter 3, that this small solubility difference, can have a profound impact
on the dissolution, at a thin pressure solution contact. Although it has a negligible effect on
the total flux out of the contact, it can severely inhibit the dissolution of the less soluble
surface. In this model, the boundary is assumed to be thin enough, initially, so that only
the more-soluble surface dissolves, while the less-soluble one remains intact. As the
geometry evolves, the boundary may become locally thicker because of geometrical miss-
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matching. I assume that at these thicker parts of the boundary, du(s) can no longer couple
the two surfaces efficiently, and therefore equal amounts dissolve on each side. Note that
because the profile of each surface has changed, they may no longer match each other, and
some spaces can exist between them. These spaces tend to disappear after a few iterations,
because the normal stress there is lower than it is on other parts of the pressure solution

contact. The high normal stress sections will dissolve faster, and thus wipe out the spaces.
RESULTS

In this section I report the results of several simulation runs, and examine the effect of
varying some of the controlling parameters in the system. In all runs, the maximum
compressive stress is normal to the initially flat, pre-existing, boundary layer. The

Appendix contains a more detailed record of the simulation results.

Figure 2: Evolution of a stylolite seam: the stylolite grows in amplitude and spreads
laterally until it stabilizes. Tapering of stylolite seams has often been observed in the
field.
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General

In Figure 2, I show the evolving geometry of the model during a typical run. There is a
zero-effective-stress boundary condition on a vertical line bisecting the stylolite,
representing a vein, and a zero-lateral-displacement boundary condition at the left and right
edges. It is easy to observe the growth and propagation of the initial perturbation, in a
manner consistent with the ideas I have discussed previously. The perturbation grows in
height as expected, and it induces the formation of ‘satellites’ adjacent to it. This process
repeats, and the seam takes on a tapered appearance. Tapering of a stylolite at its ends is
indeed a commonly made field observation (Stockdale, 1922; Bushinskiy, 1961; Trurnit,
1968). Eventually, growth is arrested, and the stylolite stabilizes. When the zero-stress
boundary condition was removed, the stylolites decayed as expected.

Effect of Surface Energy

Introducing a finite surface energy into the simulation, resulted in a larger dominant
wavelength (Figure 3). This happens because the ratio of surface area to volume is larger
for the shorter wavelengths, and therefore in order to overcome the surface energy, they
generally requires a higher strain energy density than does a wider, longer wavelength
perturbation. For a more quantitative treatment of this issue, see Chapter 2. If the
perturbation wavelength is large relative to the boundary thickness, the dissolution is more
asymmetric than if it is small (Chapter 3). Therefore, the simulation with the surface
energy produced a larger, better formed stylolite.
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Figure 3: Perturbation growth after three time steps a) without surface energy, b) with
surface energy. Note elimination of shortest wavelengths

Effect of Solubility Difference

A difference in intrinsic solubility of the two layers, does not necessarily mean that the
more soluble rock will always undergo greater dissolution. This may be true in the average
sense, but locally, if a portion of the surface of the more soluble rock has a small radius of
curvature, the induced elastic strain energy difference may be sufficient to offset the
intrinsic solubility difference. Thus narrow projections of the more soluble rock may
penetrate into the less soluble rock (Figure 4). There are many examples of this
phenomenon, one of the most common of which, are examples of small pebbles
penetrating larger ones, despite being intrinsically more soluble (Stockdale, 1922;
Bushinskiy, 1961).

Figure 4: The less soluble material (top) is penetrated by thin projections of a more
soluble rock (bottom).
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Effect of Elastic Moduli Difference

If one material is more compliant, it will store more elastic strain energy, that (barring
other property differences) will make it more soluble than the stiffer layer. The elastic
energy difference is greatest away from the vertical free boundary bisecting the stylolite.
As aresult a ‘sag’ may develop in the seam (Figure 5). Examples of sagging stylolite
seams are given by Stockdale (1922).

Figure 5: The top layer is softer, and stores more elastic strain energy than the bottom
layer. The difference in energies is especially great away from the free boundary, and
the result is a sagging stylolite seam.

CONCLUSIONS

I propose that stylolite growth is driven by a discontinuity in the elastic strain energy
across the pressure solution interface. If the maximum compressive stress is normal to the
interface, as is often the case in pressure solution seams and grain contacts, a small
perturbation destabilizes and grows, provided the stresses at its tip are tensile. Thus, I
believe that development of stylolites is indicative of a very low minimum principal stress,
or in the case of grain contacts, a low pore fluid pressure. Moreover, I suggest that a
single perturbation can induce other perturbations, or ‘satellites’, at its periphery, that in
turn produce more satellites, and so on. Thus a single heterogeneity can induce the
stylolitization of the whole pressure solution seam, since it grows both in amplitude and it
propagates along the seam. To test this idea, I have conducted computer-assisted
simulations of stylolite nucleation and growth. The results support the nucleation and
growth mechanism I have suggested, and they also seem to replicate often observed
features, such as tapering and sagging in stylolite seams.
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I suggest that stylolites eventually stabilize because, as the stylolite seam grows, some
parts of the evolving interface are not favorably oriented to participate in pressure solution
(e.g., the sides of the stylolites), however they do take on some of the normal stress
burden. Consequently, the normal stress on the pressure solution interface drops, and

other, ‘flatter’, pressure solution seams are activated nearby to take up the strain.
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CHAPTER 5

