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Abstract

The thesis involves a study of the pore structure and interfacial properties of porous
rocks utilizing proton nuclear magnetic resonance (NMR) and a broadband acoustic study of
the frequency dependence of the elastic properties of porous rocks. The underlying philosophy
behind this study is that in order to understand the physical properties of porous rocks, it is
important to initially characterize their microstructure. The characterization of the pore space,
whose importance is large due to the great variation of its propet;ies from that of the solid rock
matrix, is carried out utilizing NMR, which provides a measure of the surface area to volume
probability distribution of the pore space-when the rocks’ pores are fully water saturated, and
the physical state of the water when the pore space contains air-water mixtures. The physical
state of the water is shown by NMR to vary greatly as the water volume fraction decreases,
going from a connected pore space to an isolated pore response, and finally to isolated water
films on the pore surfaces at low saturations. Effects of variation of the chemical composition
of the pore saturating fluid on rock interfacial properties are also examined. Broadband acous-
tic studies of the shear and compressional elastic moduli of porous rocks and artificial porous
materials have been initiated in order to study the dominant mechanisms responsible for
wave-rock interaction over several frequency intervals, corresponding to greatly varying spatial
and temporal intervals. These studies have required the solution of the complex elastic wave
equations in waveguided systems to obtain dispersion relations governing the propagation of
two orthogonal elastic wave modes in cylindrical samples, the construction of a new experi-
mental apparatus to measure these dispersion curves in rock samples, as well as the inversion

of the experimental dispersion curves for the frequency dependent complex elastic moduli.



The results of this study are the clear identification of frequency dependent phenomena in the
elastic response of rocks, with a large change in behavior occuring at approximately 100 kHz,
below which interfacial and viscous processes dominate, and above which scattering effects
dominate. A general conclusion of this work is the strong role of interfacial forces in
influencing the static and dynamic physical properties of porous rocks and other porous ma-
terials. A measure of the extent of this influence, for appropriate physical conditions and pore
geometry, is in the ratio of the interfacial energy to the other relevant energies, such as elastic
energy for pressure variations and thermal work for temperature variations. For quartz-based
water saturated porous rocks at atmospheric conditions with pore sizes below 2 - 102¢m , this

ratio is greater than one and the importance of interfacial effects is clear.
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QUANTIFYING SOLID-FLUID INTERFACIAL PHENOMENA IN POROUS ROCKS
WITH PROTON NUCLEAR MAGNETIC RESONANCE *
Ehud J. Schmidt, Katherine K. Velasco and Amos M. Nur
Rock Physics Project, Geophysics Department, Stanford University,
Stanford, California 94305

Abstract

The three order of magnitude variation in the proton nuclear magnetic resonance (NMR)
longitudinal relaxation time T, of water adsorbed on silica surfaces versus that of bulk water
makes proton NMR studies of porous materials powerful tools to study the effects of adsorp-

tion. Recent theory permits the utilization of this different response to obtain pore space sur-
S e . . .
face to volume ( v ) distribution functions by inverting the decay of the z component of mag-

netization of fully saturated porous rocks; information can likewise be obtained on the fluid

distribution at partially saturated conditions. A computer program has been developed to in-
vert the NMR relaxation curves for the —‘37 distribution function, assuming an isolated pore re-

gime, the ramifications of which are examined. The program has been applied to experimental
results from water, porous sandstones and tight gas sands at various pore fluid saturations and
varying electrolyte content. For the fully saturated case, the results show promise in the ap-
plication of NMR to describing pore space geometries in rock samples with widely varying
surface to volume ratios. For partially saturated rocks, the results reflect the preferential early
draining of the large pores at high water saturations, connectivity percolation phenomena at
intermediate saturations and the dominating role of adsorbed water films at low water satura-
tions. Experiments on rocks saturated with saline solutions disclose the importance of the
effects of alteration of the active sites on the rock surfaces as well as the role of eleétrolyt;es in

modifying the structural properties of bulk solution.

‘ appeared in J. Appl. Phys. 59 (8), 2788 (1986)



Theory of Nuclear Magnetic Resonance in Porous Rocks

The .nuclear magnetic resonance (NMR) response of rocks requires the solution of the
Bloch equations of magnetization ! with the appropriate magnetic boundary conditions at the
rock-solution interface taken into account >3, The complicated internal geometry of granular
rocks’ pores which consists of various shapes, sizes and interpore connections makes exact

analysis very difficult. .

The treatment of the NMR response of rocks by Cohen and Mendelson * forms the basis
for the interpretation of our experimental results. Each pore is assumed to possess two types
of water: a layer of thickness [ of surface adsorbed water with relaxation time T,,,,, and
water further away from the surface with relaxation time T [, , which behaves as bulk water.
The relaxation time of surface adsorbed water is shorter due to hindered rotation of the water
molecules in the presence of a potential field applied from the surface, contributing to a longer
correlation time for molecular métion * and via the Bloembergen-Purcell-Pound equation %8
to a shorter T;. The ratio of the relaxation times between surface adsorbed water and bulk
water depends highly on the nature of the adsorbent and somewhat on surface geometry.
Values used in the results section, T,,, = 10°sec and T, = 2 sec are approximate

4,7,

figures for silica-water interfaces obtained by other authors 8 and supported by our own

findings.

ENMR

The condition N d

<< 1 ,where AFEyNyp is the splitting of the spin energy levels

due to a DC magnetic field and KT the thermal energy, is true at room temperature condi-
tions, and forces us to take into account the coupling of the NMR relaxation with diffusion
processes in the pore space. These processes act to smooth spatial gradients in the magnetiza-
tion which exist between the adsorbed water component and bulk component within each pore
and between adjacent pores. Mathematically, this requires the addition of a diffusion term to

the right side of the Bloch equations *2 which for the z component becomes
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where H is the magnetic field, M the magnetization, ~ the proton gyromagnetic ratio and D

— (M XH), -

the diffusion constant. M, the equilibrium magnetization is mainly due to paramagnetic

minerals whereas ( M, (t) - M, ), the dispersion component, is due to the excited spins.

Two cases of diffusion interest us: that which exists between the adsorbed water and

free water in a single pore and that which exists between neighboring pores.

Within a pore of radius r, gradients in magnetic field between the surface magnetization

and bulk magnetization are smoothed by diffusion in a time 2*

S . . . . .
where — is the pore surface to volume ratio. If T is smaller than the relaxation time for that

|4
pore T,;, we will observe an averaged signal for that pore. If T,; is greater than T we will
observe a multicomponent signal from that pore, since spatial inhomogeneities persist during

the decay process. !, which is the thickness of the adsorbed layer will be taken in the analysis

as 1077 em , which corresponds to approximately 5 monolayers of water. s =3 for a spheri-
r

v

cal pore and taking the shortest T,,; to be 10°s, and D=3 - 10° ¢m /s at room tem-

perature, we obtain a critical pore radius r, which distinguishes between pores of radius
r<r.=26-10"'cm [3]

for which we will always observe an averaged signal and larger pores for which we will observe

a multicomponent signal.
The average relaxation time, Ty, , obtained for pores of radius r <r, is given by 2

(Tluer )—l =( 1- % ) ) (ledk )—l + % ’ (Tlurl )-l [4]

By measuring T',,,., for a given pore we can get the surface to volume ratio of the particular

pore.



For pores of r >r, we obtain a multicomponent decay signal 8.4
-t -t

M, (t)=Mm+(A/fo"Moo)'[%'eT“"! +(1*%)'CT”“"] [5]

For poresof r > r,, —5‘; < 107 so the amplitude of the surface adsorbed water is small and

we observe a pore response close to that of free water.

Interpore diffusion depends on the mean distance between neighboring pores, L, which

for a rock of uniform spherical pores is given by approximately 3

=9y ¢/ : (6]
where ¢ is the rock porosity. Diffusion also depends on the size of the pore throats, since nar-
row pore throats decrease the diffusion flux between pores. Finally, it depénds on the presence
of a large gradient in magnetization between neighboring pores. As it is difficult to predict all
these variables, interpore diffusion will present an increasing problem the higher the rock
porosity, the higher its permeability and the higher the variability in size of its pores. In the
extreme case of interpore diffusion dominating the rock response, we will see one relaxation
time T g, for the whole rock. Equation [4] will then hold for the entire rock, and the rock’s

average surface to volume ratio could be retrieved from it.

In situations where interpore diffusion is negligible the rock behaves as a collection of iso-
lated pores. Each pore will relax with its own characteristic relaxation time, a function of its
surface to volume ratio. Grouping pores of the same size together we obtain the integral equa-

tion governing the z component of magnetization in this regime *:

M, (1) =Mg+ (M, -My)- [ ¢“t P(w)d(w) [7)

where w = (T, )™} is the angular frequency of relaxation and where P ( w ) is the fraction of
water which resides in pores of this particular relaxation angular frequency . This probability

distribution is normalized

1= [ P(w)d(w) (8]



Both integrals range from wpi,, which is that of the slow relaxing free water, to wnax, which is
that of the fastest relaxation in the system. In practice wp,, is limited by the shortest relaxa-
tion time observable with the particular time spacing used in the measurement sequence. For

each instrument the absolute limiting time step is the machine’s "dead time”.

Experiment

The NMR experiments were performed with an IBM (Bruker produced) PC-20 spectrom-
eter. The magnetic field source was a 4.7 + 0.01 Kgauss fixed magnet with an air gap of 0.2
em. The oscillating field is 20 Mhz for protons with an acceptance band width of + .15 Mhz.
The magnet is held at 40 + 0.01 Celsius. The probe used was a 10 mm solid/liquid probe with
<10 ps dead time, which determines the minimum relaxation time observable with the instru-

ment.

All measurements made were of T; by the spin recovery method (7, 7 ,' _12_r_ ) in which

an RF pulse is applied in the -z direction and the spins thus excited to the upper energy level
are allowed to recover back to their equilbrium states in the +z direction. They are observed
by applying a fast (12 ps) secondary pulse which allows observation of the spins in the xy
plane after successive delay times 7. The spectrometer was operated with a phase sensitive

detector which assured the fastest detector response.

The PC-20 is a time domain spectrometer. Signal averaging for higher signal to noise ra-
tios was performed within the instrument by averaging the results of many measurements for
the same 7 value, commonly, 100 measurements per 7 for 7 s below 2 milliseconds and 64 for
those greater than 2 milliseconds. The number of measurements was increased for rocks of
small porosities and at low water saturations. Between pulses the samples were allowed to
equilibrate for times greater than the longest relaxations found in the sample (commonly 2 to 4

seconds for rocks, 20 seconds or more for liquids).



The rock samples were cored in 1 cm by 4 em cylinders, parallel or perpendicular to any
discernable layering, cleaned of surface cuttings ultrasonically, dried in a vacuum oven and
weighed. The samples were then placed in a pressure vessel, evacuated under < 23 mm Hyg
vacuum and later saturated under 180 bars pressure with deionized, deaired water for periods
of two days or more, depending on the rock permeability. Following saturation the rock sam-
ples were stored in jars of water until the time of the experiment. In preparation for experi-
mentation, the rocks were removed from storage, surface dried and then weighed to determine
their fully saturated weight, to be referred to as 100% saturation weights. The difference
between the fully saturated weights and the dry weight being the pore fluid weight, the weight
of required partial water saturations could then be determined. After weighing, the rocks were
placed in thin-walled quartz test tubes. To minimize evaporation during the experiments pure
quartz rods were added so as to entirely fill the test tube volume, which was then hermetically

capped. These quartz rods were pretested and found to be transparent to the NMR signal.

The test tubes were then inserted into the spectrometer, allowed to equilibrate to the
probe ambient temperature and then measured. Measurements were conducted in two linear
sequences, a sub millisecond span of 10 to 20 points using the instrument microsecond time
scale (from 0.1 - 50 milliseconds) and a second linear sequence in the millisecond time scale (2
to 10000 milliseconds). These two measurements were then combined for ihe full relaxation

spectra of each rock.

To achieve partial saturations the rocks were dried in an anhydrous CaSO , desiccator to
the required weight and allowed to equilibrate for at least 6 hours in the test tubes before the
experiment was performed. Accuracy of t‘,he saturation levels was determined by a comparis-
on between the sample weights before and after the experiment and were found to be better
than 0.1% saturation. Measurements at partial saturations involved tuning the probe and the
measurement pulses slightly because the Larmor frequency and the relaxation times varied ( as

will later be shown) as the water saturation changed.



The NMR spectrometer was run remotely via an RS-232 interface by an IBM/XT com-
puter. The computer set the experiment parameters and received the instrument’s averaged
results following each 7 value. Experiments at high water saturations commonly-took about 8
hours and those at extremely low water saturations up to 14 hours. These long measurement
times were required in order to obtain high signal to noise ratios necessary in order to invert

the data for detailed P (w) distributions.

Data Inversion Program

In the isolated pore regime, which was taken to hold in our experiments, the NMR
response is given by equation (7] where equation [4] relates the relaxation time of each pore

group to its surface to volume ratio. We have developed an algorithm to invert the full in-

tegral equation, without any prior assumptions.

Equation (7] is rewritten

Ymx

M, (8)=Mp- [ ¢ P(w) d(w) (9]

@i
where P( w )' =(Myx-M, ) P(w). The quantity ( M, ~ M, ), the extent of the NMR
dispersion can later be determined because of the normalizing condition, equation (8].
Since we sample M, (t) at various discrete r; ( j = 1,2,...N ) we require the digitised

form of equation [9], which after writing P(w ) d(w)as P; (w; ) becomes

U| = Wm
-Ww. T !
M (r;)=Me- 3} ¢ 7P (w) [10]
U' = Um
with the normalizing condition
Ul" = Wm
w; = wp,
If we measure M, ( 7; ) at N points then
3 T
w = and w 12
- (T:' - T )min o (TN -7 ) [ ]



We divide ( Wnax — Wmin ) into M intervals where

Aw = ——— i (13]

and numbering the values of w; by
Wi = Wpip + Aw (7 = 1) (14]
(f =12,...M+1) we get M+2 unknowns (M+1 P; { w; Y and M ) with N equations.

These can be solved by least squaresif N > M +2.

In our inversion program equation (10] is solved in the linear least squares sense with the

constraint

P (w; ) >0 (13

which follows from the P; ( w; ) being probabilities.

S

Since Aw may be a large sector over which P; (w; )I is averaged even in cases where the
largest allowable M’s for a given N have been picked, the program is run in an iterative
fashion. After the first iteration the program looks for the maximum w; for which
P: (w; ) > 0.1t takes one more Aw and makes this the new wy,,. The intervals Aw are now
redefined between Wmin and the new wpy,,. As these runs are repeated we can expect to see

further detail among the nonzero P; (w; ) .

