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Abstract

The knowledge of microstructures and effective properties of porous materials is
indispensable to exploration geophysics, tectonophysics, and geological engineering.
This dissertation proposes critical concentration models and presents theoretical re-
sults for the mechanical and acoustic properties of porous materials. These models
and results are significant extensions of the nondilute concentration models and so-
lutions for porous materials with critical porosities or concentrations, are in good
agreement with most existing experimental data, and provide physical explanations
to several empirical relations.

Porous rocks and sediments have complicated microstructures that result from
various pore formation processes. These microstructures make the effective proper-
ties such as elastic moduli and wave velocities so distinctive that conventional models
like dilute and nondilute concentration models originally developed for composite
materials fail in describing them quantitatively. Critical porosity, or critical con-
centration of porous materials, is an important material constant to quantify those
microstructures, and is closely related to the pore geometry and connectivity.

By introducing critical porosity and defining the critical concentration phase, we
propose the critical concentration model whose microstructural interpretations are
of nonuniform features as indicated by thin section observations and SEM images of
porous materials. The critical porosities of porous materials determined by geomet-
rical, theoretical, and experimental approaches are consistent, and are of wide ranges
due to the diverse pore size, geometry, and connectivity.

Then a substitution method is proposed to develop critical concentration solu-
tions to the effective moduli and wave velocities of clay-free and clay-bearing porous
rocks and sediments. These solutions are extensions of the nondilute concentration
solutions to porous materials with critical porosity or concentration, and they can
quantitatively describe most available experimental data and provide interpretations
to several empirical relations between wave velocity, porosity, and clay content.

The asymmetric self-consistent method (ASCM) is utilized to estimate the critical

porosity and evaluate the effective moduli and wave velocities of porous materials.



With the existing ASCM solutions for spherical and cylindrical inclusions, the ASCM
solutions for penny-shaped inclusions are found to describe the systematic changes
of critical porosities, effective moduli, and wave velocities with pore geometry. By
comparing ASCM solutions with the critical concentration solutions, we conclude that
the ASCM solutions are accurate almost up to the critical porosity, and that they are
exact after the critical porosity.

For sand-clay sediments ranging from clean sands, shaly sands, sandy shales, to
pure shales, a special critical concentration model is proposed to evaluate the porosity-
clay relation, porosity-permeability relation, effective moduli, and wave velocities. In
particular, the intergranular clay and void effects are taken into account. The model
results are in good agreement with available experimental data.

The critical concentration model is applied to the effective stress laws of porous
rocks and sediments. For isotropic porous materials, it is the critical concentration
phase that represents the pore pressure effect, and so the volume fraction of the
critical concentration phase is the so called effective stress coefficient. Such results are
applicable to elastic and inelastic deformation and failure processes, and they reduce
to five different expressions of the effective stress coefficient used mostly in existing
effective stress laws. For structurally anisotropic porous materials, the effective stress
coefficient is a symmetric second-rank tensor, which indicates that pore pressure
affects both the normal and shear stress components. Such anisotropic pore pressure
effects are important to the understanding of faulting and earthquake instabilities
induced by fluid extraction from subsurface.

Finally the critical concentration model is applied to the strength theory of porous
materials. The actual stresses acting on the material skeleton depend on both the
contact area between grains and the stress concentration induced by the pores and
cracks. The critical concentration strength criteria based on such actual stresses are
proposed for uniaxial tensile and compressive, and shear fractures. The results predict
systematic decreases of material strengths with pore volume fraction, geometry, and
connectivity. Then the strength criterion of transversely-isotropic rocks is studied

and applied to the explanation of tectonic block rotations.
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Chapter 1

Introduction

1.1 Background

Porous materials include a variety of pore-containing geomaterials, metallic materi-
als, polymer materials, and ceramic materials, which are encountered everywhere in
daily life, in technology, and in nature. Early efforts to understand porous mate-
rial properties date back to Lucretius, 1st century B.C. (see Kendall (1984)). There
are voluminous literatures treating porous material microstructures, mechanical and
acoustic properties, and their relationships. Most of these studies are based on a
fundamental hypothesis that porous material microstructures and effective proper-
ties change smoothly when its porosity increases from zero to 100%. This hypothesis
stems from the studies of two-phase or multiphase heterogeneous materials.

There are two catalogs of material models and theories for two-phase or multiphase
heterogeneous materials. The first catalog is the mixture model of continua and
mixture theory (or theory of interacting continua). The mixture model assumes that
each constituent preserves its own identity but is so diffused through the mixture
that each point of the continuum is co-occupied by two or more different constituents.
Thus, the mixture theory treats each constituent equally and yields the smooth and
continuous variation of effective properties for the whole range of any constituent
volume fraction (Truesdell, 1962; Green and Naghdi, 1965; Morland, 1971; Atkin and

Craine, 1976a, 1976b). With one constituent as void or fluid, some modified mixture
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theories take porosity as an internal state variable, and turn out to be equivalent to
Biot’s theory in porous materials (Biot, 1941, 1956a 1956b; Bowen, 1982; Katsube,
1985, Katsube and Carroll, 1987a, 1987b).

The other catalog of studies takes elastic inclusion models to simulate two-phase
or multiphase heterogeneous materials. Extensive reviews of elastic inclusion models
have been given by Hashin (1970, 1983), Watt et al. (1976), Mura (1982, 1988), and
Hudson and Knopoff (1989). The microstructures of elastic inclusion models are usu-
ally described as matrix phase and inclusion phases. For any inclusion concentration
or relative volume fraction, the matrix phase exists as a framework connected in space,
and the inclusion phase is embedded as isolated inclusions. At low level of inclusion
volume fraction, the inclusion phase is in the so-called dilute concentration state; at
high level of inclusion volume fraction, the matrix phase occurs as honeycomb-like or
foam-like framework with nonzero stiffness. Consequently, when the inclusion phase
is void or.ﬂuid, the effective properties such as elastic moduli and strengths exhibit
smooth and continuous variation from zero to 100% inclusion volume fraction, or
porosity.

When the constituent properties of two-phase or multiphase materials are in the
same order, as often in the case of engineering composite materials, the constituent
volume fraction becomes the sole dominant parameter to influence the effective prop-
erties. As indicated by the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1961,
1962, 1963), the upper and lower bounds of effective elastic moduli for engineer-
ing composite materials are very narrow and change smoothly when one constituent
concentration increases from zero to 100%. Since the upper and lower HS bounds
represent very different constituent geometry and connectivity, the narrowness of
HS bounds makes it acceptable in most cases of engineering composite materials to
neglect the effects of constituent geometry and connectivity. Because much of our

knowledge of porous material properties is rendered from the effective properties of
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two-phase or multi-phase materials by decreasing the material constants of one con-
stituent to zero for dry porous materials and to fluid properties for fluid-saturated
porous materials, it has been customary to take porosity as the primary measure of
porous material microstructures, and it has been generally accepted that the porous
material properties such as effective moduli, strengths, and wave velocities change
smoothly from zero to 100% porosity (Wyllie et al., 1956; Watt et al., 1976; Bourbié
et al., 1987; Nobes, 1989).

Most crustal rocks and sediments belong to dry or fluid-saturated porous materi-
als. When the effective properties of such geomaterials in low-porosity domains are
concerned, it is verified by a large number of in-situ and laboratory experiments that
the direct applications of conventional models and solutions for composite materials
to such geomaterials are appropriate. However, in the intermediate and high porosity
domains, systematic discrepancies between the data of geomaterial properties and
predicted results from the conventional models have been recognized by many re-
searchers, as reported recently by Han (1986), Hudson and Knopoff, (1989), Jizba
and Mavko (1990), and Marion (1990). For instance, the Hashin-Shtrikman upper
and lower bounds of effective elastic moduli for water-saturated porous materials are
far apart, implying that the influence of other pore structure parameters on effective
moduli is in the same order as porosity effect. To remedy such discrepancies, several
empirical relations have been proposed (Raymer et al., 1980; Han et al., 1986; Marion
and Nur, 1991).

Those discrepancies are mainly due to the oversimplified models of porous material
microstructures which vary with lithology, pressure, etc.. Porous rocks and sediments
have complicated microstructures that result from depositional, diagenetic, arid tec-
tonic processes. There is more and more evidence that at some finite values of porosity,
the effective properties of porous materials, such as strengths, effective elastic mod-

uli, and wave velocities, change distinctively from previous levels, decreasing sharply
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or even reducing to zero. These values of porosity are defined as critical porosities.
Critical porosity means a distinctive change of porous material microstructure, and

is closely related to the pore size, geometry, and connectivity.

1.2 Objective

The phenomena of critical porosity and associated mechanical and acoustic prop-
erties of porous rocks and sediments are not consistent with the fundamental hy-
pothesis stated above. We believe that the relaxation of the fundamental hypothesis
and incorporation of more parameters than porosity to describe porous material mi-
crostructures can lead to new material model and theory to describe quantitatively
the relationships between microstructures and effective properties of various porous
materials, especially those of porous rocks and sediments.

During the last two decades, quite a few controversies have been raised on the pre-
dicted porous material properties in intermediate and high porosity or crack density
domains, especially those vanishing elastic moduli at finite porosities or crack densi-
ties derived from the self-consistent method (Hill, 1965; Budiansky, 1965; Walpole,
1969; Hashin, 1970, 1983; O’Connell and Budiansky, 1974, 1976, 1977; Bruner, 1976;
Christensen, 1979, 1990; Berryman, 1980; Henyey and Pomphrey, 1982; Hudson and
Knopoff, 1989). Essentially, the criticisms upon the effective medium theory or self-
consistent method rest on the above fundamental hypothesis or similar arguments,
and the advocates base their arguments on physical intuition and very limited data
relevant to those of critical porosity in porous rocks and sediments. A better un-
derstanding of such phenomena and resolving of these controversies are important in
both theory and practice, and this becomes one of motivations to conduct this thesis
study.

The knowledge of microstructures and effective properties of porous rocks and

sediments is indispensable to exploration geophysics, tectonophysics, earthquake en-
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gineering, and environmental protection. The interpretation and modeling of acoustic
well logging, seismic reflection, and cross-well tomography in exploration and produc-
tion require the wave velocity-porosity relations that include the effects of lithology,
saturation, confining pressure, and anisotropy. The faulting and earthquake instabil-
ities in the crust are intrinsically related to the mechanical behaviors of rocks that
suffer from pore/crack nucleation, growth, and coalescence. The earthquake inten-
sity zonation and hazard assessment are associated with the mechanical behaviors of
poorly consolidated rocks and sediments. The environmental pollutions by nuclear
waste disposals and subsurface fluid injection and extraction can be minimized only
with fully understanding of the transport and mechanical properties on site and in
the surrounding areas. These multidisciplinary demands, along with above theoretical
considerations, encourage us to develop the material models, methods, and solutions
to incorporate the critical porosity, to provide better descriptions of rock and sedi-
ment microstructures, and to evaluate the mechanical and acoustic properties such
as effective elastic moduli, strengths, and wave velocities. This thesis study is an

important step in this needed direction.

1.3 Plan

This dissertation is organized as follows.

Chapter 2 summarizes and complements the conventional dilute and nondilute
concentration models and solutions of porous materials in such a way that the ef-
fects of microstructural geometry on effective elastic modulus-porosity relations are
systematically examined.

Chapter 3 proposes the critical concentration model of porous materials. The
concepts of critical porosity and concentration are introduced, and the critical con-
centration phase is defined. Then the microstructure interpretation of the critical

concentration model is provided and compared with thin section observations and
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SEM image bf porous rocks. The critical porosities of porous materials are determined
by geometrical and theoretical approaches, and compared with many experimental
results in literatures.

In Chapter 4, a substitution method is proposed to develop critical concentration
solutions to the effective elastic moduli and wave velocities of clay-free and clay-
bearing porous rocks and sediments described by the critical concentration model.
The theoretical results can quantitatively describe many experimental data and give
an insight into several empirical relations between wave velocity, porosity, and clay
content.

The asymmetric self-consistent method (ASCM) is utilized in Chapter 5 to esti-
mate the critical porosity of porous materials and evaluate the effective elastic moduli
and wave velocities. The ASCM solutions for penny-shaped pore/crack models are
found, and they, along with the solutions for spherical and cylindrical pore models, de-
scribe the systematic changes of critical porosities with pore geometry. The resulting
effective elastic moduli and wave velocities are compared with critical concentration
solutions, and they are within the ranges predicted by the substitution method.

In Chapter 6, for sand-clay sediments ranging from clean sands, shaly sands, sandy
shales, to pure shales, a specific critical concentration model is proposed to evaluate
the porosity-clay relation, porosity-permeability relation, effective elastic moduli, and
wave velocities. In particular, the intergranular clay and void effects are taken into
account.

The critical concentration model is extended to the study of effective stress laws
of porous rocks and sediments in Chapter 7. For isotropic porous materials, it is the
critical concentration phase that applies the pore pressure on the material skeleton,
and so the effective stress coefficient is exactly the volume fraction of the critical
concentration phase. For structurally anisotropic porous materials, the effective stress

coefficient is a symmetric second-rank tensor, which indicates that pore pressure
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affects both the normal and shear stress components. Such anisotropic pore pressure
effects are important to the understanding of faulting and earthquake instabilities
induced by fluid extraction from subsurface.

In Chapter 8, the critical concentration model is extended to the study of strength
criteria of porous materials. The actual stresses acting on the material skeleton
depend on both the contact area between grains and the stress concentration induced
by the pores and cracks. The uniaxial strength criteria and shear strength criteria
based on such actual stresses are proposed, and the anisotropy effect on the strength
is studied and applied to the explanation of tectonic block rotations.

Finally, Chapter 9 summarizes the main results of this thesis study, discusses the
further applications of proposed models and solutions, and suggests several related

topics for further studies.
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Chapter 2

Dilute and Nondilute Concentration
Models and Solutions

Abstract

This chapter summarizes and complements the dilute and nondilute concentra-
tion models and solutions for the effective elastic moduli of porous materials. The
microstructural geometry effects on the effective elastic moduli are consistent for
both the dilute and nondilute solutions. Spherical pore model results in the highest
effective elastic moduli, and flat pore or crack model leads to dramatical decrease
in effective elastic moduli. The dilute solutions to effective elastic moduli are valid
at low porosity, but become unacceptable at high porosity. The nondilute solutions,
such as Mori-Tanaka’s solution and bounding solutions, yield asymptotic values of
the dilute solution at low porosity, but exhibit broad variations at high porosity due
to different approximations of porous material microstructures. The Mori-Tanaka’s
solutions for a series of spheroidal pore models just fully fill the broad domain between
the Hashin-Shtrikman upper and lower bounds, and share the saturation feature de-
scribed by Gassmann’s solution for pore models. Based on the dilute and nondilute
solutions, a group of solutions with simple forms but sufficient accuracy are proposed

for the effective elastic moduli of dry porous materials.
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2.1 Dilute Solutions to Effective Elastic Moduli
2.1.1 Model and method

The dilute-concentration solutions to effective elastic moduli of composite materials
are based on an assumption that the fractional volume of inclusions is much smaller
than unity, which implies that distances between inclusions are so large relative to
inclusion sizes that the interactions between inclusions may be neglected. Table 2.1
compares the microstructure models and derivations of typical dilute concentration

solutions to the effective elastic moduli of porous materials.

Table 2.1 A summary of dilute concentration models and solutions

Reference Microstructure model | Derivation and comments

S-tensor transformation.

For spherical inclusion the S-tensor
Eshelby (1957) | Ellipscidal inclusion becomes isotropic and the solution
is of simple and explicit form.
Applicable to porous materials.

Modification from asymmetric
self-consistent solution.

Walsh (1969) | Penny-shaped inclusion | Appropriate for inclusions with
aspect ration < 1.

Applicable to porous materials.

Reciprocity theorem and explicit

Cylindrical pores with elastic deformation solution.
Mavko (1980) | circular and triangular Only for dry porous materials.
sections Invoking Gassmann’s relation to

extend to fluid-saturated materials.

Numerical modeling by boundary

Two-dimensional pores element method.

Chen et al. with arbitrary shapes Only for dry porous materials.
(1990) such as tapered pore Invoking Gassmann’s relation to

and star-shaped pore extend to fluid-saturated materials.
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2.1.2 Spheroidal inclusion materials

The dilute-concentration solution to effective bulk and shear moduli for spherical

inclusions was found by Eshelby (1957), which can be rewritten as

{& 3.[{1 + 4[11 .K] - K2

= 9
Y AT YT G (21)
1 5(3K; + 4p1)(p1 — p2)
By . 99
H (9K + 8y )pa + (6K + 1241 ) p2 ¢ (22)

where K and p represent effective bulk and shear moduli, K; and p; represent bulk
and shear moduli of matrix phase, K and y, represent bulk and shear moduli of inclu-
sion phase, respectively, and ¢, represents the inclusion volume fraction, or porosity
for porous materials.

Walsh (1969) simplified the result obtained from the self-consistent method (Wu,
1966), and found the dilute-concentration solution for penny-shaped inclusions whose

aspect ratios 5 are < 1,

.If_l.—_-l-f- 3Ky + 4u, KI-K2¢ (23)
K 3K + 4pa + 3mnu (3K, + p)/BK L +4p) Ko '
22 | 8y
— = 141+ +
p [ 4pz + 3mnp1(3Ky + 2p1) /(3K + 4p1)
23K, +2p2 42 -
+ ( 2 + [7%] ul) 1 H2 ¢2. (2.4)

3Kz + 4p2 + 3mnua 3Ky + p1) /(3K + 4p1)" 51y

By using Walsh’s procedure, we find the dilute-concentration solution for cylin-

drical inclusion mode] (Chen and Nur, 1991),

K, _1+3(K1+ﬂ1)+#2K1'-K2

e : 2.5
K 3(Kp+m)+p I & (23)
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4(pq — K2) | p1— P2 V
F,|¢,, 2.6
M [5(#1 + p2) - Sty 122 (2.6)

where

p, = S8+ (48K + 51Ky o 44yl + (45K Ky + 24Ky + Qs Klps + 9K Kopta
‘ [((BKy + p1)pa + (3K + Tpa ) pa][3(K2 + 1) + pa)
(2.7)

2.1.3 Application to dry porous materials

There is no restriction on inclusion property in deriving above dilute-concentration so-
lutions. By decreasing appropriately the properties of inclusion phase, those solutions
are conventionally applied to dry porous materials (K3, z, = 0) and inviscid fluid-
saturated porous materials (K, # 0, u; = 0). Pores are supposed to orient randomly
in three dimensions so that the effective properties are isotropic. If Poisson’s ratio v,
is used instead of shear modulus p, for the matrix phase, above dilute-concentration
solutions reduce to simple expressions for dry porous materials:

For spherical pore model,

Kl — 3(1 - Vl)
K 1 + 2(1 _ 2V1)¢2, (2'8)
K 15(1 - Vl)
7‘- =1+ T 2. (2.9)

For penny-shaped pore/crack model which is characterized by 7 < 1,

Kl _ 4(1 - l/2)

K= i (2.10)
p 1 8(1 —1)(5—mn)
7‘- =1+z[1+ T @ —0) 1¢2. (2.11)
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For cylindrical pore model, our solution is identical with Mavko’ solution which

was derived by a different method (Mavko, 1980),

K1 _ 5— 41/1

7 =1t 30— 2Vl)¢2, (2.12)
™ 40 — 241,

— =14+ ——¢.

p 15 $2 (2.13)

Fig.2.1 shows dilute-concentration solutions to the effective elastic moduli versus
porosity for dry porous materials. Spherical and cylindrical pore shapes are of similar
effects on effective elastic moduli. Flat pore shapes with smaller aspect ratios lead to
more decrease in both effective bulk and shear moduli. This tendency is consistent
with fracture mechanics analysis of materials with cracks or flat pores. Given a value
of porosity, the smaller the pore aspect ratio is, the larger the pore number in a unit
of porous material, and the lower the effective elastic moduli. Thus, porosity is no

longer the dominant parameter in such situations.

2.2 Nondilute Solutions to Effective

Elastic Moduli

2.2.1 Model and method

Nondilute concentration solutions to effective elastic moduli can be determined by
several methods such as statistical treatment, scattering theory, bounding method,
and self-consistent method. These solutions are exact at the ending porosities (0% and
100%) and vary smoothly between them, but such variations differ considerably for
individual models due to different approximations of the inclusion interaction. Table
2.2 classifies the nondilute concentration models and solutions into four catalogs and

gives comments on their applicabilities to porous materials.
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Fig.2.1 Dilute-concentration solutions to the effective elastic moduli
versus porosity for dry porous materials. Flat pore shapes are of
dramatic effects on both effective bulk and shear moduli. (a) ef-
fective bulk modulus-porosity relation, (b) effective shear modulus-

porosity relation.
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Table 2.2 A summary of nondilute concentration models and solutions

Classification

Reference

Applicability to
porous materials

Mori-Tanaka method
(Based on Eshelby’s

S-tensor)

Mori-Tanaka (1973)
Weng (1984)

Tandon & Weng (1986)
Benveniste (1987)

Applicable to porous materials
with porosity from zero to
100% and spheroidal

pore shapes.

Differential effective
medium theory
(Add incrementally
one phase to the
new matrix phase)

Roscoe (1952)
Boucher (1976)
McLaughlin (1977)
Cleary et al. (1980)
Sheng & Callegari
(1984)

The added phase, assumed
as pores, is not connected in
space. Applicable to porous
materials with porosity from
zero to 100% but little
specification on pore shapes.

Self-consistent method
(Symmetric: treating
phases equally.
Asymmetric: matrix
and inclusion phases
differ in shapes and
occurrences)

Kroner (1958)
Hill (1965)

Wu (1966)
Walpole (1969)
Boucher (1974)
Watt et al. (1976)
Berryman (1980)

For dry or fluid-saturated
porous materials, the solutions
predict distinctive change of
effective moduli at finite
porosities which vary with
spheroidal pore shapes (see
details in chapter 5).

Bounding method
(Upper and lower
bounds on effective
moduli given the
constituents and
microstructural
properties)

Voigt (1928)

Reuss (1929)
Hashin & Shtrikman
(1961, 1962, 1963)
Miller (1969)

Corson (1974)

Watt et al. (1976)
Hashin (1983)

Applicable to porous materials
with porosity from zero to
100% but little specification on
pore shapes. Narrow bounds
for composite materials with
same order of constituent
properties, but far-apart
bounds for fluid-saturated

and dry porous materials.
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When aipplied to the study of effective elastic moduli of porous materials, the
differential effective medium theory (DEM) is less competitive than others since.it
does not give a definite description of porous material microstructure regarding the
pore shape, connectivity, and orientation. Because the self-consistent method yields
controversial predictions on the effective elastic moduli of porous materials, we will
give a separate study of self-consistent model and solution in chapter 5. In the
following, the Mori-Tanaka method and solution are introduced since they are often

used for engineering composite materials but relatively new for porous geomaterials

(Mori and Tanaka, 1973; Mura, 1988).

2.2.2 Mori-Tanaka’s solution

The Mori-Tanaka’s method can be outlined as follows. As the concentration of in-
clusions increases from dilute state to finite state, the perturbed stress field near the
inclusion interfaces no longer dies out completely, giving rise to an average perturbed
stress in the matrix which clearly differs from that applied externally. Eshelby’s equiv-
alence principle is then used to find the deviation of stress in the inclusions in terms
of the average perturbed stress in the matrix. Such average perturbed stress in the
matrix can be solved to account for the inclusion interaction. This original procedure
has been used to advantage by many researchers, for example, Chow (1978), Taya
and Chou (1981), Taya and Mura (1981), Weng (1984), Tandon and Weng (1986),
and Benveniste (1987).

For spheroidal inclusions, the aspect ratio 7 is defined as the ratio of length to
diameter of a spheroidal inclusion. The values of 5 correspond to the inclusion con-

figurations as follows:

n — oo — cylindrical;
n > 1 — needle-like;

n > 1 — prolate;
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n = 1 — spherical;
n < 1 — oblate;

7 < 1 — penny-shaped.

The Mori-Tanaka’s solution for spheroidal inclusion materials are expressed as .

K, fi H fs
——=1+~— R ————=1+—-— s 2.14
AR ATy A (214)

where

ay — 2((12 -~ az — (14)

hi= 3a ’

(2.15)

_ 2(S1122 + S2222 + Sa2233 — 1)(as + aq) + (S1n1 + 252211 — 1)(a1 — 2a3)
f2=1+¢;

3a ’
(2.16)
2 1 1 1
fs = —¢ - +
5251212 + p1/(p2 — 1) 328233 + pa/(p2 — 1)
1
+7—[2(a1 + 6 — a3) +as +asal, (2.17)
2 28 -1 1 285. -1
fa = 1—¢{= 1212 2323

+ - —_—
5251212 + p1/(p2 — 1) 328233+ pa/(p2 — p1)

1
—m[(suzz — S2933)(2a3 — a4 + asa) + 2(S1111 — S2211 — 1)(a1 + a2) +

+(S1122 — S2222 + 1)(2as — a4 — asa)}}. (2.18)
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For dry spheroidal pore/crack materials, K, = 0, y; = 0, above solution reduces

to
K, _ b2 I b2
I{ =1 f51_¢2) —1+f61_¢2, (2.19)
where
fs = }_(5222:: + S2233 — 1) + 2(S1111 — S1122 — Sa211 — 1) (2.20)
3 25112252211 — (S1111 — 1)(S2222 + Sa233 — 1)’ )
P _ L, 1 .\
¢ 5(251212 — 1)  3(2S2323 —1)  15(Sz233 — Saz22 + 1)
_1_2(52:z22 + Sa323 — 1 + S112252211) + (S1m1 — 1) (2.21)

15 25112252211 — (S1111 — 1)(Sa2222 + S2233 — 1) '

and the components of S;ji; and @, ay, ..., a5, functions of the aspect ratio 5, are given
in Appendix.