A PHYSICAL MODEL FOR POROSITY REDUCTION IN SANDSTONES

ABSTRACT

The experimental elastic moduli-porosity trends for clean sandstones can be described
by the modified upper Hashin-Shtrikman (MUHS) bound. One geometrical (but not
necessarily geological) realization is: as porosity decreases, the number of the pores stays
the same and each pore shrinks while maintaining its shape. This concept of uniform
porosity reduction implies that permeability is proportional to the effective porosity
squared, and that formation factor is proportional to the inverse of the effective porosity.
The effective porosity here refers to the part of the pore-space that dominates fluid flow.
The proposed relations for permeability and formation factor agree well with the
experimentally observed values. These laws are different from the often used forms of the
Kozeny-Carman equation and Archie’s law, where permeability is proportional to the total
porosity cubed and formation factor is proportional to the inverse of the total porosity
squared, respectively. I suggest that the uniform porosity reduction concept be used in
consolidated rocks with porosities below 0.3. The transition from high-porosity
unconsolidated sands to consolidated sandstones can be described by the cementation
theory: the MUHS moduli-porosity curves connect with those predicted by the cementation
theory at the porosity of about 0.3. This scheme is not appropriate for modeling other
porosity reduction mechanisms such as glass bead sintering, because during sintering, the

pores do not maintain their shapes, rather they gradually evolve to rounder, stiffer pores.

INTRODUCTION

An outstanding rock physics problem is the use of acoustic methods to estimate
permeability in situ. One approach to this problem is by understanding the internal
structure of rock. Indeed, at the same porosity, different rock samples may have
completely different pore shapes. Resulting from this variability are permeability and
velocity scatters, often observed experimentally. Both acoustic velocity and permeability
are affected strongly by the structure of the pore-space in the rock. This provides a clear
incentive to explore the relations between acoustic velocities and permeability through the
pore-space geometry.

37
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When a suite of data points is studied, there is always an attempt to generalize this
experimental knowledge by deriving a functional dependence. Two principal approaches
serve this purpose: (a) statistical correlation, and (b) theoretical modeling. In the former
case, the result is a best-fit curve that is certainly usable for interpolation but lacks
generality. In the second case, an idealized system is constructed whose parameters match
those experimentally observed. One example of theoretical modeling is the class of self-
consistent models (e.g., Zimmerman, 1991), where rock is presented as a composite with,
e.g., elliptical inclusions. Usually one attempts to specify a spectrum of the void aspect
ratios that will fit the experimental observation best. As a result, an experimentally
observed trend is described analytically, rather than statistically. Such analytical
description, if intended to be the final product of modeling, is no more useful than the
statistical description. Still, there is an important advantage that theoretical modeling has
over statistical correlation.

Let us assume that if, for example, the elastic moduli of a suite of samples can be
matched by those of an idealized composite, then the pore-space geometry of real rocks
may correspond to that of the composite. This axiom allows us to go beyond analytically
matching experimental trends -- now we can use the inferred geometry to make estimates
of, e.g., permeability. In this chapter I try this proposed use of theoretical modeling on a
group of clean sandstones at high effective pressure. I find that an experimental elastic
moduli-porosity trend can be well matched by a modified upper Hashin-Shtrikman
(MUHS) bound. The corresponding idealized composite is a porous solid with an elastic
quartz frame. One realization of the MUHS trend is that as porosity decreases, the number
of pores stays the same, and each pore shrinks while maintaining its shape (Figure 1). The
relative volume reduction is the same for all pores. It is important to emphasize, that this
uniform porosity reduction scheme may not correspond to a realistic diagenetic process. I
employ this idealization as a modeling tool, that is useful only as long as it produces
experimentally supported results. By using this uniform porosity reduction scheme, I will
show, later in the chapter, that permeability is proportional to the effective porosity
squared, where effective porosity refers to the part of the pore space that dominates fluid

flow. If two clean sandstone samples have effective porosities ¢,; and ¢.,, and

permeabilities k; and k,, respectively, then k;/k; = (¢, /¢e2)2- This formula is different
from the often-used form of the Kozeny-Carman equation where permeability is
proportional to the total porosity cubed. The proposed porosity-permeability
transformation matches experimental data in Fontainebleau sandstone very well in the entire
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porosity range. The traditional Kozeny-Carman formula matches the Fontainebleau data
only at high porosity.

It also follows from the proposed porosity reduction scheme that the formation factor is
proportional to the inverse of the effective porosity. For two clean sandstone samples of

effective porosities ¢,y and ¢,;, and formation factors F, and F, respectively,
Fy/ K =6,/0.0. This formula is different from the often-used form of Archie's law,

where the formation factor in clean sandstones is proportional to the inverse of the total
porosity squared, and it provides a better match to the Fontainebleau data.