The iterative process ends when a nonzero P; ( w; )' appears at wpay, OF alternatively if

there is no further improvement in the computed error. At this point the program divides out
. S .
(M - M, ) to recreate the normalized P;(w;). The program calculates the 7 ratios of the

nonzero w; using equation [4]. An average surface to volume ratio for the rock is obtained by

averaging over the distribution function using the equation

21, = T Plw) (), 16]

where (%) is the surface to volume ratio of the pores with angular frequency w; which con-

tain P, (w; ) volume fraction of the total water in the rock.



With the assumption of spherical pores (%) = —f— ) we can obtain an estimate of the
i i

pore size distribution of the rocks.

The interpretation we give to the data assumes non-interacting pores. The validity of

this assumption has been treated theoretically 3, where it is found that by examining the
y** moment of P(w)
“rmx
<w’>=fP(w)'w” d(w) [17]
Yrig
where y is some integer, diffusion effects do not affect the mean y = 1, so that equation [16]

for the average surface to volume ratio of the rock is not affected. They also do not aflect
y = 2, the variance of P( w ). They affect y = 3 and add positively to y = 4. Neglecting

the constant M ., our equation is

“rmax

Mz(t)=(Mo“Moo)' fP(u)c"‘" d(“’) [18]

expanding ¢ ™* in (wt )

wt )? wt P wt )?
ot mro oy P (P ()

we observe that powers of w appear only with the same power of t. It is therefore obvious

+..+ (19]

that the higher moments are important only when we can observe the decay for long times,
unobstructed by thermal noise. This requires relatively large amplitudes P(w), for even
when (wt ) =1 the fourth moment is only 13% of the amplitude. Interpore diffusion is
therefore expected to be more effective for long relaxation times. The effect of interpore
diffusion on the fourth moment is to narrow the distribution function P ( w ) around the mean
w. In a recent paper Mendelson ° has examined the effects of interpore diffusion to first order
in the intersection of a pore’s surface area with that of adjacent pores and found that equation
[7] is still valid in this case, although the P( w ) now are not merely the volume fractions of

water in a particular pore size but rather this value minus the sum of the surfaces that connect



each pore to its neighbours.

Results

a. Deionized De-aerated Water

The NMR response of deionized de-aerated water has been measured in order to establish
the T, necessary for the inversion of porous rock results and to test the inversion algo-

rithm in situations where there is no microstructure and therefore only one relaxation time.

The NMR relaxation of bulk water is sensitive to the presence of small fractions of
paramagnetic O!7 so measurements were conducted under vacuum. Figures 1(2) and 1(b)
show the experimental results for deionized water. Figure 1(a) shows M, (t) as a function of
time, the points being the experimental data and the line passing through the points the fitted
relaxation curve produced by the inversion program. The decay of the amplitude to M , is ex-

tremely slow and required sampling for 24 seconds in order to observe the entire relaxation.

The result of the inversion program, P ( w ), is shown in figure 1(b) as a function of the
relaxation angular frequency, w( units are sec™!). 61.7% of the water relaxes with w = 0.260
and 38.3% with w = 0.258. The relaxation time for the deionized degassedb water is
3.84 + 0.02 seconds, which varies by about 10% from that observed by other authors '©!! for
this temperature. The narrowness of the peak in the distribution function observed for water
is a result of the rapid diffusion of the water molecules, so that only iocal maxima in the distri-

bution function can be observed.

The low noise level of the data and the quality of the fit, variance <.4%, may also be

seen in figure 1(a).

b. Fully saturated rocks

Figures 2(a) and 2(b) show the experimental results for a 100% saturated sample of

Beaver sandstone, a clean quartz sandstone with very low clay content. Figure 2(a) shows the

)y
{ ]



magnetization, M, (t), as a function of time, with the points being the experimental data and

the line passing through them the results of the inversion. It can be seen that Beaver sand-

stone has a relatively low — ratio, since its relaxation continues to approximately 2.5 seconds,

v

approaching the relaxation time for bulk water. This is shown quantitatively by the results of

the inversion, figure 2(b). The average -% for the rock is approximately 2 -10* em~},

corresponding to an average pore size in the micron ( 10™ ¢m ) range. The exact w distribu-
tion function for this rock is plotted in figure 2(b). This rock has a surface to volume spectrum
ranging from 7 - 10® em™ to 3 - 10* em™, all representing fairly large pores. The low noise

level in the data and the quality of the fit to it, <7% variance, can also be seen in figure 2(a).

The resolved ( % ) are used , with the assumption of spherical pores, to obtain the pore
)

radius distribution for this rock, shown in figure 2(c). Half of the pores are of effective radius

between 4 and 4.3 microns while there is a narrower distribution of smaller pores of 0.8-0.9 mi-

. . volume . . . .
cron radius. Computing the ———, consistent with the spherical pore assumption, and know-
. pore

# pores

. The numbers obtained
cc rock sample

ing the sample porosity it is possible to compute the

range from 10%, for the larger pores, to 10'°, for the smaller pores, which suggests the extreme
importance of the pore space and the solid-fluid interface in influencing physical processes in

porous rocks.

Figures 3(a) and 3(b) show the results for 100% saturated Tight Gas sand 4558, a rock of
small pores and therefore high surface to volume ratio. The high surface to volume ratio is evi-
dent from figure 3(a) since the relaxation for this rock ends by 250 milliseconds, in contrast

with that of the low surface area Beaver ( figure 2(z)) whose relaxation curve extends to 2.5
seconds. The results of the inversion program, figure 3(b), bear this out, the average % ratio

being 3 - 10° em ™!, two orders of magnitude higher than Beaver sandstone. This can also be



seen in the angular frequency spectrum, in that the spectrum extends to an angular frequency
of 1200 sec™! which corresponds to pores on the scale of tens of angstroms. Pores of such size
correspond to the spacing between the layers of clay sheets, so' it is probable that the high w
component is due to interclay water. The largest pores of this sample are one order of magni-
tude smaller than those of Beaver sandstone, which is why the angular frequency spectrum be-

gins at 12 sec™?, whereas it is concentrated in the 1 to 4 sec™! range for the Beaver sample.

NMR characterization of rock microgeometry is compared with that of mercury por-
isimetry ( provided courtesy of T. Plona, Schlumberger-Doll Research) in figure 4(a). The spec-

tras shown are of QF10, an artificial fused quartz sand sample, and the NMR pore size distri-

bution is derived from the -“197 distribution with the assumption of spherical pores. The width

of the pore spectra obtained by both methods is similar. Figure 4(b) is a scanning electron mi-
croscope photograph of QF10. It is possible to see that the pore sizes are indeed of the order
which the NMR measurement predicts. The bimodal distribution observed by the NMR may
be due to the variation in surface area between the circular and ellipsoidal pores in this sam-
ple 2. The sensitivity of mercury porisimetry to the pore throats , which can be seen to be
generally narrower than the pores themselves, may explain the smaller pore sizes returned by
this method. The large pores fbund in this rock approach the upper limits of the usefullness of
the NMR technique, since the surface water component is extremely small, tending to increase

the relative error in the inferred results.

c. Partially saturated rocks

Study of rocks with air-water mixtures in their pores is important since it is one of the
methods of varying a rock property independently of others. As the NMR response of the air
phase may be ignored at ambient vapour pressures, it is possible to observe the state of the

water remaining following the evacuation of a given fraction of the total water content.

[
1



Without regard to rock microgeometry it is expected that the magnetization dispersion

( Mo - My ) decrease as water molecules are removed from the sample since 13

N ~4 & H
(MO'Moo)='+tanh(—g—ﬁ) [20]
2 e
= N(:;T)H for (;K;I)«l

where 4 is Planck’s contant divided by 27 and N, the number of nuclear spins per unit

volume, decreases during the drying process.

Taking into account the variability in pore sizes found in rocks, it is expected that the
evaporation process will not be homogenous in all the pores. The vapour pressure in a pore of
radius r,Vp ( r ), relative to the atmospheric value Vp ., is given by the Kelvin equatioh

-2q, V, cos(4)

VP(") T RT
VL ¢ [21]

where ¢;, is the water-vapor interfacial tension coefficent, V,, the fluid molecular volume and
¢ the contact angle the film interface makes with the surface. For water ( cos( 6 ) > 0) the
vapour pressure in small pores is greatly reduced from its atmospheric value. It is harder to
evacuate these small pores since the driving force for evaporation, which is equilibration with
the external vapor preSsure, is very weak. The evaporation process therefore treats preferen-
tially the largest pores. Withir; each pore the bulk fluid component should be drained first,

since removal of the adsorbed molecules requires a greater expenditure of energy.

Figures 5(a) and 5(b) show the inversion results for Berea 100 sandstone, a high porosity

rock with 6% clay ( most of which is found coating grains), at water saturations ranging from

100% to 4%. Figure 5(a) is an expansion of the low w, low %, region in which the high water
saturation (100% through 70%) results are concentrated. The dashed line in each plot

represents the water saturation axis, with decreasing saturations into the page.

At 100% saturation, as seen in figure 5(a), 14% of the water resides in the largest pores,

= 1.53, 72% in smaller pores, w = 4.4 to w = 4.9, and 12% in the smallest pores w = 29.



By 90% saturation the component with w = 1.53 has dissappeared and the component with
w = 4.4 is reduced to 14%, having been partially evacuated and the remainder of the water in
these pores now behaving as tighter adsorbed water. This causes 16% of the water found in
the rock at 90% saturation to appear at w = 6.2, with 6195 now in a higher adsorbed state at
w=14.1 to w==15.7. A percent appears at a higher adsorbed state, w = 53.7, with 8%
moving to a much higher adsorbed state, w = 161. This shows that the water in the pores is
becoming increasingly skewed towards the adsorbed component within each pore. Along with
the relative shift to higher adsorption the non-zero distributions are clearly separating from

each other. This suggests a decrease in the interaction between adjacent pores of different size.

At 80% saturation we see a continuation of this behavior, with only 8% remaining at
w = 6.1 while 86% of the water is at w = 24.46 to w = 25.9. 6% of the water now appears at

a new higher adsorbed state, w = 99. It is clear that the influence of the adsorbed components

is growing at the expense of the low -% components.

At 70% saturation in Berea 100 sandstone we have an extreme variation in behavior,
which can be seen in the 7095 saturation spectra in figure 5(b). There is a rapid shift of 52%
of the remaining water to a much tighter adsorbed state, w = 7012 to 7085, with 45% clearly
separated and lying in the low w region ( figure 5(2)) in which all the higher saturation results

were contained.

At saturations below 70% the behavior remains essentially like that at 70%, with two
well separated P ( w ) distributions, one at low w and the other at very high w’s. The high w
distribution gradually grows in size at the expense of the low w component. Below 30% satura-
tion there are strong oscillations in the resolved distributions, suggesting a change in behavior

tied to the removal of the final fluid monolayers from the rock surface.

Accompanying the change in the spectra at 70% water saturation there is a large in-

* crease in the magnetization, the size of the NMR dispersion, as can be seen in figure 3(c), a



plot of the magnetization (in relative units, for conversion to Gauss the result must be divided
by 2.3 - 1012) versus water saturation. As the magnetization is the sum of the magnetic mo-
ments of the spins in the sample, it is expected to decrease with water saturation ( equation
[20]). This behavior is observed below 70% saturation, but the peaked behavior above this sa-
turation level clearly indicates the presence of another, more powerful, physical process. The\
strong peak in the magnetization at 70% saturation suggests a collective motion of the water
molecules, which would tend to enhance the contribution of each spin to the total magnetiza-
tion. The critical phenomena may be the result of connectivity percolation of the bulk fluid in
the pore space. This hypothesis is supported by the DC conductivity of this rock ( provided
courtesy of R. Knight, Stanford Geophysics), also plotted in figure 5(c). The variation of rock
conductivity with water saturation shifts at the same saturations as the peak in magnetization,
suggesting a change in the nature of the ionic conduction mechanism, from bulk water con-

trolled to surface adsorbed water controlled.

Figure 5(d) shows the effective average surface to volume ratio of the pore space of Berea
100 sandstone as a function of water saturation. This result is obtained by averaging over the
distribution function using equation [16] and is free of the effects of diffusion, as it could be ob-

tained by fitting a single relaxation time to the rock’s relaxation curve at each water satura-
tion level. This effective average —f;— is the average surface to volume ratio at full saturation,
while at palttial saturation it represents the average surface to volufne ratio of the fluid filler.
It can be seen that the averzge % ratio climbs strongly from 100% to 70% saturation, going

from 7 - 10* em ™! at 100% to 4 - 10" em ™! at 70% saturation, an increase of three orders of
magnitude. It drops somewhat below 70% saturation, increasing again at 10% saturation,
perhaps due to the increasing role of interfacial processes at extremely low saturations, where

the drying process requires the stripping of the last liquid monolayers from the grain surfaces.



Assuming a model of the drying process as a removal of the bulk water from the pores,
while leaving the surface layers intact, it is expected that there be a slow increase in the
effective aver'age surface to volume ratio, which is observed from 100% to 80%% saturation, but

the sharp increase from 80% to 70% is clearly due to critical behavior.

The strong increase of the surface to volume ratio, or the mean w, mirrors the increase
in the magnetization { figure 5(c)) and strongly suggests critical behavior tied to an insulator-
conductor transition. Similar behavior of the mean w was observed by Boyce and Huberman !

in the NMR spectra of Cul, = superionic conductor, through its phase transitions to insulating

phases, in which a structural change was induced in the conducting sublattice.

The possibility that these strong changes in the NMR response at partial saturation, with
emphasis on the peak in magnetization, may have originated from experimental problems {
such as signal saturation, probe tuning, paramagnetic influence) has been thoroughly investi-

gated, and we are now satisfied that these eflects are both repeatable and physical in nature.

Among the rock samples we have explored, we have been able to separate between rocks
that have the "percolation” response and those that do not. Massillon Light sandstone aflords
insight into the mechanisms behind this phenomena. Massillon Light and Berea 100 are similar
in their total fluid content but differ in their clay and hematite content, Nfas;illon Light con-

taining 3% clay and 1% hematite.

Figures 6(a) and 6(b) show the inversion results for Massillon Light sandstone at satura-
tions ranging from 100 to 30%. Figure 6(a) is a magnification of the low w range in which all

the 100 to 65% results are confined.
The 100% saturation distribution, figure 6(a), contains some high w components at
w = 130, so that the initial —%— ratio for this rock is higher than that of Berea 100, figure 5(a).

These high w populations are gradually decreased as the water saturation drops until they

disappear at 80% saturation. Over this water saturation interval the low w components are



shifting to somewhat higher states, but the separation between the components and their rela-

tive proportions remain unchanged.

Below 80% saturation there is a shift to higherA adsorbed states, but the pace is slow
enough so that by 30% saturation only states of the same size as those seen at 100% satura-
tion are seen. From this point on the spectra change drastically, with the appearance of very
high w’s.

Figure 6(c) shows the magnetization of Massillon Light as a function of water saturation.
The magnetization drops linearly with water saturation, as the continuum equation [20]

predicts.

