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Abstract

Most exploration of the underground for hydrocarbon reservoirs depends on the
acquisition, processing, and interpretation of seismic data. In this context, this thesis
investigates the use of numerical mefhods for modeling wave phenomena associated
with different types of exploration activities, and presents new results in three distinct
domains: the understanding of wave phenomena in a cross-well geometry, the influ-
ence of rock properties such as attenuation and anisotropy on seismic interpretation,
and the use of fast numerical modeling for computer aided interpretation of cross-well
data. T'wo chapters are devoted to each of the studies. The first one examines exist-
ing numerical methods, and provides new methods for the investigation. The second
one applies the numerical methods to the study of a specific problem.

Downhole source design and acquisition results. (Chapters 2 and 3)

This section introduces new numerical methods such as implicit-explicit finite ele-
ment modeling, and hybrid finite-element finite-difference modeling. These numerical
methods are then applied to the study of various downhole source designs and yield

the following results:

o Because the length of downhole sources is often comparable to the seismic wave-
length, tuning effects shape the source signal and can introduce severe source

dispersion as well as frequency-dependent radiation patterns.

e Unless designed otherwise, downhole sources that are not isolated from the
borehole fluid convert more than 90 % of their energy into borehole guided
waves. These waves generate powerful secondary sources each time a borehole

heterogeneity is encountered.

e In the case where one of the borehole guided modes is faster than the the



compressional or shear velocity of the formation, conical waves are generated

by the use of downhole sources.

Rock material properties and petrophysical seismic interpretation. (Chapters 4 and 5)

Chapter 4 provides a framework for the study of anisotropic viscoelastic solids that
display attenuation anisotropy. It then provides two solution algorithms for plane
wave propagation and for full waveform modeling using a Fourier Pseudo-Spectral
method. The full waveform modeling software was used in Chapter 5 to study the
sensitivity of Amplitude Versus Offset (A.V.0.) measurements and the following re-

sults were obtained:

o Reflection coeflicients which are the primary target of A.V.O. interpretation,

are strongly dependent on both the viscoelastic and anisotropic properties of

the rock studied.

e Both the anisotropic and viscoelastic properties of a material alter the signal
during propagation, first, because of elastic energy focusing and, second, because

of attenuation or dispersion.

Interactive interpretation of cross-well seismic data. (Chapters 6 and 7. )

Chapter 6 provides an extension of the finite-difference ray-tracing technique to
anisotropic, anelastic solids. This method is further used in the context of an in-
teractive interpretation system specially designed for the interpretation of cross-well
data. |

This interpretation first reveals that a very simplistic model composed of homoge-
neous layers accurately accounts for the observed first arrivals. The finite-difference
raytracing method is then used in a least-square-based inversion loop to recover resid-
ual variations of layer velocities, as well as interface location. This experiment shows
that this type of travel time inversion can effectively relocate interface, but does not

effectively recover layer velocities. This result is related to the heterogeneity of the
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ray coverage in a layered medium where most of the first arrivals that would constrain
the horizontal velocities actually travel as head waves along wave paths defined by

the interfaces.
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Chapter 1

Introduction

As most of the giant reservoir structures in the world are likely to have already been
discovered, hydrocarbon exploration, essentially based on seismic investigation, turns
to new frontiers whereby new, deeper reservoirs are sought, but also old reservoirs
now partially depleted are reinvestigated. Two new seismic acquisition philosophies
stem from these new plays. First, high resolution seismic data aims to provide valu-
able petrophysical information from the target investigated. Second, new acquisition
geometries such as inter- or cross-well geometries aim to provide detailed images of
the targeted reservoir.

By the same token, seismic processing and interpretation largely based so far on
amplitude independent algorithms are being reevaluated. Migration is not only sup-
posed to deliver a well focussed image of the underground, but also a working velocity
model for it. Deconvolution is not only seen as a tool for signal shaping, but can also
be used to efficiently evaluate attenuation. Above all, seismic amplitudes are now
known to contain extremely valuable information on rock petrophysical properties,
and must be preserved through the seismic processing stage.

Because of the previous assessments, this thesis focuses on the interpretation of

seismic data from three different points of view :

e Wave equation modeling using the finite-element method, in order to better

understand high resolution cross-well data.
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¢ Interpretation of Amplitude Versus Offset data and their dependence on atten-

uation and anisotropy.

e Structural and petrophysical interpretation, and the role of inversion in seismic

interpretation.

Each of these topics is articulated in two chapters. The first provides the theoret-
ical background for the system studied, and investigates the numerical methods that
will be used for interpretation. The second applies the results of the first part to the

investigation or solution of a particular geophysical problem.
1.1 Seismic downhole source control, and engineering

Some of the sources customarily used for surface seismic acquisition, such as Vibro-
seis or air guns, have fairly well known behaviors. This is not the case with downhole
seismic sources, which have only recently been developed. Based on new families
of numerical algorithms — such as implicit-explicit finite-element or hybrid, finite-
element, finite-difference algorithms described in Chapter 2 - Chapter 3 addresses
the theoretical investigation of the radiation of downhole sources. Three different
types of sources are modeled: resonant cavity sources (Kennedy 1987) piezoelectric
bender sources (Harris 1987), drill-bits used as a downhole seismic sources (Rector

1990). For each of these sources the following questions.are answered :

o Does the borehole affect the performance of the downhole source, in terms of

both efficiency and radiation pattern ?
e Does the borehole system affect the source signal signature ?

o Finally on the basis of data acquired with each of these sources, can we identify

the modes that were recorded ?
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1.2 Anisotropy and attenuation: A new frontier for interpretation

Both attenuation and anisotropy are known to strongly condition wave propaga-
tion and seismic reflections in real earth rocks. The studies by Kjartanson (1979),
Bourbie (1982), Amos Nur (1969), and Terry Jones (1986), among others, indicate
that attenuation is a key seismic parameter that influences both seismic wave propa-
gation and reflections. Similarly, after Crampin (1984) and Nur (1969) discovered the
pertinence of including anisotropy for the description of wave propagation in rocks,
both Banik (1987) and Thomsen (1987) have stressed the influence of anisotropy on
seismic reflections’ attributes.

In Chapter 4, I propose a unified description of rocks that includes attenuation as
well as elastic anisotropy and attenuation anisotropy. This description is followed by

two solution algorithms:

e The plane wave solution in a fully anisotropic medium.

e A numerical full-waveform solution algorithm for fully anisotropic solid based

on the previous work of Carcione (1987).

In Chapter 5, the full-waveform algorithm is used to investigate the sensitivity
of Amplitude Versus Offset (A.V.0.) measurements on anisotropy, attenuation, and
attenuation anisotropy. This study focuses not only on the sensitivity of the reflection
coefficient on rock properties such as attenuation and anisotropy, but also on the
study of the wave-propagation phenomena involved in A.V.O. measurements and

their influence on the computed petrophysical parameters.
1.3 Fast modeling: Seimic interpretation versus inversion

The numerical methods described in Chapter 2 (finite-element) and Chapter 4

o e N R i, > R i
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(Fourier-pseudo-spectral) are extremely accurate, but are also too slow to suite the
speed requirements of an interactive interpretation environment. Faster methods like
ray tracing lack the accuracy of the previoﬁs methods, and become increasingly slower
as the number of seismic attributes computed increases. To alleviate this drawback, I
have redesigned a very fast ray tracing method known as finite-difference ray-tracing
(Vidale 1988) to include modeling capability for both anisotropic and viscoelastic
solids (Chapter 6).

Finally, in Chapter 7, I present an interactive interpretation environment that
allows the editing of a geological model satisfying the geophysical constraints pro-
vided by both well logs and cross-well seismic data. This last chapter proposes a
new interpretation methodology for cross-well data using both classical geological

interpretation techniques, and geophysical inversion techniques.
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Chapter 2

Numerical Methods for the
Investigation of Wave Phenomena
around the Borehole

Abstract

This chapter compares three numerical methods based on the finite-element and
finite-difference methods for the purpose of modeling elastic wave phenomena gener-
ated by downhole seismic sources. These three methods are: an explicit finite-element
methbd, a hybrid implicit-explicit finite-element method, and finally a hybrid finite-
element finite-difference method. The large difference in scale between the diameter,
and the length of the borehole, as well as the necessity to accurately model fluid-
solid boundary conditions at the borehole wall, makes the finite-element method the
preferred modeling method in the borehole region. The numerical discretization of
the elastodynamic wave equation using the finite-element method yields the canonic
linear system of equations,

0,
ot

where M is the mass matrix, K the impedance matrix, u, the discretized displacement

M

= Kup + fn (2.1)

field, and f,, the discretized vector of external forces. Unfortunately, the large size

of geophysical models (20,000 elements) makes it impossible to use classical solutions

B T - O TG ep o1
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of the finite-element equations that would require prohibitively long computer run
times.

Therefore, I investigated two different implementation of FEM aimed at reducing
the amount of computation by profiting by the special geometry of our problem and

obtained the following results:

e the finite-element discretization of the elastodynamic wave equation on a tri-
angular grid yields a mass matrix with predominant diagonal terms (Sword
1986). The inversion of this matrix using a Taylor expansion yields a very
computer-efficient algorithm, but a poor dispersion relation, especially for very

low wavenumbers.

e the implicit-explicit (Hughes 1984) partition of the grid between the borehole-
source region, and the far-field region provides an efficient numerical algorithm

with a good control of both numerical dispersion and anisotropy.

These finite-element methods, however, are less efficient than the finite-difference
method to model the inter-well region, because of both their numerical dispersion,
and computer implementation. Therefore, recognizing the superiority of the finite-
element method in the borehole region, I have devised a hybrid finite-element finite-
difference algorithm that yields both very accurate modeling of the effects related to
the presence of the borehole, and a more efficient way of propagating the radiated

field away from the borehole region.
2.1 Introduction

Multiple solutions of the elastodynamic wave equation are available for the case
of downhole sonic logging tools where frequencies range from 1000 to 20000 Hz and
therefore span over multiple frequency transition effects (Cheng 1981). Some of these

solutions are analytical for the simplest geometries. For most complex geometries
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however, only numerical solutions were devised using mostly algorithms based on the
finite-difference method.

Similarly, for frequencies lower than 1000H z, analytical solutions have been found
in simple cases such as a point source in a fluid-filled borehole drilled in a homoge-
neous isotropic medium, (White 1973). The last class of solutions for signal frequen-
cies ranging from 10 to 1000 Hz is the one of interest for our problem since, with
the current state of technology, actual downhole seismic sources only deliver useful
seismic information below 1000H 2, (Harris 1987, Paulson 1987). These solutions to
the elastodynamic wave equation are generally referred to as low frequency solutions
(White 1973) that is frequencies for which the wavelength of the energy in the bore-
hole fluid is much larger than the borehole diameter. This approximation, however,
does not imply that the effect of the borehole on the radiated field can be neglected
altogether, as is often assumed. Some of the effects of the borehole presence on the
'low frequency’ radiated field are described by White (1973), who uses dimensional
analysis to investigate conversions from borehole guided waves to body waves at solid
interfaces.

My goal in this chapter is to investigate numerical methods that allow the careful
study of downhole seismic sources no matter how complex the source design and
setup may be. Because of the discrepancy between the borehole diameter (10cm)
and the volume investigated which is generally of the order of 100 to 1000 cubic
meters, the finite-element method is ideally suited in that it can accommodate large
geometrical scales differences. This chapter compares three different implementations

of the finite-element method:

e A simple implementation where the domain investigated is gridded using trian-

gular elements, and a simple explicit solution algorithm is used.

e A more complete implementation that allows for easier description of the vol-

ume investigated as well as better control of both numerical dispersion and
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anisotropy using an implicit-explicit algorithm.

e Finally, a hybrid finite-element finite-difference method that provides faster
numerical computations, as well as a complete reusable sampling of the borehole

radiated field.

2.2 A simple, efficient implementation of the finite-
element method

This first part focuses on a rapid description of the finite-element method, its

advantages, and drawbacks when applied to a geophysical problem.

2.2.1 The Lagrangian approach toward the finite-element solution of

the wave equation

The finite-element solution of the wave equation is based on its integral formula-
tion. The next part, shows that there are multiple ways of reaching such a formulation
and the easiest is probably the Lagrangian formulation of the wave equation. For our
problem, the elastodynamic wave equation can be cast as the following mixed bound-

ary problem,

Py = 05 + fi on 2x]0,T] (2.2)
u; = g; on Iy, x]0,T] . (2.3)
oiin; = h; on Tj,x]0,T] (2.4)
ui(z,0) = ugi(z) on N (2.5)
#(z,0) = doi(z) on (2.6)

where, T, is the domain at the surface of our system where the i** component of the

displacement field is defined as g;. n; is the normal pointing outward the bounding
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surface I' of the system investigated. Similarly, T';, is the domain where the 7™
component of the stress field is defined by h;. The union of T';, and TI'); for each
component is I'. The boundary conditions (equations 2.3 and 2.4) are defined for the
system studied, as well as for each subsystem of interest such as layers or the borehole
itself.

Solving equation 2.2 with the boundary conditions described by equation 2.3 and
2.4, and the initial conditions in equation 2.5 and 2.6 is equivalent to solving the
following equation under the same conditions (Morse and Feshbach, 1953):
i[5~ e
where L is the Lagrangian of the system defined by the difference between the kinetic

(K E) and potential (PE) energy density of the system:

L=KFE—-PE= %p’&z — Cijkl€i5€kI (2.8)

Similar formulations can be adopted for compressible fluids leading to developments

similar to the one that follows in this part for an elastic solid.

2.2.2 finite-element discretization of the elastodynamic wave equation for

a triangular mesh

Discretization of equation 2.7 is performed in three steps following the computa-
tion by Sword (1986):

First, the continuum domain of investigation € is discretized with triangular el-
ements w, as shown in figure 2.1). In this process, the number of degrees of free-
dom of the system is decreased to a finite number n4,; depending on the number
of nodes n,.q4., the space dimensionality n,,, and the displacements boundary condi-

tions on I' locking ny,.; degrees of freedom. Thus for an elastic medium, for example,

N - B
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Tindof = TMnode * Msp — Nnlock- Lhere is not, in general, a simple relationship between
the degree of freedom index and the node index, except for some extremely simple

geometries. This is why we write

dy = U; with k = fina(7,7) (2.9)

where dy is the displacement component for the k** degree of freedom corresponding
to the j** component of the displacement field at the i** node.

Second, equation 2.7 is integrated over (2, yielding the following equation:

4 o] - s e

where d, is the displacement component corresponding to the k*h degree of freedom
of our grid.

Finally, the previous integral equation is computed numerically. For that pur-
pose, we need to interpolate the nodal values of the displacement field within the
element, in an element-independent manner. Mapping triangular elements to a sin-
gle element, as shown in figure 2.2, allows such an interpolation using the following

relation (Zienkiewicz 1971):

z(¢,n) = Pi(¢ 7’ (2.11)
where the physical coordinates z((,7) are a function of the nodal coordinates 27, and
the transformed coordinates {,7. For a triangular element (or any other isoparametric
element, as described in the next section), the same interpolation functions can be
used for all nodal variables, and in particular for the displacement variables and elastic

moduli. For example:

wi((,n) = F;(¢,n) x - (2.12)
where the polynomials P; are defined in the following manner for an isoparametric

triangular element:
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P(Cn) =1~ (=n,Pa(¢n) =n,Ps((,m) =¢ (2.13)

Reducing the integration domain of equation 2.10 to one element, both sides of 2.10
can be computed very easily yielding the following equations for one of the element

shown in figure 2.1:

d 0

_ A .0 1 2 .
P [/%KE] _p12(2u,- +u; +uf) for 1=1,2 (2.14)

The previous equation assumes that the mass of the element is evenly distributed
over its surface. Similarly, for the right side of equation 2.10, the following equation

can be written:

0 de
6_11,? |:'/w'5 PE] = QLe Cklmng";%emn (215)

where ey can be written as follows after discretization and integration:

(ain(=uf +ud) + ajp(—ud + ul) + @il (~uf + ) + al(~u] + ) (2.16)

BN

€ij =

In the last equation, a;; is an element of the Jacobian matrix for the transform from
the real world coordinate system to the elemental coordinate system. (figure 2.2).
The numerical integration is performed in the elemental coordinate system and can
be carried out explicitly in the case of three-noded elements, thereby speeding up the
computation. After integration, equation 2.10 can be written as follows, for a single

element shown in figure 2.1:

mf X d; = kf x d; + f; (2.17)
with d defined by the equation:

d; = u? 1= 1,n4im ‘ (2.18)

Sl e, L L e L T N e e e Rt { e IR bt
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An equation similar to equation 2.17 can be written for each degree of freedom of
the system, yielding a linear differential system of equations that must be integrated.

The system of equations has the followirig form:

A m®d = An,,,...kd+ f (2.19)

Telement

where A is the assembly operator that groups the various elemental mass matrices
(impedance matrices) into a single mass matrix M (impedance matrix K). The
solution of equation 2.19 implies that M needs to be inverted in order to perform
the time integration. It can be easily demonstrated (Zienkiewicz, 1971) that M is a

positive definite matrix, and K = A k¢ is a negative definite matrix. Following

Telement
the definition of M in equations 2.14 to 2.18, we see that M is sparse, since it
only has three elements per row. But as shown in figure 2.1, it cannot be a band
diagonal matrix. To be band diagonal, nodes belonging to the same element must
have contiguous indeces. This can only be achieved with extremely simple grids. The
bandwidth of the matrix is therefore determined by the maximum distance separating
the indeces of two nodes in a same element i.e. by the way the grid is indexed. To
minimize the bandwidth of M, the node indices must be arranged in such a way
that they minimize the indices differences for each element in the grid. This is easily
achieved in the case of elongated grids, but grids that have an equal number of
elements on each side tend to maximize the distance between node indices of a single
element.

The distribution or weight of each element within the mass matrix however is not
conditioned by the grid indexing but instead by the elements geometry and the way

equation 2.14 is obtained. Two assumptions remain arbitrary in regard to the way

both K and M were computed:

o The integration domain is the element itself.

e The mass distribution over the element is uniform.
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Both assumptions strongly condition M and K, and therefore the way by which the
finite-element problem is solved, since M will be inverted to solve equation 2.19.

For the first hypothesis, if we choose the cluster of elements that all contain node
0 as the domain of integration as shown in figure 2.1, and keep the mass distribution
over the element uniform, the contribution of the cluster to equation 2.10 can be
written as:

k*xd= p% (12&? +2 > uﬁf) (2.20)

k=1,6

thus dramatically increasing the weight of the diagonal terms. Another, yet more
algebraic, interpretation is available to understand the last equation. As M is assem-
bled, all the equations where u) appears are summed to yield one unique equation,
where the mass coefficient of this displacement component is dominant. Since the
same operation can be performed for all the other degrees of freedom, it does not
reduce the number of equations, but just rearranges the coefficients, and significantly
increases the bandwidth of M. Both interpretations are related to the linearity of the
integration operator where the integral over the cluster is the sum of the integrals

over the elements belonging to the cluster.

Another way of modifying the mass operator is by choosing again the element as
the integration domain, and co-locating the mass of the element at its nodes. This

way the mass matrix can be made diagonal, yielding the following equation: .

ke xd= p-g- (a9) (2.21)

this time, the mass matrix is lumped to its diagonal terms, yielding a diagonal mass
matrix after assembly.
In the case of triangular elements, most of the computations for the mass and

impedance matrices contributions can be made analytically. Analytical expressions
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Figure 2.1: A cluster of triangular elements and its relation to the finite-
element mesh. The cluster presented on the left is actually chosen as the
integration domain for the finite element formulation of the wave prop-
agation problem. On the right the neighbors of a point lie at a given

element distance. The first row of neighboring points belong to the same
elements as the center point.

(x2,y2)

(x0,y0)

Figure 2.2: Coordinate transformation between the real world coordinate.
system, and the elemental coordinate system in which all the differenti-
ation and integration required to obtain equation 2.16 are performed.
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are not in general available for higher order elements, and the integration in equation
2.14 is performed numerically by Gaussian or Labatto quadrature (Hughes 1984).
The choice of the weights for the quadrature depends on the function basis for which
the quadrature is exact. The choice of the basis functions provides yet one more
opportunity to redefine m®, and provides further means to justify the lumping of the
mass terms to a diagonal term.

Since both M and K can be arbitrarily modified, the choice for the definition
of these operators resides in the optimization of the solution process. Two elements
have to be taken into account: the speed at which the actual problem is solved, and
the accuracy obtained for a given algorithm.

2.2.3 Numerical integration of the discretized finite-element equations.

Using a second-order central difference algorithm for time integration yields the

following time stepping solution for equation 2.19 (after Sword 1986):

d(t + At) = ABM ™ [Kd + f] + 2u(t) — u(t — At) (2.22)

Since M needs to be inverted, many solutions are available, as seen in the preceding
section. We can design M to be diagonal, therefore eliminating the inversion step.
This option yields a simple explicit algorithm, but as section 2.2.2 shows a fairly poor
numerical dispersion. But first, an approximate inversion algorithm is described in
this section that provides new insights into the behavior of finite-element opefators.

In equation 2.20, the diagonal terms of m® are six times bigger than the off diagonal
terms, which justifies the use of an approximate inversion of M based on a Taylor
expansion of the inverse matrix. First, decomposing M in a diagonal term M; and

an off-diagonal term M, as proposed by Sword (1986), we get

M= = [1- M.« M7 M7 (2.23)

e BRI o T il B D e i o e SR B e
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where I is the identity operator. Since the off-diagonal terms of M are smaller than
the diagonal one, the terms of M, * M;' are smaller than one, and therefore, the

inverse can be computed with a truncated Taylor expansion as follows.

M= = [T Mox M7 + (Mo M7 — ] M (2.24)

The inversion of M now only requires the inversion of My, and the multiplication of d
with M., which only contains six terms per row. The inversion of M by this process
is reduced to nN operations with n << N instead of log(N)N? operations for an
optimum complete inversion of M, with N being the length of d. This inversion can be
interpreted in terms of the spreading of the differential operators away from the center
node of the elemental cluster, as shown in figure 2.1. For a zero order inversion, M~! =
M, further multiplyed by K, we see that u?(t 4+ At) is a linear combination of the
displacements component sampled within the cluster immediately surrounding node
0. For a first order inversion, the previous argument can be recursively implemented,
showing that this time u?(¢ + At) is a now linear combination of the components
sampled within ring II, shown in figure 2.1, and so on. The order of the inversion of
M therefore controls the spreading of the numerical differential operators, and further
controls the accuracy of our quadrature algorithm. Finally, the inversion algorithm
presented here for M does not depend on the fopological distribution of the nodes
indices. Since M can be very large (10000 x 10000) only the non-zero terms are
stored as well as the transfer function f;,4 that relates node and component indices
to degree of freedom indices. These being provided, the inversion proposed here does
not depend on the distance between degrees of freedom indices of two nodes belonging
to the same element.