ELASTIC MODELS AND PORE-SPACE TOPOLOGY

Clean sandstones at high effective pressure have a distinct modulus-porosity trend.
Nur et al. (1991) show that this trend is approximately an arithmetic mean of the two end
members: the pure-mineral modulus at zero porosity, and zero modulus at critical porosity:

M= M,(1-0/9,). (1)

where M is an elastic modulus of a sandstone, M, is the appropriate modulus for quartz,

¢ is porosity, and ¢, is the critical porosity. The latter is the porosity above which sand
can exist only as a suspension. The ¢, value is about 0.4, which is close to the porosity of
arandom pack of identical spheres -- 0.36. Mukerji et al. (1995) incorporated the critical
porosity concept in the differential effective medium theory by taking the material at the
critical porosity as one of the constituents of a two-phase composite.

Equation (1) -- the modified Voigt bound -- represents the stiffest possible arrangement
of the two end members: pure quartz and unconsolidated sand. The physical realization of
this model is an elastically anisotropic arrangement of alternating columns of sand and
quartz. One can define an isotropic stiff arrangement of these end members by using the
upper Hashin-Shtrikman bound that is rescaled from the porosity interval between O and 1
to the interval between 0 and ¢, (Chen, 1992). A physical realization of this bound is a
Hashin type assemblage of spheres of different sizes that fill the whole space (Hashin,
1962). Each sphere consists of a smaller sand sphere embedded in a quartz shell.
Although the elastic moduli, as given by the two models, fit the experimental data well, the
inferred rock structure is unrealistic and thus cannot be used for estimating the transport
properties of the rock. My goal is to find a physical realization of the modified upper
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Hashin-Shtrikman bound such that the inferred permeability and formation factor are
consistent with experimental measurements.

*

Uniform Porosity Reduction

Figure 1. The porosity reduction scheme corresponding to the MUHS model.

MODIFIED UPPER HASHIN-SHTRIKMAN BOUND

To model the elasticity of dry sandstone, let us examine a Hashin type (Hashin, 1962)
assemblage of different-sized quartz spheres, ranging down to infinitesimal size, that fills
the whole space. Each quartz sphere contains a randomly oriented non-spherical pore
centered at its origin. All spheres have the same porosity, ¢, which is the porosity of the
sandstone, and all pores have the same shape. Because of the statistical uniformity of this
assemblage and the random orientation of the spheres, we can assign to each sphere an
effective bulk modulus K. Consequently, this is the bulk modulus of the entire
assemblage.

Let us assume that the assemblage is subject to hydrostatic loading, and consider a
single sphere in the assemblage. By regarding the remainder of the assemblage as an
effective medium, the loading on the sphere can be assumed hydrostatic. I reduce the
porosity of the sphere from ¢y to ¢ by letting the pore inside it shrink uniformly. The
shape of the pore stays the same, therefore the new sphere (with porosity ¢ and bulk
modulus K) is simply a downsized version of the original sphere (with porosity ¢ and
bulk modulus K;) embedded in a spherical quartz shell (Figure 2). The volumetric
fraction occupied by the original sphere (the soft end member) is ¢/¢q , and that occupied
by quartz mineral (the stiff end member) is 1—-¢/¢g . By repeating this process for every

sphere in the assemblage, I obtain the physical realization of the upper Hashin-Shtrikman
bound for the bulk modulus: spheres of the softer end member (the original sandstone)
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embedded in spheres of the stiff end member (quartz mineral). The bulk modulus of each
composite sphere, and thus of the assemblage is

_ o/ 09
K=K;+— +1_¢/¢0 , 2)
Ky—K 4
0 q Kq+§'uq

where K, and p, are the quartz bulk and shear moduli, respectively. The modified upper

Hashin-Shtrikman bound (with these end members) for the shear modulus is:

_ 0/
Rt a0 070K, 720 ©)

- 4
Ho uq Suq(Kq +§uq)

Formulas (2) and (3) are the original Hashin-Shtrikman upper-bound formulas scaled from
the [0,1] porosity interval to the [0,¢¢ ] interval. The theoretical curves predicted by these

formulas are compared to the bulk and shear moduli measured by Han (1986) on a set of
clean sandstones (Figure 3). In this example, the high-porosity end member chosen was
the highest porosity sandstone in the set with ¢¢ = 0.22, Ky = 16.4 GPa, and py = 15.7
GPa.

Clearly, the end member may be a different sample with porosity smaller than 0.22.
Thus equations (2) and (3) can be used to extrapolate the moduli-porosity trend to higher
(than the end member) porosities. These equations predict non-zero elastic moduli at
porosities higher than the critical porosity. The physical reason is that a consolidated-rock
model is not appropriate to describe unconsolidated granular sandstones near critical
porosity. The transition from the unconsolidated state to the consolidated state can be
described by the cementation theory (Dvorkin et al., 1994; Dvorkin and Nur, 1995). The
MUHS curves connect with the moduli-porosity curves predicted by the cementation theory
at porosity of about 0.3 (Figure 4). I conclude that the MUHS model can be used to
describe consolidated sandstone (porosities up to 0.3), and the cementation theory is
appropriate to describe high-porosity cemented unconsolidated sandstones.
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Original Sphere

Uniform Porosity Reduction

Quartz Shell

Embedded
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*

Figure 2. Shrinking pore inside a quartz sphere.
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The main result of this part is that the uniform porosity reduction concept allows one

to accurately predict the velocity-porosity relation in clean sandstones. To implement this

concept, I used a simplified representation of rock, where individual pores are isolated.

Next the same concept will be used to calculate permeability and formation factor.