Figure 6(d) shows the effective average surface to volume ratio for Massillon Light sand-
stone as a function of water saturation. There is a slight minimum at 70% saturation, when

the high w components disappear from the resolved spectra (figure 6(a)), followed by a gradual

increase of the average —5‘7 expected through the evacuation of the bulk water from the sam-

ple. At 30% saturation there is the onset of a strong increase in v tied to the onset of criti-

cality associated with the removal of the surface monolayers.

It appears that the combination of an ability to withdraw the initial high —517 components

and to keep the various w distributions close to each other has enabled this rock to remain
subcritical to low water saturations. The critical w for the onset of criticality is of the order of

200. This suggests that rocks containing water films which during the evacuation process reach
S . _ . . s .
a3 ratio of 2 - 107 ¢m , or a thickness of 50 angstroms, will reach criticality and their beha-

voir will become eflectively surface dominated.

d. Effects of pore fluid salinity

As diffusion between the surface and bulk fluid components of each pore produces an



average relaxation time for that pore ( equation [4]), it should be possible to observe a shift in

the NMR P ( w ) by changing the chemical environment in the pore.

Electrolytes influence the pore fluid in two ways. The salt ions within the. pore are hy-
drated by water molecules and therefore compete with the surface in attracting water
molecules. Other salt ions exchange with hydrogen ions (and other ions) on the active sites on
the surface. Electrolytes are commonly divided into ”structure making” and ”structure break-
ing”, according to their ability to respectively increase or decrease the viscosity, the associated

rotational correlation time and other structural properties of water '°.

Approximate formulas for the effect of ions on the properties of bulk water are 10,
n . Whuik ' .
=14+ B ¢ and =1+F -¢ [22]
Mo Whaiko

where 17, and wyu, are the values of the viscosity and relaxation angular {requency at infinite
dilution, ¢ is the ion concentration and B, B’ empirical factors measuring the strength of the
jon in altering these properties. If B, B’>0 the ions are considered to be "structure making”,

otherwise they are ”structure breaking”.

The results of Engel and Hertz 10 on water at 25 degrees celsius show that NaCl is a
"structure maker” with B’=0.05 molal™ ( Na* is strongly ”structure making”, B’'=0.06

molal™!, while CI~ is weakly ”structure breaking”, B'=-0.01 molal™").

Boise sandstone samples were saturated with 0.01 and 0.1 Molar NaCl solutions and left
for several days in hermetic jars to allow for equilibration of the exchange interactions at the
pore-matrix interfaces. Figure 7 shows the Boise sandstone results for two saturating fluid
salinities.The two spectra are similar but displaced slightly , which is clearly seen in the inset
magnification of the low w region. The 0.1 Mclar solution is displaced towards lower w’s but
the population of each peak in the distribution is kept. This may be interpreted as different
averaging within each of the pore groupings, with higher salinity reducing the role of the ad-

sorbed water component. The fact that the relative populations of the various groupings of



pores is kept despite the salinity changes attests to the validity of the assumed correspondence
between the relative intensity at a given relaxation angular frequency and a given fraction of

the total water residing in particular size pores.

Using equation [22], with 1 molal =1 Molar , we can calculate the expected wy’s at

the two salinities and the ratio between them;

Whelk (01 Molar )
war (0.01 Molar )

= 1.004 . [23]
This computation accounts for the effect of only the ions in bulk solution but not for the
effects of the ions on the adsorbed layers at the interface, and would predict w (0.1Molar ) is
0.4% larger than w (0.01 Molar ) within each pore. The observed shift in our spectra is -7.8%,

which shows an opposite trend to what equation [22] predicts.

As the disparity could be a result of surface layer modification, we can obtain an esti-

mate of the extent of the changes in surface properties by assuming that equation [4] holds for
both, equation [22] holds for the bulk fluid components in each pore and that the % ratio of

the pore is unchanged. With these assumptions we have

Waeer (0.1 Molar ) — wyyi (0.1 Molar ) | Wy (0.1 Molar ) - 1(0.1 Molar ) s
Wager (0.01 Molar ) — wyyi (0.01 Molar ) Weery (0.01 Molar ) - 1(0.01 Molar ) [24]
where Woger = ( T1g0er )' and the ratio on the right hand side of the equation measures the

effective strength of the adsorbed layer at 0.1 Malar relative to its strength at 0.01 Molar . Us-
ing the Boise sandstone experimental results we find the effective influence at 0.1 Molar to be
91.6% of the effective influence at 0.01 Molar . The variation in surface properties is quite
small for the one order increase in pore fluid salinity, and may be due to surface species ex-

changing with the Na* or Cl~ ions.

The extent of the effect of the saline solutions agrees well with the results of Morariu and
Mills 7 on 1 Molar solutions of KCl, at coverages of 1.5 monolayers, on silica gels, in which,

at the same temperature, an approximately -20% shift in the relaxation angular frequencies



was observed. This suggests a similarity in the behavior of porous silica-based rocks and silica
gel, as well as the dominating role of surface property modification due to the effect of the

10

various ions, since KCl, as opposed to NaCl, is a "structure breaker” '°, and thus modifies the

bulk properties of water in the inverse direction.

Conclusions
The application of proton NMR to fully saturated porous rocks permits the retrieval of

important geometric information on the pore space in silica-based rocks with — ratios from

|4

10% em ™! to 10% em ™!, It is expected that for lower S ratios the surface effect would be so

Vv

weak that the NMR response would be indistinguishable from that of bulk water. NMR can be
used for porous rocks of CaCO 3 composition but the different fluid-solid interfacial properties

need to be understood in advance.

In partially saturated rocks NMR allows for a better understanding of the position and
state of the remaining water; this has implications for the electromagnetic and elastic response
of rocks saturated with air-water mixtures. The percolation process seen at intermediate sa-
turations has strong implications on the fluid dynamical and electrical transport properties of
the pore space. The dominating role of adsorbed water at low saturations could be associated
with the increase of kHz elastic and electromagnetic dissipation factors in rocks at .these sa-

turations.

Changes in the NMR spectra of rocks with pore fluid salinity reflect the role of both
structural changes in the bulk fluid as well as a possible rearrangement of the active sites on
the pore surfaces. These changes may be important in the effective elastic properties of the

wetted solid grains.
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FIG. 4(b). Scanning electron micrograph of QF10. 100 micron scale is shown on lower right.

32



Berea 100 T1
1 - 100-70% Saturated
(a)
0.8 - j
Q.
£ 06+
<)
. y— T0%
£ : ..
s 044 N | o
> . — ..... QOQ\O
O.m - ;.... ’ - N\ e—— .‘.L.. |.> 90%
0 4~ —] — 11 ! _ 100%
0 30 60 90 120 150 180

Angular Frequency

FIG. 5(a). Berea 100 sandstorc P (w ) at 100% through 70% water saturation..



Berea 100 T1 100-4% Saturated

(b)
1+ _ L ;0%
I ] .
g 08- |- \> \ o, -20%
- -
< ; .
06 - — —— - i 40%
E / - e 2
m 04 - ;.I! _ :- ......... 60%
0.2 .. h_..n_. .. -80%
0 ~— — e 100%

4 ! I !
0 1500 3000 4500 6000 7500 9000
Angular Frequency

FIG. 5(b). Berea 100 sandstone P ( w) at 100% through 4% water saturation.



() - 7x10-4
8x10% - Berea 100 | 1 6x104
1 = Magnetization
c 6x104| 2 = Conductivity 5x10-4
= Data of R. Knight
.m 4x10-4
2 410
5 4x10% - 35104
)
M I
2x10-4
2x104 -
1x10-4
. . 0
1x104—= _ _ — _ _ _ |0

0 10 20 30 40 50 60 70 80 90 100
Water Saturation (%) |

FIG. 5(c). Berea 100 sandstone magnetization and DC conductivity versus water saturation.

i

Cond. (Mho)



IUvY r

107

SV (1/cm)
S
D

105

104

Berea 100
— Effective Average Surface to Volume Ratio
(d)
_ _ _ _ B _ _
O 10 20 30 40 50 60 70 80

Water Saturation (%)

FIG. 5(d). Berea 100 sandstone eflective average

S

v

ratio versus water saturation.

_ _
90 100

26



Massillon Light T1 100-65% Saturated

O
(0]
P

o
(o)
1

o
»
1

Norm. Amp.

0 20 40 60 80 100 120 140
Angular Frequency

FIG. 6(a). Massillon Light sandstone P ( w ) at 100% through 65% water saturation.




ividssiliun Ly 11

100-30% Saturated
(b)

>|. 20¢

o
e} —_
1 |

O. ) s
Am O.@ 1. ;>~ ill’ ......s#Oo\@
. A R
m >V . . .-.-
S 04 - | M : I .....QOQ\o
< il | I A 8
Bl _ K
0.2 - ¥ h . A ......moc\@
., i - e - ﬂ n...
O _ _ _ _ —T—-100%

I
O 20 40 60 80 100 120 140 160 180
Angular Frequency

FIG 6(b). Massillon Light sandstone P (w) at 100% through 30% water saturation.



39

16x104 - ©)
Massillon Light
Magnetization
12x104 |-
c
9
©
N .
® 8x104 -
-
@)
©
=
4%x104
0 ! _ T _ ! —

O 10 20 30 40 50 60 70
Water Saturation (%)

FIG 6(c). Massillon Light sandstone magnetization versus water saturation.

80

1 !
90 100



SV (1/cm)

106

105

104

‘Massillon Light
- Effective Average Surface to Volume Ratio
(d)
_ _ _ [ T | , ] _ I
O 10 20 30 40 50 60 70 80 90 100

Water Saturation (%)

N

FIG 6(d). Massillon Light sandstone effective average —= ratio versus water saturation.

Vv



0.8 -
4)]
5
= 0.6+
Q.
&
<
£ 04-
o
2

0.2 -

0

Norm. Amplitude

1 Boise T1 100% Saturated
o 1 = 0.01M NaCl
61 2 = 0.10M Nacl
4
24
2 1

o I ] 1 %. . 1

0 2 3 _4 5 6 7 8 9 10

Angular Frequency

Angular Frequency

FIG. 7. 100% saturated Boise sandstone P ( w ) at 0.01 and 0.1 Molar NaCl solutions.

60



Appendix A - TRY285.FOR NMR inversion program

This program is written in I\'ﬁcrosoft; FORTRAN 77 which is compatible with main-
frame IBM and DIGITAL computers. A limitation of Microsoft FORTRAN i-s it’s inability
to accept nondimensionalized arrays. For this purpose a separate program must be writ-
ten for each combination of N data points and ( M + 2 ) unknowns. The version given
here is for 265 data points and 101 unknowns, these being 100 P; { w; )' and M. The
places where changes should be made for different combinations of data points and invert-
ed results are denoted in the program comments. The current size of the arrays requires a
computer with approximately 256 Kilobytes of memory. Since the mainframe FORTRAN
implimentations support nondimensionalized arrays a mainframe version may be designed

to read the appropriate dimensions so that only one version would be needed.

The current configuration of the program reads in an unformatted data file (BASIC
language data file) With the following arrangement of data:

Line 1: M,YMAX,YMIN

Line 2: N |

Lines 3 through (N+2):r; M(71;) 5 =12,..N
where XMAX is the maximum value of r;, YMAX ,YMIN are the maximum and

minimum values of M( 7; ), and N is the number of data points. Note that the 7; in the

J
data file are in milliseconds, which the program converts to the second scale.

The program is configured in an interactive fashion. It requests the data file name. It
prints on the user’s screen the procedures through which it goes through. Results of every
iteration are printed both on the user’s screen and to a printer (refered to as "LPT1").
After concluding the iterative process the program prints both the data M ( 7; ) and the
fitted M ( 7; ) to the screen and to a user determined data file. Another user determined

datafile will contain the resolved w; ,P; (w; ) pairs.

L7



The amount of change in wy,, and wy;, between successive iterations may be adjust-
ed differently than the format in this program. Programing a smaller shrinkage of the w
range can lead to the program terminating with a slightly more detailed distribution of re-
laxation frequencies, but will cause a longer running time, which is currently about 5

minutes for three iterations using the IBM/XT math coprocesser.

There are numereous examples of relaxation processes which occur in physical sys-
tems as a whole and rock physics in particular. Some notable cases are electromagnetic di-
polar relaxations, mechanical viscoelastic relaxations, classical geometrical resonances with
relaxations. If these are studied in the time domain, an analysis of the rate constants may
be made with this program. A version of the program has been applied to neutron spectra

from rocks and yielded good results.



FORTRAN FILE TO INVERT DATA USING CONSTRAINED LEAST SQUARES
FOR A USER PICKED AMOUNT OF RELAXATIONS
FUNCTION USED IS
<
M(t)=MINF- | A(I)IEXP(-W(I)2t)
<
WITH THE CONSTRAINT THAT A(I)>=0.EO
W(I) ARE CONSTRAINED BY SAMFLING THEOREM TO LIE BETWEEN
WMIN AND WMAX, WHERE WMIN=FI/(t(N)-t (1))
AND WMAX=FI/(t(2)-t (1))
variable declaration section starts here
REALX4 T,M,WMAX,WMIN, W, SUM
REALX4 MINF,MAXX,MAXY,MINY,CON,MA,MS
REAL 24 NORMA, RESW, SV, SVA, RESA,CC, WLCUT, CCHM, RNORMO
REALX4 WS, Z,AA,RNORM, WCUT,CON1,MAXMA, MINMA,MDIF
INTEGER%4 INDEX,FLAG, COUNT,WFLAG
INTEGER®4 I1,J,N,NN,17
CHARACTER*&64 FNAME, FNAME2, FNAMEZ
$LARGE ™MD
REAL X4 MD '
DIMENSIONS OF ARRAYS ON NEXT & LINES MUST RE
CONFIGURED ACCORDING TO
NUMEER OF DATA POINTS->HERE SET AT 269
NUMEBER OF RELAXATIONS->HERE SET AT 100
TOTAL NUMEBER OF UNKNOWNS->HERE SET AT 100+MINF=101
DIMENSION T(Z65),W(100)
DIMENSION RESW(100) ,RESA(100),SV{100)
DIMENSION INDEX (101),WS(101),2Z(265)
COMMON/LION/M(2465) ,MA(263) ,ME(265)
COMMON/JACK/MD (265, 101)
COMMON/LIORA/AA(101)
M=VECTOR OF MAGNETIZATION=M(T(I))
MS=SAME AS M BUT SAVED AFTER GOING TD NNLS
MA=PROGRAM FPRODUCED VECTOR OF MAGNETIZATION
MD=MATRIX OF DIFFERENTIAL VALUES
W=VECTOR OF FOINTS IN W SPACE WHERE RELAXATIONS ARE
AA=VECTOR OF RESOLVED AMPLITUDES AT THESE W
N=265
NOTE THAT NN HERE IS ONLY NUMEER OF RELAXATIONS
LATER THE MINF TERM WILL MAKE THIS NN+1
NN=100
FLAG 1S FDR NUMBER OF ITERATION, ZERO 1S FOR FIRST
FLAG=0
DO 30 I=1,N
PO 30 J=1,NN+1
30 MD(1,J)=0.0EOQ
C INFUTING REAL DATA
C PROMFTING FOR INPUT FILE
WRITE (%,46) ° LAF246S INVERSION PROGRAM’
WRITE (%,6) * (C) COFYRIGHT STANFORD ROCK PHYSICS PROJECT 1984°
WRITE (%,6) * FULL LAFLACE TRANSFORM T1 INVERSION PROGRAM®
WRITE (x,’ (A\)}*) * INPUT FILE NAME FOR INVERSION?’
READ (x,’ (A)’) FNAME
OFEN(7,FILE=FNAME,STATUS="0LD” ,ACCESS="SEQUENTIAL")
REWIND 7
WRITE(%,4) ® READING DATA FILE’
) FORMAT (A)
FORMAT OF DATA FILES USED HERE IS AS FOLLOWS
ALL DATA ARE IN UNFORMATTED FORM (BASIC LANGUAGE DATA FILE)
FIRST LINE: MAXX, MAXY,MINY
MAXX=MAXIMUM VALUE OF X FOUND IN FILE
MAXY=MAXIMUM VALUE OF Y FDUND IN FILE
SECOND (L INE: N
N=NUMEER OF t,M(t) PAIRS THERE ARE (NUMEER DOF DATA POINTS)
THIRD THROUGH (N+3) LINES: t,M(t} PFAIRS

nooonononoooonn_

noooon

0 oo oot

onDooO0nNnOn
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146

S0
40

41

42

READ (7,3) MAXX,MAXY,MINY
—READ(7,%)..N .

