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ABSTRACT

We investigate the effects of permeability, frequency, and fluid distribution on
the viscoelastic behavior of rock. The viscoelastic response of rock to seismic waves
depends on the relative motion of pore fluid with respect to the solid phase. Fluid
motion depends, in part, on the internal wave-induced pore pressure distribution
that relates to the pore microstructure of rock, and the scales of saturation. We
consider wave-induced squirt fluid flow at two scales: (1) local microscopic flow at
the smallest scale of saturation heterogeneity (e.g., within a single pore) and (2)
macroscopic flow at a larger scale of fluid-saturated and dry patches. We explore the
circumstances under which each of these mechanisms prevails. We examine such flows
under the conditions of uniform confining (bulk) compression and obtain the effective
dynamic bulk modulus of rock. The solutions are formulated in terms of generalized
frequencies that depend on frequency, saturation, fluid and gas properties; and on the
macroscopic properties of rock such as permeability, porosity, and dry bulk modulus.
The study includes the whole range of saturation and frequency; therefore, we provide
the missing link between the low-frequency limit (Gassmann’s formula) and the high
frequency limit given by Mavko and Jizba. Further, we compare our model with Biot’s
theory and introduce a geometrical factor whose numeric value gives an indication
to whether the local fluid squirt or the global (squirt and/or Biot’s) mechanisms
dominate the viscoelastic properties of porous materials.

The important results of our theoretical modeling are: (1) a hysteresis of seismic
velocity versus saturation due to variations in fluid distributions, and (2) two peaks
of acoustic wave attenuation - one at low frequency (due to the global squirt flow)
and another at higher frequency (due to the local flow). Both theoretical results are

well supported by experimental data.



To little nabil, the child within,
and to big Ameera

who took well care of little nabil.



Acknéwledgements vi
ACKNOWLEDGEMENTS

It is all over now, and it all goes to those sincere people who gave me their best
wishes, support, and knowledge.

My grandfather Isam-Aldeen, who died lonely in Turky, back in 1983. “Where is
Nabil?”, he said, “I wish he came ... please ... give him some of my money ... he
needs it in America ...” he said in his last moments. Well, Isam, it is your final best
wishes that make my real treasure.

The research presented in this dissertation is a result of enormous discussions
with Amos Nur, my principal advisor, Gary Mavko, and Jack Dvorkin. I wéuld like
to thank Amos for his endless patience, care, and sincerity. This work has benefited
greatly from Gary Mavko and his outstanding publications.

I want to give my appreciation to Dr. A. Fuda at SAUDI ARAMCO, and Dr. J.
Dvorkin at Stanford. This work would simply be impossible without their support.
“An intersection of space and time gathered us,” Jack once explained to me. I am so
grateful to J. Dvorkin for his advice, friendship, experience, and kindness. I benefited
greatly from the long hours we spent together discussing the research.

I am grateful to my professors M. Zoback, J. Harris, N. Sleep, P. Segal, and S.
Graham, for their support during my study. Tapan Mukerji is a quiet, nice, and
sincere person from whose friendship I benefited a great deal. I would like to thank
Margaret Muir for always being there.

I have been blessed with my wife Ameera and my three children, Nouruddin,
Hashim, and Zainalabdeen whose kindness and love made this doctorate possible.
“Do you like yourself, Dad?”, a six-year old Nouruddin once asked after seeing me
under stress one day. “Yes Nouruddin. Why do you ask?” “Because you look sad
today!” “And who taught you all this wisdom, son? It is just the blessing ...” I
wondered to myself.

I will never forget the day of one of my qualifying exams ... I was running uncon-

sciously to my car, when Nouruddin and Hashim insisted on following me up to the



Acknowledgements vii

sidewalk. “Why do not you get into the house???,” I shouted unconsciously at them.
They did not obey me. Standing shoulder to shoulder, like two little roses in a wild
field, they started waving their tiny hands together until I left the scene. It is just as
if they knew it all ... “Dad is up to something serious ... we wish you well, Dad.”

I had ups and downs. My wife Ameera was always with me. I found the hope
in her heart whenever I lost it. “To me, You are the best ... in the whole world ...
no matter what,” she said once in a cold long night. My last resort, an elegant, wise
woman, whom I always find when I need most.

This work was sponsored by SAUDI ARAMCO. I am indebted to the Vice Pres-
ident Mr. Mahmood Abdulbaqi, and the Geophysics Manager Mr. John Ward for
their support and 'encouragement. Also, I want to thank S. Al-Ghamdi from Dhahran
and Mr. T. Bishop from Houston for their support during my study. Also, I would
like to thank my friend Saleh Al-Maglouth for his nice companionship during his
two-year study at Stanford.

Finally, I want to thank that great woman ... Safia ... the daughter of Isam-Aldeen

.. my mother ... for sacrificing her life to her little children ...



Table of contents : viii

TABLE OF CONTENTS

GENERAL INTRODUCTION 1
CHAPTER 1
Relating P-Wave Attenuation to Permeability 7
Abstract 8
Introduction 8
Theoretical Model 10
Pore Wall Displacements 10
Pore Fluid Dynamics 12
Numerical Analysis 16
Comparison With Data 23
Conclusions 29
Acknowledgments 29
References 30
Appendix A- The Peak of Stored Energy 31
Work done by the actual set of tractions 33
Work done by the artificial set of tractions 35
Appendix B- Stresses and Strains 38
Appendix C - Permeability Calculations 39
CHAPTER 2
Relating P-Wave Attenuation to Permeability Anisotropy 40
Abstract 41
Introduction 41
Theoretical Model 43
Numerical Analysis 46
Rock With Isotropic Permeability 46
Effects of the drop length on attenuation 47

Effects of frequency 47



Table of contents

Rock With Anisotropic Permeability

Effects of frequency

Effects of length of the fluid drop
Comparison With Data

Effect of frequency on permeability-attenuation relation

Permeabilities along two perpendicular directions
Conclusions
References

CHAPTER 3

Seismic Signatures of Reservoir Transport Properties
Abstract
Introduction
Basic Assumptions and Definitions

Microscopic Squirt Flow

Macroscopic Squirt Flow

Microscopic Versus Macroscopic Squirt
Theoretical Model

Uniform Saturation

Porosity estimates

Compressibility estimates '

Relations between «, f, £, and the bulk properties

Case a ~0

Casea ~ 1

Case a ~ o0

Limits imposed on

Hydrodynamics

Average fluid pressure

Non-Uniform Saturation

Average fluid pressure

51
51
60
63
63
67
69
70

71
72
73
76
76
79

81

83
83
83
84
88
89
90
90
91
93
94
97
98

ix



Table of contents

Approximated relations between local and
global characteristic frequencies
Dynamic Bulk Modulus and Applications
Uniform Fluid Distribution
Non-Uniform Fluid Distribution
Heterogeneous fluid distribution due to saturation
processes
Fully saturated patches
Partially saturated patches
Effects of medium heterogeneity at global scale
Seismic Wave Velocities
Comparison With Other Models
Low/High frequency limits
O’Connell and Budiansky
The Biot’s theory, Biot
1) Effects of permeability and fluid distribution
2) Critical frequencies
Comparison With Data
Uniform Fluid Distribution
Effects of confining pressure
Eﬁ‘ec.ts of saturation hysteresis
A qualitative relation between permeability and
the scale of the microscopic heterogeneity
Non-Uniform Fluid Distribution
Effects of frequency
Conclusions
Acknowledgements
Appendix A: Volumetric Strains

Pore wall displacements

99

100
100
101

101
101
102
102
103
104
104
104
105
105
106
107
107
107
115

116
121
121
126
126
127
128



Table of contents

Appendix B: Gas Pressure
Appendix C: Fluid Pressure in a Needle-Like Conduit
Appendix D: Fluid Pressure in a Two-Dimensional Conduit
Appendix E: Fluid Pressure in a Penny-Shaped Crack
Appendix F: A Unified Expression for Fluid Pressure

for Unidirectional Flow
Appendix G: Effects of Radial Flow on Fluid Pressure
Appendix H: Fluid Pressure in a Macroscopic Conduit
Appendix I: Bulk Modulus Calculations
Appendix J: Limits Imposed on S

References

129
133
135
137

139
141
143
145
147
148

x1



List of tables « . xii
LIST OF TABLES

Table 1.1. Permeabilities and the corresponding attenuations of ultrasonic

frequencies (N. Lucet, 1989). 27

Table 1.2. Permeabilities and the corresponding attenuations of sonic

frequencies (N. Lucet, 1989). 28

Table 2.1. The calculated pore radii and attenuation £og @, for

ultrasonic frequencies. 65

Table 2.2. The calculated pore radii and attenuation fog Q;* for

sonic frequencies. 65

Table 3.1. Rock and fluid properties used in plotting Figure 3.12. 120



List of figures

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

LIST OF FIGURES

I.1. Some examples of using seismic wave methods in oil-related

industries.

1.2. Wave propagation through a porous material causes two main
components of solid/fluid relative displacements: (a) Biot’s and

(b) the squirt mechanisms.

1.1. An element with a single cylindrical pore embedded in an

isotropic homogeneous block.

1.2. The plot of Log@~! versus Logf for § = 0°, 45°, and 90°.

1.3. Log@~?! versus Loga, for: § = 0°, 30°, 60°, and 90°.

1.4. Log@™! versus saturation for § = 0°, 45°, and 90°.

1.5. The effects of frequency, pore’s radius, and saturation

on the Q~1-§ relation.

1.6. LogQ~! versus Logk for three frequencies:

f = 5 kHz, 50 kHz, and .5 MHz.

1.7. Permeability (mD) versus attenuation coefficient.

xiil

11

17

18

20

21

22

24



List of figures

Fig. 1.8. The measured and the estimated Q! versus permeability

for Fontainebleau sandstone. Data obtained from Lucet (1989).

Fig. 1.9. (a) Stresses and displacements in the actual element;

(b) an artificial element containing a single pore.

Fig. 1.10. (a) The actual system forces acting on the artificial element;

(b) artificial system showing the components of fluid pressure.

Fig. 1.11. (a) Artificial tractions acting on the actual system;

(b) the normal component of stress.

Fig. 2.1. (a) A sample with permeabilities k; and k, (k; > k) along
two perpendicular directions.

(1b) Two perpendicular pores with radii r; and r,.
Fig. 2.2. Log Q! versus the length of the fluid drop L.

Fig. 2.3. Log Q! versus L using the properties of crude oil

as a saturating fluid.
Fig. 2.4. Log Q" versus fog k for three frequencies.

Fig. 2.5. £og Q! versus incident angle 6 for a rock with permeabilities

100 mD and 1000 mD along two perpendicular directions.

A

xiv

26

32

34

36

45

48

49

50

53



List of figures
Fig. 2.6. Log @~! versus incident angle é for a rock with permeabilities
.1 mD and 10 mD along two perpendicular directions.

Fig. 2.7. Log Q™! versus k and w for a rock with isotropic permeability.

Fig. 2.8. Log Q! versus 6 and w for a rock with permeabilities 100 mD

and 1000 mD along two perpendicular directions.

Fig. 2.9. Log Q! versus é and w for a rock with permeabilities

k = .1 mD and 10 mD along two perpendicular directions.

Fig. 2.10. The attenuation ratio versus £og k., and fog w for

a water-saturated rock.

Fig. 2.11. The attenuation ratio versus ko, and w for L = 4 mm.

Fig. 2.12. The measured and the calculated Q;’ versus permeability

for Fontainebleau sandstones. Data are from Lucet (1989).

Fig. 2.13. The attenuation ratio R versus saturation for Meule Vert

sandstone sample. The data are from Tarif (1986).

Fig. 3.1. (a) An accumulation of microscopic units; (b) local fluid flow

within a microscopic unit; and (c) a network of few microscopic units.

54

56

57

59

61

62

66

68

78

Xv



List of figures

Fig. 3.2. (a) Non-uniformly saturated rock; (b) a macroscopic unit; and

(c) a macroscopic conduit.

Fig. 3.3. Graphic images for the relations between the geometrical

factor o and the microscopic structure of the rocks.

Fig. 3.4. Measured bulk modulus for dry, water-saturated, and benzene

saturated Berea sandstone versus differential pressure (Coyner, 1977).

Fig. 3.5. Measured compressional and shear wave velocities V, and V,
for water-saturated Berea sandstone versus differential

pressure (Coyner, 1977).

Fig. 3.6. Measured compressional and shear wave velocities V, and V,
for benzene-saturated Berea sandstone versus differential

pressure (Coyner, 1977).

Fig. 3.7. Calculated bulk attenuation versus confining pressure

for water and benzene-saturated Berea sandstone.

Fig. 3.8. Calculated P-wave attenuation versus confining pressure

for water and benzene-saturated Berea sandstone.

Fig. 3.9. Calculated S-wave attenuation versus confining pressure

for water and benzene-saturated Berea sandstone.

xvi

80

92

109

110

111

112

113

114



List of figures

Fig. 3.10. Bulk modulus calculated from measured V,, and V, versus
saturation for drainage and imbibition in a tight gas sandstone

(Knight and Nolen-Hoeksema, 1990).

Fig. 3.11. Conduit saturation versus overall saturation for drainage
and imbibition. These functions were used in calculating bulk

modulus shown in Figure 3.10.

Fig. 3.12. The scale of the microscopic heterogeneity ¢ versus permeability

for different rock samples.

Fig. 3.13. Attenuation Q%' as calculated from measured Q3! and Q3

versus frequency for Harz quartzite (Paffenholz and Burkhardt, 1989).

Fig. 3.14. Attenuation of extensional waves Qg versus frequency for

Harz quartzite (Paffenholz and Burkhardt, 1989).

Fig. 3.15. Shear wave attenuation Q3' versus frequency for Harz

quartzite (Paffenholz and Burkhardt, 1989).

Fig. 3.16 (a) A microscopic unit composed of partially saturated stiff pore
and a conduit; (b) a needle-like conduit; (c) a two-dimensional

conduit; and (d) a penny-shaped conduit.

Xvii

117

118

119

123

124

125

132



Small Scale

GENERAL INTRODUCTION

Seismic wave propagation in rocks is the most important tool in oil exploration. It
is a direct, cheap, fast, and environmently clean method that can be used in detecting
geological features that might be of a great interest for oil and gas prospects. Common
examples of using seismic wave methods in oil-related industries are (Figure 1):

1) Large scale measurements at low frequencies (10-100 Hz). This includes estimating
interval velocity, reflection amplitude, and AVO analysis for a layered medium.

2) Intermediate scale with frequency range of 10-20 kHz. Examples of this are cross-
borehole measurements, VSP, and sonic log analysis.

3) Small scale measurements using ultrasonic frequencies (0.1-1.0 MHz). This includes
velocity and aftenuation measurements on core samples in the laboratory.

It is crucial, therefore, to fully understand the effects of frequency, rock properties
(permeability, porosity, compressibility, density, tortuosity, mineralogy, sorting and
clay content), and fluid properties (viscosity, density, compressibility) on seismic wave

properties (compressional and shear wave velocities and attenuation).

Large Scale >

R

Fig. I.1. Some examples of using seismic wave methods in oil-related industries.
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Wave propagation through a porous material causes two main components of
solid/fluid relative displacements (Figure 2). The first one occurs when both solid
and fluid move in the same direction which is the mechanism used in Biot’s theory.
The second type of the solid/fluid motion occurs when the solid and fluid phases move
in perpendicular directions which is the squirt flow mechanism.

The objective of this dissertation is to relate seismic wave properties to rock and
fluid properties. We achieve our goals by introducing theoretical models based on the
squirt flow mechanism.

The velocities of seismic waves are related to the stiffness of the material that
depends strongly on the wave-induced fluid pressure. The induced fluid pressure, in
turn, depends on the rock and fluid properties. This allows us to relate velocities to
rock and fluid properties. Attenuation of seismic waves depends on energy dissipation
due to wave-induced fluid flow within pore space. Fluid flow, in turn, depends mainly
on frequency, permeability, and fluid viscosity. This allows us to relate attenuation
to rock and fluid properties.

The previous discussion shows the importance of wave-induced fluid flow and
pressure on velocities and attenuation of seismic waves in rocks. When fluid is not
allowed to flow, then rock behaves as an elastic material and the attenuation is rela-
tively small. This corresponds to the following two extreme limits. First is the relaxed
mode (small frequency and/or large permeability) in which fluid flows freely between
pore space, and fluid pressure is small and uniform throughout the rock. Therefore,
velocity is small, which corresponds to Gassmann’s low frequency limit. Second, is
the unrelaxed mode at which fluid flow is prevented due to high induced pressure
(high frequency and/or small permeability). In this case, the material is stiffer and
consequently the velocity is relatively large. This corresponds to the high frequency

limit given by Mavko and Jizba (1991).
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Fig. 1.2. Wave propagation through a porous material causes two main components
of solid/fluid relative displacements: (a) Biot’s and (b) the squirt mechanisms.
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At some intermediate frequencies or permeabilities, the fluid relaxation time from
relaxed to unrelaxed modes is comparable to the seismic period, resulting in relatively
large attenuation. This transition causes an effective viscoelastic behavior of the
porous material.

Our model is based on the fact that viscoelastic behavior and rock and fluid
properties are intimately linked with the process of fluid motion in the rock.

The examination of the squirt-flow mechanism in the literature has been restricted
to the pore scale, requiring the consideration of specific pore or grain-contact ge-
ometries (e.g., Palmer and Traviolia, 1980; Murphy et al., 1986; Mavko and Nur,
1979; O’Connell and Budiansky 1977). This approach limits practical usage of the
squirt-flow theories as they are not directly connected to measurable macroscopic
rock properties (permeability, porosity, etc.). On the other hand, models relating
bulk properties to seismic velocities ignore the viscoelastic effects (i.e., frequency de-
pendence). These include the high frequency limit in which fluid is unrelaxed (Mavko
and Jizba, 1991; Mavko and Nolen-Hoeksema, 1993), and the low frequency limit in
which fluid is in the equilibrium state (Gassmann, 1951).

In this research, we relate rock and fluid properties, saturation, fluid distribution
and frequency to the viscoelastic behavior of rock. One of the main goals is to relate,
using the squirt-flow mechanism, the seismic wave velocities and attenuation of rock
to measurable parameters such as permeability, porosity, dry bulk modulus and fluid
and gas properties.

The dissertation is divided into three chapters. In the first chapter, we relate P-
wave attenuation to permeability by assuming that pore space consists of needle-like
pores filled with viscous fluid and embedded in an infinite isotropic elastic medium.
We calculate both attenuation and permeability as functions of the direction of wave
propagation measured from the main axis of the pore. Wefind that in the case when a
plane P-wave propagates perpendicular to the poré axis, attenuation is always higher
than when a wave propagates parallel to the pore axis. By changing permeability

and varying the radius of the pore, we find that the permeability-attenuation relation



General Introduction 5

is characterized by a peak that shifts toward lower permeabilities as frequency de-
creases. Therefore, the attenuation of a low-frequency wave decreases with increasing
permeability.

In the second chapter, we pursue the same theoretical approach and relate P-
wave attenuation to permeability anisotropy. We investigate the effects of frequency,
saturation, and magnitudes of permeabilities along two perpendicular directions on
the permeability-attenuation relation. We find that the attenuation of a low fre-
quency P-wave is minimum when the wave propagates perpendicular to the direction
of maximum permeability.

The third chapter represents our main model in which we explore the effects of
permeability, frequency, and fluid distribution on the viscoelastic behavior of rock.
We consider wave-induced squirt fluid flow at two scales: (1) local microscopic flow
at the smallest scale of saturation heterogeneity (e.g., within a single pore) and (2)
macroscopic flow at a larger scale of fluid-saturated and dry patches. We explore
the circumstances under which each of these mechanisms prevails. The solutions are
formulated in terms of generalized frequencies that depend on frequency, saturation,
fluid and gas properties; and on the macroscopic properties of rock such as permeabil-
ity, porosity, and dry bulk modulus. The study includes the whole range of saturation
and frequency; therefore, we provide the missing link between the low-frequency limit
(Gassmann’s formula) and the high frequency limit given by Mavko and Jizba. Fur-
ther, we compare our model with Biot’s theory and introduce a geometrical factor
whose numeric value gives an indication to whether the local fluid squirt or the global
(squirt and/or Biot’s) mechanisms dominate the viscoelastic properties of porous ma-
terials.