Fig.2.2 and 2.3 compare the Mori-Tanaka’s solutions with the dilute-concentration
solutions as well as the Voigt’s bounds for cylindrical and penny-shaped pore models
of water-saturated porous materials, respectively. In computation, K, = 2222MPa,
pe = 0, (K1/K;) = 10, and y; = 16666 MPa are used. At low porosity (10% or
smaller), the Mori-Tanaka's solutions are equivalent to the dilute-concentration solu-
tions. The dilute-concentration solutions at high porosity become unacceptable since
they violate the Voigt’s bounds (Voigt, 1928; Hill, 1952, 1963). These features hold
for other spheroidal pore/crack models. Thus, it is the microstructural interaction

that causes difference between these solutions for the same spheroidal model.
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2.2.3 Bounding solutions

While above solutions to effective elastic moduli are inclusion geometry-specific,
bounding solutions to effective elastic moduli bear little information about inclu-
sion geometries. Voigt and Reuss bounds are resulted from two simple assumptions,
namely, those of uniform strain (isostrain) and uniform stress (isostress) field through-
out the composite material (Voigt, 1928; Reuss, 1929). For two-phase composite ma-
terials, the effective bulk and shear moduli of Voigt’s solution, Ky, py, and Reuss’

solution, KR, R, are expressed respectively as

Kv=(1-¢)K1+ 2Kz,  pv = (1— ¢2)pa + dop; (2.22)

1 1"¢2+¢2 1_1—¢2+ﬁ.

’ 2.23
Kgr K, K, KR 1 Ko (2.23)

Hill (1952, 1963) verified that (Kv, uv) and (KR, pr) are the most general upper and
lower bounds on effective elastic moduli K and px of composite materials. However, no
information about the inclusion geometry is specified in the Voigt and Reuss bounds,
and so poor agreements often arise between the solutions and experimental data even
for engineering composite materials.

To improve the Voigt-Reuss bounds, Hashin and Shtrikman (1961, 1962, 1963)
used variational principles to find the bounding of effective elastic moduli of n-phase
composite materials. Although no information about the inclusion geometry of mul-
tiphase composite is specified in the HS bounds, the physical meaning of the HS
bounds in the common case of two-phase composite is quite clear from the work of
Hashin (1962, 1970). The so called “composite spheres assemblage” micromechanical
model of HS bounds, as in Fig. 2.6c, is composed of an assemblage of size-distributed
concentric spheres. Each sphere consists of a spherical inclusion with K, and p,, and
a concentric spherical shell with K; and p;. In the limit the entire volume can be

filled out with such spheres and then becomes a composite spheres assemblage. For
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soft-inclusion and stiff-matrix materials (K; > K,, y; > p,), the HS upper bound

can be written as

(K; — K1)(3K, + 4p1) 82

K=Ky + 2
! 3K2+4/11+3(K1—I\2)¢2

(2.24)

Suyda(pa — p1) (3K + 4p)
5uy (3K + 4p1) + 6(1 — ¢2)(p2 — p1 ) (K1 + 2p)

'

The corresponding HS lower bound is of the above forms with the suffix 1 and 2
exchanged.

Some bounding solutions narrower than HS bounds were developed when more
specifications on microstrictures were added to the material (Beran and Molyneux,
1966; Miller, 1969; McCoy, 1970; Corson, 1974). For asymmetric materials in which
matrix and inclusion phases have different geometries, Miller (1969) introduced geom-
etry parameters G; and G, to describe the average matrix and inclusion geometries.
Watt et al. (1976) gave the correct forms of Miller solution to the effective bulk
modulus. The reasons why these bounding solutions are not so popular as the HS
bounding solution may be attributed to the facts that they usually yield bounds only
for effective bulk modulus like Miller bounds, that it is very time-consuming to de-
termine those geometry parameters, and that it is difficult to verify the existence of
those microstructural specifications in most composite materials.

When the elastic properties of matrix and inclusion phases are in the same order,
the HS bounds are quite narrow, which implies that inclusion volume fraction is
the sole dominant parameter to influence the effective elastic moduli. However, for
dry and fluid-saturated porous materials, the high contrast of constituent properties
causes the HS upper and lower bounds far apart. For inviscid fluid-saturated porous

materials, K5 # 0, pz = 0, the HS lower bound becomes
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Above analysis thus raises an interesting problem: what factor and how it affects
the effective elastic moduli within the far-apart HS upper and lower bounds for porous
materials? It is the pore geometry that becomes a major factor affecting the effective
elastic moduli of porous materials. Fig.2.4 compares the Mori-Tanaka’ solutions with
the far-apart HS bounds of effective bulk and shear moduli for water-saturated porous
materials. Several conclusions can be drawn as follows:

1. At any level of porosity, Mori-Tanaka’s solutions to K and p for all possible
spheroidal pore models just fully fill the domain between the far apart HS upper and
lower bounds.

2. The results indicate that the pore geometry effects on effective elastic moduli
are consistent with those in dilute-concentration solutions.

3. Mori-Tanaka’s solution with spherical pore geometry is the same as HS upper
bound. Since the micromechanical model of Mori-Tanaka’s solution doesn’t define the
size distribution and space pattern of spherical inclusions, such consistence of these
two solutions implies that the micromechanical model of HS bounds is just a specific
model to account for equivalent inclusion interactions.

4. The consistency of HS lower bounds (here K = Kp, g = 0) with Mori-Tanaka’s
solution for = 0 can be understood in the following way. The Reuss’ solution
Kp is based on the isostress model, with no specification to material microstructure
geometry. For inviscid fluid-saturated materials, when the fluid phase is distributed as
matrix and the solid phase as isolated inclusions of arbitrary geometry, the materials
are perfectly in the isostress state. The HS lower bound is just a solution to such
materials when spherical solid inclusions are assumed. Mori-Tanaka’s solution with
n = 0 implies that those thin fluid inclusions are somehow connecting each other
to form the fluid matrix in the material. Thus it is a solution to such fluid-matrix

supported materials when the connecting of infinitesimal-thin inclusions are assumed.
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Fig.2.4 Comparison between the HS bounds and Mori-Tanz!
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for all spheroidal pore models just fully fill the domain b’
upper and lower bounds. (a) effective bulk modulus-porc
tions, (b) effective shear modulus-porosity relations.
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2.3 Comparison with Gassmann’s Solution

As shown above, pores and cracks soften the elastic stiffness of materials, but fluid
saturation tends to restore some portions of the elastic stiffness. The relationship
between the dry and saturated material elastic moduli depends on several factors
such as porosity, microstructural geometry, and wave frequency. Gassmann (1951)
assumed the statistical isotropy of rock microstructures and identical moduli of the
individual grains, and arrived at quite simple relations between effective elastic moduli

of dry rocks (K4ry, pary) and inviscid fluid-saturated rocks (Kiys, fifs),

1 1 (- %)
S 1. z K b2, 2.97
P O B ey e L (227
1 1
- (2.28)
Hifs  Hdry

Since no specific pore geometry is assumed in the derivation of above formulas,
it seems that K;s, and pis, are completely independent of pore geometry. However,
our results above show that Kg,, and p4-, strongly depend on material microstruc-
tural geometries, thus K,y and p;ss are, in fact, related to specific microstructural
geometry.

Gassmann’s solution predicts that inviscid fluid saturation has no effect on the
effective shear modulus. This implies that the perturbed fluid pressure induced by
the applied stress is sufficiently equilibrated throughout the material when the exter-
nal loading is in low frequency. However, the equilibration mechanism is intrinsically
related to the material microstructural geometry. In other words, some pore ge-
ometries may be favorable to the equilibration, others may not. For various pore
geometries such as cylindrical, prolate, and spherical pore models, Mori-Tanaka’s so-
lutions to K;s, and .y, are consistent with the Gassmann’s solution. Fig.2.5a shows

Mori-Tanaka’s solution to Kg,y, fdry, Kiss, and pis, for cylindrical pore model. The
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saturated shear modulus p;y, is, in general, equivalent to fdry. When Kjy,, from Mori-
Tanaka’s solution is used in Gassmann’s solution, the resulting K fs s identicai with
the one in Mori-Tanaka’s solution.

However, for flat pore and crack models, the equilibration mechanism as implied in
Gassmann’s solution is not applicable to the Mori-Tanaka’s solution. Fig.2.5b shows
Mori-Tanaka’s solution to effective shear moduli for penny-shaped crack models with
n = 0.1,0.05, and 0.01, respectively. These results indicate that the crack models,
unlike the above pore models, result in fluid stiffening effects not only on K;;, but

also on p4,.

2.4 Specific Solutions for Dry Porous Materials

2.4.1 Finite-matrix solution

Instead of assuming an infinite elastic matrix and remote applied loading, the finite-
matrix model assumes that the interaction between any one pore and all other pores
can be approached through a model of a finite matrix with a single pore embedded
inside and applied loading on the matrix boundary. Since the interaction between the
loaded boundary of the finite matrix and the pore inside the matrix is usually easier
to be quantified, and it increases with the fractional volume of the pore, we utilize
this kind of interaction to simulate the interaction between pores (Chen et al., 1990).

When the boundary configuration of a finite matrix containing a pore is chosen
similar to that of the pore, as shown in Fig.2.6a, some finite-matrix solutions can
be obtained by means of the Betti-Rayleigh reciprocity theorem (Timoshenko and

Goodier, 1970). For the spherical pore model, such finite-matrix solution is found as

K, _ 31-wn) ¢
Tt 2(1-2n)1— ¢y’ (2.29)

" T=5n 1—¢
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Fig.2.5 (a) comparison of effective elastic modulus-porosity relations
for dry and water-saturated materials with cylindrical pores, (Sb)
comparison of effective shear modulus-porosity relations for dry
and water-saturated materials with penny-shaped cracks (n =
0.1,0.05,0.01).
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2.4.2 Mackenzie’s solution

Mackenzie (1950) proposed a microscopic model to calculate the effective elastic mod-
uli of porous rocks. As shown in Fig.2.6b, an element covering one pore is cut out
of the rock, and the loading is applied on its outer boundary. Then the element is
simulated as three concentric spheres: the inside one represents a single pore; the in-
termediate one has matrix elastic moduli K; and g,; and the outer one has effective

elastic moduli K and g. Accurate to the first order of ¢,, Mackenzie obtained

1 1 1 3 b2

7= E+(E+ Z;Z)_—l—qsg’ (2.31)
3K+ 4
= p1(1 = 5¢g ————). 2.32
p= pa( ¢29K1 +8u1) (2.32)
By algebra the above results become
K1 3(1 - Vl) ¢2
— =1 , 2.33
k-t iz i-o (233)
P 1- Szl T—5u 1—¢; '
B,

Thus, Mackenzie’s soluticn is equivalent to the finite-matrix solution.

2.4.3 Walsh’s solution

Walsh(1965) studied the effect of crack on the compressibility of rock and found the

effective compressibility 3 for a spherical cavity as

B _,,30-wm) ¢ (2.35)

B 2(1-21)1~¢,’
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Fig.2.6 Micromechanical models for (a) the finite-matrix solution, (b)
the Mackenzie’s solution, and (c) the Hashin-Shtrikman bounds
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which is the same as the finite-matrix solution since K =1/ and K, = 1/4,. Walsh
derived the result by presuming the pore concentration in the rock was small, but

later he demonstrated with experimental data that the result was valid even for high

pore concentration (Walsh et al., 1965).

2.4.4 Hashin-Shtrikman’s upper bound

When pores are considered, the HS upper bound becomes

I{l (3.[(1 + 4#1)¢2 -1 3(1 —_ V]) ¢2

—=N- =1 , 2.36

K | 3K1¢2 +4m ] * 2(1-21)1- ¢, (2:36)
Ha 5¢2(3K1 <+ 4/11) -1 15(1 - Vl) (;52
B =1 (237
Iz | 5(3K1 + 4p1) — 6(1 — ¢2)(K; + 2#1)] * T—=51 1-¢ (2:37)

which are also the same as the finite-matrix solution. Furthermore, we already show
that Mori-Tanaka’s solution for spherical inclusions is identical with HS upper bound.
The consistency of all these solutions for porous materials implies that the microme-
chanical model of the finite-matrix solution in Fig.2.6a is a simple but fundamental
one to describe the effective elastic moduli of spherical-pore materials, and that the
“composite spheres assemblage” model of the HS bounds in Fig.2.6c is in fact an

assemblage of the model in Fig.2.6a.

2.4.5 A group of pore geometry-specific solutions

By comparing the finite-matrix solution with dilute-concentration solution for spher-
ical pore model, we notice that their difference is the factor ¢, being replaced by
T%;' It is this change that accounts for the nondilute concentration pore interaction.
To extend this feature to other pore geometries, the dilute-concentration solution for

cylindrical pore model can be modified as the nondilute concentration solution for

cylindrical pore model,
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K 5—dvy

11 2.38
K= " 30<amni-4& (2.38)
U 40 — 241, ¢,

— =1 .
=l e (2.39)

and the dilute-concentration solution for penny-shaped crack model can be modified

as the nondilute concentration solution for penny-shaped crack model,

I(] _ 4(]. - V12) ¢2

K~ 1+ 3mn(l —21)1 — ¢’ (2:40)
p_ o 1o 81 -n)5-wn), ¢
=141+ S g (2.41)

Numerical computations show that these simple-form solutions coincide with Mori-

Tanaka’s solutions for dry porous materials.

2.5 Wave Velocity-Porosity Relations

Since the effective elastic properties of all above material models are isotropic, effective

Young’s modulus E and uniaxial-strain modulus M are obtained through relations

_9Ku . 3K+
T 3K 4+’ -3

(2.42)

The low-frequency or long-wavelength P-wave and S-wave velocities, V,, V,, are then

calculated from the relations

M s
Vo =14/—, Ve=[-, 2.43
» =/ P \/p (2.43)
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where the effective density p is related to rock matrix density p; and inclusion density
p2 by p = (1 — ¢2)p1 + $2p2. In the calculation, p; = 2600kgm™=3 for solid phase and
p2 = 1000kgm =2 for warer fluid are used. Fig.2.7 presents the velocity-porosity-aspect
ratio relations for water-saturated materials from Mori-Tanaka’s solution. For cylin-
drical, prolate, spherical, and spheroidally-oblate pore models, the velocity-porosity
relations have similar features for both the P and S wave velocities. When the aspect
ratio becomes smaller, P and S wave velocities drop sharply at low porosity, thus the
penny-shaped crack model yields distinctive velocity-porosity relations from other

pore models.

2.6 Conclusions

The microstructural geometry effects on the effective elastic moduli of porous mate-
rials are consistent for both dilute and nondilute concentration solutions. Spherical
- pore model yields high elastic moduli; prolate and cylindrical pore models exhibit
minor decrease in elastic moduli compared with the spherical pore model; oblate and
penny-shaped crack models lead to dramatic drop in elastic moduli.

The dilute-concentration solutions to spherical, cylindrical, and penny-shaped
pore/crack models are valid at low porosity (10% porosity or smaller), but become
unacceptable at high porosity.

The Mori-Tanaka’s 'so_lutions for a continuous series of spheroidal pore/crack mod-
els just fully fill the broad domain between the HS upper and lower bounds, and yield
the asymptotic values of dilute-concentration solutions at low porosities. The equili-
bration mechanism implied in the Gassmann’s solution is appropriate only for pore
models but fails for crack models according to Mori-Tanaka’s solution.

The consistence of finite-matrix solution with other solutions for spherical pore
model leads us to propose a group of simple formulations for the effective elastic

moduli of dry porous materials.
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Fig.2.7 Mori-Tanaka’s solution to wave velocity versus porosity and
pore aspect ratio for water-saturated porous material, (a) P wave
velocity-porosity relation, (b) S wave velocity-porosity relation.
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However, when applied to porous rocks and sediments, the dilute and nondilute
concentration solutions may be appropriate only at low porosity, since they fail in
explaining the distinctive change of effective elastic moduli before and after the critical
porosity. To solve such a problem, we develop the critical concentration model and

solutions for porous materials with critical porosities in the following chapters.
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Appendix
Components of Eshelby’s S;;,; Tensor

The components of Eshelby’s tensor S;;i; for a spheroidal inclusion are:

Sun = goy{l—2n + ?:Z_'Tl -1-2n+ fz‘"_z—l]g}

2
Sa222 = Saasz = 8(13,,,) ,,3_1 + 4(11,,1)[1 =21 — 2'(',7?'_T)]g

2
Sa233 = Saa = m‘i’m{m%:ﬁ' -[1-2n+ 4(1;23—1)19}

2 2
S2211 = Saan = "‘2(1.1_,,1) ,,;?_1 + 4(111,1)[,,:3"_1 - (1 - 21/1)]9

Stz = Snzz = —2(11—,,1)[1 -2 + ,’z_l_T] + 2—(‘1'}';;')‘[1 —2n+ ﬁ]g

. 2
S2323 = Sagzp = :,(11—,,1){5-(;}_7) +[1 -2y - ;‘(‘,7‘5%_—17]9}

2
S1212 = S1mz = 4(1_1_—,,1){1 - 21 —~ % - %[1 -2y — 3,7%-;1‘1]9}

where v; and 7 are Poisson’s ratio of the matrix and the aspect ratio of the inclusion,

respectively, and g is given by

9= yreln(n* = 1)'/2 — cosh™ n)

for prolate shape, and

9= g=yrrlcos™ n —n(1 —n*)"/?]

for oblate shape.
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For a spherical inclusion(n = 1), they simplify to

_ 75
Sim = Sz222 = S3333 = ey

= — _sn-1
Stz = Sag33 = Saann = iE('llT,)

— — —_ _4-5v
51212 - S2323 - 53131 - ﬁ(l—_,,l;')'

For a penny-shape crack with small but finite width(n < 1), they become

Sllll — 1 - MWT]

4(1-V1)
— _ 13-8
S2222 = S3a33 = ~%m0-m) "

- _ 8-l
S2233 = Ssm2 = ZES™N

S2211 = Sazn = 8?1_:,:)7”1

S1122 = Snisz = l—fﬁ[l - 318‘—;‘1"17"]]

— _7—81
Saa3 = R2(1-n) "1

S1212 = S1a13 = %[1 - "4(21_-1:,,)7”7]
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For a cylindrical pore (7 — 00), one has

S =0

Sa222 = Sazaz = %,L)'
S2933 = Saapy = ;'(_'lli—v_:)'
52211 = 53311 = Tlu—lﬁﬁ
S22 = S11zz =0
So323 = E%f‘_%j

— 1
Sio12 = S1mz =

Parameters a; ... as and a

ar = 6(Ka — Ky) (2 — 1)(Sazzz + Spzza — 1) — 2(Kpiz — Kopia) + 6Ka(pz — pa)
az = 6(Kz — K1)(p2 — p1)Suzs + 2(Kipz — Kopa)

az = —6(Kz — K;)(p2 — p1)Sas1 — 2(Kypz — Kapy)

ag = 6(Kz — Ki1)(p2 — p1)(Sun — 1) + 2(Kipz — Kopa) + 6p2( Kz — Ky)

as = 1/(Saza — Sazss + 1 — pa/(p2 — p)]
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a = 6(1{2 - Kl)(llz - ﬂl)[251133533u - (51111 - 1)(53322 + S3333 — 1)]

+2(K1p2 = K2401)[2(S1133 + S3a11) + (S1111 — Sazez — Sazss))

—61{2(#2 - lll)(sun - 1) - 6#2(1(2 - Kl)(S2222 + Sa233 — 1) - 61{2#2
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Chapter 3

Critical Concentration Models of

Porous Materials

Abstract

Porous rocks and sediments have complicated microstructures that result from
depositional, diagenetic, and tectonic processes. These nonuniform microstructures
cause the effective properties such as elastic moduli and wave velocities so distinctive
from those predicted by ;onventional models that several empirical formulas have been
proposed to remedy the lacking of appropriate models of porous rocks and sediments.
We identify that critical porosity is an important parameter to describe the variations
of porous material microstructural and effective properties. By introducing the con-
cepts of critical porosity and concentration, and defining the critical concentration
phase, we propose the critical éoncentra.tion model which describes the nonuniform
load-bearing capacities of solid grains. The microstructural interpretation of critical
concentration model is characterized by nonuniform contact areas and coordination
numbers of solid grains throughout the porous material. The critical porosities of
porous rocks and sediments determined by geometrical, theoretical, and experimen-
tal approaches are consistent, and are of wide ranges due to the diverse pore size,

geometry, and connectivity.
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3.1 Observation of porosity data

Microstructures affect almost all the physical properties of porous materials. Geoma-
terial microstructures depend on their origins including depositional, diagenetic, and
tectonic processes, and synthetic material microstructures come from thermal history,
pressure condition and chemical environment. Several parameters such as pore vol-
ume fraction (porosity), pore geometry, pore connectivity, pore size, and pore surface
roughness have been used to describe the microstructures or pore structures of var-
ious porous materials (Dullien, 1979; Johnson and Sen, 1983; Banavar et al., 1986;
Bourbié et al., 1987; Roberts and Skalny, 1989, Shah, 1991). It is generally recog-
nized that porosity is the primary measure of porous material microstructures, and
so many analytical and empirical relations between effective properties and porosity
have been established and applied to various practical problems (Wyllie et al., 1956;
Watt et al., 1976; Raymer et al., 1980; Nobes, 1989). One of the fundamental as-
pects in these relations is that the effective properties exhibit smooth variations when
porosity increases from zero to 100%, which implies that the material framework has
nonzero stiffness until the porosity reaches 100%.

However, more and more in-situ and laboratory experimental data indicate that
at some finite values of porosity, the effective properties of porous materials change
distinctively from previous levels, increasing or decreasing sharply, or even reducing
to zero, such as strength data (Schiller, 1958; Rzhevsky and Novik, 1971; Dunn et
al., 1973; Hoshino, 1981; Kendall, 1984; Pratt, 1987; Jizba, 1991), permeability and
electric conductivity data (Kirkpatrick, 1973; Chelidze, 1979; Bernabe et al., 1982;
Teisseyre, 1983; Walder and Nur, 1984, Bourbié et al., 1987), and effective modulus
and wave velocity data (Geertsma, 1961; Wyllie et al., 1961; Gregory, 1963; Burns et
al., 1973; Benguigui, 1984; Marion, 1988; Chelidze et al., 1988, 1990).

Fig.3.1 shows the experimental data of strength versus porosity of mudstones. At

atmospheric pressure, the strength approaches zero at about 50% porosity. At high
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confining pressure, the failure mechanism changes from brittle (black circle) to ductile
(open circle), and the strength drops to the level of given confining pressure at about
50% porosity. In general, the strength properties of all natural and synthetic porous

materials terminate at finite values of porosity, not the 100% porosity.
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Fig.3.1 The experimental data of strength versus porosity of mudstones.
Black circles: brittle failure; open squares: transitional failure; open

circles: ductile failure. The strengths terminate at about 50% poros-
ity (after Hoshino, 1981).

Fig. 3.2 shows the experimental data of permeability versus pofosity of Fontainebleau
sandstones. At about 5% porosity, the classic cubic law of permeability-porosity re-
lationship is insufficient to describe the decrease of permeability with porosity. The
permeability terminates at about 3% porosity, not zero porosity, which is certainly
related to the distinctive change in the sandstone pore structures.

Fig.3.3 compares various models and experimental data of effective Young’s modu-
lus versus porosity of porous materials. Some data indicate that the effective Young’s

modulus terminates at about 50% porosity. The diverse data imply that other pore
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Fig.3.2 The experimental data of permeability versus porosity of
Fontainebleau sandstones. The permeability terminates at about
3% porosity, not zero porosity (after Bourbié et al., 1987).

structure parameters such as pore size, geometry, and connection play considerable
roles in determining mechanical properties of porous materials.

Fig.3.4 shows the experimental data of P wave velocity versus porosity, collected
by Marion (1990). Obviously, clay content causes the decrease of P wave velocity.
There is a distinctive change in P wave velocity before and after about 40% porosity.
The suspension data are well explained by the Wood’s relation, but the other data
depart from the Wood’s relation. No existing model or theory can fully explain such
velocity data.