2.2.4 Numerical dispersion and anisotropy

Since the finite-element formulation of our problems allows for multiple implemen-
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tations, a mean by which the efficiency of these various algorithms can be evaluated
needs to be devised. Two criteria are retained for this evaluation: numerical disper-
sion, and numerical anisotropy

Both can quantities can be computed by using the Fourier transform of equation

2.14 and 2.15. From equation 2.14, we can write

7 [(d(t + At) — 2d(t) + d(t — At))] _ 2FT(d(t))

T = —x7 e x (cos(wAt) —1)  (2.25)

for the time stepping algorithm. Equation 2.15 then transforms as follows:

FT(U(I)) _ b11 b12 FT(U?)
Where A is defined by the following relationship:
A= —1—(cos(wAt) -6+ > elika(e' =) tiky (v ~4°) (2.27)

At?

i=1,6

A can thus be rewritten to emphasize the origin of the previous terms, depending on

whether they come from the diagonal or off diagonal terms of M:

1
A= -ﬁ(cos(wAt) —1)(Aa + Ac(k)) (2.28)

The matrix [b;;] is computed numerically from equation 2.15, and is a Hermitian
matrix whose eigenvalues are real and positive. A is split after Fourier transform into
A4, which is not a function of the wave number and corresponds to the diagonal part
of m¢, and A.(k), which is a function of the sampled wavenumber and corresponds
to the off-diagonal terms of m®. From the previous equation, we see that A must be

an eigenvalue of [b;;] which yields the following equation:

(Ag + Ac(k)) * (cos(wAt) — 1) = Ai(k) (2.29)
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where A; is one of the two eigenvalues of [b;;]. Equation 2.27 shows that the Fourier
transform corresponding to both the mass and impedance matrices are a function of
k. The computation of the numerical phia,se velocity vy = £ can only be carried out
explicitly for a regular hexagonal cluster of elements in an isotropic acoustic material
(Sword 1986). For any other geometry, the solution to equation 2.29 is numerical.

Using a similar method, we can compute the group velocity using v, = 2. Equa-
tion 2.27 can then be reparametrized as a function of 7, the number of wavelength
per elements which is a direct measure of the efficiency of our algorithm: in figure
2.3, the numerical dispersion indicates that 7, = 0.1 to 0.15 yields 98 % accurate
velocities. The effect of numerical anisotropy is not yet felt in that region. However
this first estimation of 7 has to be revised in view of figure 2.4. The dispersions in
figure 2.3 assume that the inversion of M is complete: that is, equation 2.27 can be
solved as:

___ K@)
 (Agt Ac(k))

which is not relevant in the case studied since the mass matrix is only inverted with

cos(wAt) — 1) (2.30)

the Taylor expansion of its inverse, therefore solving the equation:

cos(wAt) — 1 = K(k) * A7? [1 — A (k) * A;l....] (2.31)

Since the convergence of the previous expansion is slow as figure 2.4 indicates, we see
that the n,; region of investigation provided by this algorithm is extremely restricted
if we want to keep a small number of iterations for the matrix inversion. For that
reason, this algorithm is not suitable for our purpose. The implications of this last
observation are broad. Zienkiewicz (1971), and later Hughes (1984) noticed that
partial matrix inversions yield fairly poor results using the finite-element method. The
main consequence of partial inversion is that low wavenumbers are poorly accounted

for, leaving so called low frequency ’standing modes’ trailing behind the wave fronts
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and therefore including a fair amount of numerical dispersion. The method we are

now going to investigate is based on the full inversion of the finite-element operators.

2.3 The implicit-explicit finite-element algorithm

2.3.1 Description of the implicit-explicit finite-element algorithm

2.3.1.1 Optimization the dispersion relation

As seen in the previous section, the computation of the mass matrix is arbitrary,
and an optimum needs to be found that minimizes the dispersion and maximizes
the numerical efficiency. No general theory has been found to perform a systematic
optimization of this process. Sword (1986) suggests that optimization can be achieved
by incorporating a new factor in equation 2.20. In the case of Sword’s modeling, this
coefficient is related to the thickness of the plate where the propagation takes place.

Hughes (1984) introduces a similar parameter, r which is admittedly arbitrary.

He provides two tentative justifications for such a manipulation:

¢ the mass distribution over the element is not uniform, and r is introduced so that
the mass of the element remains constant independent of the mass distribution

over the element.

e the weights used for numerical integration can be modified to be consistent with

different families of element interpolators.
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Numerical Dispersion and anisotro
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Figure 2.3: Numerical dispersion and numerical anisotropy for a cluster
of triangular elements. Each of the curves plotted here is for a different
propagation angle, showing the anisotropy increasing with higher num-
ber of wavelengths per elements.



Chapter 2 — FEM applied to borehole seismology . 22

Effect of the Partial Inversion
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Figure 2.4: Effects of the partial inversion of the mass operator. Following
the arrow, the expansion order from equation 2.28 increases from 1 to
40. Notice that low wave numbers either do not propagate or propagate
at very low velocity, yielding a DC displacement level over the grid.
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Neither justification however clearly establishes a link between the way the mass
matrix is built and the performance of the overall solution algorithm. With this new

parameter, equation 2.20 can be easily rewritten as:

méxd= p% ((% — )i +2%r Y uf‘) (2.32)

k=1,6
Figure 2.5 shows the various dispersion curves as r varies from 0 (the diagonal or
lumped mass matrix) to 3 which is the case we have in section 2.1 (Consistent mass
matrix) to s> which is the optimum case (the higher order mass). Varying r actually
allows the user to implement fairly controlled dispersion, or attenuation. However,
when dispersion is unwanted, which is the case here, we want the dispersion curve
to be as flat as possible. This is achieved with r = % for a non diagonal matrix, or

r = 0 if a diagonal mass matrix is desirable.

2.3.1.2 Matrix structure and inversion technique

The typical structure of M* is presented in figure 2.7. As we anticipated, the
large matrix bandwidth corresponds to the part of the grid where maximum accuracy
is demanded, that is the borehole region. This region typically contains 20 x 200
elements, therefore presenting a very high contrast between the horizontal and vertical
number of samples. This, we know (2.1.2) limits the bandwidth of M*. For the major
part of the grid (away from the borehole region) an explicit algorithm is used which
yields the diagonal part of M*. |

The structure of M* will be properly exploited by an inversion that neither op-
erates nor stores the null elements of this matrix, which is extremely sparse. This is
achieved by the partial inversion scheme presented in equation 2.22, which has the
further advantage that it does not depend on the bandwidth of the matrix. However,
the convergence of this algorithm is slow for small wave numbers which makes it

unsuitable for our study.
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Numerical Dispersion and anisotropy
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Figure 2.5: Dispersion relations for various types of mass matrices. The
three curves are plotted for 1) r = 1,2)r =0,3) r = 3.
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The Crout elimination, which is a variation of the Gauss pivoting technique

(Hughes 1984) provides a suitable inversion algorithm for the following reasons:

e it profits by the fact that M* is diagonal in the explicit part of the computation.

e it only needs to use or store elements that are above the skyline of the matrix

(figure 2.6).
e this algorithm can be completely vectorized.

However this algorithm is non-optimum since the number of operations required
by the inversion depends on how close the skyline of M* is from the diagonal, that is
on how far apart are the degrees of freedom indexes within one element.(The skyline
a matrix M is defined by Hughes 1984 as the difference between the diagonal index of
the matrix, and the index of the last non null element away from the diagonal. This
notation can only be used for diagonal matrices, which is the case here).

Nevertheless, I used the Crout algorithm for this integration, and its efficiency was
found to be comparable to that of the limited inversion algorithm for very elongated
grids where the bandwidth of M* remains fairly small.

2.3.2 Boundary conditions

Besides its capability of managing geometrically complex systems, the finite-
element method is also attractive because it allows the explicit' handling of boundary
conditions which are treated implicitly by other methods such as finite-difference.
This is especially important for this study where multiple types of boundary con-
ditions are met. The following types of boundary conditions are described in this

section:
e the source boundary conditions

e the fluid-solid boundary conditions
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e the solid-solid boundary conditions
e the absorbing boundary conditions

2.3.2.1 Source boundary conditions

As previously stated, this study is limited to the mechanical effects of down-
hole source design on their radiation patterns. However, most downhole sources are
complex, coupled, electro-mechanical or hydraulic systems. This is especially true
for piezoelectric fluid-coupled sources. Since such a problem is beyond the scope of
this study, the source mechanical effects are modeled by equivalent sets of stress-
displacement boundary conditions applied on the outer surface of the source itself.
These conditions fall under two categories : the fluid-solid boundaries, and the solid-

solid boundaries.

2.3.2.2 Fluid-Solid boundary conditions

As shown in figure 2.7, the boundary conditions at the fluid-solid contact can be

summarized as follows:

T2z = Pﬂuid (233)

UzRock = Uzg1uia (2'34)

the first condition insures the continuity of the normal stresses across the boundary,
and the second stipulates that there cannot be any cavitation effect at the fluid-solid
boundary, in other words that the fluid and the solid always remain in contact.
From the finite-element point of view, the fluid and the solid are perceived as
different but coupled systems. Since pressures only are computed in the fluid, 7.,
is computed in the solid as a linear combination of the nodal displacements, and

applied to the fluid as a nodal variable at the boundary node . Conversely, the normal
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displacements in the fluid can be computed as a linear combination of the pressures
at the nodes surrounding the boundary nodes, and are directly applied as a nodal
variable to the solid. Applying the previous equalities allows complete enforcement
of the fluid solid boundary conditions.

Finally and probably most importantly, the set of boundary conditions described
in equations 2.42 and 2.43 allows the fluid to slide parallel to the boundary between
fluid and solid as shown in figure 2.7 finite-difference types of algorithms in general do
not allow us to implement such boundary conditions, since finite-difference algorithms
cannot support coupled systems.

2.3.2.3 Solid-solid boundary conditions

The grids used to model both solids are two separate coupled grids, similar to
those described for fluid-solid boundary conditions. The displacements on one grid
boundary are given the very same values as on the other grid boundary, since the real
point that lies at the boundary has only two degrees of freedom and not four. In this
case it can easily be shown that the equality of the boundary displacements on both
sides also enforces the continuity of traction along the boundary (Zienkiewicz 1971).

It can be noted that node duplication along the boundary is not efficient, unless
slip occurs at the boundary which is not our case. In terms of computer efficiency,
duplication of nodes is not significant, since the size of the operators M and K are
given by the number of degrees of freedom of the grid, which is unchanged whether or
not the nodes are duplicated. The node duplication scheme was adopted because it
provides a unified approach to the implementation of boundary condition algorithms,

whether they are fluid-solid boundaries or solid-solid boundaries.
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Figure 2.8 : The principle of the implicit-explicit finite-element algorithm.
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Figure 2.7 : Description of the fluid-solid boundary conditions.
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2.3.2.4 Absorbing boundary conditions

Multiple methods can be used to implement absorbing boundary conditions to
eliminate unwanted reflections from the edge of our model. The simplest implemen-

tation is to apply a dumping factor ,ps0r5 Of the following form to each node in the

grid (Kosloff 1982):

Yabsorb = 1. for dedge > dmin (235)
a2
Yabsorb = e—-—:f— for dedge =< d'”‘"”‘ (236)

Typically, dnin is equal to the average wavelength propagated, and é is computed in
such a manner that ~sps0rs is never smaller than 0.98. The algorithm for absorbing
boundary conditions was found to be extremely efficient for all modes incident on the
outside boundary of our system, independent of the incidence angle.

The following algorithms to model absorbing boundary condition exist, but they
are not in general numerically efficient, and do not perform well for every mode

incident on the boundary:

e The use of the paraxial wave equation at the edge of our system could be
implemented. This method, however, does not perform well for grazing angle

incidence on the boundary, or for guided modes incident on the boundary.

e In a manner similar to that proposed in section 2.4, a hybrid finite-element
boundary-element method could be implemented. Such a method would, how-
ever, require that the time integration be performed in the frequency domain as
with the pseudo-spectral methods proposed in chapter 4. Another drawback of
this method the need to have only homogeneous layers at the boundary between
the finite-element, and the boundary-element mesh in ordef to be able to devise

analytical solutions for the far field wave propagation.
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Because of their limitations, I did not implement these two methods, preferring
the absorbing buffer condition, which ensures that at least 98% of all energy incident
on the outer boundaries of our system will be absorbed no matter what mode is

incident.
2.3.3 Benchmark: The Heelan solution

Our implicit-explicit finite-element algorithm is benchmarked to test the algo-
rithms that have been implemented. One case of modeling is of particular interest to
us: the Heelan solution. This analytical solution for the elastodynamic wave equation
solves for the far field radiated by a finite length cylindrical source in a homogeneous
elastic medium. This solution is of special interest for our problem since it is often
referenced for downhole source radiation patterns, despite the fact that it does not
include borehole effects.

The far-field radiation of a finite-length cylinder in a homogeneous medium can

be written as follows (Heelan, 1963 and White, 1973):

ma’dP, B2 ., . T
U, = rr—— 1- 25[3 sin® ¢]g(t — -a) (2.37)
ma’dPysin ¢ cos ¢ . r
_ _r 2.

where a is the radius of the source, d its length, P, the pressure increment of the
source, a the P wave velocity, 3 the S wave velocity, p the shear modulus of thé rock,
r the distance from the source , ¢ the angle from the horizontal, ¢ the time, and ¢
the first time derivative of the source time history.

The parameters selected for all the modeling cases are the following: a = 5091m/s,
B = 3042m/s d = 16m, a = 0.06m, the density of the rock p = 2700K g/m> and
P, = 1000Pa. The source time history is a Ricker function with a 35Hz central

frequency, and its spectrum spans from 10 to 70Hz. Finally, the time sampling
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Figure 2.8: Radial and tangential components of the field radiated by a
finite-length cylindrical source in a homogeneous medium. The receivers
are placed around the source at 580m distance. Each trace is recorded

for an angle 8 varying from 0 along the horizontal to 90° along the ver-
tical.
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At = 0.0004s, and the spatial sampling dz = 8m. The computation was made
using the implicit-explicit algorithm. The implicit region is located in the source

neighborhood, and the rest of the grid is modeled using an explicit algorithm.

Results in figure 2.9 display the radiated field recorded on receivers placed around
the source. For this acquisition geometry, and since the modeling is performed in
a homogeneous isotropic solid, the compressional waves are sampled on the radial
component of the field, and the shear waves on the tangential component as shown in
equation 2.47 and 2.48. The compressional waves have maximum amplitude along the
horizontal and decay away from the horizontal to reach a minimum at the vertical.
The decay rate is directly a function of Poisson’s ratio, as is the amplitude of the
compressional waves along the vertical. The shear waves, on the other hand, are null
along the horizontal and vertical directions, and reach their maximum at 45° from
the horizontal. figure 2.10 compares numerical and analytical radiation patterns for
both compressional and shear waves. There is a very good agreement between the
two fesults, confirmed by the match of the detailed waveforms displayed in figure
2.11.

The only major discrepancy between numerical and theoretical results arises from
the shear waves’ radiation pattern. This discrepancy is not caused by numerical dis-
persion or anisotropy since our modeling is performed for space and time samples well
below the limit where these artifacts become significant. More likely, this discrepancy
is a result of the violation of one of the major assumptions that leads to the Heelan
solution, that the source length must be small compared to the radiated wavelength.
In our modeling case, the source length is 16m for an average wavelength of 86m,
and a minimum wavelength of 43m. As shown in figure 2.12, the discrepancy for
the radiation pattern of shear wé,ves is dramatically reduced if the source length is

reduced by a factor of 2. This effect can be intuitively understood as a source focusing
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Figure 2.9: A comparison between numerical (solid line) and analytical (x
line) radiation patterns: for compressional (P) waves (top) and shear (S)
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effect. The longer the source compared to the wavelength, the greater the departure
from the Heelan solution, since the source then tends to focus its energy along the

direction orthogonal to the source axis.

The implicit-explicit finite-element algorithm performed well and efficiently in the
simple case of a finite length source in a homogeneous medium. These results also
indicate that the implicit explicit finite-element algorithm is adequate for studying
the effects of source geometry on radiation pattern of downhole sources. However,
the question remains whether this algorithm is optimum, and the answer is no. The
comparison between the dispersion relations of the explicit finite-element algorithm
and finite-difference algorithm clearly indicates that the explicit algorithm is not an
optimum local differentiation operator. Since for a typical cross-well geometry the
interwell regions can be modeled on a regular mesh, the question rises of how we can
profit from the efficiency of finite-difference in the cross-well region, and adequately
model the downhole-source borehole system ?

2.4 Hybrid finite-element finite-difference algorithm

To really profit by the efficiency of the finite-difference method, we need to imple-
ment long spatial operators (Dablain 1986) explicitly. This implementation is incom-
patible with the basic assumption of finite-element theory that long spatial operators
can only be implemented implicitly through the inversion of a linear combination
of the mass and impedance tensors. Furthermore, in general, finite-element compu-
tations are co-located at the nodes of the mesh. Finite-difference computations, in
contrast, are staggered. To better understand what the requirements are to perform
a hybrid computation let us first focus on the implementation of the finite-difference

method.
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2.4.1 A short glimpse at finite-difference theory

Solving the elastodynamic wave equation (equation 2.2 to 2.6) by finite-difference,
is performed by approximating the spatial operators by linear convolution operators
of finite length. Since finite-difference is usually performed on regular grids, once we
find the convolution operator, we can apply it to any part of the grid. The solution
of equation 2.2 is therefore obtained by substituting the partial differential operators
as follows:

dv _ k k
(ami)z,:x B kz “v (2:39)

=1,n;

where n; is the length of the convolution operator. Muir and Dellinger (1987) pro-
posed a way of building finite length convolution operators for filtering purposes.
These operators have been selected not only because they can be used as differen-
tial operators, but also because they can be used as interpolators. Operators of half
length four were selected for the rest of this part.

The central difference algorithm is preferred for time integration, despite the fact
that better time integration algorithms could be used, because of the simplicity of
its implementation and because it is an explicit operator. This scheme was already
presented in this chapter in section 2.2 as a special case of the Newmark family of al-
gorithms, and can be implemented easily with more sophisticated implicit algorithms
as previously seen.

2.4.1.1 finite-difference implementation

Since the differential operators that we use are symmetric, the derivatives are
computed between two sample points. To overcome this problem, staggered operators
are generally used as shown in figure 2.13. First, €., €,,, and e, need to be computed.
To assure that all the quantities in equation 2.2 are evaluated at the same location,

u, 1s evaluated at r — -;-A:c,z, and u, is evaluated at z,z — %Az. Then, using the
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shifting property of the differential operator, o,, and o,, are evaluated at z,z, and
02, is evaluated at = — Az, 2 — 3Az. Thus evaluating the divergence of the stress

field, we have:

00 ¢ 1 00, 1

—"9—2—(33 —5,2),W($—-2—,2) (240)
aazz 1 60':,;2 1
. (z,2 — -2-Az), 52 (z,z — EAz) (2.41)

which ensures that the time derivatives of the displacements are updated at the
same location as the displacements themselves. This algorithm, however, differs very
strongly from the finite-element algorithm in that both components of the displace-

ments in the two dimensional case are not sampled at the same location.

2.4.1.2 Numerical dispersion: comparison with finite-element

Using a scheme similar to the one used in the first part, the numerical disper-
sion and anisotropy introduced by the finite-difference algorithm can be easily com-
puted (Etgen 1988). The results for the Implicit finite-element algorithm, and the
finite-difference algorithm are fairly comparable proving the superiority of the finite-
difference algorithms with long spatial operators over the explicit finite-element algo-
rithm which is equivalent to finite-difference using a central difference algorithm for

spatial differentiation.
2.4.2 The hybrid principle

The principle of the hybrid finite-element finite-difference algorithm is sketched in
figure 2.13. In one dimensional space first (figure 2.13), the finite-element grid pro-
vides the displacement boundary conditions on the outer edge of the finite-difference

grid. These displacement values are obtained independently from the location of the
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finite-difference point provided that the element location of the point is known: the
finite-difference grid’s displacements are then computed by interpolation within the
element and ued directly, (but not opefated upon) in the finite-difference part of
the computation. The region of interchange between the finite-element grid to the
finite-difference grid spans the first four rows of the finite-difference grid, because the
spatial operator we are using has a half length of four. Away from the displacement
boundary condition zone, the finite-difference algorithm begins to compute the values -
of the propagated field. These values are in turn used to compute the displacement
field at the nodes of the finite-element mesh. Since the nodes of the finite-element
grid can be located anywhere in the finite-difference grid and the finite-difference
computations are staggered, the displacements field values computed using the finite-
difference method must be interpolated at the finite-element node location.

The interpolator is derived from the discrete differential operator already used.
The order of the interpolator must be the same as the one of the differential operator.
Not meeting the last requirement results in the instability of the numerical algorithm.

Two remarks can be made at this point about the hybrid algorithm:

o 1) The finite-difference computations are used as an ’infinite’ boundary condi-
tion for the finite-element grid and vice versa. As shown in the next examples,
the energy reflected both at the edge of the finite-element grid and the finite-

1

difference grid is small. It is measured to be less than ;55 of the incident energy

on the boundary independent of the incidence angle.

¢ 2) The finite-element finite-difference grid boundary is transparent both ways.
That is, the transmission mechanism from the finite-element grid to the finite-
difference grid is the same as the reverse mechanism which ensures that this

boundary is transparent independent of the incident wave.

The time integration algorithm used for the hybrid algorithm is exactly the same
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as the algorithm for the implicit-explicit finite-element method. They both use an im-
plicit Newmark algorithm for the finite-element side, and an explicit central difference

algorithm on the finite-difference (explicit finite-element) side.

2.4.3 Benchmark of the hybrid solutions

The hybrid algorithm was benchmarked for the case of a horizontal point source
in an isotropic homogeneous medium. As illustrated in figure 2.14, The source is
placed on the finite-element part of the grid, and the radiated field propagates on
from the finite-element grid to the finite-difference grid. Merging the two grids and
interpolating the displacements on the finite-difference grid to match the new pixel
location, provides the total field snapshots provided in figure 2.15 in which the merging
limit is also outlined. No contrast at the boundary between the two grids can be
detected visually. A more detailed study of the displacements amplitude along this
interface showed that less than TchoTo of the energy incident on that boundary is actually

diffracted. This result is confirmed by the trace by trace comparisons provided in Fig

2.16 between the hybrid modeling and a straight implicit finite-element modeling.