However, in this case I examine cylindrical tubes instead of spheres to ensure fluid and

electric transport. This is another realization of the same concept that does not necessarily

have to be consistent with the first realization.

In the Appendix I show that for sintered glass beads, the moduli-porosity trend does

not follow the MUHS curve. This happens because, during sintering, the pores evolve to

rounder, stiffer shapes.
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Figure 3. Dry-rock elastic moduli for clean sandstone. Solid lines are predicted by the
modified upper Hashin-Shtrikman model. a. Bulk modulus. b. Shear modulus.
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Figure 4. Model predictions for consolidated and unconsolidated sandstones. The
cementation theory lines are for the case where spherical grains are uniformly coated
by diagenetic quartz cement. Open circles are the consolidated clean sandstone data.
Filled circles are high-porosity cemented sands from the Oseberg field (Strandenes,
1991).

PERMEABILITY MODEL AND DATA

Consider the experimental results for Fontainebleau sandstone (Bourbie and Zinsner,
1985). The authors measure the “trapped” porosity, which is the part of the pore space
from where a non-wetting fluid (air) cannot be displaced by a wetting fluid (toluene) during
imbibition by capillary rise and subsequent soaking. I assume that the trapped porosity is
poorly connected to the conductive part of the pore-space, through narrow throats, and
probably does not contribute significantly to fluid flow. Therefore, the bulk of fluid flow
takes place through the complement of the trapped porosity : the free porosity. Figure 5 is
a plot of the free versus total porosity in Fontainebleau sandstone (Bourbie and Zinsner,
1985). The data can be approximated by the function

0, = 1.3486(¢—0.021)! . (4)

Now let us consider a two-dimensional cross-section of rock, and assume that fluid
flow takes place in an identical set of straight uniform tubes that are perpendicular to this
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plane. These tubes represent the free porosity, which I shall from now on term the
“effective porosity”. The permeability is then proportional to the effective porosity squared
(Gueguen and Dienes, 1989) and, therefore, uniform porosity reduction means that

2

ky ¢e1]

— =, (5)
kO (%o

where kg, ki are the permeabilities of two samples, and ¢,,, ¢,; are the corresponding

effective porosities. The traditional formula that follows from the Kozeny-Carman

equation (with the total porosity) for constant grain size and tortuosity is
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Figure 5. Free porosity versus total porosity in Fontainebleau sandstone (after Bourbie
and Zinszner, 1985). Data points and the empirical fit.

To implement formulas (5) and (6) I choose the highest-porosity Fontainebleau sample
(porosity ¢ and permeability ky) and calculate permeability versus porosity. If total
porosity values are used in both formulas (Figure 6a), then only formula (6) matches the
data (but not at small porosities). However if the effective porosity is used (Figure 6b),

then formula (5), which results from the proposed porosity reduction model, approximates
the data well for all porosities.
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Figure 6. Permeability versus porosity: data points and theoretical predictions from

formulas (4) and (5). a. Using total porosity values. b. Using effective porosity
values.

FORMATION FACTOR

Let us assume that electrical transport is also dominated by the effective porosity. Then
by using the same transport model as in the previous section and letting the tubes shrink
uniformly, I obtain a linear relationship between the inverse of the formation factor and the
effective porosity (Gueguen and Dienes, 1989):

o _ %0

, (7
Fl ¢e1

where Fy, F; are the formation factors of two rock samples, and ¢,9, ¢, are the

corresponding effective porosities. An often used form of Archie's law for clean
sandstones is (Gueguen and Palciauskas, 1994)
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In Figure 7, I compare the formation factor data for Fontainebleau sandstone (Jacquin,

1964) with theoretical curves from formulas (7) and (8) calculated using total porosity. To

implement these formulas, I choose the highest-porosity Fontainebleau sample (porosity

¢ and formation factor F,) and calculate formation factor F versus porosity ¢;. The

effective porosity is calculated from the total porosity, using equation (4) .

If the total porosity is used, Formulas (7) and (8) give, respectively, lower and upper

bounds for the data. However, neither one provides a reasonable estimate. On the other

hand, if the effective porosity is used, formula (7), which results from the proposed

porosity reduction model, matches the data well, whereas formula (8) strongly

overestimates the data.
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Figure 7. Formation factor versus porosity: data points and theoretical predictions, as
given by formulas (7) and (8). a. Using total porosity. b. Using effective porosity.



Chapter 5. Porosity Reduction in Sandstones 47

CONCLUSIONS

Modulus-porosity trends in clean sandstones can be well matched by a modified upper
Hashin-Shtrikman bound, where the zero-porosity end member is quartz mineral and the
high-porosity end member is a consolidated sandstone. A porosity reduction model for
sandstones that is consistent with this observation is: as porosity decreases, the number of
the pores stays the same, and each pore shrinks while maintaining its shape; the relative
volume reduction is the same for all pores. At a porosity of about 0.3, the MUHS
modulus-porosity curve naturally connects with the moduli-porosity curves predicted by
the cementation theory for uniformly coated grains. The MUHS model can be used to
describe consolidated sandstone, whereas the cementation theory can be used to describe
unconsolidated high-porosity cemented sandstone. Based on the uniform porosity
reduction concept used in the MUHS model, I can relate porosity change to geometry
change in the sandstone. This geometry, in turn, leads us to estimating permeability and
formation factor from porosity in clean sandstones. Permeability is predicted to be
proportional to the porosity squared, and formation factor to the inverse of porosity. These
relations are different from the commonly used forms of the Kozeny-Carman equation and
Archie's law. However, by using the effective porosity instead of the total porosity, I find
that the proposed relations for permeability and formation factor are valid and give good
approximation to the experimentally observed values. The problem remains with
estimating the effective porosity from the total porosity, or accurately measuring the former
in situ.
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APPENDIX