In summary, many experimental data are not consistent with the fundamental hy-
pothesis that porous material microstructures and effective properties vary smoothly
when the porosity ranges from zero to 100%. Not only porosity, but also other pore
structure parameters should be taken into account so as to evaluate quantitatively

the mechanical and acoustic properties of porous materials.
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3.2 Concept of Critical Porosity

Above section shows the distinctive changes of physical properties of porous mate-
rials at some finite values of porosity. Such phenomena are similar to the critical
phenomena related to phase transitions or transformations in heterogeneous materi-
als ( Dora et al., 1980; Stanley, 1987; Baker, 1990). These finite values of porosity are
hereby defined as critical porosities which mean distinctive changes in pore material
microstructures. As studied in later sections, critical porosity is closely related to
other pore structure parameters such as pore size, geometry, and connectivity. The
incorporation of critical porosity into effective property-porosity relations of porous
materials will certainly be useful in both theory and practice.

The well-known percolation phenomenon is a good example of critical porosity.
The critical porosity with respect to permeability is defined as the transition porosity
between totally-isolated pores and at least a complete path of connected pores across
the material. Such critical porosity can be determined experimentally by measuring
the so-called “total porosity” and “effective porosity”. Some porous materials, such
as lava, may have a high value of total porosity but a low effective porosity, result-
ing in considerable critical porosity. Fig.3.5a indicates that as porosity decreases to
about 11%, the classic cubic power law of permeability-porosity relationship becomes
insufficient to describe permeability data. By observation we infer that the critical
porosity is about 6%. When the critical porosity is incorporated into the evaluation
of permeability, as first proposed by Walder and Nur (1984), the theoretical result in
Fig.3.5b can quantitatively describe the experimental permeability data.

When effective elastic moduli or wave velocities in a solid-fluid material system are
concerned, critical porosity is defined as the transition porosity between solid-matrix
and fluid-matrix supported subsystems. As a special case for dry porous materials,
critical porosity is the maximum porosity at which the material collapses. Critical

concentration is the generalization of critical porosity concept for general materials.
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Fig.3.5 (a) The experimental data of permeability versus porosity for
hot-pressing calcites, where r is the hydraulic radius (after Bern-
abe et al., 1982), (b) The theoretical result of permeability versus
porosity in porous materials. 6% critical porosity and exponent
n = 2,3,4 are used in the formula proposed by Walder and Nur

(1984).
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For example, when the third phase material is dispersed in the fluid, it is rigorous
to use critical concentration to represent the transition between the subsystems, and
then the critical porosity decreases with the increase of the third phase material. On
the other hand, a porous material with very low porosity and flat pores may be taken
as a cracked material. If infinitesimal-thin cracks are assumed for a cracked material,
it is appropriate to define the critical concentration as the critical crack density, as
implied in the study by O’Connell and Budiansky (1974, 1977).

To illustrate the concept of critical porosity with respect to effective elastic mod-
uli, let us analyze the changes of material microstructures and effective properties
of a solid-fluid material system in Fig.3.6. When the porosity or fluid volume frac-
tion ¢, is higher than the critical porosity ¢, the fluid phase becomes the matrix,
and the solid grains become the isolated inclusions. Since the inviscid fluid only
bears normal stress, no shear stress will be transmitted to those isolated solid inclu-
sions. Thus the stress state of this fluid-matrix supported subsystem is in a uniform
stress state. Consequently, the effective elastic modulus-porosity and (low frequency)

wave velocity-porosity relations can be analytically described by the isostress material

model (Reuss, 1929; Wood, 1941),

1 _1-¢; ¢
K=K K (3.1)
p=0 (3.2)
1-¢2 o $2)-1
Vg = Rt ) (3.3)

P p1(1 — ¢2) + p2dd2’

Vs = 0. (3.4)

where K and p are effective bulk and shear moduli, K; and p; are solid bulk modulus
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and density, K, and p, are fluid bulk modulus and density, Vp and Vs are P and S

wave velocities, respectively.

Solid volume fraction

critical porosity

Fluid volume fraction

Fig.3.6 Schematic section of a solid-fluid material system, representing
a system of porous rocks, sediments, and marine suspensions. The
critical porosity is defined as the transition porosity between solid-
matrix and fluid-matrix supported subsystems

In the solid-matrix supported subsystem such as porous rocks and sediments, the
effective bulk modulus K and shear modulus p decrease with porosity. In general, the
complicated microstructures lead to the departure from the isostrain state or Voigt’s
model. At the critical porosity ¢.., the solid matrix disappears and fluid matrix
emerges. Thus K and p at critical porosity should reduce to those in (3.1) and (3.2),
respectively. As a special case for dry porous materials, both K and u should reduce
to zero at the critical porosity at which the material collapses.

Porous rocks and sedirnents have complicated microstructures that result from
depositional, diagenetic, and tectonic processes (Cohen, 1987; Thompson et al., 1987;

Krohn, 1988). Existing material models can only partially describe the changes of
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microstructures and effective properties in the solid-matrix supported subsystem.
For example, the inclusion material model originally developed for most composite
materials, is only appropriate at low porosity range since no pore connectivity is taken
into account. On the other hand, the model for a grain-packing or granular material
is only applicable to narrow porosity ranges for sediments. To remedy the lacking
of appropriate models for porous rocks and sediments, several empirical relations
between velocity, porosity, and clay content have been proposed (Tosaya and Nur,
1982; Castagna et al., 1985; Han et al., 1986, Marion and Nur, 1991).

From above analysis it is clear that an appropriate model for porous rocks and
sediments should meet the following conditions: (1) to describe the critical porosity

effect on the variations of microstructural and effective properties; (2) to be consistent

with Reuss’ and Wood’s models at ¢, = ¢,,.

3.3 Critical Concentration Phase

The essential of a critical concentration model is to redefine the constituents of a
material system, and to relax the conventional hypothesis that a porous material
framework has nonzero stiffness until 100% porosity. Critical concentration phase is
defined as the material state of whole system at critical porosity. Thus, at zero
porosity, the material is a pure solid phase with p;, K7, and p,; at critical porosity,
the material is a critical concentration phase. In order to be consistent with Reuss’
model at critical porosity, the critical concentration phase is of following critical

physical properties per, Kcry fter, Vper, and Vs,

Per = Pl(l - ¢cr) + P2¢cr7 (35)

1 - ¢cr ¢cr
K K

Kcr = ( )-.19 (36)
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Her = 0» (37)
K.,

VPcr = (—)1/27 (38)

Vser = 0. (3.9)

From the effective density p we know that the critical concentration phase is a mixture
of fluid and solid at critical porosity. From the effective elastic moduli we see that
the critical concentration phase is in isostress state.
The critical concentration model possesses following functions for 0 < ¢, < ¢,,:
A. The critical concentration phase with volume fraction (@/¢.,) serves as
weakly load-bearing “composite inclusions”.
B. The pure solid phase with volume fraction (1 — -g%) serves as highly
load-bearing material framework.
C. Such material model has the so-called space-filling feature, that is, the
framework has nonzero stiffness until the material is fully occupied by

the critical concentration phase.

3.4 Microstructural Interpretation

According to the critical concentration model, The load-bearing capacities of solid
grains in a porous material differ from one grain to another. Consequently, the
contact areas and coordination numbers of solid grains are nonuniform throughout
the material. For porous rocks and sediments, three kinds of pore formation processes
may be responsible for such nonuniform microstructural features:

(1) Depositional — The deposit of grains with different size, shape, and surface

roughness.
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(2) Diagenetic — Even the sediments are composed of regular packing of mono-
size grains, the cementation, growth and dissolution of minerals, may lead to the
nonuniformity of pore structures.

(3) Tectonic — Stress-induced cracks, dislocations, and gouges.

Are such nonuniform microstructures fractal? There have been many fractal anal-
ysis of pore structures of sedimentary rocks (Mandelbrot, 1983; Katz and Thompson,
1985; Krohn and Thompson, 1986; Thompson et al., 1987; Krohn, 1988; Nolte et
al., 1989). In general, above pore formation processes lead to fractal pore structures.
Thus it is very possible that some of the nonuniform microstructures are of fractal
features.

These nonuniform microstructures may differ from one porous material to another,
but the fundamental feature is that a portion of solid grains is highly load-bearing
as framework, and the other portion in critical concentration phase is weakly load-
bearing. One extreme case is the random packing of monosize grains. A portion of
random-packing grains may be in random close packing, serving as the highly load-
bearing framework, and the other portion may be in random loose packing, being
in isostress state with fluid. Here we give one microstructural interpretation of the
critical concentration model as in Fig.3.7. At a certain porosity, some bigger grains
often serve as framework, other grains and fluid of critical concentration phase, are
embedded as composite inclusions. The contact areas and coordination numbers of
solid grains are thus of nonuniform feature. Such interpretation is very close to the
sandstone microstructures often observed from thin sections and scanning electron
microscopic images (Wilkens et al., 1986; Bourbié et al., 1987; Doyen, 1988; Burns et
al., 1990), as in Fig.3.8.
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Fig.3.7 One microstructural interpretation of the critical concentration
model. Some bigger solid grains serve as the highly load-bearing
framework, and other grains with fluid are embedded as composite
inclusions. The contact areas and coordination numbers of solid
grains thus differ from one grain to another.
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Fig.3.8 (a) Scanning electron microscopic image of sandstone mi-
crostructures. The black areas are the pore spaces (after Wilkens
et al., 1986). (b) Microsections of Fontainebleau sandstone mi-
crostructures. The black areas are the pore spaces which become
more connected to each other with the increase of porosity (after
Doyen, 1988).
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3.5 Determination of Critical Porosity

There are several ways to determine the critical porosities of porous materials with

respect to effective elastic moduli and wave velocities.

3.5.1 Experimental approach

The direct approach is to conduct experiments to observe and measure how the ef-
fective properties change with porosity. The experimental data in Fig.3.1, Fig.3.3
and Fig.3.4 indicate about 40% ~ 50% critical porosity. For marine sediments, many
borehole logging and labcratory experiments show that the critical porosity is about
70% ~ 80% in such unconsolidated materials (Hamilton and Bachman, 1982; Taylor
and Leonard, 1990; Wilkens et al., 1990). Fig.3.9 presents the sound velocity-porosity
relationship of marine sediments obtained by Hamiltom and Bachman (1982), which

clearly indicates about 80% critical porosity.

3.5.2 Geometrical approach

Let us first consider the regular packings of monosize inclusions. On the one hand,
those inclusions are assurned as spherical pores or fluid inclusions. When porosity is
approaching the critical porosity, they merge and connect to each other as the ma-
terial matrix. As a result, the critical porosity changes with regular packing style,
ranging from 52.36% to 74.05%. On the other hand, when spherical grains are consid-
ered, we obtain another set of critical porosities for flat and irregular pores, ranging
from 25.95% to 47.64% (Fig.3.10). Similarly, when random packings of monosize
inclusions are considered, random close and loose packings yield 36% ~ 40% criti-
cal porosity for the spherical grain model, and 60% ~ 64% critical porosity for the
spherical pore model (Fig.3.11). In general, pore geometries of porous materials with
either regular or random packing styles, may vary between these spherical pore and

grain models, and so the critical porosities change between these two sets of critical
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Fig.3.9 Porosity versus sound velocity in marine sediments. As porosity
increases to 70% ~ 80%, the sound velocity drops to 1500 m/s for
suspensions (after Hamilton and Bachman, 1982).

porosities, ranging from 74.05% to 25.95%. Furthermore, when the packing of grains
with different sizes is considered, the critical porosity may range from 80% to 20%

between spherical pore and grain models.

3.5.3 Theoretical approach

By examing all existing methods, only the asymmetric self-consistent method (ASCM)
can describe the critical porosity as defined above for dry and inviscid fluid-saturated
porous materials. The symmetric self-consistent method (SSCM) developed by Kro-
ner (1958) and Berryman (1980) treats constituent phases symmetrically, that is, same
geometry for each phase, and no distinction of matrix or inclusion phase. As a result,
there should be no transition between solid and fluid matrix-supported domains, and

so no critical porosity.

There is a detailed presentation of ASCM in chapter 5. Here we show ASCM so-



-

Chapter 8 — Critical concentration models

(a)

100

o
-3
I

(b)

Critical porosity (%)

i Cubic Orthorhombic  Tetragonol— Rhombohedrol
spheToidol

] 1 |
Regular packing style

Fig.3.10 (a) A two-dimensional section of cubic packing of monosize in-
clusions, (b) Critical porosity ranges predicted by the regular pack-
ing of monosize inclusion with different packing styles.
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Fig.3.11 (a) A two-dimensional section of random packing of monosize
inclusions, (b) Critical porosity ranges predicted by the random

loose and close packings of monosize inclusions.
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lution to effective bulk and shear moduli for spherical, cylindrical, and penny-shaped
inclusions (Fig.3.12). For water-saturated porous materials, the critical porosity is
about 60% for spherical pores, 55% for cylindrical pores, and 30% ~ 40% when 107!
aspect ratio is considered. These values of critical porosity are within the ranges

predicted by the geometrical approach.

3.5.4 Comparison between data and model result

There are a lot of published experimental results indicating the critical porosity of
porous materials. Fig.3.1, 3.3, 3.4, and 3.9 are only a few of them. Here v&;e select
some more to compare with above model results.

Fig.3.13a shows that, when a thin elastic plate is punched randomly with circular
pores and loaded at the ends, the critical porosity for effective modulus is between
50% ~ 60% (Benguigui, 1984). Fig.3.13b shows the dynamic bulk and shear moduli
versus porosity for dry sandstones (Gregory, 1963), and the critical porosity is about
45%.

Marion (1988, 1990) conducted experiments with random packing of spherical
grains to observe the changes of P wave velocity, pressure, and electric conductivity.
At 39% critical porosity, the P-velocity, as well as conductivity and pressure, changes
distinctively from previous levels.

Fig.3.14 presents clata of wave velocity versus porosity in dry rocks. For dry
carbonates, the ultrasonic wave velocities approach zero at about 30% critical porosity
(Geertsma, 1961). Another set of data obtained by Wyllie et al. (1961) indicate about
75% critical porosity. The time-average equation can not explain such feature.

In summary, various experimental data indicate a wide range of critical porosity,

from 25% ~ 75%, which is generally consistent with above model results.



Chapter 8 — Critical concentration models

40000

T 1 i i j 1 1
ASCM solutions

A: spherical inclusion

B: cylindrical inclusion

30000

Effective bulk modulus (MPa)

C: penny-shaped inclusion(ospect ratio=0.13)
D: infinitesimol~thin inclusion(ospect ratio=0) ]
Other solutions between C and D
aspect ratio=0.11; 0.10; 0.09; 0.08; 0.07; 0.05 |

-

-

20000
(a)
-
10000 +—
}..
-
0 N S A ) S ] I 1 i
0 50 100
Porosity (%)
T —T T T T T T o
-~ ASCM solutions
s 40000 A: spherical inclusion -
é B: cylindrical inclusion
- C: penny—shaoped inclusion(aspect rotio=0.13) ]
™ L D: infinitesimal—thin inclusion(aspect ratio=0)
3 Other solutions between C and D
,g . aspect rotio=0.11; 0.10; 0.09; 0.08; 0.07; 0.05 _1
=)
=
8 20000 — _‘ (b)
P
m e
® -
3 i -
-~
o
z: -
1<% L 0 .
o 1
] 100

50
Porosity (%)
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Fig.3.14 Experimental data of wave velocity versus porosity in dry
rocks. (a) For dry carbonates, the critical porosity is about 30% (af-
ter Geertsma, 1961). (b) For sedimentary rocks, the critical porosity
is about 75% (after Wyllie et al., 1961).
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3.6 Conclusions

Critical porosity is an important parameter to describe the variations of porous ma-
terial microstructural and effective properties.

The critical concentration model describes the nonuniform load-bearing capacities
of solid grains. The microstructural interpretation of critical concentration model is
characterized by nonuniform contact areas and coordination numbers of solid grains
throughout the porous material.

The critical porosities of sedimentary rocks and sediments determined by geomet-
rical, theoretical, and =xperimental approaches are consistent, and are of wide ranges

due to the diverse pore size, geometry, and connectivity.
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Chapter 4

Substitution Method and
Critical Concentration Solutions

Abstract

In order to evaluate the effective properties predicted by the critical concentration
model of porous materials, a substitution method is proposed to develop critical
concentration solutions which are based on existing analytical and empirical formulas
of conventional porous material models. The critical concentration solutions extended
from Wyllie’s, Voigt’s, and Hashin-Shtrikman’s relations give better description of
experimental data of wave velocities in rocks and sediments such as clean sandstones,
and are compared with Nobes’ and Raymer’s relations. The critical concentration
model is then generalized to take into account the effects of pore-filling and dispersed
clays on effective properties of porous materials. The resulting critical concentration
solutions are in good agreement with available experimental data of clay-bearing
effective elastic moduli and wave velocities, and provide insights into several empirical

relations between velocity, porosity, and clay content.
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4.1 Substitution Method

The critical porosity of porous materials in cases of effective property-porosity rela-
tions can be of considerable fundamental importance both in theory and practice, and
may prove to be the rule rather than exception. In fact, conventional porous material
models such as nondilute concentration models in chapter 2, can be taken as critical
concentration models of porous materials with 100% critical porosity. Consequently,
the effective properties predicted by the critical concentration model of porous mate-
rials should reduce to those predicted by conventional porous material models when
100% critical porosity is considered. In order to find the critical concentration solu-
tions which meet with above basic requirement, we propose a substitution method
to extend existing analytical and empirical formulas of conventional porous material

models to general porous materials with critical porosities (Table 4.1).

Table 4.1 Substitution method to derive critical concentration solutions

Material Model Conventional Model Critical Concentration Model
Space-filling Yes Yes
Porosity range o2: 0% ~ 100% ¢2: 0% ~ ¢

Matrix Phase (1 - ¢'2), P, K, K1, Ve, Vi (1 - ¢2/¢cr), P1, K,, H1, VPl, Va1

Nonmatrix Inclusion Phase Critical Concentration Phase
Phase ¢2’ P2, K2’ K2, VP2’ VS2 ¢2/¢crs Persy I{cra Hery VPcra VScr

Solutions to Nondilute solutions, Critical concentration solutions

moduli and Time-average equation, by substituting matrix and

velocities etc. nonmatrix phases
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There are physical or mechanical assumptions behind each of the analytical and
empirical formulas of conventional porous material models. These assumptions, such
as time average assumption in Wyllie’s relation, are adopted in the critical concentra-
tion model with respect to the solid matrix phase and critical concentration phase.

In principle, the substitution method is implemented by (a) substituting (1 — -fc?:)
instead of (1 ~ ¢;) for matrix phase, and (b) replacing inclusion phase by critical

concentration phase.
4.2 Critical Concentration Solutions

4.2.1 Extension from Wyllie’s relation
Whyllie et al. (1956) proposed the time-average equation to estimate P wave velocity-
porosity relations of fluid-saturated porous rocks,

1 _1-¢ &

7 V. v (4.1)

where V; and V,, respectively, are P wave velocity in the solid matrix and pore fluid.
No information of porous material microstructures is specified in the time-average
equation. Many studies indicate that for unconsolidated or poorly-consolidated ma-
terials, the time-average equation may be appropriate up to 30% porosity, but over-
estimates considerably the velocity in high porosity domains.

When this time average assumption is applied to the critical concentration model,
the fluid phase is now replaced by the critical concentration phase with volume frac-
tion ¢2/¢ and P wave velocity Vp.,, and the matrix phase has volume fraction

(1 — ¢2/¢er). Therefore we obtain the critical concentration solution as

for 0<6;< ¢ (4.2)
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1 m(l—¢;) + P2¢2]1/2

7 [ (G + &) for 6o < ¢ <1 (4.3)

Obviously, above solution is always between the results of time-average equation
(with ¢.. = 100%) and Wood’s equation (with ¢, = 0%). Since the critical porosity
&, 1s closely related to the pore size, geometry, and connectivity of porous materials,
such critical concentration solution provides a better relationship between velocity
and porous material microstructure, and will be useful in acoustic logging analysis of
marine sediments.

Given the critical porosity ranging from 30% to 60%, the critical concentration
solution yields lower P wave velocity as in Fig.4.1. K; = 38500MPa, u, = 42500 MPa,
p1 = 2650kg/m?3, and p, = 1000kg/m? are used in the calculation. The time-average
equation, in fact, can be reduced from the critical concentration solution with 100%

critical porosity.

4.2.2 Extension from Voigt’s relation

Voigt’s bounds Ky and gy are derived from the so-called isostrain assumption (Voigt,
1928). With the critical concentration model, the isostrain state means that both the
critical concentration phase and solid matrix phase are in the same strain state. To
reach such an isostrain state, the critical concentration phase is required in parallel
to boundary loading. This, of course, is just an approximation of porous material mi-
crostructures. Since the strain state in heterogeneous materials such as fluid-saturated
porous materials is always more or less departed from the isostrain state, it is ap-
propriate to take the critical concentration solution extended from Voigt’s relation
as the upper bounds for the effective elastic moduli of porous materials with critical
porosity. This is consistent with the meaning of Voigt’s bounds since they can be
reduced from the solution with 100% critical porosity.

The critical concentration solution is
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Fig.4.1 P wave velocity-porosity relations predicted by the critical con-
centration solution in (4.2) and (4.3) with critical porosity ranging
from 30% to 60%. The time average equation can be reduced from

the solution with 100% critical porosity.
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K=(1- gz—)ffl, w=(1- ;—)ul, 0< ds < bor (4.4)

er

for dry porous materials, and

K=(1- j"’ VK + :fz Ko, p=(1- —)ul, 0< ¢ <o,  (45)
— 42 | b
K = —Iz'l'_ + E) ) L= Oa écr S ¢2 S 1, (4'6)

for inviscid fluid-saturated porous materials. The corresponding wave velocities are

I( '+‘ 4[1/3 1/2
p1(l — ¢2) + p2de

Vs = £ 172, (4.7)

Ve =
P= p1(1 — 62) + p2és

Fig.4.2 presents the effective elastic moduli versus porosity predicted by the critical
concentration solution. Since Voigt’ bounds are extreme upper bounds of K and g, the
critical concentration solution results in substantial improvements on the evaluation
of effective elastic moduli of porous materials. The corresponding wave velocity versus

porosity in water-saturated porous materials are given in Fig.4.3.

4.2.3 Extension from Hashin-Shtrikman’ relation

Since the solid matrix phase is always stiffer than the critical concentration phase in
the critical concentration model, the critical concentration solution is extended from
Hashin-Shtrikman’s upper bound.

For dry porous materials, 0 < ¢; < ¢, the critical concentration solution is

( Kl + 4[‘1)4,“

K =K[1-
4[11 +3K1¢”

roul (4.8)
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Fig.4.2 Effective elastic modulus-porosity relations predicted by the

critical concentration solution (4.5) and (4.6) with critical porosity
ranging from 30% to 60%, (a) effective bulk modulus-porosity rela-
tions, (b) effective shear modulus-porosity relations.
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Fig.4.3 Wave velocity-porosity relations predicted by the critical con-
centration solution (4.5) to (4.7) with critical porosity ranging from
30% to 60%, (a) P wave velocity-porosity relations, (b) S wave
velocity-porosity relations.
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Su1(3K1 + 4#1)3?:—,

T

p=p+ (4.9)

For inviscid fluid-saturated porous materials, the critical concentration solution is

(Ko — K1)(3Ky + 4p1) 2

K=K , 4.10
3K+ 4+ 3K, - Ko & (4.10)
5pu1(3Ky + 4p) 2+
p=p+ 6 5 der , (4.11)
(Ky+2mm)(1 = 22) — 5(3K:1 + 4m)
for 0 < ¢ < &cr, and
,_l=¢2 G2 _

K= —=)-1 = .

= ( . + Kg) , 0, (4.12)

for ¢, < ¢ < 1. The corresponding wave velocities are also in the form of equation
(4.7).

Fig.4.4 and 4.5 present the effective elastic moduli and wave velocities versus
porosity predicted by the critical concentration solution. The Hashin-Shtrikman up-
per bounds can be reduced from the solution with 100% critical porosity. By compar-
ing them with Fig.4.2 and 4.3, we notice that, given a critical porosity, the effective
elastic moduli and wave velocities in Fig.4.4 and 4.5 are always lower than those in
Fig.4.2 and 4.3, respectively.

Similarly, another critical concentration solution can be extended from the Mori-
Tanaka’s solution which is given in chapter 2.

Since the effective shear modulus is the same for dry and fluid-saturated porous
materials as indicated in (4.4) and (4.5), and (4.9) and (4.11), the pore fluid properties
have greater effects on P wave velocity than on shear velocity. The P wave velocities

are higher in fluid-saturate porous materials than in dry porous materials, but the
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Fig.4.4 Effective elastic modulus-porosity relations predicted by the
critical concentration solution extended from HS relation with crit-
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porosity relations, (b) effective shear modulus-porosity relations.
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behavior is opposite for S wave velocities. With the same effective shear modulus,
the density effect leads to higher S wave velocities in dry porous materials than in
fluid-saturated porous materials. Such features of critical concentration solutions
are consistent with those derived from Gassmann’s relation and scattering theories

(Gassmann, 1951; Kuster and Toks6z, 1974; Toksoz et al., 1976).