The important results of our theoretical modeling are: (1) a hysteresis of seismic
velocity versus saturation due to variations in fluid distributions, and (2) two peaks
of acoustic wave attenuation - one at low frequency (due to the global squirt flow)

and another at higher frequency (due to the local flow). Both theoretical results are

well supported by experimental data.
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ABSTRACT

To relate P-wave attenuation to permeability, we examine a three-dimensional (3-
D) theoretical model of a cylindrical pore filled with viscous fluid and embedded in
an infinite isotropic elastic medium. We calculate both attenuation and permeability
as functions of the direction of wave propagation. Attenuation estimates are based
on the squirt flow mechanism; permeability is calculated using the Kozeny-Carman
relation.

We find that in the case when a plane P-wave propagates perpendicular to the
pore orientation (Q2g00), attenuation is always higher than when a wave propagates
parallel to this orientation (Qz2g). The ratio of these two attenuation values %‘;ﬁ-"f
increases with an increasing pore radius and decreasing frequency and saturatior:.go

By changing permeability, varying the radius of the pore, we find that the permeability-
attenuation relation is characterized by a peak that shifts toward lower permeabilities
as frequency decreases. Therefore, the attenuation of a low-frequency wave decreases

with increasing permeability. We observe similar trend on relations between attenu-

ation and permeability experimentally obtained on sandstone samples.

INTRODUCTION

The objective of this research is to theoretically detect the direction of maximum
permeability using the attenuation dependence on the direction of wave propagation.
Our model is based on the fact that both permeability and attenuation are intimately
linked with the process of fluid motion in the rock. It is possible, therefore, to calculate
attenuation and permeability separately and to find a relationship between them.

Most of the measurement, processing, and interpretation effort in the industry
and in academia has concentrated on velocity rather than attenuation data, since the
velocity measurements are more reliable and efficient. Recently, Gibson and Toksoz

(1990) predicted the permeability variation with direction in fractured rocks from

seismic velocity anisotropy.
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We believe that attenuation rather than velocity is strongly correlated with perme-
ability. Our argument is based on the experimental data of Han (1987) and Klimentos
and McCann (1990) obtained on sandstone samples. Han’s experiments resulted in

the following empirical relation for P-wave velocity V,;:
V, (km/s) = 5.59 — 6.93¢ — 2.18C,

where ¢ is porosity and C is volumetric clay content. Klimentos and McCann show

that for the attenuation coefficient a
a(dB/em) = —0.132 + 3.15¢ + 24.1C.

These formulas indicate that unlike velocity, attenuation is strongly affected by clay
content. On the other hand, Klimentos and McCann show strong systematic relation
between clay content and permeability. We conclude that attenuation is the key factor
in determining permeability.

To calculate the attenuation, we model the dynamic reaction of pore fluid to wave
excitation depending on the angle of incidence of the wave measured from the pore’s
main axis. Our attenuation estimates are based on the squirt flow model that has
been shown to be an important attenuation mechanism in rocks (Mavko and Nur,
1979; Murphy et al., 1986). We calculate the inverse of the attenuation quality factor
Q™! as the ratio of viscous energy dissipation during one period to the peak of stored
energy in the rock. The permeability of the rock is also calculated with respect to
the direction of wave propagation, using the Kozeny-Carman relation (Berryman and
Blair, 1987).

We find that in the case when a wave propagates perpendicular to the preferred
pore orientation (Q;.gq ), attenuation is always higher than when a wave propagates
parallel to this orientation (Qj;2q.). The ratio of these two attenuation values —%lﬁf

increases with the increase of the pore’s radius and the decrease of frequency and

saturation.
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THEORETICAL MODEL

We model a rock as an accumulation of identical typical cells with parallel pores
inside, and assume that pores can be represented as infinitely long straight circular
pipes partly filled with viscous fluid. The porosity of such a rock is introduced as
the ratio of the pore cross-sectional area to the cross-sectional area of the cell. The
saturation S is introduced as the ratio between the length occupied by the fluid L
to the length of the pore H: S = L/H (Figure 1.1). The pore’s length H is a “free
parameter” and has to be determined by matching theoretical to experimental data.

Fluid flow inside pores is induced by the radial displacements of the walls due to
P-wave excitation. This viscous flow results in seismic energy dissipation and P-wave
attenuation.

The attenuation is represented as the inverse of the quality factor Q! defined as:

AW

Q= ()

where AW is the energy loss per cycle of a harmonic excitation, and W is the elastic

energy stored at maximum stress and strain (Mavko and Nur, 1979).

Pore Wall Displacements

We consider a rock containing N parallel identical pores, and estimate the defor-
mation of a pore by employing the solution for the interaction between a P-wave and
an infinitely long cylindrical borehole of radius ap embedded in an elastic medium
(White, 1983). As a plane P-wave propagates along the z — z plane at an angle § to
the z axis that is directed along the main axis of the pore (Figure 1.1), the spatial
average radial displacement of the walls U, is:

U, = g‘:(l - 2%’: cos? 6)M,

»
where V, is shear-wave velocity, V, is compressional-wave velocity, p is Lame’s con-

stant, and M is normal stress in the direction of wave propagation. Here we assume
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that
zcosé

M = M=%,

where Mp is the stress amplitude and w is the angular frequency w = 2xf. This
solution is employed in calculating the dynamics of pore fluid due to pore wall motion.
Assuming that the wavelength is much larger than the characteristic length of a

saturated interval inside the pore, we can neglect the variation of U, with the z

coordinate.

Fig. 1.1. An element with a single cylindrical pore of radius ao and length H
embedded in an isotropic homogeneous block.

i BORRATAR a ey
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This assumption allows us to simplify the previous formula and to obtain the
following expression for U,:

| %4 :
U, = -;-—:—(1 - 2?’—2 cos? §) Moe'™". (2)

14
This expression doesn’t account for the effects of fluid pressure on the walls of the
pore. To consider this effect, equation (2) is modified by substituting the expression
[Moe'* — P;(z,t)], where P;(2,t) is pore fluid pressure, instead of Moe™*. We intro-
duced this expression using the idea of differential pressure commonly employed in
rock physics (Mavko and Nur, 1979).

Assuming that Py is a harmonic function of time: Py(z,t) = Py(z)e™, we arrive
at the following formula for the average radial displacements of the walls:

U, = ;’—;(1 - 2%’; cos? 6)[Mo — Po(z))e™.

This formula gives the following expression for the radius of the pore as a function of

.t and z:
a = ag + aps[Mp — Po(z)]e‘“", (3)
where
1 V:
s = Z(l - 2T/;2- cos® 6). (4)

Pore Fluid Dynamics

We examine the axisymmetrical flow of incompressible viscous pore fluid, induced
by the radial displacement of the pore’s walls in the cylindrical coordinate system
(r,2) (Figure 1.1). We assume that the flow is laminar and parallel to the z direction.

The equation of viscous fluid flow is:

Ou oP; &u  10u
P =" Tzt 15 (5)

where u is fluid velocity in the z-direction; 7 is the dynamic viscosity of the fluid.
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Consider a saturated interval inside the pore between z = 0 and z = L that is
surrounded by high compressibility gas at a given pressure. Counting the pressure

from this level, we arrive at the boundary conditions
Py(0,2) = Py(L,1) = 0. (6)

The no-slip boundary condition for velocity u(z,r,t) is u(z,a,t) = 0. Given small

deformation of the pore (a = ay), we obtain the following equation:
u(z, ao, t) = 0. (7)

Assuming that pressure and velocity of the fluid are harmonically time-dependent
(P; = Poe™*, u = uge™?), and substituting these expressions into equation (5), we
obtain the relation:

vy 10y 1w 1 0F,

2 - = ®)

5 T T or v ° pv 8z’
where v = 5/p.
The solution of ordinary differential equation (8) with boundary condition equa-

- tion (7) is:
1 aPo [ Jo(AT) _
iwp 0z "Jo(Aap)

where Jp is Bessel’s function of the first kind, and A = {/—iw/v. Taking the derivative

1, | (9)

uo(r,z) =

of equation (9) with respect to r and using the relation Jy(Ar) = —J;(Ar) we arrive

at:

dug 1 Py AJy(Ar) 10
or = iwp 0z Jo(Aap)’

The continuity equation for axisymmetrical incompressible flow in the cylindrical

coordinate system (r,z) is:

r Or 0z~

where  is the radial velocity component of fluid, which satisfies the boundary condi-

0, (11)

tions:
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Multiplying equation (11) by r and integrating in the r direction from 0 to a, we
obtain the equation:
/ —(rv) dr = —/ r—dr (12)
The left-hand side of equation (12) is:

. Oa
ot
~ iwads[My — Py(z)] e

rify =

The right-hand side of equation (12) is:
3u0

_ei“n —rdr
0 az
1 62P0 ao Qo Jl(Aao) iwt

iwp 0%z [— - XJO(Aao)

Equating both sides and dropping e*“! we arrive at

62P
o~ B°Po+ Mo = 0, (13)
where
2 22 ps
ﬂ = 1-— 2.]1!/\00!
(Aao)Jo(Aag)

The general solution of equation (13) is:
Po = Cleﬁ‘ + Cge'ﬁ’ + Mo,

where C; and C, are constants. Applying boundary conditions (6), we get:

1 ﬁz —ﬂz e—ﬁL - 1 -ﬁz
Po= M°[—517'_-TL' — gL et (14)
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The derivative from equation (14) with respect to z yields the following relation:

0P, 1 Bz 4 =Bz e Pl -1 —Bz
el ﬂMO[_eT te Y e J (15)

The viscous energy dissipation AW is defined as:

AW=—//||8 I? do dt,

where T is the period, v is the fluid volume.

The dissipation in N identical pores is:
AWy = dt/ do/ dz/ ||a—||2rdr
where 6 is the azimuth angle.

The peak of stored energy in a cell containing N parallel pores is (Appendix A):
VM?

W= —= 2sin? 6Re(M"Py)
T . A A -
+§NHagMos (sin®6 + r cos®§ + —.n;)Re(Mo - Py).

Now using equation (1) we arrive at the following formula for Q~1:

B2 Jo dt o™ db Jy dz J5© ||5E12 r dr

Q™ > )
YMi _ 2 NLa2sin? 6Re(M*P;) + 7N HaiMos(sin? 6 + 2 cos? § + 2)Re(M, — By)

1
g
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NUMERICAL ANALYSIS

In this section, we relate attenuation to permeability by keeping fluid properties
(water) and porosity (10%) unchanged, and concentrating on the effects of pore size,

frequency, saturation, and incident angle.

The incident angle é is measured from the pore’s main axis. We define the ratio

of attenuations (Rs) as the ratio of the attenuation at é = 90° to the attenuation at

Q—l
6=10° Ra:-ahfml

=00

In Figure 1.2, we plot log Q="' versus log f for constant radius ap = 10xm and for a
full saturation with the pore length H = L = 4mm. The curves are plotted for 6 = 0°,
45°, and 90°. For lower frequencies, the attenuation increases with frequency and
depends strongly on the incident angle. At higher frequencies, attenuation decreases

with frequency and the dependence on the incident angle becomes negligible.

Figure 1.3 shows log @~ versus log ag at a constant frequency f = 5 kHz and with
L = H = 4 mm. The curves are plotted for: § = 0°, 30°, 60°, and 90°. Attenuation
increases with the increasing radius and depends weakly on the incident angle at
small radii. At larger radii, attenuation decreases with the increasing radius and its

dependence on the incident angle becomes stronger.
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Fig. 1.2. The plot of LogQ~! versus Logf; the curves are plotted for § = 0°, 45°,
and 90°.
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Fig. 1.3. LogQ™! is plotted versus Logao; the curves are plotted for: § = 0°, 30°, 60°,
and 90°.
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The peaks in attenuations shown in Figures 1.2 and 1.3 can be explained in terms
of the variation of the shear stresses and pressure within the fluid as frequency or
the pore radius change. At small frequencies (or large radii) the fluid is relaxed and
the shear stress within the fluid is small, which results in small attenuation. As
frequency increases (or the radius decreases), the shear stress increases resulting in
high attenuation. At very high frequencies (or small radii) the fluid is unrelaxed with
high pressure, reducing the displacement of the pore’s wall and re'sulting in a small
attenuation.

Figure 1.4 shows log Q! versus saturation at a constant frequency f = 1 MHz,
ao = 5um, and H =10 mm. The curves are plotted for é = 0°, 45°, and 90°.

The peaks in attenuation shown in Figure 1.4 can be explained as follows: when
the saturation is small (length of fluid drop is small), the shear stress within the
fluid is small, resulting in small attenuation. As saturation increases, the shear stress
increases sharply and attenuation reaches its peak. Further increase in saturation
builds up fluid pressure that results in the unrelaxed mode of fluid motion leading to
a smooth decrease in attenuation.

Figure 1.5 shows the effects of frequency, the pore radius, and saturation on the
Q™! - 6 relation. The solid curve is plotted for full saturation using the following
parameters: ap = 1 pum, f = 200 kHz, and H = L = 10 mm. R; in this case is
approximately 1.5.

Each of the other curves is obtained by changing only one of the above-mentioned
parameters. The dotted line shows the effects of the increasing pore radius (up to
100 um). In this case R; increases to about 5. Rj for the dashed curve is about 9.1,
which is due to the decrease of frequency down to 200 Hz. The dash-dot curve shows
the effects of saturation decreasing down to 20%. R; in this case is about 8.4.

Figure 1.5 shows that for all cases, the attenuation increases with an increasing
incident angle. Increasing frequency or saturation and the decreasing pore radius

result in decreasing Rs.
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Fig. 1.4. LogQ™! versus saturation; the curves are plotted for 6 = 0°, 45°, and 90°.
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Fig. 1.5. The effects of frequency, pore’s radius, and saturation on the Q~!-6 relation.
The parameters are shown on the curves.
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Figure 1.6 shows Q! versus permeability for full saturation with the pore length
H = 1 mm. The curves are plotted for three frequencies: f = 5 kHz, 50 kHz, and
.5 MHz. The effect of frequency on the attenuation-permeability relation manifests
itself in shifting the peak towards lower permeabilities as frequency decreases. In this
example, we change permeability while keeping porosity constant by increasing the

number of pores and reducing their radii (Appendix C).
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Fig. 1.6. LogQ~! versus Logk. The curves are plotted for three frequencies:
f = 5 kHz, 50 kHz, and .5 MHz.
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COMPARISON WITH DATA

A rock with isotropic permeability can be represented by pores having all possible
orientations. Each pore contributes to the overall attenuation depending on the angle
between its main axis and the direction of the propagation. We approximate the
attenuation analysis by representing such a rock with a typical cell having pores that
are aligned at a certain angle with respect to the direction of wave propagation. This
approximation is reasonable within our analysis since the goal of this paper is to
elucidate general trends rather than to find exact values of attenuation as a function
of different parameters. Indeed, our analysis has shown that varying the orientation
of a pore changes the magnitude of attenuation but does not change qualitative trends
in the attenuation behavior.

We model the experimental results of Klimentos and McCann (1990) where an
attenuation-permeability relation was obtained on 17 water-saturated sandstone sam-
ples of a constant porosity of approximately 15%. Klimentos and McCann have con-
cluded that attenuation systematically decreases with increasing permeability.

In modeling this experiment, we used f = 1 MHz and saturation § = 1. We
have also assumed that § = 90° and L = H = .6 mm. We changed the permeability
while keeping the porosity unchanged, by increasing the number of pores and de-
creasing their radii, so that the total pore volume was constant (Appendix C). The
elastic properties of the rock frame were chosen from the experimental P-velocity
measurements.

Figure 1.7 shows the attenuation coefficient normalized by its maximum theoreti-
cal value versus permeability according to our model (solid line), and the experimental
data (asterisks) normalized by its maximum experimental value. Our theoretical re-

sults show that attenuation has a sharp peak at low permeability.
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Fig. 1.7. Permeability versus attenuation coefficient o normalized according to its
maximum value for f=1MHz, pore’s radius ap = 55um, and constant porosity

¢ = 15%. Asterisks represent experimental data from Klimentos and

McCann (1990) for 17 sandstone samples of a constant porosity about 15%

and frequency 1 MHz. Data was normalized according to its maximum value.
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To investigate the effects of frequency on the permeability-attenuation relation,
we analyze the experimental results of Lucet (1989) where attenuation has been mea-
sured as a function of the applied external stress for five samples of Fontainebleau
sandstones (99% quartz) with known permeabilities and porosities. The attenua-
tion of the extensional waves Q_! was measured for sonic frequencies f =~ 1.14 - 6.5
kHz. The attenuation of compressional waves Q; ! was also measured at ultrasonic
frequencies f =.5 MHz.

We calculated Q;l for the sonic frequency range from the available data of Q!

by using the following relation (Winkler, 1979):
(1=-»)(1-2) Q7 = (1+v) Q7" ~ (2 -») 77,

where v is the Poisson ratio, and Q7! is the attenuation of the shear waves.

Tables 1.1 and 1.2 summarize the experimental data for both ultrasonic and sonic
frequencies when the applied external stress is 5 MPa.

Figure 1.8 shows the experimental values of @;* for both sonic (S) and ultrasonic
(U) frequencies versus permeability. In both cases, we Normalized the attenuation
data by the maximum attenuation values separately for sonic and ultrasonic frequen-
cies.

The results show that attenuation decreases with increasing permeability for low-
frequency waves. For ultrasonic frequencies, the attenuation is small for both low and

high permeabilities and reaches a maximum at £ = 1 d.
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Fig. 1.8. The measured and the estimated ;' (normalized by their maximum)
versus permeability for five samples of Fontainebleau sandstones. Letters
U and S denote the experimental data for ultrasonic and sonic frequencies
respectively. Data obtained from Lucet (1989).
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Table 1.1. Permeabilities and the corresponding attenuations of ultrasonic frequencies
when the applied external stress is 5 MPa (Lucet, 1989).

Sample # @ % | #(mD) | Log Q| Q; Momaize
A6 |67 |6 |-1881 | 0342
F60 | 136|670 |-1.460 | 0.902
F5 14.8 | 720 -1.415 1.000
F64 | 1551080 |-1.462 | 0.897
A8 |22 | 2800 | -2.065 | 0.224
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Table 1.2. Permeabilities and the corresponding attenuations of sonic frequencies
when the applied external stress is 5 MPa (Lucet, 1989).

Sample #| v | Log, Qs} Log ] 1og' oQ,f Q;(Nonmlized)
A6 25| -1.04 | -0903 | -0.689 | 1.000
F60 05] -1.70 | -1.362 | -1.311 | 0.239
F5 08| -1.67 | -1.362 | -1.281 | 0.256
F64 05| -1.62 | -1.255 | -1.202 | 0.307
A8 A8 | -151 | -1.380 | -1.262 | 0.290
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CONCLUSIONS

We relate P-wave attenuation to permeability by considering a theoretical model
of a cylindrical pore filled with viscous fluid, embedded in an infinite isotropic elas-
tic medium. Attenuation estimates are based on the squirt flow mechanism. Both
attenuation and permeability are calculated as functions of the direction of wave
propagation. The permeability-attenuation relation is characterized by a peak which
shifts toward lower permeabilities as frequency decreases. A similar trend can be ob-
served in some experimental relations between attenuation and permeability obtained
on sandstone samples. In the case when a plane P-wave propagates perpendicular
to the pore orientation, attenuation is always higher than when a wave propagates
parallel to this orientation. The ratio of these two attenuation values increases with

increasing pore radius and decreasing frequency or saturation.
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Appendix A- the Peak of Stored Energy

To find the peak of stored energy in the rock during one period, we divide the rock
into small rectangular elements each containing N pores. We assume that a cross-
section of an element perpendicular to pore orientation is a square of dimensions
(d x d). The length of the element in the direction parallel to the pore is H (Figure
1.9a). As the wave propagates through the element, the resulting displacement of its

surfaces along the direction of propagation U is
U = Uo e““’”"”.

If the phase difference ¢ between the applied stress and the resulting strain is

small (small attenuation), then the peak stored energy is (Mavko and Nur, 1979):

W o~ -;- / /EMoUods

Re-;- //Z: M*Uds,

14

where the integration is performed on the external surface }_ of the element; M"* is
the complex conjugate of M; and Re denotes the real part.

To calculate this integral, we use the reciprocity theorem (Mavko and Nur, 1979),
and introduce an artificial element with N identical pores, such that the external
stress M* is applied to both the external and internal surfaces (Figure 1.9b). We
assume that strain is uniform everywhere in the element and equal to %’E along the
direction of wave propagation, where /i = A + 2u, A and p are Lame’s constants. In
this case, the artificial element deforms as if there are no pores inside.