COMPARING THE MUHS CURVES TO EXPERIMENTAL DATA FOR
SINTERED GLASS BEADS

Figure 8 gives bulk and shear moduli versus porosity for dry sintered glass beads
(Berge et al., 1993). The MUHS model predictions depart from the data. The reason is
that during sintering pores in glass do not maintain their shape. Rather they gradually
become rounder minimizing their specific surface area. This process acts to increase pore
stiffness. The result is that the data points lie above the MUHS curves.
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Figure 8. Elastic moduli versus porosity: data points are for sintered glass beads (Berge
et al, 1993), the solid lines are the MUHS curves. a. Bulk modulus. b. Shear
modulus.



CHAPTER 6

PERMEABILITY IN CLEAN AND SHALY SANDSTONES

ABSTRACT

I develop a model for single-phase fluid transport in clean and shaly sandstones. The
clean sandstone model consists of a three-dimensional network of pipes of two types. One
type carries flow, and represents the effective porosity, and the other, which does not carry
flow, represents the trapped porosity. I consider two end-member configurations: a mixed-
network, that contains both types, and a separate-network, where a pipe can connect only
with others of its type. In the mixed-network, the trapped porosity causes an increase in
tortuosity (and therefore lowers permeability), and in the separate network it does not. The
‘real-world’ analogy may be trapped porosity at pore-throats, versus bypassed porosity.
The theoretical formulas, calculated for these two end-members, give very good bounds on
the porosity-permeability relationship in Fontainebleau sandstone.

To estimate the permeability of shaly sandstones, I simply incorporate clay into the
clean sandstone models. A high permeability estimate is calculated by assuming that clay
uniformly coats each pipe in a separate-network model. A low permeability estimate is
calculated by assuming that clay blocks the conducting pipes of a mixed-network model.
These synthetic examples may be compared to grain-coating versus throat blocking clays in
shaly sandstones. The model, which requires porosity, clay content, and grain-size as
input, was tested on two independent data sets, containing seventy-two shaly sandstone
samples. The measured permeability almost always fell between the calculated upper and
lower estimates. I show that, for my data, the log-average of the high and low estimates is
always within an order of magnitude of the measured permeability. In fact, it predicts the
permeability better than the Timur equation, and the BP permeability predictor, both of
which require more input. Moreover, there is a clear correlation between measured
permeability and the high-permeability estimate, ky;,,. The permeabilities of sixty-eight of
the seventy two samples are within an order of magnitude of 0.14ky;,,. However, to
determine the usefulness of these formulas, let alone decide if one is significantly better
than another, it is necessary to test them on more data. Because the formulas I present are
derived from a physical model, there is a potential for increasing their accuracy, by refining
the model, or adapting it to specific types of rock.
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INTRODUCTION

An important objective of rock physics is to provide reliable estimates of permeability in
wells or zones where core measurements are not available. At this time there is no log
which measures permeability directly, therefore it must be estimated indirectly from logs of
other petrophysical parameters (for an overview, see Nelson, 1994). This is often very
difficult, because permeability is critically dependent on the internal microstructure of the
pore-space. Two rocks with the same porosity, clay content, and grain-size, may have
orders of magnitude difference in their permeabilities. Even Fontainebleau sandstone,
which is very clean and well-sorted, and is often considered an ‘ideal’ porous medium,
shows an order of magnitude permeability scatter for a given (low to intermediate)
porosity. For this reason, Fontainebleau sandstone is a good starting point for modeling,
and I begin by using a three-dimensional network model, to analyze its porosity-
permeability behavior. The analysis provides good upper and lower bounds on the
permeability of Fontainebleau, and is then extended to include sandstones with clay, and

provide high and low estimates of their permeability.
PERMEABILITY MODEL FOR CLEAN SANDSTONE

Observations show that pore-space in clean sandstones is connected even at very low
porosity values (Dullien, 1992). However, some of this porosity, the trapped porosity, is
very poorly connected, and does not contribute to fluid flow (see Chapter 5). The effective
porosity is the complement of the trapped porosity, and it is, by definition, well-connected.