4.2.4 Extension from percolation solution

When dry porous materials are concerned, both K. and p., are zero, and the critical
concentration model terminates at the critical porosity. The effective elastic moduli of
such materials can be also estimated on the basis of percolation theory. During the last
decade there has been important progress in the theoretical analysis of effective elastic
properties near the percolation threshold (Feng and Sen, 1984; Kantor and Webman,
1984; Bergman and Kantor, 1984; Benguigui, 1984; Bergman, 1985; Stauffer, 1985;
Roux and Guyon, 1985; Deptuck et al., 1985; Sahimi, 1986; Chelidze et al., 1988,
1990).

For two or three-dimensional percolation systems, the effective elastic bulk and

shear moduli are usually expressed as
K) b (w - wpt)T’ (413)

where @ is the volume fraction of bonds or sites occupied, @y is the percolation
threshold value of =, and T is called critical elasticity exponent.
When the percolation method is applied to the critical concentration model of dry

porous materials, it follows that

prt@w=1 ¢+ @p=1, (4.14)

and the basic conditions are
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K=K, pu=pu, when ¢ =0, (4.15)

K=K, =0, p=p,=0, when ¢, =d,. (4.16)

Following the conventional expression in percolation solution, we construct a crit-
ical concentration solution to K and g of dry porous materials as
$2

5 , #=p1(1—8;-)T“, (4.17)

where Tk and T, are critical elasticity exponents for bulk and shear moduli, respec-
tively. For two and three dimensional elastic percolating lattice models, the critical
elasticity exponent T ranges from 3.2 to 3.96. However, for percolating solid models,
T becomes smaller. Chelidze et al. (1988) used a depleted solid model consisting of
a polymethyl methacrylate plate punched randomly with circular holes, and found
T = 2.13 for Young’s modulus. Furthermore, for refilled holes, T for Young’s modulus
drops to 0.9. For porous materials such as rocks and sediments, it is expected the
values of T' are related to pore geometry and connectivity, and much lower than those
for percolating lattice models.

When the critical elasticity exponents in above critical concentration solution are
chosen as Tx = 1 and T, = 1, the predicted elastic modulus-porosity relations are
identical with those predicted by the critical concentration solution extended from
Voigt’s relation. On the other hand, when Tx = T, = 1.6 are used, the results are
very close to those predicted by the critical concentration solution extended from
Hashin-Shtrikman’s relation.

The geometry effect of the critical concentration phase on the effective elastic
moduli of porous materials is believed similar to the pore geometry effect as indicated

by the comparison between Mori-Tanaka’s solution and HS bounds in chapter 2.
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Above percolation solution doesn’t include explicitly such effect. By utilizing the

nondilute concentration solutions to K and p of dry porous materials we proposed

in chapter 2, we construct another critical concentration solution that meets the

above basic conditions and takes into account the geometry effect of the critical

concentration phase:

For spherical critical concentration phase, the solution is

K,
K

2

214

I

3(1 - Vl) 4%2;

2(1 —21/1)1—%1’
15(1 —v,) 2=
7—51/1 -—%"’—.

For cylindrical critical concentration phase, the solution is

K
K

#1

o

5—4V1 ff:
3(1 —2V1)]_— f—"’-’

40 - 240, =

-
15 1 der

(4.18)

(4.19)

(4.20)

(4.21)

For penny-shaped critical concentration phase with aspect ratio 5, the solution is

K,

1
Bl
B

=1
x0T

1+

41-vp) 3
3rp(1 =211 — %’

8(1-m)5-n), &

3rn(2 — 1) 1-%:2'-'

(4.22)

(4.23)
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4.3 Comparison between models and data

4.3.1 Comparison with Nobes’ relation

Nobes et al. (1986) noted that Wood’s relation is approximately valid for high porosi-
ties and Wyllie’s relation for low porosities. Then they compute the compressive wave
velocity from the weighted mean slowness using the relation
1 w¢2 (1 - w¢2)
b

—_ +
Ve Wood Viwyitie

(4.24)

where Vo4 1s the Wood velocity as in equation (3.3) and Vv u;e is the Wyllie velocity
as in equation (4.1). The empirical weighting factor w is introduced to take into
account the lack of consolidation. Nobes (1989) set equal weighting (w = 1) for the
Wood and Wyllie velocities and used the relation

Ve Viwooa  Vwyiie

to describe a physical model that sediments are assumed to be mixtures of slurry
and rigid components. In describing the acoustic velocity data in sediments sampled
by the Deep Sea Drilling Project (DSDP), as in Fig.4.6, Nobes et al. (1986) found
w = 1.2 in equation (4.24), and interpreted it as the indication of underconsolidation.
The scatter in the data may be due to variations in grain size and mineralogy.
When we apply the concept of critical porosity to Nobes’ relation with w = 1.2,
we see that w is related to critical porosity ¢., by ¢ ~ 1/w, and that ¢ ranging
from 60% to 80% is common for ocean sediments as reported in the Scientific Results
of Ocean Drilling Program (Taylor and Leonard, 1990; Wilkens et al., 1990). By
comparing Nobes’ relation with the critical concentration solution extended from
Whyllie’s relation, as in Fig.4.7, we conclude that the critical concentration solutions

with 60% ~ 80% critical porosities are equivalent to Nobes’ relation, and that they
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Fig. 4.6 Acoustic velocity versus porosity for sediments sampled by
DSDP. Wyllie’s relation, Wood’s relation, and Nobes’ relation are
used to compare with the data (after Nobes et al., 1986).

are able to quantitatively describe most sediment data as in Fig.4.6.

4.3.2 Comparison with Raymer’s relation

Based on extensive field measurements and observations of transit time versus porosity
in various rocks and sediments, Raymer et al. (1980) proposed a set of relations

between P wave velocity and porosity over the entire porosity range,
Vp=(1-¢2)"Vi+¢2V2 (0= ¢ <037) (4.26)

_ 0.1Va7Vyr
"~ Var(¢ = 0.37) — Viz(¢2 — 0.47)

Ve (0.37 < ¢, < 0.47) (4.27)

1 1—¢2+ o2

= 0.47 4.28
p]y/}% P ‘/12 ng;;z (¢2 > ) ( )
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Fig.4.7 Comparison between critical concentration solutions with other

model results. Nobes’ relation is bracketed by the critical concen-
tration solutions with 60% ~ 80% critical porosities.

where V37 and V; are the P wave velocities in the fluid-saturated material with 31%
and 47% porosities, respectively.

Although above relations are empirical, Raymer et al. (1980) did give a qualitative
interpretation of their material models. Equation (4.26) is a modification from Voigt’s
relation implying that rock matrix and fluid-filled pores constitute a more parallel
network for acoustic transmission. Equation (4.28) is Wood’s rela.xtion for suspension
materials. And equation (4.27) represent the transition between these two material
models. Fig.4.8a compares Raymer’s relation with Wyllie’s and Wood’s relations. At
porosity up to 37%, Raymer’s relation yields higher velocity than Wyllie’s.

It is appropriate to say that the critical concentration model in this thesis'study
roots in the similar observation and logic to those for Raymer’s relation. For example,
the transition porosities 37% ~ 47% in Raymer’s relation are indeed the typical values

of critical porosity for limestones and sandstones. The critical concentration solutions
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o developed are theoretical extension and formulation of Raymer’s empirical relation.
One of features in Raymer’s relation is the abrupt change of wave velocity at 37%
porosity as seen in Fig.4.8a, which stems from the empirical forms and is criticized
as unphysical. Fig.4.8b compares Raymer’s relation with the critical concentration
solution extended from Hashin-Shtrikman’s relation. Raymer’s relation is completely

bracketed by the critical concentration solution with 40% and 50% critical porosities.

4.3.3 Wave velocity-porosity relations in sandstones

Fig.4.9 compares several theoretical results with experimental data of wave velocities
in clean sandstones obtained by Han (1986). 40% critical porosity is used in the
critical concentration solutions. For both P and S wave velocities, the data are com-
pletely bracketed by the critical concentration solutions extended from Voigt’s and
Hashin-Shtrikman’s relaiions. If the exact critical porosity of such porous materials is
available, one can easily fit the velocity data with one of the critical concentration so-
lutions. In general, critical concentration solutions give better evaluations compared
with self-consistent spherical and cylindrical pore models and original Voigt’s and HS

bounds.

4.4 Clay Effects on Effective Properties

4.4.1 Experimental data and empirical relations

Clay content in shaly sandstones has been recognized by experiments as the second
factor after porosity to influence P and S wave velocities. Tosaya and Nur (1982),
based on their experiments, proposed an empirical relation that P wave velocity
(km/sec) is a linear function of porosity ¢, and clay volume fraction ¢3 of fully-

saturated rocks,

VP =58— 8.6¢2 - 2.4¢3. (429)
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Fig.4.8 (a) Comparison between Raymer’s relation and Wyllie’s and
Wood’s relations, (b) comparison between Raymer’s relation and
the critical concentration solutions with 40% ~ 50% critical porosi-
ties.
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Kowallis et al. (1984) examined this empirical relation by collecting broad ranges of
experimental data from DeMartini et al. (1976), Tosaya and Nur (1982), and their
own, and found that the empirical relation is generally consistent with available data,

as in Fig.4.10.

Wet Vp (km/sec) at 40 MPa differantial. pressure

§0
60% \
~; Error bors 70%\\\

1] 5 10 15 20 25 30
Point Count Porosity, ¢ (%)

Fig.4.10 Experimental data and empirical relation between P wave ve-
locity, porosity, and clay volume fraction of shaly sandstones. The
solid lines are predicted by the empirical relation (4.24). The ex-
perimental data are from DeMartini et al. (1976) (circle?, Tosaya
and Nur (1982) (triangles), and Kowallis et al. "(1984) squares).
(after Kowallis et al., 1084)

Han et al. (1986) conducted extensive experiments on shaly sandstones and ar-

rived at both P and S velocity-porosity-clay content relations,

Vp =559 —6.93¢, — 21845, Vs=3.52—491¢, —1.80¢5,  (4.30)

at 40MPa confining pressure and 1MPa pore pressure. In particular, they observed

that clay content affects shear modulus g much more than bulk modulus K.



Chapter 4 — Critical concentration solutions 95

Wilkens et al. (1986) conducted aspect ratio modeling to investigate clay effects
on the compressional wave velocity of dry sandstones with varying clay contents.
They concluded that the effect of clays in sandstone pores is simply to reduce the
porosity without changing the non-framework (void + clay) volume fraction.

In the following we extend the critical concentration model to include the pore-
filling and dispersed clay effects. The critical concentration solutions are then com-

pared with available experimental data.

4.4.2 Pore-filling and dispersed clay effects

For fluid-saturated porous rocks and sediments with pore-filling clay which has mi-
croporosity @.m, the pore-filling clay volume fraction ¢5 is limited by the supposed
pore volume fraction (1 — ¢;) as 0 < ¢3 < (1 — ¢1), and (1 — ¢;) may change from
zero to 1 throughout a porous material system. Thus, it is practical and analytically-
convenient to define the pore-filling volume fraction @3 as some percentage of (1—¢,).

Let ¢3 = x(1 — ¢1), the material porosity ¢, is given by

¢2 = (1= 1)1 — x(1 — ¢em)]- (4.31)

For example, given a sample with 15% porosity, 8% pore-filling clay, and 25% micro-
porosity, from equations ¢; = 1 — ¢; — #3(1 — ¢em) and @3 = x(1 — ¢,) one finds
¢1 = 0.79 and x = 0.381. For marine suspensions, the clay state is not pore-filling
clay but dispersed clay, but the porosity is also given by above formula.

When the critical concentration model is extended to clay-bearing porous materi-
als, it is believed that pore-filling clay particles do not disturb the highly load-bearing
matrix phase, that is, the clay particles are totally included in the critical concen-
tration phase. Now it is rigorous to use critical concentration C., to represent the
transition from solid-matrix supported and fluid-matrix supported subsystems, and

the critical porosity ¢., decreases with the increase in pore-filling clay volume fraction,
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¢cr = Cc'r[1 - X(l - ¢cm)] (432)

4.4.3 Critical concentration solutions

In the fluid-matrix supported subsystem (C., < W < 1) where clay parti-
cles are in dispersed state, the effective elastic modulus-porosity and wave velocity-

porosity relations can be analytically described by the isostress material model (Reuss,

1929; Wood, 1941; Hill, 1963),

1 ¢1 ¢2 ¢3(1 "‘ ¢c1n)

R R
1—X!1—¢cm!"¢2 2X!1“¢cm!
— 1-x(1—¢em) ¢2 1-x(1-=¢cem) (4 33)
K; Kz Ky '
p=0, (4.34)

[1'-l>(_(.1—¢cm —¢ + % + r—f(l-écm) ]_1
2

VR = —— — (4.35)
P[RSR + pade + psl—i——i.ié il
Vs =0. (4.36)

where K3 and p3 are clay bulk modulus and density, respectively.

In the solid-matrix supported subsystem (0 < < C4), when Voigt’s re-

— & <
1- X(l ¢cm) -

lation is applied to the critical concentration model, the critical concentration solution

to effective elastic moduli is

¢z
Cerll = X(1 = Gem)

2
C [1_ 1—¢cm)]
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L 62
where
_ 1- Ccr Ccr[l - (1 - ¢cm)] (1 - ¢cm) -
K, ={ s X o 3L (4.39)

When Hashin-Shtrikman upper bound is applied to the critical concentration

model, the effective elastic moduli for 0 < W%&:? < C,, are given by

(K., — K;)(3K, + 4#1)'&7{1’—%(21':&7)1
3K +4m + 3(](1 - I{cr)z‘_m:)%ﬁ:m—)]

K=K+ , (4.40)

51 (3K, + A1) o] (4.41)
6(K1 + 21)(1 — oopmimymy) — D(3K1 +4m). '

H=pt

The corresponding wave velocities for 0 < -l—-x—(%—j < 1, are expressed as

K+4p/3

Ve = {——— - 12, (4.42)
[——":‘,’(—(f—i?m] + p2g2 + pa[—%%—ﬁ%;‘,%]

Vs = {~—=rTss i e Y172, (4.43)
[ 1-x(1 c:; ] + P2¢2 + P3[ 1-x(1— ¢cm)]

Fig.4.11 shows effective elastic modulus-porosity relations with different levels of
pore-filling and dispersed clay. The effect of pore-filling clay is stronger on effec-
tive shear modulus than on effective bulk modulus, consistent with the experimental
observation (Han et al., 1986). The dispersed clay has little effect on the effective
bulk modulus. The critical porosity decreases from 40% to 22% as the parameter x
increases from zero to 0.6.

Fig.4.12 presents the wave velocity-porosity relations with different levels of pore-

filling and dispersed clay. At porosities up to 20% ~ 30%%, the P and S wave
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velocities decrease almost linearly with porosity and parameter x indicating the clay
content. This feature is consistent with the linear empirical relations between velocity,
porosity, and clay content proposed by Tosaya and Nur (1982) and Han et al. (1986).

Recently, Marion (1990) collected experimental data of P wave velocity from
Hamilton (1956), Han et al. (1986), and Yin et al. (1988). For clean sandstones
and sands, the P wave velocity data indicate about 40% critical porosity. With the
increase in clay content, P wave velocity data scatter very much. Neither predictions
from existing analytical models like HS bounds nor empirical relations can match the
feature of such wave velocity-porosity-clay relations. When we compare the critical
concentration solution as in Fig.4.12 with such data, we find that our theoretical
results can explain all features in such data (Fig.4.13). We use the parameter x to
characterize the clay content in the data and draw the lines with x = 0.0,0.2,0.4,0.6.
As predicted by our model result, the critical porosity decreases with clay content,

and P wave velocity drops dramatically with clay content.

4.5 Conclusions

Conventional porous material models can be taken as specific critical concentration
models with 100% critical porosity.

The substitution method is useful for deriving critical concentration solutions on
the basis of existing analytical and empirical formulas of conventional porous material
models.

The critical concentration solutions extended from Wyllie’s, Voigt’s, and HS re-
lations give better description of available experimental data for both clay-free and
clay-bearing porous materials.

Our theoretical results provide insights into several empirical relations between

velocity, porosity, and clay content.
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Fig.4.11 Effective elastic modulus-porosity-clay relations predicted by
the critical concentration solution extended from HS bounds. ¢, =
25% and x = 0.0,0.2,0.4,0.6 are used in calculation. Critical poros-
ity decreases from 40% to 22% as clay content increases. (a) effective
bulk modulus versus porosity and clay content, (b) effective shear
modulus versus porosity and clay content.
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x = 0.0,0.2,0.4, 0.6 are used in calculation. (a) P wave velocity ver-
sus porosity and clay content, (b) S wave velocity versus porosity

and clay content.
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Chapter 5

Asymmetric Self-consistent Method and

Solution for Porous Materials

Abstract

This chapter examines and explores self-consistent methods and solutions for the
effective properties of porous materials. Although both symmetric and asymmetric
self-consistent methods yield the vanishing elastic moduli at finite porosity for porous
materials, only the latter is conceptually consistent with the critical porosity phe-
nomena of porous materials. Asymmetric self-consistent solution for penny-shaped
inclusions is found and is compared with experimental data of wave velocity-porosity
relation. By comparing the asymmetric self-consistent solutions with the critical con-
centration solutions of fluid-saturated porous materials, we conclude that the asym-
metric self-consistent method and solution can be taken to advantage for evaluating
effective properties of porous materials almost up to the critical porosity. Then the
clay effects on effective moduli and wave velocities of porous materials are investi-
gated by extending the asymmetric self-consistent solutions to clay-bearing porous
materials with varying clay cementation states. The results indicate that clay effect
is stronger on effective shear modulus than on effective bulk modulus, and that un-
cemented clay effect is stronger than cemented clay effect, which are consistent with

the observations from clay-bearing sandstone experiments.
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5.1 Symmetric and Asymmetric Self-consistent
Methods

As pointed out in chapter 1 and 2, only the self-consistent method can yield vanishing
effective moduli at finite porosity for porous materials, which seems relevant to the
critical porosity as studied in chapter 3 and 4, and has been a controversial issue in
effective medium theories. By taking a positive attitude over the issue, this chapter
examines and explores asymmetric self-consistent solutions, compares them with the
critical concentration solutions, and ascertain how much the self-consistent method
and solution can be taken to advantage for evaluating effective properties of porous
materials.

According to Berryman (1980) and Thorpe and Sen (1985), there are symmetric
and asymmetric self-consistent methods which differ in the role treatments of material
constituents. The symmetric self-consistent method (SSCM) treats all material con-
stituents symmetrically or equally, in other words, there are no distinctions of matrix
and inclusion phases, and all constituents are assumed to have the same shape and
distribution. In Berryman’s version of symmetric self-consistent method (Berryman,
1980), the constituents of a multiphase material are embedded equally in a matrix
composed of the effective material, and the basic requirement that the scattered,
long-wavelength displacement field vanishes on the average leads to a general form of
symmetric self-consistent solution.

The asymmetric self-consistent method (ASCM) treats one constituent as matrix
or host and the others as embedded inclusions. Thus matrix phase and inclusion
phase have quite different geometry and connectivity. The derivations of asymmetric
self-consistent solutions for composite materials are often involved with an auxiliary
problem that a single inclusion is embedded in an infinite matrix composed of the
effective material. Typical asymmetric self-consistent solutions have been found by

Hill (1965), Budiansky (1965), Wu (1966), Walpole (1969), Boucher (1974), O’Connell
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and Budiansky (1974, 1977), and others.

For composite materials whose constituent properties are in the same order, both
the symmetric and asymmetric self-consistent solutions to effective elastic moduli are
within the narrow Hashin-Shtrikman bounds, and the shape and connectivity effects
of constituents are actually negligible (Berryman, 1980). For dry and fluid-saturated
porous materials, however, both solutions yield the feature of vanishing elastic moduli
at finite porosity. For spherical pores in three-dimension problems and circular pores
in two-dimension problems, both solutions predict the same finite porosity at which
the effective elastic moduli vanish. But the solutions predict different finite porosities
for all other pore shapes. Thus, which self-consistent solution is conceptually con-
sistent with the critical porosity phenomena of porous materials such as rocks and
sediments?

We believe that the asymmetric self-consistent method and solution are more
appropriate to describe the microstructural geometry and connectivity effects, and
the critical porosity phenomena of porous materials. For porous materials, the mi-
crostructural geometry effect on effective moduli is considerable, leading to far-apart
HS bounds as illustrated in chapter 2. As indicated in chapter 3, the matrix phase of a
porous material has dominant effects on the effective moduli compared with the inclu-
sion phase. SSCM assumes the same shape for every constituent and no distinction of
matrix or inclusion phase. These assumptions are unrealistic for porous materials es-
pecially rocks and sediments. For a fluid-saturated porous material, ASCM assumes
the solid matrix and fluid inclusion, and ASCM solution for 0 ~ 100% porosities
contains the vanishing shear moduli at finite porosity. This is conceptually consis-
tent with the porous material system as illustrated in Fig.3.6 where critical porosity
is just the transition porosity between the solid-matrix supported and fluid-matrix

supported subsystems.
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5.2 Existing Asymmetric Self-consistent Solutions

Given a geometrical model of the inclusion phase, the asymmetric self-consistent solu-
tions always turn out as a set of nonlinear simultaneous equations with the unknowns
K and p. An iteration method is generally needed to solve the equation set. We
compile a numerical program based on the incorporation of Newton-Raphson method
and Conjugate Gradient method (Press et al., 1989) in order to warrant the conver-
gence and accelerate the convergent speed. We rewrite the existing solutions in such
forms that all these simultaneous equation sets can be solved stably and accurately by
the numerical program to yield the effective bulk and shear moduli. In the following
computation, typical values for the fluid-saturated rocks are given as: (1) sand grain
phase, Ky = 38500MPa, u; = 42500 MPa; (2) fluid phase (water), Ko = 2200MPa,

H2 = 0.
5.2.1 Spherical inclusion model

Hill (1965) obtained

1-¢2 &2 3
- 5.1
K—kK, K—K, _3K+ag (5.1)

11— ¢2 ¢2 6 K + 2[!
+ = - , 5.2
H—iz p—p  SEBK +4p)u (5:2)

which can be rewritten in the following form

ﬁ - (K, — K2)(3Ky + 4p)d2 .
K 1+ K1(3K; + 4p) + 4pda (K, — K;)' (5.3)
t_ SGK +4p)(p — i + iés — p2d2) 64)
K 6(K + 2p)(p — 1) (1 — pro)
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For inviscid fluid saturation, the numerical results in Fig.5.1(a) show that u becomes
zero at about 60% porosity, and that K reduces to Reuss’ bound Kg at about 60%
porosity. In fact, this latter feature can be proved analytically. Since 4 = 0 begins at
porosity 60%, we substitute u = 0 and p; = 0 into (5.3) and find that it just reduces

to the Reuss’ bound KR,

L _ 1. (K1 — K3)¢,
K K, K K,
_1=-¢, ¢
= % 1%,
1
= FR. (5.5)

Compared with the definition of critical porosity, the asymmetric self-consistent so-

lution yields about 60% critical porosity for inviscid spherical fluid inclusions.

5.2.2 Cylindrical inclusion model

When cylindrical inclusions are randomly oriented in space, the effective elastic mod-
uli are isotropic. The asymmetric self-consistent solution obtained by Walpole (1969)

can be rewritten as

1{1 - K2 3(1(1 - 1{2) ¢2

rd = 1 1 , 5'6
73y A Sy -ouraymany iy wae (56)
B1— p2 B1 — H2 6Kz +3ps + Tp

= = 1414 -

B — 2 [ 5 ((#2+F)(31‘2+#2 +3u)

p(3K + p) + p(3K + 7p))]1 — ¢

For inviscid fluid saturation, the numerical results in Fig.5.1(b) indicate about 55%

critical porosity for cylindrical fluid inclusions.
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Fig.5.1 Effective elastic modulus-porosity relations of a fluid-saturated
material predicted by the asymmetric self-consistent solutions. (a)
spherical fluid inclusion model, (b) cylindrical fluid inclusion model.
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5.2.3 Infinitesimal-thin disk inclusion model

Under the condition K, # 0 and p, # 0 simultaneously, the asymmetric self-consistent

solution obtained by Walpole (1969) can be rewritten as

Ki— Ky _ 3(K, — K3), ¢

7y Al Sl y-owrw pad s (58)
f1 — fa 4(p1 — p2) | 2(p1 — p2), &2
1= pr [ 5(3K + 4p2) Sft2 ]1 ~ ¢2 (59)

Since the inclusion is assumed infinitesimal thin, the inclusion volume fraction ¢,
should be replaced by some other parameter such as inclusion density. Theoretically,
p becomes zero at 0% porosity, and k = Kp beginning at 0% porosity for inviscid

fluid saturation.