DO 16 I=1,N -
READ(7,%) T(I),M(D)

TIME VALUES ARE IN MILLISECONDS-CONVERT TO SECGNDS
T(I)=T(I)%1.0E-03

CHECK TO SEE IF BOME OF M(I) ARE POSITIVE ELSE
ADD A CONSTANT TO MAKE SOME POSITIVE (GET MINF>0)
CON1=M(I)

CONT INUE

CLOSE (7)

LINEARIZING FIRST TWO POINTS

M(1)=(M(1)+M(2)) /2.0E0 _

REGION TO WRITE INPUT FILE NAME TO PRINTER
DPEN(&,FILE="LPT1’,STATUS="NEW’ ,ACCESS="SEQUENTIAL")
WRITE(&6,%) * DATAFILE USED FOR INVERSION 1S ’,FNAME
CLOSE (&)

RNORMO=1.EO

1IF (CON1.GT.0.E0): GOTO 76

NEXT FOUR LINES ARE FOR CASE OF ALL M(I).LT.0.EO
CON1=ABS (CON1) +100. OEQ

DO 31 1=1,N

M(I)=M(1)+CON1

GOTO 125

NEXT TWO LINES ARE FOR CASE OF SOME M(1).GT.0.EO
CON1=0.EO

GOTO 125

START ENTERING INVERSION VARIAELES
WMIN=3.140E0/T (N)

WMAX=3. 140E0/(T(2)-T(1))

IF (FLAG.EQ.1) WMAX=WCUT

IF (FLAG.EQ.1) WMIN=WLCUT

CON=(LOG10 (WMAX/WMIN) ) /NN

NUMEER OF REQUIRED W PODINTS-NN-ALWAYS LESS THAN N
HAVE HERE A LOOF TD CHECK THAT NN<N ELSE PROMFT AGAIN
DW= (WMAX~WMIN) /FLOAT (NN-1)

WE NOW FILL UF MATRIX OF EXF(-WAT) WHICH IS MODEL
WRITE (%,82) * FILLING MD’

IF (FLAG.ER.1) GOTD 378

NN=NN+1

CC=36.8E0

CC 1S CUT OFF POINT ,CCM IS CUTOFF VALUE (DAMPING)
CCM=-1.0E-16

DO 40 I=2,NN

W(I-1)=WMINX10.EOS% ((I-2) XCON)
W(I-1)=WMIN+DWIFLOAT (I-2)

DO 50 J=1,N

MD(J,1)=—1,0EOKEXP (-W(I-1)%T(J))

CONDITION TO PREVENT INVERSE BLOWING UF

IF  (W(I-1)%T(J).BE.CC) MD(J,I)=CCM

WRITE (6,66) 1,J,W(I-1),MD(J, 1)

FORMAT (2X, 14,2X,14,2X,F10.4,2X,E20.4)

CONT INUE

CONTINUE

DD 41 J=1,N

MD(J,1)=1.0E0

SUM=0.EO

DO 42 I=1,N

SUM=SUM+M (1) &M (1)

MS(1)=M(I)

SUM=SQERT (SUM)

WRITE (%,82) * CALLING NNLS’

RNDRM=0 ., OEO

45



C NOW CALL NNLS=THE NONNEGATIVE LEAST SQUARES SUBROUTINE
CALL NNLS (MD, N, N, NN, M, AA, RNORM, WS, Z, INDEX, MODE)

c EIXXAIIAITXAXXAIAIFIIITHE ANSWER FOR THIS ITERATION
C EEXXXX2X3Xx333xx328xxx HAS BEEN OBTAINED
GOTO 159
159 WRITE (%,82) ’* ANSWER FOLLOWS®

OFEN (&,FILE=’LPT1’,STATUS="0LD’,ACCESS="SEQUENTIAL")
IF (FLAG.ER.1) WRITE (&,82) * BANDNARROWED ITERATION®
WRITE (6,B82) ' ANSWER FOLLOWS’
WRITE (6,179) ' WMIN= *,WMIN,’WMAX= ’,WMAX

179 FORMAT (A,2X,E10.3,2X,A,2X,E10.3)
AA(1)=AA (1) -CONI
WRITE (&,6%9) * MINF=’,AA(1)

&9 FORMAT (A, 2X,E10.3)
WRITE (6,177) * W=’,’A(W)="
177 FORMAT (SX, A, 16X, A)

MDIF=0.0E0

DO 200 I=2,NN

MDIF=MDIF+RA(I)

IF (AA(]1).GT.0.0EO0) WRITE(6,467) W{I-1),AA(])

&7 FORMAT (£X,F14.7,5X,E10.3)

200 CONTINUE
WRITE (&,192) * MO-MINF=’ MDIF
WRITE(4,192) . * RNORM=’,RNORM

RNORM=RNORM/SUM
WRITE(6,192) * RELATIVE ERROR=',RNORM

192 FORMAT (A, 2X,E10.4)

WRITE(&,345) * NUMBERS DIVIDED BY MINF FOLLOW’

FORMAT (A)

COUNT=0

NORMA=0.EOQ

WRITE (6,177) * W=",’A(W)=’

DO 346 I=2,NN

NORMA=NORMA+AA (1)

IF (AA(I).BT.0.0EC) COUNT=COUNT+1

IF (AA(I).GT.0.0E0) RESW(COUNT)=W(I-1)

1IF (AA(I).BT.0.0E0) RESA(COUNT)=AA(I)

(A
H
w

346 IF (RA(I1).BT.0.0EQ) WRITE(L,347) W(I-1),AA(I)/ABS(AA(1))
347 FORMAT (5X,F14.7,5X,E10.3)
2 FORMAT (A)
WRITE (6,82) ° ’
EXXAXTIAEIIITISRAINIIIRTINITIIREXK
PUTTING IN CONDITIDON TO LOOP BACK WITH EXPANDED
FREQUENCY SCALE
PROGRAM WILL FIND NEW HIGH W CUTOFF=WCUT
AND LOW W CUTODFF=WLCUT '
CRITERIA ARE —-——WCUT IS5 THE LARGER OF
((LAST NON~ZERO W VALUE)+ DW)
(1.5 & (LAST NON-ZERO W VALUE))
WLCUT 1S THE GREATER OF
({(FIRST NON-ZERD W VALUE) - DW)
(WMIN)

0o00ON0O0O00O00O 0N

WFLAG=0
1469 DO 292 1=2,NN
IF (WFLAG.ER.1) BOTD 292
IF (ARA(1I).6GT.0.EQ0) WLCUT=W(I-1)
IF (AA(I).GT.0.EQ) WFLAG=1
292 IF (RA(I).BT.0.EQ) WCUT=W(I-1)
IF (FLAG.EQ.0) WCUT=WCUT+DW
WLCUT=WLCUT-DW
IF (WLCUT.LE.WMIN) WLCUT=WMIN
IF (FLAG.ER.1.AND.WCUT+DW.GT.1.SEO0XWCUT) WCUT=WCUT+DW
IF (FLAG.EQ.1.AND,.WCUT+DW.LT.1.5EQWCUT) WCUT=]1,SECKWCUT
IF (FLAG.ER.1) FLAG=0

B~
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323
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IF (WCUT.LT.WMAX) FLAG=1 i
CONDITIONING A NEW ITERATION ON THE IMPROVEMENT IN
THE ERROR WHICH THIS ITERATION HAS GIVEN

CHECK FIRST THAT RNORM<{RNORMOX.99

IF (RNORM.GT.RNORMOX.9%9) GOTO 175

RNORMO=RNORM

JF (FLAG.ER.O) BOTO 175

DO 293 I=1,N

M(I)=MS(I)

CLOSE (&)

GOTO 125

S T R T s R s tttTttttstctstrtsrsrrerrrtt:
FINAL PRINTOUT SECTION FOLLOWS

CHECKING TO SEE THE CLOSENESS BETWEEN REAL RESULTS
AND PROGRAM PRODUCED RESULTS

WRITE (6,345) * STATISTICS OF RELAXATIONS FOLLOW®
CALCULATE TAUS,SURFACE TO VOLUME RATIOS,AVERAGE SURFACE
TO VOLUME FOR ROCK ,PERCENTAGES ETCETRA

DO 333 I=1,COUNT °

SV (1)=(RESW(I)—~0.2595EC) 1. 0E4

SVA=0.EO

DO 334 I=1,COUNT

WRITE (6,335) ° AW =’,RESA(I), FERCENT=",RESA (1) £100.EC/NORMA
FORMAT (A, 2X,E10.4,2X, A, 2X,F14.5)

WRITE (&,33&6) * W=",RESW(I),’TAU=’,1.0EQ/RESW(I)
FORMAT (A, 2X,F14.5,2X,A, 2X,E£10.4)

WRITE (6,337) * SUR/VOL=’,S8V(I)

FORMAT (A, 2X,E15. 4)

SVA=5VA+SV (1) SRESA (1) /NORMA

CONTINUE

WRITE (6,338) * AVERAGE SUR/VOL=",SVA
FORMAT (A, 2X,E15.4)

DO 321 I=1,N

MACI)=AA(1)

DO 321 J=2,NN

IF (W(J-1)%T(1).GE.36.8) GOTO 32

MA (1) =MA (1) ~AA (J) BEXF (~W (J=1) XT (1))

CONT INUE

NOW PRINT THEM TOGETHER

WRITE (6,345) * REAL AND PROGRAM FRODUCED M(I) FOLLOW®
WRITE (6,349) *TIME(MS)’,*REAL M(t)’,'FITTED M(t)’
MAXMA=-1,0E-13

MINMA=1.0E13

FORMAT (BX,A, 11X,A, 12X,A)

DD 322 I=1,N

IF (MACI).GT.MAXMA) MAXMA=MA (1)

IF (MACI).LT.MINMA) MINMA=MA (1)

WR1TE (6,323) T(I)#1.E03,MS(1)~CON1,MA(D)

FORMAT (2X,E15.4,2X,E15.4,2X,E15,4)

CONT INUE

WRITE (&,456)

FORMAT (1H1)

CLOSE (&)

SEXXXXXXXIRXARIIREND OF PRINTING XXXXFXXETXXLARXLEXXEAEXRRXE
DATA STORAGE SECTIDN FOLLOWS

PROMFT FOR STORAGE FILE

WRITE(3,” (A\)”) * INFUT W,A(W) STORAGE FILE NAME?’
READ (X," (A)’) FNAMEZ2

WRITE(%," (A\)’) * T(I),MA(I) STORAGE FILE NAME?’
READ(%,” (A)*) FNAME3 )
OPEN (8, FILE=FNAMEZ2, STATUS="NEW’ , ACCESS="SERUENTIAL")
REWIND 8

MAX X=W (NN—1)

47
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10

MAXY=~1.E~13
MINY=1.0E+13

DO 562 I=2,NN

AA (1) =ABS (AA(I))

IF (AA(I}.GT.MAXY) MAXY=AA(I)

IF (RA(D).LT.MINY) MINY=AA(I)

WRITE (8,%) MAXX,MAXY/NORMA,MINY/NORMA

WRITE (8,%) NN-1

DO 563 I=2,NN

WRITE (B,3) W(I-1),AA(I)/NORMA

CLOSE (8)

NOW SEND T(I),MA(I) TO FILE

OFEN(8, FILE=FNAME3, STATUS="NEW’ , ACCESS="SEQUENTIAL")
MAXX=T (N) £1,0E03

WRITE (8,3) MAXX,MAXMA,MINMA

WRITE (B,%) N

DO S68 I=1,N :

WRITE (8,%) T(I)x1.0EO03,MA(I)

CLOSE (8)

sTOP

END

1 2 3 0 P R R 2022203220320 322832 2333032023335
EXXXXEXE I IEXIIIIIXEESXIRXX ISR XIIXTIXIITILIXRY
XXX EEXIENARXIXAEREXXKRLR I AINXRRXKAXX

EEEX XXX XXX RN AR IXIIXIIXIINAXIXIEXRRRL
SUEROUTINE NNLS-NONNEGATIVE LEAST SQUARES FOLLOWS
WRITTEN BY LAWSON AND HANSON IN "SOLVING LEAST SQUARES
PROELEMS",PRENTICE HALL, 1974 :
PARAMETERS OF SUBRDUTINE FOLLOW

A(M,N)=DIFFERENTIAL MATRIX

X (N) =UNKNOWN VECTOR OF VARIABLES

E(M)=RESULT VECTOR

SUCH THAT A & X = B

RNORM=EUCLIDEAN NORM OF THE RESIDUAL VECTOR
W(N)=ARRAY OF WORKING SFACE-DUAL SOLUTION VECTOR
ZZ(M)=ARRAY OF WORKING SFACE

INDEX (N) =INTEGER WORKING ARRAY

ON EXIT THE CONTENTS OF THE ARRAY DEFINE SETS F AND 2
AS FOLLOWS

INDEX (1) THRU INDEX(NSETF) = SET P

INDEX(IZ1) THRU INDEX(1Z2) = SET 2

1Z1=NSETFP+1 =NFPPF}

122=N

MODE 1S A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANING
1 THE SDLUTION HAS BEEN SUCCESSIVELY COMFUTED

2 THE DIMENSIONS OF THE PROBLEM ARE EAD (MO OR N<O)
I ITERATION COUNT EXCEEDED. MORE THEN 3N ITERATIONS
SUEROUTINE NNLS (A,MDA,M,N,E,X,RNORM, W, ZZ, INDEX, MODE)
DIMENSION A(MDA,N),B (M), X(N) ,W(N),ZZ(M