In Chapter (5) I used the following empirical formula, to fit the experimental results by
Bourbie and Zinsner (1985), relating the effective to the total porosity, in Fontainebleau
sandstone:

¢, =1.3486(¢ —0.021)"“. (1)

Let us now consider a network of randomly oriented and distributed pipes of variable
length A ,and radii r. The average distance between axes of two pipes, (which I will later
assume to represent the grain size), is d and the pipes may intersect. The permeability of
this network is given by (Gueguen and Dienes, 1989)

n A

APy ) 2
2l @ @
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where f is the fraction of connected pipes, and .4 is the fourth-order moment of the
radius distribution. I now modify this simple network to account for free and trapped
porosities. Let us assume the pipes can be separated into two types: effective pipes that
allow free flow -- representing the effective porosity, and trapped pipes that do not allow
flow -- representing the trapped porosity. For simplicity, I also assume that they all have
the same length, although retaining variability is not going to affect the end result, and that
other parameters are uniform within each class. If these two classes of pipes are
homogeneously distributed within the same network, then Equation (2) can be re-written:

k=>—31 3)

where the subscript e refers to the effective porosity class of pipes, and ¢ is the total
porosity. Applying the concept of uniform porosity reduction (UPR) introduced in the
previous chapter, Equation (3) leads to the following relationship:

) C)

To eliminate the proportionality in Equation (4), we can use a reference sample from the
data set, whose parameters we denote with the subscript O, and obtain

d’* ¢3¢

The subscript e denotes that Equation (1) was applied to the parameter that precedes it. If,
on the other hand, the two classes of pipes remain separate, then Equation (2) leads to

T A%

=g (6)
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Again, if we apply UPR, we find that

ko< g2 ™

e *

The last relation is similar to the one derived for a one-dimensional permeability model in
the previous chapter, and can also be calibrated, using a reference sample, to give

d2 ¢2
k =k, — <. 8
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Figure 1: Equations (5) and (8) are compared to experimental data acquired by Bourbie and Zinsner
(1985), a. over the full porosity range, and b. for the low-porosity samples. The mixed-
network end-member provides a high bound for most of the data, and the separate-networks
end-member provides a low bound.

In Figures (la) and (1b), I compare Fontainebleau sandstone permeability data
(Bourbie and Zinsner, 1985), to Equations (5) and (8). The equations were calibrated
using the highest-porosity sample in the set (¢ =0.29833,k =4771.6mD). The mixed-
network end-member (Equation 5), provides a low bound for the data, and the separate-
networks end-member (Equation 8) provides an upper bound. An interpretation of these
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results, is that the trapped porosity can affect the permeability differently, depending on the
manner of its distribution in the pore-space. When it is incorporated into the conducting
network (e.g., as pore throats), it increases the tortuosity of the network, whereas if it
remains separate (e.g., bypassed porosity), the tortuosity is not affected. These two end-
member networks will be used in the next section as reference networks for modeling the

permeability of shaly sandstones.
PERMEABILITY MODEL FOR SHALY SANDSTONES

In this section, I model permeability in shaly sandstones, by incorporating clay into the
networks developed for clean sandstones. This model is obviously a very simplified one
since, in nature, sandstones with the same bulk properties may show great variability in
microstructure. Keeping this limitation in mind, the model will still prove useful and
instructive.

To obtain a high estimate for the permeability of a shaly sandstone, let us consider the
separate-networks end-member, and assume that clay uniformly coats the inside of all pipes
(Figure 2a). If the measured porosity and clay content are, respectively, ¢ and C, and the
micro-porosity of the clay is ¢,, then the macro-porosity of the network is simply ¢ —C9,.
The uniform clay coating reduces the pipe cross-sections proportionately, therefore,
Equation (1) can be used to calculate the fraction of the macro-porosity that carries
Poiseuille flow, i.e., the effective macro-porosity. Adjusting Equation (8), we find that,

dlo-co) T
Kyigh = ko{————(d)d 2 ¢C)e} +k.C. 9)
0Y0e

The low permeability estimate is obtained by putting the clay, in each effective pipe of
the mixed-network end-member, perpendicular to the flow (Figure 2b). Adjusting
Equation (5), we obtain

1 _ ¢+9C [(¢+¢CC)9—C+(¢+¢CCLC] (10)
ki (0+0.0)\ ky(d/dop.)’ k.
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A) B)

empty
pipe

clay

Figure 2: Representative effective pipes from the two end-member network configurations: a.
high permeability, and b. low permeability. The empty portion of the pipes allows
Poiseuille flow.

RESULTS

The model was tested on seventy-two sandstone samples from two different data sets.
The first data set (thirty-four samples) was compiled from the Catalog of Geological and
Engineering Properties for Sandstones (1987), and the second (thirty-eight samples), from
experimental results published by Klimentos and McCann (1990). The sandstones in these
data sets cover a very wide range of porosities, permeabilities, compositions, and
structures. Some are tight-gas sandstones, others may be glauconitic, carbonate-cemented,
micaceous, and so on. In Figure (3), I plot the calculated high and low estimates, versus
the measured permeability. In Figures (4a) and (4b), I plot the measured permeability, and
the high and low estimates, versus the porosity.
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Figure 3: High (a) and low (b) permeability estimates, versus measured permeabilities, for the
Rock Catalog data set (empty circles), and for the Klimentos and McCann data set (filled
circles). The data almost always lies between these estimates.
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Figure 4a: High and low estimates on the permeabilities of the sandstones from the Rock Catalog
data set. Almost all the measured permeabilities (crosses), are between the high (filled circles)
and low (open circles) permeability estimates.
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Figure 4b: High and low estimates on the permeabilities of the sandstones from the Klimentos
and McCann data set. Almost all measured permeabilities (crosses), are between the high
(filled circles) and low (open circles) permeability estimates.