The advantages of the hybrid method presented here are twofold:

e First, it is faster than the implicit-explicit finite-element implementation be-
cause it takes advantage of the numerical efficiency of finite-difference over ex-
plicit finite-element, and because the computer implementation of that type of
algorithm optimizes the use of vector/parallel central processor unit capabilities.
In the case of the example previously shown, the speed gain is approximately a

factor of ten.

e Second, it is ideally suited for the study of cross-well wave propa.gatioﬁ. The

borehole region for this kind of acquisition is in general well recognized, and has
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been the object of intense investigation through the use of well logs. The cross-
well region, on the other hand, is in general poorly constrained since it is the
object of the cross-well investiga.tidn. For that matter, the borehole response
can be computed for a given source location independently of the velocity in
the cross-well region by using the implicit finite-element or the hybrid method.
The borehole response sa.mpled in the interlacing region between the two grids
can then be re-used for fast finite-difference modeling only thereby increasing

the efficiency of the overall scheme.

2.5 Conclusions

Three algorithms were presented to provide a numerical method capable of mod-
eling the effect of the borehole on the radiation pattern of downhole sources.

The first algorithm, based on an approximation of the inverse mass matrix, is not
adequate for our purpose, since it does not accurately model low wavenumbers, and
introduces unwanted numerical dispersion.

The second family of algorithms investigated is based on the implicit-explicit finite-
element algorithm. As shown in the case of the radiation by a cylindrical source in
a homogeneous medium, this algorithm is very well suited for a careful investigation
of the effects of both the borehole and the source design on the source radiation
pattern because it provides a very controlled modeling environment in terms of both
numerical dispersion and numerical anisotropy.

Finally, on the basis of results obtained with the two previous numerical exper-
iments, a hybrid finite-element finite-difference algorithm was devised that signifi-
cantly improves the computer efficiency of the implicit-explicit method. The hybrid
method further provides the advantage of being able to use a single computation of
the borehole field for multiple modeling of the interwell region.

The results obtained by using both the implicit-explicit finite-element algorithm
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and the hybrid algorithm are shown in Chapter 3. This next chapter shows the
versatility of these two methods as they are used to model three different types of
downhoole sources: the resonant cavity. source, the fluid-coupled source, and the

drill-bit used as a downhole source.
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Chapter 3

Study of the behavior of downhole
sources using the Finite-Element
method

Abstract

Knowledge of the field radiated by a downhole seismic source is requisite for nu-
merous seismic processing procedures, as well as for data interpretation. In the case
of downhole sources, the source geometry as well as a good description of the borehole
are key factors for a satisfactory modeling. This is especially true for sources whose
length is comparable to the seismic wavelength emitted, and which cannot be consid-
ered as point sources. The flexibility of finite-element modeling makes it possible to
incorporate the most important features of various source types as well as a proper
description of the borehole. Such a level of detail in the source description makes
analytical or semi-analytical solutions untractable.

In a homogeneous medium, the source-borehole assembly radiation pattern may
depart significantly from the radiation pattern of a cylindrical source within the for-
mation. (see for example Heelan 1963), depending on the source design. In general,
downhole source radiation patterns cannot be adequately modeled by this analytical

approximation for the following reasons :

e The source length is not small compared to the radiated wavefield.

50
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e The source is not properly isolated from the borehole fluid.

e The source is not mechanically coupled to the rock formation, or is weakly

coupled through a fluid layer.

The consequences of each of these violations of the Heelan hypotheses can be listed

as follows :

o Long sources create signal filtering and may also deliver frequency-dependent

radiation patterns.

o A strong coupling between the downhole source and the borehole fluid results in
very energetic borehole-guided waves that, in turn, can convert into body waves
at borehole heterogeneities. The energy associated with these conversions is of

the same order as the source’s initial radiated field.

e Finally a poor source-formation coupling results in a dramatic source per-
formance degradation, because the energy provided by the source is actually

'stolen’ by the borehole fluid if the source is not decoupled.

These observations can be directly applied to the study of the drill-bit used as
a downhole seismic source. In this case, the borehole wave propagation problem is
further complicated by the presence of the drill-string and casing. Modeling the be-
havior of the drill-bit as a seismic source allows us to isolate conical waves (equivalent
to refracted waves in two-dimensional space) generated by the drill-string, as well as
the associated drill-string guided waves.

In most cases, the borehole related effects cannot be neglected when downhole

sources are modeled, unless special care was initially given to a special design of the
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downhole source that inhibits the propagation of borehole guided modes.
3.1 Introduction

Unlike seismic sources used for surface seismic investigation, the development of
downhole seismic sources is still in its infancy (Harris 1987, Paulson 1987, Kennedy
1987), and their use remains experimental to date. The diversity of design and
implementation of downhole sources probably stems from their recent development,
and renders both the processing and interpretation of the data acquired with these
sources fairly difficult.

My purpose in this chapter is to use the numerical methods developed in Chapter
II to investigate the impact of the source design and implementation on the under-
standing and interpretation of cross-well seismic data. To that end I have chosen

three source types that illustrate most of the working principals of downhole sources:

e the resonant cavity source (Kennedy, 1988)
o the fluid-coupled source (Harris, 1988)

e the drill-bit used as a downhole seismic source (Rector ,1990)

Other types of sources currently existing such as the weight drop source or the
downhole vibrator have not been modeled in this chapter because the results obtained
for the three sources listed are directly applicable to these source types. These results

focus on the following issues for the sources studied:

e coupling of the source with the borehole fluid and the rock formation.
e modes and mode conversions in a cross-well geometry.

e control over the seismic signal signature.
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3.2 Resonant cavity downhole sources
3.2.1 Principle of operation, and modeling setup

Resonant cavity sources were initially implemented to provide high levels of down-
hole seismic energy from a weak energy source, thereby allowing users to profit by
the resonance effect that builds up the cavity energy from weak exciters. To create
a cavity in the borehole, an entire section of the well is isolated from the rest of the
well by a very low impedance material (gas, for example). As illustrated in Fig. 3.1,
two gas bladders isolate the fluid filled cavity from the rest of the well. A mechanical
exciter provides the energy to the cavity, and drives the cavity to resonance. This me-
chanical implementation was used by Downhole Seismic Services for their downhole
source.

This source is modeled using the implicit-explicit finite-element scheme described
in Chapter 2. The source itself is modeled by isolating the source part of the borehole
fluid from the rest of the fluid, using a helium-filled bladder. The mechanical appara-
tus of the exciter as well as the source’ stem pipes are not taken into account, and the
source pressure distribution on the borehole wall is modeled by a cosine pressure dis-
tribution within the source cavity. Since the source is axisymmetric, and the median
axis of the source is also a plane of symmetry, only half the source is actually modeled
as figure 3.1 illustrates. The source time history remains the same throughoﬁt this
chapter and is a Ricker wavelet (see figure 3.2).

The borehole diameter for this modeling is 18cm, the source length is inferred
directly from the fluid velocity ( 1500m/s), and the signal central frequency ( 70H z),
so that the source length is exactly half the wavelength in the fluid. The length of the
helium bladders is 2.1m. The rock formation compressional wave velocity is 2600m/s,

the shear wave velocity 1700m/s, the rock density 2700K g/m?>, and the maximum
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pressure amplitude applied to the cavity is 1 K Pa. The time step chosen for modeling

is 0.0004s, and the average grid sampling away from the borehole region is 2.5m.
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Figure 3.1: Principle of operation of the resonant cavity downhole source
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3.2.2 Finite-element modeling in a homogeneous isotropic solid

The computed signal at the receivers is monochromatic, as can be seen in figure
3.3, and 3.8. The actual computation of the traces’ spectrum indicates that the signal
central frequency is exactly T0H z, which corresponds to the resonance frequency of
the source. Furthermore, more than 95 % of the wavelet energy is between 65 and
75Hz. Though this result may appear surprising considering the input time function
shown in figure 3.2, it only indicates that the finite-element computation acts as a
simple linear filter which is applied to the initial signal. Another more mechanical
interpretation is that the cavity tunes the input energy so that the output energy

corresponds exactly to the resonance energy.

Comparing the results obtained in Chapter 2 for the radiation of a cylindrical
source in a homogeneous medium, and the results obtained by modeling the resonant
cavity downhole source in the borehole provides the results displayed in figure 3.4
and 3.5. The energy output of the resonant cavity source placed in the borehole is
slightly smaller than the energy of the same source embedded in a homogeneous elas-
tic medium and once again, the radiation pattern computed with the finite-element
method very closely matches that predicted by Heelan, as shown in figure 3.4.

The energy drop between the radiation in a homogeneous background, and the
radiation computed when the source is placed in a borehole can be explained by the
existence of a weak borehole-guided mode. Evidence for the existence of this mode is
shown in figure 3.3 and 3.5. In figure 3.3, the trace at 90° from the source, thé trace
closest to the borehole displays an outburst of energy around 0.25s. Such an energy
also appears in figure 3.5, for a high emergence angle from the source. This energy
is associated with a borehole-guided mode traveling up the well at 1390m/s. This
mode is elliptically polarized, and its major axis is horizontal. The mode is similar in
all aspects to a Stoneley wave (Cheng 1981). It is generated at the source-borehole

fluid interface through the gas bladders. A simplistic one -dimensional transmission
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Figure 8.4: Measurement of the compressional waves amplitudes as a
function of the angle of emergence from the source. The following com-
putations are displayed: Analytical radiation pattern for the Heelan so-
lution (dashed lines). Numerical solution for the Heelan geometry (solid
line). Numerical solution for the resonant cavity source (x line).
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Figure 3.5: Measurement of the shear waves amplitudes as a function of
the angle of emergence from the source. The following computations are
displayed: The analytical radiation pattern for the Heelan solution (solid
line), the numerical solution for the Heelan geometry (dashed lines), and
the numerical solution for the resonant cavity source (dotted line).
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model indicates that 5% of the cavity’s energy leaks through the bladders; estimate 1s
very close to the amplitude drop observed in figures 3.4 and 3.5. Finally, the source
length (10.7m) is small compared to the wavelength of compressional waves in the
rock formation (38.5m), but closer to the wavelength of shear waves (24.3m). figure
3.5 shows that the shear wave radiation pattern is slightly offset from the predicted
radiation pattern. As shown in Chapter 2, this effects results from a preferential
source-focusing effect along the direction orthogonal to the source axis.

Overall, the behavior of the resonant cavity source is very close to that of a source
placed in a homogeneous medium. The source is mechanically isolated from the
borehole fluid, and fully coupled with the rock formation because the cavity fluid is
directly in contact with the borehole wall. However, since the source is not a point

source, significant wavelet filtering effects are introduced by the source which are not

predicted by Heelan (1953) or White (1983).
3.2.3 Frequency dependent radiation pattern

The resonant cavity source operates in such a way that the mechanical exciter
only delivers the frequency tuned to the source length. When the source is shortened,
the exciter’s frequency increases by a proportional amount. For other sources that
are not designed to be resonant cavity sources, the seismic energy source is placed
between two buffers for the sole purpose of decoupling the source from the borehole
fluid in order to eliminate borehole guided waves. In such a case, the mechanical
exciter’s frequency is not tuned to the source length for all possible frequencies. This
situation is modeled numerically by using the previous source setup but for a source
length double that of the one previously chosen. In this case, the source length is no

longer tuned to the exciter’s central frequency.

The results of this computation appear in figure 3.6 to 3.8. The traces recorded

at the receivers (figure 3.6) clearly display lower amplitude zones between 40° and
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Figure 3.7: The compressional wave radiation pattern. This radiation pat-

tern can be explained as a superimposition of two different radiation
patterns for two different source harmonic behavior shown in figure 3.8.
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60°. Over the complete record, the arrival structure does not display the typical
compressional and shear waves pattern observed in figure 3.3. The absence of clear
compressional and shear waves arrival structure in figure 3.6 is explained in figure
3.7 by the radiation pattern of the compressional waves. This radiation pattern,
measured from the maximum Fourier component of the signal, does not show the
decaying behavior shown in figure 3.4. The frequency spectrum for each trace in figure
3.8 explains the radical change of behavior of the source. Two lobes are apparent in
figure 3.8: The dominant mode at 70H z corresponds to the central frequency of the
input ricker wavelet. This frequency excites the second harmonic of the source and for
that frequency band, the source acts as a dipole. The second lobe, centered around
40H z corresponds to the source first harmonic. For this second frequency band, the
source acts as a monopole.

These results show that the signal displayed in figure 3.6 can be interpreted as a
superposition of two distinct radiation patterns for the source first harmonic, which
corresponds to the resonance mode, and the source second harmonic, where the source
actually acts as a dipole for the higher frequencies. Thus the waveform emitted by
downhole sources can significantly diverge from the waveform predicted by the Heelan
solution. The two main reasons for the departure of the received signal from the

analytical prediction from Heelan are:
e A tuning of the signal to the source structure

e A destruction of the radiation pattern due to the presence of the various source

harmonics.

3.2.4 Effect of the casing: The existence of conical waves

The field radiated by the resonant downhole source is computed when the source

is placed in a cased well. The general setup is illustrated in figure 3.9. The borehole



Chapter 83 — Radiation patterns of downhole sources. 62

casing is modeled by a steel pipe 4mm thick. The steel compressional wave velocity
is 5141m/s, the shear wave velocity is 3109m/s, and the steel density is 7860kg/m>.
Steel is modeled as an isotropic elastic solid. The cement bonding the casing to
the rock formation has the following properties: a compressional wave velocity of
1400m/s, a shear wave velocity of 900m/s, and a density of 1630kg/m?3. For the rock
formation, source geometry, and input signal, the parameters are the same as those
described in section 3.2.1.

The modeling results are displayed in figure 3.10. Once again, the received signal
is quasi-monochromatic, and the arrival of both the compressional (P) and shear
(S) waves is clearly visible. Two other modes, however, can be isolated. First a
mode oblique to all previous arrivals (H) then the Stoneley waves (St) with their late
arrival. A careful study of the first oblique arrival shows that it has a plane wave
move-out, and propagates at the compressional velocity in the rock formation. The
polarization of this mode also indicates that it is a compressional wave. This last
mode is interpreted as a conical wave (White, 1973). A conical wave is the three-
dimensional, axisymmetric space equivalent of a two dimensional space refracted wave
(also called a head-wave). This mode ensures the displacement continuity condition
at the casing-formation boundary, and matches the displacements of a compressional
wave propagating in the steel parallel to the borehole axis. This mode will be studied
in greater detail in the last part of this chapter which focuses on the study of the
drill-bit radiation pattern.

Figure 3.11 displays both the compressional and the shear wave radiation pat-
tern. The compressional waves are not obtained this time by simply separating the
radial and tangential components of the displacements because the conical waves
are interfering strongly with the rest of the signal. Instead the components of the

compressional waves Ap and shear waves Ag are obtained as follows (Etgen, 1988):
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63



Chapter 8 — Radiation patterns of downhole sources. 64

_ Ous | Ouy

AP =3z + By (3.1)
Ou, Ou,
A= G- (3.2)

where u, and u, are the horizontal and vertical components of the wave field. The
compressional and shear waves’ amplitudes are lower than those obtained for the
source radiation both in a homogeneous medium, and in the borehole. (figures 3.11
and 3.12). These lower amplitudes are caused by the presence of the steel casing and
cementing that attenuates the radiated field because of the higher apparent impedance
of the borehole surface. Consequently, the energy difference is essentially converted
into steel-casing-guided-waves propagating at approximately 5090m/s, and this en-
ergy is responsible for the conical waves. The angle between the conical waves and
the borehole axis 6 is determined by the ratio between the apparent velocity in the
casing Viusin, and the compressional velocity in the rock formation V. using the
following relationship:

‘/rock

casing

sin(8) = (3.3)

The rapid oscillations of the compressional wave radiation pattern shown in figure 3.11
from 70° to 90° is generated by the interference between true compressional waves
generated by the source and conical waves also generated by the source but first
traveling along the borehole casing. This interference pattern is therefore strongly
frequency dependent, and serves as an illustration of the difficulties encountered when
downhole sources are used in a transposed VSP configuration.

Finally, figure 3.11 displays a comparison between the radiation pattern computed
for the resonant cavity source in a cased well and the theoretical radiation pattern
computed by Heelan (1953) after scaling. The discrepancy, in this case, is not related
to a shift between source harmonics, but instead to the partition of the pressure

wave emitted by the source into body waves, casing-cementing-guided-waves, and
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conical waves. As figure 3.11 shows, this partition is strongly dependent on the angle
of emergence, and dramatically affects the compressional wave radiation pattern,
even for fairly low angles of emergence, therefore showing the extreme sensitivity of
downhole sources to their immediate borehole environment.

3.2.5 Hybrid method modeling in a layered isotropic solid

The earth model that will now be investigated is displayed in figure 3.13. The
model is built up of three layers of increasing velocity with depth. The wellbore
length is 380m, and its diameter is 18cm. The source parameters and time history
specifications are the same as those described in section 3.2.1. The radiated wavefield
is sampled along a line parallel to the well, 200m offset from the source. The receivers
sample directly the wavefield computed on the numerical mesh, and do not incorporate
the effects related to the presence of a second borehole.

The two principle modes generated by the source, compressional and shear waves,
are clearly visible in both figure 3.13 and 3.14 despite the monochromaticity of the
signal. Reflections from both formation interfaces as well as from the free surface are
visible. The free surface reflections are by far the strongest, and display conversions
from compressional to shear waves. Finally, the radiation patterns behaves as pre-
dicted, with decaying compressional waves away from the horizontal and shear waves

maximum at 45°. Effects of the borehole-guided modes are not visible on these plots.
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Figure 3.13:The modeling setup in a layered medium.
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A comparison of our model with the data acquired by Western Geophysical (figure
3.16) shows that they display the same features: decaying compressional waves away
from the horizontal, and increasing shear wave amplitudes away from the horizontal.
Reflections from both the compressional and especially the shear waves are also clearly
visible. The dominance of the shear wave reflections after the shear wave arrives
can be easily explained by the shear wave radiation pattern. In our modeling, the
shear wave amplitude at 45° away from the horizontal is four times higher than the
compressional wave amplitude, and, for most rock arrangements, reflections can only
occur for emergence angles greater than 45°.

Beyond 45°, body waves both compressional and shear, are likely to be critically
reflected or refracted. In the case of refracted waves, the counterpart of the head wave
in the low velocity medium is an interface mode with a two dimensional geometrical
spreading. (Aki, 1980). The same type of interface modes also exist in the case of
a low velocity layer embedded between two higher velocity materials. In that case,
a layer guided mode will be generated and will once again have a two-dimensional
geometrical spreading. These modes are responsible for the linear move-out arrival
outlined in figure 3.16. The linear move-out suggests that this mode actually prop-
agates within the receiving borehole at the Stoneley wave velocity. These Stoneley
waves are believed to be generated by the conversion of highly energetic, elliptically
polarized interface modes into borehole-guided modes.

Thus far, the following partial conclusions can be drawn from the study of resonant

cavity sources.

e The behavior of the resonant cavity source is extremely close to that of an
idealized cylindrical source if the downhole source is driven to resonance. The
reasons for this behavior are a perfect source coupling with the rock formation,
a proper isolation of the source from the borehole fluid, and a match between

the input and output signal of the source at resonance.
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e The failure to drive the source to resonance, whether it is accidental, or because
a source that is not designed to be monochromatic is actually isolated by buffers
from the borehole fluid, results in .highly undesirable effects. Among them is

the fact that the source radiation pattern becomes frequency dependent.

e Finally, the use of downhole sources inevitably results in a wealth of modes that
are not commonly encountered in surface seismic investigations. I isolated two
of them in the first part of this investigation: 1) conical waves arise from the
use of downhole sources in cased wells, 2) interface waves propagating along
layer interfaces that only have a two dimensional geometrical spreading, and

therefore provide high energy for mode conversions, as figure 3.16 shows.

3.3 Fluid-coupled downhole sources

3.3.1 Principle of operation, and modeling setup

For fluid coupled sources, the active source element is immersed in the borehole
fluid, and the source applies its energy to the borehole fluid. Then the borehole fluid
transmits the source energy to the rock formation. There is in general no contact be-
tween the source active elements and the rock formation for fluid-coupled sources. The
principle of the fluid-coupled downhole source is implemented by numerous downhole
sources.

It is first used by piezoelectric downhole sources such as those developed by South
West Research, British Petroleum, and the Stanford Tomography Project. The active
element of piezoelectric sources is a large, low impedance arrangement of transducer
crystals that deliver the energy level required for seismic investigation. It is also used
by air guns downhole sources where, this time, the source active element is a gas

bubble released by the gun.
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Figure 3.16: Field data obtained after correlation for the resonant cavity
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My goal is not to investigate the complex, coupled, mechanical systems that deliver
the seismic energy, but instead to investigate the mechanical effects involved in the
radiation of seismic energy. For that reason, the force applied by the fluid-coupled
source to the borehole fluid is modeled by a time and space dependent distribution
of equivalent external forces. The fluid-coupled source is modeled as a cylinder with
the elastic properties of aluminium, and the source is assumed to be axisymmetric.

The pressure applied by the fluid-coupled source to the borehole fluid is described
as a homogeneous external pressure distribution applied at the interface between
the source and the borehole fluid. There is no contact between the source and the
borehole surface, the coupling between the source and the formation being achieved

through the borehole fluid layer.

3.3.2 Finite-element modeling in a homogeneous isotropic solid

All the modeling parameters are exactly identical to those described in section
3.2.1, except for the source design itself. The radiated field (figure 3.18) clearly dis-
plays both the compressional and shear wave arrivals, with a now familiar amplitude
behavior. The signal dispersion observed is not an effect of numerical dispersion, but
instead an effect related to the interaction of the modeled source with the borehole
fluid. In our modeling case, the source impedance is higher than the borehole fluid
impedance, which tends to lower this dispersion effect. Should the source impedance
match the fluid impedance, this dispersion or tuning of the signal with the source
length is expected to be much higher, as shown in section 3.2.2 in regard to the reso-
nant cavity source. Finally, the Stoneley waves are also present in this modeling case,
as shown in figure 3.18.