5.3 Solution for penny-shaped inclusion model

From the nondilute concentration solutions in chapter 2 we know the inclusion geome-
try effects as follows: prolate inclusions result in effective elastic moduli between those
of spherical and cylindrical inclusions; oblate inclusions with about n = 0.5 yields ef-
fective elastic moduli equivalent to those of cylindrical inclusions; with smaller aspect
ratio, the penny-shaped inclusions yield effective elastic moduli lower than those of
cylindrical inclusions. It is reasonable to believe that such inclusion geometry effects
hold in either the dilute solutions or the asymmetric self-consistent solutions. But in
the literature we haven’t seen any presentation of asymmetric self-consistent solution
for penny-shaped inclusion model (Watt et al., 1976; Jizba and Mavko, 1990). On the
other hand, almost all experimental data of wave velocities in fluid-saturated rocks
and sediments fall within the domain bounded by the asymmetric self-consistent so-

lutions of cylindrical and infinitesimal-thin disk inclusions ( Tosaya, 1982; Han, 1986;



Chapter 5 — Asymmetric self-consistent solutions 112

Jizba and Mavko, 1990). Consequently, there is a need to find the asymmetric self-

consistent solution for penny-shaped inclusion model.
Walsh (1969) found the dilute solution for penny-shaped inclusions by simplifying
a self-consistent procedure adapted from Wu’s study (Wu, 1966). We examine Walsh'’s

derivation, correct the misprint in one of his formulas, and obtain the asymmetric self-

consistent solution for flat-oblate inclusion model,

] Gzt
K T 3K

3K + 4u, K, — K, 6 (5.10)
YIRS T 4pz + 33K + p)/(3K +4p) K 77 '

31 H1— P2
o =t (8Tiji; — Tiijj)(—lv%)

8u
= 141
At B R + 2GR 40

2(3K; + 2u2 + 2u) M1 — P2
, 5.11
+3K2 +4p2 + Impp(3K + p)/(3K + 4;1)] S5u ¢ (5.11)
where
3(3K +4p2) (5.12)

T = 3R, 5 42 % 37nu 3K + W] GK + )

8u
Ty = 1
3 Y 4 13 a3K + 20)/BK 1 48) T

23K, + 4pz) + 3K + 4y (5.13)
3Ky +4p; + 3rqu(3K + p)/(3K +4p)’ )
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When the inviscid fluid inclusions are considered, K, # 0, y; = 0, the above

solution reduces to

Eis , 5.14
K Ky,(3K +4p) + mqu(3K + u)¢2 (5:14)
L 3rn(3K + 2u1) 3K (3K + 4u) + 3mqu(3K + )" 5p '

Let n = 0, above equations reduce to solution for the infinitesimal-thin disk inclusion
model.

For flat-oblate or finite-thickness penny-shaped inclusions, we find that the above
solution is appropriate to describe inclusions with the aspect ratio around 10~'. Fig.
5.2(a) and (b) show the effective bulk and shear moduli versus porosity with aspect
ratios ranging 0.07 ~ 0.11. The critical porosities for each value of the aspect ratio
can be clearly seen from Fig.5.2(b). After the critical porosity, the effective bulk
modulus K reduces to Kp. Fig.5.3 shows the asymmetric self-consistent solution for
a broader range of aspect ratios, including the spherical and cylindrical inclusions.
Thus we complete a series of asymmetric self-consistent solutions especially useful for

fluid-saturated porous materials.

5.4 Velocity-porosity Relations and Comparison

5.4.1 ASCM wave velocity-porosity relations

Given the effective elastic moduli of a fluid-saturated material predicted by the asym-
metric self-consistent solution, the low-frequency or long-wavelength P-wave and S-

wave velocities, V,, V,, are then calculated from the relations

Vy=y|—=2, V,= %, (5.16)
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tion, (b) effective shear modulus-porosity relation.
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where the effective density p is related to sand grain aensity p1 and fluid inclusion
density p; by p = (1 -- ¢2)p1 + ¢2p;- In the following calculation, p, = 2650kgm =3
for sand grains and p, = 1000kgm™3 for water are used.

Fig.5.4 shows the wave velocity-porosity relations for water-saturated materials
with spheroidal inclusion geometries. The critical porosity ranges from zero to 60%
depending on the inclusion aspect ratio. The neighboring domains of the cylindrical
inclusion solution are characterized by the aspect ratio around 10~!. After the critical
porosity, all solutions reduce to the Reuss’ bound K = K Ry £ = pp = 0, and so it
follows that wave velocities in the fluid matrix-supported materials are independent

of the solid inclusion geometries.

5.4.2 Comparison with experimental data

For the solid matrix-supported materials like most fluid-saturated rocks, numerous
experimental studies indicate that the confining pressure changes the density, porosity,
the effective elastic moduli, and so the wave velocities. Although the asymmetric self-
consistent solutions in the above do not take into account those pressure-dependent
effects, they still provide some explanations of the pressure-dependent wave velocities
through the assumpticn that the confining pressure effect can be reflected by the
varying of inclusion aspect ratios. Han et al. (1986) obtained wave velocity data of
10 clay-free sandstone samples in the confining pressure ranging from 5 to 40 MPa.
Fig.5.5 compares the P and S wave velocity data at 5MPa confining pressure with
the ASCM solution for penny-shaped inclusion models. We see that the models
with aspect ratios 0.11 ~ 0.13 best fit the data, corresponding to 46% ~ 52% critical
porosities. However, in Fig.5.6 where wave velocity data at 40 MPa confining pressure
are compared, the appropriate model seem to be the penny-shaped inclusion model
with aspect ratios 0.14 ~ 0.15, When these pore aspect ratios are understood as the
meaning of “average” and “initial value” of microstructure features, it is reasonable

to infer that higher confining pressure leads to the partial or complete closure of those
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inclusions with smaller aspect ratios, and so the remaining inclusions yield a larger

value of “average” aspect ratio and also the critical porosity.

5.4.3 Comparison with critical concentration solutions

In chapters 3 and 4, critical porosity can be determined by several approaches and
it is an input parameter for the critical concentration solution of porous materials.
In chapter 5 the inclusion aspect ratio is an input parameter for the asymmetric
self-consistent solution and the critical porosity turns out as a unique feature of the
solution. When these two types of critical porosities are set as same value for a given
porous material, what will be the effective modulus-porosity and velocity-porosity
relations predicted by the critical concentration solution and the asymmetric self-
consistent solution?

Fig.5.7 compares these two types of solutions to effective bulk modulus-porosity
and P wave velocity-porasity relations for a fluid-saturated porous material. Spher-
ical fluid inclusions are used in the asymmetric self-consistent solution which yields
60% critical porosity. Then 60% critical porosity is used in the critical concentration
solutions extended from Voigt’s, Hashin-Shtrikman’s and Mori-Tanaka’s relations.
When spherical fluid inclusions are used in the Mori-Tanaka’s relation, the resulting
critical concentration solutions from Hashin-Shtrikman’s and Mori-Tanaka’s relations
become identical to each other. Fig.5.7(a) indicates that at porosities up to 20%, the
asymmetric self-consistent solution is equivalent to the critical concentration solution
extended from Voigt’s relation, that at porosities between 20% ~ 45%, the asymmet-
ric self-consistent solution is between the critical concentration solutions extended
from Voigt’s and Hashin-Shtrikman’s relations, that at porosities between 45% ~
critical porosity, the asymmetric self-consistent solution is lower than the solution
extended from Hashin-Shtrikman’s relation, and that after the critical porosity, all
solutions become the same. Those solutions have similar features for effective shear

modulus. As a result, for P wave velocity-porosity relations in Fig.5.7(b), the asym-
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metric self-consistent solutions is between the solutions extended from Voigt’s and
Hashin-Shtrikman’s relations up to 45% porosity, and they become identical after the
critical porosity. These results lead to following conclusions: although the asymmet-
ric self-consistent solution for spherical inclusions may not be very accurate near the
critical porosity, it works quite well for a broad range of porosity, almost up to the
critical porosity, and it is exact after the critical porosity.

Penny-shaped pore and cracks have been used frequently as a class of microstruc-
tural models for porous rocks like sandstones. Fig.5.8 compares the effective bulk
modulus-porosity and P wave velocity-porosity relations predicted by the critical
concentration solution and the asymmetric self-consistent solution with penny-shaped
inclusions. Penny-shaped fluid inclusions with aspect ratio n = 10~! are used in the
asymmetric self-consistent solution which yields 43% critical porosity. Then such
critical porosity is used in the critical concentration solutions. With the aspect ra-
tio 7 = 10~! in Mori-Tanaka’s relation, the critical concentration solutions extended
from Hashin-Shtrikman’ and Mori-Tanaka’s relations are now different. For both the
effective bulk modulus-porosity and P wave velocity-porosity relations, the asymmet-
ric self-consistent solutions are always between the solution extended from Hashin-

Shtrikman’s and Mori-Tanaka’s relations.

5.5 Clay Effects on Effective Elastic Moduli and
Wave Velocities

5.5.1 Clay cementation and material porosity

Clay-bearing fluid-saturated materials can be taken as three-phase materials with
sand grain phase, clay phase, and fluid phase. The effect of clay phase on the effec-
tive moduli and wave velocities can be evaluated through the mechanical interaction
between clay phase and other phases. To describe such an interaction, the cementa-

tion state of the clay with other phases is an important parameter to be considered.
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Here we extend the asymmetric self-consistent solutions from two-phase materials to
three-phase materials by incorporating the clay volume fraction ¢, clay cementation
coefficient A, and clay microporosity ¢, into a unified model.

The clay cementation coefficient A is defined as follows. Given a clay volume
fraction @3, a portion of the clay is cemented with the sand grains, with the volume

fraction ¢, and the other portion ¢5 is in uncemented state. Then we have

¢3 = ¢5 + ¢3, A=¢—I3, 0<A< L (5.17)
3
Accordingly, A = 1 means complete cementation of the clay phase, and A = 0 means
the completely-uncemented state of the clay phase.
For the cemented clay, the powder particle assemblages or clusters are supposed
to fill with cements, which means that the clay microporosity ¢.., should be zero, or
negligible. In the situation of complete cementation of the clay phase (A = 1), only

one parameter ¢3 of the clay phase is involved into the determination of porosity ¢,,

$2=1— 6 ~ ¢3. (5.18)

In the situation of completely-uncemented clay phase (A = 0), the porosity ¢,
depends on two parameters describing the clay phase: clay volume fraction ¢; and

clay microporosity ¢.m,

$2=1— ¢ — ¢3(1 — dom). (5.19)

The concept of pore-filling clay, as used in chapter 4, is equivalent to the completely-
uncemented clay. If y is used to represent the ratio of clay volume fraction ¢; to the

supposed pore volume fraction (1 — ¢,), the porosity is given by
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¢ = (1 - ¢1)[1 - x(1 - ¢cm)]- (5.20)

Generally the porosity of material with 0 < A < 1 is given by three parameters

describing the clay phase,

$2=1—¢1 ~ ¢3[l = (1 = A)gem]. (5.21)

5.5.2 Asymmetric self-consistent solutions with clay phase

When the clay phase is in complete cementation state, the solid phase of a fluid-
saturated material is composed of the sand grain phase and cemented clay phase.
Suppose that the overall elastic moduli of the solid phase are represented by K3 and

f13, then the asymmetric self-consistent solution for the penny-shaped pore model is

K13 31{ + 4”2 1{13 -— Kg
& ! 5.22
K * 3Ky +4ps+ 3mqu(3K + p)/(3K +4u) K @2, (5.22)
H13 8u
— = 14]1
T+ 4pq + 3myu(3K + 2p) /(3K + 4p) *
2 -
2ot Bt 2 ety (5.23)

3Kz +4pz + 3mqu(3K + p)/ (3K +4p)"  5p

When the clay phase is in completely-uncemented state, the clay particles may
be in the form of isolated cluster with a certain microporosity, along with the fluid
phase, to fill in the space among sand grains. Suppose that the subsystem of clay
phase and fluid phase are described by the overall elastic moduli K23 and po3, the

asymmetric self-consistent solution for the penny-shaped pore model is
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I(I =1 + 3K + 4[123 I(l - 1(23
K = 3Ky 4 4ps + 3mqu(3K + p)/(3K +4p) K

P 8u
B - 1+pn+
p { 4pas + 3mpu(3K + 2p)/ (3K + 4p) +
2(3 K23 + 253 + 2p1) M1 — H23

+ 1—¢). (5.25
3Ky + 4pa3 + 3mqu(3K + )/ (3K + 4;1)] 5u (1=¢1). (5:25)
where the factor (1 — ¢;) can be replaced by [¢; + ¢3(1 — dcm )]

Based on above analysis, the asymmetric self-consistent solution with penny-
shaped pore model for a fluid-saturated material with cemented clay A¢; and un-

cemented clay (1 — A\)¢; is given by

]{13 31{ + 4#23 1{13 - 1{23
K +3K23 +4py3 + 3mu(3K + p)/ (3K + 4p) K [$2+65(1-A)(1~¢em)]
(5.26)
8
B 14+ a

Tpn T 37 1p(3K + 20)JGK 7 45) T

2(3 K23 + 2p93 + 2p) ]ﬂ13

— H23
— N1 = dem)]-
T 3Kas + dpizs + S7up(3K + 1)/ (3K + 4p) (92 + ¢a(1 = A)(1 = fem)]

op

(5.27)

where Ki3, p13, K23, and g3 for a material system of porous rocks, sediments, and

marine suspensions can be determined as

K1 _ 14 3K13 + 4pa K, - Ks; A3
K3 3K3 + 4ps + 3mnpa(3Kia + p13)/(3K1a + 4p1a) Kz 1+ Ags’

(5.28)
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1 8u13
LU +
P13 [ 4ps + 3mnp3(3Ka3 + 2p13)/(3K13 + 4p13)
+ 2(3K3 + 2p3 + 2413) p1— 3 Ads
3K3 + 4ps + 3mnp13(3Kas + p13)/(3K1a + 4p13)” Spaz 1 + Ads’
(5.29)
1 —¢1— A3 _ ¢z + ¢3(1 — A)(1 — ¢om)
I{gg 1\,23
¢2 ¢3(1 - A)(]' - ¢cm)
I(Q + 1(3 ’ (530)

For inviscid fluid saturation, above solutions will reduce to a generalized Reuss’

bound after the critical porosity,

1 _1-[6+¢s(1 = (A = ¢em)]  $2+ 65(1 = M1 = dem)

- 5.32
K K3 K23 (5:32)

p=0. (5.33)

Fig.5.9 presents the asymmetric self-consistent solution to the effective modulus-
porosity-clay relations for a fluid-saturated material with cemented clay phase. Since
the shear modulus of the clay phase is much smaller than that of sand grains, the
effective shear modulus g drops much more compared with the effective bulk modulus.
At low level of clay volume fraction, 4 decreases more compared with the situation

of high level of clay volume fraction.
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Fig.5.9 Asymmetric self-consistent solution to effective modulus-
porosity -clay relations for a fluid-saturated material with cemented
clay phase. (a) effective bulk modulus-porosity-clay relation, (b) ef-
fective shear modulus-porosity-clay relation.
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Fig.5.10 shows the asymmetric self-consistent solution to effective modulus-porosity-
clay relations for a fluid-saturated material with uncemented clay phase. Since the
uncemented clay particles fill in sand grain spaces, the critical porosity decreases with
the increase in clay content. The critical porosities for situations of 10%, 20%, and
30% clay volume fractions are 45.1%, 37.6%, and 30.2%, respectively. Once again, the

clay effect on effective shear modulus is stronger than that on effective bulk modulus.

5.5.3 Comparison with velocity data

Han (1986) conducted extensive experiments of clay-bearing sandstones and observed
that a few percent of clay can dramatically reduce the effective moduli and wave
velocities of the rock. Han described this phenomenon as “bound clay effect”, and
his explanation is that a few percent of tiny clay particles will be sufficient to cover
all surfaces and boundaries of sand grains, which reduces the elastic moduli and wave
velocities.

The bound clay effect can be better understood in terms of the clay cementation
state. As indicated in Fig.5.11, given a clay content such as 10%, the uncemented clay
causes the strongest decrease in effective moduli. In contrast with the intermediate
and high levels of clay particles which may be just half-cemented or incompletely
uncemented, the initial clay content such as a few percent may be in completely-
uncemented state. Fig.5.12 compares the asymmetric self-consistent solution and
experimental data of wave velocities with the cementation coefficient A ranging from
zero to one. Experimental data with clay volume fraction 0 ~ 10% are used for
comparison, and they are more close to the model results of completely-uncemented

clay phase.
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Fig.5.10 Asymmetric self-consistent solution to effective modulus-
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5.6 Conclusions

Although both symmetric and asymmetric self-consistent methods yield the vanish-
ing elastic moduli at finite porosity for porous materials, the latter is conceptually
consistent with the critical porosity phenomena of porous materials. Asymmetric
self-consistent solution for penny-shaped inclusions is found and is in agreement with
experimental data of wave velocity-porosity relation.

By comparing the asymmetric self-consistent solutions with the critical concentra-
tion solutions of fluid-saturated porous materials, we conclude that the asymmetric
self-consistent method and solution can be taken to advantage for evaluating effective
properties of porous materials almost up to the critical porosity.

The clay effects on effective moduli and wave velocities of porous materials are
investigated by extending the asymmetric self-consistent solutions to the incorpora-
tion of clay phase with varying cementation states. The results indicate that clay
effect is stronger on effective shear modulus than on effective bulk modulus, and that
uncemented clay effect is stronger than cemented clay effect, which are consistent

with the experimental observations.
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Chapter 6

Critical Concentration Model and

Solution for Sand-clay Sediments

Abstract

For sand-clay sediments ranging from clean sands, shaly sands, sandy shales, to
pure shales, the concept of critical concentration in porous materials is applied to the
evaluation of the porosity-clay content relation, permeability-porosity-clay relation,
and effective elastic moduli and wave velocities. The model of complete clay filling
yields the lower bound of porosity-clay content relation. With the intergranular clay
and void effects taken into account, our model results can quantitatively describe the
porosity-clay content relation in experimental data. By applying Kozeny-Carman
equation to sand-clay sediments and using experimental data of clean sand porosity
and clay microporosity, we present the relationships between permeability, porosity,
clay content and location, and confining pressure, which exhibit distinctive change
from shaly sands to sandy shales. Then the critical concentration phase is defined on
the basis of mechanical implications of the intergranular clay effect. The substitution
method is used to evaluate the effective elastic moduli and wave velocities, and the

model results are in agreement with available experimental data.



Chapter 6 — Model and solution for sand-clay sediments 137
6.1 Critical clay concentration

Sand-clay sediments can be taken as a porous material system ranging from clean
sands, shaly sands, sandy shales, to pure shales. There is a distinctive change in
microstructures of sand-clay sediments from shaly sands to sandy shales, that is, the
transition from sand skeleton-supported to clay matrix-supported subsystems. The
clay content at this transition is defined as the critical clay concentration which is
related to the porosity of clean sands, and the filling and packing of clay particles with
sand grains. The porosity, permeability, effective elastic moduli, and wave velocities
change distinctively before and after the critical clay concentration, as indicated in
the experimental studies (Han, 1986; Yin et al., 1988). The model studies of effective
elastic moduli and wave velocities by Marion and Yin (1988), Marion (1990), and Nur
et al. (1991), in general, are qualitatively consistent with the experimental data.

By applying the concept of critical concentration to sand-clay sediments, this
chapter provides some quantitative descriptions of the microstructure variations and

effective properties of sand-clay sediments.

6.2 Porosity-clay content relations
6.2.1 Complete clay filling

For sand-clay sediments ranging from clean sands, shaly sands, sandy shales, to pure
shales, material porosity ¢, depends on sand volume fraction ¢;, clay volume fraction

#3, and clay microporosity ¢cm,

$r=1-— ¢ — d’s(l - ¢cm) (6-1)

The clay volume fraction of such a porous material system ranges from zero to

100%, and the porosity distribution depends on how the clay particles fill and pack

with sand grains.
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In the study of binary mixture properties, many people used the assumption of
complete filling, which leads to no clay disturbance on sand grain skeleton for sand-
clay sediments (Thomas and Stieber, 1975; Clarke, 1979; Cargill, 1984; Marion and
Yin, 1988; Marion, 1990). Consequently, with completely-filling clay particles, there
is a constant sand grain volume fraction ¢; from clean sands to shaly sands, and a
linear decrease of ¢; from sandy shales to pure shales. Thus the porosity distribution

is based on equation (6.1) and has the following form,

For 0 S ¢3 < ¢cs, ¢1 = COTZSt., ¢2 = 1"¢1_¢3(1"¢cm) = ¢cs_¢3(1_¢cm)a (62)

For ¢ <¢3<1, d1=1—¢3, ¢2=1—01 — ¢3(1 — dem) = P3¢em. (6.3)

where ¢ is the porosity of clean sands. Thus, the critical clay concentration is simply

the same as ¢,.

6.2.2 Intergranular clay and void effects

For sand-clay sediments, the sand grains are not cemented and depositional clay
particles may participate in the load-bearing skeleton of the material. When such clay
disturbance is concernéd, a portion of clay particles will fill and pack in the sediment
as intergranular clay particles, expanding the pure sand skeleton. Consequently, in
a unit volume of sand-clay sediment, the intergranular clay effect is to decrease the
sand volume fraction ¢,, or increase the porosity of sand-clay sediments. To quantify
the additional porosity gained from the intergranular clay effect, a linear decrease of

¢, with ¢3 is proposed from clean sands to shaly sands,

61 =1— ¢ — 193, (6.4)



Chapter 6 — Model and solution for sand-clay sediments 139

where cv1 is the intergranular clay coefficient, indicating the degree of porosity increase
due to the expanding skeleton under the intergranular clay effect. For instance, When a
cubic packing of spherical sand grains are disturbed by tiny clay particles at contact
points, as illustrated in Fig.6.1(a), the intergranular clay effect c; depends on the
radius ratio of sand grain to clay particle. When the radius ratio is 15, 20, 25, 30, a
simple calculation yields the value of ¢, as 0.194, 0.150, 0.122, and 0.103, respectively.
In reality, it is not a single clay particle, but a cluster of clay particles that fill and
pack between the contact area of sand grains, thus the radius ratio may be much
higher.

From sandy shales to pure shales, the existence of sand grains in clay matrix
often creates intergranular voids as illustrated in Fig.6.1(b), leading to a considerable
increase of porosity. These intergranular voids are equivalent to the so-called air
bubbles in marine sediments. When the sand grain volume fraction decreases to zero,
such intergranular voids tend to disappear. A linear relation is proposed to describe

the intergranular void effect,

$1=1—¢s— 02(1 - ¢3), (6-5)

where ¢, is the intergranular void coefficient, a parameter sensitive to the confining
pressure as will be discussed later.

As a result of above analysis, the porosity ¢; is calculated from equation (6.1)
with the intergranular clay and void effects taken into account. The porosity-clay

content relation for the whole system of sand-clay sediment is thus given by

For 0 < ¢3 < fem2

= Toemeg)?

¢ = 1—¢1—¢3(1 — bem)
= Ges — $3(1 — $em) + 103 (6.6)
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For et < g5 < 1,

$2 = 1—¢1— d3(1 — dem)
P3dem + c2(1 — ¢3). (6.7)

Thus, the critical clay corcentration is lﬁ‘;'_":z, depending on the porosity of clean
sands, and the intergranular clay and void effects.
The clay content can be also described by clay weight fraction. The clay weight

fraction measured from dry samples of sand-clay sediments w3 can be converted from

the clay volume fraction ¢3; by the formula

_ ¢3(1 - ¢cm)p3 ¢cs — C2
Y T addmt bl —dempe (7 OSBST o Y
— ¢3(1 - ¢cm)p3 ¢cs — C2
w3 = [1— ¢35 — c2(1 — ¢3)]p1 + ¢3(1 — Bem )3’ for Toeco <¢3<1, (6.9)

where p; and p3 are sand and clay density, respectively.
Obviously, when no intergranular clay and void effects are taken into account,
¢ = 0 and ¢; = 0, equations (6.6) and (6.7) reduce to those with the assumption of

complete clay filling.

6.2.3 Comparison with experimental data

Both ¢, and ¢., of marine sediments decrease with depth. The depth effect on
bes, Pem, and the porosity-clay content relations can be determined experimentally
by loading different confining pressures on sand-clay mixture samples (Yin et al.,
1988). Marion and Yin (1988) and Marion (1990) used the porosity-clay content
relation based on the complete clay filling of a binary mixture to explain experimental

data. However, there are considerable discrepancies between the data and their model
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results as regards the minimum porosity points and corresponding porosities of shaly
sands and sandy shales.