The actual stress M due to a wave propagating in the (z—z) plane at an angle 6 to
the z axis results in external and internal displacements. We assume that the external
surface displacement U takes place only along the direction of wave propagation and

that the pore’s displacement U, is radial in the (z — y) plane (Figure 1.9a).
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(a) Actual system (b) Artificial system

Fig. 1.9. (a) Stresses and displacements in the actual element; (b) an artificial element
containing a single pore.
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Work done by the actual set of tractions

The work done by the actual set of tractions through the displacements of the
artificial element is divided into two parts. The first part represents the work W
done by the external stress M of the actual element through the strain of the artificial

element Mm—' integrated over the total volume:
Vv

Mt
) dv = 7M02,
m

Wo-':LM

where V is the element’s volume.

The second part represents the work W, done by the fluid pressure P; in the
actual element through the strain of the artificial element 2 integrated over the
pore’s surface which is occupied by the fluid.

From Figure 1.10a, the component of fluid pressure along the z-direction is Py cos ¥,
where 6 is the azimuth. We do not consider the normal strain along the z-direction
' since it is parallel to the pore’s axis (Figure 1.10b). The displacement along the z-
direction due to strain €, is 2¢;,a0 cosf. Thus the work AW,, done on a small area

da dz of the pore’s surface in the artificial system is

AW, = =—2P;cosb’c, apdadz

= —2P; cosb’c; aldb dz,

where da = ao df.

Therefore, the total work done by fluid pressure through the displacements of the

pore’s surface in the artificial system is:

W, = LL dz /_: AW.,df

1r 2B
= —;,h-af,LM' sin’ § Py,

where Py is the average fluid pressure.
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(a) (b)

Fig. 1.10. (a) The actual system forces acting on the artificial element; (b) artificial
system showing the components of fluid pressure and the strain in the z-direction.
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Work done by the artificial set of tractions

The work done by the artificial set of tractions through the displacements of the
actual element is divided into two parts.

The first part represents the work W, done by the stress M* in the artificial
element through the actual radial displacement of the pore’s wall U, integrated over
the total pore’s surface area (Figure 1.11a). Only one component of the stress, which
is normal to the surface of the pore, will contribute to W,,.

Let 7(6) represent a unit vector that is perpendicular to the pore’s surface at
a point on the pore’s surface which is rotated by an angle  from the z-axis. By
transforming the stresses to a new coordinate system z’, y’, and z, which is rotated

by an angle 6 about the z-axis, we have (Figure 1.11b):
0}, = 0%y = 05, cos’ 0 + o), sin’ 0.

Stresses o, and 0., will not contribute to the work since they act perpendicular to
the pore’s wall displacement. Thus the work done on a small surface element da dz

whose normal makes an angle § with the z-axis is
—0,(0)U,dadz.

The total work done on the pore’s surface area is:

Wa = -2/:/_% 02(6) U, da dz
=z

—2HU,ag /;(a;, cos’ 0 + o7, sin” 0) dO

. A A "
= —mHa?Mys(sin®6 + = cos® § + 7.n-)(Mo - Py),

where s is defined by equation (4).
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Fig. 1.11. (a) Artificial tractions acting on the actual system; (b) the normal
component of stress along the direction of the wall’s displacement.

36



Chapter 1 — Relating P-Wave Attenuation to Permeability .... 37

The second part represents the work W done by the stress M* in the artificial
element through the actual external surface displacement along the direction of the

wave propagation, integrated over the external surface of the element:

/ /2 M*Uds.

Applying the reciprocity theorem we have:

/ /’2 M*Uds = Wo + Wy — W,y

The peak of stored energy due to a single pore is:
SRe [ [ M-Uds = 2 RelWo + W — Wy
2 € )3 =3 0 a1 2

We can write this equation as W = W, + W, where W, = W,; — W_,. The term
W represents the stored energy of the element that includes the pore, while W} is the

stored energy for the total volume without a pore, and W, is the increment in the

stored energy due to the pore.

For N parallel pores, we modify W, by W,y = NW.. Substituting the expressions

for Wy, W.n into the previous formula, we find the peak of stored energy in a cell

containing N pores as:

2 -~
V;:? - 2lmNLaf, sin® 6Re(M" B;)

+-1£NHa§Mos (sin? 6 + -:%cos2 o+ %)Re(Mo - By).

w

2
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Appendix B- Stresses and Strains

In this appendix we give the expressions for the stresses and strains in the rock
due to P-wave propagation.

We consider a plane P-wave propagating along the I direction at an angle 6 to
the pore’s main axis in the rectangular coordinate system (i, 2, 3). The stresses and

the strains in this coordinate system are:

'-w(t_zcooé) M
011=M=Mo€ 73 ’ an-ﬁ-?,

M

02 = 033 = Aepy = A—,
m
012 =013 =03 =0,
€22 = €33 = €12 = €13 = €23 = ),

where 1 = A + 2u, A and p are Lame’s constants.
The normal and shear stresses 0., oy, 0., 0z;, 0., and 0,, in the (z,y,z2)

coordinate system with the z-axis parallel to the pore’s main axis are (White, 1983):

v

iw(t— 2gosd
Ozc = (sin®é + — cos® §) Moe™ ="V,

v i t_:cos&
Moe™ =%,

”vu—l_u

2cos é

sin® §) Moeiw(t- 3 ),

v
0:: = (cos’ 6 + 1
Ozz = 0115in6cosé — o;sinécoséd
v ) Moem(:—l-el—,, ‘),

1—v

= cosésiné(l -

Oy = 04y =0,

where v is Poisson’s ratio.
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The normal and shear strains €., €y, €., €, €y and €, are:
€rr = €1 sin2 6,

€y =0,
€2, = €17 €082 6,
€z: = €11 5in d cos §,

€xy = €5 = 0.

Appendix C - Permeability Calculations

We vary the permeability while maintaining a constant porosity by considering N
small pores of radii ao; instead of one pore of a larger radius ay.

Equating pore space volumes we have:

i=N
=y dl,

=1

The porosity is
_T ::{v ag;
¢= — 4

The specific surface area s is
_ 27 E:':iv aoi
=—==—

If all pores are aligned along the z-direction, then the permeability in the z-direction

is:
7« (Tir af)°

k, = = .
84 (TN au)?
If all pores have the same radii, ag; = agy = - - - = agn, then

=-= Na'.
k,= 54 Nao,..
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ABSTRACT

In this paper we pursue a theoretical approach relating P-wave attenuation to per-
meability anisotropy. We examined a theoretical model of a three-dimensional cylin-
drical pore filled with viscous fluid, embedded in an infinite isotropic elastic medium.
Attenuation estimates were based on the squirt flow mechanism. Permeability was
calculated from the Kozeny-Carman formula. Permeability and attenuation were re-
lated to each other by independently calculating both of them as functions of the size
of the pores and their orientations. ‘

We investigated the effects of frequency, the length of a fluid drop, and the mag-
nitudes of permeabilities along two perpendicular directions on the permeability-
attenuation relation. We found that the attenuation of a low frequency P-wave is
minimum when the wave propagates perpendicular to the direction of maximum per-
meability.

The permeability-attenuation relation for a rock with isotropic permeability is
characterized by a peak which shifts towards lower permeabilities as frequency de-
creases. Therefore, the attenuation of a low-frequency wave decreases with increasing

permeability. Qur theoretical predictions are supported by experimental data.

INTRODUCTION

This paper presents a continuation of a theory developed by Akbar et al. (1993)
in order to relate P-wave attenuation to permeability anisotropy. Akbar et al. (1993)
modeled rock as an accumulation of identical typical cells with parallel pores inside.
It was assumed that pores can be modeled as straight circular pipes partly filled with
viscous fluid. The porosity of the rock was calculated as the ratio of the cross-sectional
area of the pores to the cross-sectional area of the cell (Figure 2.1). Fluid flow inside
pores is induced by the radial displacements of the walls due to P-wave excitation
(the local flow mechanism). Permeability in a given direction was calculated by the

Kozeny-Carman formula (e.g., Berryman and Blair, 1987). The specific dissipation
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function Q-1 was found as the ratio of viscous energy dissipation during one period
to the maximum stored energy in the representative cell (Mavko and Nur, 1979).
Permeability and attenuation were related to each other by independently calculating
both of them as functions of the size of the pores and their orientations (Akbar et al.,
1993).

In the case of isotropic permeability, we study the effect of changing the pore’s
radius on attenuation. Accordingly, a rock with isotropic permeability can be repre-
sented by one typical pore oriented perpendicular to the direction of wave propagation
(for this orientation, the deformation of the pore’s walls is maximum under wave ex-
citation). In this case, an attenuation-permeability relation has a maximum which
shifts towards lower permeabilities as frequency decreases. This theoretical result is
supported by the experimental data obtained on five samples of Fontainebleau sand-
stone (99% quartz) with different porosities and permeabilities at ultrasonic (w = .5
MHz) and sonic (w ~ 1.14kHz-6.5kHz) frequencies (Lucet, 1990; and Akbar et al.,
1993). For a low-frequency P-wave, maximum attenuation occurs at very low perme-
abilities. Therefore, for cases of practical interest, the attenuation of a low-frequency
wave decreases systematically with increasing permeability. This result has many
practical applications in oil explorations. Another vital application is to locate, using
attenuation measurements, regions with low permeabilities.

We extend this theoretical approach to the case where a rock is characterized
by two permeabilities kypqz and kmin (Kmaz > kmin) in two perpendicular directions.
The attenuation is computed as a function of the incident angle measured from the
direction of the minimum permeability. We explore the influence of such factors as:
frequency, the length of the fluid drop, and the magnitudes of permeability along the
two perpendicular directions on the attenuation versus incident angle relation. We
show that frequency plays an important role in relating permeability anisotropy to
attenuation anisotropy. For rocks with small fractures and porosities, the attenuation
of seismic-sonic frequency P-waves (1 - 10 kHz) is minimum when the waves propagate

perpendicular to the direction of maximum permeability. Since all field measurements
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are conducted in a low-frequency range, this result provides us with a direct tool for
seismic data interpretation, including VSP and cross-borehole measurements.

The situation changes as frequency increases: in the ultrasonic frequency range,
the attenuation of a P-wave propagating perpendicular to the direction of maximum
permeability is maximum when the magnitudes of permeabilities along each direction
are small; and is minimum when the permeabilities are large. This result does not
necessarily hold for high porosity rocks having long pores saturated with high viscosity
fluid. Determining the direction of maximum attenuation for a wave with ultrasonic
frequency requires a rigorous consideration depending on specific values of crucial

parameters.

THEORETICAL MODEL

In the previous chapter (Akbar et al., 1993), we related attenuation to perme-
ability for the case when all pores were aligned in the same direction (permeability
perpendicular to this direction was assumed to be zero). Here we extend our model
to represent a rock with given nonzero permeabilities in two perpendicular directions.

Attenuation in a rock with permeabilities along two perpendicular directions can
be modeled using two representative sets of perpendicular pores (two-dimensional
case). Each set contains circular pores of the same radius. As will be shown below,
the number and the radius of pores in each direction depend on the permeability along
that given direction. Pores’ radii are related to permeability by the Kozeny-Carman
equation. The representative pore’s length H and the length of the microscopic fluid
drop L are related through the saturation S by L = HS. In our calculations, we
assume that L, S, and H are the same along both perpendicular directions. The
representative pore’s length H is a “free parameter” and has to be determined by
matching theoretical to experimental data.

It is necessary to emphasize that we examine a two-dimensional model of a rock

with pores oriented only in the z and z directions. We introduce the following two-

dimensional porosities (Biot, 1956): one (¢.) in the plane perpendicular to the z

B T S R S ]
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direction and another (4.) in the perpendicular to the z direction (Figure 2.1a). The
porosity ¢, (or ¢.) is defined as the ratio of the cross-sectional area of the pore aligned
in the = (or the z) direction to the total cross-sectional area perpendicular to the z
(or the z) direction. The total porosity ¢ is defined as the ratio of pores’ volume to
the total volume of the rock. We assume that ¢, = ¢, and that the bulk porosity of

the rock is the sum of these two porosities:
. ¢
¢ = ¢ + ¢.; ¢x=¢z=§- (1)

Considering a sample of the rock with unit cross-sectional areas perpendicular to

the z and z directions, we have the following formulas for porosities ¢, and ¢,:
¢t = WriNz; ¢z = WT:Nz’ (2)

where r; and r, are pore radii in the z and z directions, and N, and N, are the
number of pores through unit cross-sectional areas in these directions respectively
(Figure 2.1a).

As we mentioned earlier, permeabilities may be different along the = and z di-
rections. We compute these permeabilities (k, and k,) by using the Kozeny-Carman

equation for circular pores (Akbar et al., 1993):

T 4
k, = -
k. = 3 reNg; 8 riN 3)

Equations (1)-(3) lead to the following system of four equations for four unknown

parameters r;, r;, Ny and N,:

rZN. =—¢—S- 1‘2N=—¢- riN. =8—kt r4N=-8—k-z-
TET ot T o’ T o T

Solving this system we find:

16k, ¢
=V "7 V N = 32 397k’ N”327rk,' (4)
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(a) (b)

Fig. 2.1. (a) A rock sample with permeabilities &k, and k, (k; > k.) along two
perpendicular directions. (b) Two perpendicular pores with radii v, and r,
represent the permeabilities along two perpendicular directions.

ENCTN = R i R e i S
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NUMERICAL ANALYSIS

In this section we apply our theoretical model to predicting quantitative relation-
ships between permeability and attenuation for isotropic and anisotropic cases. We
define an incident angle é of a P-wave as the angle between the direction of wave prop-
agation and the direction of minimum permeability (Figure 2.1b). In the numerical

analysis below, we will refer to the ratio of attenuations R by:
5 Qicor
R=——.
§=90°
Next, we perform the numerical experiments on a limestone sample with porosity
¢ = 4.7%, P-wave velocity V, = 5.59 km/s, S-wave velocity V, = 2.99 km/s and den-
sity p = 2.663 gm/cm?®. With these parameters fixed, we study the effects of frequency,
fluid viscosity, fluid microdistribution (the length of a fluid drop), permeability, and

permeability anisotropy on P-wave attenuation.

Rock With Isotropic Permeability

A rock with isotropic permeability k¥ can be represented by pores having all pos-
sible orientations. Each pore contributes to the overall attenuation depending on the
angle between its main axis and the direction of the propagation. We approximate
the attenuation by representing such a rock with one typical cell having a pore that is
perpendicular to the direction of the plane wave. This approximation gives reasonable
qualitative estimates since attenuation is always maximum when the propagation is

perpendicular to the main axis of the pore (Akbar et al., 1993).
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Effects of the drop length on attenuation (Figures 2.2,2.3)

Figure 2.2 shows attenuation, (¢og @~') versus length of the fluid drop L. In this
example, permeability k of the rock is 50 mD and the angular frequency of the wave w
is .5 MHz. Two types of saturating fluid are considered: crude oil of viscosity 7.8 cp,
and pure water of viscosity 1 cp. In both cases attenuation reaches its maximum and
then decreases with increasing L. The maximum attenuation for crude oil is sharper
than for water and occurs at smaller lengths (L =8 mm). Figure 2.3 shows fog Q!
versus L for crude oil at two frequencies .5 MHz and 50 kHz. The peak corresponding
to the higher frequency is sharper and takes place at a smaller length. The dependence
of attenuation on the length of the fluid drop is due to the fact that the displacement
of the pore’s wall in our model is perpendicular to the direction of the fluid motion.
The peaks in attenuation shown in Figures 2.2 and 2.3 can be explained as follows:
when the length of the fluid drop is small, the velocity gradient of the fluid is small
and results in small attenuation. The mechanism involved here is best described by
the local flow mechanism. As fluid length increases, the velocity gradient increases
sharply and attenuation reaches its peak. Further increase does not allow the fluid

to relax (freezes the fluid), resulting in a smooth decrease in attenuation.

Effects of frequency (Figure 2.4)

Figure 2.4 shows fog Q~! versus £og k for three frequencies w= 5 kHz, 50 kHz, and
.8 MHz, for a fluid droplet of 10 mm in length. In this case, the effect of frequency on
the attenuation-permeability curves is to shift the peak towards lower permeabilities
as frequency decreases. At low frequencies, the slope of the permeability-attenuation
curves is negative for all permeabilities (¢og @' decreases with increasing permeabil-
ity). On the other hand, at high frequency, the slope of the permeability-attenuation
curve is negative for large permeabilities and is positive for small permeabilities
(€og @~ increases with increasing permeability). This result supports the experi-

mental data (Figure 2.12).

PSR
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Fig. 2.2. Log @, versus the length of the fluid drop L for a wave with frequency
= .5 MHz.
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Fig. 2.3. Log Q! versus L using the properties of crude oil as a saturating fluid for
two frequencies w = .5 MHz and w = 50 kHz. The peak corresponding to the
- higher frequency is sharper and takes place at smaller length.
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Rock With Anisotropic Permeability

In this section we estimate the direction of maximum attenuation for a rock with
known permeabilities knq; and ki, along the z and the z directions, respectively.
As a plane P-wave with a known frequency propagates through such a rock, the
resultant attenuation will depend on the contribution from pores along each direction.
We previously found that attenuation (for a cell containing a pore oriented along a
given direction) is maximum when the wave propagates perpendicular to the pore
orientation (Akbar et al., 1993). This suggests that if pores along one of the directions
dominate attenuation for a given frequency, then the overall attenuation reaches its
maximum wflen the wave propagates perpendicular to the direction of the dominating
permeability. The permeability which dominates attenuation for a given frequency
can be found from Figure 2.4 which represent the permeability-attenuation relations

for the isotropic case.

Effects of frequency (Figures 2.5-2.9)

Figure 2.4 shows that, for the whole range of permeabilities, attenuation decreases
with increasing permeability (negative slope) for a wave with a small frequency. If the
permeability along the z direction is k,,,.» and the permeability along the z direction is
kmin, then the smaller permeability k,,;, will dominate the attenuation. Accordingly,
the overall attenuation reaches its maximum when the propagation is perpendicular
to the direction of knin.

For large frequencies, the positions of kyis, and km.. on the attenuation-permeability
curves will be one of three cases depending on the magnitudes of k,,;, and kp,.. The
first case occurs when kp;, and k., are large and lie on the negative slope. In this
case, the minimum permeability k;, dominates attenuation and the wave will have

a maximum attenuation when it propagates perpendicular to the direction of kpy.
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The second case occurs when both k,,;, and k..., are small and lie on the positive
slope. As a result, k., dominates attenuation and a maximum attenuation occurs
when the propagation is perpendicular to the direction of k..

The final case takes place when k,,;, and k,,, lie on the positive and on the
negative slopes respectively. The direction of the maximum attenuation will here
depend on the magnitudes of kmin and kmqz. In the following analysis we exclude this
case and consider only those in which both permeabilities are either large or small.

Figure 2.5 shows £og Q™! versus incident angle § (measured from the direction of
kmin) for a rock with large permeabilities ki, = 100 mD and ko, = 1000 mD along
two perpendicular directions for four frequencies, w = 500 Hz, 5 kHz, 50 kHz, and
.8 MHz. For all frequencies, the attenuation is maximum when the wave propagates
perpendicular to the direction of the minimum permeability k,.;,. This results from
the fact that the attenuation is dominated by the lower permeability ki, =100 mD
for all of the four frequencies (Figure 2.4).

Figure 2.6 represents Q! versus incident angle § for a rock with small permeabil-
ities kmin = 1 mD and ke = 10 mD and for four frequencies, w = 500 Hz, 5 kHz,
50 kHz, and .8 MHz. For small frequencies, w = 500 Hz and 5 kHz, the attenuation
is maximum when the wave propagates perpendicular to the direction of minimum
permeability k,in. This is due to the fact that attenuation is dominated by kpin = 1
mD.

For larger frequencies, w = 50 kHz and .8 MHz, the attenuation is maximum when
the wave propagates perpendicular to the direction of maximum permeability k...

This is due to the fact that in this frequency range the attenuation is dominated by

kmax .
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Fig. 2.5. fog Q™! versus incident angle 6 for a rock with permeabilities 100 mD and
1000 mD along two perpendicular directions for four frequencies w = 500 Hz,
5 kHz, 50 kHz, and .8 MHz.
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To clarify the role of the frequency, we repeat, the calculations of Figures 2.4, 2.3,
and 2.6 in the following three plots (Figures 2.7, 2.8, and 2.9), by introducing the
frequency in the third dimension.