The amplitudes measured for both compressional and shear waves are displayed
in figure 3.19 where the effect related to the propagation of the Stoneley waves is
removed. The comparison between figures 3.4 and 3.5 on one hand, and figure 3.19

on the other, shows that the computed amplitudes are smaller for the fluid-coupled
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Figure 3.17: A schematic diagram of the fluid-coupled source as used for
the Finite-Element modeling.
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downhole source by a factor of 50. This low amplitude measurement is easily explained
by the presence of the fluid layer between the source and the rock formation. In the
case of the resonant cavity source, the borehole fluid itself was the source of seismic
energy with a direct coupling of the source with the rock formation. In the case of
the fluid-coupled source, the seismic energy is transmitted from the source to the
borehole fluid, and then only to the rock formation. This energy transmission line is
responsible for the low seismic wave amplitude output of fluid-coupled sources, since
most of the source energy is actually converted into borehole-guided mode energy.

Two types of borehole-guided waves are clearly visible in figure 3.18. The first
one propagates slightly under the shear velocity of the medium and arrives at 0.22sec
in figure 3.18. The second propagates at the Stoneley wave velocity, that is slower
than the fluid velocity, and arrives at 0.28sec. The first mode is identified as an
axisymmetric Rayleigh wave (White, 1973).

In summary, the behavior of the fluid-coupled downhole source does not differ
significantly from the behavior of the resonant cavity downhole source as far as radia-
tion patterns alone are concerned. However, the efficiency of the fluid-coupled source
measured as the ratio between the seismic energy available for seismic investigation
and the mechanical energy delivered by the source is considerably smaller than the
efficiency of the resonant cavity source. This difference in efficiency is related to
the perfect coupling of the fluid-coupled source with the borehole fluid and its weak

coupling with the rock formation.

3.3.3 Hybrid method modeling of the fluid-coupled downhole source in a
layered isotropic solid, and evidence for secondary downhole sources

As displayed in figure 3.21, the field generated by a downhole cavity and the
field generated by a fluid-coupled source differ greatly, except for the first arrival
travel time which is consistent from one source to the other. The differences can be

attributed to two major causes:



Chapter 3 — Radiation patterns of downhole sources.

Horizontal Displacements

| i H 1]

- O
« © : =
E —————
)
N =
[ AR
o ©
=
£ =
g o
S % X
o ¥ 0 Y =
50 v P
= ] ] == ===
< 5 v
~ %
0.06 0.1 016 0.2 0.256 0.3 0.36
Vertical Displacements
===
; 8-5: =_=_=a—c——c
L ]
g e
N
o
; © g —
= v~
) LTS
&g =
K : ——
0 ———
-] £
<8 =
—_— s
;E‘

006 0.1 0.16 0.2 0.26 0.3 0.36

Figure 3.18: The field radiated by the fluid-coupled downhole source.
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¢ the signal dispersion introduced by the downhole source, described in the pre-

vious section

e the existence of secondary sources along the borehole

As shown in figure 3.20, each borehole heterogeneity, (namely the rock interfaces,
the borehole top, and the borehole bottom) acts as a very strong secondary source
(actually stronger in our case than the source itself). Because of the interfering
arrivals, the direct shear waves cannot be clearly recognized in figure 3.21. On the
other hand, the strongest secondary source radiated fields (namely the secondary
sources at the top and the bottom of the well) appear very clearly in figure 3.21.

The mechanism by which these secondary sources appear was first outlined by
White (1973) using dimensional analysis. Fluid-coupled sources generate powerful
Stoneley waves propagating up and down the well. The velocity of these waves is
a function of the fluid velocity, the rock formation velocity, and finally the borehole
diameter. A change in rock formation velocity results in an equivalent change of the
borehole impedance. However, the propagation of Stoneley waves along the bore-
hole cannot be simply assimilated to a one-dimensional propagation system, since a
Stoneley wave incident on a rock formation interface generates the following converted

waves:

e a transmitted Stoneley wave

e a reflected Stoneley wave propagating in the borehole in the reverse direction

of the incident wave

e an interface wave propagating along the rock interface within the rock forma-
tion. This interface mode is similar to that described by Auld, 1973, and are

clearly visible in figure 3.20

e compressional and shear body waves propagating within the rock formation.

These waves are also clearly visible in both figures 3.20 and figure 3.21.
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Finally, this modeling only dealt with the case of a rock interface as a borehole
heterogeneity. I expect that other types of borehole heterogeneities such as fractures
intersecting the borehole, borehole caves or abrupt diameter changes, casing bottom,

or cementing variations will generate similar Stoneley wave conversions.

3.3.4 Mode conversions, and more ’tube’ waves

Other modes shown in real cross-well seismograms are not modeled by the software
used. These are receiving-well borehole-guided waves. They are clearly apparent in
figure 3.22, and interfere with most of the signal. This mode has a conical move-out
characterized by two parameters: the apex of the cone, and the move-out velocity of
the cone branches. For all the cases considered with both the fluid-coupled, and the
resonant cavity sources, the move-out velocity is consistent with the velocity of the
Stoneley waves (slightly slower than the borehole fluid velocity).

On the other hand, the apex location as well as the amplitude of these tube
waves is a more elusive parameter to interpret. In general, receiving borehole guided
waves are maximum, when both emitting and receiving boreholes cross a narrow low
velocity zone, as shown in figure 3.22. Receiving borehole tube waves also appear
immediately after the compressional waves’ arrival when a strong rock interface is

met. The following are possibilities that can account for the existence of this mode.

e First, the secondary sources generated within the source borehole also gener-
ate strong interface modes propagating within the rock formation along rock
interfaces. Since these modes display a two-dimensional geometrical spreading,
their energy is stronger at the receiving borehole, which allows for the creation

of tube waves at the receiving borehole.
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e Second, independent of the secondary sources mechanism, if seismic energy is
incident on a high-impedance contrast interface at the critical refraction angle,
two new modes are created apart from the classical reflections and transmissions
(Aki, 1980): 1) head waves in the slow velocity medium and 2) an exponentially
decaying guided mode propagating in the fast medium. Once again, this last
mode displays a two dimensional geometrical spreading, and has enough energy

to create receiving borehole tube waves.

The two previous interpretations are not mutually exclusive, and both mecha-
nisms have been encountered depending on the move-out of the apex of the receiving
borehole tube waves with the source location. If the apex move-out has the Stoneley
wave velocity (the rock formation velocity) the first interpretation applies (the second
interpretation applies).

One last case, however, needs to be discussed. In the case where the compressional
wave velocity of the rock formation is lower than the fluid velocity which occurs for
soils and unconsolidated sediments, a new mode appears, the borehole conical waves.
These waves first described by White (1973) are the two-dimensional axisymmetric
space equivalent of head waves. With such waves incident on the receiving boreholes, a
new phenomenon takes place in which the two boreholes are actually coupled through
the action of these head waves. One striking manifestation of this phenomenon is
the amplitude increase of the receiving-well-guided waves with time and propagation

(Paternoster, 1990 oral communication).

3.4 The drill-string used as a downhole seismic
source

The effects of the borehole guided waves detailed in the two preceding sections,
namely their ability to generate secondary sources and conical waves, is one of the

keys toward the understanding of the behavior of the drill-string used as a downhole
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seismic source. A lot of effort has recently been invested in using the drill-bit noise as a
seismic signal in a transposed VSP configuration (Rector 1990). Apart from the signal
processing difficulties brought up by the use of this type of data, the interpretation
of the processed data still remains obscured by wavefield effects that are described in
the following section.

3.4.1 Principle of operation, and numerical model description

The principle of operation as well as the general setup of the drill-bit experiment
are illustrated in figure 3.24. Four elements of this experiment are taken into account

for the numerical modeling:

e The drill string has an interior diameter of 8.5¢m and a thickness of Tmm.
The bottom hole assembly has an interior diameter of 8cm and a thickness of
18mm. Both components of the drilling assembly are made of steel with the
following physical properties: the compressional waves velocity is 5150m/s, the
shear wave velocity is 3110m/s, and the density is 7800kg/m3. The drill string
as well as the bottom hole assembly is modeled as a continuous homogeneous

medium, and the assembly joints are not taken into account in this modeling.

o The borehole itself has two components: The upper part of the borehole is cased.
In the cased part, the borehole diameter is 25cm, the steel casing thickness is
3mm, and the concrete cementing is 1.5¢m thick. The steel quality of the casing
is taken to be the same as the one of the drill pipe. The concrete compressional
wave velocity iz 3251m/s, and the shear wave velocity is 1861m/s. The concrete
density is 1630kg/m3. The bottom part of the well is not cased, and the borehole
diameter is taken to be constant from the casing down to the bottom of the

well. The well diameter is 10cm in the lower part.

e The drill-bit is assumed to apply a vertical force at the bottom of the well
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directly to the rock formation (Rector 1990). The predominant drilling force is
the weight of the drill-bit on the rock formation, and additional forces, such as
the torque applied by the drill cone to the formation, or lateral forces at the

bottom of the well are not taken into account here.

e Finally, the field seismic signal is recorded while drilling. The recording length
may vary from a couple of seconds to hundreds of minutes, depending on the
type of acquisition. Most of the signal processing of this data is intended to
find the explosive source equivalents, that is computing the impulse response of
the drill-bit, well, and rock formation system. Since it would be impractical to
model very long seismic records because of computer limitations, our modeling

is limited to the previously used source time history described in section 3.2.

3.4.2 Finite-element modeling of the drill-bit behavior in a homogeneous

isotropic solid

Snapshots of the wavefield generated by the drill bit used as a downhole source
are presented in figure 3.25, and the corresponding receiver traces for receivers placed
at the surface appear in figure 3.26. Four different modes can be clearly identified in
both figure 3.25 and figure 3.26.

The first two one are the compressional and shear primary body waves. Even
though they are not the strongest modes, they remain tixe modes of choice for seimic
interpretation. Figure 3.26 shows that the amplitude of the compressional waves is
maximum at zero offset and decreases with offset. On the other hand, the amplitude of
the shear waves is null at zero offset and increases with offset. This radiation pattern
behavior is consistent with the radiation of a single vertical point force source buried
in the ground. This interpretation ,however, is not coherent because single couple
forces do not exist (Aki and Richards 1973). Actually, the rig drill bit system is truly

a double couple system where the reaction force applied downhole is balanced by the

— SN FIN = [ PR : o b T e X v ¥t T e
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Figure 3.24: A schematic diagram of the implementation of the drill-bit
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force applied by the rig to the ground. Thus for an ideal system the force applied
downhole is also applied at the surface with a reverse direction, thereby yielding a
second seismic source at the surface. This second source is of no interest to our
problem except that it can dramatically affect the quality of the seismic data for two

reasons:

o The surface source creates powerful surface waves that have to be filtered. This
filtering is achieved by the receiving array, or at the processing stage. Further-
more, the casing bottom also generates a secondary source that is less powerful

than the initial source.

o Actual seismic reflections that will not be attenuated by the receiving antenna
can be generated by the surface sources. These modes however have not been
identified in actual drill-bit data for the following reasons. In general the signal-
to-noise ratio of processed drill-bit data is poor, and seismic reflections initiated
by the rig acting as a seismic source are weaker than the seismic energy coming
.directly from the rig because: 1) the rig acts as a distributed source over the
rig foundation surface, and 2) reflected signals are weaker than direct signals,

because of the effect of the reflection coefficient.

The third mode is the borehole conical wave. The existence of this mode was
initially predicted by White (1973), and was previously mentioned in this chapter
(sections 3.2 and 3.3) in the case where the formation velocity is slower than the
borehole fluid velocity, and in the case of the resonant cavity in a cased well. Conical
waves are the axisymmetric equivalent of head waves. Let us consider the case of
a fast medium in two-dimensional space with a compressional wave velocity slightly
lower than the steel velocity in contact with a lower velocity medium. If a seismic
source is triggered, it will generate an incident and a reflected compressional wave in
the fast medium, as well as a transmitted and critically refracted wave in the slow

medium. The critically refracted wave is often called a head wave ; it is a plane wave.
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The angle 8 between the plane wave direction and the normal to the interface is given

by the following relation illustrated in figure 3.27:

‘/.slow

fast

sin(8) = (3.4)

where Vi, and Vi, are the respective velocities of the two media considered. In
the axisymmetric case, the plane wave previously described is now the envelope of a
cone of revolution with the same axis as the borehole. Within the borehole, the mode
velocity is controlled by the steel velocity and the borehole fluid velocity. Since the
steel density is so much higher than the water or mud density, the drill-pipe-guided
mode velocity is very close to the steel velocity, and was measured to be 5080m/s for
this modeling case, which is quite close to Rector’s measurements (1990). The effect
of the drill-pipe -guided mode is felt in the rock formation but is fairly weak because of
the high impedance of the water layer between the drill-string and the rock formation
for that geometry. For the drill bit modeling, both compressional and shear head
waves were identified, but were an order of magnitude smaller than those previously
modeled with the resonant cavity and this for the following reason. In the case of the
resonant cavity source, the source is in direct contact with the casing, which itself is
in direct contact with the rock formation. Because of this direct transmission line,
the conical waves were strong. In the case of the drill bit, the steel string is not in
direct contact with the formation. For that reason the conical waves are weak in the
last case modeled.

The last mode belongs to the now familiar generic family of borehole-guided
modes. Two of these modes are of particular interest for the modeling cases cho-
sen here. First, the drill-string and the steel-casing-guided waves are responsible for
the existence of the conical waves. Two other phenomena of interest can be further

associated with this mode:

e The existence of drill-bit multiples: The two most powerful drill-string scatter-
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ers are the drill string bottom and top (here taken to be at the free surface).
These two scatterers ensure that each signal generated at the borehole bottom
is echoed with a delay double the travel time of the drill string guided mode.
These multiples are clearly visible at 0.2 and 0.55sec in figure 3.26 and are il-
lustrated in the snapshots in figure 3.25. Since our model does not contain any
intrinsic attenuation mechanism, the signal echoes up and down the well with
only little absorption. In reality, it is not rare to have four to ten drill-string

multiples before the amplitude of the multiple drops below the noise level.

o The existence of drill-bit sub-multiples: as with the borehole guided waves
previously discussed in section 3.2.3, every variation along the drill-string acts
as a scatterer. One of the dominant scatterers is the junction between the
drill-string, and the bottom-hole-assembly. As the up-going drill-string guided
mode meets this junction, it is converted into 1) a transmitted guided mode, 2) a
reflected guided mode, and 3) a scattered packet of body waves. Then the down-
going reflected guided mode impacts the drilling cone and the rock formation,
it generates a further family of body waves similar to those generated with the
initial source impact, and another reflected up-going guided mode assembly.
This mechanism is illustrated in figures 3.28 and 3.29 where the length of the
bottom hole assembly is 60m. The bottom-hole-assembly multiples are both
clearly visible on the snapshots in figure 3.28 where the source at the bottom
of the well gets fired for each multiple, as well as in the recorded seismograms

shown in figure 3.29.

Other types of scatterers exist along the drill string that are not taken into
account by this modeling. Among others, the drill-bit joints introduced each
time a new segment of drill-string is added act as drill-string-guided waves

scatterers, and contribute strongly to both the attenuation and dispersion of

the drill-bit signal (Rector 1990).
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Second, the equivalents of the Stoneley waves for this borehole configuration are
also very powerful. Their velocity in our modeling case is still slightly slower than the
fluid velocity. This mode is also responéible for the powerful emission of secondary

sources as shown in figures 3.25 and 3.26.

3.4.3 Finite-element modeling of the drill-bit behavior in a layered isotropic

solid

The layered medium chosen here is similar to the one previously used for the
controlled downhole source modeling (sections 3.2 and 3.3). As expected from the
results previously obtained, the following results are clearly visible in figure 3.30 and
3.31.

First, each layer boundary appears as the source of a very strong borehole sec-
ondary source, generated essentially by the conversion of the Stoneley waves. Other
secondary sources, such as those created by the bottom hole assembly multiples, are
also clearly visible.

Second, as the conical wave, described in the preceding section of this chapter,
travels up the well, it enters formations with lower and lower compressional wave ve-
locity. As illustrated in figure 3.30, as the rock velocity decreases, the angle between
the borehole normal and the conical waves increases. This angle is null if the rock
formation is equal to the velocity of the drill-string, and increases with slower forma-
tions. As illustrated in figure 3.27, the general increase in velocity with increasing
depth is responsible for the negative curvature of the conical waves’ arrival at the
surface, and thereby provides an easy-to-interpret attribute of this arrival.

The events previously described in two simple modeling experiments allow for
the interpretation of the data displayed in figure 3.32. This data is obtained with a
transposed VSP configuration where the drill-bit is used as the source of the seismic

signal. The raw data was processed, using the algorithm described in Rector (1990)
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Figure 3.27: A schematic illustration of the behavior of conical waves.
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to obtain the data presented here where the phase of the signal is null. Three major

arrival or energy packets can be easily identified:

o 1) The first arrival is caused by the propagation of the conical waves previously

described, and are easy to recognize because of their inverse curvature.

e 2) The arrival of the compressional and shear waves. These modes can be
identified first because of their arrival time, but also because of their amplitude
versus offset dependence. The compressional waves have a maximum amplitude
for small offsets, and the amplitude decreases with offset. The shear waves

exhibit the opposite behavior, their amplitude increasing with offset.

e 3) A group of arrivals similar to the one previously described is reproduced at-
tenuated beginning at 1.15 seconds. This arrival is caused by drill-bit multiples
attenuated both by the travel up and down the well, and by the deconvolution

algorithm applied to the initial data.

3.5 Conclusions

This modeling of various downhole sources and the actual comparison and inter-
pretation of the synthetic data with real data indicates that in most cases the effects
related to the borehole cannot be neglected. Even though the borehole is small along
the radial direction, it is an elongated object, and its effects must therefore be; taken
into account even for the frequencies used with downhole seismic sources. The same
conclusion can be applied to the downhole sources themselves if their length is com-
parable to the seismic wavelength, unless special engineering features mechanically
decouple the active components of the source from the remaining part of the downhole
apparatus.

The main effects of the borehole can be summarized as follows:
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clearly visible: 1) Head waves arrival, 2) Primary compressional waves

arrival, 3) Shear waves arrival, 4) multiple arrival.

Figure 3.32:
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o First, the failure to isolate the downhole source from the borehole fluid results
in the generation of powerful tube waves that dramatically decrease the source
efficiency. In the process of isolating- the source from the borehole fluid, however,
great care must be given to the source design in order to prevent such unwanted
effects as frequency-dependent radiation patterns when the source length is

comparable to the seismic wavelength in the borehole fluid.

e Second, the existence of powerful borehole-guided waves results in the gener-
ation of borehole secondary sources. For strong borehole heterogeneities such
as the casing bottom, rock formation velocity contrasts, or borehole diameter
changes, the amplitude of these secondary sources is comparable to the initial

source amplitude.

o Third, in the receiving wells, the rock-interface-guided modes generated by
the use of downhole seismic sources convert into receiving-wells-guided modes,
thereby establishing a direct coupling between the emitting and receiving bore-

hole.

o Finally, in the case where the speed of the borehole-guided modes is faster than
the formation velocity, conical waves are radiated by the emitting borehole,
thus providing a new mode for velocity invéstigation, as well as a new level of

coupling between two boreholes.



Chapter 8 — Radiation patterns of downhole sources. 102

References

Aki, K., and Richards, P. G.,1980, Quantitative seismology, theory and methods, W.
H. Freeman and Co., San Francisco, California.

Auld B. A., 1973, Acoustic Fields and Waves in Solids, John Wiley & sons, New York.

Cheng, C. H. and Toksoz, M. N., 1981, Elastic wave propagation in a fluid filled
borehole and synthetic acoustic logs: Geophysics, 46, p. 1042-1053

Harris, J. M., 1988, Cross-Well Seismic Measurements in Sedimentary Rocks, S.E.G.
expanded abstracts,1, 147, 150.

Heelan, P.A., 1953, Radiation from a cylindrical source of finite length: Geophysics,
18, 685, 696.

Hughes, T., 1983, The Finite element method: Prentice Hall, New York.

Kennedy W., Wiggins W., Aronstam P., 1988 Swept-Frequency Borehole source for
Inverse VSP and Cross-Borehole Surveying, S.E.G. expanded abstracts,1, 158,
160.

Kosloff, D. and Baysal, ER., 1982, Forward modeling by a Fourier method: Geo-
physics, 47, 1402,1412.

Paulson B., 1988, Three-Component Downhole Seismic Vibrator, S.E.G. expanded
abstracts,1, 139, 142.

Samec, P., and Kostov, C., 1988, Full Waveform Modeling of a Downhole Source Radi-
ation Pattern Using the Finite-Element Technique, S.E.G. expanded abstracts,1,
143, 146. :

Rector, James, 1990, Utilization of drill-bit energy as a downhole seismic source, PhD
Thesis, Stanford University.

White, J. E., 1983, Underground sound: Elsevier, New York.

Zienkiewicz, O. C., 1973, The finite element method: Mac Graw Hill, London.



Chapter 4

Theoretical Investigation of
Viscoelastic Anisotropic Material

Abstract

Attenuation of elastic waves in rocks has been studied extensively in the past years
under the following assumptions : rocks have a linear behavior for low strains, and
the attenuation mechanism is isotropic, that is independent of the wave propagation
direction. Both laboratory, and field experiments recently demonstrated that these
assumptions are not always valid. This is why this chapter focuses on the study of
linear anelastic media with both propagation and attenuation anisotropy.

As a framework for the study of these materials, this chapter first presents an en-
ergy formulation of the wave equation, generalizing the approach followed for isotropic
material. The application of this formulation to plane waves propagating in a homo-
geneous medium provides an adequate formulation for Q.

Second, a numerical method for the modeling of material with these properties is
investigated . The benchmark modeling results indicate that the theoretical investi-
gation, and the numerical modeling are in good agreement. The results also indicate

that materials with viscoelastic anisotropic properties have great energy focusing ca-
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pabilities related to both elastic focusing and direction-selective attenuation.
4.1 Introduction

The effect of anisotropy on wave propagation in rocks has recently been exten-
sively studied with the assumption that anisotropic rocks behave in a purely elastic
way. (Crampin 1980 among others). Various causes for rock anisotropy have been
investigated, relating it to the constitutive crystal anisotropy (Christensen, 1970),
but most often to the anisotropic distribution of the pore space within the rock mass
(Nur 1969, Budiansky, 1976). The effects of pore fluid and pore shape on elastic wave
attenuation in rocks have also been studied relating the fluid displacement in the pore
space to energy dissipation. (Biot 1965 a,b, Nur 1969, Murphy 1982, Jones 1986).

Hudson (1981), following Garbin and Knopoff (1975), introduced an imaginary
component into the description of the elastic tensor, specifying that the imaginary
part of the viscoelastic tensor displays a very high degree of anisotropy. In a recent
experiment, the dependence of energy dissipation on wave propagation direction (at-
tenuation anisotropy) has been demonstrated on composites (Hosten 1987) yielding
again a very high degree of attenuation anisotropy where the ratio of quality factors
in different directions can range from 17 to as much as 500.