INTEGER INDEX(N)

ZERO=0.EO

ONE=1.EQ

TWO=2.E0

FACTOR=0.01EO

MODE=1
IF (M.GT.0.AND.N.GT.0) GOTO 10
MODE=2

RETURN

ITER=0

ITMAX=JIN

INITIALIZE THE ARRAYS INDEX AND X
DO 20 I=1,N :



20

30

o0 00

0o

40

S0

&0

70

o000

80

o000

90
100

000

110
120

0000 nNo

X (1)=ZERO
INDEX (D) =1

122=N
121=1
NSETP=0
NPP1=1

MAIN LOOP BEGINS HERE K3XXXXXEXXRXFXAXXXXARXEALAKREERLAX
CONTINUE

QUIT IF ALL COEFFICIENTS ARE ALREADY IN THE SOLUTION

OR IF M COLS OF A HAVE BEEN TRIANGULARIZED

—AF. {121.6T.122.0R.NSETF, GE.M) . BOTD-3S0-

COMPUTE COMFONENTS OF THE DUAL (NEGATIVE GRADIENT) VECTOR
W

DD S0 1Z=121,122
J=INDEX(12)

SM=ZERO

DO 40 L=NFF1,M
SM=SM+A (L, J) KB (L)
W(J)=SM

FIND LARGEST FOSITIVE W(J
WMAX=ZERD :
DO 70 12=171,122

J=INDEX (12Z)

IF(W(J) .LE.WMAX) BOTO 70
WMAX=W(J) '
1ZMAX=12Z

CONTINUE

IF WMAX.LE.O GO TO TERMINATION

THIS INDICATES SATISFACTION OF THE KUHN-TUCKLER CONDITIONS
IF (WMAX) 350,350,80

1Z=1ZMAX

J=INDEX (12)

THE SIGN OF W(J) IS OK FOR J TO BE MOVED TO SET F
BEGIN THE TRANSFORMATION AND CHECK NEW DIAGONAL ELEMENT
TQ AVOID NEAR LINEAR DEPENDENCE

ASAVE=A (NFFP1,J)

CALL H12(1,NFF1,NFP1+1,M,A(1,J),1,UP,DUMMY,1,1,0)
UNDORM=ZERO

IF (NSETF.EQ.0) GOTD 100

DO 90 L=1,NSETP

UNORM=UNDRM+A (L, J) $%2

UNDRM=SQRT (UNORM)

IF (DIFF (UNORM+AES (A (NFF1,J) ) 8FACTOR, UNORM) ) 130,130,110

COL J 1S SUFFICIENTLY INDEPENDENT COPY B INTO 22,UPDATE 22
AND SOLVE FOR ZTEST (=PROFOSED NEW VALUE FOR X(J))

DO 120 L=1,M

2Z(L)=B(L)

CALL H12(2,NPF1,NPP1+1,M,A(1,J),1,UP,2Z,1,1,1)
ZTEST=Z2 (NFF1) /A (NPP1,)

SEE 1IF ZTEST 1S POSITIVE
IF (ZTEST) 130,130,140

REJECT J AS A CANDIDATE TO BE MOVED FROM SET Z TO SET P
RESTORE A(NPP1,J),SET W(J)=0., AND LOOF BACK TO TEST DUAL
COEFFS AGAIN

A (NPPY, J) =ASAVE

49



W(J)=ZERD
GOTO &0

THE INDEX J=INDEX(IZ) HAS BEEN SELECTED TO EE MOVED FROM SET 2
TO SET P. UFDATE B,UPDATE INDICES, AFLLY HOUSEHOLDER
TRANSFORMATIONS TO COLS IN NEW SET 2, ZERO SUEDIAGONAL
ELTS IN COL J, SET W(J)=0.

140 DO 150 L=1,M

150 B(L)=ZZ(L) .

o000 n0

c
INDEX(IZ)=INDEX(1Z1)
INDEX(IZ1)=]
121=121+1
NSETF=NFF1
NFPP1=NPF1+1
{4 .
IF (1Z1.67.122) GOTO 170 -
DO 140 JZ=121,122.
JI=INDEX(J2)
160 CALL H12(2,NSETF,NPF1,M,A(1,J),1,UP,A(1,J3),1,MDA, 1)
170 CONTINUE
c
IF (NSETP.ER.M) GOTO 190
DO 180 L=NFF1,M
180 A(L,J)=ZERQO .
190 CONTINUE
c
W(J)=ZERD
(o) SOLVE THE TRIANGULAR SYSTEM
c STORE THE SOLUTION TEMFORARILY IN ZZ
ASSIBN 200 TO NEXT
GOTO 400
200 CONTINUE
C SECONDARY LOQOF BEGINS HERESXIXXXXXXIXXIXXXEXXIXXXEXKI
c
C ITERATION COUNTER
210 ITER=ITER+1 _
WRITE (¥,600) * ITER=’,ITER
600 FORMAT (A, 2X, 14) .
IF (ITER.LE.ITMAX) GOTO 220
MODE=3
WRITE (6,440) * NNLS RUITING ON ITERATION COUNT’
GOTO 350
220 CONTINUE
c
C SEE IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE
c IF NOT COMFUTE ALPHA
ALPHA=TWO
DO 240 1P=1,NSETP
L=INDEX (IF)
IF (22(1IP)) 230,230,240
c
230 Tm=X (L) /(ZZCIP)=X (L))
IF (ALPHA.LE.T) GOTO 240
ALPHA=T
JI=1pF

240 CONTINUE

IF ALL NEW CONSTRIANED COEFFS ARE FEASIBLE THEN ALPHA WILL
STILL=2. IF S0 EXIT FRCM SECONDARY LOOF TO MAIN LOOF
IF (ALPHA.EQ.TWO) GOTO 330

0o oo0oo0



OTHERWISE USE ALPHA WHICH WILL BE BETWEEN O. AND 1. TO
INTERFOLATE BETWEEN THE OLD X AND THE NEW 22 .
DO 250 IP=1,NSETP
L=INDEX (1P)

250 X(L)=X (L) +ALPHAK (ZZ (IP) =X (L))

0onoon

MODIFY A AND E AND THE INDEX ARRAYS TO MOVE COEFF I FROM SET F
T0 SET 2

oo0oo0on

I=INDEX (JJ)
260 X(1)=ZERD

0

IF (JJ.ER.NSETF) GOTOD 290

Jd=JJd+1

DD 28CG J=JJ,NSETF

1I=INDEX (J)

INDEX (J-1)=11

CALL 61 (A(J-1,11),A(J,11),CC,SS5,A(J-1,11))

A(J, 11)=ZERD - . S

DO 270 L=1,N

IF (L.NE.II) CALL G2 (CC,SS,A(J-1,L),A(J,L))
270 CONTINUE

280 CALL 62 (CC,S85,B(J-1),E(J))
290 NFPF1=NSETP

NSETF=NSETF-1

121=121-1

INDEX(1Z1)=1

SEE IF THE REMAINING COEFFS IN SET P ARE FEASIBLE

THEY SHOULD RE RECAUSE OF THE WAY ALPHA WAS DETERMINED.
IF ANY ARE INFEASIBLE IT IS DUE TO ROUND OFF ERROR.

ANY THAT ARE NONPOSITIVE WILL BE SET TO ZERO AND MOVED
FROM SET P TO SET Z

o000 n

DO 300 JJI=1,NSETP

I=INDEX (JJ)

IF (X(I)) 260,260,300
300 CONTINUE

COFY B INTO ZZ. THEN SOLVE AGAIN AND LOOF BACK

oon

DO 310 I=1,M
210 2Z(I)=B(I)
ASSIGN 320 TO NEXT

GOTO 400
320 CONTINUE
GOTO 210
c END OF SECONDARY LOOFSXXEXXXXXXEXAXKFRXLABEXAXRKANNLRER
c
330 DO 340 IP=1,NSETP
I=INDEX (IP)
340 X(I)=ZZ(IP)
c ALL NEW COEFFS ARE POSITIVE. LOOP BACK TO BEGINNING
GOTO 30
Cc
c END OF MAIN LOOP
c
c COME HERE FDR TERMINATION. COMPUTE NORM OF THE
c FINAL RESIDUAL VECTOR

350 8M=2ERQ )
IF (NPP1.GT.M) GOTO 370

[
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10

DO 3460 I=NFP1,M
SM=SM+B (1) 232

BOTO 390 -
DO 380 J=1,N

W(J)=ZERD

RNORM=SQRT (SM)

RETURN

THE FOLLOWING BLOCK OF CODE 1S USED AS AN INTERNAL SUERROUTINE
TO SOLVE THE TRIANBULAR SYSTEM, PUTTING THE SOLUTION IN
1Z(D)

DO 430 L=1,NSETP

IP=NSETP+1-L

IF (L.ER.1) GOTD 420

DO 410 11=1,IP

ZZ(I1)=2Z(11)-A(I1,JI)XZZ(IF+1)

JJI=INDEX (IF) .

IZ(IP)Y=2Z(IF)/A(IF,JJ)

GOTO NEXT, (200,320)

FORMAT (A)

END

DIFF FUNCTION FOLOWSXEIXXIXXIIIILIXRIXLERAIIREX
FUNCTION DIFF(X,Y)

LAWSON AND HANSON

DIFF=X-Y

RETURN

END

1 2823222280320 202202202202 S

1 22 R S R R R R R R R e R PR R R PR R R R PR R PR R
SUBRDUTINE H12 FOLLOWS

BY LAWSON AND HANSON

CONSTRUCTION AND/OR APFLICATION OF A SINGLE
HOUSEHDLDER TRANSFORMATION

Q = I+Ux(UX2T) /K

PARAMETERS FOLLOW

MODE=1 ALGORITHM H1

MODE=2 ALGORITHM H2

LFPIVOT=THE INDEX OF THE PIVOT ELEMENT )
Li,M IF L1.,LE.M TRANSFORMATION WILL BE CONSTRUCTED
WITH ZERO ELEMENTS FROM L1 THRU M.

IF L1.6G7.M THE SUBROUTINE DOES AN IDENTITY TRANSF.
U= PIVOT VECTOR

IUE=STORAGE INCREMENT BETWEEN ELEMENTS

UP=VECTOR WITH ELEMENTS OF U

C=MATRIX TO WHICH HOUSEHOLDER TRANSFORMATION

1S APPLIED :

ICE=STORAGE INCREMENT BETWEEN ELEMENTS OF VECTORS IN C
ICV=STORAGE INCREMENT BTWEEN VECTORS IN C
NCV=NUMEER OF VECTORS IN C TD BE TRANSFORMED

SUBROUTINE H12 (MODE,LPIVOT,L1,M,U, JUE,UF,C, ICE, ICV,NCV)
DIMENSION U(IUE,M),C(1)

DOUELE PRECISION SM,B

ONE=1.EQ

IFf (O.GE.LPIVOT.DOR.LPIVOT.GE.L1.0R.L1.GT.M) RETURN
CL=ABS(U(1,LPIVOT))

1IF (MODE.EQ.2) GOTO &0

CONSTRUCT THE TRANSFORMATION ¥IXIrsxxyyzsrysyszrissyzxy
DO 10 J=L1,M

CL=AMAX1 (ABS(U(1,J)),CL)

et
N



0o

nooononon oo

20

30

40
S0

Q0

100

110
120
130

IF (CL) 130,130,220

CLINV=0ONE/CL

SM=(DBLE(U(1,LPIVOT))SCLINV) ¥x2

DO 30 J=L1,M .
SM=SM+ (DBLE(U(1,J3) ) XCLINV) %%2

CONVERT DBLE. PREC. SM TO SNGLE. PREC. SMi

SM1=SM

CL=CL¥SORT (SM1)

IF (U(1,LPIVOT)) 50,50,40
CL=-CL

UP=U(1,LPIVOT)-CL
U(1,LPIVOT)=CL

8070 70

APPLY THE TRANSFORMATION I+UX(UXxT)/B TD C TRXE%X8X
IF (CL) 130,130,70

IF (NCV.LE.O) RETURN

B=DBLE (UP) U (1,LPIVOT)

E MUST BE NONPOSITIVE HERE IF B=0. RETURN

IF (B) 80,130,130

B=0ONE/B

12=1-1CV+ICE3 (LPIVOT-1)

INCR=ICEX% (L1-LPIVOT)

DO 120 J=1,NCV

_12=12+1CV \

13=12+INCK

14=13

SM=C (12) $DBLE (UF)

DO 90 I=L1,M

SM=SM+C (13) 8DBLE (U(1, 1))

I3=13+ICE .

IF (SM) 100,120,100

SM=SM3B

C(12)=C(12)+SMEDBLE (UF)

DO 110 I=L1,M

C(14)=C(14)+SM¥DBLE(U(1,1))

14=14+ICE

CONTINUE

RETURN

END

EXXXSAXXXEERSXEXREXANIRXXEXARS AKX XXX AXXEKKRAX

BXXXXXXRLIXXXEERTIXEEARXLEXRIXNSRERIXXIEXXRXXIXIXRX

SUEROUTINE" G1 (A, E,C0S,SIN,SIG)

LAWSON AND HANSON

COMFUTE ORTHOGONAL ROTATION MATRIX

COMPUTE MATRIX (C, B) SO THAT (C, §)(A) =(SQERT(AXX2+BI1x2))
(-5,C) (-S,C) (B) (O )

COMPUTE SIG=SQORT (AX32+B3%2)

S§IG 1S COMPUTED LAST TO ALLOW FOR POSSIEILITY THAT

SIG MAY BE IN THE SAME LOCATION AS A OR B

ZERO=0.EQ

ONE=1.EO

IF (AEBS(R).LE.ABS(B)) GOTO 10
XR=B/A

YR=SQRT (ONE+XR%x%2)
COS=SIGN(ONE/YR,A)

SIN=COSkXK

SIG=ABS (A) 3 YR

RETURN



on

0o

10
20

30

IF (B) 20,30,20

XR=A/B

YR=SQRT (ONE+XRXxx2)

SIN=SIGN(ONE/YR, B)

COS=SINsXR

SIG=ABS (B) *YR

RETURN

SI16G=ZERD

CO0S=ZERD

SIN=0ONE

RETURN

END

EXIERX AR R IR ARSI XS ATRXNKIRXIREXIXLRARKXXX
BEXXXXERIERXXXIRAIIEIIILBAIIXLEIIIRXINERRTARYX
SUBROUTINE G2 (COS,SIN,X,Y)

LAWSON AND HANSON'

AFFLY THE ROTATION COMPUTED BY G1 TO (X,Y)
XR=COS¥X+SINXY

Y=-SINx*X+C0OS3Y

X=XR

RETURN

END
EXEXXXXIIIEXIEXIIFLRRIRAAIIIIIAIXATIRNLIRINRAY
EXEXRXXEIXRXRRRXITIRIIAIRITAIIXIIRIIARAIRRALILX



Appendix B- Near Orthogonality Relations

Any inversion algorithm utilized has limits of resolution of the desired unknowns.
Some of these, based upon the Heisenberg uncertainty relations, have been included in the
program itself. Other limits are dependent on the signal to noise ratio of the data vis-a-
vis the amount of desired unknowns ( the ratio of well resolved data points to number of
equations). Beyond these two questions there remains the issue of the interaction terms

between resolved unknowns.