Figure 2.7 is a three-dimensional extension to Figure 2.4 where we plot £og Q!
versus fog k and versus fogw for a rock with isotropic permeability. The slopes of the
curves in the fog Q! — fog k plane are always negative for small fixed frequencies.
For larger frequencies, the slopes of fogQ~! — fogk curves are negative for large
permeabilities and are positive for small permeabilities.

In Figure 2.8 we extended Figure 2.5 to a three-dimensional plot of fog Q-!,
incident angle 6, and frequency fogw for a rock with kp, = 100 mD and ke, = 1000
mD along two perpendicular directions. For the whole frequency rénge, increasing the
angle of incidence 6 results in increasing @~! in the @~* — § plane. This means that a
maximum attenuation takes place when the wave front propagates perpendicular to
the direction of the minimum permeability. This is due to the fact that for the large
permeabilities chosen here (100 mD and 1000 mD), the attenuation is dominated
by the lower permeability k., (negative slopes in Figure 2.7). The single peak in
the fog Q™! — fogw plane is due to k,;, = 100 mD. We expect another peak that

corresponds to kpmar = 1000 mD at a higher frequency range.
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Fig. 2.7. A three-dimensional plot of £og @' versus permeability and versus

frequency for a rock with isotropic permeability k.
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Fig. 2.8. A three-dimensional plot of fog Q~!, incident angle, and frequency
for a rock with permeabilities 100 mD and 1000 mD along
two perpendicular directions.
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Figure 2.9 is an extension of Figure 2.6 to a three-dimensional plot of Log @1, &,
and fog w for a rock with small permeabilities kmin= .1 mD and kpnor= 10 mD along
two perpendicular directions. We notice the existence of two distinct peaks in the
fog Q~' — Logw plane. The first peak that occurs at low frequency (w = 16 kHz) is
due to kpin= .1 mD. Therefore, the dominating permeability in this frequency range
is kmin. As we move towards higher angles of incidences in the fog @' — § plane,
fog Q! increases with the incident angle §. This means that maximum attenuation
takes place when the wave propagates perpendicular to the direction of kp;n.

The second peak is located at a higher frequency (w &~ .56 MHz) and is associated
with kn.z= 10 mD. The dominating permeability in this frequency range is kpq.
The attenuation decreases with the increasing angle of incidences in the fog Q! — 6
plane. This results in maximum attenuation when the propagation is perpendicular
to the direction of kmgz.

We notice that @5, approaches Q150 for very large frequencies. This is due to
the fact that attenuation depends weakly on incident angles for very high frequencies

(Akbar et al., 1993).
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Effects of length of the fluid drop (Figures 2.10, 2.11)

In this section we use three-dimensional plots to study the effects of the length of
the fluid drop on our previous results (Figures 2.5-2.9).

Consider a rock with k., and kp,;, along two perpendicular directions. We assume
that kmae = Ckmin, where C > 1 is the ratio of the permeabilities along the two
perpendicular directions. In Figures 2.10 and 2.11 we use C = 5 and vary ky,,, along
the z axis and the frequency w along the y axis. The attenuation ratio R = -g—%lﬁ
is plotted along the z axis. R is greater than one if the attenuation is higher when
the wave propagates perpendicular to the direction of kn,, and is less than one if
attenuation is higher when the propagation is perpendicular to the direction of k.

Figure 2.10 shows R versus £0g k.. and fogw for a water-saturated rock with L
= 1 mm. The plot shows that R is greater than one only for large frequencies and
small permeabilities.

In Figure 2.11 we study the effects of increasing the length of the fluid drop
on R, where we use L = 4 mm. As demonstrated by the plot, the range in the
€0g kmsz — £0gw plane for which R is greater than one becomes larger by increasing
the length of the fluid drop.

Figures 2.10 and 2.11 show that the direction of maximum permeability depends
strongly on the length of the fluid drop for a high frequency wave. However, the de-
pendence on the length of the fluid drop becomes less important for small frequencies

where the maximum attenuation takes place when the propagation is perpendicular

to the direction of minimum permeability.
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COMPARISON WITH DATA

Effect of Frequency on Permeability-Attenuation Relation
(Figure 2.12)

In this section, we model the experimental results from Lucet (1989) where atten-
uation was measured as a function of the applied external stress for five Fontainebleau
sandstone samples (99% quartz) with known permeabilities and porosities. The at-
tenuation of the extensional waves Q! was measured for sonic frequencies (w ~ 1.14
kHz - 6.5 kHz). For ultrasonic frequencies (w = .5 MHz), the attenuation of the
compressional waves @ 1 was measured.

We estimated Q! for the sonic frequency range from the available data of Q7!

by using the following relation (Winkler, 1979):
1-v)1-2v) Q7' » (14v) Q77 - 20v(2 - v) Q77

where v is Poisson’s ratio, and Q! is the attenuation of the shear waves.

The density of each rock p is also estimated from porosity:

p = pm(l — @)+ ¢py,

where p,, is the density of the matrix (quartz), and p; is the density of the fluid
(water).

Tables 1.1 and 1.2 from chapter 1 summarize the measured and the estimated
experimental data for ultrasonic and sonic frequencies respectively when the applied

external stress is 5 MPa.
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We model this data set by calculating the attenuation for each rock, characterized
by its known porosity, permeability, and elastic moduli, for both ultrasonic (w= .5
MHz) and sonic (w= 4 kHz) frequencies. We use é = 90° as an incident angle, and
the L = 2 cm as the length of the fluid drop (water). The representative pore’s radius

for each rock is found by using the following relation (Berryman and Blair, 1987):

8k

r= s
where k and ¢ are found from the experimental data (Table 1.1, Chapter 1).

Tables 2.1 and 2.2 show our theoretical results for pore radii and attenuation
£og @, for ultrasonic and sonic frequencies, respectively.

Figure 2.12 shows the measured and the calculated Q! (normalized by their
maxima) for each rock versus permeability. Letters U and S denote the experimental
data for ultrasonic and sonic frequencies, respectively. Points connected by lines and
dashed lines represent the theoretical results for ultrasonic and sonic frequencies, re-
spectively. The experimental and theoretical results show that attenuation decreases
with increasing permeability for a wave with low frequency. For ultrasonic frequen-

cies, the attenuation is small for low and high permeabilities and reaches a maximum

at about k£ = 1000 mD.
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Table 2.1. The calculated pore radii and attenuation fog Q! for ultrasonic

frequencies.
Sample #| ¢ % |4 (mD)| Radius(um) Log’ OQ;,I Q;I(Nomalized)
A6 6.7 6 0.846 -2.050 0.330
F60 13.6 |670 6.278 -1.672 0.789
F5 14.8 (720 6.238 -1.569 1.000
F64 15.5 {1080 7.466 -1.649 0.833
A8 22 2800 10.09 -1.706 0.729

65

Table 2.2. The calculated pore radii and attenuation fog Q; ! for sonic frequencies.

Sample #| @ % | #(mD)| Radius(um)| Log Qp| Qomaizee
A6 67 |6 0.846 2120 | 1.0000
F60 | 136 [670 | 6.278 2921 | 0.0445
F5 148 [720 | 6.238 2749 | 0.0661
F64 | 155 [1080 | 7.466 2917 | 0.0449
A8 22 2800 | 10.09 3.124 | 0.0279
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Fig. 2.12. The measured and the calculated Q;! (normalized by their maxima)
versus permeability for five samples of Fontainebleau sandstones. Letters U and
S denote the experimental data for ultrasonic and sonic frequencies respectively.
Points connected by lines and dashed lines represent the theoretical results for
ultrasonic and sonic frequencies, respectively. Data are from Lucet (1989).
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Permeabilities Along two Perpendicular Directions (Figure
2.13)

In this section, we model experimental results from Tarif (1986) for water-saturated
Meule Vert sandstone sample. The compressional and shear velocities of the sample
are: V,= 3.067 km/s and V,= 1.625 km/s, respectively. The porosity of the sam-
ple is 22.3%. The sample is homogeneous and contains mica sheets which show the
orientation of the sedimentation. The average grain size is about 200 um, and the
permeabilities of the sample are 114 mD and 72 mD in the z and the z directions,
respectively. Attenuations are measured in both directions (@7 and Q;') as func-
tions of saturation. The frequency ranges from .25 MHz to .75 MHz with a central
frequency of .5 MHz.

The experimental results show that for all saturations, the attenuation is min-
imum when the wave propagates perpendicular to the direction of the maximum
permeability (i.e., R is less than one).

We model this experiment by calculating the attenuations from both directions
for a high-frequency wave w = .5 MHz by considering a rock with the properties as
given above. Our theoretical results best fit the data when the microscopic pore’s
length H is 5 mm. The length of the fluid drop L is found from the relation H = L/S,
where S is saturation.

R is plotted in Figure 2.13 as a function of saturation. The experimental data and

the theoretical results are represented by asterisks and the solid line, respectively.
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Fig. 2.13. The attenuation ratio R versus saturation for Meule Vert sandstone sample.
The permeabilities of the samples were about 114 mD and 72 mD in the z and
the z directions respectively. The data are from Tarif (1986).
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CONCLUSIONS

We related permeability and attenuation of a P-wave to each other by indepen-
dently calculating both of them as functions of pore size and orientation. A rock is
modeled as an accumulation of identical typical cells containing circular pores that
are partly filled with viscous fluid.

For a rock with isotropic permeability, we found that the variation of attenuation
with permeability is characterized by a peak in attenuation which shifts towards a
lower permeability as frequency decreases.

We followed by estimating the direction of maximum attenuation for a rock hav-
ing permeabilities along two perpendicular directions. We studied the influence of
frequency, length of the fluid drop, and the magnitude of permeability along each
direction upon the direction of maximum attenuation.

We found that for rocks with small fractures and porosities, the attenuation of a
low-frequency wave is minimum when the propagation is perpendicular to the direc-
tion of maximum permeability.

In the range of ultrasonic frequencies, the attenuation of a P-wave propagating
perpendicularly to the direction of the maximum permeability is maximum when the
magnitudes of the permeabilities are small, and is minimum when the magnitudes
of the permeabilities are large. This result is not necessarily valid for high-porosity
rocks having long pores saturated with high-viscosity fluid. Determining the direction
of maximum attenuation for a wave with ultrasonic frequency requires a rigorous

consideration of the specific values of crucial parameters.
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ABSTRACT

We investigate the effects of permeability, frequency, and fluid distribution on
the viscoelastic behavior of rock. The viscoelastic response of rock to seismic waves
depends on the relative motion of pore fluid with respect to the solid phase. Fluid
motion depends, in pa;rt, on the internal wave-induced pore pressure distribution
that relates to the pore microstructure of rock, and the scales of saturation. We
consider wave-induced squirt fluid flow at two scales: (1) local microscopic flow at
the smallest scale of saturation heterogeneity (e.g., within a single pore) and (2)
macroscopic flow at a larger scale of fluid-saturated and dry patches. We explore the
circumstances under which each of these mechanisms prevails. We examine such flows
under the conditions of uniform confining (bulk) compression and obtain the effective
dynamic bulk modulus of rock. The solutions are formulated in terms of generalized
frequencies that depend on frequency, saturation, fluid and gas properties; and on the
macroscopic properties of rock such as permeability, porosity, and dry bulk modulus.
The study includes the whole range of saturation and frequency; therefore, we provide
the missing link between the low-frequency limit (Gassmann’s formula) and the high
frequency limit given by Mavko and Jizba. Further, we compare our model with Biot’s
theory and introduce a geometrical factor whose numeric value gives an indication
to whether the local fluid squirt or the global (squirt and/or Biot’s) mechanisms
dominate the viscoelastic properties of porous materials.

The important results of our theoretical modeling are: (1) a hysteresis of seismic
velocity versus saturation due to variations in fluid distributions, and (2) two peaks
of acoustic wave attenuation — one at low frequency (due to the global squirt flow)
and another at higher frequency (due to the local flow). Both theoretical results are

well supported by experimental data.
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INTRODUCTION

Wave propagation in rocks is dominated by the two solid/fluid interactions: the
Biot and the squirt-flow mechanisms. Traditionally, the Biot mechanism is referred
to as a macroscopic flow because it can be expressed through such macroscopic pa-
rameters as: poroelastic constants, porosity, permeability, and fluid properties. The
Biot theory (e.g., Biot, 1956a) presents the only existing treatment of the problem
which directly relates seismic velocities and attenuation to measurable macroscopic
characteristics of a rock. Berryman et al. (1988) and Dutta and Ode (1979) extend
the theory to examine the effects of partial gas saturation.

There are conclusive experimental evidences to demonstrate that in certain cases
the Biot theory fails to adequately predict velocity dispersion and attenuation (e.g.,
Wang and Nur, 1990; Mavko and Jizba, 1991). Further, the theory predicts that
increasing fluid viscosity or decreasing permeability shifts relaxation towards higher
frequencies. This contradicts the observed experimental data as noted by Dvorkin et
al. (1993). Winkler (1985) showed that increasing oil viscosity in Berea sandstone
shifts the relaxation towards lower frequencies. Akbar et al. (1993) theoretically
observed that the relaxation shifts towards lower frequencies as permeability decreases
in Fontainebleau sandstones.

The Biot theory ignores the effects of fluid distribution heterogeneity within a rock
on its seismic properties. It has been s_hown, however, that this factor is a crucial
element in interpreting experimental and field data, as it directly depends on the pore
space structure and the history of saturation (e.g., Domenico, 1976; Cadoret et el.,
1992; Endres and Knight, 1989; Knight and Nolen-Hoeksema, 1990).

The heterogeneity of fluid distribution in a partially saturated rock manifests itself
locally (i.e., within pores) and/or globally on a much larger scale. During imbibition
with high driving pressure drop, the wetting phase (e.g., water) tends to saturate
large pores, whereas during drainage the non-wetting phase (e.g., oil or gas) fills

those pores (e.g., Moore and Slobod, 1956; Murphy et al., 1986). The dynamic bulk
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modulus is most sensitive to the saturation of the thinnest pores and therefore may
depend strongly on the saturation process (Knight and Nolen-Hoeksema, 1990).

The amount of oil trapped in a reservoir depends strongly on the flow rate of the
driving water (e.g., Dullien, 1992); therefore, a practical application for seismic inter-
pretation is the evaluation of residual oil saturation in reservoirs during oil recovery
processes.

The saturation process may have even a greater impact on global fluid distribu-
tion and thus strongly affect the viscoelastic response of a porous material. This is
particularly important at low seismic frequencies that are typical frequencies of field
measurements. Reservoirs with heterogeneous permeability distribution most often
develop large gas or liquid-saturated pockets (patches) during infiltration processes.
An important example of this case is viscous fingering in which injected fluid (e.g., wa-
ter or gas) in the enhanced oil recovery process tends to advance in high permeability
structures leaving behind oil-saturated zones with smaller permeabilities.

Mavko and Nolen-Hoeksema (1993) relate ultrasonic velocities to saturation and
local fluid configurations when pore fluid is unrelaxed and fluid flow is consequently
blocked. The results show a good correlation with experimental data for partially
and fully saturated sandstone and granite samples. White (1975) studied the speed
and attenuation of seismic waves in partially saturated rocks. The model is based
on idealized geometry in which fluid flows from saturated regions into spherical gas
pockets.

The examination of the squirt-flow mechanism in the literature has been restricted
to the pore scale, requiring the consideration of specific pore or grain-contact ge-
ometries (e.g., Palmer and Traviolia, 1980; Murphy et al., 1986; Mavko and Nur,
1979). This approach limits practical usage of the squirt-flow theories as they are not
directly connected to measurable macroscopic rock properties (permeability, poros-
ity, etc.). On the other hand, models relating bﬁlk properties to seismic velocities
ignore the viscoelastic effects (i.e., frequency dependence). These include the high

frequency limit in which fluid is unrelaxed (Mavko and Jizba, 1991; Mavko and Nolen-



Chapter 3 — Seismic Signatures .... ' 75

Hoeksema, 1993), and the low frequency limit in which fluid is in the equilibrium state
(Gassmann, 1951).

Recently, attempts have been developed to relate the squirt flow mechanism to
macroscopic properties of rock for the whole frequency range. Dvorkin and Nur (1993)
unified the squirt and Biot’s mechanisms for partially saturated rocks. However, the
squirt-flow mechanism may be important in fully saturated rocks (Mavko and Jizba,
1991). Akbar et al., (1993) related the squirt mechanism to permeability using a
solution based on a simplified pore geometry (needle-like pores).

In this paper we relate, using the squirt-flow mechanism, the effective dynamic
bulk modulus of rock to measurable parameters such as permeability, porosity, dry
bulk modulus and fluid and gas properties. The study includes the whole range of
saturation and frequency; therefore, we provide the missing connection between the
low-frequency limit (Gassmann’s formula) and the high frequency limit (Mavko and
Jizba, 1991). We investigate the influence of the fluid distribution on the viscoelastic
behavior of a porous material on both local and global scales. The study includes a de-
tailed investigation of fluid/gas dynamic interaction in individual pores. In addition,
we identify the rock parameter whose value allows us to determine the mechanism
(local squirt, global squirt and/or Biot’s) that dominates the viscoelastic response of

a porous material.
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BASIC ASSUMPTIONS AND DEFINITIONS

Microscopic Squirt Flow

Microscopic (local) squirt flow refers to fluid movement at the smallest scale of het-
erogeneity in porous material. The material is represented by elementary microscopic
units (Figure 3.1) composed of thin conduits and stiff equidimensional pores (Murphy
et al., 1986; Mavko and Jizba, 1991). Thin conduits represent the pore throats that
connect the large pores and thus provide the channels for the macroscopic fluid flow
(Figure 3.1b,c). The permeability of the rock depends mainly on the conduit size and
geometry rather than on the dimension of the large pores (e.g., Dullien, 1992; Bourbiz
et al., 1987). Therefore, for the microscopic squirt, we explicitly model fluid flow in
the thin conduits, and describe the stiff pores merely through their compressibilities,
sizes, and the properties of fluid content (gas and/or liquid). The conduit is modeled
by either a needle inclusion, a two-dimensional slit, a penny-shaped crack, or a pore
of a transitional geometry.

The stiff pore is modeled as sphere-like and serves as a discharge buffer for the
thin conduits. The size of the unit £ is the distance between two adjacent stiff pores
and is of the order of the average grain size. It depends on the microscopic het-
erogeneity scale and increases with increasing grain size, increasing clay content and
cement, and deteriorating sorting (Figure 3.1b). For clean granular materials with
high permeability (e.g., glass beads and ocean sediments), ¢ is of the order of the
grain contact area. On the other hand, for the low permeability fractured rocks (e.g.,
granite and consolidated rocks), £ is of the order of the fracture size. In the data
section, we theoretically model experimental data and show that ¢ increases with

decreasing permeability.
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The local flow of a compressible pore fluid occurs as long as wave-induced pressures
in the conduits and stiff pores are different. We use the term “uniform saturation”
to describe the cases where each of the units has the same distribution of fluid and
gas at any given global saturation.

Due to periodic repeatability of a unit structure and fluid distribution, the vis-
coelastic response of a uniformly saturated material is similar to the response of an
isolated closed unit. In this case, fluid flows from a thin conduit where the induced
pressure is large due to its large compressibility (Zimmerman, 1991), to the larger
equidimensional pores where the induced pressure is small.

We note the saturations of the large pores and conduits as Sy and Sp, respectively.
Sp and Sy are the volumetric ratios of fluid volumes in the conduit and in the stiff
pore to the total volume of the pore space in the microscopic unit. The ratio %ﬁ
depends on the saturation and the saturation process. The total saturation of the

unit, S,, can be found from Sp and Sy as (Appendix B):

¢Sy = Spép + Suéw, (1)

where ¢, ¢p, and @y are the total, conduit, and stiff pore porosities respectively, and
are defined as the ratios of the respective void volumes to the total volume of the
microscopic unit.

It is practically important to distinguish between fluid flow in thin conduits and
large pores: if seismic velocities and attenuation are measured on a sample where
fluid tends to saturate the conduits, these measurements are likely to be interpreted
in terms of permeability. On the contrary, if the fluid tends to saturate the large
pores, seismic data will not be directly related to permeability. Depending on the

flow rate, the latter situation may be observed during imbibition.