In this chapter, viscoelastic anisotropy will be described using :

e an energetic approach that generalizes the description of isotropic viscoelastic

materials to anisotropic materials,

¢ a numerical approach that allows the actual computation of the wavefield prop-

agating in a viscoelastic anisotropic material.
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4.2 Energetic description of linear viscoelastic anisotropic
material

Since most of the work in this chapter concentrates on the energy focusing capa-
bilities of anisotropic anelastic solids, an energetic description of such solids is ideally
suited in that it provides a clear accounting of the energy balance of the system stud-

ied. This is why this description is implemented in the next section of this chapter.

4.2.1 The definition of a linear, viscoelastic, anisotropic solid

A linear viscoelastic solid is defined as a medium for which there exists a relaxation
function c;;u(t) relating the stress tensor o;;(t) and the strain tensor ¢;(t) in the
following way (Gurtin and Sternberg, 1962) (The notations used in this chapter are

presented in the first appendix, for the most part):

ai(t) = [ eimlt — )dew(r) = (4.1)

cijr(t) X [(1 — H(t)ew(t)] | (4.2)
summation on repeated indices is assumed here, and H is the Heavyside step function.
Taking the Fourier transform of Eqn. 4.1 leads to a frequency domain stress-strain

relation of the following form, where w is the frequency:

0ij(w) = weijp(w)en(w) (4.3)

using the mass and momentum conservation principles, equation 4.1 leads to the

equation of motion for the continuum in the time domain:

oi; + fi = pii; (4.4)
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Finally, using equations 4.1 to 4.3, the equation of motion can be rewritten as follows

using the method of Borcherdt (1973):

w§’~ (eta(e) i ()] + () = 0 (4.5)

where U is the Fourier transform of the displacement field, and the tilde denotes the
Fourier transform for both ¢;jx; and €. Further proposing that C;jr = iwé&jr, and

equating both the real and imaginary part of Eqn 4.5, we obtain:

) R) (R I) .(R
o [CD + ~cel] + P () = 0 (4.6)
J
R) (I Iy (R
9z, [Cz(gk)l 5:1) 1(3121"5;:1 )] + szum(w) =0 (4.7)

The notations (R) and (I ) respectively denote the real and imaginary parts of a
complex number. From the previous equations, the most interesting quantity is:

V(R) [C(R) ) 4 C(]I,z,e(R)] Equation 4.5 can now be rewritten:

k

VOV - pi® =0 (4.8)

4.2.2 The energy conservation principle for a viscoelastic continuum

Proceeding to obtain an integral energy conservation equation is first achieved by
multiplying equation 4.8 by 4(® and using the relationship: V(a®V) = «BVY +

Vu®YVY. Equation 4.8 can then be rewritten when integrated over a volume V as:

/V _(aP®y® 4 /V v [1Py®) + /V PP y® = o (4.9)

For the clarity of the development the three terms in the previous equation will be

dealt with separately. Each of the terms is numbered from I to III from left to right.
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First, expanding the first term (I), we find that:

VilRC D ID = kDD D

then using the same tensor equality again, we get:

) R (R _1 0 1.(R) (R) (R
V“(R)C.(jk)zfgcl) 55t C:(Jk)z f]) ( )]

For term II, the following integral equality is used:

1I= /V v [aPy®)] av = /S [#PVR)] sids

107

(4.10)

(4.11)

(4.12)

where 7 is the outgoing normal to the surface S bounding the volume V.1t is easy to

recognize that III can be rewritten as:

10
“(R)° - -z R) gv
/;pu i _23 /pu d

Finally when I 1II and III are regrouped, equation 4.9 can be written as:

%/‘,de+/deV=/S($+C_")ﬁd5

with the following definitions:

. R) (R) (R
W = p(iP) +Cijie el

R) .(R) .(I
D= Lemamyy

R) ~(R) (R
¢ =afchie

(4.13)

(4.14)

(4.15)

(4.16)

(417)
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¢ = a{Pell) &P (4.18)

This separation of terms is not arbitrary because each of the previous terms can be
attributed a special physical meaning: W is obviously the system total energy density
consisting of the sum of the kinetic energy and energy, and D is the energy dissipation
rate density within the volume investigéted. Since the second law of thermodynamics

requires that the amount of energy dissipated increases with time, in can be deduced

from the definition of D that:

c >0 (4.19)

Finally, g; is the work flow through the volume external boundary S, and C is the
work convected through S. This interpretation allows to rephrase equation 4.14 by
saying that the change of the total mechanical energy of the system is equal to the
rate of mechanical energy dissipation caused by viscoelastic effects plus the energy
that flowed or was convected through the system’s external surface. It can be easily
demonstrated that in the case of an isotropic material this equation is strictly identical
to the one provided by Borcherdt (1973), and thereby constitutes a generalization of

the aforementioned conservation principle.

4.2.3 Modified Christoffel equations: A steady state plane wave solution

for an anisotropic viscoelastic continuum

In order to apply the energy conservation principle demonstrated in the preceding
section, a solution to the viscoelastic wave equation (4.5) must be found. The easiest

possible solution is a plane wave of the following form:

ui(z,t) = ujexp [z [wt — (K - sz)fv'” (4.20)

which can also be interpreted as a damped plane wave if it is rewritten as:
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ui(z,t) = ujexp(—A.Z)ezp (iwt - I-{‘a'c')) (4.21)

In the two previous equations u; is the polarization vector, K is the propagation
vector, and A is the attenuation vector. The angle between the propagation and
attenuation vectors is . If we now combine equation 4.5 in the frequency wavenumber

domain with equation 4.21, we obtain the following set of linear equations:

— pa; = ciju(w) (Aa; +iKk)) (Aaj + tKk;) a; (4.22)

noting A = J-g-l, and K = %l In the previous equation, a; (and k) is defined as

A=aqi( K = k7 ) where 7, is the unit vector along the I** direction. The previous

equation states that —p is an eigenvalue of the matrix [y;;] defined as

Yii = c,-jkl(w) (Aal + Zl{kl) (Aaj + ?.Kkl) (423)

This matrix is known to be the Christoffel tensor in the elastic case. (Auld 1975). To

satisfy equation 4.23 the following relationship must be true:

where I is the identity operator.
It is now apparent that the algebra of our problem will rapidly become untractable
if no assumption is made to simplify it. The two following assumptions will therefore

be made:

® €k = Z,Q'"%(f-‘-'ﬁ)l << 1. This assumption states that the material studied is only
)

weakly attenuating. By analogy with the isotropic case where @ is the ratio

between the real and imaginary parts of the appropriate modulus, é— is often

assumed to be small compared to one.
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¢ £ <<1land £ ~ %((Z.ﬁ% << 1. This last statement assumes the amplitude

ratio of the attenuation and propa,ga,tion.vectors is also small compared to one,
but of the same order as -615 which is, once again, a valid assumption for an

isotropic viscoelastic medium (Borcherdt 1973).

Under these assumptions, it is shown in Appendix 3 that equation 4.24 separates

into a real and an imaginary part with the following form for the real part:

P(K)=0 (4.25)

where P(K) is the same polynomial that is obtained in the case of a purely elastic
anisotropic solid (Auld 1975). This first computation allows us to conclude that for
linear, viscoelatic, anisotropic solids with weak attenuation, the influence of viscoelas-
ticity on the propagation phenomena is a second order effect in ¢;;5. This last remark
is particularly important since the effect of viscoelasticity does not affect anisotropic
wave propagation phenomena such as those described in Thomsen (1986), and the
use of the § and e parameters is still legitimate.

Once K is computed from equation 4.25, the ration A/K can be easily computed
from the imaginary part of equation 4.24. The relation has the following form ac-

cording to the notation adopted in Appendix 1:

[] @15+ @ur) =0 (4.26)

where @1(K) and Q(K) are two polynomials in K. The solution for A is therefore
trivial, provided that the initial angles between the propagation and attenuation

vectors are known.
4.2.4 Energetic description of a linear, viscoelastic, anisotropic material

To obtain the full solution of the equation system 4.4, for a plane wave, the

direction parameters I, for both the propagation and attenuation vectors must be
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provided. These are, in general, provided by boundary conditions at the source, or by
a two-point boundary condition system as for example in classical ray-tracing. These
directions being provided, the previous section shows how to compute both A and
K so that both the attenuation and propagation vectors are now completely known.
Finally the polarization vectors are obtained by replacing the solution of equation
4.21 into equation 4.24 so that the ‘polarization vector is actually an eigenvector of

equation 4.24. The polarization vector can then be written as follows:

a1 _ az _ as 7
Y22 Y23 Y23 Y21 Y21 Y22
Y32 Y33 Y33 731 Y31 Y32

where I is the intensity factor of the source, once again determined by the boundary

I=

(4.27)

conditions at the source.
With the plane wave solution, the energy conservation principle can be used to
compute wave attributes such as group velocity and attenuation (Q). Defining the

group velocity as the energy propagation velocity, we can state:

- <8l o
The brackets denote time averaging. From the weak-attenuation-approximation pre-
viously stated it is reasonable to assume that Cis negligible compared to ¢ because

,(J},?, >> C,-(J-I,z,. In other words, the effect of viscoelasticity on the group velocity is a

first order in &, and for large @ the effect of anisotropy on velocity is dominant. For

Q )
very low @) weakly anisotropic material, on the other hand, the effect of viscoelasticity
is comparable in magnitude to the effect of anisotropy.

Again following Borcherdt’s definitions, we can define @~ from Eqn. 4.14 as the

time average of the energy dissipation over a time cycle:

_27r<'D>
- w

Q™ (4.29)
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The last quantity can be easily computed from the plane wave solution computed
below. Since D is a function of the imaginary part of the elastic tensor, the attenuation
principal directions are directed by the stmetries of the Cffg, tensor, independently

from the real part of the tensor, so that viscoelastic anisotropy is decoupled from

elastic anisotropy to the second order in ?13-
4.2.5 Partial Conclusions

Thus far, three major results have been reached:

o First, an energetic formulation has been obtained for viscoelastic anisotropic
solids that is consistent with the known results for isotropic viscoelastic solids.
This formulation allows us to quantify the properties of the viscoelastic material

studied independently of its degree of symmetry.

e Second, the solution for a plane wave propagating in an anisotropic viscoelastic
solid has been found. In a first approximation, the elastic properties of such
a material are affected only to the second order in % In other words, the

anisotropic effects and the viscous effects are decoupled.

e Third viscoelastic anisotropic materials have two distinct energy focusing mech-
anisms. The first is related to the purely elastic effects and results from the
possibly large discrepancy between phase and group velocity. The second is
a result of preferential energy absorption, depending on the direction of prop-
agation. Even though it seems to make little sense that a rock has different
symmetries for both its elastic and anelastic properties, these two properties

are in fact decoupled for materials that are weakly attenuating.

In order to both verify and illustrate the properties of viscoelastic anisotropic solids,
the following section presents a numerical modeling procedure that allows the de-

scription of the above mentioned energy-focusing mechanisms.
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4.3 Numerical modeling of a linear viscoelastic
anisotropic solid | |

4.3.1 Constitutive equations: A generalized standard linear solid

Modeling the time-dependent part of the elastic tensor requires preliminary knowl-
edge of the behavior of the solid. This knowledge is represented by the constitutive
relation of the system studied. Let us assume that a viscoelastic anisotropic solid
behaves microscopically like an assembly of springs and dashpots organized to yield
the general behavior of a standard linear solid for which the equation was formulated
by Liu (1976), and Carcione (1987). This constitutive equation can be written as

follows:

m o m ak
;;;Ckwmj = l;)-é—t—k-e,-j (4.30)

the solid being subjected to the initial conditions:

m r—k m  o(r—k

gck-a%(rr—_-l;)-a;j(O) = Ig gt(—(r_%e,-,-(()) (4.31)
where c; are the coefficients describing the macroscopic properties of the material
subjected to the initial conditions described in equation 4.31. Following Carcione
(1987), and generalizing equation 4.30 to a general viscoelastic anisotropic solid by
replacing ci by c¢ijri, we can find a solution to equation 4..30, after it is transformed in

the Laplace domain. This solution provides ¢;;xi(t) as a function of ¢;jri(0) as follows:

Lijn ijkl ¢
TCm :-H
¢iin(,t) = ciju(z,0) [1 - [1 = ijkl] e"om ] (4.32)
m=1 Om
where 7% and 7% are the stress and strain relaxation times, respectively, for the

mt* attenuation mechanism of the ;jkI** component of the viscoelastic tensor. We see

from the previous equation that each component of the viscoelastic tensor is actually
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modeled by a series assembly of L;;; Standard Linear Solids (SLS). In order to use
the theoretical results obtained in the previous part, we need to compute the Fourier

transform of the time dependent viscoelastic parameters. This computation yields

Lijn 1+ zw,rz]kl
ciimi(2,0) = ciju(e,0) |1 = Liju+ ) ——— (4.33)
m=1 1 + z WTom

Combining the previous definition of the frequency-dependent elastic tensor and
the definition of Q, Fig. 4.1 shows that an almost constant ¢ can be obtained over
a given frequency domain with L;;x; = 2. In other words two relaxation mechanisms
are sufficient to provide a quasi-constant band limited attenuation coefficient. Finally
Carcione (1987) has demonstrated that the previous definition of the elastic tensor

provides a causal attenuation mechanism.
4.3.2 Rewriting the dynamic equation for a viscoelastic anisotropic solid

To solve equation 4.4, we will substitute the form of c;x(z,t) devised in the

previous section into that equation. Equation 4.4 can therefore be rewritten as:

Lijk
oij(,t) = ciju()en(z,t) — Y ciju(x) Pz, t) * eu(, t) (4.34)
m=1

where ¢;;xi(z,t) can be easily inferred from equation 4.32. From now on, our problem
will be restricted to two-dimensional space, but all the further developments can be
easily generalized to three-dimensional space. In two-dimensional space, the previous

equation can be rewritten as:

Uy = Mluz + Mzuz + fx + Ca; (4.35)

i, = Maug, + Myu, + f, + C, (4.36)

where M; is a partial differential operator that corresponds to the elastic part of the
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propagation algorithm, C; is also a partial differential operator that corresponds to
the convolution part or viscoelastic part ofequation 4.34, and f; are the components
of the external forces applied to the system studied. M; is defined as follows in

two-dimensional space:

M, = ; e ;’ + ; 9 sl ;’; (4.37)
M; = aa 1153 aa aa eyaps— (96 . (4.38)
M = 6‘9 crms ; (,f carss 5’_ (4.39)
M, = aa S 6‘9 4 ;2 — ;z | (4.40)

If we now define ¢ as M;(x)¢*(z,t), then the C; coefficients can be easily rewritten

as follows:

i}
sz—a—:;z':/);"*eu-i- }:¢3*633+2 Z¢4*el3 (4.41)
_QQZW"*G +£Zz/:"‘*e +2-Zz/)"‘*e3 (4.42)
p o7t T B T g1 T g Ve T '

Then, changing variable, we define the new variable e that will be called memory

variables:

el = Yr * en (4.43)
€3 = Py * €3 (4.44)
er = Y % €1 (4.45)
el =3 *en (4.46)

€5 =3 *€s3 (4.47)
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On the basis of this definition, the following first order in time partial differential
operator can be computed for the e™. An example for such a computation for el* is
written as follows:

d, . _d m
'(E(el )= P [Mi(z)47"(z,1) * en] = Mi(z) {‘351(‘”’0)

Ous, e
0z tnu

(4.48)

Using this last expression, equations 4.35 and 4.36 can be written in the following

matrix form:

Uy 0 0 10 O Uy 0
d | 0 0 01 O U, 0
Tt =M M 00 o || +]|f (4.49)
’ U, M3 M4 00 d,'j 'llz fz

6;" a;; b,'j 00 t,'j e}" 0

The previous system of equations can be written in symbolic form as follows:

%(t{ —=MU+F (4.50)

where U is the generalized displacement vector that contains the displacement field,
the first time derivative of the displacement field, and the memory variables. The
matrix M is a partial differential operator in space, and F is the field of external
forces acting on the system. To solve the previous equation, we must first sample it

on a regular grid with N; x N, samples, and then we can write:

U, = MU, + F, with U,(0) = U° (4.51)

where U, F,, and M, are the discrete representations of U, F', and M respectively.
The length of the vector U is L X N, X N, where L is the number of independent
variables per node. In the case where the space dimensionality ngpece is 2, and the

number of relaxation functions n, is also two, we have
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Figure 4.1: Attenuation as a function of frequency using two (2) relax-
ation mechanisms.

Q factor

Figure 4.2: Attenuation as a function of the propagation angle for homo-
geneous waves.
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L =ny4e+5%n,q =14 (4.52)

Where the factor two comes from the fact that both u and u are sampled in the
generalized displacement vector. The factor five is based on the hypothesis that the
axis of symmetry of the solid studied is parallel to the axis of the sampling grid.
Should this last hypothesis be removed, a factor of nine would be used instead.

The previous equation system in U, has a unique solution of the following form:

t
U, = eMrty? +/ eMTE, (z,t — 7)dT (4.53)
0

where UQ is the starting condition at time ¢ = o for the generalized displacement
vector. Further assuming that the source term F;, is separable in time and space (i.e.

F.(z,t) = Ax(z)h(t)) and that U? is null, the preceding equation can be written

¢
Us= | eMTh(t - 'r)d‘r} A, (4.54)
0

To perform the preceding integration, we first need to compute eM»". Carcione (1987)
after Tal-Ezer (1986) suggests using the Chebycheff expansion of the operator’s ex-

ponential. This expansion can be written as follows:

inf
M = 3° CuJi(rR) Qs [%-] (4.55)
k=0

where J; is a Bessel function of the first kind k** order, and R is the radius of

convergence of the expansion. Cp is defined by:

Co=1andCy =2fork > 1 (4.56)

Finally the @) are defined by the following recursive relation:

M, MJ

Qk+1 [_R—] = %‘Qk [-j%"-] + Qk-1 [—ﬁ’l (4.57)
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with Qo = I, and @, {%ﬂ] = Mﬁﬂ. Equation 4.53 can now be completely rewritten in

its final form:
K M,
Un(t) = 3 Cran(tR)Qs [—E"-] A, (4.58)
0

ar(tR) = Zt: Je(TR)R(t — 7)dT (4.59)
o

Let us consider now the convergence conditions of this algorithm: The Chebycheff
expansion is known to converge for eigenvalues of M, close to the imaginary axis.
(Tal-ezer 1986). The eigenvalues of M, are purely imaginary for a purely elastic
solid. The eigenvalues associated with the viscous absorption, on the contrary, are
real and negative, thereby making the @ recursive relation (Eqn. 4.57) unstable.
Nevertheless, the overall expansion of U, remains stable (Tal-Ezer 1986) because
ay(t) converges to zero very rapidly as n increases, as long as t > £. The problem
is therefore to make sure that Q) [A—}gﬂ] does not exceed the dynamic range of the
computer. In order to minimize the divergence of the @, expansion, the following

relation can be used easily:

U, = | L eMatrDr o=l (1 _ 1)dr (4.60)
0

This last relation shifts the eigenvalues of M,, by 7- In order to minimize Q) [Mén] as k
increases, 7 was chosen to be exactly one half of the smallest real negative eigenvalue
of M,,.

To complete the computation formulated in equation 4.58, M,A, needs‘ to be

computed. Two standard methods can be used for this computation:
o the finite-difference method
e the spectral or Fourier method

The finite difference method requires a very fine discretization of the system mod-

eled in order to prevent numerical dispersion (Marfurt 1986, Samec 1990 this volume).
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Furthermore, the method by which the derivatives are evaluated needs to be accurate
down to the Nyquist sampling frequency, since the spatial source term A, is very
close to a Dirac function, as will be shown in the next section.

Since the material modeled naturally introduces dispersion owing to the causality
of the attenuation mechanism, it is absolutely necessary to minimize numerical dis-
persion. This is why the spectral method (also called the Fourier method) has been
chosen here. This method proposed by Kosloff (1987) minimizes numerical dispersion
with a better numerical efficiency than the finite-difference method, and also insures
that the computation of spatial derivatives is accurate up to the Nyquist spatial
frequency.

Using this method, the spatial operator M, is evaluated in the Fourier domain and
multiplied by the direct Fourier transform of A,,, and the result is transformed back

into the space domain yielding a very accurate computation of spatial derivatives.
4.3.4 Numerical experiment setup

The purpose of the modeling examples in this chapter is to help ascertain the
results obtained in section 4.1, as well as to illustrate the energy-focusing mechanisms
displayed by viscoelastic anisotropic solids. For those reasons, the source is designed
as an explosive point source, therefore generating mainly compressional waves, even
in an anisotropic medium. The choice of compressional waves for this investigation
is motivated by their extensive use in seismic exploration, and by the fact that even
though recent studies of anisotropy have focussed on shear waves, the impact of elastic
and attenuation anisotropy clearly affects the results of current seismic experiences.
Finally, this choice does not restrict the scope of our results which can be extended
equally well to shear waves.

The spatial distribution for a compressional wave point source is:
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A(z,y) = dia: (8(z — z0)) * 8(z — 20) s +_diz (6(z — 2z0)) 6(z — o), (4.61)

where z¢ and 2 are the sourée coordinates, and § is the Dirac function. For the
numerical computation, the spatial distribution of the source is modeled by the spatial
derivatives of a very narrow two-dimensional gaussian function centered at the source
point. This distribution spans over three grid points along both the horizontal and
vertical directions. The grid chosen here has 128 x 128 points. This number is limited
by the large amount of nodal variables, as well as by the necessity of performing all
the computations using double precision arithmetics.