The inversion scheme utilized here has the advantage of a near orthogonality of it’s
eigenvalues, as can be seen from it’s relation to the generalized Laplace series. The follow-
ing will show the interaction terms between two resolved relaxation frequencies w; and w;

over the time interval of the experiment 7., through 7.

. . ~w;t . N w, t .
The Kernel of the relaxation operatoris e ' whose inverse is ¢ ' . We wish to

show then what is

A = 3 et et [B1]
for (wy —w; ) 2> 0.

This is the discrete form of the integral

Tmax
f et et [B2]
Tmin

which for 7., = 0 and 7,,, = oo is given by

1 B3]
W — W
For the linear time sampling used here

( Tmax ~ Tmin )

Tj == Tmin + (] - 1) “ AT ( j = 112)"'N )! where Ar = N 1

Therefore A;; becomes:

(sl
n



- -w )T i=N Hwy ~w; ) Or (;-1)
Ay =T e T ey [B4)

5 =1
and using the relation
=N N
J E X(J _ l) — X -1
i=1 X -1
this becomes
—(0}‘, -w ) ArN
. '(“’k“"l)"m.n, e -1
Ay = R ¥ B3
¢ -1
We can further simplify this expression since wy — w; = Aw * (k - 1), obtaining
—Au(k-l)rmm' e-Au(k—l)ArN_l
Ay = . -Bw k-1 ar _ g I [Bs]

This is a general result which shows the explicit dependence of the interaction terms on
A7 ,Aw, and on N . Implicit in the result is the dependence on M, since this determines
the size of Aw (equation [13]). When & = { we have Ay = 1, and for K > [ Ay quick-

ly decays, giving us near orthogonality between eigenvalues P, (wy ) and P, (w; ) .

For the special case 7, = Ar, the expression simplifies greatly to become

1_%)(1;_:)»1

x
) -t oy | TH
Ay = ¢ '

J (B7)
-tk -1
e M N -1

which shows explicitly the dependence both on N and on M. The smaller M, the faster
the decay of the interaction terms. An increase in N leads to a greater approach to
T = 00, increasing the orthogonality. This has lead us to sample in time to times where

the change in magnetization is below the signal to noise level. In terms of the inverse we
. 100. M . . . . . .
have found that the ratio of ——— in —, with the acheived signal to noise ratio due to sig-

265 N’

nal averaging (below 5% variance), gives the same results as do smaller M ’s.
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Appendix C- Artificial Relaxation Spectra

Following the near orthogonality relations submitted in Apppendix B, an example of

the inversion of artificial relaxation distributions is forthcoming. This is important since in

. . . S
the case of the materials studied here we do not know the real pore size or v distribu-

tions.

An artificial T 1 relaxation curve was produced using two gaussian relaxation distri-
butions. The two distributions shown in figure C(b) as lines have means at w = 1.23 and
w = 3.50 with variances of 0.025 and 0.05, respectively. After a 265 point relaxation
curve was produced using these distributions, 5% gaussianly distributed random noise was
added to the artificial data, producing the relaxation curve shown as points in figure C(a).
This noisy data was then used as input to our inversion. The inverted fit to the data is
seen in figure C(a) as a line, and the resolved rate distribution is shown as the dashed line
(with points being the actual points in the inversion) in figure C(b). The good agreement

of the resolved distribution with the original distribution can be seen.

Experimenting with various configurations of artificial distributions at varying noise
levels has lead to ‘the following conclusions with respect to the the current inversion algo-
rithm. The shape and position of the artificial distributions is rélatively maintained with
noise levels up to 10% variance. Beyond this noise level ihe distributions inverted are dis-
placed in terms of their center and changed in their shape from the original distributions.
The distributions which are first distorted are the broadest ones (largest variance for gaus-
sian distributions) followed by narrower ones. In the case of several well seperated distri-
butions, the smaller the number of these, the larger the noise level required to distort
them. This may lead to the use of only three distributions in inverted field NMR studies,

where magnetic field inhomogenuity and a need for rapid sampling leads to a low signal to

noise level.
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FIG. C(a). Artificial generated and inverted NMR T 1 relaxations.
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THE STATE OF FLUIDS IN POROUS ROCKS AT PARTIAL SATURATIONS:
A PROTON NUCLEAR MAGNETIC RESONANCE STUDY

Ehud J. Schmidt, Katherine K. Velasco, and Charles West

Stanford Rock Physics Project, Geophysics Department, Stanford University,
Stanford, California, 94025

Abstract

Nuclear magnetic resonance (NMR) studies of porous rocks saturated with air-water mix-
tures have disclosed drastic changes in the distribution of relaxation rates as well as a peak in
the magnetization which occurs between 80 and 60% water saturation. The peak in magneti-
zation is extremely interesting in that it viclates the mean field result. Further study has dis-
closed that these phenomena are not seen in all rocks but do exist in many rocks as well as in
artificial porous materials. Existing theoretical treatment of the NMR response of coupled
pores suggests that the changes in the distribution of relaxation rates may be associated with a
breakup in the pore space connectivity, seen through NMR as a transition from a coupled pore
to an isolated pore regime. Two types of connectivety percolation are suggested. A fluid
mechanical approach to the stability of flow in porous media predicts a breakup of hydraulic
connectivity at 66% saturation, when air-water surface tension eflects begin to be important
(Tpore < 170 micron , where r,,., is the pore radius, for atmospheric pressure gradients) and
at increasingly larger watervsaturations as pore size decreases and surface tension effects be-
come more pronounced. Solution of the equilibrium configuration of water fillers in pores with
negative external radii of curvature predicts a retreat of the water films into disconnected an-
nular pockets. The finding of this transition in the NMR response has practical importance in
establishing a connection between the NMR response and the connectivety of the porous
media, thus forming a physical basis for the application of NMR results to the prediction of

transport phenomena in porous rocks.



Introduction

In an earlier paper ! the techniques of data acquisition, relevant theory and a data
inversion algorithim were discussed for nuclear magnetic resonance (NMR) measurements of
the longitudinal relaxation time 7T, distribution function and the fluid nuclear spin magnetiza-

tion. Experimental results from porous rocks fully saturated with deionized water were invert-

ed to obtain their surface to volume (%) probability distributions, assuming that the rock

magnetization was governed by the equation 2
i=I et
M, (t)=Mgo+ (Mo-My)- ), P e = (A1)
i=1
where
Way s = Wy +(£) t Wers (AZ)

|4

is the average relaxation angular frequency ( ) of the ¢ % pore, P; is the volume percent

avt

of water residing in pores of this size, M, is the equilibrium magnetization and Mg — M o is

the magnetization dispersion, the magnetization' which relaxes following the NMR excitation.

wy = ! is the relaxation angular frequency of bulk water and Wy that of a water layer

Ty
of thickness | adsorbed on the silica surface.

The magnetization dispersion measured during the experiments was assumed to be pro-

portional to rock porosity via the mean field result
_ ('79"'{ )2NO¢H

4 KT

where £ is Planck’s constant over 2r, Ypr 1s the proton nuclear spin -susceptibility, KT the

(MO"Moo) (A3)

thermal energy, N is the nuclear spin density, and ¢ the sample porosity.

Experiments were later initiated on rock samples dried to various degrees of water sa-
turation S, , in order to study the process of pore fluid evacuation and the changing balance

between the eflect of the bulk water and the surface adsorbed water. As the rock dried {rom



full saturation there was an increase in the relaxation angular frequency for each of the P; ob-
served at 10095 saturation. This gradual increase in the importance of the surface adsorbed
water was followed by a drastic jump in w,,; at saturations which ranged from 80% to 609%
for most of the rocks studied. Concurrent with this increase in the relaxation angular frequen-
cy we found a substantial increase in the magnetization dispersion, sometimes as much as a

doubling of the full saturation value, which is contrary to the mean field result, equation (A3).

An investigation was undertaken to study the causes of this effect with carefully con-
trolled measurements at small water saturation intervals. The following sections will exhibit
some of our recent results concerning this percolation phenomena, followed by a theoretical in-
vestigation of the expected results of the breakup of pore space connectivity on the NMR
response. Later sections attempt to determine the position of the breakup point from a fluid
mechanical criterion. The concluding section will discuss the question of the equilibrium
configuration of the water and air fillers in pores with boundaries with negative radii of curva-

ture from the point of view of surface energy minimization, and the possibility of a physical

decoupling of the water films within these pores.

The chief motivation for this study is in the existence of possibilities of understanding
from 3 physical point of view the connection bétween NMR results and transport properties of
porous rocks. Previous work has shown an empirical link between NMR and hydraulic permia-
bility, based upon the utilization of NMR results, assumed to provide only static rocks proper-
ties, as parameters in empirical relations * for hydraulic permeability. This past approach has
been successful at times, but failed in many instances. Possibilities exist now for the existence
of a rigid physical basis for the connection, as well as for the future formulation of predictive

equations based upon this connection.

Experimental Results



Figure 1(a) shows the magnetization of Massillon Dark ( ¢=17.4%) and Massillon Light (
$=22.2%) sandstones as a function of water saturation. The magnetization (in Gauss) shown
has been normalized by division by the respective rock porosity so that a comparison may be
made without the effect of the different volume of water in the two samples. Massillon Dark
differs from Massillon Light in that it has a higher clay and Ferrous oxide concentration. The
normalized magnetization of both samples is identical at full saturations, but shows large
differences at lower water saturations. The magnetization of Massillon Light drops monotoni-
cally as water saturation decreases, in agreement with equation (A3), with the porosity term ¢
at full saturation, going to the product of porosity times water saturation ¢ S, at partial sa-
turation, while that of Massillon Dark, although identical at full saturation, increases sharply
to a peak at approximately 80% saturation, thereafter dropping monotonically with a possible

second peak of smaller intensity at 30% saturation.

The differences between the rocks are better seen in figure 1(b), where the magnetization
has been divided by the product of sample porosity and the water saturation, and plotted
versus water saturation. The mean field result, equation (A3), would predict that this value be
independent of water saturation. The results for Massillon Light sandstone show that the pred-
ictions of mean field theory are valid, except for saturations below 20%. For Massillon Dark,
we find an increase in this value from 100 to 80%, in disagreement with theory, then a region
of agreement up to 45% (a straight line), followed by the low saturation region where clear
disagreement is seen. We can thus see that Massillon Dark and Massillon Light display entire-

ly different behavior in the course of the drying process.

Figure 2 shows the average effective = ratio of (a) Massillon Dark sandstone, and (b)

|4

Massillon Light sandstone as a function of water saturation. This average is computed by
averaging over the relaxation angular frequency distribution function ! and is thus insensitive

to the details of the distribution. At full saturation this average represents the true average
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surface to volume ratio of the rock, whereas at partial saturation it reflects the effective sur-
. S . o

face to volume ratio of the water filler. The average v of Massilon dark, figure 2(a), exhibits

a series of large increases, the first between 90 and 80% saturation, then at 30% saturation

and at 109 saturation, with gradual increases in intermediate areas. The ~ increases mirror

the magnetization increases for this rock (figure 1(b)). The average effective Vv ratio is approx-

imately 10° em ™ at 90% saturation, which corresponds to the rock behaving as if a layer of
100 A ° thick water were covering its surface, this coverage being an extremely low value for

such a high saturation.

. S .. . . . :
Figure 2(a) shows the average v ratio of Massillon Light sandstone as a function of wa-

. S . . . . .
ter saturation. The v ratio of this rock is about 2 - 10° em™ at 100% saturation and rises

gradually until it has a discontinuous jump at 20% saturation. The eflective s ratio is 5

14
times smaller than in Massillon Dark, and displays a very different variation of behavior with

water saturation.

To better undel;s'tand these differences in terms of the actual changes occurring in the
rock it is useful to consider the‘ relaxation angular frequency distribution function P {w). Such
distribution functions can show how the individual pore components are behaving, as opposed
to the magnetization and average surface to volume ratio which are whole rock averages. Fig-
ure 3(a) shows the normalized angular frequency probability distribution function of Massillon
Dark sandstone at water saturations ranging from 100 to 60%. The water saturation axis is
perpendicular to the page. At 100% saturation the probability distribution shows 4 discrete

peaks, with the largest magnitude one being at the lowest angular frequency. This corresponds
to most of the water in the rock residing in the largest pores (those with smallest é—) The

highest angular frequency component is at w == 180. As the water saturation decreases, the
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peaks all shift to higher angular frequencies, indicating the increasing role of the adsorbed wa-
ter component. The peaks are seen to move apart from each other, and the relative magnitude

of each component changes.

At 80% saturation we have the sudden appearance of a component with three times
higher angular frequency, corresponding to a much more adsorbed state. The low angular fre-
quency components continue to separate, with the relative magnitudes shifting so as to de-
crease the low angular frequency (low adsorption) components while the higher angular fre-
quency (high adsorption) components increase. Below 80% saturation the high w component
does not change appreciably until approximately 30% saturation where a second increase (not

shown here) occurs.

Figure 3(b) shows the relaxation angular frequency probabiiity distribution of Massillon
Light sandstone over approximately the same water saturation interval. At 100% saturation
the distribution is composed of three clear peaks, the largest being at the low w end. There is
here, as in the Massillon Dark case, a2 non-zero component at w = 130. As the water satura-
tion is decreased we observe a gradual shift of the low angular frequency components to higher
values, but a dramatic éflect is the gradual disappearance of the high w component, which is
not observed below 75% saturation. Below this point a gradual increase in the angular fre-
quencies occurs, but no discontinuous jumps as occurred in the case of Massillon Dark, figure

3(a).

Following the clear confirmation of this eflect in several rocks, we have studied artificial

materials, where the material composition and pore sizes are better controlled. QF10 is a fused
quartz grain sample of 42.5% porosity and a very narrow pore size distribution composed of

large 50 micron radius pores .

Figure 4(a) shows as a line the porosity normalized magnetization of QF10 as a function

of water saturation. The dashed line in the figure shows the mean field prediction. The mag-
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netization does not change with fluid withdrawal from 100 to 80% saturation, in clear

- oy

disagreement with theory. It then drops suddenly at 77% saturation, with strong fluctations
thereaflter. By 557 saturation the magnetization seems to have leveled off again. At 20%) sa-
turation there is a second decrease in magnetization followed By a rapid decrease at yet lower
saturations. The magnetization is larger than mean field predictions from 100 to 80%9%, then

drops at 77% to the mean field value, while below 55% saturation the magnetization is again

above mean fleld predictions.