Our analysis in the above indicates that the model results with complete clay filling
assumption are actually the lower bound of porosity-clay content relation, and that
intergranular clay and void effects result in additional porosity increase in shaly sands
and sandy shales. To visualize how intergranular clay and void effects influence the
minimum porosity point in each porosity distribution, Fig.6.2(a) shows the porosity-
clay weight fraction relations for ¢; = 0 and different degrees of intergranular clay
effect (¢; = 0 ~ 0.2), and Fig.6.2(b) shows the porosity-clay weight fraction relations
for ¢; = 0 and different degrees of intergranular void effect (¢, = 0 ~ 0.2). We notice
that the minimum porosity points migrate from low to high clay weight fraction with
the increase of intergranular clay effect, and that they migrate from high to low
clay weight fraction with the increase of intergranular void effect. As a result, the
porosities around the minimum points increase considerably.

Fig.6.3 and 6.4 present comparisons between our model results and experimental
data obtained by Yin et al. (1988). The model results with intergranular clay and void
effects taken into account are in very good agreement with the experimental data. For
sand-clay samples at zero confining pressure, both intergranular clay and void effects
have their maximum values. With the increase of confining pressure, the porosity of
the whole system decreases considerably, but most intergranular clay particles will
be still in function, resulting in minor decrease of ¢,. However, intergranular voids
are quite sensitive to confining pressure, and high pressure will squeeze more clay
particles into the intergranular voids, leading to low values of c;.

In summary, the porosity and sand volume fraction distributions of sand-clasr sed-
iments can be accurately described by equations (6.4) ~ (6.7); intergranular clay
and void effects can systematically account for the porosity changes due to confining

pressure and other factors, and the model results are in good agreement with exper-
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imental data; when no intergranular clay and void effects are taken into account, the
model results reduce to those with complete clay filling assumption, serving as the

lower bound of porosity-clay content relation of a binary mixture.

6.2.4 Pressure effect on critical clay concentration

Above porosity analysis indicates that, when the intergranular clay and void effects
are introduced to explain the microstructure variation of sand-clay sediments, the
transition from sand skeleton-supported to clay matrix supported subsystems is char-

acterized by the critical clay concentration ¢;.,,

¢cs"c2
1—61—62-

P3er = (610) ‘

From the experimental data obtained by Yin et al. (1988) and above porosity anal-
ysis, the critical clay concentration versus confining pressure is presented in Fig.6.5.
With increase in confining pressure, there is only minor variation of the critical clay
concentration, which is different from the monotonous decrease of clean sand porosity

¢.s with the increase of confining pressure.

6.3 Permeability in sand-clay sediments

Since porosity data are more easily obtained than permeability data both in labora-
tory and in-situ measurements, it is useful to estimate the permeability of a porous

material by utilizing the relationship between permeability and porosity.

6.3.1 Kozeny-Carman equation

There are many versions of Kozeny-Carman equation available to relate the perme-
ability k to the porosity ¢, of a porous material. According to Carman (1956), the

equation is of the form
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= ZO—TTS;, (6.11)

where T and S are the tortuosity and specific surface area of a porous material, and
ko is an empirical constant.

Bear (1972) proposed another form of Kozeny-Carman equation,

53 (6.12)
For sediments composed of sphere grains with uniform radius r,
4rr? 3
S= 1o = (6.13)
Brace (1977) arrived at
m2¢3
k= 1

where C is a constant number ranging between 2 and 3, and m is the hydraulic radius,
the ratio of the volume of pores to the void-solid interface area.
Marion (1990) applied equation (6.11) to Gulf Coast sandstone data, and the

result provides one possible explanation to the permeability data as in Fig.6.6.

6.3.2 Pressure and clay-dependent Permeability

Sand-clay sediments are quite sensitive to confining pressure. It is very useful for reser-
voir exploration and production to find how the permeability of sand-clay sediments
depends on porosity, clay content, and confining pressure. For sand-clay sediments,
both the porosity and the specific surface area will change with variations in sand and

clay contents and their relative locations. The porosity variation can be accurately
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Fig.6.6 Permeability versus clay concentration: comparison of model
result (solid line) and Gulf Coast sandstone data (after Marion,

1990).
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estimated by the model in above section, but the variation in specific surface area
involves the different grain sizes in sand and clay.

As suggested by Bear (1972), the uniform radius r in equation (6.13) may be
replaced by the harmonic mean radius 7 for binary reservoir rocks and sediments.

Given sand grain radius as ry, and clay grain radius as r3, one has

_ 1
and equation (6.12) becomes
3/(1 — )2

= S o)
B(3(& + £2))2

where the relationships between ¢;, ¢., and ¢3 are given by equations (6.6) and (6.7).

For sand-clay mixtures used in Yin’s experiments (Yin et al., 1988), the sand and
clay grain sizes are characterized by r; = 0.015 c¢m, r3 = 0.0001 cm. Equation (6.16)
gives permeability k in cgs system as em?, and 1 md = 0.987 x 107!! em?. When
the intergranular clay and void effects are taken into account, equations (6.4) ~ (6.7)
are used in equation (6.16) to give relationships between permeability, porosity, clay,
and confining pressure, as in Fig.6.7 and Fig.6.8.

Fig.6.7 shows that for shaly sands the permeability is very sensitive to clay con-
tent but not confining pressure, and that for sandy shales the permeability depends
on confining pressure much more than clay content. Thus the clay effects are quite
different for shaly sands and sandy shales. Fig.6.8 presents the permeability versus
porosity for different confining pressures and clay contents. The increase in confining
pressure leads to general decrease in permeability especially in sandy shales. The in-
crease in clay content causes distinctive changes in both the porosity and permeability
from shaly sands to sandy shales. The domain bounded by the permeability curves

for shaly sands and sandy shales represents the microstructural variation especially
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Fig.6.7 Permeability versus clay content at different levels of confining
pressures. Yin’s experimental data of clean sand porosity and clay
microporosity are used in calculation.

particle size variation from medium to fine scales. Such feature is also true from
coarse to medium scales for sedimentary rocks. As indicated by the data in Fig.6.9,
the permeability-porosity curves show gradual variations from clean coarse-grained

sandstones to micritic sandstones.

6.4 Evaluation of Effective Elastic Moduli and
Wave Velocities

6.4.1 Sediments at zero confining pressure

Fluid-saturated sand-clay sediments are typical unconsolidated materials. It is well
known that unconsolidated materials at zero confining pressure are of zero shear
modulus or shear wave velocity. The effective bulk modulus and compressive wave

velocity in such materials can be described by the isostress model, or generalized
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Reuss’ and Wood’s relations for multiphase materials. When the intergranular clay
and void effects are taken into account, the effective bulk modulus K and compressive

wave velocity Vp are given by

1 1-— ¢cs - c1‘»’53 + ¢ca - ¢3(1 - ¢cm) + cl¢3 + ¢3(1 - ¢cm)

== o o o (6.17)
VP — [ K ]1/2,
(1 - qscs - c1¢3)P1 + (¢cs - ¢3(1 - ¢cm) -+ cl¢3)P2 + ¢3(1 - ¢cm)P3
(6.18)
for 0 S ¢3 S <?53cr7 and
.1_ _ (1 - ¢3)(1 - C2) ¢3¢cm + 62(1 - ¢3) ¢3(1 - ¢cm)
K~ I t K, TR (6.19)
_ K 1/2
[l e s oy v gyt g P o e U

for ¢a.r < P3 < 1.

Fig.6.10 presents the effective bulk modulus and compressive wave velocity versus
clay content for fluid-saturated sand-clay sediments. The intergranular clay and void
coefficients ¢; = ¢; = 0.18 determined above for zero confining pressure condition are
used in calculation to compare with the situation of complete clay filling (¢; = ¢, = 0).
Since the complete clay filling leads to the lower bound of porosity-clay relation for
sand-clay sediments, it leads to the upper bounds of effective bulk modulus and
compressive wave velocity as in Fig.6.10a and 6.10b. The peak values in the curves

correspond to the critical clay concentration.
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Fig.6.10 (a) Effective bulk modulus versus clay content and (b) com-
pressive wave velocity versus clay content for fluid-saturated sand-
clay sediments at zero confining pressure.
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6.4.2 Critical concentration phase

When a finite confining pressure is applied upon the sand-clay sediments, shear wave
velocity is observed and sc above formulation for zero confining pressure is not appli-
cable. The critical concentration model and solution developed in Chapter 3 and 4
are here applied to the evaluation of both the compressive and shear wave velocities
in fluid-saturated sand-clay sediments.

Similar to chapter 3, the critical concentration phase of a fluid-saturated sand-
clay sediment is defined as the material state at critical clay concentration ¢s... Its

density p., is given by

Per = (1 - ¢3cr)(1 - C2)P1 + [¢3cr¢cm + 02(1 - ¢3cr)]p2 + ¢3cr(1 - ¢cm)P3a (621)

which indicates that the critical concentration phase is a mixture of fluid, sand grains,
and clay particles. The effective bulk modulus of critical concentration phase K., is

given by

1 — (1 - ¢3cr)(1 - C2) + ¢3cr¢cm + c2(]- - ¢3cr) + ¢3cr(1 - ¢cm).

. % e s (6.22)

The elastic shear modulus of critical concentration phase ., can be approximated by
Reuss average in terms of elastic moduli of saturated clays and sands (Reuss, 1929;

Kuster and Toksoz, 1974; Purnell, 1986),

1 _ (1 — ¢3r)(1 —c2) + $3er + C2(1 — P3er)

6.23
Her K1 $3 (6.23)

where p$ and p} are the shear moduli of fluid-saturated sands and clays, respectively.
The intergranular clay effect proposed above not only accounts for the variation of

geometrical packing of sand gains and clay particles, resulting in porosity increase, but
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also implies the gradual increase of clay particles in the highly load-bearing material
skeleton with the increase in clay content. Such mechanical interactions between sand
grains and clay particles lead to the considerable contribution of clay phase to the
effective moduli and wave velocities of sand-clay sediments.

At zero clay content, the effective elastic moduli of clean sand can be evaluated
by the critical concentration model and solutions in chapter 3 and 4. Let K, and u,
represent the effective elastic bulk and shear moduli of clean sands, respectively, and
pes be its density. Then the constituents or end members of the critical concentration
mode] are the sand skeleton phase with K., p.s, and p.,, and the critical concentration
phase with K., p.r, and p,, respectively. Consequently, the microstructure variation
of shaly sands due to the intergranular clay effect is interpreted as the variation from

the sand skeleton phase to the critical concentration phase.

6.4.3 Critical concentration solutions

In principle, the substitution method developed in Chapter 4 can be used to find
the critical concentration solution to effective elastic moduli of sand-clay sediments.
Here we give one critical concentration solution extended from Voigt’s relation to
illustrate the basic features of effective elastic moduli and wave velocities of sand-clay
sediments.

For 0 < ¢3 < @3, the effective elastic moduli and wave velocities are given by

_(1_ 2 93
K= (1~ 32 Ka+ 72K, (6.24)
%y b '
p={(1 o Yes + Fo er (6.25)
VP = [ K + 4”/3 1/2

(1 has ¢ca - cl¢3)/’l + (¢ca - ¢3(1 - ¢cm) + Cl¢3)P2 + ¢3(1 - ¢cm)P3] ’
(6.26)
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Vs = £ 1/2. A
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For ¢a.r < ¢3 < 1, the effective elastic moduli and wave velocities are given by

l (1 - ¢3)(1 - C2) + ¢3¢cm + C2(1 - ¢3) + ¢3(1 - ¢cm)

7= T 2 T (628)
L _ (1- ¢3)El - ¢) n ¢3+ 62(,1 — ¢3), (629)
# #1 H3
K +4u/3 "
Vp = |
P [(1 = ¢3)(1 = c2)p1 + ($3Bem + c2(1 — 63))p2 + ¢3(1 — ¢cm)p3] ,  (6.30)
=l - V2. (6.31)

(1 = ¢3)(1 = c2)p1 + (D30em + c2(1 — ¢3))p2 + b3(1 — dem)pa

Fig.6.11 shows the effective elastic moduli versus clay content of fluid-saturated
sand-clay sediments. The intergranular clay effect at 50 M Pa confining pressure is
used in calculation. Both bulk and shear moduli of shaly sands decrease considerably
as the result of the intergranular clay effect. Fig.6.12 presents the corresponding
wave velocities versus clay content. The experimental data obtained by Yin et al.
(1988) at 50 M Pa confining pressure are compared with the model results. When the
intergranular clay effect is taken into account, the model result is in good agreement

with the data.

6.5 Conclusions

The conventional mod=:l of complete clay filling yields the lower bound of porosity-

clay content relation. With the intergranular clay and void effects taken into account,
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Fig.6.12 (a) Compressive wave velocity versus clay content and (b)
shear wave velocity versus clay content of fluid-saturated sand-clay
sediments. The model result with intergranular clay effect taken
into account is in good agreement with Yin’s experimental data.
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our model results can quantitatively describe the porosity-clay content relation in
experimental data.

By applying Kozeny-Carman equation to sand-clay sediments and using exper-
imental data of clean sand porosity and clay microporosity, we determine the rela-
tionships between permeability, porosity, clay content and location, and confining
pressure, which are very useful in reservoir property evaluation:

The mechanical implications of intergranular clay effect lead to definition of critical
concentration phase. The critical concentration solution with intergranular clay effect

1s in good agreement with experimental data of wave velocity.
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Chapter 7

Effective Stress Laws for
Fluid-Saturated Porous Materials

Abstract

The general effective stress law for anisotropic porous materials is defined as Oij =
0ij — Ppa;j, where the pore pressure coefficient «;; is a symmetric second-rank tensor.
For isotropic porous materials, a;; = aé;;, but the value of scalar quantity a has been
controversial. According to the critical concentration model of porous materials, o is
exactly the volume fraction of the critical concentration phase, a = ¢;/¢.,, and this
relation is generally applicable to various elastic/inelastic deformation processes and
failure state of fluid-saturated isotropic porous materials.

For anisotropic porous materials, we propose a;; = ao;;+A;, where A;; quantifies
the pore structure anisotropy, and is closely related to the fabric tensor recently
proposed in rock mechanics and composite material studies. For the linearly elastic
deformation in transversely-isotropic and orthotropic porous rocks, we determine a;;
and A;; in terms of directly-measurable elastic constants, and find that the directions
and magnitude sequences of effective principal stresses may differ from those of total
principal stresses since the pore pressure affects both the normal and shear stress
components. In particular, not only the buildup but also the decline of pore pressure

in anisotropic porous rocks may lead to faulting and earthquake instabilities.
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7.1 Introduction

Pore fluid effects have been proposed as playing a role in a variety of geological
processes. The concept of effective stress is the most familiar way to describe the
pore pressure effect. The general effective stress law for fluid-saturated isotropic

porous materials is

0i; = 0ij — aPpdyj, (7.1)

where 7;; is an effective stress tensor, oy; is an applied or total stress tensor, P, is the
pore fluid pressure, é;; is the Kronecker delta, and « is a scalar to quantify the pore
pressure effect.

The exact value of a has been controversial. It seems that different elastic and
inelastic processes can bie controlled by different effective stress laws (Nur and Byerlee,
1971; Robin, 1973; Paterson, 1978; Zimmerman et al., 1986). For an isotropic porous
material, let ¢, be the porosity, Sc be the area of contact between the particles in any
cross-sectional area S, K be the effective bulk modulus, and K, be the bulk modulus
of the solid phase, Table 7.1 lists the different values of a used mostly in existing
effective stress laws and gives short comments on their implications or applicabilities.
With these different expressions of «, the first problem we confront with is whether
there are fundamental material constants to describe a for different processes.

Equation (7.1) indicates that for isotropic porous materials the pore pressure
only affects the normal stress components. Consequently, pore pressure buildup will
decrease the effective stress and so destabilize faulting and earthquakes. However,
there are more and more reports that pore pressure decline due to fluid extraction
from subsurface also destabilizes faulting and earthquakes (Yerkes and Castle, 1976;
Segall, 1985, 1989; Wetmiller, 1986; Pennington et al., 1986; Grasso and Wittlinger,

1990; Teufel et al.,, 1991). How does the pore pressure decline induce rock failure
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and faulting? Based on existing studies, this may be attributed to the structural
anisotropy of rocks that contain numerous aligned pores, cracks, and fractures. |
From the following section it will be evident that the critical concentration model
of porous materials can provide a unique way to describe o for different processes.
For general anisotropic porous rocks, the effective stress coefficient, a symmetric
second-rank tensor, is determined in terms of directly-measurable elastic constants for
transversely-isotropic and orthotropic porous rocks. Finally the results are applied
to the explanation of the variation of fault slipping, focal stress axis rotation, and

especially earthquake instabilities induced by fluid extraction.

Table 7.1 A summary of the effective stress coefficient o

The value of o References Comments

Terzaghi (1923, 1936) Based on soil mechanics
Hubbert & Rubey (1959) | experiments; agreement
ax1 Skempton (1961) with failure/strength data
Murrell (1963) of various rocks.

Brace and Martin (1968)

Terzaghi (1923, 1942) Geometrically consistent;

o= ¢, Schiffman (1970) physically identical with
Manolis & Beskos (1989) | solid stress of a porous
material.
Skempton (1961) Being the intergranular
a=1-% Jaeger and Cook (1976) | stress acting between the

particles serving as the
material skeleton.

Biot and Willis (1957) Precise for linear elastic
Geertsma (1957) and interconnected-pore
a=1- I% Skempton (1961) materials; with respect to
Nur and Byerlee (1971) | the bulk elastic strain
Rice and Cleary (1976) of porous materials.
Zimmerman et al. (1986)
Robin (1973) With respect to the pore
a=1-— 7‘% Paterson (1978) volume strain of porous
Zimmerman et al. (1986) | materials.
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7.2 Critical Porosity Effects

The critical concentration model of porous materials in Chapter 3 can describe the
material microstructural changes from zero porosity to critical porosity ¢... When
the concept of effective stress is based on the critical concentration model, the critical
porosity, a material constant related to pore geometry and connectivity, plays an
important role in quantifying the effective stress.

For isotropic porous materials, the effective stress can be defined as a deformation-
producing solid stress which equals the applied stress reduced by a hydrostatic compo-
nent representing the pore pressure effect. The formula a = ¢, proposed by Terzaghi
(1923) is mainly based on two arguments, (a) the pore pressure effect depends on
the fluid volume fraction; (b) in particular, the pore pressure effect should vanish as
porosity equals zero. But this formula fails in explaining soil mechanics experimental
results that a = 1 while ¢, of soils is far from unity.

When the critical concentration model is used to analyze the pore pressure effect,
we notice that, for 0 < ¢, < d.r, it is the critical concentration phase with volume
fraction (¢2/¢.-) that applies the pore pressure P, on the highly load-bearing solid

phase with volume fraction (1 — ¢2/¢.,). Consequently, the value of « is
a=—. (7.2)

Equation (7.2) predicts that a is related to pore volume fraction, geometry, and
connectivity. It indicates that the pore pressure effect vanishes as porosity approaches
zero, consistent with Terzaghi’s second argument. More importantly, it predicts a & 1
when porosity approaches the critical porosity. According to the critical concentration
model, as porosity approaches the critical porosity, the material microstructure is
like that of a granular material. Thus the effective stress is the intergranular stress

acting between the particles serving as the material skeleton. The formula o = £35
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proposed by Skempton (1961) just describes such a situation in terms of the boundary
porosity §:S-§= For statistically isotropic materials, as S., the area of contact between
skeleton particles, becomes infinitesimal, the material enters the transition between
solid and fluid matrix supported states, and the effective stress coefficient o reaches
its upper bound, the unity. Therefore we conclude that ;ffj = §_-S_sﬂ for isotropic
porous materials.

It is important to point out that equation (7.2) is established without any as-
sumption of linearly/nonlinearly elastic or inelastic materials. Thus it should be
applicable to various deformation and failure processes of porous materials, and con-
sistent with other expressions of a under specific circumstances. In rock strength
experiments, the increasing loading leads to nucleation of new cracks and merge of
existing pores and cracks, thus increasing pore connectivity and decrease the value of
critical porosity. The macroscopic failure occurs as the porosity reaches the critical
porosity. Consequently, the value of a is close to unity, as often observed in fail-
ure/strength experiments of rocks with different porosities (Robinson, 1959; Handin
et al., 1963; Murrell, 1963; Brace and Martin, 1968; Bernabe, 1986; Boitnott and
Scholz, 1990).

The formulas o =1 — -,%{7 and a =1~ -I-(‘é'z_ih- are derived for isotropic, linearly
elastic, and interconnected-pore materials, with respect to the bulk elastic strain and
pore volume strain, respectively (Nur and Byerlee, 1971; Robin, 1973). With the
critical concentration model, the effective bulk modulus K of a dry porous material
is a function of (¢2/é.,) and K,, and the factor ¢, in the formula o =1 — Tg’-’:}% is

now replaced by ($;/.,) since the porosity range of porous materials is from zero to

@cr. Thus we have

a=l-%, . (7.3)

with respect to the bulk elastic strain, and
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2K
a=1-— I\’,_—I;:’ (74)

with respect to the pcre volume strain, and in general

K = k(2L K,). (15)

Per

In Chapter 4 we found several expressions of the function K (3%" K;). One of

them is in the form of general percolation solutions,

K=(1- ﬁ)”l{,, (7.6)

cr

where T is the critical elasticity exponent that can be determined experimentally.

When T' = 1, the solution is identical with the modified Voigt’s relation,

K=(-2K, (1.7)

c

Substituting from (7.7) into (7.3) yields

(1 - %)Ku _ &2

K cr
a=1—-}.€:— - K, —;:1 (7‘8)
and substituting from (7.7) into (7.4) results in
£2.K $2.(] - £2)K,
a= 1 — Per = 1 — ¢cr( d’cr) -— _‘_?_2_. (7'9)
K,—K K,—(1-£)K, ¢er

Why do equations (7.7) and (7.8) become identical to each other? Because the

mechanical assumption behind the modified Voigt’s relation is the isostrain state
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throughout the interconnected-pore material, and so the bulk elastic strain is the
same as the pore volume strain. |

Finally we notice that equation (7.2) are applicable to not only two-component
porous materials, but also multi-component porous materials such as clay-bearing
sandstones and gouge-bearing granites.

Clays are often the primary pore-filling particles in sedimentary rocks. Gouges, as
a product of sliding and wearing on crack and fracture surfaces, are commonly poor-
cemented detrital particles. Gouges are nearly always present in crustal rocks and
their effects on fault friction and sliding have been studied in detail (Byerlee, 1967;
Dieterich, 1972; Paterson, 1978). Gouges in a rock mass can be taken as secondary
pore-filling particles.

We extended the critical concentration model to include pore-filling particles in
Chapter 3. Assume that the clay and/or gouge particles do not disturb the solid
skeleton of a fluid-saturated material. Let C; be the concentration of fluid and a
portion of solid not serving as the material skeleton, and C., be the critical concen-
tration, then the critical concentration phase of clay- and/or gouge-bearing porous
materials is of volume fraction Cy/C,,. To quantify the effect of clay and/or gouge
particles, let x be the ratio of the volume fraction of clay and/or gouge particles to
the supposed pore volume fraction, and .., be the particle microporosity. Then the

relationship between the critical porosity ¢., and critical concentration C,, is

$er = Cer[1 = x(1 — bem)]s (7.10)
and the value of « is given by

- $2[1 — x(1 — dem)] - _¢i
¢cr[1 - X(l - ¢cm)] ¢cr.

C,
=L 7.11
=T (7.11)

In summary, above analysis shows that the equation (7.2) is indeed a general
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expression of the effective stress coefficient for isotropic porous materials. Any of the

expressions in Table 7.1 is a specific case reduced from the general expression.

7.3 Microstructural Anisotropy Effects

Recently we have studied the pore pressure effects in anisotropic porous rocks (Chen
and Nur, 1991). The remaining of this chapter presents the main results of such

theoretical consideration and practical application.

7.3.1 From isotropy to anisotropy

The orientation and distribution of pores and cracks in porous materials may consti-
tute various structural anisotropies, and macroscopic isotropy is one of their specific
types with three-dimensional random orientation of pores and cracks. Generalized
from equation (7.1), the effective stress law for general anisotropic porous materials

can be expressed as
0ij =0y — Ppa,-,-, (7.12)

where the effective stress coefficient is a symmetric second-rank tensor «;;. a;j is
related to the fabric tensor recently proposed in the studies of rock mechanics and
composite materials. The precise definition of a fabric tensor varies with the material
microstructure models (Satake, 1978, 1982; Kachanov, 1982; Oda et al., 1982; Oda,
1983; Harrigan and Mann, 1984; Kanatani, 1984). We propose the general expression

of a;; as
ai; = 006,']' -+ A,‘j, (713)

where the first term on the right represents the hydrostatic effect of a portion of

pore pressure, and the second term A;j, quantifying the pore structure anisotropy,



Chapter 7 — Effective stress laws 171

is closely related to the fabric tensor defined by Sakate (1978). As a special case
for isotropic porous materials, A;; is the zero tensor, and ap = ¢2/d.,. Equations
(7.12) and (7.13) are applicable to various elastic and inelastic deformation processes

of anisotropic porous materials.