The source time history is a symmetrical Ricker wavelet of the following form:

F(t) = e830=%) cos (ex fo(t — to)) (4.62)

with n = 0.5, € = 1., t{, = 6ms, and finally fo = 50Hz. For the elastic case,
convergence is achieved for R > 1800sec™!, and v was given a value of around 200sec™!
depending on the anelastic case modeled. Absorbing boundary conditions have been
applied to prevent reflections from the edges of the model. They were implemented

using the algorithm proposed by Kosloff, 1984.
4.4 Modeling results

Four cases were modeled to further investigate the impact of quality factor anisotropy
on compressional waves and to compare these effects to the better known effects of
velocity anisotropy. For each of the following cases, snapshots of the wavefield are

displayed.
o 1: Purely elastic isotropic medium (figure 4.5).
o 2: Elastic anisotropic medium (figure 4.6).

e 3: Vicoelastic isotropic medium (figure 4.7).
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e 4: Viscoelastic with isotropic elastic properties, and anisotropic attenuation

(figure 4.8).
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Figure 4.3: A symmetrical Ricker wavelet used for the modeling.

phase velocity

Figure 4.4: A) Group velocity and B) phase velocity used for the
anisotropic elastic modeling.
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Figure 4.5: Snapshot of the wavefield generated by an explosive source in
an isotropic elastic solid at time ¢ = .3sec.
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Figure 4.6: Snapshot of the wavefield generated by an explosive source in
an anisotropic elastic solid at time ¢ = .3sec.
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Figures 4.5 and 4.6 compare the wavefield snapshots of an isotropic and an anisotropic

elastic solid. They clearly display the main effects of elastic anisotropy on the wave-

field.

e First, the wavefield is shaped according to the group velocity, and the phase
distribution along the wavefront is conditioned by the difference between phase

and group velocity.

e Second, as will be seen in Chapter 5, the energy distribution along the wavefront
is inherited from two phenomena. First, elastic anisotropy introduces radiation
pattern anisotropy, and, second, the energy distribution along the wavefront

shifts toward the high group velocity regions as the wave propagates.

In contrast to figures 4.5 and 4.6, figures 4.7 and 4.8 illustrate the importance of
quality factor anisotropy on the wavefield. The effects of attenuation anisotropy can
be summarized as follows:

First the results presented with the purely isotropic, viscoelastic rock model are
consistent with the analytical prediction. As shown in figure 4.9, the amplitude
decay as a function of the distance from the source is consistent with the combination
of a two-dimensional geometrical spreading model where the amplitude decays as a
function of 71; and the attenuation model that predicts that attenuation will be of

the following form:

—Wwr ] 1
2uw@) % -\—/—F

where A is the signal amplitude as a function of the distance from the source r, w is

A(r) = A(0) x exp [ .(4.63)

the signal central frequency (25Hz), and the attenuation @ is 34. The comparison
between the isotropic and anisotropic attenuation modeling displays the two following
results:

First, the energy propagated in a medium with attenuation anisotropy is clearly

focussed along the minimum attenuation direction, consistently with the theoretical
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predictions of the previous section as shown in figures 4.7 and 4.8. Obviously, the
wave energy has been absorbed faster along the high attenuation direction, and the
effect is clearly visible even for the compé.ratively small Q anisotropy chosen for this
study.

Second, a close look at the wave fronts presented in figures 4.7 and 4.8 reveals the
phase advance on the low Q direction. This is especially apparent in comparing figures
4.10 b and 4.10 c. These seismograms were obtained by recording the wavefield along
a receiver line orthogonal to the maximum Q direction. The phase advance event
results in a significant change in the first arrival moveout, where the moveout in the
isotropic Q model remains hyperbolic, contrary to the anisotropic Q case, where the
moveout is a strong function of the Q factor azimuthal distribution.

The previous results show that, realistic quality factor anisotropy yields strong
energy focusing effects. This focusing effect is stronger in magnitude than the one
obtained for strongly elastic anisotropic rocks. Furthermore, the phase effects asso-
ciated with quality factor anisotropy are of the same order as those encountered in

weakly anisotropic solids.

4.5 Conclusions

The theoretical results obtained using a unified description of both elastic and
viscoelastic anisotropic materials is confirmed in the second part of this chapter by
the use of a purely numerical method. These results can be summarized in three

essential points:

o First, elastic anisotropic and viscoelastic effects are decoupled to the first order

in % That result is justified even for Q) as low as 34.

e Second, phase shifts associated with attenuation azimuthal variations can sig-

nificantly perturb seismic event moveout.
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Figure 4.7: A snapshot of the wavefield generated by an explosive source
in a viscoelastic isotropic solid at time t = .3sec. The attenuation pa-
rameter Q is: 34.
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Figure 4.8: A snapshot of the wavefield generated by an explosive source
in a viscoelastic anisotropic solid at time ¢ = .3sec. The attenuation
parameter @ is: 34 along the horizontal, and 130 along the vertical. The
elastic part is isotropic, and identical to the one used in figure 4.5.
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Distance
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Figure 4.10 : Vertical component eismograms obtained for the modeling
cases a):1, b):3, c):4



Chapter 4 — Viscoelastic Anisotropic Material. 129

e Finally, energy focusing effects related to elastic anisotropy only become sig-
nificant for fairly large anisotropy ratios. On the other hand, attenuation
anisotropy induces a comparatively high focusing along the minimum atten-
uation arrivals. As will be seen in the next chapter, both effects can severely

affect the interpretation of Amplitude Versus Offset data.
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Chapter 5

Effects of Viscoelasticity and
Anisotropy on Amplitude Versus
Offset Data Interpretation

Abstract

The effects of attenuation, elastic anisotropy, and attenuation anisotropy on Am-
plitude Versus Offset measurements are investigated using a full waveform modeling
algorithm.

The modeling method, based on pseudo-spectral time integration and the Fourier
method for spatial differentiation, is extremely accurate and allows a careful modeling
of the behavior of anisotropic viscoelastic materials as shown in Chapter 4. The ac-
curacy of the method applied to reflection seismology is first confirmed by comparing
the numerical and analytical solutions of the Amplitude Versus Offset variations of a
reflected seismic event in an elastic isotropic model.

This numerical method is further used to demonstrate that the classical interpre-
tation that relates Amplitude Versus Offset to the rock formation Poisson’s ratio is
only valid for isotropic elastic media. For viscoelastic anisotropic media, this simple

interpretation is no longer valid for the following reasons :

e First, as shown by Thomsen (1986) and Banik (1987), reflection coefficients at

an interface are strongly dependent on the elastic anisotropy of both adjacent
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media. This dependency is further increased in media with anisotropic viscous

properties.

e Second, the reflection coefficients along an interface are difficult to recover from
surface seismic data, because the energy and phase distribution of the incident
and reflected wavefronts is influenced both by elastic anisotropic energy focusing
and by anisotropic dissipation. These two phenomena are of the same order
of magnitude as the reflection amplitude variations, and make the amplitude
evaluation of a seismic event strongly dependent on the changes in the phase of

the signal, which occur continuously as the wavefront propagates.

5.1 Introduction

Recent studies by Thomsen (1986) have shown that the elastic properties of shales,
chalks, and other materials can be highly anisotropic. In fact, much work (Wright,
1987, Thomsen, 1986, Banik, 1987) has been devoted to characterizing transverse
isotropy in an attempt to more accurately describe the properties of shales and their
effects on reflection coefficients. On the other hand, numerous investigations (Kjar-
tansson 1979, Jones 1986, Winkler and Nur 1986, Nur 1969) among others) have
concentrated on the effect of intrinsic attenuation on wave propagation. The results
of Crampin (1984), and Hosten (1987) suggest that dissipation itself is an anisotropic
phenomenon, and that media with anisotropic elastic properties also display quality
factor or attenuation anisotropy. In fact, Crampin (1986) showed that by modeling
the effect of cracks on rock anisotropy one introduces the imaginary part of the elastic
tensor written in the frequency domain, and that this imaginary part has symmetry
similar to that of the real part. Hosten (1987) also showed that for a composite fine-
layered medium, the expected ratio of Q measured in a direction parallel to the layers

to that measured perpendicularly to the layers can be as large as 30. It is therefore
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logical to consider fully anisotropic media, when velocity and attenuation anisotropy
are considered.

After reviewing the implementation of the modeling algorithm described in the
preceding chapter to a seismic reflection experiment, this chapter separately exam-
ines the effects of both attenuation and anisotropy on Amplitude Versus Offset data

interpretation.

5.2 Implementation of the modeling algorithm for
the study of seismic reflections

5.2.1 The modeling method and a description of the parameters

The numerical modeling of the seismic experiments that are described in this
chapter is achieved with the Fourier Pseudo-Spectral method outlined in the previous
chapter. This method provides an adequate level of modeling accuracy for the study
of the wave phenomena related to both attenuation and anisotropy. The following

are the parameters used in all the modeling cases :

e The standard acquisition geometry is described in figure 5.1. This geometry
was modeled using a 128 x 128 samples grid, with a grid spacing of 10m. The
interface studied is located 450m below the receiver line. The receiver line itself
is built of 100 receivers with 10m spacing between the receivers. The entire
model is enclosed within the absorbing buffers, which eliminate most of the
unwanted reflections from the edge. The method is similar to that presenteci in

Chapter 2.

e The source spatial distribution is arranged to yield an explosive symmetrical
source. Since the modeling is two-dimensional, the point source used is actually
a three-dimensional line source. The hypothesis that the source is isotropic is

succesfully tested in figure 5.2 where the energy away from the source does not
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depend on the propagation vector. The source time history is the same as the

one used in chapter 4 (equation 4.61).

e Throughout the following examples, the notations defined by Thomsen (1986)
are used. This parametrization is especially attractive since the compressional
and shear velocities along the ve;tica.l can remain constant for all the examples,
and only the § parameter is varied in our numerical experiments to modify
the anisotropy parameters. The € and 4 are taken null for all our modeling
cases. The compressional velocity is Vp, = 2896m/s for the upper layer, and
Vp, = 3322m/s for the lower one. The shear waves’ velocities are, respectively,
Vs, = 1402m/s and Vs, = 1402m/s. The densities are the same for both layers
that is p = 2.25¢g/cc. For the modeling of elastic anisotropic solids, & is set to
0.1.

o Attenuation is modeled following the mechanism proposed in Chapter 4. Only
two relaxation functions are used, and they allow an almost constant causal Q

factor over the frequency range of investigation, as shown in figure 5.3.

As shown in figure 5.4a, § = 0.1 is a common value of anisotropy as measured on
core samples and in fact can be taken as a lower bound estimate for some strongly
anisotropic shales. Attenuation anisotropy which was theoretically predicted by
Crampin (1984), has been experimentally measured on synthetic materials (Hosten
1988). Hosten’s experimental results are shown in figure 5.4 b and report a very high
level of attenuation anisotropy for a synthetic, layered medium. A similar ratio of
approximately 30 between high and low attenuation was also predicted theoretically

by Crampin (1984). Such a ratio was used for modeling as shown in figure 5.12 b.
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Two relaxation functions
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Figure 5.3: Modeling attenuation : Attenuation is modeled by assuming that
the energy absorption can be modeled by two relaxation functions (a).
Such a modeling results in an almost constant causal Q model over the
frequency range investigated (from 5 to 100H z).
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Typical Anisotropy Parameters
using Thomsen's 1986 notation

Carbon-Epoxy Composite
(Hosten et al., 87)

Bakken (Black shale)
(Vernik & Nur, 90)

<

Mesaverde Lam. Silt
(Thomsen, 86 / Kelley, 83)

Green River shale
(Shock et al., 74)

Cotton valley shale
(Tosaya, 82)
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Figure 5.4: A comparative estimation of the measured anisotropic proper-
ties, and the anisotropic properties used in our modeling.
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Attenuation Anisotropy on Carbon-Epoxy

400 Composite (after Hosten et al., 87) —_—
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Figure 5.4: b) Experimental measurement of attenuation anisotropy in a
composite material after Hosten (1987).
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5.2.2 Modeling Benchmarks and reflection calibration

The following numerical experiments were conducted to evaluate the accuracy
of our algorithm when used to evaluate reflected amplitudes as well as reflection
coefficients. Two different methods have been implemented that yield consistent

results in the evaluation of reflected amplitudes and reflection coefficients :

5.2.2.1 Direct measurement of the reflection amplitudes

For the cases where the upper layer is isotropic and purely elastic, recording the
amplitude variations with offset after geometrical spreading correction is equivalent
to recording the reflection coefficient. Since our modeling is only two-dimensional,
the amplitude decay is proportional to -&; where r is the distance from the source
(Aki and Richards i1980). Should the modeling be truly three-dimensional, the decay
would be proportional to 1. This observation is consistent with the results obtained
in Chapter 4. However the previous use of the word amplitude is very imprecise.
Amplitudes can be evaluated in multiple ways with multiple meanings attached to

the measurement. Among other methods, the following were considered :

e maximum picked amplitude for the reflected event.
e root mean square average of the reflected arrival amplitude within a window.

e spectral amplitude attached to a frequency component of the reflected event.

Each of these methods yield the same results, provided that the transmission
line from the source to the receivers does not introduce any signal dispersion. This
can only be achieved when both the upper and lower layers of our model are purely

elastic, and when the numerical method does not introduce any signal dispersion.




Chapter 5 — attenuation, anisotropy and A.V.0O. 141

Should there be attenuation or anisotropy in one of the layers, the three preceding

methods would yield very different results for the following reasons :

e Amplitude picks over-emphasize the effects of phase shifts because the location
of the maximum amplitude on the wave train shifts with the signal’s phase.
Overall, the results from picks were found to be unstable and difficult to inter-

pret when anisotropy or viscoelasticity was modeled.

e The root mean square average provides a measure of the reflected energy within
a given window. (Aki and Richards 1980). This type of measurement eliminates
the undesirable phase effects noticed with the picking algorithm. However, this
method lumps the phase and pure energy focusing effects into one result, and
does not provide us with the level of discrimination that we expect in a low

signal-to-noise environment such as numerical modeling.

e The spectral amplitude method provides a perfectly calibrated measurement of
the reflection amplitudes for a given frequency, and allows us to discriminate
between phase distortion effects and energy focusing mechanisms. The spectral
amplitude method could only be adopted in this study because of the excellent

signal-to-noise quality delivered by synthetic data;

Figures 5.5 and 5.6 display the results obtained with the spectral method when
the top and bottom layers are purely elastic and isotropic. The spectral amplitude
data was measured at 35Hz, and corrected for two-dimensional geometrical spread-
ing. This data shows good agreement with the reflection coefficient data multiplied
by the source amplitude at 35Hz2, and confirms that for elastic isotropic media, the
measurement of amplitude variation with offset after geometrical spreading correction
is the actual measure of the reflection coefficient as a function of the incidence angle.
Furthermore, should the upper layer be isotropic and pupely elastic, the spectral mea-

surement previously described provides a good estimate of the reflection coefficients,
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since the signal is not distorted while propagating in the upper layer.

5.2.2.2 Direct measurement of the reflection coefficient

Should the upper layer of our model be purely elastic, the spectral method previ-
ously described allows a direct computation of the reflection coefficient as a function
of the incidence angle. Should the upper medium be viscoelastic or anisotropic, the
transmission effects would dramatically alter the quality of both the incident and
reflected waves, as will be shown later in this chapter. In such a case, numerical
modeling still allows an adequate evaluation of the reflection coefficients for arbitrary
media.

Figure 5.7 shows receivers that are placed along both down-going and up-going
ray paths of the mode of interest. Further extracting amplitude variations along these
receiver traces using the spectral method provides the data displayed in figure 5.8.
The amplitude along the ray path first decays due to the effects of both geometrical
spreading and attenuation until the ray reaches the interface. The sudden amplitude
jump in figure 5.8 then provides a direct measurement of the reflection coefficient
for each ray path selected. This method yields a direct numerical estimation of the
reflection coefficient. Figure 5.9 shows the agreement between the analytical reflection

coefficient and the numerical computation is excellent.
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Figure 5.5: A typical record for the reflection receiver geometry. Only com-
pressional waves are displayed on this graph, and two modes can be
clearly identified, direct waves, and reflected compressional waves.
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Figure 5.6: Comparison between the numerical and theoretical computation
for the amplitude of the reflected compressional waves. The theoretical
prediction (solid line) is obtained after multiplying the reflection coef-
ficient by the source amplitude. The picked amplitude (dashed line) is
corrected by 71,-_ for two dimensional geometrical spreading.
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Figure 5.7: Second acquisition geometry to directly compute the reflection
coefficients from the records placed along the ray paths.
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5.2.2.3 Monitoring the wave fronts

In order to understand the effects of wave propagation phenomena on the measure-
ment of Amplitude Versus Offset for reflected signals, the effects of energy focusing
and defocusing along the wave front need to be understood as well as the effects
related to anisotropic attenuation. To that end, a new receiver geometry was intro-
duced; it is similar to the one described in Chapters 1 and 2 for measuring downhole
source radiation patterns. For that last configuration, the receivers are placed around
the source along equal phase curves as shown in figure 5.10. The signal recorded for
one of these receiver arrays is displayed in figure 5.10, where the upper layer is elastic
and anisotropic. The mis-alignment of the first arrival is caused by the discrepancy
between phase and group velocity in an anisotropic medium as figures 5.15 shows.
Fig 5.11 clearly displays both the down-going compressional wave, and the reflected
compressional wave. Since the down-going arrival is stronger than the reflected one,
it is apparent that this type of plot can be used as a diagnostic tool to measure both
phase distortion and energy focusing effects that affect wave propagation phenomena

in anisotropic viscoelastic solids.

5.2.3 Partial conclusions

Various tools were presented in this part that allow to harness the numerical
modeling of wave phenomena in viscoelastic anisotropic solids. For the rest of this
chapter, we will assume that wave amplitude refers to the spectral amplitude of an
isolated mode measured at 35Hz which is the central frequency of our signal. All
amplitude displays will be in true "amplitude”, and theoretical measurements will
be displayed after normalization by the source amplitude. The following two parts

detail a sensitivity analysis of Amplitude measurement Versus Offset with respect
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to both anisotropy and viscoelasticity. Due the high precision required for these
measurements, direct reflection coefficient measurements will be achieved by using an

isotropic elastic upper layer.

5.3 The effects of attenuation on Amplitude Versus
Offset measurements

Two distinct effects of attenuation on Amplitude Versus Offset measurements
will be reviewed in the following section. The first one concerns the direct effect
of attenuation on the reflection coefficient, and the second concerns the effect of
attenuation on the wave propagation from the source to the reflector and back to the

receiver array.
5.3.1 The effects of attenuation on the reflection coefficients

For the first modeling case, the lower layer is viscoelastic, and both the elastic and
attenuation parameters are isotropic. The bottom layer parameters are described in
figure 5.11. The measured amplitude at the surface receivers (figure 5.13 a) for both an
elastic bottom layer (solid line), and a viscoelastic bottom layer (dashed line) clearly
display the effect of attenuation on the reflection coefficient : an overall increase in
amplitudes with no appreciable change in the A.V.O trend. The overall amplitude
jump can be easily interpreted by considering that the addition of the viscoelasticity
in the bottom layer increases the apparent impedance contrast between the two layers.
Our results are consistent with the one described by Bourbie (1982) both qualitatively
and quantitatively.

Should the bottom layer still be attenuating but with an anisotropic attenuation
parameter identical to the one in figure 5.12, the reflection coefficient curve departs
from the one obtained previously as shown in figure 5.13 b where the dotted line

represents the anisotropic attenuation case. This last result further illustrates the
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dependence of the reflection coefficient on the attenuation parameter : At normal
incidence, attenuation is the same for both isotropic and anisotropic attenuation
models. As incidence angle increases, the attenuation decreases with propagation
angle, thereby reducing the contrast between the upper and lower layer. This results
in the relative decrease of the reflection coefficient for the anisotropic attenuation
case, when compared to the isotropic case.

5.3.2 The effects of attenuation on wave propagation mechanisms

figure 5.14 displays the measured reflected amplitude where the upper layer is
isotropic viscoelastic (solid line), and viscoelastic anisotropic (dashed line).

For the isotropic viscoelastic case first, the A.V.0O. trend is now flat instead of
strongly positive. This phenomena can be easily explained by accounting for the effect
of attenuation along the ray path. The longer the ray path, the higher the attenuation,
thereby destroying most of the A.V.O trend created by the reflection coefficient alone.
This explanation is confirmed by considering the anisotropic attenuation case where
the A.V.O trend recorded in the elastic case is amplified. As offset increases, the
propagation or incidence angle also increases lowering, the attenuation effect and
increasing the original A.V.O trend.

In the latter case it is important to notice that picking the reflected arrival would
have not always been giving the answer found with the spectral method because
it depends on the phase of the reflected event picked. In an anisotropic attenuating
medium, the dispersion introduced by the difference between phase and group vélocity
is not uniformly‘ spread along the wave front and therefore creates large errors in the

picked measurements.
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Figure 5.12 a: Description of an isotropic viscoelastic solid. Such a solid
can be described by a) the group velocity, b) the phase velocity, and c)
the Quality factor for both compressional (outer circles) and shear waves
(inner circles). d) The dependency of the various attenuation parameters
on frequency.
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Figure 5.12b: Attenuation anisotropy properties of the material modeled.
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Figure 5.13: a) Comparison between the reflected compressional waves am-
plitude where the bottom layer is purely elastic (solid line), and viscoelas-
tic (dashed line). b) The dotted line now shows the reflected amplitudes

where the bottom layer has anisotropic viscoelastic properties.
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5.3.3 Partial conclusions

Three partial conclusions can be drawn out of the previous results :

e 1) Viscoelasticity contrast is not a controlling factor of the variation of the re-
flection coefficient with incident angle for small incidence angles, but is certainly

a controlling factor of amplitude.

e 2) For a fairly typical shallow reflector geometry, attenuation along the ray path
can mask the effect of an increase in the reflection coefficient with incidence

angle.

¢ 3) The role of viscoelastic anisotropy is more difficult to evaluate. Viscoelastic
anisotropy can severely affect the variations of the reflection coefficient with the
incidence angle, and is expected to yield a relative decrease. However, attenua-
tion anisotropy has a very strong effects on propagation effect, and can actually

create a positive A.V.0O effect for an otherwise constant reflection coeflicient.
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Figure 5.14: Compressional waves reflected amplitude measurement. In the
first case the top layer is viscoelastic isotropic (solid line). In the second
case, the top layer attenuation properties are anisotropic.
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Figure 5.15: Elastic properties of the anisotropic material used for modeling
: a) Group velocity, b) Phase velocity.
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5.4 The effects of elastic and attenuation anisotropy
on Amplitude Versus Offset measurements

For this study, the anisotropic material modeled is depicted in figure 5.15. It is
obtained by using the velocities previoﬁsly described, and by taking §6 = 0.1. Should
anelastic anisotropy be considered, anelastic anisotropy is similar to the one presented

in the previous part.
5.4.1 The effects of anisotropy on the reflection coefficients

The effect of elastic anisotropy on reflection coefficients was extensively described
by both Banik (1987) and Thomsen (1986). Their results were reproduced with the
greatest accuracy as shown in figure 5.16 where the upper layer is isotropic, and the
lower layer is anisotropic. Each curve cluster presents a comparison between the
analytical computation (*) and the numerical computation (solid line). As expected
for the special case of anisotropy studied here, anisotropy yields a larger increase of
the reflection coefficient as a function of incidence angle. However the effect related
to elastic anisotropy is relatively small compared with the dramatic effects introduced
by viscoelasticity.