Figure 4(b) shows the normalized angular frequency probability distribution of QF10 at
water saturations from 1009% to 779, where the first magnetization drop is observed. The dis-
tribution shows a narrowly separated bimodal distribution at very low angular frequency, indi-
cating the existance of ellipscidal and spherical pores in this sample {which is also condirmed in
the electronmicrograph of QF10 shown in reference 1). These peaks shift gradually to higher
w’s, until at 77% saturation a suddeﬁ breakup of the primary peak occurs witﬁ the appearance
of new, higher angular frequeacy components. The behavior here is similar to that observed in
Massillon Dark at high saturations, and its observance in artificial materials suggests that the

phenomena we observe are more universal in nature.

The origins of this magnetization peak has at least two plausible explanations, which are
to some extent related through the geometric transition of the water films in the pore space

which they require.

The first explanation is a transition in dimensionality of the water films. The theory for

-y

45 and proven experimentally by Dietz °. In cases-

this response was introduced by Richards
where the NMR relaxation is produced by diffusional exchange between excited and non-
excited spins, the diffusion rate in the various directions determines the relaxation time {and
thus the relaxation angular frequencies). When the system is isotropic in three dimensions
ws, == K 7. for the motionaly narrowed regime w; 7, << 1, where w; is the Larmori excita-

tion frequency and 7, is the proton rotational correlation function, the time span over which
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molecular motion is correlated. The constant K is the strength of spin-spin interactions. For

a system where diffusion in one of the directions is cut off or strongly inhibited, that is a two

dimensional  system, the relaxation angular  frequency is  given as s

Wee = K 7, +In(wy, r,7'). For a one dimensional system the relaxation angular frequency is
-1/2

Weo =K 7, (w7, ) .

Applying these theoretical results to our experimental results, with the instrument exci-
tation frequency of 20 MHz (wy, = 1.2 - 10® s7!) and 7, = 107 s, we would be a multiplica-
tion by a factor of 4.4 for a three dimensional to two dimensional transition, and by a factor
of 8.9 for a transition from three dimensions to one dimension. The change in magnetization as
a results of these transitions has not been addressed, in part as a result of the fact that in most
high resolution NMR experiments the absolute signal amplitude is not used for quantitative

purposes.

The second explanation for the observed phenomena is a breakup of water phase connec-
tivity in the pore space which occurs at this point. It is suggested by the changes in the angu-
lar frequency probability distribution at these points. This second explanation will be ad-
dressed in the remainder of this paper because of its link with the first possible explanation,
namely that lower dimensionality would appear only if water films of A ° thickness scales ap-
pear at some points in the pore space, which would tend to cut off diffusive communi.cation
between the thicker films on either side of this layer. Some of the higher w’s which appear at
the transition point, as in the case of QF10, do not seem to be high enough to be valid for A °
thickness films, assuming that the wetting prop:'a'i.:'ties of QF10 are similar to those found in
rocks. The first possibility can readily be tested by the use of NMR spectrometers of differing
Larmor excitation frequencies, since the theoretical results perdict a dependence of the relaxa-

tion time on the Larmor frequency.



Nuclear Magnetic Resonance in Porous Rocks at Partial Fluid Saturation

We will discuss in this section the theoretical nuclear magnetic resonance response of a
pore space partially filled with air in order to examine the agreement of our experimental
results with available theory.

a. Effect of partial saturation on the NMR relaxation in a single pore

The Nuclear Magnetic Resonance (NMR) response of porous rocks is governed by

diffusion and relaxation via the modified Bloch equation *7#
oM, (M. -Mg) D 2 v )
. T T, PV 1)

where M, is the : component of the magnetization, M  the equilibrium magnetization, 7T,

the relaxation time of bulk water and D the diffusion constant.

Consider the case of a pore partially filled with air. It will be assumed that this air, due
to the greater affinity of water for the silica surface, forms a continuous bubble in the center of

the pore. A pore of cylindrical geometry will be chosen of radius R, which contains a cylindri-

R 2
cal ait filler of radius R ;. The water saturation of this pore is S, = 1 - ( 7?—L ).
2

Due to the cylindrical symmetry, we will pick a solution to equation (1) of the form

p - F, = —{w, + t
M, =M o+ A, J, (kt ,-) ‘S:?SZZZ e c it wy ) + (2)
B, N, (k r)COSn® ~hus lonteidt

sinn ¢

where J, and N, are Bessel functions of the first and second kind of order n, k, is the
transverse ( r ) component of the wavenumbery*f is the z component of the wavenumber,
wy = (T, ) is the angular frequency of relaxation of the bulk water and w, = (T, )'is

the angular frequency of relaxation of the diffusive modes.
When this solution is inserted into equation {1) we obtain

Wy

kt2+5n2= D (3)




which is the dispersion relation which links the wavenumbers to the relaxation angular fre-
quency of each mode. If the &, , 8, are determined, as they will be from the boundary condi-

tions, it will be possible to determine w, and later the average relaxation angular frequency

Wy = Wy + Wy (4)

which is analogous to the general equation (A2) used for fully water saturated pores

St

Wey = wp + v e (5)

Specializing to the lowest order mode n =0, which does not have angular dependence,

the solution must satisfy boundary conditions on the two surfaces, the air-water and the

water-silica interfaces. The boundary condition for the magnetization on an active surface, a
surface with a given density of spin relaxation sites, is

n-DUM +uM =0 (6)

where n is the normal to the surface and p is the average surface site (sink) density, defined

as

p= [u(r)ds (7)

u (r) being the local site density at each point on the surface S.

At both interfaces, r = R, and r = R,,

PO . oM,
n-yYM =r
or

It will be assumed that the air-water interface is devoid of relaxation sites, neglecting the

-

small concentration of paramagnetic O!7 found in air, so that after utilizing some relations

among Bessel functions

‘—ktD[AOJl(k‘ Rl)+B0N1(kI Rl)]=0 (8)
or
Jy (ke R))
Bo=-Ag-
T Ni(k R))
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At r = R, the interface with silica, we have active relaxation sites, so that equation (6)

for this interface is, after inserting the results of equation (8)

~i(k R+ 55 Jo(k RY) (9)

+ Jy(k Ry)
Ny (k Ry)

The top line of this equation contains terms which exist even in the absence of an air filler

(N1 (, Rz)“-kt—u-D-'No(k, Ry ] =0.

(fully saturated pore, R, == 0 ) while the lower line shows the additional terms introduced due
to the new air-water interface, producing changes in the relaxation angular frequency with wa-
ter saturation, since R | continuously varies as the water saturation changes.

4, the remaining free parameter in this model, is determined by comparing equations {4)

. . St 2!
and (5), for the case of a fully saturated pore, which gives wy = Vo Werr = R

for a cylinder. In our analysis ! the value of (! Wyery )= 10" ¢m /5 has been assumed for

quartz based rocks so that wy = 2 - 107/R, s~

Using a difflusion constant D = 3 - 10~° em?/s, and using previous ¥ theoretical results
which show that for the case of (4 - R,)/D << 1, which is valid for the cases of rocks, the re-

laxation rate is given by wy = p/R 3 so that one finally obtains that g,,.; = 2107 ¢ /s .

This surface site density is surprisingly small compared with biological cells where

Brownstein ® finds 4 =3 - 102 ¢m /s, two orders of magnitude higher surface activity.

For the isolated cylindrical pore § may be set to zero and equation (9) solved numerical-
ly. The resulting relaxation angular frequency wy.is plotted in figure 5 as a function of water
saturation for a 100 micron (1 micron = 10"* ¢m ) radius pore. The average relaxation angu-
lar frequency for this pere is wy, + wy. Since w, = 0.35 the diffusive mode is weak for this
large pore compared to the bulk relaxation angular frequency until low water saturation ( ap-
proximately 20%) when it dominates. This variation of w with S, will be observed for the sin-

gle isolated pore as the drying process progresses.
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In figure 6 the results for the diffusive relaxation angular frequency of a 1 micron radius
pore are plotted (line) versus water saturation. The resolved angular {requencies are 100 times
greater than those in figure 5, showing the scaling of the relaxation angular {requency with
pore size. The variation with water saturation also is identical to that for the 100 micron
pore. Cohen ° suggested the use of an.approximate equation for the average relaxation angular

frequency in the partially saturated case

St

Weg == Wy + VoS Y
w

(10)
The results of this equation (minus the bulk relaxation angular frequency w, ) are plotted as
points on the ﬁgu‘re and confirm the validity of this equation. For the parameters of this model
it is therefore possible to predict the relaxation angular frequency at any partial saturation
from knowledge of the results at full saturation. The shortening of the relaxation time (in-
crease in relaxation angular l:requency) is her.e solely the result of a decrease in the fluid
volume and should not be confused with the eflect of additional relaxation sites added at the

fluid-air interface, as these have been neglected here.

The normalized intensity of the Oth order mode can be studied to determine if it is

indeed the dominant ﬁode here and what is the contribution of the higher order modes. The

volume normalized intensity of this mode is ®

1 R vy
fo=v [Fo(r)?av ()

where F (r) is the magnetization solution {equation (2)) without the equilibrium magnetiza-

tion M ., with n == 0. The evaluated intensity for this case is
4
Iy = : 2
" RFE-RE) K 2)
J1 (X)) ?
[JI(X2)R2_JI(XX)RI]+'A;T)(ll)'[Nl(Xl)Rl_Nl(XQ)RQ] .
[ [RE(Jo (X2 + J1 (X2 ) - R 2 (Jo (X)) + J, (X)) ] +
Ji (X)) 2 2
(Fryy) [ R W (X0 + Ny (0)") = By (No (X" + Ny (X)°) ]



where X2 =k Ro,X1=Fk R,

The results obtained for the intensity of the lowest order mode for a 1| micron radius
pore are 1.00 at full water saturation, dropping to 0.97 at 20%% saturation. This shows that ig-
noring the higher order modes contributes at most to a 3% error.

b. Effect of partial saturation on the NMR response of coupled pores

In cases where the rock porosity is sufficiently large so that the mean distance between
pores is of order of the pore diameters, there is an exchange of fluid between adjacent pores
due to the differing relaxaticn rates in them. The smaller pores serve as alternate relaxation

sites to intrapoere surface sites available to adjacent larger pores.

In this case the NMR response of the {* pore is given by °
oM; M, - M i=N p R

=- + - g M, dS;; 13

at Ty ’2‘ v; n 7 My dS; (13)

where T,; 7! = w,, ; is the average relaxation time for the ¢*

pore. A sum is taken over the
N nearest neighbours of this pore, each of which have an intersecting surface area S;; in com-
mon _with this pore. Mendelsohn !0 has shown that for the weakly coupled case where

S;; << 5, S;, S; and S; being the surface areas of the two neighbouring pores, these

equations have the following solution

My = Mo, + (Mo~ M 3 " R TR
M, = oo+( 0~ co) I—Em)e +

J=1

T e ™er ' (1)

S S . . . . .

where A;; = ( a7 ) = ( v ) is the difference in surface areas between these pores. This
i J

solution states that in every coupled pore there i5"a fraction of the pore volume which relaxes

with its own characteristic relaxation time while a remaining fraction relaxes with a

neighl:our’s relaxation time.

The total sample magnetization can be obtained by summing over all pores, resulting in

the following expression

=l 2 =N Si'j - t
M (t)= Mo+ (Mo-Mo) 35 (P =5 35 =)™ (15)
‘=1 J=1 %)
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P; being the probability of occurance of the " pore.

Comparing this result to the result valid for the isolated pore regime

M(@)=Mo+(Mo-Mg) S P e’ (16)
we find that there is a shift in the probability distribution, which is a measure of the pore
space connectivity. For large pores (small 5 /V') bordered by smaller pores ( larger S/V') A,
is negative, so that the amplitude of the large pores is intensified at the expense of their neigh-
bours. We would thus expect to see , while in this regime of weak coupling, a larger probabili-

ty of large pores ( with small relaxation angular frequencies) than are actually found in the

rock.

In the strongly coupled case S;; = §; , §;, regions whose size is much greater than the
single pore will relax together. The limiting eflect is the whole rock relaxing in cohesion with a

relaxation angular frequency

Way rock = Wy + ( Vv )mk T Werf
~The predictions of the coupled pore models may be seen in our experimental results in
terms of the broadening and of the appearance of new features in the angular frequency distri-
bution functions { see figure 4(b) at 77%). This may coincide with a transition from the

strongly coupled regime to the weakly coupled regime.

The theoretical results do not explain two important features seen in the experimental

results, the increase of magnetization which is observed at the transition S,, and the actual

water saturation at which the phenomenon occurs. The theoretical results cannot predict these
features because they do not concern themselves with the actual mechanisms of the transition
between the various connectivity regimes, but rather with the end members created by this

process. Above the transition water saturation we are in a well connected pore space, where

the resolved NMR probability distribution will show only variations of the = which exist over
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length scales much greater than typical interpore distances. Below the transition we will see a
loosely connected or totally unconnected pore space, where many more features of the pore

space will be observable.

To predict the critical water saturation and the magnetization peak observed at this sa-
turation it is essential to understand the topology of the fluid-air mixtures in the pore space,
and as these are governed mainly by mechanical forces, a mechanical model must be exam-

ined.

Fluid Flow in Partially Saturated Porous Media

We will examine initially water flow through a pore parually saturated with air and fol-
lowing that look at the connectivity percolation on the larger, whole rock scale. The motiva-
tion for this division is that fluid percolation can occur on various length scales in rocks, but
witlll similar features. In essence, there can be either pockets of isolated films of water in the
pores, or flow over macroscopic multi-pore distances can be cut off.

a. Water flow through a partially saturated pore

The geometry considered is the same geometry discussed previously in connection with
relaxation in a partially.saturat.ed pore, that of a cylindrical pore with a central air filler of ra-
dius R surrounded by water that fills the remaining distance to the pore wall, R = R,. Im-
plicit in this geometry is the greater affinity of the water for the silica surface, that is that the

4
silica-water surface tension is much lower than the silica-water vapor surface tension. A later

section will look at more complicated pore geometries where this geometry may not be main-
tained at all water saturations.
The equation that governs fluid flow is the Navier-Stokes equation, which for flow down

the cylinder axis may be written as !