L K
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Fig. 3.1. (a) Rock is represented by an accumulation of microscopic units;
b) local fluid flow within a microscopic unit of dimension ¢; and (c) a network of
ew microscopic units.
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Macroscopic Squirt Flow

The macroscopic (global) squirt flow refers to fluid flow at the scale of fully-
saturated “patches” that are much larger than the size of the microscopic unit. The
macroscopic squirt flow takes place only when the saturation is spatially non-uniform.
A non-uniform saturation refers to the cases when different regions of porous material
have different fluid concentrations (Figure 3.2a). The sizes of the fully saturated
regions depend on the saturation process and on the structure of the porous material.
We represent a non-uniformly saturated porous material by a macroscopic unit of
volume V7 that contains a single fully-saturated region of volume &3 (Figure 3.2b).
We introduce the symbol ¥ to denote the ratio of the volume of the fully-saturated
region R3 to the volume of the macroscopic unit:

R3

V= T (2)

¥ is the measure of saturation heterogeneity in porous material. The material is
uniformly saturated when R = £ whereas, the saturation is non-uniform when R > .

The effective saturation S can be expressed by the following equation (Appendix I):

where S, is the saturation outside the fully saturated region R® and is defined by
equation (1).
¥ can be written in terms of the total saturation by introducing the symbol %

such that ¥ = 9S. Substituting this expression into equation (3), we have:
S=9S+ S.,(1-19S). (4)

In other words, % is the volumetric ratio of the fluid that occupies R to the total fluid
volume in the macroscopic unit. If ¥ = 1, then S, = 0 and the fluid is concentrated

in the volume R3.
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Unlike the microscopic squirt, the macroscopic squirt can be fully described by the
overall compressibility of the dry rock. We will show that the viscoelastic response of

a porous material depends on both R and 1.

Fig. 3.2. (a) Non-uniformly saturated rock; (b) a macroscopic unit that contains
a single fully-saturated region; and (c) a macroscopic conduit represented by
the average pore size and compressibility.



Chapter 8 — Seismic Signatures .... 81

Microscopic Versus Macroscopic Squirt

The viscoelastic effects in rock depend on the heterogeneity of internal fluid pres-
sure. Fluid pressure is heterogeneous on the scale of the microscopic unit for uniform
saturation, and on the larger macroscopic scale for non-uniform saturation.

The macroscopically saturated patch is analogous to an unjacketed fully saturated
sample (fluid is allowed to escape the external boundary). If there is no flow at
the sample’s surface, squirt flow will occur only on the microscopic scale (jacketed
sample). For low-frequency experiments (in situ and resonant-bar measurements)
these boundary conditions are important. For high-frequency experiments (ultrasonic
pulse transmission), these boundary conditions do not affect acoustic velocities.

Viscoelastic materials are respond to wave excitation differently, depending on
the frequency of the wave. At small frequencies, fluid is relaxed (small attenuation)
causing small induced fluid pressure. At high frequencies, fluid is unrelaxed (small
attenuation) and the induced fluid pressure is large (e.g., Akbar et al., 1993; Dvorkin
and Nur, 1993). At an intermediate, critical frequency, a transition of the fluid phase
from relaxed to unrelaxed modes takes place. This transition is usually accompanied
with a peak in attenuation (Murphy, 1982).

We introduce the term “squirt number” (¢) for both local () and global (£,)
flows to describe the viscoelastic response of a saturated porous material. ¢ and ¢,
depend mainly on frequency w, permeability k, porosity ¢, saturation, fluid viscosity
7, fluid compressibility Cy, and the compressibility of the dry rock C,.

Using the Navier-Stokes equation for the pore fluid, we find approximate expres-

sions for the squirt numbers {, and ¢, for the above two modes of flow:

wn ST ($C; + Co)

6( \/gk ’ (5)
wnRET(4C; + Co)
Eg ~ \/gk ) (6)

where I' is a non-dimensional geometrical factor that depends on the nature of the

fluid flow and ranges from 3/8 to unity (Appendix G).
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The fluid is in the relaxed mode when § <« 1, whereas, when £ >> 1 fluid is the
unrelaxed mode. Viscoelastic effects are negligible in both of these extreme limits.
§ ~ 1 corresponds to a peak in attenuation. Therefore, letting ¢ = & = 1in
equations (5) and (6), and solving for the frequency w, we obtain an approximate

relation between the critical frequencies @, and @, at which attenuation peaks occur:

~

Wy R 2
@, SL’) ’ (7)

Experimentally, peaks in attenuation as a function of ¢ are frequently observed.
These include peaks in attenuation versus saturation (Winkelr, 1979; Murphy, 1982),
versus permeability (Klimentos and McCann, 1990; Akbar et al., 1993), versus fre-
quency and viscosity (Murphy et al., 1986; Jones, 1986; Vo-Thanh, 1990; Spencer,
1981), versus porosity (Ogushwitz, 1985), and versus grain size (Hamilton, 1972;
Shumway, 1960).

In a fully saturated reservoir where fluid distribution is uniform, peak in attenu-
ation occurs at relatively large frequencies. This is due to small values of ¢.

When fluid distribution is non-uniform, two mechanisms contribute to attenua-
tion. The macroscopic squirt dominates at low frequencies (since R is large) and
occurs when {; ~ 1. Dunn (1987) measured attenuation versus frequency in fluid-
saturated porous cylinders with open boundaries (fluid was allowed to move in and
out of the sample’s surfaces).  His results show that increasing size of the sample shifts
attenuation peak towards lower frequencies. In our model, this phenomenon can be
readily explained by equation (6) where R represents the size of the sample.

At higher frequencies, the fluid is macroscopically unrelaxed (£, > 1), the macro-
scopic squirt attenuation decreases, and the system behaves as if it is uniformly
saturated. In this case, the microscopic squirt dominates and results in another peak
in attenuation at higher frequencies when ¢, ~ 1 (since £ is small). A large liquid-
saturated patch in a reservoir (R is large such that €; > 1) is a special case for the

microscopic squirt in which equation (5) can be used.
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We expect that peaks resulting from the microscopic flow are wider than those
resulting from the macroscopic flow since, in general, a porous material contains
a wide spectrum of microscopic units £. Two attenuation peaks can be observed
only on experiments where the parameters that appear in equations (5) and (6) vary
in such ranges that both local and global squirt flows contribute to attenuation.
Such examples are observed in experimental data given by Paffenholz and Burkhardt

(1989), Vo-Thanh (1990), and Nur et al., (1984).

THEORETICAL MODEL

Uniform Saturation

As described above, in a uniformly saturated rock, only the microscopic squirt
mechanism takes place. Therefore, it is necessary to estimate the porosities and the

compressibilities of the components that make up the microscopic unit.

Porosity estimates

The total porosity of a microscopic unit ¢ at any given confining pressure is:

¢=¢D+¢H, (8)

We assume that ¢y does not vary with confining pressure (Mavko and Jizba,
1991) and consequently any variation in ¢ (due to changes in confining pressure)
corresponds to the equal variation in ¢p. Furthermore, we decompose ¢p into two
parts:

#p = ¢c + ¥n, - (9)
where ¢c decreases with the increasing overburden pressure, and represents the soft
(crack-like) conduits; and @n represents the stiff needle or the elliptical pores that

remain open at high overburden pressure.

Using equations (8) and (9), we have the following expression for the porosity:

¢=¢c+¢n+ dn. (10)
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Denoting the porosity at high overburden pressure by ¢, and assuming that ¢¢c =

0 at this high pressure (Zimmerman, 1991; Mavko and Jizba, 1991), we have the

following expression:

Introducing parameter «a such that
N = ady, (12)

we have the following two expressions:

e
¢H = 1+Cl, (13)
0P
oN = T+a (14)

The porosity of the conduit ¢p at any confining pressure is given in terms of a by

the following expression (using equations 8 and 13):

b
o= = W)

Compressibility estimates

In the following analysis (see Zimmerman, 1991, for a detailed review), we use the
thermodynamic conventions in which applied external pressure and the induced-fluid
pressure are positive quantities, while pore strains are negative. We use two types of
pore-volume compressibility for a pore embedded in an elastic isotropic solid material.

The first is Cp., which represents pore compressibility at constant pore pressure and

i1s defined as follows:

-1,0V,
¢ = —‘-/:-[-5&:],5,, (16)

where, V, is the total volume of the pore; o, is the external confining pressure,

Gy

and Pp is the internal pore pressure. The second type is C,, and represents pore
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compressibility at constant confining pressure and have the following expression:

1.0V,

Cop = Vo[a—f)p

]Uo' (17)
The relation between Cp, and Cy. is given by
Cpp = Cpc - Ca, (18)

where C, is the compressibility of the solid material surrounding the pore.
The bulk-volume compressibility Cy. of a body with volume Vr at a constant pore
pressure is defined as

1 0V
Cbc = __[ T

v a—%]:ﬁ,- (19)
Cy. is the drained bulk compressibility that is equivalent to the bulk compressibility
of the dry rock. The notation C, will be used throughout this paper to denote this

term.
Similarly, bulk-volume compressibility Cp, represents bulk compressibility at con-

stant external pressure o, and has the following expression:

1 8Vp
Cp = Vr aPp]co- (20)

The relation between C, and Cy, is given by
Cbp = Co - Ca- (21)

The relations between C, and pore compressibilities C,., and C,, are

¢Cpc = Co - Caa (22)

#Cpp = (Co — C,) — ¢C,. (23)

In the case of multiple pores, we use the superscripts D, N, C, and H to denote the
compressibilities of an average conduit, needle and crack-like conduits, and stiff pores,

respectively. C:; represents, for example, the stiff pore compressibility at constant

confining pressure.
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Consider that the total pore volume V, is decomposed into two separate volumes

VP and V as follows:

Vo= VoD + VoHa (24)

where V.2 (VP = VE+V}Y) and V¥ are the volumes of the conduit and the stiff pore,
respectively. V. and VN are the volumes of the crack-like and needle-like conduits,
respectively.

Taking the derivative of equation (24) with respect to o,, and making use of
equation (16), the overall effective compressibility C,. of a two-pore systemr(the
conduit and the stiff pore) with respect to the external stress can be written in the

following form:

¢Cpe = 6pC2 + onCH, (25)
with,
¢pCP = ¢cCS + ¢nCR, (26)
where CZ is the overall effective conduit compressibility. CS, and CX are the com-
pressibilities of the crack-like and needle-like conduits, respectively; ¢ = Vo/Vr;
¢p = V.2 [Vr; ¢y = VE [Vr; ¢ = VE[Vr; and ¢y = VN [V
The overall effective pore space compressibility C',,c can be written in terms of

macroscopic measurable compressibilities C, and C, using equation (22) as follows:

-

¢Cpc = ¢Cng + on C,];! + ¢ C:i
= ¢pCR + éuCr.
= Co - Cs- (27)

Similarly, taking the derivatives of both parts of equation (24) with respect to 13,,,
we can find the overall effective compressibility C;, in the case of multiple pores with

respect to the internal pore pressure. The result is:

¢Cpp = ¢pCp + ¢uCy, (28)
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where,
¢pCP = ¢cCS + ¢nCl. (29)

The effective pore space compressibility C,, can be expressed through C, and C;

using equation (23) as follows:

~

¢Cpp = ¢CCpC;> + ¢NC;];¥, + ¢HC:,{,
= ¢pCP + ¢uCH
= (Co - C,) - ¢C,. (30)

Taking the limit of equation (27) of high applied stress and noting that at high

stress ¢o = 0, we find:

Ce-C, = ¢NC:£ + ¢HC':£, (31)
where C3° is the compressibility of the dry rock at high confining stress, at which
thin cracks are closed (Mavko and Jizba, 1991; Zimmerman, 1991).

Following our approach in the porosity analysis, we introduce a parameter 8 such

that:
CN = BCH, (32)
Substituting with this expression into equation (31), and using the relation ¢y = ady,

we obtain the following expressions for C¥ and C¥:

N __ A Cgo — Cs
Cre = Bdm(‘r +1)° (33)
n_Co=C (34)

pc = o1 +1)
where the symbol 4 is used instead of the group af

The importance of £ is that it represents conduit compressibility at any pressure.
This can be seen by substituting with equation (34) into equation (27), making use
of the relation ¢y = a¢y, and solving for ¢DC'£:
Ce-0C,

¢Dé£;=co‘ca- .

i) (33)
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Similarly, C’,f:, may be expressed through C, as follows. Solving for ¢D(:'£, from
equation (30), and making use of the relation C = CH — C, , that follows from

equation (18), we obtain:
¢Dépr = Co - Cs - ¢Ca - ¢H(C:£ - Cs)'

Substituting into the previous equation with the value of Cz from equation (34),

and noting the relation ¢p = ¢ — ¢y that follows from equation (8), we obtain the

following expression for ¢DC'£,:

C& ++C,
(v+1)

Comparing equation (35) with equation (36), we notice readily that a simple relation

¢pCP = C, — ¢pC, — (36)
(:‘3, = C’,ﬁ — C, that is analogous to equation (18) is satisfied.
Equations (13), (14), (33), (34,) (35,) and (36) are the basis for transforming the

microscopic parameters, via estimating o and 3, into the macroscopic parameters C,

and C, that can be estimated from available data.

Relations between a, §, {, and the bulk properties

As will be shown later, the frequency-dependent pore fluid pressure depends on
the microscopic details of the compressibilities and porosities of the conduits and the
stiff pores. It is necessary, therefore, to relate these unknown microscopic parameters
to the known macroscopic parameters such as porosity ¢, permeability k, and the
overall compressibility of the dry rock C,.

Two parameters a and S are needed for relating the microscopic to the macroscopic
parameters for a given rock. a is a numeric parameter that represents the ratio of
conduits porosity to stiff pore porosity at high confining pressure; § represents the
ratio of the compressibility of the conduit to the compressibility of the stiff pore at
high confining pressure. »

To estimate a and B, we require the evaluations of the parameters ¢, and C$°,

that as described above, represent porosity and dry rock compressibility at high con-

fining pressure.
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It is worth noting that the effects of fluid flow on the induced pore pressure depends
on the combination af (see the hydrodynamic section of this paper), that was defined
above by the symbol 4.

7 represents the volume-weighted ratio of the compressibilities of the conduit and
the stiff pore at high confining pressure. Below, we relate 4 to rock properties and
show that v is the geometrical factor that governs the viscoelastic response of a porous

material.

Qase o~ Q

We begin the description of our approach by investigating the case in which perme-
ability decreases dramatically with increasing confining pressure, due to crack closure.
The permeability and porosity for these types of rocks are small and depend on frac-
ture size and distribution. Examples of this case can be seen in granite, quartzite,
and consolidated and fractured rocks (Brace et al., 1969; Zoback, 1975; Coyner, 1977;
and Walls, 1983).

In this case a = 0, and the representative conduit is mainly composed of soft
cracks (i.e., £ is large) that close up at high confining pressure (Zimmerman, 1991)
while the stiff portion of the conduit is small, i.e., ¢ = 0, see equation (14). In the
data section, we show that £ increases with decreasing permeability. Therefore, the
local fluid flow from crack-like conduits, where fluid pressure is large, to stiff pores
intensifies at the expense of the macroscopic fluid flow which is effectively blocked
due to thin cracks (Figure 3.3a). This theoretical picture agrees with the observed
experimental data which show that local flow mechanism dominates the global Biot’s
effects for this type of rock (Mavko and Nur, 1979).

Joining the expression ¢y = ¢, from equation (13) and with equation (8), we
express the conduit porosity ¢p at any confining pressure in terms of the known

values of ¢ and ¢, as follows:

¢D R ¢ — oo (37)
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Similarly, using @ = 0 in equation (34), we express the unknown value of Cﬂ in

terms of C° and C, as follows:

¢HC,‘,Z ~ Cy° - C,. (38)

Casea~1

Granular rocks with intermediate permeabilities and porosities exhibit small de-
crease in permeability with increasing confining pressure. Permeability and porosity
in this case are determined grain to grain contacts and fractures (Figure 3.3b). There-
fore, the representative conduit is composed of both stiff pores that remain open and
soft cracks that close up at high confining pressure. It follows that (when a ~ 1)
the conduit porosity ¢p increases and approaches ¢y, and the microscopic squirt dis-
tance £ for these type of rocks are smaller than the previous cases of fractured rocks.
Therefore, fluid pressure in stiff pores approaches pressure in conduits, which reduces
the effects of local fluid flow.

Equations (13) and (15) show that ¢y decreases with increasing «, while ¢p in-
creases and approaches ¢. Therefore, increasing a enhances the effects of macroscopic
fluid flow at the expense of local fluid flow that occurs from conduit to stiff pore. Ex-
amples of this case can be seen in moderately sorted rocks with traces of clay and

cement, e.g., Berea, Bandera, and Boise sandstones (Gregory, 1976).
Case a ~ 00

Well sorted clean granular materials (e.g., glass beads and ocean sediments) in
which geometry of pore spcace is determined by grain to grain contacts tend to have
large permeability and porosity. The variation of permeability with the confining
pressure is negligible due to the absence of cracks. In this case, the microscopic squirt
length £ is of the order of the grains contact area (Figure 3.3c). This corresponds

to very large values of a, and the squirt flow of fluid from conduit to the stiff pore
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is insignificant. This can be seen by noting that ¢y = 0 in equation (13) when
a — oo. Therefore, the global mechanism dominates the viscoelastic response of
porous material. This agrees with the fact that attenuation in saturated rocks with
high permeability and porosity is dominated by the global Biot’s mechanism (e.g.,
Johnston et al., 1978). Furthermore, substituting with a into equation (35), and
noting that in this case ¢p = ¢, that follows from equation (15), we obtain the

following expression for conduit compressibility:
¢CL=C, -C,. (39)

This equation is similar to equation (22) that relates the compressibility of a single

pore to the bulk compressibility.

Limits imposed on 8

When B approaches unity (8 = 1), the compressibility of the representative con-
duit at large confining pressure becomes close to the compressibility of the stiff pore.
If we assume that the stiff pore can be represented by a sphere, then the represen-
tative conduit will have a needle-like shape (since the compressibility of a needle-like
conduit is approximately equal to the compressibility of a sphere, Zimmerman, 1991).

On the other hand, the conduit compressibility is much larger than that of the stiff
pore when S is large. This corresponds to a representative conduit with an elliptical
cross section (Zimmerman, 1991).

Upper and lower bounds for the value of § are estimated as follows (Appendix J):

TuC(l+a) 1
2a(1 — V)poo @ >B21, ' (40)

where p, v are the shear modulus and Poison’s ratio of the matrix material (grains)

respectively.



Chapter 3 — Seismic Signatures .... 92

b)

Fig. 3.3. Graphic images for the relations between the geometrical factor a and the
microscopic structure of the rocks. (a? o ~ 0 corresponds to fractured rocks; (b)
a ~ 1 corresponds to fractured granular materials;
and (c) a ~ oo corresponds to well-sorted clean granular materials.
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Hydrodynamics

We examine the squirt-flow mechanism in a rock subject to bulk compression
by specifying three distinct geometries of the conduits: a needle-like crack; a two-
dimensional crack; and a penny-shaped crack. Fluid flow in the first two pores takes
place along one direction (unidirectional flow), whereas in the penny-shape cracks,
the flow diverges radially from the center of the fluid droplet (radial flow). One of
our main goals is to investigate the effects of conduit geometry on the dynamically
induced fluid pressure. This allows us to construct a general solution for the induced
fluid pressure in a variety of conduit shapes.

We assume that the geometries of the needle-like conduit and the three-dimensional
crack represent the end members of crack population (considering their effects on fluid
pressure). This assumption is based on the fact that the compressibilities of these
two geometries represent the end members of conduits of varying aspect ratio that
is defined as the ratio of the minor to the major axes of conduit cross section (Zim-
merman, 1991). At bulk compression, the conduit compressibility is maximum for a
three-dimensional crack (small aspect ratio) and is minimum for a needle-like conduit
(aspect ratio is unity).

The average induced fluid pressures for unidirectional flow (needle-like and two
dimensional crack) are the same as long as the solutions are written in terms macro-
scopic parameters such as permeability and porosity (Appendix F).