As expected, almost every data point falls between its corresponding high and low
estimates. Furthermore, we can see that many characteristics of the real data cloud, are
mimicked to some by the calculated synthetic data clouds. This is very apparent in the high
permeability estimates, especially for the Klimentos and McCann data set (Figure 4b). In
fact, for all samples but one, the permeability is within an order of magnitude of 0.14k;,, .
This indicates that the model captures some aspects of permeability in real sandstones. To
test the usefulness of the model, I used the log-average of the high and low estimates, to
calculate the permeabilities of the samples in the Rock Catalog data base, and compared the
results to those obtained by using two well established permeability estimators: Timur’s
equation (Figure 5a), and the BP permeability predictor (Figure 5b). These methods need
additional input, (e.g., Timur’s equation requires the irreducible water saturation, and the
B.P. predictor requires grain-size distribution), none the less, the log average predicted the
permeabilities of the sandstones somewhat more accurately. The difference, however, is
small, and the equations should be compared over a much wider data base.
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Figure 5a: Permeabilities were calculated using the Timur equation (open circles), and
using the log-average of the high and low permeability estimates (Equations 9 and
10, respectively), for the same data set (Rock Catalog). These estimates are plotted
versus the measured permeabilities. The log-average gives a slightly better estimate.

10*

T TTTIY T TTTTm T™TTTITI T™T=TTTw T TrIr

1000 i

100

10

Permeability (mD)

AL LLaL

L do A ERLLS

Lol l 1Lt L. LLill Ll LLiLL

0.1 1 10 100 1000 10*
Estimated Permeability (mD)

Figure 5b: Permeabilities were calculated using the BP Predictor (open circles), and using the log-
average of the high and low permeability estimates (Equations 9 and 10, respectively), for the
same data set (Rock Catalog). These estimates are plotted versus the measured permeabilities.
Again, the log-average gives a slightly better estimate.
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CONCLUSIONS

The clean sandstone model I presented, reproduces the main features of the porosity-
permeability relation in Fontainebleau sandstone: the general trend, and the characteristic
scatter. The model suggests that this scatter results from an increasing variability in the
tortuosity, at intermediate and low porosities. As the total porosity decreases, an increasing
fraction becomes ‘trapped’, i.e., it does not allow flow. The porosity-permeability scatter
reflects the variable effect this trapped porosity has on the flow, depending on where it is
located (e.g., pore throats, versus by-passed porosity).

The analysis was then extended to include sandstones with clay. I used two end-
member configurations of the network model to provide high and low permeability
estimates. The model, which requires as input, porosity, clay content, and grain-size, was
tested on two independent data sets, containing seventy-two Shaly sandstone samples. The
measured permeability almost always fell between the calculated high and low estimates.
For the data analyzed, the log-average of the high and low estimates is always within an
order of magnitude of the measured permeability. In fact, it predicts the permeability better
than the Timur equation, and probably better than the BP permeability predictor, both of
which require more input. Moreover, there is a clear correlation between measured
permeability and the high-permeability estimate, kp;,,. The permeability of sixty-eight of
the seventy two samples are within an order of magnitude of 0.14ky;,, .

Because the formulas I present are derived from a physical model, there is a potential
for improving them, by refining the model, or adapting it to specific situations. For
example, the model consistently over-estimates the permeability of sandstones with a high
fraction of micro-porous chert. If, in this case, I add this micro-porosity to the clay micro-
porosity, the calculated effective porosity decreases, and the model yields a more realistic
estimate of the permeability
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CHAPTER 7

STRESSES IN ANISOTROPIC CYLINDERS

INTRODUCTION

Axisymmetrical stresses in an infinitely long hollow isotropic circular cylinder (plane
strain) quickly approach their asymptotic values as the external radius increases. This is
not the case if the cylinder is even slightly anisotropic -- asymptotic solutions (for an
infinitely large external radius) do not exist. I find the mechanical meaning of this disparity
by using formulas for radial and hoop stresses in a cylindrically anisotropic cylinder with
constant finite stresses at the boundaries: (a) The internal stresses increase infinitely with
increasing external radius, if the cylinder is stiffer in the radial direction than in the
tangential direction. (b) At any fixed point inside the cylinder, the stresses approach zero
as the outer radius increases, if the cylinder is stiffer in the tangential direction than in the
radial direction. I call the former effect “stress amplification”, and the latter one “stress
shielding”. Both effects are closely related to the decay of boundary conditions and, in
general, to the problem of applicability of Saint-Venant’s principle to anisotropic solids.

ANALYSIS

Stresses in an isotropic plane with a circular hole (plane strain) and uniform
axisymmetrical far-field stresses can be calculated as asymptotes of those in a thick-walled
cylinder with an external radius approaching infinity. However, such asymptotic values do
not exist if the cylinder has even slight cylindrical anisotropy. Apparently, this qualitative
observation is closely linked to the quantitative problem of decay of boundary conditions in
anisotropic elasticity (e.g., Knowles and Horgan, 1969; Horgan, 1974) and, more
generally, to the issue of applicability of Saint-Venant’s principle to anisotropic bodies.
Comprehensive reviews of the latter problem can be found in Horgan and Knowles (1983),
Horgan (1989), and Horgan and Simmonds (1994).