7.3.2 Governing equations for linearly elastic deformation

Most crustal rocks can be taken as homogeneous solid matrix containing anisotropic
microstructures such as aligned pores, cracks, and fractures. Let ¢;; represent the solid
strain tensor, m be the fluid mass content per unit volume, and p be the pore fluid
density, the governing equations for a linearly elastic fluid-saturated rock, according

to Biot (1941), Rice and Cleary (1976), and Rudnicki (1985), are expressed as

oi; = Mijrien + PpNyj, (7.14)

m — mo = pNijei; + 0P, (7.15)

where M;;x is the tensor of effective elastic moduli, N;; is an additional elastic con-
stant tensor, and 7 is a scalar quantity. In an undrained deformation state, m = my,

n can be determined as

__pNijeij

P (7.16)

1’:

When the effective stress is introduced to describe the mechanical behaviors of

fluid-saturated rocks, the effective stress-strain relation is

Gi; = Mijier, € = Ciki0ki, (7.17)
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where C;y; is the effective compliance tensor. Substituting from equation (7.14) into

equation (7.17), we arrive at the effective stress law,
5ij = 0ij — PplNij. (7.18)

By comparing (7.12) with (7.18), we see that the additional elastic constant tensor
N;; is the so-called effective stress coefficient a;;.

For linearly elastic deformation of fluid-saturated rocks, a;; can be determined by
following the superposition procedure used by Nur and Byerlee (1971) and Carroll
(1979),

@ij = 6ij — MijClimms (7.19)

where Cf;;,; is the elastic compliance tensor of rock matrix material.

The intrinsic anisotropy of rocks is governed by the form of C},,.., and the struc-
tural anisotropy is described by the form of M;jx;. We assume that the rock matrix is
isotropic, and so we focus on the structural anisotropy induced by the aligned cracks
and fractures embedded in an isotropic rock matrix.

The elastic properties of an isotropic rock matrix are described by only two inde-
pendent elastic constants, such as bulk modulus K, and Poisson’s ratio v,, or Lamé

constants g, and A,. The clastic modulus tensor of an isotropic rock matrix is thus
My = pa(8ibji + babji) + Asbijbni, (7.20)

and then

1-2y, 1

M = 3K, Cijp = E, bij = 3K,

L]

5:'.1" (721)
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where E, is the Young’s modulus of isotropic rock matrix. Therefore, the general
effective stress law for linearly elastic deformation in structurally-anisotropic rocks

can be expressed as

&ij = 0Oi— p(aij - Mijklclglmm)
M,
= oy Bs; - i) (7.22)

For isotropic porous rocks, Mj;xx = 3K 6;j, then a;; = (1 — -%)6,-,-, as determined by

Skempton(1961), and Nur and Byerlee (1971).

7.3.3 Effective stress coefficients for transversely-isotropic
and orthotropic rocks

Transversely-isotropic and orthotropic porous rocks are the main practical models of
anisotropic geomaterials. Transverse isotropy may be induced by unidirectionally-
aligned spheroidal pores and cracks, or two-dimension randomly oriented cracks and
fractures. Orthotropy may come from unidirectionally-aligned ellipsoidal cracks and
fractures, or orthogonally conjugate cracks and fractures, or three-dimension orthogonally-
oriented cracks and fractures.

When the rock with transverse isotropy is considered, the tensor of effective elastic

moduli M,'jkz is

M = p(8ibji + 8abje) + A6ijbr +
+a(bixhihi + bjthihi + bahjhy + 8khihi) +

+ﬂ(6,'jhkh1 + 5kph;hj) <+ 7h,-hjhkh1, (7.23)

where g, ), a, B, and v are elastic constants and h; are direction cosines of the axis of

symmetry. Then M;ji is
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Mijkk = (2/1 + 3)\ + ,3)5{]' -+

+(4a + 3B+ v)h;h,. (7.24)
Therefore the effective stress coefficient for transversely isotropic rocks is

_2p+3)2+8

a; = (1 3K,

)6~

_4a+3ﬂ+’)’

e hih;. (7.25)

In order to understand how the rock microstructural anisotropy governs the pore
pressure effects on the total stress, a;; should be described by those elastic constants
which directly depict rock microstructural anisotropy and are easy to measure in an
experimental lab.. Following the notations proposed by Lekhnitskii (1963), here we
use E, E,, v, v,, and p, to describe transversely-isotropic rocks. E and E, are Young'’s
moduli with respect to directions lying in the plane of isotropy and perpendicular to it,
respectively; v is Poisson’s ratio which characterizes the transverse deformation in the
plane of isotropy for loa_mding in the same plane; v, is Poisson’s ratio that describes the
transverse deformation in the plane of isotropy for the loading in a direction normal

to it; p, is the shear modulus for the planes normal to the planes of isotropy. We find

_ EE,(14v.)
2+ B+ B = g (7.26)
and
2 - - EEa 1 - a
ta+3B+y= 0=V (1= ve) (1.27)

E.(1— v) — 2E0?
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Thus, the expression of a;; as in equation (7.13) becomes

ai;; = agbij + Ayj

EE,(1+v,)

= - SpEa—v) = 257

)5;;' +

EE,(1-v,)—E}(1-v), .
SK.E.(L—7) = 2Bv7] (7:28)

There are nine independent elastic constants to describe orthotropic rock behav-
iors. Let us assume three orthogonal planes of elastic symmetry with normal z, y,
and z, there are three Young’s moduli E,, E,, E,, three shear moduli u,., fir;, fzy,

and three Poisson’s ratios vyz, v,z, and v,, (Lekhnitskii, 1963). We find
Mk = ML+ Mymim; + M,nn; (7.29)

where [;, m,, and n; are direction cosines of the symmetry axes z, y, and z, respec-

tively, and
Mz = EzEyEz(l + V!Il«‘ + Ve + VytVZy) + EzESsz(sz _ yzy)a (7°30)
D
M, = EBeBa(ltvee) 4 BlBoves(vey —ver) + Bl 4 va)]l 0 g))

D

o = EeBBilve + vt vzy)]; EyBvey + BY(By — Bovi) (7 49
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where

D = Ey(E.=2E vz — E)2) — E(E.v2, + Ev2). (7.33)

2y

Thus the effective stress coeflicient is

M,,l,'lj + Mym,-m]- + Mzn;nj

@ = (8 = 3K

). (7.34)

When the elastic symmetry axis z, y, or z is not consistent with any one of normal
stress directions 1, 2, or 3, the pore pressure influences both the normal and shear
stress components with different magnitudes on each of them. When z, y, and z are

consistent with axes 1, 2, and 3, respectively, (7.34) becomes

M.

M, M,
- :;—T{—)I,IJ + (1 e —-ﬁ-)m,-mj + (1 )n,-nj. (735)

3K, " 3K,

Qi = (1

7.3.4 Directions and magnitude sequences of effective prin-
cipal stresses

The pore pressure in anisotropic porous rocks affects both the normal and shear stress
components, and so the directions and magnitude sequences of effective principal
stresses may differ from those of total principal stresses.

For transversely-isotropic rocks, the effective stress law can be written as

Gij = 0i; — Pp(acdi; + ashih;j), (7.36)

where

EE,(1+v,)
3K,[E.(1 —v)—2Ev?)

C!o=1-"

(7.37)
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_EE,(1-v,)—E?(1—v)

= . 7.38
% = BK[E.(1-v) - 2E7 (7.38)
Given the total stress o;; as a principal stress state,
011 = 01, 022 = 03, 033 = 03,
013 =013 =093 =0,
01 2 03 2 03, (7.39)
the effective stress &;; is
011 012 Oi3 op 0 0 ao+ ah?  aghih, aghihs
091 09 023 = 0 09 0 — Pp aahlhz ap + aahg aahgh;;
031 032 O33 0 0 o3 aghyhs azhzhs  ap+ aghl
(7.40)

From (7.36) wesee that a portion of the pressure effect is hydrostatic, and the other
portion depends on the orientation of the symmetric axis in transversely-isotropic
rocks. When the symmetric axis is not consistent with any of total principal stress
directions, (7.40) indicates that effective principal stress directions 1',2',3" are not
consistent with the axes 1, 2, 3, respectively.

The value of a, in equation (7.36) may be positive or negative, depending on
the relative magnitudes of E, E,, v, and v,. For the transverse isotropy induced
by unidirectionally-aligned penny-shaped cracks, E, is much smaller than E, and so
a, is positive. However, for the transverse isotropy induced by randomly oriented
cracks in two dimension, E, may be much bigger than F, and so a, becomes nega-
tive. Consequently, the magnitude sequences of effective principal stresses, relying on
total stress, pore pressure, and transversely-isotropic feature, have up to six possible

arrangements.
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For the orthotropic rocks with fluids, let us assume the total stress is of the form
in (7.39), and the symmetric axes X, y, z are consistent with principal stress axes 1,

2, 3, respectively. Then the effective stress state is

&6 0 0 ‘o 0 0 1-4= 0 0
05 0| =100 0[-P] 0 1-3& 0
0 0 o3 .0 0 o3 0 0 1_31‘-{5

In order to compare the relative magnitudes of pore pressure effects on different
directions, we consider a simple rock model with unidirectionally-aligned cracks as in
Fig.7.1(a). The effective elastic constants can be computed by the boundary element
method (Chen et al. 1990). Fig.7.1(b) compares the pore pressure effects on 1, 2,
and 3 directions. When the pore pressure is in the same order as the total stress, the
anisotropy effect will lead to different magnitude sequences of three effective principal

stresses.

7.4 Applications

The pore pressure effect in anisotropic porous rocks can provide a new class of ex-
planations and evaluations to many geological and geophysical phenomena especially
earthquake activities. ‘Herz we discuss some problems related to the variations of
stress directions and magnitudes, and provide explanations to them in terms of the

above results.

7.4.1 Variation of fault slipping

The occurrence and slipping history of strike-slip faults, normal faults, and reverse
faults in the crustal rocks are generally controlled by the directions and magnitude
sequences of principal stresses (Anderson, 1951). It is generally recognized that the

direction and magnitude of regional tectonic stresses are quite stable over a geological
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Fig.7.1 (a) A rock model with unidirectionally-aligned cracks, (b) the
relative magnitudes of pore pressure effects on different directions.
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time. But many studies of active faults indicate that the slipping history of a fault
may vary in slipping type and/or slipping rate. Since time-dependent pore pressure
variation is quite possible in the crust (Nur and Walder, 1990), the pore pressure
effect in anisotropic rocks may lead to the variation of effective stress directions and
magnitude sequences from previous tectonic stress state, and this new state of effective

stresses changes faulting types and slipping rate.

7.4.2 Variation of focal stress axes

The variations of effective stress directions and magnitude sequences render a rea-
sonable explanation to the stress axis rotation observed in focal region prior to a
mainshock (Nersesov and Simbireva 1968, Song et al. 1988). Several mechanisms
have been proposed to explain the stress axis rotation. Kuo et al. (1973) suggested
that plastic deformation in a focal region may change the focal stress state and di-
rection. Brady (1974) used the inclusion theory to explain the stress axis rotation
in terms of crack closure. Wu et al. (1980) proposed that the impacting of thermal
fluids in surrounding regions causes the stress state and direction change. Indeed, the
thermal fluids from surrounding and deep sources in the lithosphere have substantial
effects on the crustal deformation and failure (Gold and Soter 1985, Zhang 1985;
Sammis and Julian 1987; Nur and Walder 1990). With time-dependent hydraulic
properties and stress-induced cracks/fractures in crustal rocks, the ascending fluids
from the deep sources will have anisotropic pressure effects on the rocks, resulting in

the changes of direction and magnitude sequence of effective stresses.

7.4.3 Pore pressure coefficient on a failure plane

For dry rocks with strong dependence on hydrostatic pressure, Jaeger and Cook (1976)
modified Coulomb criterion to include anisotropic effects. When the pore pressure
effect in anisotropic rocks is taken into account, the modified Coulomb criterion can

be written as
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P=r+flo-aP), (142
where 7, and ¢ are the cohesion and friction coefficient depending on anisotropic prop-
erties (Jaeger and Cook 1976, Donath et al. 1979), and o represents the anisotropic
pore pressure coefficient on the potential failure plane.

Assume (lo, mo, no) as the direction cosines of the potential failure plane referenced
to the coordinate system with orthogonal axes 1, 2, and 3, ay is found related to o;;

as

— 2 2 2
ay = anly+ azpmg+ azng +

+2a1210m0 + 201310710 + 2a23m0n0. (743)
For the effective stress state given in (7.41), we have

_ M3+ Mym§ + Mnj

af=1 3K

(7.44)

Thus, a; depends on both the rock anisotropy features and the orientation of a
potential failure plane. When the pore pressure is in the same order as the total

stress, the change of effective shear stress is mainly attributed to the variation of ay.

7.4.4 Earthquakes induced by fluid extraction

Based on above results we can now construct the Mohr circle diagrams to show how
the pore pressure buildup and decline in orthotropic rocks affect faulting instability.
Assume that the normals of three symmetry planes are consistent with principal stress
axes, then there are up to six possible arrangements of the normals x, y, and z with

respect to the axes 1, 2, and 3.
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Fig.7.2 shows that, when (z, y, z) are consistent with (1, 2, 3), respectively, the pore
pressure buildup stabilizes the faulting, and the pore pressure decline destabilizés the
faulting. Fig.7.3 gives the opposite results when (z,y,z) are consistent with (3,2,1),
respectively.

Fig.7.4 shows the Mohr circle diagram with (x,y,z) corresponding to (2,1,3).
The pore pressure buildup destabilizes the faulting, but an important point is that,
the faulting type governed by &, > 3 > &5 is quite different from that controlled by
o, > 03 > 03

Fig.7.2(b) provides a good explanation to the faulting and earthquakes induced by
fluid extraction from subsurface. When weakness planes, composed of unidirectionally-
aligned cracks or fractures, or debonded layer interfaces, in porous rocks are perpen-
dicular to the maximum principal stress direction, the fluid pressure decline in the
rocks will probably lead to the faulting and trigger earthquakes. Furthermoré, when
the occurrences of weakness planes are vertical, and regional maximum principal stress
is horizontal, the fluid extraction will lead to limiting stress state for thrust faulting
or earthquakes of thrust-faulting focal mechanism.

In several oil fields where great amount of fluids are extracted from subsurface,
many thrust faults and earthquakes of thrust-faulting focal mechanism just located
above and beneath the fluid zone have been reported (Yerkes and Castle 1976, Segall
1985, Pennington et al. 1986, Wetmiller, 1986). The local stress fields in some of
those fluid-extracted regions have been determined by other methods as horizontally-
maximum stress fields (Wetmiller 1986, Grasso and Wittlinger 1990). Therefore,
these seismic observations and measurements support the mechanism as proposed in
this study.

On the other hand, when the local stress field is characteristic of maximum ver-
tical stress field, a sufficient fluid pressure decline in the rock containing horizontal

weakness planes such as layer interfaces will lead to the stress state for normal fault-
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(b)

Fig.7.2 Mohr circle diagram for the effect of pore fluid pressure in or-
thotropic rock. (x,y,z? consistent with (1,2,3), respectively.
(a) pore pressure buildup stabilizes faulting, (b) pore pressure de-
cline destabilizes faulting
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t=r5+8(c—asP)
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Fig.7.3 Mohr circle diagram for the effect of pore fluid pressure in or-
thotropic rock. (x,y,z) consistent with (3,2,1), respectively.
(a) pore pressure buildup destabilizes faulting, (b) pore pressure
decline stabilizes faulting
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Fig.7.4 Mohr circle diagram for the effect of pore fluid pressure in or-
thotropic rock. (x,y,z) consistent with (2,1,3), respectively. The
magnitude sequence of effective stresses differs from that of total
stresses
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ing and earthquakes of normal-faulting focal mechanism. This mechanism may be

also useful to understand the normal faulting and earthquakes associated with fluid

extraction in oil fields (Yerkes and Castle 1976, Segall 1989).

7.5 Conclusions

The general effective stress law for anisotropic porous materials is 5;; = 0;; — Pya;;.
For isotropic porous materials, a;; = aé;;, and the critical concentration model of
porous materials indicates that « is exactly the volume fraction of the critical con-
centration phase, a == ¢,/¢.,, which is applicable to various elastic and inelastic
deformation processes,

For anisotropic porous materials, a;; = agbij + Aij, and we determine o;; and A;;
in terms of directly-measurable elastic constants for the linearly elastic deformation
in transversely-isotropic and orthotropic porous rocks.

The pore pressure effect in anisotropic porous rocks may lead to the departure
of effective stress directions and magnitude sequencese from those of total stresses.
Consequently, not only the buildup but also the decline of pore pressure in anisotropic
porous rocks may lead to faulting and earthquake instabilities. The result can provide
explanations to many geological and geophysical phenomena, especially the faulting

and earthquakes induced by extracting fluid from subsurface.
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Chapter 8

Critical Concentration Strength Theory
of Porous Materials

Abstract

A strength theory of porous materials is established on the basis of the critical
concentration model. Pores and cracks of porous materials reduce the load-bearing
area, induce the stress concentration, and lead to the critical porosity, which are all
taken into account by redefining the actual stress from the nominal stress, average
stress, to local stress. Such actual stresses are responsible for porous materials failure
and fracture, and so the uniaxial tensile and compressive strength criteria, and linear
and nonlinear shear strength criteria are investigated in terms of the actual stress.
Then, the effect of transverse isotropy on porous material strengths is explored. Fi-
nally, the failure mechanism in transversely-isotropic porous materials is applied to

the explanation of tectonic block rotations.
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8.1 Introduction

The strength properties and fracture features of porous materials are closely related
to their microstructures, or pore structures. Low-porosity porous materials are usu-
ally taken as cracked materials, and fracture mechanics has been widely used in
describing the dependence of fracture strength and propagation on crack structures
(Griffith, 1920; Irwin, 1958; Paris and Sih, 1965; Lawn and Wilshaw, 1975; Atkinson
and Meredith, 1987; Aliabadi and Rooke, 1991). In particular, the micromechan-
ical fracture criteria such as the Griffith criterion and its improvements of cracked
materials are quite successful in predicting the strength and fracture propagation in
low-porosity geomaterials (McClintock and Walsh, 1962; Murrell, 1963; Bertolotti and
Fulrath, 1967; Rice, 1984; Krstic, 1988; Ingraffea, 1989; Lajtai et al., 1990; Gdoutos,
1990).

However, fracture mechanics based on a single crack or thin pore embedded in solid
matrix can not describe the strong effects of porosity on porous material strengths and
fracture features as indicated by numerous experimental studies. Most sedimentary
rocks are characterized by broad range of porosity, and complicated pore geometry
and connectivity. When the strength and fracture feature of such high-porosity rocks
are concerned, far less well understood is how the strength properties change with
porosity and other parameters characterizing the pore structures. The objective of
this chapter is to develop a strength theory which is based on the critical concentration
model of porous materials, and is focused on the uniaxial tensile, uniaxial compressive,

and shear strength criteria of porous materials.

8.2 Critical Porosity and Actual Stress

Experiments show that all strength properties of porous materials fall with increase
in porosity, which is attributed to two aspects of pore effect:

(1) pores and cracks decrease the load-bearing area of the material and so decrease
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the strength;

(2) stress concentration induced on the boundaries of pores and cracks reduces
the strength.

Pore volume fraction (porosity) has been used as a major parameter of pore effect
in empirical strength relations of porous materials, and it has been customary to
regard porosity as an end member of two-phase material. However, more and more
experimental data indicate that the uniaxial tensile and compressive strengths, and
shear strengths of porous materials approach zero at finite porosities ranging from
20% to 80% (Schiller, 1958; Price, 1960; Smorodinov et al., 1970; Rzhevsky and
Novik, 1971; Dunn et al., 1973; Hoshino, 1974; Kendall, 1984; Lemaitre, 1985; Jizba,
1991). Such porosity is the critical porosity at which the porous material collapses, as
defined in Chapter 3. Since the critical porosity is related to the pore geometry and
connectivity, a rigorous strength theory of porous materials should take into account
not only the pore volume fraction but also the pore geometry and connectivity. In
other words, the first aspect of pore effect stated above should be described by both
the porosity and critical porosity.

In experiments with porous material samples, the boundary applied stress is usu-
ally measured in terms of the whole section area of a porous material sample. Such
stress is the nominal stress (Kachanov, 1986), or total macroscopic stress (Paterson,
1978). In order to quantify the pore effect on the material strength, one must study
how such nominal stress and the macroscopic strength are related to the actual stress
in the load-bearing solid skeleton of porous materials. For a statistically isotropic
porous material, as analyzed in chapter 7, the boundary porosity s_;_s_‘ is related to

the critical porosity ¢, by

S—S. ¢
= (8.1)

If only the first aspect of pore effect is taken into account, the actual stress can
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be defined in a way similar to that in damage mechanics (Lemaitre, 1985; Kachanov,

1986). With a uniaxial loading P, the actual normal stress o, is defined as

P o

S1-42) (1-£)

P
aa - ?C -— (8.2)

where o is the nominal normal stress. With the same reason, the actual shear stress

T, is defined as

where 7 is the nominal shear stress.

The actual stresses in equations (8.2) and (8.3) represent the average stresses
on the load-bearing solid skeleton of a porous material, which are the first-order
approximation of nonhomogeneous stress state in the porous material.

Since our interest is to study how the material strength varies with the both
aspects of pore effect, and it is generally recognized that pores and cracks can behave
as stress concentrators and serve as fracture origins, the actual stress should be defined
as the local stress which is the maximum stress in the nonhomogeneous stress field
and responsible for the material failure and fracture. For a solid containing a single
isolated pore or crack, it is possible to find the maximum stress concentration by
means of elastic mechanics or fracture mechanics, but in porous materials containing
a large number of pores and cracks, the maximum stress concentration is expected
to be altered by all pore structure features, in other words, both the porosity and
critical porosity. On the basis of equations (8.2) and (8.3), the stress concentration
due to pore structures leads to the general definition of actual stress,

P — (8.4)

(1-&)P’
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T

(1- &)

Ty = ‘(8.5)
where the parameter D represents the degree of stress concentration. In general, D
can be determined by uniaxial experiments of porous materials.

The stress concentration near pore boundaries is related to pore size, geometry,
and connectivity (Muskhelishvili, 1953; Timoshenko and Goodier, 1970; Jaeger and
Cook, 1976; Rice, 1984; Krstic, 1988). Since thé critical porosity is closely related to
pore geometry and connectivity, we propose a formula to estimate D, by generalizing

Rossi’s hypothesis from effective moduli to failure strengths (Janowski and Rossi,

1967; Rossi, 1968; Bert, 1985),

D= D0¢cra (86)

where Dy is the stress concentration factor defined as the maximum stress reached in
the material divided by the applied stress. When a spheroidal pore with aspect ratio
c/a (the ratio of pore length along loading direction to pore width) is considered,

Rossi (1968) found
Do = 0.75 + (1.25a/c). (8.7)

For example, Do = 2 for spherical pores, Dy = 1 for needle-like pores parallel to

loading direction, and Dy > 2 for oblate pores.

8.3 Uniaxial Strength Criteria

From above analysis it is now reasonable to assume that the actual stress in the

load-bearing solid skeleton is responsible for the deformation and failure of a porous
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material. When the actual stress o, reaches the macroscopic strength for a specific

loading, the porous material failure occurs.

8.3.1 Tensile strength criterion

Let o, represent the uniaxial tensile strength in a solid material without pores. For a

tensile loading, the uniaxial tensile strength criterion of the porous material is thus

o=o0y(l— 22—)D. (8.8)

cr

For comparison, some existing empirical criteria are of the forms

o =041 - ¢2) (8.9)

as suggested by Haynes (1971), and
o=o0(l—- c¢§’3) (8.10)

as proposed by Eudier (1962) and Ishimaru et al. (1971), where the value of ¢,
determined experimentally, is usually larger than 1.0 By using the concept of critical
porosity, it is clear that ¢ > 1.0 in criterion (8.10) implies the general existence of
critical porosity in porous materials.

Fig.8.1(a) is a collection of experimental data of tensile strength versus porosity
for sintered porous materials. The tensile strengths are normalized for different met-
als including aluminium, copper, copper-iron and copper-tin alloys, nickle, steel, and
titanium. The estimated critical porosities range from 40% to 70%. By using the cri-
terion in equation (8.8), the plot of normalized tensile strength (o /0;) versus porosity

#, in Fig.8.1(b) provides better description of the experimental data in Fig.8.1(a).
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Fig.8.1 (a) Experimental data of normalized tensile strength versus
porosity for sintered porous materials (after Tharp, 1983%, (b) Nor-
malized tensile strength versus porosity predicted by critical con-
centration strength criterion in (8.8).
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Kendall (1984) collected another set of tensile strength data for various porou.
materials including natural rocks and firebrick, alumina and zirconia, cement, anc
ice, as in Fig.8.2. The nonlinear decrease of tensile strength with porosity is remark
ably similar for different porous materials and this fundamental feature is directl:

attributed to the stress concentration as reflected in the criterion (8.8).
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Fig.8.2 Normalized tensile strength versus porosity for various porous
materials (after Kendall, 1984).