Should a fully anisotropic medium displaying both elastic and viscoelastic anisotropy
be used to model the bottom layer, the results presented in figure 5.17 display a very
sharp increase in the reflection coefficient with offset, as well as an increase in the over-
all reflected amplitude. This result may seem somewhat contradictory with the result
previously obtained using a bottom layer material that is isotropic for the elastic be-
havior, and anisotropic for the viscoelastic behavior. However this last result indicates
that even though elastic and viscoelastic propagation phenomena are decoupled to

the first order (Chapter 4), the reflection coefficient introduces a close coupling effect
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between these two material properties and explains the result previously described.
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Figure 5.16 : Effect of anisotropy on the reflection coefficient. a) Where the
reflecting layer is isotropic, b) the reflecting layer is anisotropic. Each
curve cluster displays a comparison between the numerical (-) and ana--
lytical (’gogomputation.
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Figure 5.17 : Same as figure 5.16, but the upper curve is obtained for a both
elastic and viscoelastic anisotropic bottom layer.
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5.4.2 The effects of anisotropy on wave propagation mechanisms

Consider that the upper layer of our model is anisotropic with 6 = 0.1 as before.
The reflected amplitudes after geometrical spreading correction are displayed in figure
5.18. The predicted result (*), and the actual numerical result (dashed line) differ
very strongly. This discrepancy is not related to the method inaccuracy but instead
is related to the wave propagation phenomena introduced by the intrinsic elastic
anisotropy of the upper layer.

To verify this hypothesis, the receiver geometry described in 5.9 is used to monitor
the energy distribution on the down-going compressional wave front. These results
are presented in figure 5.19 for both an isotropic upper layer (a), and an anisotropic
upper layer (b). As expected in the isotropic case, the source radiates energy isotropi-
cally since the amplitude as a function of the propagation direction for a given time is
constant. As time increases, the amplitude on the wave front decays due to geometri-
cal spreading. For an anisotropic upper layer however, the initial energy distribution
along the wave front is not a constant as shown in figure 5.19 b. This first effect
implies that elastic anisotropy introduces radiation pattern anisotropy. This is fur-
ther explained by the fact that even though the source is an explosion, a significant
amount of shear waves are generated by the source due to elastic anisotropy, and the
compressional wave radiation pattern reflects such a partition between compressional
and shear wave energy.

Furthermore, as time goes, the energy distribution along the wavefront shifts.
This particularly interesting result is due to the difference between group and phase
velocities that differentially focuses energy along the wavefront. This last result allows
us to interpret the results displayed in figure 5.18. The discrepancy between the

numerical computation, and the theoretical prediction is due to the anisotropy of
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energy distribution along the wavefront.

Reflection coefficients significantly dépend on the elastic anisotropic parameters
of the material involved. However A.V.0. measurements do not solely reflect the
effects of the reflection coefficient on the surface-recorded signal, but also of the wave
propagation phenomena from the source to the reflector and back to the surface.
For weakly anisotropic rocks, the impact of propagation phenomena are as large if
not larger than the pure effect of anisotropy on the reflection coefficient, and should

therefore be taken into account for the interpretation of A.V.O. data.
5.5 Conclusions

The translation of Amplitude Versus Offset trends into rock petrophysical prop-
erties such as Poisson’s ratio can only proceed under the assumption that rocks are
isotropic and elastic. As indicated by both laboratory and field studies, the last two
assumptions are in general not valid, and assuming that the earth is neither isotropic

nor purely elastic yields the following observations:

e Reflection coeflicients, which are the primary target of A.V.O. interpretation,
are strongly dependent on both the viscoelastic and the anisotropic properties

of the rock studied.

e Both the anisotropic and viscoelastic properties of a material will alter the signal
during propagation, first, because of energy focusing, and, second, because of

attenuation or dispersion.

For these reasons, it is reasonable to assume that both viscoelastic and anisotropic
parameters should be included in A.V.O. interpretation. The system considered is
not only the reflecting target but rather the full wave path from the surface to the

target, as well as the target itself.
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Chapter 6

Finite-difference Computation of
Travel-times

Abstract

Finite-difference ray tracing (F.D.R.T.) is a numerical method designed to solve
the eikonal equation on a regular grid using an upwind finite-difference-like algorithm.
Because it uses a finite-difference algorithm, F.D.R.T. is between 10 and 100 times
faster than classical raytracing that is used to solve two point boundary condition

problems.
Expanding the scope of the method proposed by Vidale (1988) I found that :

e F.D.R.T. provides extremely accurate results for the travel times in an isotropic

medium, providing the true first energy arrival for a given mode.

e extended to the anisotropic case, F.D.R.T. provides a method to incorporate
to the first order the effects of anisotropy. For a material with 12% anisotropy,
the maximum travel time error was 1.5% thereby smaller than the error that

would have been introduced by neglecting anisotropy all together.

e extended to anelastic medium, F.D.R.T. allows for accurate modeling of dis-

persion, as well as attenuation, given a simple model for attenuation (constant
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Q). These computations only apply if frequency dependent scattering can be

neglected.

6.1 Introduction

Vidale (1988) and Van Trier (1989) have proposed a direct solution of the eikonal
equation using the finite-difference technique : finite-difference ray tracing (F.D.R.T.).
This method allows for an extremely rapid computation of travel times for any geo-
physical model that can be described on a regular mesh. It computes the arrival
time of the first arriving mode, providing a continuous (C?) curve for the first arrival
independent of its type (whether it is a body wave, a refracted wave, or a scattered

wave).

The speed of this algorithm (10 to 100 times faster than classical ray tracing)
makes F.D.R.T. extremely useful for three-dimensional computations. F.D.R.T.’s
nature makes it particularly suitable for tomography techniques since it computes the
actual first arrival. Finally, it can be used to speed up full waveform finite-difference
algorithms by computing the zone affected by the wave propagation phenomena and

restricting the finite-difference computations to this very area.

My interest in this chapter was to try to expand the applicability of F.D.R.T.
beyond its use with isotropic acoustic materials. Three directions of investigation

proved to be worth pursuing:

e increasing the accuracy of the F.D.R.T. algorithm for arbitrarily located sources

and receivers without changing the main algorithm

e extending the use of F.D.R.T. to anisotropic material
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o extending the use of F.D.R.T. to viscoelastic materials by including the effects

of dispersion and attenuation

6.2 The numerical method

This section provides a detailed description of the numerical algorithm used for
F.D.R.T. by first describing interpolators related to the eikonal equation, then the
upwind finite-difference algorithm. It concludes by estimating the overall accuracy of

this method.
6.2.1 The eikonal equation and its numerical solutions

The propagation of two-dimensional wavefronts, and thus, the computation of

travel times, is described by the eikonal equation of ray tracing:

CRCR

where t is the travel time. The left side the square norm of the gradient of the travel
time and s is the slowness of the medium. Both partial derivatives on the left side of
equation 6.1 can be evaluated numerically using a simple first order finite-difference

algorithm yielding (after Vidale 1989):

ot 1 :
o 1
-a-; = "2—h(to + tl - t2 - t3) (63)

The term h represents the grid spacing, and the location of the various indexes used

in the previous equations is provided in figure 6.1a.

A combination of the three preceding equations yields the first interpolation func-

tion for the travel times in the case of a propagating plane wave. By solving equations
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Figure 6.1: a) Indexes for the finite-difference computation of travel times:
from this cell, an upwind algorithm can be devised that solves travel
times for a row. b) the algorithm for travel time computations for a row
(after Vidale 1989).



Chapter 6 — Finite-difference ray tracing. 166

6.1, 6.2,and 6.3 for ¢3 we obtain:

ts = to +1/2(hs)2 — (t2 — t1)? (6.4)

where s is the slowness of the medium. Two other interpolators are also described by

Vidale and given in Appendix 4:

¢ an implicit interpolator for spherical waves that computes ¢3 as a function of ¢;,

t2, and t4 under the assumption of a locally spherical wave

e an explicit interpolator that computes t3 for a new row at a minimum of the
travel time curve, provided that the three other travel times are computed in

the previous rows.

The accuracy achieved by these three interpolators in the source neighborhood
is shown in Table 6.1. Maximum accuracy can be achieved by using the spherical
interpolator in the source neighborhood and the plane wave interpolator elsewhere.
Instead, as described in the next section, I preferred a center cell algorithm for opti-
mum accuracy in cases where the source is not located on a node of the finite-difference

mesh.

Algorithm Interpolator 1 | Interpolator 2 | Interpolator 3
Vidale (1989) | 4.8 % 0.9 % 7.6 %
Centered cell [ 0.2 % N/A 0.36 %

Table 1: Maximum interpolation error in the source near field. The table
entries are the maximum relative error encountered within the first five
rows of points from the source for each interpolator. The first row values
are provided for a straight implementation of the algorithm provided by
Vidale (1989), and the second one for the centered cell algorithm devel-
oped in this paper (Interpolators 2 and 3 are described in appendix I).
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6.2.2 The upwind finite-difference algorithm

This algorithm was implemented after Vidale (1989). It proceeds in four steps as

shown in figure 6.1b.

e 1) For a row where travel times are known, the minimum and maximum of the

travel times are computed.

¢ 2) Then using the third interpolator, the travel times for the next row are

computed for each local minimum of the travel time curve.

e 3) Starting from each minima along a row the solution is computed using the

first interpolator up the two closest local maxima.

¢ 4) Finally, the minimum value for both travel times computed at a local maxima

is retained.

The fact that the solution is computed from the local minima, is the stability condition

of the algorithm.
6.2.3 The center cell algorithm

Table 1 displays the errors associated with the use of the various interpolators
described by Vidale. Though it is less computer intensive, the first interpolator yields
poor results in the source neighborhood. Vidale suggesfs using of a hybrid algorithm
using the second interpolator in the source region for optimum accuracy, and then
switching to the plane wave interpolator away from the source for better numerical
efficiency.

My implementation does not retain this algorithm because it requires the coding
of two very different algorithms, and also because Vidale’s algorithm only applies
when the source is placed at a grid node. My scheme uses only the first and third

interpolators in the following context:



Chapter 6 — Finite-difference ray tracing. 168

e The travel times are computed in the source region, using a straight ray as-
sumption, from the source to the outer edge of the center cell. This straight
ray approximation is valid here because the size of the center cell is the same

as the grid spacing.

¢ Then the solution is propagated using Vidale’s algorithm with a reduced mesh
resolution until it reaches a region where the true mesh resolution is achieved

in the far field of the source.

e Finally, the rest of the solution is computed with the nominal mesh resolution,

using the first interpolator.

This algorithm is illustrated in figure 6.2.
6.2.4 Algorithm accuracy and partial conclusion.

figure 6.3 shows the results obtained with the center cell algorithm for an isotropic
homogeneous medium, where the sources and the receivers are not located at grid
nodes. The accuracy of the algorithm is satisfactory: less than 0.1% error.

In the case of a layered medium (figure 6.4), the F.D.R.T. algorithm computes
the true first arrival at the receivers. Below and above the low velocity layer, the first
arrival is a compressional body wave. Within the low velocity layer, the V-shaped
arrival time curve is generated by head waves originating at the interface between low
and high velocity layers.

The results obtained in this preliminary modeling stage can be summarized as

follows:
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Figure 6.2: The central cell algorithm: the travel times are first computed
on the outer edge of the center cell (straight rays), then in the source
near field with a reduced mesh size, and finally computed in the far field,
using the nominal mesh size.
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Figure 6.3:The travel time computation errors in an isotropic homogeneous
solid. This graph shows the difference between the travel times com-
puted using F.D.R.T., and those computed with an analytical solution.
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e F.D.R.T. provides very accurate computations of the true first arrival travel
time. This arrival can be a composite of multiple modes. Travel times are even

computed in what are considered shadow zones with classical ray tracing.

o The travel time curve obtained at the receivers is continuous (C°) which is a
consequence of the search for minima and maxima in the upwind finite-difference
algorithm. Nevertheless, the continuity level of these curves is not of class C*

(their first derivative is not continuous.), or higher continuity level.

6.3 The extension of F.D.R.T. to anisotropic ma-
terials

6.3.1 The method

Since the interpolation method I have been using for the isotropic case is based
on the eikonal equation (that is, the propagation of a plane wave), the algorithm
developed in the first part of this paper can be easily transposed to the anisotropic
case. This is done by replacing the slowness in equation 6.1 with a slowness that
depends on the propagation angle of the local plane wave.

The propagation angle is defined by the notations of figure 6.1 as:

0 = arctan (“2—‘@) - (65)

(t1 = t0)
Then, given the propagation angle, the slowness for the compressional waves, for

example, can be easily computed (after Auld 1976) for a hexagonal solid as follows:

1
s= \/2_;; [cnsin20 + €33¢08%0 + c4q + \/(p)] (6.6)

p= \/[(Cn - (:44)sin20 + (644 - 633)60320] + (613 -+ c44)2sin220 (67)
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Figure 6.4: Travel time computations in an isotropic layered medium. A)
Travel time map computed at each node of the grid. The source is lo-
cated in the central low velocity layer. B) Raytracing using the travel
time distribution displayed in figure 6.4 a.
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Other approximate formulas like the one provided by Thomsen (1986) and Banik
(1987) can easily be used to substantially reduce the amount of computation required

to estimate the velocities.
6.3.2 The results

The results of these computations are presented in figure 6.5 for an anisotropic
homogeneous medium with 12 % compressional velocity anisotropy. Figure 6.5a,
shows that the error between the numerical and analytical solution is fairly high ( 2
% ), and in any case much higher than the errors computed in the isotropic case.

Such a large error is related to the computation of # which involves the difference
of the travel times between two neighboring grid points and is thus equivalent to a
differentiation. As pointed out in section 6.2, F.D.R.T. computes a C° travel time
distribution, and the continuous computation of the propagation angles requires a C*
distribution.

Nevertheless the error introduced by the anisotropic computation is less significant
than fhat which would be introduced if anisotropy were neglected altogether, as figure
6.5b shows. The corollary is that if F.D.R.T. technique is used to estimate anisotropy,
the error on the anisotropy percentage, or velocity ratios, would be approximately 10

%.

6.4 Extension of F.D.R.T. to viscoelastic materials

For the same reason, the results of F.D.R.T. for an anisotropic medium were not
excellent, amplitude computations using F.D.R.T. yield between 10 and 25 % error.
Two methods were tested, one using the energy flux conservation equation, the other

using Vidale’s results (1989). Both methods use the second order spatial derivative
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of the travel time distribution, which is not continuous, thereby yielding a poor result
for amplitude estimation.

Nevertheless, if signal signature, rather than signal true amplitude is a major
concern, (which is the case for most inversion techniques), the effects of attenuation
and dissipation on the initial wavelet radiated by the source can be computed with

very high accuracy.
6.4.1 The method

The method is based on a first order perturbation of equation 6.1 where the
slowness is a function of the signal frequency. At each node of the grid, the travel
time is computed at the reference frequency (wo) and travel time difference ( At(w))
is computed for various frequency samples in the frequency domain spanned by the
source. The velocity at a given frequency for a constant Q model is provided by Aki

and Richards (1976):

2(w) = v(wo) X [1 + ;rlézn (2%)] (6.8)

Then expanding equation 6.3 , as a function of Av(w) and the travel time difference

introduced by dispersion ( Atgy, Aty, At,), I find that:

1] 2p%2 1 w
Aty = Aty — © lmm (lng) + (Aty — Aty) (4 — tz)] | (6.9)

A similar type of equation can be written for amplitude attenuation for a given

where | is the ray path length from point 0 to 3. Thus, the attenuation of the signal

for a given frequency is accounted for at each grid point. The previous equations
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are only valid under the assumption that all the "rays” travel along the same ray
path independently of frequency. That, in turn, implies that the effects of frequency

dependent scattering are neglected in this computation.

Finally, if the source time history can be written as s(t), or s(w) in the frequency
domain, the history at the receivers can be reconstructed under the previous assump-

tions as:

r(w) = a(w) x ezp(iwt(w)) (6.11)

or after Fourier transform in the time domain as:

r(t) = % [ alw) x eapict(ew))dt (6.12)

therefore computing the effects of both attenuation and dispersion on the received

signal.
6.4.2 The results

As illustrated in figure 6.7, this approximate computation of F.D.R.T. to model a
viscoelastic medium provides accurate results. Both the effect of attenuation at high
frequency, and the phase effects associated with dispersion are clearly visible when

comparing figure 6.7a to figure 6.7b
6.5 Conclusions

The CPU time it takes to compute the travel times for the three cases discussed in
this paper are summarized in Table 6.2. F.D.R.T. provides an extremely fast means of
computing accurate travel times in a variety of medium and can therefore be applied
to numerous new tasks. Chapter 7 illustrates the use of this algorithm for both cross

well data interpretation purposes and non linear inversion of cross well data.
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Medium:

Elastic Isotropic

Elastic anisotropic

viscoelastic

CPU time

0.3sec

4.6sec

9.1secs

Table 6.2: CPU time for the computations of the travel times on a 256 x 256

grid for the case listed in the first row.

i S R 7 TR R L s
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Chapter 7

A Methodology for Cross-well
Data Interpretation

Abstract

Cross-well seismic data is acquired to provide an enhanced interpretation of geo-
logical features, and to monitor EOR processes. Three specific tools were developed

to aid the interpretation of such data within its natural geological setting.

e A distributed software that handles both the data and the data flow required
for such interpretation. The data for this study comprises 1) well logs, 2) tomo-
graphic reconstructions of the inter-well regions, and 3) the cross-well seismic

data itself.

e A parametrization of the earth model, in terms of both interfaces and layer

textures that allows a thorough description of the region at any given scale.

e An automated least-square based inversion process that aids the process of

designing the earth model in the inter-well region.

Using these capabilities, wave equation modeling as well as ray-traced modeling
was performed using an interpreted model of the inter-well region. Both modeling

methods provided a satisfactory match with the elementary attributes the actual

180
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cross-well seismic data.
7.1 Introduction

Cross-well seismic data can be viewed as a reservoir development tool whereby the
data already known about the field is enhanced through the interpretation of high
frequency seismic data. The expected result of such a study is an interpreted and
integrated view or image of the earth’s underground. The interpretation methodology
proposed in this chapter has three goals: to make use of the prior data, to define a
model parametrization that will allow both classical interpretation and geophysical
interpretation, and to use wave equation modeling or ray-traced modeling to tie the
model designed with the actual cross-well data.

This chapter presents both the proposed methodology, and an elementary appli-
cation in which the data acquired by Harris et al. (1990) is interpreted in three

steps.

e First, most of the data available for the field is described. This includes a
complete suite of well logs and the cross-well seismic survey, as well as the

tomographic reconstructions J. Harris (1990) obtained.

e Second, an earth model is built consistently with both the log data and the to-
mographic data. To define this model, a geological-geophysical model parametriza-

tion is introduced that supports both interface and layer parametrizations.

o Finally after investigating an automated algorithm to reconcile the earth model
with the first arrival picks of the seismic data, our model is modified to match
the actual travel-time picks of the seismic data, thereby delivering an extremely

simple model consistent with most of the data implemented.
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7.2 Description of the data

The target of the investigation is a normal fault within the Miocene sand/shale
sequence onshore in Southeast Texas. This fault was deduced from the type logs

(Harris 1990), but its position was never clearly outlined.
7.2.1 The well logs

The log suite is presented in figures 7.1 and 7.2. The gamma ray and compres-
sional velocity logs are fairly poor indicators of lithographic boundaries within this
sand/shale environment. Instead, lithographic changes are perfectly recorded by the
spontaneous potential and conductivity logs. These are used for this preliminary
study.

On the basis of the spontaneous potential and conductivity logs, marker sand beds
can easily be identified. Those annotated as m5 and m10 in figures 7.1 and 7.2 are
very good examples. Both sand beds, however, have very saddle signatures in the
gamma ray log, with a lower gamma ray amplitude and lower compressional velocity.
Finally, the sand bed markers are also clearly visible on the density log (Harris et al.
1990). Based on the previous analysis, the sand bed annotated m9 in figure 7.1 is
not present in figure 7.2, which indicates that this bed terminates in the inter-well
region. On the basis of the field geology, and the known tectonics in this region, it
is reasonable to assume that this bed is truncated by a fault. A further indication is
that the stratigraphic sequence resumes normally with the mb ;c,and body. Identifying
this bed truncation was one of thé motivations for the acquisition of the cross-well
seismic data, and is the subject of the remaining part of this chapter.

Lastly, the well deviations were measured. The deviation logs are used to estimate
an optimum plane that minimizes the distance from the wells to the plane using the

least-square criterion. Figure 7.3 shows the projections of the two wells considered
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on this optimum plane. This plane is used in the future both for interpretation and
modeling purposes because it minimizes the effects of out-of-plane wave propagation
inherent in this study.

The general experiment layout shown in figure 7.3 displays both log suites and

illustrates the bases of our interpretation by displaying the interpreted fault.

7.2.2 The cross-well seismic data

An example of cross-well data is displayed in figure 7.4. The data was acquired
using a piezoelectric bender source constructed by Honeywell Marine Systems con-
taining two piezoelectric bars. The source was swept from 400 to 1600Hz with a
nominal resonant frequency of 800Hz. The data displayed in Fig 7.4 was obtained
after correlation of the received signal with the initial electrical signal (Harris, 1990).

The primary arrival is interpreted as a combination of compressional body waves,
head waves, and critically refracted waves (see section 7.4). Receiver-well borehole-
guided waves are clearly visible emerging mainly from the central part of the common
shot gather. They are easily recognizable because of their linear moveout. In the
center part of the shot gather where the travel path is minimum, the signal maximum
frequency component is approximately 1000H z but degrades fairly quickly with larger
offsets to frequencies as low as 400 to 500Hz. The phase of the first arrival signal
seems to be fairly unstable which makes first break picking sometimes difficult without

further information. The dominant causes for phase instabilities are:

o the fact that the source remains of constant length, and is swept from 400 to
1600H z. The sweep runs from below the source first harmonic, to the second
harmonic thereby yielding a frequency dependent radiation pattern. For the first
harmonic, the compressional waves are maximum along the horizontal and decay
with increasing receiver offset. For the second harmonic, the compressional

waves are maximum at 45° from the horizontal and null along the horizontal.
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gamma-ray log, spontaneous potential log, compressional velocity log.
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o because the source changes regime while sweeping, the overall electricimpedance
of the source changes, thereby introducing a new uncertainty: the source’s elec-
trical signal may not correspond to the mechanical output of the source. Because
the electronic sweep was used for correlation, this approximation may introduce

new phase variations along a single arrival.