The induced fluid pressure in the penny-shaped crack (Appendix E) is compared
with the pressure in the unidirectional flow to estimate the effects of the nature of

fluid flow (i.e., unidirectional versus radial) on the fluid pressure (Appendix G).
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We find that the induced fluid pressure in the case of radial flow can be obtained
from the formula for the unidirectional flow by introducing a non-dimensional factor
T into the latter (Appendix G). I is unity for unidirectional flow, and is equal to g for
the radial flow. Therefore, the fluid pressure for any transitional conduit geometry
between these end members, including the effects of fluid divergence, can be estimated
from the unidirectional case by assigning a certain value to the factor I. This method
is identical to that of Biot (1956b) in which “the structural factor” is introduced to
correct for the pore geometry.

It is worth noting that the variation of T (i.e., 1 > T > 3) is insignificant with
respect to the variations of the other parameters (such as permeability, frequency,
squirt lengths, viscosity, etc.) involved in the calculation of the fluid pressure.

This observation has an important practical implication: the fluid pressure for
a simple conduit geometry (e.g., needle) can be easily generalized to include other,
more complex geometries, as long as the solution is written in terms of permeability
and porosity. This result features the importance of permeability as a macroscopic

parameter.

Average fluid pressure

In appendices C and D, we calculate the average fluid pressures P, and P; in
a needle-like and a two-dimensional conduit respectively. P, and P, represent the
end-members for unidirectional fluid ﬂo_w in two-dimensional conduits with elliptical
cross sections. In appendix F, we show that P, and P, can have the same expression
P, when both are expressed in terms of permeability and porosity. In appendix E,
we calculate fluid pressure P, in a three-dimensional conduit (radial fluid flow). P,
is compared with P, in appendix G to estimate the effects of radial flow on fluid
pressure, and find a general expression B, for fluid pressure in terms of T.

The average induced fluid pressure P, due to an external harmonic confining load-

ing 0, with a unit magnitude in any transitional conduit geometry, including the
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effects of the radial flow, is (Appendix G):

p pllﬁ —O_PAﬁ_ .
P = - 5-— d =00 P . 41
[ (1 - C)(Ql coth Q( - 1) + 1 + tlﬂl.—oo ( )

where {3, is the generalized frequency for the local fluid flow. This parameter has the

following expression:

wanqSDS,’)Z?
k

0f = ( )F(C, Su, 8)i, (42)

where ¢ is v/=1 and F(C, S, ¢) is given by:
(C',,D + C,)I‘

]

F(C,Su, ¢) = C;

(43)

T is unity for unidirectional flow and is equal to 2 for radial flow (Appendix G).

Pilg (=o 15 the fluid pressure in the conduit, Py, in the limit when €2, — 0 and is equal

to:
4 Co - Cs
Plg,=0 = 0. (44)
P[Iﬁ =0 15 the fluid pressure in the conduit, Py, when €}, — 0o and is given by:
~ (Co - C:o) + '7(Co - Cs)
Pila_._= . 45
£|ﬂ¢—°° (Co - Cgo) + 7(Co - Ca) + ¢D(1 + 7)(01 - Ca) ( )
Cis given in terms of compressibilities Cj, and C, as follows:
% _ ¢pCh
C - ¢C¢ ] (46)

where Cj, is the effective compressibility of the saturated part of the conduit and is
given by

(Co - Cgo) + 7(Co - Cs) + ¢D(1 + 7)(SDCJ - Cs) .

1+ 47)

¢pCh =

C. represents the effective static compressibility of the whole pore space and its

constituents, and is given by the following expression:

¢Ce = Co — Cy(1+ ¢) + S5u8C + (1 - 5.)¢C, (48)
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where C, is the gas compressibility.

The pressure in the gas and in the fluid that occupies the equidimensional pore is

(Appendix B):

By = Ptz = CPe

H 1— é (49)
The volumetric average pressure in the whole pore space P is:
- S . - -
Pg = D¢¢D {P.— Py} + Py. (50)

Comparing equations (44) and (45), we notice that the average fluid pressure
depends on the details of pore structure in the limit Q, -—>>oo. This dependence is
through the parameters a and 8. In the limit when £, — 0, the fluid pressure depends
merely on the bulk compressibility C..

Furthermore, equations (41), (49), and (50) indicate that in the limit of 0 —0,

‘ P, = Py = Pg. This equality reflects the state of equilibrium in the pore space at
small §,.

Setting the second derivative of the fluid pressure with respect to frequency, as
given by equation (41), to zero, one can show that a transition of the fluid phase
in the conduit from relaxed to unrelaxed modes takes place whenever the following

numeric condition is satisfied:
2 2
(125087 (€, 5, 8) = 1, 1)

where F(C, S, 8) is related to F(C, S, ¢) by the following expression:

FAC.508) =~ F(C.508). (52)

Equation (51) can be used to find, for example, the critical frequency =, (t, =
27 f) at which the state of the fluid in the conduit changes from relaxed to unrelaxed

modes:

k 1

W = ool FAC.5ud) (53)
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Non-Uniform Saturation

In the previous section, we calculated fluid pressure in a special case when fluid
is uniformly distributed throughout the rock. Below, we investigate the general case
in which fluid is arbitrary distributed throughout the rock.

Consider the case where different parts of the porous material have different fluid
concentrations (Figure 3.2a). We model this case by a representative macroscopic
unit of volume Vr that contains a single fully-saturated region of volume R3. By
definition, the volume R?® is surrounded by either a dry or partially saturated region
with saturation S,. We introduce a new parameter ¥ (¥ is a saturation coefficient)
defined as the ratio: ¥ = R®/Vq.

Since fluid phase is continuous throughout R3, any variation in pore volume, due
to a harmonic confining stress acting on the external boundaries of the body, will
result in increasing fluid pressure. At small frequencies, fluid behaves as if it is
incompressible, and consequently, the flow from the region R® will depend mainly on
the average pore shape and compressibility that can be related to the permeability,
porosity, and to the bulk compressibility of the rock. This observation is confirmed by
equation (44) where fluid pressure in a microscopic unit depends on the average pore
space compressibility at small frequencies. At certain larger frequencies, the details
of the microstructure become important, and fluid flow within the volume R® takes
place on both microscopic and macroscopic scales.

At high frequencies, fluid is macroscopically unrelaxed (Akbar et al., 1993), and
fluid flow takes place only within the microscopic units that make up the volume R3.
The latter case corresponds to the previously discussed microscopic squirt flow when
S.=1.

In our model, we calculate the average induced fluid pressure Pg when the micro-
scopic fluid flow is negligible with respect to the macroscopic flow. Therefore, fluid
flow depends on the average pore size (total porosity ¢), permeability k, and average

pore compressibilities defined by equations (22) and (23) (Figure 3.2c).
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Average fluid pressure

We examine the macroscopic squirt-flow mechanism within the region R? subject
to a harmonic bulk compression. Fluid flow takes place in a macroscopic conduit with
compressibilities defined by the effective pore compressibilities C'pc and C‘,,,, which are
related to C, and C, through equations (22) and (23).

The induced fluid pressure P in any transitional conduit geometry, including the

effects of the radial flow is (Appendix H):

Q, coth(Qg)]’ (54)

where ), is the generalized frequency for the global fluid flow and has the following

Pg = Polg,ol

expression:
R C;oR?
2= (L ,fb )X(C, )i, (55)
X(C,¢) = ﬁ%@r. (56)

The term X'(C, ¢) can be expressed through C, and C, by using equation (30).
PGI(’)9=°° is the average fluid pressure in the macroscopic conduit at {2, — oo, and

is given as follows (Appendix H):

S (C. — C.)
Fela~= = = T (0, = Co) &7

Analogous to the above-described microscopic case, a transition from relaxed to

unrelaxed modes takes place whenever the following numeric condition is satisfied:

CyoR?
(AL ) (0,9) =1, (58)
where X, (C, ¢) is related to X(C, ¢) by the following expression:
X(C,
x(C,0)= 29D (59)

V3

The critical frequency @, at which fluid flow in the average conduit changes from

the relaxed to unrelaxed mode is:
k 1

= = . ‘ 6
7]Cf¢R2 Xc(c’ ¢) ( 0)

w =,
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Approximated Relations Between Local and Global Charac-
teristic Frequencies

In this section, we give qualitative relations for the local and global characteristic
frequencies. The compressibilities of the dry rock and the macroscopic conduit are
related to the compressibilities of the individual pores (soft and stiff pores) that make
up the macroscopic conduit. In first approximation, the stiff pore compressibility Cp’;

is much smaller than the conduit’s compressibility C',? ; and the compressibility of the

/4
dry rock C, is much larger than the compressibility of the grains C,. Using these

approximations in equation (30), we have the following expression:

¢pC2 =~ C.. (61)

When a small portion of pore space is occupied with gas, the term C is close to 0,
which follows from equations (46), (47), and (48) since the gas compressibility is much
larger than the fluid compressibility. An approximate expression for F,(C,S,, 4),
which follows from equation (52) is then:

(Cp+Co)T

Vv3C;
Equation (5) is found by joining equations (61), (62), and (51) and letting ¢p ~ ¢
and Sp ~ S.

Similarly, equation (6) is found by joining equations (58), (59) and (61).

Fe(C,Su,¢) = (62)
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DYNAMIC BULK MODULUS AND
APPLICATIONS

Using the reciprocity theorem (Appendix I), we find the dynamic bulk modulus
of a saturated rock as

. 1
K = — = < = .
Co— (1~ W)[¢pCE Pt + ¢uCH2 Py + ¢C, Pg) — ¥ Ps(C, — C,)

Equation (63) gives the bulk modulus for a non-uniformly saturated body for the

(63)

whole frequency and saturation ranges. The body contains regions with different fluid
concentrations (fully or partially-saturated pétches) scaled by ¥ and is surrounded by
partially saturated regions that scaled by the combination 1—W. It is assumed that the
wavelength is much larger than the size of the heterogeneity. When the wavelength
is of the order of the size of the heterogeneity (or less), then each heterogeneous
medium can be considered separately. In the latter case, the average wave velocity
can be calculated using the ray theories (e.g., Widess, 1973). Below, we present some

examples to clarify the physical meaning of W.

Uniform Fluid Distribution

This case corresponds to fully or partially saturated rocks without global hetero-

geneities (i.e., no patches), and can be subdivided into the following cases:

W = 0: Fluid distribution is heterogeneous at the grain scale and the effect of fluid
distribution (i.e., conduit versus stiff pore saturations) is contained in P,, Py, and
Pg through the saturation terms S,, Sp and Sy. Special cases for ¥ = 0 are: 1)
measurement on a jacketed fully-saturated sample for the whole frequency range, and
2) measurement on unjacketed fully-saturated sample when the macroscopic squirt

number §, is much larger than unity (fluid is globally unrelaxed).

"W =1: This is the case of low-frequency measurements on an unjacketed fully-

saturated sample such that {, ~ 1. In this case, the effects of fluid flow from conduits

to stiff pores is negligible since £ < 1.
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Non-Uniform Fluid Distribution

In many cases of practical interest, fluid distribution in partially saturated porous
material is heterogeneous at both local and global scales. The heterogeneity of fluid
distribution depends strongly on the magnitude of the applied driving pressure drop
of the injected fluid, and on the heterogeneity of the porous medium itself. Below,

we investigate these cases separately.

Heterogeneous fluid distribution due to saturation processes

We examine a porous medium with homogeneous permeability and porosity. We

distinguish between the following cases:

Fully saturated patches

0 < W < 1: This is an important case in which the heterogeneity of fluid distribution
manifests itself in terms of fully saturated patches within partially saturated medium.

We distinguish between the following cases:

1) & > 1: This case corresponds to unrelaxed patches, where fluid flow takes place
within the microscopic units that make up the macroscopic unit (patch). In this case

the last term in equation (63) can be written as (Appendix I):

where we used the limit S, = 1, since the patch is fully saturated. Applications for
this situation are: a) ultrasonic pulse transmission for partially saturated rocks, and
b) low-frequency measurements in reservoirs with large patches (since £; > 1 due to

large R).
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2) £, ~ 1: This corresponds to small relaxed patches, where fluid flow takes place
at both microscopic (within the partially-saturated regions) and macroscopic (within
the fully saturated region) scales. An example is the resonant-bar measurements. In

the data section, we give an example to explain the procedures of estimating ¥.

Partially saturated patches

This refers to cases in which a given region of the rock is partially saturated with
fluid concentration that is different from the surrounding medium. In this situation,

the last term in equation (63) is replaced by:
¥ Pg(Co — C,) — V[opCE P, + 6uCH Py + ¢C, Pgs,, (65)

where S, represent the saturation of the partially saturated patch.

Effects of medium heterogeneity at global scale

In this case the medium contains regions with different permeabilities which result
in heterogeneous fluid distribution. This situation can be accounted for by rewritting

the last term in equation (63) as
Y Ps(Co— C,) — ¥[¢ppCPL P, + ¢y CE Py + 6C, Pglp, (66)

where the subscript P indicates that the term is calculated for parameters (fluid
content, permeability, saturation, etc.) that characterize the heterogeneous portion
of the medium (Appendix I). Equation (66) is based on the assumption that rock

compressibility is uniform throughout the whole medium.
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SEISMIC WAVE VELOCITIES

In this section, we calculate the velocities and attenuation of seismic waves. The
calculations are based on merging the calculated bulk modulus given above by equa-
tion (63) with the solution that relates the bulk and shear moduli given by Mavko
and Jizba (1991) and Dvorkin et al., (1993).

Mavko and Jizba (1991) derived a relation between the unrelaxed (high-frequency

limit) bulk and shear moduli. This relation is given by the following expression:

1 1 4 1 1

- EL (67)

—__— A —

Hdry Hu 15 I{dry

where 4,4, and p, are the dry and the unrelaxed frame shear moduli of the rock,
respectively. Kg;,, and K, are the dry and the unrelaxed frame bulk moduli of the
rock, respectively.

Dvorkin et al., (1993) show that equation (67) is valid for full saturation and for the
whole frequency range using the following assumptions: (1) the induced fluid pressure
due to the shear stress and the compressibility of thin conduit are determined by the
normal component of the shear stress, and (2) the effect of this normal component is
identical to that for bulk compression (Dvorkin et al., 1993).

To account for partially saturated rock, we assume that fluid in stiff pore does
not affects the fluid pressure. Therefore, the shear modulus at any saturation can be

calculated using the following relation:

1 1 4 1 1
— R em—— - r3 - = L] 68
HPu Hdry 15(Adry Kp) ( )

where the term K, is the calculated bulk modulus at partial saturation, i.e., when
fluid saturates the conduit only (Sy = 0).

Compressional and shear wave velocities can then be calculated from the bulk
modulus given by equation (63) and from the estimated shear modulus given by

equation (68).
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COMPARISON WITH OTHER MODELS

Low/High frequency limits

One of the most obvious differences between fluid pressures in the uniform and
non-uniform saturation is that fluid pressure in the latter case approaches zero when
Q! — 0. Thus Gassmann’s equation can be derived from our model when fluid motion
is blocked. Therefore, using ¥ = 0 and using the limits at zero frequency (€, = 0)
and full saturation, Sp = Sy = S, = 1, in equations (41) , (49), and (50), and
substituting into equation (63), we arrive at Gassmann’s equation (Bourbié et al.,

1987):

- ¢[Ca - Cj] + Ca - Co
- ¢CO[CJ - Cf] + CJ[CD - Co].

Similarly, the high frequency limit given by Mavko and Jizba (1991) can be ob-

N

(69)

tained by using the limit ), — oo in equation (63).

O’Connell and Budiansky (1977)

O’Connell and Budiansky (1977) studied the frequency dependent elastic proper-
ties of a fractured solid by distinguishing among three separated regimes. In the first
regime, fluid moves into (or out of) individual cracks. When fluid is connected with
the external boundaries of the sample, then, at low frequency, fluid pressure will be
equal to its ambient value (the drained case). The modulus of the rock in this case
is unaffected by the presence of the fluid.

Second is the case when fluid is allowed to move from a crack to another without
bulk flow (saturated isobaric). Third, is the case in which fluid is not allowed to
move from a given crack (saturated isolated). The second case is an intermediate

stage between the drained and the saturated isolated cases.
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Another limit is recognized as the high fluid viscosity limit. In this case fluid is
unrelaxed and crack surfaces behave as if they were glued together and the effective
moduli of the solid will be unaffected by the presence of the cracks. The model
predicts that two peaks in attenuation occur with characteristic frequencies w, and
wy:

winC,a? )
8k 7
wana
cu
where a, and c are the major and minor semiaxes of the ellipsoidal cavity, and uis

=1,

the shear modulus of the unfractured rock.

The peak at w, is due to the transition from relaxed to unrelaxed shear stresses
which is not considered in our model. The peak at w, is due to the transition from
the drained to the saturated isolated regimes. This corresponds to a special case in
our model in which local flow takes place within a single conduit (Sy = 0 and gas
pressure is small at the end of the droplet, as in Appendices B, C).

The form of the critical frequency w; can be written in a form that is close to our

prediction, shown by equation (5), by noting that 2Sp? ~ a? (see Appendix F).

The Biot’s theory, Biot (1956a,b)

In this section we discuss some of the fundamental differences between the Biot

and the squirt-flow mechanisms.

1) Effects of permeability and fluid distribution

Wave propagation through porous material causes two main components of solid/fluid
relative displacements. The first one occurs when both solid and fluid move in the
same direction which is the mechanism used in Biot’s theory. Fluid pressure in this
case is the same along the fluid path (i.e., along the direction of fluid flow) and does
not depend on the length of the fluid channel that is related strongly to pore space
tortuosity and consequently to permeability (Biot 1956b). Indeed, the tortuosity of
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two different porous materials having the same permeability might be totally differ-
ent. However, the length of the fluid droplet depends on the tortuosity for a given
saturation (see Appendix F).

This important fact can not be considered in this described mechanism. There-
fore, the permeability introduced into Biot’s model merely through the thickness of
the average conduit will result in a weak relation between the viscoelastic behavior,
permeability, and saturation.

The second type of the solid/fluid motion occurs when the solid and fluid phases
move in perpendicular directions which is the squirt flow mechanism. Fluid pressure
in this case builds up as the length of the fluid droplet increases (Akbar et al., 1993;
Dvorkin and Nur, 1993). The length of the fluid droplet depends on the tortuosity
(for a given saturation) and consequently on the permeability. Therefore, the tortu-
osity affects the viscoelastic response of porous material as an independent parameter
through the length of the fluid droplet. As a result, the permeability introduced into
our model takes into account the thickness and the tortuosity of the pore space as

well as the effects of fluid distribution (saturation patterns).

2) Critical frequencies

Dvorkin and Nur (1993), and Dvorkin et al., (1993), noted a fundamental differ-

ence between the squirt and the Biot’s predictions. The critical frequency in Biot’s
model is written as:
w.pk

YeP® _ 7
g = b (70)

where p is the fluid density (Biot, 1956a). This equation predicts that increasing vis-
cosity of the fluid and/or decreasing permeability shift the relaxation towards higher
frequencies. This contradicts our predictions of equation (5) as well as some of the
observed experimental data, as discussed above.

It worth noting that global squirt dominates attenuation at very small frequen-
cies (since R is large) while the Biot’s effects dominate at much higher frequencies.

Biot’s mechanism neglects the effects of local fluid flow between adjacent pores on
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the viscoelastic behavior of porous material. These effects are accounted for in our
squirt-flow model by introducing the parameters ¢, a, and 8. Therefore, combining
the predictions of our model as given by equations (53) and (60) with the Biot’s model
given by equation (68), we obtain a complete description of the viscoelastic behavior

of a porous material.

COMPARISON WITH DATA
Uniform Fluid Distribution

In this section, we present data sets for uniform fluid distribution where fluid flow
takes place within the microscopic units while the global squirt flow does not occur

(jacketed samples and/or ultrasonic frequencies).

Effects of confining pressure

Coyner (1977), measured dynamic bulk modulus, compressional V, and shear
Vswave velocities, permeability, and porosity versus differential pressure Py for dry
and fully water and benzene saturated samples of Berea sandstone. The differential
pressure is defined as Py = P.— P,, where P, and P, are the external applied pressure
and the internal pore pressure, respectively. The pore pressure was maintained at
100 bar throughout the measurements while the confining pressure increased from
P, = B, = 100 bar to the highest pressure, P.=1000 bar. The permeability & at
Py = 0is 70.7 mD and reduces to k = 64.87 mD at P4y = 500 bar. The porosity of
the sample is ¢ = 17.8% at Py = 0 and is equal to ¢, = 16.98% at Py = 1000 bar.