Consider an infinitely long linearly-elastic cylinder with cylindrical anisotropy. Both
the generator of the cylinder and the axis of anisotropy lie along the z-axis of a cylindrical
coordinate system (r,0,z). Normal stress component in the z direction is zero, the
pressure inside the cylinder is zero, and the outside pressure P is constant. Hooke's law
that is appropriate for this problem is (Lekhnitskii, 1963):
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moduli in the r and 6 directions, respectively, and v, and v, are the appropriate

Poisson's ratios. By using equations (1) together with the equations of equilibrium, one
can arrive at the following formulas for the radial ( o,,) and hoop ( 0,,) stresses:
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where a and b are the internal and external radii of the cylinder, respectively. These
formulas are similar to those given by Lekhnitskii (1963). In the isotropic case where

n =1, equation (2) reduces to the standard solution

Pb? a’ Pb* a*
= - (1--’7),006=—W(1+—2). (3)

" b’ -a® -a r

Equation (3) yields for b >> a:

a’ a
O'"=—P(1—r—2),0'90=—P(1+—2). (4)

By plotting the stresses as given by equation (3) versus the radial coordinate (Figure 1), it
is observed that stress distribution curves in a finite-thickness cylinder gradually converge
to the asymptotic (infinite external radius) solution as given by equation (4).

However, equations (2), where n=1, do not allow one to obtain an asymptotic
formula for an infinite-thickness cylinder. Physically, this result means that both radial and
hoop stress distributions in anisotropic cylinders do not converge to asymptotic curves as
the thickness of the cylinders increases. If n>1 (Figure 2) the influence of the stress at
the external boundary decays much faster than in the isotropic case. I call this effect stress



Chapter 7. Stresses in anisotropic cylinders 63

shielding: At any fixed point inside the cylinder, the stresses approach zero as the outer
radius increases. If n <1, we get the opposite effect -- the external boundary condition
affects the inside stresses stronger than it does in the isotropic case. This results in stress
concentrations near the inner radius that are larger than in the isotropic case. These stresses
will increase infinitely with the increasing outer radius (Figure 3). I call this effect stress
amplification.

Radial and hoop stresses in cylinders of fixed radii are plotted in Figure 4 for isotropic
and anisotropic cases. Again,if n> 1, stresses near the internal radius are smaller than in

the isotropic case (shielding). If n <1, these stresses are larger than in the isotropic case

(amplification).
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Figure 1: Radial (left) and hoop (right) stresses versus the radial coordinate in isotropic
cylinders of varying thickness. The stresses are normalized by the external pressure,
and the radial coordinate is normalized by the internal diameter.
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Figure 2: Radial (left) and hoop (right) stresses versus the radial coordinate in anisotropic
(n >1) cylinders of varying thickness. The stresses are normalized by the external
pressure, and the radial coordinate is normalized by the internal diameter.
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Figure 3: Radial (left) and hoop (right) stresses versus the radial coordinate in anisotropic
(n <1) cylinders of varying thickness. The stresses are normalized by the external
pressure, and the radial coordinate is normalized by the internal diameter.
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Figure 4: Radial (left) and hoop (right) stresses versus the radial coordinate in
anisotropic cylinders of constant radius and varying parameter 7. The stresses are
normalized by the external pressure, and the radial coordinate is normalized by the
internal diameter.

Both the stress shielding and the stress amplification effects can be clearly demonstrated
on a simple mechanical system (Figure 5, left). This axisymmetrical system includes
identical radial springs with stiffness E_ (per unit length). The radial springs are connected
by two concentric hoops of tangential springs of stiffness E,. The radius of the external
hoop is b and the radius of the internal hoop is a . The central angle between two adjacent
radial springs is 6. A compressive radial force P is acting in the radial direction at every
node of the external ring (Figure 5, right).

% ST

Figure 5: A simple spring model of an anisotropic ring consisting of radial springs of
stiffness E, and two hoops of tangential springs of stiffness E,. The force balance

at nodes A and B is used to calculate the stresses in all components of the model.
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By considering force balance at two nodes, A and B (Figure 5, right), we find that

1 . 1
% _g+nsinbl-q) = % _ . ,gnga-g), ()
o, sin@ Op

where o, is the force in the radial springs, o} and o, are the forces in the external and
internal rings, respectively, n = E, /E, ,and q = a/b.

Consider an extreme case b>>a. If n<<1 then from equations (5) o, >> cr:, and
0, >> 0,. Therefore we have stress amplification near the center of the system. If
n>>1, equations (5) yield o, >> 0, and o, >> 0.. In this case we have stresses near

the center of the system shielded by the stiff external hoop.
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APPENDIX

Simulation Results

Simulation 1
The rock on both sides of the interface is assumed to have the same solubility and elastic

moduli. The surface energy density is ¥ =0.5J/ m?.

Simulation 2
The rock on both sides of the interface is assumed to have the same solubility and elastic
moduli. The surface energy density is zero.

Simulation 3

The rock on both sides of the interface is assumed to have the same elastic moduli. The

lighter rock is slightly less soluble. The surface energy density is ¥ =0.5J/ m?,

Simulation 1
The rock on both sides of the interface is assumed to have the same solubility. The lighter

rock is more compressible. The surface energy density is y =0.5J/ m?.
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Simulation 1: Rock on both sides has the same properties
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Simulation 2: Zero surface energy
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Simulation 3: Different solubilities
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Simulation 4: Different elastic moduli
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