¢ finally, because the receivers remain fixed for multiple source positions, the re-
peatability of the source radiation pattern in the borehole environment might
be questionable. As Chapter 3 explains, the downhole source radiation pattern
is extremely sensitive to the coupling with the borehole, and there is little guar-

antee that this coupling remains constant from one source location to another.

Based on the picks obtained with this data, I estimate that the first arrival picks
are accurate with an average error of 4/10ms, which corresponds to approximately
half a cycle, on average, over the data.

Finally even though they are predicted by the modeling, shear waves are not seen

in this data for two reasons:

e First, as Chapter 3 explains, shear waves’ amplitude is maximum at 45° from
the horizontal for the first harmonic of the source, and maximum along the
horizontal for the second harmonic. Assuming that the second harmonic is
attenuated along the ray path, the first harmonic shear waves’ amplitude at 45°
are subject to higher attenuation because of the smaller spatial frequency of the

signal and because of the longer ray path at 45° than along the horizontal.

e Second, even though the conversion mechanism at the receiving borehole from
elastic shear waves to borehole fluid pressure is not very well known, it is rea-
sonable to assume that the conversion efficiency is lower for shear waves than

for compressional waves (White, 1973).
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Since the signal-to-noise ratio for compressional waves at 45° from the source
already renders picking fairly difficult, it is reasonable to believe that most of the
shear waves’ amplitudes are not measured in this experiment because they are smaller

than the noise amplitude.
7.2.3 The tomographic images

Two different compressional velocity tomographic images were interpretated. Even
though they were not obtained using the same travel time picks and the same ray-
tracing algorithm, both were computed using the string inversion algorithm proposed
by Harris, et al. (1990).

The first image displayed in figure 7.5 (Lazaratos, 1990) shows numerous artifacts
associated with ray paths, but the actual compressional velocities extracted from that
image match well the compressional velocities obtained from the well logs especially
for the low velocity sand beds. The second image (Harris et al., 1990) is displayed
in figure 7.6. It does not show artifacts associated with ray paths, but provides
a smoother image of the velocities. Furthermore, the velocities extracted from the
latter image are 10 to 17% higher than those computed on the basis of the well
logs. For both images, however, the tomographic estimation of velocities is always
greater than the sonic velocity. One of the main reason that can be invoked to
justify such a result is the existence of rock anisotropy, since tomography in our
context essentially measures horizontal velocities, and the sonic log velocity mea,sﬁres
a vertical velocity. Computing higher velocities along the horizontal is therefore
consistent with the anisotropy hypothesis (Thomsen 1986). However, the anisotropy

hypothesis is not completely justified for two reasons:

e First, even though the ray trajectories are computed in a plane, the path com-
putation minimizes the actual path, therefore yielding a lower estimate of ve-

locities.
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Figure 7.3: General experimental layout for cross-well seismic interpreta-
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well 8135. The central panel represents the well projection in the work
plane (Brown lines), the two-dimensional location of the well picks, and
the interpreted structure. From top to bottom shot 79, 97,117,125 are
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e Second, the amount of anisotropy computed in each images differs significantly.

This last observation suggésts another justification for estimating high velocities
using the cross well method: the amount of anisotropy computed is a bias of the
smoothing algorithm used to enhance the tomographic image as well as an artifact of
the algorithm used for ray tracing. This hypothesis is investigated in the last section

of this chapter.

7.3 The model parametrization

The parametrization of the interpreted model is a key ingredient in the imple-
mentation of the modeling and inversion techniques to obtain a satisfactory match
between the modeled data and the cross-well seismic data. This parametrization re-
quires both that high frequency features of our model such as interfaces be preserved,
and that low frequency features such as lateral velocities variations also be preserved.
Above all, the model must rely on a very small number of user controllable parame-
ters, and must allow for the rapid implementation of prior information such as that
contained in the log data.

In addition, the model parametrization must include most of the functionality of
classical geological modeling, and yet preserve the capability of converting our model
to a voxel-based image independently of resolution. To achieve this goal twé types
of parametrization were introduced: the interface parametrization, and the'layers

parametrization.
7.3.1 The interface parametrization

The interface parametrization is based on a classical pick and interpolate algorithm
where the interpolation is performed using bicubic splines (Foley 1990). Even though

this type of algorithm is not applicable to all types of interfaces, and is not overall
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Figure 7.5: Tomographic image reconstruction in the inter-well region. The
color coding of the velocities is given on the right scale. On the left is a
comparison between the compressional velocity directly extracted from
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image.
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Figure 7.6: Tomographic image reconstruction in the inter-well region.
The color coding of the velocities is given on the right scale. On the left
is a comparison between the compressional velocity directly extracted
from the image (black) and the compressional velocity from the sonic
measurements at the well. Reinaldo Michelena (1990) provided the to-
mographic image.
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very efficient compared to a pixel-based algorithm such as those used in classical
geological interpretation or seismic picking, it is scale independent.

Of course, the picks’ definition is not scale independent because picks are based
on a choice of data sets, but the interpolated interface resulting from these picks can
be computed at any scale. This flexibility is particularly important when a priori
unknow resolution is required when an image is computed from the model definition.

Finally, the interface lines are also used as support domains for a variety of pa-
rameters including the upper and lower boundary velocity of the adjacent layers,
reflection coefficients, boundary roughness, boundary-induced anisotropy, reflection
amplitude. Sampling for each of these parameters is co-located at the pick points and

can be interpolated at any point along the interface.
7.3.2 The layer parametrization

The same types of constraints that apply to the interface definition also apply
to the layer parameters definition. Namely, the low frequency lateral and vertical
variations within the layer must be described using a small number of user-controlled
parameters.

To achieve this goal, I use a conformal mapping algorithm, similar to the one
described in Chapter 2 for the finite-element method, that transforms a layer into
a simple rectangle as illustrated in figure 7.7. The layer is then sampled in the
transformed domain with a user-defined set of control points that are the bases for
parametrization and interpolation within the layer. Computing the initial transform
from the initial layer is not a numerically economical operation, but once the trans-
form is known, the mapping of coordinates from one domain to the other is extremely
fast. Computing the velocity distribution at a given point is therefore a simple mat-
ter. The real world point location is mapped in the layer transformed domain. Based

on the layer parametrization, the point’s attributes are computed by simple interpola-
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tion in the transformed domain, and replaced directly in the real world domain. The
interpolation is, of course, performed very quickly in the transform domain, because

the layer sampling is regular in that domain.

7.3.3 An attempt to reconcile geology and geophysics

Based on the definitions of the previous section, any model can Be designed to
match the geological interpretation of the characteristics of a particular sediment
body including: interface boundaries related to an abrupt variation in the depositional
environment of the sediments or a change in sediment type, and layer lateral variations
related to sedimentary processes or rock diagenesis.

This model can be used to sample the sediment properties at any given point by
first finding the parent layer of the point considered, and then interpolating within
the layer the sampled physical properties. When the modeled physical properties
have to be sampled 'on a regular grid, which is often the case in geophysics, scanning
line algorithms such as those defined by Foley et Al. (1990) are extremely efficient.
Furthermore, because of descriptive structure of the model adopted, the sampling can

be performed at any given scale.
7.4 Interpretation of the field data

Three major interpretation results are detailed in this last éection. After defining
an initial model consistent with the.well log data, modeling is performed to understand
the wave phenomena involved in the cross-well data and understand the history of
the first arrival picked for the tomographic inversion. Finally, a simple least-square
based inversion algorithm is tested on synthetic data. This inversion enhances the

accuracy of our model as the final modeling results are compared to the seismic data.
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7.4.1 Ray-tracing and full-waveform modeling

Figure 7.8 displays a possible interpreted model as well as the ray coverage ob-
tained with that model using the finite-difference ray-tracing algorithm described in
Chapter 6. The ray coverage for the computed first arrivals is extremely heteroge-
neous and indicates that more than 80% of the rays lie within less than 2% of the
image surface. As pointed out in Chapter 6, finite-difference ray-tracing computes
the shortest path connecting the source to the receiver. For most of. the cross-well
geometry in a layered medium, these ray paths correspond to critically refracted
compressional waves, also called head waves.

These head waves build up the essential part of the first arrival, as confirmed
by the full-waveform finite-difference modeling. In figures 7.9, and 7.10, the arrival
times computed by finite-difference ray-tracing are overlaid on the computed receiver
traces. Even though the head waves are not isolated as such because of the small
layer thickness, and the small velocity contrast, it is very clear that the first arrival
along the horizonté,l direction is more complex than a single compressional wave
arrival. The tie between the computed travel-times, and the actual first break of the
signal clearly demonstrates that first break picks actually pick head waves along the
horizontal direction and compressional waves at larger offsets.

This interpretation is one of the most consistent explanations for the discrepancy
described between well logs’ compressional velocities, and the velocities extracted
from the tomographic images. The most attractive hypothesis investigated so far is
that the rock between the two wells is anisotropic. But, anisotropy is a scale depen-
dent property for layered media, and for the sake of clarity two types of anisotropy

are distinguished:

¢ long wavelength anisotropy corresponds to the case where the seismic wave-
length of the signal probing the material is much larger than the characteris-

tic distance separating the layers. In this case, multiple rock models (Backus,
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1962) allow the computation of an equivalent long wavelength anisotropy tensor
based on the constitutive properties of the materials involved. Long wavelength
anisotropy is implied in our first intérpretation of the discrepancy between cross-

well and log velocities.

e short wavelength anisotropy corresponds to the case where the seismic wave-
length is shorter than the size of the layered heterogeneities. In this case
the dominant propagation mechanism operates through head waves and layer

guided waves.

Head waves are the propagation mechanism by which the first arrival is created
for a wave propagating parallel to the plane of symmetry of the layered medium
in a low velocity layer. Therefore velocities estimated with the short wavelength
anisotropy model are the upper bound of any velocity that may be measured in the
long wavelength anisotropy model since the head waves propagate essentially with
the fastest possible velocity in the medium.

Let now suppose that the ray tracers used for the tomographic reconstruction do
not model head waves, but rather pure body waves. In this case the ray-tracer under-
estimates the travel times, and the back-projection step of the reconstruction thereby
overestimate the velocities to yield the correct travel time matches. This mecha-
nism is illustrated in figure 7.5 and 7.6. For sharp velocity contrasts, the ray tracer
adequately reacts providing accurate travel times and thereby eliminating the short
wavelength anisotropy artifact. As the velocity distribution gets smoother, cilances
for the ray-tracer to recover the misinterpreted modes lessens, thereby enhancing the
short wavelength anisotropy factor. Since model smoothing is inherent to the stability
of the string inversion algorithm (Harris et al., 1990), as well as most tomographic
algorithms (Dines 1979, McMechan et al. 1987), velocities estimated by this method
will always be overestimated in comparison to the well log velocity, even if the rock

investigated is only made of purely elastic isotropic layers.
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Figure 7.9: Common shot gather 97 from the cross-well data set.
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Figure 7.10: A synthetic common shot gather obtained using the velocity
model shown in figure 7.8.
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7.4.2: Travel time inversion using finite-difference raytracing

7.4.2.1: Inversion technique

As figure 7.8 shows, the ray coverage computed with the finite-difference ray-
tracing medium is extremely heterogeneous, which makes finite-difference ray-tracing
a poor candidate for tomographic reconstruction. This section proposes an alternate
inversion method by which the model parametrization described in section 7.3 is used
as the basis function for our inversion. A vector m of the model space M is defined

by:

m=[m;] = [zl...mnp,yl...yn,,, M} M,’;I] (7.1)

+J
where z; is the horizontal coordinate of the :** interface control point, y; is the vertical
coordinate of the i** control point, M’; is the ratio of the compressional waves moduli
and the density for the ij** control point of the k** layer, np is the number of interface
control points, and nl is the number of layers in the model. The data space is the
space of the travel time picks where a vector component d;; corresponds to the picked
travel time for the i** source location and j** receiver component. The model and

data space are related by the functional F:

= F(m) | (1.2)

computed by finite difference ray-tracing.

Given an initial geological model Mm%, consistent with the prior data available, we
want this inversion to provide a new model m" that minimizes the difference d—d
in the least square sense. In the last expression d" is the travel times computed based
on the model m".

One solution to the preceding problem is to use the method proposed by Beydoun
(1982) after Tarantola (1982) in which the model is recurrently updated by using the
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following relation:

A e = (g7 wg] " gw (I- &)

which is the familiar weighted least-squares solution to the linear problem:

where G 1s defined as:

or _ OF (),
k= 8mk

202

(7.4)

(7.5)

The last operator is evaluated numerically by perturbing the model m" to m"™+ém

where ém is a user-defined quantity smaller than m"*! —m". Then the corresponding

perturbation 6d™ is computed, using the finite difference ray tracer. Therefore, for one

iteration, the travel times are computed first to infer the updated data vector, then as

many times as there are parameters in our model. On the other hand, tomographic

inversion as implemented by Harris (1990) only needs to perform one ray tracing for

each iteration.

The elements of consistency of our model with the prior data are preserved through

the inversion process by using the following mechanism. The components of a model

space vector can only occupy one of three different states:

e 1) No constraint is applied to the point.

¢ 2) The value of a model vector component after an iteration is bounded by an

upper and a lower limit.

¢ 3) The value of the component cannot be updated by the iteration process.

Thus, even though it is part of the model space, it is not taken into account by

the inversion.
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This method allows the enforcement the users’ judgement on what data is already

constrained versus what data is unknown.

7.4.2.2 Synthetic inversion results and interpretation

Figure 7.11 shows the model used for our inversion test case, as well as the
computed ray coverage. The initial travel times were computed by first using full-
waveform finite-difference modeling, and then picking the modeled data. The agree-
ment between the picked full-waveform data and the travel-time data computed by
finite-difference ray-tracing is good. The average absolute error is lower than 0.05ms,
which is 5 % of the signal main period used in the full waveform modeling. Thirty
source points were used each recorded with a receiver array of fifty geophones thereby
setting the size of the data space to 1500. The model space is composed of twenty-
three interface control points, and eighty moduli control points for the four central
layers of our model. None of the previous model points were constrained. It clearly
appears from the previous data that our problem is dramatically overdetermined,
even t;hough the numbers used to model this experiment are typical of a cross-well
data acquisition.

The initial model was perturbed by modifying the interfaces locations, as well
as the layer velocity distributions, which were left uniform. Figure 7.12 shows the
results after ten iterations of the inversion algorithm described in section 7.4.2. The
detailed results of the inversion for the interface control point location are shown in
figure 7.13, and in 7.14 for the moduli inversion.

The average travel time error after the inversion is lower than 0.3ms. As shown in
figure 7.13 the inversion for interfaces’ location yields an average residual error that is
not greater than 18 %. On the contrary, moduli inversion yields a much higher error
level as shown in figure 7.14. Fufthermore, the artifacts of moduli inversion shown

in figure 7.12 show that the highest errors on the moduli are strongly correlated
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with zones of poor ray coverage indicated in figure 7.11. These inversion results are
consistent with the interpretation of the dominant modes for the primary arrivals
along the source axis. Since most of these arrivals are interpreted as head waves,
the ray-coverage is very highly focussed along the interfaces, and the velocity model
within the layers is not sufficiently probed to provide an adequate reconstruction of
the model space in that domain.

Furthermore, the average error on the moduli after ten iterations does not seem to
be biased, that is, the mean value of the error does not significantly depart from zero
and therefore, the values of the velocity field do not introduce any short wavelength
anisotropy. The fact that moduli errors have zero average does not demonstrate
that the increased velocity field inferred from the tomographic images is caused by
apparent or short wavelength anisotropy, but it certainly provides proof that the

inversion proposed here does not introduce such a bias.

7.4.3. A model for the complete data set

The model presented in figure 7.15 was obtained after running the inversion al-
gorithm described in section 7.4 from an interpreted initial model. The initial model
was based on a thorough investigation of the type logs as well as on the tomograms
described in section 7.2.3. The layer velocities of the initial model were based on the
average log velocity in the layer intervals, and the average absolute value of the travel
time errors prior to the inversion was lower than 1.1ms.

The purpose of this investigation is to recover the fault location as well as the
average layer velocity within the fault zone. The interfaces are the same as those
presented in figure 7.3. and the intersection of the interfaces with the borehole pro-
jections was not allowed to be modified through the inversion process. The total

number of inversion parameters was fifty-five.
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Figure 7.11: Inversion model (a) and ray-coverage image (b).
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Figure 7.12: Inversion results: a) Initial model, b) Final model after 10
iterations.
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Only the shot gathers probing the fault zone were retained for a total of 39 shot
gathers and 1487 shot receiver pairs. The average absolute value of the travel time
errors after eight iterations was lower than 0.4ms, and the inversion was stopped at
that point since this error is lower than the estimated picking error. The comparison
between the computed travel times and the picked travel times is shown for three shot
gathers spanning the source array that was selected. As shown in figure 7.16, the main
errors come from the central area of the gathers where our model does not perform
well owing to the very limited number of layers. Increasing the number of layers
would probably have resulted in a more accurate description of the picks in those
regions. On the other hand, including lateral velocity variations within the existing
layers would not have increased the accuracy of this inversion for the following two

reasons:

e These errors would have been eliminated based on rays traveling horizontally
from the source to the receivers. Finite-difference ray tracing does not provide
ray-coverage in the layer region for rays traveling horizontally as we have seen

previously.

e The moduli variations within the layer computed by inversion would have been
affected by multiple ray coverage artifacts, as the synthetic example shows.
This would have resulted in an overall degradation of the interpreted image,
because of which it would be almost impossible to discriminate genuine velocity

variations from inversion artifacts.

Finally the average change in layer velocity during the inversion was lower than
3% which implies that our inversion algorithm does not introduce as much apparent
anisotropy as is currently introduced by tomographic reconstruction.

This inversion result provides an interpreted image of the fault zone that honors

the cross-well data first arrival travel times within the picking error margin. The
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tomographic inversion results are compared with the inversion results previously de-
scribed in figure 7.15. Most of the essential features within the fault zones are well
preserved from one image to the other with a fairly regular layering of slow sand
beds and slightly faster sand/clay beds. The fault location is consistent with the bed
truncation clearly visible in the tomographic image. This last result illustrates that
tomographic data inversion is overwhelmingly overdetermined unless the data signal-
to-noise ratio allows for a complete study of the full waveform signal. Such a study,
however, was neither practical (because of the amount of computer time that would
have been required) nor legitimate, since the estimated error in travel time picking is

well above the error that would be expected with a 1000H z signal.

7.5 Conclusions

This study illustrates the impact of fast modeling capabilities on the interpretation

of seismic data. The use of such modeling capability was crucial to:

¢ understanding the mechanisms by which the first arrival of the cross-well data

is generated along the horizontal direction.

e eliminating the ambiguity raised by the evaluation of seismic waves, anisotropy

in a cross-well environment.

moreover, the capability of performing extremely fast travel time modeli'ng us-
ing a finite-difference algorithm allowed the implementation of an extremely simple
inversion algorithm that assists the manual interpretation of cross-well data.

Above all the extensive use of all the geophysical data available for this study
provides a simple and consistent interpretation of a specific structural feature in a
fairly undifferentiated sedimentary environment where seismic velocity was not the

most sensitive lithographic marker.
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Figure 7.15: A comparison of the tomograqgphic image reconstruction and
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Appendix 1
A brief description of conventions and notations

Since most of the papers presented in this volume are related to solutions of the
elastodynamic wave equation, the following notations are adopted whenever possible.
Subscripts as in U; denote the :** component of a vector field. Subscripts after a
comma as in U;; denote the partial derivative with respect to variable t of the it*
component of the vector field U. The Einstein summation convention for repeated
indexes is used whenever possible. Total derivatives are written explicitly as %ﬂ for
the total derivative of u; with respect to t. Superscripts as in K¢ are used to refer to
elements in a finite-element grid.

Finally, the dependence of fields components on specific variables is left implicit
in most cases where the dependence is obvious from the context, but is spelled out
when necessary.

Notations in elastodynamic

Elastic tensor.

Elastic tensor in condensed notations (see Al).
Material Density.

Displacement field.

Displacement field first derivative in time.
Displacement field second derivative in time.
Stress tensor.

Strain tensor e;; = 2(u:; + uj)-

Kronecker delta symbol.

Wave number.

Signal frequency.

=2rf

(3}
[
Sloxe
<

Q 2220 Q0

S, e,

E &>

Notations in finite-elements
K Impedance matrix.
x Mass matrix
Assembly operator.
Q Spatial domain of integration.
r

Surface boundary of the domain of integration.

operators

FT Fourier transform.
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Divergence operator.
Gradient operator.
Curl - Rotational operator.
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Appendix 2
Condensed notations for the elastic tensor

Since most of our work is limited to 2 dimensional space, with limited anisotropy
levels, condensed notations for the elastic tensor have been preferred in most of this
volume. The conversion from four to two index elastic tensor is performed as follows
using the symmetry properties of the tensor (Auld 1973):

I ij
XX
Yy
2z
yz, zy
XZ, ZX

6 XYy, yX

This tensor reduction can also be applied to other symmetric tensor like the stress
or strain tensors which become vectors.

U QO BN =

i : e R R
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Appendix 3
Computations of the eigenvalues of the Christoffel tensor

This appendix focuses on the computation of the eigenvalues of the Christoffel
tensor (equation 4.24). Expanding equation 4.24 we first have:

ik = fﬁc), + zc,]k, [Aa; +iKk)] [Aa; + iKk;] (8.1)

Now using the assumptions stated insection 4.2.3, we have:

. : A A
Yik = C,(Jk)ll{z [1 + Zfijkl] [lk[ + _I?al] [Zk + - I( ] (82)

oD
where €1 = —E-g‘y Now expanding the previous equation, and neglecting all the

second order terms we find that:

A
Yik 2 C,Jkll(z ([ klk ] +1 [ C;J'Hklkj + -I-{—(ajkl + a;k,-)]) (83)
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Appendix 4
Interpolators for F.D.R.T.
Following the notation in figure 6.1a we can write a wavefield interpolator for the

points 0,1,2 assuming a secondary source placed at the z, , z, location. Such an
interpolator must therefore satisfy the following relationships:

to =ts + svy/z22 + 22 (8.4)
t =1t, 4+ sy/(zFh)2 + 22 (8.5)

ty =ty + s\/22 + (2, + h)? (8.6)

Once t,, ,, and 2, are computed using nonlinear regression, t3 can be easily computed
from:

t3 = t, + 5\/(zs + h)? + (2, + h)? (8.7)

The last four equations yield the second interpolator type.

The third interpolator, which skips from row to row (figure 6.1b) at a local mini-
mum of the travel time curve can be written as:

ts=to+ 5\/(hs)2 + it_’_;ﬁ (8.8)

et R S PRI T | s R i L i

e e P
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