S5 AL IO PR UL 1S S
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To estimate K, we substitute into equation (63) parameters derived from the data:
Bulk moduli of grains, water, and benzene at small confining pressure are 390, 21.8,
and 11.2 kbar, respectively; Sp = Sy = Sy, = 1 (full saturation), 7, = 1 cp (water
viscosity), 75 = .6 cp (benzene viscosity), frequency f = 0.9 MHz, C> = 6.374 x 10~
Pa~!. The bulk modulus of the water and benzene increases up to 23.4 kbar and 13.9
kbar at confining pressure of 300 bar, respectively. The dry rock compressibility, C,,
is given as a function of the confining pressure (Coyner, 1977).

Because the measurements are at very high frequency, we use ¥ = 0. ¢p at each
Py is calculated from the relation ¢p = ¢ — ¢y, where ¢ is taken as a function of Py.
¢y is obtained from equation (13). Figure 3.4 shows the measured bulk modulus for
dry, water, and benzene-saturated Berea sandstone. Solid lines are our theoretical
predictions when o = 0.15, § = 250, £ = .8 mm, and T varies linearly as a function
of Py from 1 to 3/8.

The choice of T' is based on data fitting and the assumption that the conduit
geometry for this type of rock changes from needle-like (' = 1) to crack-like (I’ = 3/8)
as confining pressure increases. The choice of @ = 0.15 is based on the fact that
permeability of Berea sandstone varies slightly with confining pressure (see discussion
above on relating a to bulk properties for the case a ~ 1).

In Figures 3.5-3.9, we calculate the attenuation and velocities of seismic waves
for Berea sandstone using the same parameters used in Figure 3.4. Figures 3.5 and
3.6 show the measured V,, and V, for water and benzene-saturated Berea sandstone,
respectively. Solid lines are our theoretical predictions. Figure 3.7 shows the cal-
culated bulk attenuation versus confining pressure for water and benzene-saturated
Berea sandstone. Figure 3.8 shows the calculated attenuation for compressional wave
versus confining pressure for water and benzene-saturated Berea sandstone. Figure
3.9 shows the calculated shear wave attenuation versus confining pressure for water

and benzene-saturated Berea sandstone.
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our theoretical predictions.
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water-saturated Berea sandstone versus differential pressure (Coyner, 1977).
Solid lines are our theoretical predictions.
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Effects of saturation hysteresis

As discussed earlier, fluid is macroscopically unrelaxed in rocks with non-uniform
fluid distribution when £, > 1. In this case fluid flow occurs locally within the
microscopic unit (conduit and stiff pores). This mode is typical of ultrasonic mea-
surements conducted on rocks of small permeability. In the following exerimental
data, frequency and permeability are of the order of 1 MHz and 1 uD, which gives
an estimate for squirt number ¢, ~ 10° (equation 6).

Knight and Nolen-Hoeksema (1990) measured compressional V, and shear V,
wave velocities in tight gas sandstones versus water saturation during imbibition
and drainage. The authors found that during imbibition V, shows little variation
with increasing saturation S until S = 80%, at which point V, increased dramatically
frorq 3 km/s to 4 km/s. When S decreased (drainage), pronounced saturation hys-
teresis was observed in the range 30% < S < 100% with V,, during drainage greater
than V, during imbibition. They explained these results by different microscopic
fluid distributions during saturation and drainage. At any given global saturation,
the percentage of fluid that occupies thin cracks during drainage is larger than the
percentage of fluid that occupies cracks during imbibition. |

The parameters of the sample are: permeability ¥=1.23 uD, porosity ¢ = 5.2%,
grain bulk modulus K, = .38 Mbar, and grain density p, = 2.630 g/cm®. The
frequency f were 1 MHz and .6 MHz for V, and V, respectively.

To estimate K we use: the crack porosity ¢c = .39% (Mavko and Jizba, 1991),
the rock bulk compliance at which cracks close Cg°= 3.45 x 10~!! Pa~?(Jizba, 1991),
¥ = 0 (since fluid is macroscopically unrelaxed), and the size of the microscopic unit
£ = .125 mm, I = 3/8 (thin fractures) (Walls, 1987), and frequency f =.8 MHz.

We use 8 = 50, and a = .001. This choice of small value for a~is based on the
“fact that permeability for this rock decreases rapidly with confining pressure due to

crack closure (Walls, 1987).
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Figure 3.10 gives bulk modulus as a function of the global water saturation. This
modulus was calculated separately for two different conduit saturation functions.
Solid lines represent our theoretical predictions calculated from equation (63). The
measured bulk modulus (calculated from V,, and V,) is represented by letters D for
drainage and B for imbibition. Figure 3.11 shows the two saturation functions used

in these calculations.

A qualitative relation between permeability and the scale of the micro-

scopic heterogeneity

As discussed earlier, the size of the microscopic unit £ is the distance between
two adjacent stiff pores and depends on the microscopic heterogeneity scale. ¢ in-
creases with increasing grain size, increasing clay content, and deteriorating sorting
(Figure 3.1b). These factors affects permeability k such that increasing grain size acts
to increase k while the other factors result in decreasing k (Nolen et al., 1992). It
is possible, therefore, to relate qualitatively permeability to the microscopic hetero-
geneity of porous material. Equation (5), along with experimental data that exhibit
peaks in attenuation, gives a unique relationship between k and ¢, whenever a peak
in attenuation is observed, provided that other parameters are known.

Figure 3.12 shows the scale of the microscopic heterogeneity £ versus Logyo k
for different rock samples. The figure shows that decreasing permeability results in

increasing £. Table 3.1 shows rock and fluid properties used in plotting Figure 3.12.

I I
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Table 3.1. Rock and fluid properties used in plotting Figure 3.12.

120

Data Soufce Rock Type Fluid Type Logl g‘ (mD) 6% | fn G |S% | ¢ (mm)
1 Grawacke Water -500 (1.1 |22x10%]100. | 0.336
1 Quartzite Water 260 |3.8 |4.4x10°|100. | 0.202
2 Vycor porous glass| Water 20 [28.0(3.0x10 |100. | 0.052
3 Sandstone Water -0.89 [150(4.4x10 |100. | 0.023
3 Sandstone Water 097 |[280(44x10 |100. | 0.144
4 Beara S.S. Glycerol 190 [180[1.1x10 |68 | 0.016
4 Beara S.S. Glycerol 260 [220(1.1x10 |62 | 0.011
4 Boise S.S. Glycerol 2.96 30.0{3.5x 10 60 0.008

Data from: 1) Paffenholz and Burkhardt, 1989; 2) Murphy, 1982;
3) Klimentos and McCann, 1990; and 4) Vo-Thanh, 1990.



Chapter 3 — Seismic Signatures .... 121

Non-Uniform Fluid Distribution

In this section, we present data sets for non-uniform fluid distribution where fluid

flow takes place within the microscopic and the macroscopic units.

Effects of frequency

Paffenholz and Burkhardt (1989), measured attenuation of extensional le and
shear Q' waves versus frequency for graywacke (k ~ .01 uD, ¢ ~ 1.1%), Harz
quartzite (k = 2.5uD, ¢ = 3.8%), and Obemkirchner sandstone (k=9 mD, ¢ =
18.7%). For full saturation, a single broad peak that ranges from f. ~ 1 to f. ~ 100
Hz (centered at 5 Hz in a log scale) was observed for the graywacke (w. = 27 £.), two
peaks for the quartzite at f. ~ 0.03 Hz and f. ~ 1000 Hz, and a single peak for the
Obemkirchner sandstone at f. ~ 50 Hz.

For full saturation, R® is of the order of the known volume of the sample Vr (R
6.6 cm).

For a qualitative analysis, equations (5) and (6) will have the same form except
for the squirt length £ and R. Substituting into equation (5) with k, ¢, and critical
frequencies (5 Hz, 1000 Hz, .03 Hz, 1000 Hz, and 50 Hz) of the samples given above
and using £ = 1 and the following numeric constants derived from data: n = 1 cp,
Cy ~4.4x107° Pa~!, and S = 1, we have the following relations between the squirt
length and the critical frequencies:
fe=5Hz : £ =0.34 mm, (graywacke)
f.=.03 Hz : R =3.7 cm, (quartzite)
fe =1000 Hz: ¢ = 0.2 mm, (quartzite)

f. =50 Hz : R =2.5 cm, (Obemkirchner sandstone)

The peak observed in the graywacke (f.= 5 Hz) and in the quartzite (the second
peak at f.=1000 Hz) are due to the local flow mechanism since the calculated squirt
length ¢ = 0.34 mm and £ = 0.2 mm are of the order of the size of the microscopic

channels. The squirt length for the graywacke, however, is larger than that of the
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quartzite. This can be explained in terms of the tortured channels that might observed
in the graywacke due to abundance of clay. This conclusion agrees with our previous
results (Figure 3.12).

The peaks observed at f. = .03 Hz (quartzite) and at f. = 50 Hz (Obemkirchner
sandstone) are due to the global squirt mechanism since the calculated squirt length
R =3.7 cm, and R = 2.5 cm are close to the estimated squirt length (i.e., R = 6.6
cm).

This qualitative analysis demonstrates the importance of permeability in studying
the viscoelastic behavior of porous materials.

We model the attenuation data quantitatively for the quartzite when the sample
is partially saturated with S = 20%. We represent the pores by crack-like conduits
which results in a, ¢n, v ~ 0 (see the discussion on relating a to the bulk properties
when a ~ 0). We also use ¢¢ = ¢p = ¢ = 3.8% that follows from equation (10); and
I'=3/8. The rock compressibility C, is calculated from the available measurements
of Young’s and shear moduli at zero frequency for small saturation (S = 20%) and is
Co = 1.04 x 107!° Pa~!. The compressibility term C is assumed to be C®° = 0.8C,.
We use the elastic properties of a-quartz (C, = 2.6 x 10~ Pa~! and Poisson’s
ratio v ~ 0.08) for the unknown values of C’, and v. Assuming ¥ = 0.52, we have
S, = Sp = 10.7%, that follows from equation (4).

Using the relation ¥ = 3 S=R3/Vr., given by equation (2), and the known volume
of the sample Vz ~ 295 cm?, and solving for the macroscopic squirt length R, we
find that R ~ 3.13 cm. Bulk attenuation Qj' is found as Q' = %’%&‘-} The solid
line in Figure 3.13 is the calculated attenuation when the microscopic squirt length
¢=2. mm. Circles represent the data points obtained from the relation %‘}2(—" =
- 2%':—"1 (Winkler, 1979); where Qg' and Qg' are the measured attenuation values
of extensional and shear waves respectively.

We notice that for § = 20%: [£]sa ~ 33.0 x 10° Hz; and [£)eheory ~ (&) ~
32.0 x 10° Hz.

Therefore, our theoretical prediction, obtained from equation (7), is extremely
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close to the data.
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Figures 3.14 and 3.15 show the attenuation of extensional and shear waves for the

same sample modeled in Figure 3.13. The solid lines are our theoretical predictions.
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CONCLUSIONS

We used the squirt flow mechanism to study the effects of permeability, frequency,
and saturation on the velocities and attenuation of seismic waves at two scales of
fluid distribution: (1) local flow at the smallest scale of saturation heterogeneity and
(2) global flow at a larger scale of fluid-saturated and dry patches. We found the
circumstances under which each of these mechanisms prevails.

We formulated the solution in terms of characteristic frequencies ¢, and ¢, that
depend on the scale of fluid distribution, frequency, saturation, fluid and gas proper-
ties; and the macroscopic properties of rock such as permeability, porosity, and dry

bulk modulus. The approximate expressions for £, and &, are:

wnS*BT(¢C; + Co)

e~

él \/gk ’

¢ wnR?T(4C; + C.)
g \/ﬁk ¢

We showed that the solution satisfies Gassmann’s equation (low frequency limit)

and the high frequency limit given by Mavko and Jizba (1991). We demonstrated
using experimental data that, in many cases, the squirt mechanism dominates the
Biot’s mechanism. We observed two peaks of acoustic wave attenuation due to the

global squirt flow and the local squirt flow.
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Appendix A: Volumetric Strains

In this appendix, we calculate the pore volume strain and the associated pore wall
displacements due to external confining stress with a unit magnitude o, applied to
the external boundaries of a body that contains pores inside. Pp denotes the internal

induced pore pressure normalized with respect to o..

Single pores
Consider a single pore embedded in an elastic isotropic solid with total volume
Vr and compressibility C,. The volumetric strain of the pore €, < 0 can be written

in the following form:
(A-1)

where AV, is the reduction in the pore volume with AV, = V, —~ V,, where V, and
V., are the original and the deformed pore volumes, respectively. €, can be expressed

through pore compressibility C,. as (Zimmerman, 1991):
& = —Cpe(0o — B,) — C,B,. (A-2)
Rearranging and noting that C,, = C,c — C,, as in equation (18), we have:

& = —(Cpeoo — Cpppp)- (A-3)

Multiple pores

Consider decomposing the original pore volume V, into two smaller portions with
volumes V,; and V,; such that V, = V,; 4+ V,;. We assume that volumes V,; and
Vo2 are connected and that the elastic properties of these pores are independent (no
elastic interaction). The reduction in the total pore volume AV, (AV, < 0) can be

written in the following form:

AV, = (Vo1 = Vo) + (Voz — Vaa), (A-4)
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where V,; and V,, denote volumes reduced due to applied stress o,. Using equation

(A-1), the previous equation can be written in the following form:
AV, = Vorel!) + Vipel?, (A-5)

where €!) and €{?) are the volumetric pore strains defined by equation (A-3). Dividing
both parts of equation (A-5) by the total volume Vr, and using equation (A-1), we

have:

Pép = ¢1€,(pl) + ¢2€§,2), (A-6)

where ¢ = ‘V/;-, 0= “—/,9;}, and ¢, = ‘—(}TZ Using equation (A-3), the previous equation

can be written in the following form:

92, = —4:[CWo, — CRPW) - ¢;(CP0, — COP). (4-7)

Pore wall displacements

For a needle-like conduit with length H and radius a, (Figure 3.16b), the volu-
metric strain is, as derived from equation (A-1):

_ mH(a, — Aa)? — nHa)

P n Ha? ’

(A-8)

where Aa = a, — @, and a is the radius of the uniformly deformed conduit. Using
equation (A-3) and noting that (Aa)? < 2a,Aa, we have the following expression for
Aa:

a, .
?(Cpcao - CppF). (A-9)

Deformed pore radius a is then:

Aa =

i =a,— Aa = a,[l — -12-(C,,cao ~C,,B)) (A - 10)

For a two-dimensional crack-like conduit, equation (A-1) can be written in the

following form:

_ H[b, — AbPd — HbAd

6P— Hbzd ’ (A_ll)
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where, 2H, 2d, and 2b, are the length, width, and the thickness of the crack, respec-
tively (Figure 3.16¢c). 2Ab is the reduction in pore thickness due to applied stress.

Solving for Ab and using equation (A-3), we have:
Ab = bo(Cpedo — CppB,).
Deformed pore thickness b (b = b, — Ab) is then:
b= bo[l = (Cpeoo — Cpp ). (A-12)

In a similar way, it can be readily seen that Deformed pore thickness b for a

three-dimensional crack, with radius H, is given by equation (A-12) .

Appendix B: Gas Pressure

In this appendix, we calculate induced average fluid pressure (liquid and/or gas) in
the equidimensional stiff pores. The solution is written using as yet unknown induced
fluid pressure Pp in the conduit that is connected to the stiff pore (Figure 3.16a).

The decrement in the total pore space volume AV, that is due to external confining
pressure with unit magnitude can be written in the following form, using equation

(A-6):
AV, =V =V, = =Va[CR - CB Pp] - Vo C}, — CF; Ps). (B-1)

The first and second terms in the right-hand side of equation (B-1) represent the
reduction in the volumes of the conduit and stiff pore, respectively. Pp and Ps are
induced fluid pressures in the conduit and stiff pore, respectively.

As pore surfaces contract, the reduction in the pore fluid volume AV} (AV; < 0)
is:

AVy = =VPPpCy - Vf PsCy, (B-2)

where VP and Vf are fluid volumes in the conduit and stiff pore, respectively. The
first term denotes the reduction in fluid volume in the conduit, while the second term

represents the reduction in fluid volume in the stiff pore.

L NES TS SR AR
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The reduction in gas volume AV, (AV, < 0) in both the conduit and stiff pore is

then:
AV, = AV, — AV;. (B-3)

Gas pressure is calculated as:

~

Py = (B-4)

&

C,’

where & is the strain of the gas & = A—V‘:i, C, and V, are the compressibility and the

original volume of the gas. Substituting with equations (B-1), (B-2), and (B-3) into
(B-4), we find:

- 1

Py =~ A7

Fluid pressure in stiff pores is spatially uniform since the fluid is not allowed to move.

C

{-VPCR - VECE + PolVPCE + C,VP+ Ps[VECE + ViiC))}.
Therefore, Ps is equal to gas pressure f’g (due to pressure continuity at the interface
of gas and fluid in stiff pores). Using the term Py to denote both Ps and P, and
solving the previous equation for Py, we have:

_ [V,,DC,Q + VOHC;Z] - [KDC,f,’, + CfoD]PD

C,V, + VACE x VFC,

Dividing the numerator and the denominator of this equation by the total volume

Py

of the unit Vr, and using the relations: ¢ = ‘l,';-, ép = l{,ﬂ;, oy = Y‘;:—, Sp = -:'-,{;,
Sy = ‘:;;, and V,/Vp = (V, = VP = Vf)/Vr = ¢ — ¢pSp ~ éuSH, we have:
B = [6pCE + ¢uCH] — ¢p[CE + SpCylPp

¥~ C,[6 = ¢0Sp — ¢uSn)] + ¢uICE + SuCil’

Noting that ¢ = ¢p + ¢y, the previous equation can be rearranged into the following

form:
P = [#pCE + ¢5CH] — 6p[CE + SpCy|Pp

H'= Coléo(1 — Sp) + 6u(1 — Su)l + #aICE + SuCj]’
The saturation of the unit S, given by equation (1) is the total fluid volume divided

(B-5)

by the total pore volume:

SpV,? +SuV¥  Spép + Suén
vP+vE ¢

Su=
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Adding and subtracting the term (¢DC£, + SpépCy) from the denominator of
equation (B-5), and making use of equation (1), we have the following expression for
PH: ~
P = [6pCR + ¢5CH) — ¢p[CE + SpCy) Pp

" d’Cg(l - Su) + Su¢cj + (¢DC£, + ¢HC;,I,) - ¢D[C£, -+ SDC[]'

Using equations (27) and (28), we write the previous equation in the following form:

. ¢Opc - ¢D[C£, + SDCJ]PD

Py = - . B-6
ST $C,(1=5.) + S46C; + 6Cpp — ¢p[CP, + SpCy] ( )
Using the following short-hand notations:
C,= C‘g, + SpCy, (B-17)
C'c = épp + Squ + (1 - Su)Cga (B - 8)

equation (B-6) can be written in the following form:

PH = ¢C'pc - ¢DCh-PD
¢C. — ¢pCh,

Dividing the previous equation by ¢C., we arrive at:

Py=S__2 (B -9)

where,

(B —10)

The compressibility term C. can be written in the form of equation (48) by using
equation (30). Cj can be written in the form shown in equation (47) by substituting

with the value of C’g, from equation (36).
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Fig. 3.16 (a) A microscopic unit composed of partially saturated stiff pore and a
conduit; (b) a needle-like conduit; (c) a two-dimensional conduit;
and (d) a penny-shaped conduit.
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Appendix C: Fluid Pressure in a Needle-Like Conduit

In this appendix, we calculate the average induced fluid pressure due to applied
stress in a needle-like conduit that is connected with a stiff pore. Fluid occupies the
distance between z = —L and z = 4L in the conduit and partially saturates the stiff
pore (Figure 3.16b).

In the analysis below, it is assumed that all dynamic quantities are harmonically
time-dependent with a harmonic factor ™.