8.3.2 Compressive strength criterion

Let 0. be the uniaxial compressive strength in a solid material without pores, tt

uniaxial compressive strength criterion of the porous material is

o=0,(l~ ﬁ)”. (8.1

cr

In the following we compare criterion (8.11) with the existing criteria and expe
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imental data of uniaxial compressive strength of porous materials. Schiller (1958)

proposed an empirical criterion for the uniaxial strength of porous solids,

o=o0.(l- m\/g_i), (8.12)

where m is a parameter depending on pore geometry. The stress concentration due to
pore boundaries, compared with equation (8.11), is empirically included by a factor
(m/ /&)

Rzhevsky and Novik (1971) reported another form of uniaxial compressive strength-

porosity relation,

o = 0.(1 - 1), (8.13)

where 4 is a parameter determined experimentally. By comparing equation (8.11)
and (8.13), we see that v is related to the critical porosity by ¢, = -1-, and that
D = 2. The available experimental data of rock strengths show that the parameter
« for rocks may vary between 1.5 and 4 (Lama and Vutukuri, 1978), thus the critical
porosity ¢., ranges from 25% to 67%, consistent with the model results in chapter
3. Fig.8.3 shows the experimental data of compressive strength versus porosity for

carbonates. Two curves predicted by (8.13) are drawn to be the upper and lower

bounds of the data.

8.4 Shear Strength Criteria

Py

Our approach to establish the shear strength criteria is to let the actual stress satisfy
the Mohr condition originally proposed for the same material without pores. The
basic requirement for such a strength criterion is that the predicted material strength

should reduce to zero when the material porosity reaches the critical porosity.
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Fig.8.3 Experimental data of compressive strength versus porosity for
carbonates, and bounding curves 1 and 2 predict 20% ~ 50% criti-
cal porosity (after Rzhevsky and Novik, 1971).
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Assume that shear failure occurs on a given plane of a porous material when the

actual stresses o, and 7, on it satisfy a general relation

Ta = f(04)- (8.14)

The linear and nonlinear forms of the function f are analyzed as follows.

8.4.1 Linear condition between 7, and o,

Assume the actual stresses in the solid skeleton of a porous material satisfy the

Coulomb condition, then

Ta = To+ Ogtan g (8.15)

where 7 and tan ¢ are the cohesive strength and coefficient of internal friction of the
solid material itself. Substituting from equations (8.4) and (8.5) into (8.15) gives
¢2 )D

T=(1-¢—c,-

To + o tan . (8.16)

By comparing equation (8.16) with conventional Coulomb criterion, we notice that
the first term on the right of (8.16) represents the effective cohesion of a porous
material. This strength criterion predicts that shear strength increases linearly with
the applied normal stress but decreases with the porosity. How much loading the
porous material can bear depends on the porosity. When the porosity approaches the
critical porosity, the porous material can bear little loading, and so the shear strength

reduces to zero at the critical porosity.

8.4.2 Nonlinear condition between 7, and o,

The above linear relationship between shear strength and normal stress may be just

the first-order approximation to many rock experimental data (Paterson, 1978). For
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solid materials, Murrell (1971) is credited for the popular forms of nonlinear strength

criteria,

12 = ¢y + 0, (8.17)

T =co+ 0", (8.18)

where the constants cg, ¢;, and n are determined experimentally. Wang and Han
(1977) used parabolic curves to fit the Mohr stress envelopes and obtained an explici.t

form of nonlinear strength criteria,

7% = 12 + (00 — 270)0, (8.19)

where 6, is the uniaxial compressional strength of solid material. Comparing equa-
tions (8.17) with (8.19) yields ¢o = 7¢ and ¢; = (g0 — 270).

In order to describe nonlinear relationships between shear strength, normal stress,
and porosity of porous materials, we propose that the actual stresses satisfy the

condition in the form of equation (8.19),

72 = 18 4 (09 — 270) 0. (8.20)

Substituting from (8.4) and (8.5) into (8.20) yields

2 =(1- 25—2)2171'3 +(1-— ;5_2)13(00 — 279)0. (8.21)
Fig.8.4 shows the strength experimental data of Nugget sandstones obtained by
Logan (1987). The empirical equations in Fig.8.4(b) imply 25% ~ 45% critical poros-

ity. Jizba (1991) recently conducted experiments to study the porosity effect on the
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shear strengths of sandstones. The results indicate that the shear strength increases
nonlinearly with the normal stress, but decreases almost linearly with porosity. Least-
squares fits to these data indicate that the critical porosity is about 35% (Fig.8.5).
We apply equation (8.21) to explain the above dependence of shear strength on
porosity and normal stress. In Jizba’s experiments, the cohesive strength is very
small, but the uniaxial compressive strength is quite large. For example, with 9%
porosity in sandstone samples, the measured uniaxial compressive strength is in the
order of 100 MPa. When ¢, = 35%, 70 = 10MPa, and gy = 420MPa are use
in (8.21), the theoretical results are presented in Fig.8.6. Fig.8.6(a) indicates that
the shear strength-normal stress relationship is nonlinear, similar to the feature in
Fig.8.4(a). Fig.8.6(b) shows the relationship between shear strength and porosity,

and the quasilinear feature is consistent with the data in Fig.8.4(b) and Fig.8.5.

8.5 Pore Pressure Effect on Strength

Above strength criteria are derived for dry porous materials. When these materials
are saturated with fluid, the pore pressure effect on the strength can be understood
and evaluated in terms of effective stress as analyzed in chapter 7.

When an isotropic fluid-saturated porous material with pore fluid pressure P, is

considered, the effective stress on the potential failure plane & is given by

G=0— 2P, (8.22)

Then, corresponding to equation (8.16), the shear strength criterion for fluid-saturated

porous materials is

$2.\p
)

T=(1-—

. 70+ (0 — %Pp) tan . (8.23)

Similarly, another criterion, corresponding to equation (8.21), is



Chapter 8 — Strength theory 204

6.0 4 POROSITY y=0.9504 + 0.661x R=1.00
1 ® 49%
5 504 ©* 65%
x X 72%
8 ® 138%
&40 8 151%
-
[7)] <4
5
3.01
: /! (a)
[72]

y=1.1892°x*0.5182 R=1.00

2.01
1.0 /
1 NUGGET SANDSTONE
0.0 N v i v L v ] v T I ) 4 v T A T v
0 1 2 3 4 5 ] 7 8
NORMAL STRESS (Kb)
14
.. 2 L PC = .345
_ e Pcs .690.
£ 127 B Pca20
T ® Pca275
5 10 j! X Pca35
é y = 153075 - 0619x R=0.88
5 g d
w * .
L4
£ (b)
5 !
5
-]
415 ——
4 o ——.
) y=46134-01014x R=082
4 6 8 10 12 14 16

POROSITY (%)

Fig.8.4 (a) Mohr diagram of Nugget sandstones. Data points are taken
at failure of each experiment. Empirical equations for upper and
lower curves are given. (b) Ultimate strength versus porosity for
Nugget sandstones. Curves are for confining pressures indicated in
kilobars. Empirical equations for the upper and lower curves are
shown (after Logan, 1987).
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Fig.8.5 Experimental data of shear stress at failure versus porosity at
different levels of normal stress for sandstones, and the least-squares
fits indicate about 35% critical porosity (after Jizba, 1991).

= (1- g:: D724 (1~ %:)D(ao — 270)(0 — %:PP). (8.24)

8.6 Transverse-isotropy Effect on Strength

Extensive surveys of strength criteria of anisotropic materials have been accomplished
by Amadei (1983) and Rowlands (1985). For rock materials with strong dependence
on hydrostatic pressure, however, the Coulomb criterion for isotropic materials is
often modified and extended to anisotropic materials. Nova and Sacchi (1979) and
Nova (1980) proposed tensorial forms of the Coulomb criterion for orthotropic and

transversely-isotropic materials,

Tmn = Cmm + Emnraaru (825)
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where 7,,, and o,, are the shear and normal stresses on a potential failure plane;
the cohesion ¢, varies as does the normal components of a second-rank tensor,
and the quadruple tensor £,,,,, can be physically linked to the internal friction of
the material. For transversely-isotropic materials, equation (8.25) is involved with
four strength parameters: the least cohesion ¢; and the maximum cohesion ¢! = f.c?
(Be 2 1), the least friction coefficient ¢, and the maximum friction coefficient ¢, = f¢;
(Be > 1).

When this criterion is applied to the transversely-isotropic porous materials such
as sedimentary rocks containing parallel weakness planes, as indicated by equation
(8.16), only the cohesions ¢ and ¢ should be replaced by the effective cohesions c;
and c,, respectively, where ¢, = (1 — fc%)Dc:, and ¢, = (1 — ﬁ)Dc:.

A failure plane is defined as the plane on which equation (8.25) is satisfied. Let
¥ be the inclination of an incipient failure plane to the axis of least principal stress
03, or the angle between the normal of that plane and the axis of maximum principal
stress 0y. 9 can be therefore determined by comparing the shear stress due to exter-

- nal boundary loading and the shear strength resulted from equation (8.25). In the

reference frame of Fig.8.7, equation (8.25) is expressed as

01— 03

2

sin2 = c[B.cos? (¢ + 8) + sin® (v + 0)] +
+€i[Beor cos” (¢ + 0) + oy sin® (P + 0) + 7, sin® (¢ + 6)),

(8.26)

where 0 is the inclination of weakness plane to the axis of maximum principal stress
01, and the stresses o,, 0, and 74, are the stresses on the planes normal to the principal

axes of strength anisotropy,

o, = 01 cos’ 8 + o3sin 0, (8.27)
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o, = oysin’ 0 + o3 cos? 0, (8.28)
T = 22 5in 20. (8.29)
X

C3

Fig.8.7 Reference frame of transversely-isotropic porous materials un-
der boundary loading.

Given the principal stresses at failure o, and o3, and the inclination of the weakness
plane 0, the only unknown in equation (8.26) is therefore the angle 1. Equation (8.26)

yields only one value of 3 for each angle 6,

1 — 03+ [ei(Be = 1) + &(Beo, — o)) sin 20 — 2,7, cos 20
20(Bect + Bekio,) cos? 8 + (¢, + £:0:)sin? 6 — €7, 5in26]

c
tany =

(8.30)

Consequently, for transversely-isotropic porous rocks, there exists only one possible

failure plane for each angle of weakness plane, and the inclination of the failure plane
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depends on all four strength parameters, besides the stresses o, and o3 and the angle
6. This theoretical result is completely different from the concept of conjugate failure

planes of isotropic materials.

8.7 Application to Tectonic Block Rotations

8.7.1 Existing block rotation model

Based on accumulating paleomagnetic, structural, and seismic evidence, the concepts
and models of tectonic block rotations have developed as an attractive approach to
crustal deformation in regions with distributed faulting. The kinematic model orig-
inally proposed by Freund (1970, 1974) indicates that, due to the geometrical con-
straints at the boundaries of tectonic domains, faults and the rigid blocks bounded by
them will slip and rotate away from the direction of maximum compressive principal
stress. Nur et al. (1986, 1989) applied the Coulomb criterion with variable cohesions
for existing fracture sliding and intact rock failure to Freund’s model, and found that
new fault sets should be required to accommodate block rotations greater than 45°,
as depicted in Fig.8.8

The mechanism of an initial set of shear fractures in intact rocks, as indicated in
Fig.8.8(a), can be well understood from the failure and fracture theories of isotropic
materials. The mechanical process of a new set of shear fractures in the faulted rocks,
as shown in Fig.8.8(b), involves the failure and faulting in anisotropic materials, but is
only qualitatively explained in Nur’s block rotation model as the same occurrence as
the initial set of fractures. This section is intended to rationalize Nur’s block rotation

model by analyzing the failure and faulting in transversely-isotropic rocks.

8.7.2 Relationship between failure and weakness planes

After a set of parallel or subparallel fractures occur in an intact, isotropic rock mass,

the rock mass is no longer isotropic. In order to study the occurrence of sequential
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Fig.8.8 Tectonic block rotation of sequential fault sets (after Nur et al.,
1989)
(a) Initial configuration of the first set of fractures occurred in in-
tact rocks, and the angle ®, is the inclination of fracture plane to
the axis of maximum principal stress.
(b) Configuration of rotation of the first set and inception of the
second set, and the angle ®. is the critical angle between sequential
sets.
gc) Configuration after rotation of the second set, with the locked

st set.
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fractures, the rock mass as in Fig.8.8(a) can be reasonably taken as a macroscopically-
continuous and transversely-isotropic porous material, and such anisotropy is structurally-
anisotropic, since each fracture in the rock mass in fact represents a deformation zone
or a bunch of subparallel weakness planes.

Our main interest is to identify the occurrence of failure plane in transversely-
isotropic porous rocks with respect to the initial weakness plane. Fig.8.9 compares
above failure analysis with Penrhyn slate data obtained by Attewell and Sandford

(1974), and the strength parameters used in this case are:
¢, = 22.2MPa; & = 0.503; B. = 3.3; Be = 2.7.

Fig.8.9(a) compares theoretical and experimental deviatoric stress at failure (o, —
03) versus the inclination of weakness plane §. Both theory and experiment show
that the least strength plane is the plane with 8 ~ 30°, which is consistent with many
other experimental observations (McLamore and Gary, 1967). Fig.8.9(b) compares
the inclination of failure plane x (x = 90° — %) with the inclination of weakness plane
6. Several useful conclusions can be drawn from Fig.8.9(b):

1. The theoretical results are in good agreement with the experimental data, es-
pecially at higher pressure. Since both theoretical and experimental results generally
depart from the line x = 6, the failure plane does not occur, in general, along the
weakness plane.

2. When 6 ~ 30°, the failure plane occurs along the weakness plane, now the least
strength plane in the sense of deviatoric stress (o, — 03).

3. With 8 much greater than 30°, the faiiure plane occurs at 35° ~ 40° of angle x.
On these failure planes, the overall strengths in the sense of (6, — 03) in Fig.8.9(a) are
much less than those one would expect from an isotropic rock with strengths equal

to Bece and Bl

4. With the increase of angel 6 to 65° ~ 75°, the angle x will reach its maximum
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value (~ 40°). When post-failure behaviors of such incipient failure planes are con-
sidered, the probable slip along the failure plane, or the faulting of rocks will occur

along the failure plane whose x approaches its maximum value. Consequently, the

angle difference (6 — x) will be 25° ~ 40°.

Py

80
,

€0 - ,

(b)

Fig.8.9 (a) Comparison of theoretical and experimental deviatoric stress
vs the inclination of weakness plane; (b) Comparison of inclinations
of failure plane and weakness plane (after Nova, 1980)

8.7.3 Faulting and rotation of tectonic blocks

When applied to tectonic block rotations, the above failure analysis of transversely-

isotropic porous rocks renders a rigorous mechanism to the faulting and rotation of

tectonic blocks as in Fig.8.7.
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The Coulomb criterion for isotropic rocks predicts conjugate failure planes in
intact rocks. Due to the boundary constraint, only one set of fractures prevail in
intact rocks. Since the internal friction coefficient of most rocks is about 0.6, the
inclination of fracture plane @, is about 30°, as in Fig.8.7(a).

With the axes of regional principal stresses unchanged, faulting will occur in the
fractured rocks and the slipping will begin along the initial fracture planes since they
are the least-strength weakness planes (6 ~ 30°) according to above failure analysis.
Simultaneously the rotation of faulted blocks occurs in accordance with the rule of
Freund’s model, that is, blocks rotate counterclockwise (CCW) when slip is right
handed and clockwise (CW) when slip is left handed. For a moderately increase of 6
from its initial value of 30° resulted from the block rotation, the strength of the rocks
is like that of an isotropic material characterized by the strength parameters ¢, and
§:, as shown in Fig.8.9(a). Consequently, the large shear stress components on these
weakness planes with § ~ 45° keep the slipping or faulting along these planes. With
further rotation of faulted blocks, the increase of angel § approaches 65° ~ 75°, and
the inclination of failure plane will reach its maximum value (~ 40°). These failure
planes are just the incipient fault set as in Fig.8.7(b). Once faulting along these planes
begins, more block rotations are accumulating, and the initial set of fracture planes,
being simply the weakness planes in the rock mass, no longer activate, as indicated in
Fig.8.7(c). Consequently, the angle between the weakness plane and currently-active
faulting plane (6 — x), ranging 25° ~ 40°, is in fact equivalent to the critical angle ®,

defined in Nur’s block rotation model.
CRITICAL ANGLE OF BLOCK ROTATION

By using constant friction coefficient £ and variable cohesions ¢; and ¢; for preex-
isting fracture plane and intact rock failure, respectively, Nur et al. (1986) determined

the critical angle @, as



Chapter 8 — Strength theory 214

2(¢; — ) cos(tan"{)]

1
® = =—cos7'1 - \
01— 03

2

(1-c/c)
T (Focla) (600/6.')], (8.31)

= 3 cos™ 1 —
where o0y is effective overburden pressure. For general rock properties and crustal
stress levels, ®, ranges 25° ~ 40°. Only for the extreme cases ¢, = 0 and £ = 0 (or
oo = 0), can the upper limit of ®, reach 45°.

From the failure analysis of transversely-isotropic rocks in the above, we know
that the strengths on the new set of fracture planes are rather lower than those
characteristic of S.c; and S¢€;. Thus, when the angle (6 — x) is taken as equivalent to
the critical angle @ as defined above, the parameter f; should be equal to 1 to meet
the condition of constant friction coefficient, and the cohesion ¢; is not equivalent to
ac; but a value moderately smaller than f8.c; and larger than ¢,.

The angle (6 — x) is therefore a generalized definition of the critical angle ®,., and

from equations (8.26) to (8.30) we can find

tan ¢ — cot 6

(6 —x) = tan (1+cot0tan¢

). (8.32)

Many experimental data indicate that the cohesive strengths of various intact
rocks vary from tens of MPa to hundreds of MPa (Jaeger and Cook, 1976; Pa-
terson, 1978). The cohesive strengths on preexisting fracture planes, however, are
much smaller, even approach zero (Byerlee, 1978). The cohesive strength ratio 8. of
transversely-isotropic rocks as defined in the above, is therefore in a wide range. On
the other hand, the friction coefficients on the preexisting fracture planes, in general,
are smaller than but in the same order as those of intact rocks, thus the friction
coefficient ratio f¢ is rather low. In order to see clearly how the transverse isotropy

and crustal stress level affect the angle (# — x), we use rock properties and crustal
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stress conditions similar to those in Nur et al. (1986) to visualize equation (8.32) in

Fig.8.10 and Fig.8.11.
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Fig.8.10 Generalized critical angle (§ — x) versus anisotropic strength
ratios . and S, with o7 = 400MPa, 03 = 100MPa, and 4 = 70°

Given stresses at failure 0, = 400MPa and o3 = 100MPa, and a large inclination
of weakness plane § = 70°, the critical angle (6 — x) versus B. and B¢ is shown in
Fig.8.10 With S, ranging 1 ~ 50 and ¢ ranging 1 ~ 5, the angle between fracture
sets (0 — x) ranges 25° ~ 40°. Recent studies by Ron et al. (1986, 1990) show that
in-situ measurements of the angle between fracture sets are indeed 25° ~ 40°.

The block rotation model proposed by Nur et al. (1986), as well as present study,

can be applicable to both strike-slip and dip-slip multiple sets. Of course, the crustal
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stress conditions for them may be quite different. Fig.8.11 shows how the angle (6 — x)
depends on the stresses 0y and 05. When . = 5, B¢ = 2, and 8 = 70° are used, we see
that the angle (6 — x) ranges 10° ~ 40°, and that (6 — x) increases with the deviatoric

stress at failure (o7 — r3).
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Fig.8.11 Generalized critical angle (§ — x) versus principal stresses at
failure oy and o3, with g, = 5, B¢ = 2, and 6 = 70°

8.8 Conclusions

Pores and cracks of porous materials reduce the load-bearing area, induce the stress
concentration, and lead to the critical porosity, which are all taken into account by re-

defining the actual stress from the nominal stress, average stress, to local stress. The
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uniaxial tensile and compressive strength criteria, and linear and nonlinear shear
strength criteria in terms of such actual stress are proposed and compared with
available experimental data. The effects of pore pressure and transverse isotropy on
porous material strengths are explored. Finally, the failure mechanism in transversely-

isotropic porous materials is applied to the rationalization of existing block rotation

models.
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Chapter 9

Discussions and Conclusions

9.1 Main Contributions

The main contributions of this dissertation are summarized as follows.

1. Critical porosity and concentration are recognized as the general features of
porous materials, and they are of first-order effects on the mechanical and acoustic
properties of porous materials.

2. New theoretical models of porous materials are developed by incorporating the
concept of critical porosity and critical concentration phase into the description of
porous material microstructures.

3. New theoretical sclutions are proposed to relate wave velocities or effective
elastic moduli to pore structure parameters. These solutions

— are extensions of nondilute solutions; |

— are in good agreement with most experimental data;

— and provide physical interpretations to empirical relatiéns.

4. The new models and solutions are widely applied to other aspects of Rock
Physics:

— Strength criteria;

— Effective stress laws;

— Clay effects;

— Permeability;

— and Anisotropy.
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9.2 Discussions

1. Effective elastic moduli

For dry and fluid-saturated porous materials, clay-free and clay-bearing porous
materials, and consolidated rocks and unconsolidated sediments, we have developed
a series of material models to describe their microstructural variations, to establish
relationships between effective elastic moduli, porosity, critical porosity, clay content
and location, and fluid property. The developments from dilute to nondilute con-
centration models and solutions, and from nondilute to critical concentration models
and solutions, are significant in both theory and practice.
2. Porous material strengths

Porous material strengths strongly depend on pore structure features such as pore
volume fraction, pore geometry, pore connectivity, and pore surface roughness. The
concept of critical concentration in porous materials leads us to propose the critical
concentration strength theory. It is neither the nominal stress nor the average stress,
but the local stress on the load-bearing materials skeleton that governs the strength
feature. The uniaxial tensile and compressive, and shear strength criteria based on
such actual stresses are able to describe accurately most existing strength data of
various porous materials.
3. Effective stress laws

The critical concentration model of fluid-saturated porous materials provides a
new explanation of pore pressure effect. It is the critical concentration phase that
loads the pore pressure on the material skeleton, thus its volume fraction is the
general expression of effective stress coefficient. In contrast with the conventional
concept of pore pressure in isotropic porous materials, pore pressure in anisotropic
porous materials affect both the normal and shear stress components, leading to the
possible variations of effective stress directions and magnitude sequences. The direct

application of such anisotropic pore pressure effects is useful in explaining the faulting
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and earthquake instabilities induced by subsurface fluid extraction.
4. Porosity and permeability in sediments

Clay content, clay location, and clay cementation state in sediments are of con-
siderable effects on effective properties especially porosity and permeability. The
application of the concept of critical concentration makes it possible to quantitatively
describe relationships between effective properties and clay-bearing microstructures,
which are very useful in reservoir exploration and production.
5. Wave velocities

There are more than a dozen of factors affect the wave velocities in porous mate-
rials. Critical porosity, closely related to pore geometry and connectivity, is identified
as a basic parameter whose effect on P and S wave velocities may be an order higher
than other factors. The proposed models and solutions allow us to fully consider the
clay effect and provide physical interpretations to several empirical relations between

velocity, porosity, and clay content.

9.3 Further Studies

This dissertation presents only some preliminary applications of the proposed material
models and solutions. Some further applications include
A. Acoustic well logging interpretation
Seismic tomography modeling and interpretation
Reservoir property evaluation
. Near wellbore damage analysis

Hydraulic fracturing design

M ® U QW

Induced faulting and seismicity
While I finish the thesis writing, I realize that there are more related problems
emerging from current study than I faced years ago. Maybe that is why Stanford

Rock Physics Project can run year after year. An obvious problem is the Frequency
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and Confining Pressure Effects.

The wave velocities in fluid-saturated geomaterials studied in this paper are calcu-
lated from the effective elastic moduli in static state, and so they are appropriate at
low frequency domains. When the frequency and confining pressure effects on wave
velocities are concerned, Biot theory of wave propagation has been verified as the fun-
damental one applicable to a wide range of porous materials (Biot, 1956a, b, 1962;
Plona, 1980; Schmitt, 1986; Charles et al., 1988; Winkler, 1989). According to Biot
theory, sound wave velocity and attenuation depend on frequency, elastic properties
of matrix grain and pore fluid, porosity, grain size and pore geometry, permeability,
and effective stress. Thus 13 parameters are required as model inputs. Among others,
the effective bulk and shear moduli of dry porous materials have been the subject
of many studies (Berryman, 1980a, b; Ogushwitz, 1985). The critical concentration
model and its formulation in this study render several solutions to the effective elastic
moduli which are important inputs for Biot theory. One of our further studies is to in-
corporate the critical concentration model and solution into Biot theory to investigate

the acoustic, transport, and microstructural properties of poroelastic geomaterials.
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