The average dynamic thickness of the pore & is, as in equation (A-10):

. 1
i=a,— an[cg - C2P(2)], (C-1)
where, a, is the average original radius of the conduit, and P,(z) is the fluid pressure.
For a laminar flow, fluid pressure gradient and fluid velocity u along the z direction

satisfy the following equation:

ou P 8*u 10u

o= "o T o T (€-2)

where r is the radial coordinate in the z — y plane. For small deformation of the pore
(a = a,), the no-slip boundary condition for velocity u(z,r,t) is u(z,a,,t) = 0. The

solution of equation (C-2) is then:

: Jo(y/—tw/vr) 1, (C—3)

Jo(y/—tw/va,)

where J, 1s Bessel’s function of the first kind and zero order, v = is kinematic vis-
n/pe

1 0P
wp 0z

up(r,z) =

cosity, and p is fluid density. The continuity equation for axisymmetrical compressible

flow in the cylindrical coordinate system (r,z2) is:

10, 0, o) _ )
rar(rpv)+3t+ 0z =0 (C=4)

where ¥ is fluid velocity in the r direction. This velocity satisfies the boundary

condition: ¥yp=; = %.
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Fluid compressibility can be expressed in the following forms:

where p, is the reference fluid density at the initial pressure, and vy is the velocity
of sound in the fluid. By multiplying equation (C-4) by r and integrating in the r
direction from 0 to &, we rewrite the first term in equation (C-4) as:
s . Oa 1,
rpdlg = apozr = Ezwpoag[cg,l’l(z) - C’,ﬂ . (C -15)

The second term of equation (C-4) can be approximated as:

& 0p 1,
A -ardr ~ EzwpaECfPl(z), (C-6)

where the approximate expression 4* & a has been used, and Cy = -1;. Substituting
7

with u from (C-3) into the third term of (C-4), we find:

& 9(pu) ~_“3 _ h(h) 0P
| “ardr = =55l 25 T00) 5 (€=

where J; is Bessel’s function of the first kind and first order, A; = \/:-‘%‘lﬁ. Adding
(C-5), (C-6), and (C-T), we have:

&P,
-5;21—6§P1—N1=0, (C-18)
where, o
Wp(CB + Cy)
ef == 1 231!/\1! ’ (C—g)
~ Mde()
Ny = w?pCh
- 2Jy(M)
1- (A;TIJL.(KLJ
Boundary condition for equation (C-8) is:
Pi(z = £L) = Py. _ (C-10)
The general solution of equations (C-8) and (C-10) is:
cP
P, = 2G, cosh(©,2) + = (C-11)

Cg,-{-CJ’
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where G, is a constant of integration.

Average fluid pressure in the conduit as expressed through constant G is:

~ 1 (L 2G, sinh(6, L) ch
== — dz = ad . .
hi=sp ) P2 6,L CD +Cy (€-12)
Using this value of P; in equation (B-9) (Appendix B), we have:
Cpe _ (4[2G1sinh(6,L) Cie
PH= _C% C[ 91[4- +CPP+C/]. (0-13)

1-C
Using equation (C-13) as the boundary condition in equations (C-10) and (C-11), and

solving for constant G,, we have:

Coe _ _CR
Ce CoptCy

Gy

_ : ) C-14
2Cnnlé!19£Ll + 2(1 - C) COSh(@lL) ( )

Substituting with G into the expression for average fluid pressure (C-12), and using
non-dimensional parameter §, instead of ©,L, we arrive at:

G _cB_ b
Pl = - Cc CppCy + Cpc .
(1-C)cothf)y —1)+1 C£,+Cj

(C —15)

Appendix D: Fluid Pressure in a Two-Dimensional Conduit

We calculate the average fluid pressure due to harmonic uniform loading in a two-
dimensional conduit with length H and average thickness 2b, (Figure 3.16c). Fluid
occupies space between z = —L and 2z = +L in the conduit. The deformed thickness

of the crack b is, from equation (A-12):
b=b, - b.{Cp — CHP:(2)}, (D-1)

where Py(z) is fluid pressure. Fluid pressure gradient and fluid velocity u along the
z direction satisfy the following equation:

au aP 2 &

p—a?=—E+ﬂaz2. (D-2)
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The no-slip boundary condition results in the following solution:

1 aaPQ [1- COSh(V%{—’)]. (D —3)
~iwp 92 cosh(\/%ﬂ)

u(z,z) =

The continuity equation for this case is:

dp , dlpv) _ B(pu)
%t oz T To:

=0, (D -4)

where ¥ is the velocity component of fluid along the z direction, and satisfies the
boundary condition %|,_; = -g:'t’-. Integrating equation (D-4) in the z direction from 0

to b, we have:

b
/ 9 4 3‘-"1)52- ~ iwpboCy Py(2), (D —5)
;- 9b
zpdfh ~ bp°§ ~ 1wp°b2[CDP2(Z) Cﬁ], (D - 6)

where the approximate expression 5 ~ b2 has been used,

5 9(pv)
| =57 4z =~ —iwpobs [Ca — CRPy(2)], (D~ 7)
tanh();), 3P,
ayd ~ —[1 - 5= (D - 8)

where ), = /=2 wh . Adding equations (D-5), (D-6), (D-7), and (D-8), we have

2
%fz ©2P, - N; = 0. (D-9)
With boundary conditions
Py(z = 2L) = Py, (D - 10)
where, "D
pow*Coy
No = el (D -11)
- __L.z.lh
2 CD C
e’=—”“;( wt C1) (D - 12)
— tannl
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Py is calculated in appendix B in equation (B-9) through fluid pressure P, in the

conduit.

The general solution of equations (D-9) and (D-10) with G, as a constant of

integration is:

CD
P, =2G, COSh(@gZ) + (C_D-i-—a_) (D - 13)
The average fluid pressure in the conduit is:
5 1 L _ 2G2 Sinh(Qg) C£
P2_2—L-.[-LP2(Z)dz_ Q2 +(Cpr+Cj)’ (D_14)

where the symbol (), is used instead of ©;L. Following the analysis in appendix C, we
find Py as a function of constant G5, then use the resulting value of Py as a boundary
condition in equation (D-10); and solve for constant G,. substituting with G, into
equation (D-14), we find the following expression for the average fluid pressure in a

two-dimensional conduit:

Cpe Cge
- T ~ TD40; ck
P = = 5 . (D - 15)
(l - C)(Qg coth Qz - 1) C + Cj

Appendix E: Fluid Pressure in a Penny-Shaped Crack

We examine radial flow induced by crack wall displacement in a cylindrical co-
ordinate system (r,z), where r is the radial coordinate in the y — z plane (Figure

3.16d). The thickness of the crack is, as given by equation (A-12):
b= b, — B(C2 - CBE,(r)) (E-1)

The approximate equation of fluid flow can be written as:

Ou_ _OR 0O
ot or @ oz

where u is radial fluid velocity in the y—z plane. Using the no-slip boundary condition

(E-2)

u(z,r,t) = u(b,,r,t) = 0, we have:

1 8P, cosh( fwel

zwp or [1- cosh( /wa)

(E-3)

u(z,r) =
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The continuity equation in the cylindrical coordinate system (r,z) is:

d(pv) , Op , O(pu)  pu _
o tat e 70 (E-4)

where v is the component of fluid velocity along the z direction. This component
. vy ab
satisfies boundary condition v|,_; = 5.
Integrating equation (E-4) in the z direction from 0 to b, and using a procedure
similar to that described in appendix C, we express equation (E-4) as:

0*P, 10P,
+ ===+ 03P, - N3 =0. (E -5)

or? " r Or

This equation has to be solved with the following boundary condition:

P,-(To,t)=PH, (E_6)
where
pow?CR
Ny = 2 o
1- tml;!/\g!
3
2/ D
pw*(Cpp, + Cy)
As
and /\3 = ﬂ“

14

The solution of equations (E-5) and (E-6) for finite values at the origin is:
Cpe
P, = G3Jo(Oar) + ma

where G is a constant of integration. The average fluid pressure expressed through

constant Gj is:

. 1 27 To
P = / db j P,rdr
0 (1]

wr2

Jl(Qr) + Cﬂg
Q, (CB+Cy)
where the symbol £, is used instead of ©r,. Following the analysis in appendix A,

= 2G3

we find average fluid pressure for a penny-shaped crack P, as:

Cpe — _DCL CD
-~ Ce (C”"-C]) pc (E _ 8)

r = = + .
(1-O){Sed -13+1  (Cp+Cy)
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Using the following approximation for thin conduits:

tanh /\3} 1)\2
— - 3

3

lim {1 -

A3—0 /\3

and taking A3 from equation (E-7), we arrive at:

2 —3w17r§(C£, + Cy)

T bg

Q

i, (E-9)

Appendix F: A Unified Expression for Fluid Pressure for
Unidirectional Flow

In this appendix, we show that average fluid pressures in a needle-like crack, as in
equation (C-15) and a two-dimensional crack, as in equation (D-15), can be expressed
in the same form.

Equations (C-15) and (D-15) show that P;p and P,p have the same form except for
the hydrodynamic part represented by Q; = ©,L as in equation (C-9) and Q, = ©,L
as in equation (D-12). However, we will show that for thin conduits, both 2, and £,
will have the same form, when expressed in terms of permeability and porosity.

From equation (C-9), we have:

w?p(Cp + Cy)
1 — 2J]!A1! ’
AJo(A1)

M =02 =- (F-1)

where ), is defined in equation (C-7). Term 1 — %’%{\7‘5 can be expanded for thin

conduits as follows:
2.]1(/\1) ~ A% ~ wpagi
Ml(A) T T 8=2)" "8y

This expansion results in the following expression for Q,:

8wnL*(CP + Cy)

2
a,

1

02 = i. (F -2)

For a needle-like conduit, the permeability can be estimated by Kozeny-Carman’s
equation (e.g., Berryman and Blair, 1987):

03¢D
k= 8T? "
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Using the following expressions for tortuosity: T = H/{, and saturation in the con-
duit: Sp = L/H, we have

a2¢pl?S%
k= = L2 (F -3).

Expressing ; through k, we have:

wn(CB +C;)ShPen
- .

0} = (F —4)

For a two-dimensional crack, as in equation (D-12), we have:

2(D
pw (C + Cf)
0 =03L° = - 1— :’:nh(/\zl ’
Az

where ), is defined by equation (D-8).

Using the following approximation for thin cracks:

_ tanh(Ag)

1 W

~ \/3, (F - 5)

one can write {1, as:

3wnL?(CR +Cy).
b2 2.

o

2=

For a crack-like conduit, permeability has the following form (e.g., Berryman and

Blair, 1987):

b ép
k = ﬁ.
Using expressions T'= H/{ and Sp = L/H, we have:
bigpl:SE
k= = (F —6)
Expressing {2, through k, we obtain:
wnS302¢ )
0z = %(Cg+c,)z. (F=17)

Comparing equations (F-7) and (F-4), we find that ; = §2; when both are expressed
in terms of permea.bﬂity and porosity. We use term 2, to denote the unified ex-

pression of §; and (), for unidirectional flow as given by equations (C-15) or (D-15).
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Therefore, fluid pressure for unidirectional flow (needle-like or 2-D conduits) will have

the following expression:

Cpe _ _CB
B, = <. BT b (F-8)
T (1-C)(NycothQ, —-1)+1  CER+Cy’
rp
with b
CD +C,)S3e?
Q?‘:wﬂ( pp+kf) D ¢Di. (F—9)

Appendix G: Effects of Radial Flow on Fluid Pressure

In the following analysis, we examine the effects of fluid flow geometry (i.e., uni-
directional versus radial) on fluid pressure.

Fluid pressure is expressed in equations (F-8), and (F-9) for unidirectional flow
(a needle or a two-dimensional crack) and in equations (E-8) and (E-9) for radial
flow (a three-dimensional crack). Pore geometries affect fluid pressure through the
magnitude of pore compressibility. A pore with large compressibility has larger pore
wall displacements that result in high fluid pressure.

In the limits w — 0 (fluid is relaxed) and w — 0 (fluid is unrelaxed) the effects
of fluid flow disappear from equations (F-8) and (E-8), and induced pressure is the
same for both geometries. This observation implies that the dynamic (frequency-
dependent) fluid pressure for both geometries differ merely due to their geometrical
nature. This suggests the existence of as yet an unknown factor I' associated with the
nature of fluid flow, which is contained in 2, as in equation (F-9) for a unidirectional
flow and in §2, as in equation (E-9) for a radial flow.

Therefore, equating the magnitudes of the compressibilities and the fluid pressures
for both geometries as in (F-8) and (E-8), one can estimate the remaining effects of
pore geometry on fluid pressure. This allows us to obtain a general formula for fluid
pressure for any flow geometry in terms of parameter T'.

Equating fluid pressures from equations (F-8) and (E-8), we have the necessary

condition for fluid pressures in both geometries to be equal:
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Q,0e()

{2 coth(2,) = 1} = { 2 (L)

1}. (G-1)

Approximating these functions by first terms of Taylor’s expansions, we have in thin

conduits:
lim zdo(z) . z?
z—0 2J;(z) 8’
) z?
lll'f(l)[.’l: coth(z) — 1] — 3
and thus
02 0?
3 =3 (G-2)

We introduce the as yet unknown parameter I' into 22 and define §2, such that:
Q= IQ2. (G -3)

Therefore, equation (G-2) can be written as:

02 = -2 (G -4)
Equations (G-3) and (G-4) show that fluid pressure for any pore geometry can be
obtained from (E-8) or (F-8) by choosing an appropriate value for I'.

If equation (F-8) is used as a basis in calculating fluid pressure, then I is unity for

unidirectional flow and T' = 2 for radial flow. Now equation (F-8) has the following

form:
¢ (o7 ~
=pe __ < D
« C. — CD+C C
B, wtCy pc (G - 5)

= 2 - + = s

(l—C){Q[COthQ(—l}-l-l C£,+Cf
where P, is the unified average fluid pressure. We used the terms C',I,?: and C’g, instead
of C,ﬂ and Cg, to denote effective conduit compressibilities that might result from a
combination of more than one specific geometry. €, is obtained from equation (F-9)
by introducing I' and has the following expression:

wanS%cbpl’

0 = (—57—)F(C, 5, 9)i, (G-6)
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where

_ (CP+Cy)r
= _———C, .

I' is a numerical parameter that describes the effects of flow divergence on fluid

f(C’ Stn ¢) (G— 7)

pressure and ranges from 1 for a unidirectional flow to 2 for a radial flow. In particular,
for thin conduit, fluid pressure for a unidirectional flow P, given by equation (F-8)
can be obtained from equation (G-5) when I is unity. When T is equal to -83- (radial
flow), equations (G-5) and (E-8) give the same expression for fluid pressure.

Using limit limg l_.o(Q( coth Qe) — 1 in equation (G-5), we obtain:

-~

- Coe
Pl — G (G-8)

Similarly, using limit limg,_, (2 coth ;) — o0 in equation (G-5), we have:
Cr

Tegae ey

Pylgymoo

Equation (G-8) can be written in the form of equation (44) by making use of equa-
tion (27). Equation (G-9) can be written in the form that appears in equation (45)
by using equations (35) and (36). Finally, equation (41) can be found by substituting
with equations (G-8) and (G-9) into equation (G-5).

Noting that %% = P)lq ,——0» fluid pressure in the stiff pore Py as in equation (B-9)
can be written in the form of equation (49).

The overall average fluid and gas pressure Pg in the whole pore space (i.e., in the

conduit and stiff pore) is:
o ) o
Pg = V[PszD + Py(V, + V).

Using the values of V,, VP, V¥ and V, from Appendix A, Pg can be readily trans-

formed into the expression given by (50).

Appendix H: Fluid Pressure in a Macroscopic Conduit

In Appendix G, we showed that the effects of the conduit geometry on the average

fluid pressure can be expressed through an appropriate choice of the geometrical

T
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factor I'. Therefore, any conduit geometry will result in the same formula for the
fluid pressure in the macroscopic conduit. Here, we adapt the procedures used in
obtaining fluid pressure in a needle-like conduit (Appendix C), and solve for the
fluid pressure in a macroscopic conduit with length 2H¢. Fluid occupies the space
between z = —L and z = +L in the conduit. The average dynamic thickness of the

macroscopic conduit @ can be written in the form (Appendix C):

~ Lo
a=4a, — an[Cpc - CppPG(z)]) (H - 1)

where C'pc and C’,,,, are the compressibilities of the average conduit. Following the

procedures in appendix C, we have:

0*P
—ar2G —echG—NG':Oa (H—2)
where A\g = \/i“,’“-ﬁ, and
2p(Cyp + Cf)
92__“’/’( PP f (H~3)
Ji (A ’
1 - ot
No = w’p(:’,,c
G = 1— 2.]1!/\@! :
AgJdo(AG)

The boundary conditions for equation (H-2) is:
Ps(z=+L)=0. (H-4)

The solution of equations (H-2) and (H-4) is:
Cpe cosh(Og2)

Pg = = 1- -
CPP + Cf COSh(@GL)

The average fluid pressure in the conduit is:

J. (H - 35)

~

. 1 L C 1
FPe=— Pg(2)dz = —E—[1 — < =], H-6
“ "ol )t 5(2)dz Cpp + C/[ Qg coth(Qa)] ( )

where {lg = ©gL. Taking the high frequency limit of equation (H-6), we have as in

equation (55):

~

. Cpe
PGIQG—»OO = -5;;-:—0; : (H - 7)

Equation (58) can be derived by substituting with equations (22) and (23) into equa-
tion (H-7).
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Appendix I: Bulk Modulus Calculations

We obtain the compressibility of the unit shown in Figure (3.2b) by calculating
the strain energy of the system due to uniform confining loading of unit magnitude.
Saturation S is defined as the ratio of the total fluid volume to the volume of pore

space V,, and can be expressed as follows:

_ SR+ (Vo — B99S,

S 7 )

(I-1)

where the first term in the numerator is fluid volume in the fully-saturated region
R®, and the second term is fluid volume in the partially saturated region of volume
Vr — R Equation (I-1) can be written in the form of equation (3) by noting that
V, = ¢Vz and using the definition ¥ = %.

Zimmerman (1991) described, using the reciprocity theorem, the procedures of

calculating strain energy W, which can be written as:
W=W,+ W, +Ws,. (I-2)
W, is the strain energy in a unit without inclusions and is given by
We = 500(0Ca)Vr- (I-3)

W., is the increment in the strain energy due to the work done by o, through the
strain of the pore space and its constituents, integrated over the pore volume and is

given by:
1 . .
Wcl = —§0°[¢6gR3 + ¢6u(VT - R3)]’ (I - 4)

where ec represents pore strains in the fully-saturated region R3; and ¢, represents
pore strains in the uniformly saturated region.
The third term W, represents decrease in the strain energy due to induced pore

pressure and has the following expression:

We = —%O‘OC,[d)PGRa + ¢PE(VT - Rs)]’ (I - 5)
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where Pg is average pore pressure inside in the fully-saturated region, and Pz is
average pore pressure outside the region R3.
Adding equations (I-3), (I-4), and (I-5), and noting that Pz and Pg are normalized

with respect to o,, we have:

W = %afVT[C, ~ $UC.Ps+ ) = 61 - U)(C, P+ )] (1-6)

ec and ¢, will have the following forms as in equations (A-3) and (A-7), respectively:

a~ ~

= = (Cye =~ CppPa),

Q|8

-~

2 = —¢p(CE — C2Pp) — ¢u(CH — CH By).

(4]

Substituting with ez and ¢, into equation (I-6), and making use of equations (27)
and (30), we have:

1 - . - o
W= EUEVT[CO - (1 - W)(¢DC£PD + ¢HC£PH + ¢C,PE) - \I’PG(CO - C,)]. (I - 7)

Assuming uniform stresses and strains throughout the unit (the wavelength is
much larger than the size of heterogeneities), one can rewrite the strain energy of the

unit as

1
|
N
(oY)
I
—_
[
|
o0
~—

The effective bulk modulus K is defined as:

~ T O'QVT
= ===, I-
B € 2W (I-9)

Equation (63) can be obtained by substituting equation (I-7) into equation (I-9).
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Appendix J: Limits Imposed on 3

In this appendix, we impose upper and lower limits for the value of 4. For a rough
estimation, we use a spherical pore to represent the geometry of the stiff pore. The
lower limit for B, (8 = 1) can be estimated from the fact that the compressibility
of an elongated conduit is always larger than the compressibility of a spherical pore
(Zimmerman, 1991).

The upper limit is estimated from equation (23), which gives the following in-
equality:

C& > ¢uCh(1 + aB).

Using the compressibility of a sphere (Zimmerman, 1991), we have:

cH 2=y
pc T
Substituting with this expression into the previous equation, and making use of rela-

tion ¢y = &=, we arrive at the inequality (40).
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