NV = A (17)
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. . . . . AP
where 5 is the water viscosity, v, is the fluid velocity along the cylinder and ——— is the pres-

L

sure gradient per unit length which drives the flow. This equation can be written as

1d 2 (r) ) AP
r dr dr n L

which can be integrated to provide the general solution to this problem

AP
o (r)=—4nL

where ¢ and b are constants to be determined from the boundary conditions.

r?+a In(r)+b (18)

Two boundary conditions must be satisfied. At the interface of the water with air, there
cannot exist any normal stresses, except those due to the air-water surface tension. Therefore

we have

avz o
Oy, == 1] ==

or r (19)

at r == R,, where ~,, is the air-water surface tension coeflicent. Using the general solution,

equation (18), we determine that

Tis
1+AP

a == =——

n 2nl

R;?
The second boundary condition requires flow velocity continuity at the water-solid interface,
requiring that the flow velocity vanish on this surface. Using equation (18) with the value of a

inserted gives

_ AP 9 Tto AP 2
_471L P { m +——2nLR1)1nR2'
The solution thus obtained is o
— AP 2_ .2 AP 2 ‘L Tio _1_'__ 5
v (1) = fop (RE-r%) 4 gop B In(go) + Toln(3) (20)

The first term in the velocity is the familiar Poiseiville flow term. The next terms do not exist
in the absence of the air filler. The second term, always negative, is the adverse contribution
of the air-water boundary condition, which since it cannot support the large shear stresses im-

posed by fast flow, forces a reduction in the flow rate at the boundary. The last term is the ad-



verse contribution of the surface tension, since fluid motion at the surface will have to perform

work to deform the air-water meniscus.

The volume flux of water passing through a cross-sectional area of the cylinder per unit

time may now be computed. This quantity is given by

r =R,

Q= [ puv (r)ds | (21)

r =R,

where p is the fluid density and the integration is over the cross-sectional area. For a cylinder

dS =2 xr dr so

\

r =R,
Q =2=xp f v, (r)r dr (22)
r=R1

which after using the r=lation between the radii and the water saturation S, can be written as

=—_7TP;35LRQ [(3Sw—2)(5w)_Q(I_Sw)an(l_Sw)] (23)
T Vio 22
+“"1‘§§‘£"’ [(-Sw )-(1-5, )ln(l—Sw)]

This solution is quite different from the parabolic solution which is obtained in the ab-
sence of the air filler. The top line is the solution in the absence of the air-water surface ten-
- sion effect. The terms };receding the brackets in this line are those found in fow thorough a
full pipe. New features of this line are the dependence on (3 S, - 2), and a logarithmic boun-
dary layer flow term. For §, < S,. = 0.66, the first term of this line goes negative and the
logarithmic term in the flux dominates, maintaining a small positive flux at all saturations.
The bottom line in the expression for the flux, equation (23), is related to the air-water surface
tension effects. This line contains two terms, a first term which is al_ways negative, and a
second logarithmic positive term. The negative term in this line will lead to a flow percolation

at Sy, il its effect becomes significant. In order to study the importance of the surface tension

term vis-a-vis the first term we introduce a dimensionless constant

_ RFAP

Boore =
pore 4L’7lu
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which measures the relative size of the pressure forces versus the surface tension forces. If

Bpore > 1 viscous forces dominate, if By, < 1 surface tension forces dominate.

Taking Yo = T2.5 erg /em?® and the pressure drop AP /L at
1 Bar /em == 10°Dyne /em?®, as in gravity drainage, we find that the transitional Bpore = 11s
achieved if R, = 170 micron , which is of the order of the largest pores found in a typical
sandstone. All pores smaller than that size are completely dominated by capillary effects for

this pressure gradient. For example, for a pore of radius 1 micron we obtain B,,,, =3 -107%,

Figure 7 shows the theoretical flux , equation (23), for a pore of radius 500 micron as a
function of water saturation. The flux shown Q' = @ - n/p is normalized for the effects of
viscosity and density (units are ¢ em®/s®). This pore size has B, > 1, so that air-water
surface tension forces are expected to play a secondary role. The upper curve shows the results
without surface tension effects, that is neglecting the second line of equation (23). This would
be a valid approximation in a physical situation if the system were heated or if some surfac-
tant were introduced. The lower line shows the flux with the surface tension term included.
Following the upper-curve from full saturation, close to full saturation there is a square depen-
dence on the water saturation, which is the parabolic dependence on effective radius typical of
Poiseiville flow. From approximately 80% saturation the slope changes dramatically as the
effects of the air inclusion become greater, so the dominant term becomes the logarithmic
term. At yet lower fluid saturation the flux remains positive but small. The lower plot in the
figure shows the flux with the surface effects included. It is possible to observe that the eflect
_ of creating the bubble, which occurs just below f'u'i‘llsat,uration, immediately decreases the flux
by a substantial amount. This is due to the drag forces exerted by the bubble. The flux in-
cluding the surface tension effects tracks at lower saturations the upper curve from below.

The adverse effect of surface tension can clearly be seen.

Figure 8 shows the flux for a 200 micron radius pore as a function of water saturation.

The size of this pore indicates that it is just within the regime where surface effects become
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important(B,,,, == 1), so it affords a view of the surface dominating regime of equation (23).
From the flux obtained at full saturation ignoring the effects of surface tension, the upper
curve, the effect of the small size of this pore may be seen, for the flux is ocne order of magni-
tude smaller than the 500 micron radius pore. The upper plot, where air-water surface tension
effects are ignored, shows essentially the same behavior as in figure 5. Comparing the lower
plot with the upper plot, the increased importance of surface tension on the flux for this pore
size may be seen, since a large drop in the flux appears immediately with the nucleation of the
bubble, just below full saturation, with further decreases as the saturation decreases, leading
to a percolation threshold at 6§2% saturation. The effect of surface tension in leading to a flow
percolation threshold as pore size decreases may thus be clearly seen. For yet smaller pore
sizes the asymptotic percolation threshold is at 66%%. Equation (23) predicts an negative fux
below the percolation threshold which is physically impossible. It may be that the large surface
tensions below the threshold will lead to changes in the form of the water-air interface so that
the equation (23) is no longer valid.

12

’

-Experiments with capillaries filled with air-water mixtures were performed by Taylor
Goldsmith and Masonv;"s and Cox . Goldsmith ' arrived at equations identical to equation
(20), but without the surface tension term. He showed experimentally the negative velocity
terms, predicéed by this equation, which are greatest near th;e air-water contact. His experi-
mental results for increasing bubble size showed the percolation of flow predicted by equation
(23). Taylor 2 and Cox ! arrived experimentally and theoretically at the percolation point.
Experimental results lie between S, = 0.63 and 0.68, in good agreement with theory.
Saffmann !® studied the dependence of this percolation point in geometries other than
cylinders and for incompressible non-wetting fluids, where stress and velocity continuity mi. st
be imposed on the nonwetting phase, wetting phase interface. He arrived at
Sepe == 0.6 + 0.4 my as the critical saturation, m, being a geometry dependent constant.

b. Fluid flow at partial saturation through coupled pores



The phenomena of fluid flow through coupled pores at partial saturations has been dealt
with by Saffmann '® and Wilkinson !* . The much more complicated case of the coupled
pore system, representative of the pore space, involves other length scales than those in the
single pore case, where the relevant scales are the bubble size and the pore size. In multipore
percolation the issue addressed is whether air will enter the pore, as opposed to flow localiza-
tion within the pore, considered earlier. The governing length scales in the multipore case are
the grain radius of curvature and the distances over which the pressure gradients are exerted.

It is possible to define a second scaling term !®

AP Rqrcu'n 2 5
= ———————— '5
Bcp L o ( )

where R, is the grain size. For low values of B,, simulations performed by Wilkinscn '
showed the percolation S, == 0.659. Here S, refers to the volume fraction of water with

respect to the total pore volume, as opposed to the earlier use of S,, with respect to the

volume of an individual pore.

Percolation on the multipore scale will lead to isolated clusters of pores fully saturated
with fluid but disconnected to the neighbouring clusters. This effect may also expressed as a
transition from a single peak in the NMR relaxation angular frequency probability distribution

to multiple peaks. Since R;,,;, > R,,,. the individual pore percolation mechanism is expected

to exist even in situations where the the coupled pore mechanism is no longer valid.

Equilibrium Shape of the Air Filler

-
-

The cylindrical pore examples examined in the previous sections have been simple
geometries where the shape of the air filler is always spherical and the assumption of a totally
water wet solid surface is valid at all fluid saturations. Knowledge of the phases geometry in
the pore space is nessecary in order to solve the relevant differential equations of classical phy-
sics on the particular geometry. In this section an examination will be made of a realistic pore

shape where the assumption of total wetting of the solid surface is not generally valid at all
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partial saturations.

The pore shape examined here is the grain boundary pore. This pore is created by a
number of grains in contact. The specific case examined here is that of four sphe;ical grains of
radius R in contact and is typical of a cubic packed system. A unit cell of this geometry is
shown in figure 9. The system will be taken to be a two dimensional system, so that the
grains are infinite cylinders extending into the plane of the figure. The porosity of such a sys-
tem is (4 — m)/m == 0.215, and the pore surface to volume ratio is (27)/((4 - 7)R ). Figure 9(a)
shows the geometry of the air filler at high saturations, when the air filler radius, r, is smaller
than the equivalent spherical cell radius, r,, the radius of the largest circle which could be 8¢
into the void, given by r, = (V2 - 1) - R. At greater levels of fluid saturation ( for this
geometry S, = 0.374), the air fller is cylindrical with a positive radius of curvature, as in the
case of the cylindrical pore examined previously, which does not follow the grain surface.
Such an air filler shape will be termed an fncommensurate filler. At saturations close to the
saturation where the air fille- radius reaches the equivalent radius, the filler must change it’s
geome-try. The two end members geometries it may adopt are shown in figures 9(b) and 9(c).
Figure 9(b) shows a filler which has adopted the grain boundary geometry. This filler, which
we term a commensurate filler, leaves the grain surfaces totally liquid wet and the fluid film
connected. It is fully chareétarized by the thickness of the liquid film AR . A distinctive
feature of this geometry is the negative radius of curvature of the air filler. Figure 9(c) is the

case of the tncommensurate air filler at low fluid saturations. Here the solid surface of each

grain is not water wet over an angular region A#, and the water films are concentrated in an-
nular pockets on the pore corners, each with positive air-water radii of curvature. It is expect-
ed that the differences of the equilibrium shapes of the air fillers, for a given water saturation
Se, will be extremely important in determining some of the physical properties of these air-
water mixtures. The water film of the incommensurate shape behaves as a connected body for

most transport properties, whereas the commensurate shape is disconnected ( except for possi-



ble surface diffusion).

The equilibrium shape of the air filler may be determined from requiring that the
configuration which the system adopts be that which has the minimum total interfacial energy

7 The interfacial energy is given by

k=K
W= 3 % A (26)

k=1
where the summation is over the K interfaces betwen the phases, each interface being charec-
tarized by a surface tension 4, and and an area A; . In this case there are three relevant sur-

face tensions; Y., Y., and 7, , the solid-liquid, liquid-vapor, and solid-vapor surface tensions,

respectively.
The incommensurate filler geometry of figure 9(a) has the following interfacial energy per

unit cell;

W, =, *2rrl + v, - 20RL , (27a)

where L is the pore length perpendicular to the plain of the paper, at a water saturation of

- Sy =1-(——) (=) for S, > 0.374

The commensurate filler geometry of figure 9(b) has an interfacial energy per unit cell;

W, =, - 2R + AR) (1 -8 —?%)L + a4 - 27RL (27b)
where g is an angle given (in degrees) by g = cos™ (——R;——f———ﬁ) at a water saturation given by
Sy = ( T ) (QRAR:,-AR“) .

4 -7 -w R

The incommensurate filler geometry of figure 9(c) has an interfacial energy per unit cell given

by

28 .9 _ A . o A
(90 )L + v, - 27R (1 90 )L T Ve " 27R (90 Lo, (27¢)

where 8 == 00 - « is the half apperature angle of the circular water-air interface, r is the ra-

'
W, =, - 2rr

dius of this interface, and « is the half apperature angle of the corner. From geometric argu-



ments o = 45 - _A‘;_G’ r' =tan(a) (VZ-1)R (1 - —%g—) The water saturation of this
configuration is
L Ag.\2 1 o -
=0613 (——) (1 - —=—) t 1= (= - — for S, < 0.374 .
S, = 0.613 (4 @7 ) (1 50 ) tan(a) - {1 - mtan(a) - { 5~ Tso )] or < 0.37

The solutions for r and S, in the case of W, utilize an assumption of zero contact angle for
the liquid-vapor interface at the triple contact of air, liquid, and solid. The solution for higher
contact angles may therefore be slightly different.

Solutions for the minimum energy configuration are aided by the application of Young's

equation ‘%

Yov = T+ Vo COS(é) (28)

where ¢ is the triple point contact angle, which we assumed was zero for the calculations of
W, .

19

Inserting realistic values for the quartz-water system ; 4 = 334 erg /em? and

~,, = 406 erg /cm? the three energies W,, W, and W, are plotted in figure 10 as a function
of wafer saturation for a one micron grain radius. The surface energy per unit cell shown is
normalized by division by the length L, the values being in erg /em . It can be seen that at
saturations above 0.374, where only solutions W, and W, exist, the lowest energy solution is
the incommensurate circular filler W,. At S, = 0.374 solution W, becomes impossible to
maintain geometrically and the system merges smoothly into solution W, , the incomensurate
disconnected configuration. The connected configuration W, is much higher energetically for
the given values of surface tension. The signiﬁ‘é;nce of the difference among the various
configurations becomes apparent when compared to the unit cell thermal energy of the water,
which at standard temperature and pressure is given by

Wy =127-10°5, (4-=R*L . (29)
Comparing the expression for the thermal energy to equations (27a) through (27¢), it may be

seen that since the interfacial energy scales as R, while the thermal energy as R?, the relative



importance of the differences among the interfacial energy configurations increases as the grain
radius decreases ( for R << .1 ¢m ). Also important is the linear decrease of the thermal ener-
gy, W, with water saturaticn, whereas the interfacial energies vary inversely to'the water sa-
turation (see figure 10), so that at low water saturations the interfacial energetic differences be-
come more important. Assuming that only states W, and W, exist at saturations below
0.374, and using Boltzmann statistics for the relative populations of the two, it is found that
for the 1 micron grain of figure 10, there are at S, = 0.37 already 0.2% more cells with the

incommensurate geometry whose energy is W, than those with energy W, .

Detailed examination of equations (27a) through (27¢) reveals that for the zero contact
angle ¢ case, only =, influences the results so that the relative ordering of the three energy
states at a given S, may not be changed. If a non-zero contact angle is allowed, as would be
the case for a higher v,, '%, the relative configuration could be changed, bringing the com-

mensurate solution W, below W, at some saturation. This would allow the system to remain

connected to low water saturations.

-A conclusion of this energetic treatment of the grain boundary pore interfacial energy is
the discovery of a transition from a connected pore to disjointed water films at S, = 0.374.
For a three dimensional simple cubic system the same transition would occur at S, = 0.57 (
r, = (V3 -1)R), and at slightly higher saturations for denser packed systems ( where a unit
porous cell consists of more than a single pore). This suggests that the effect which is seen by
NMR may also be due to a physical disjointing of‘ the water in pores with negative radii of

curvature. Rocks which do not display this behavior may correspond to those with pores hav-

ing mainly positive radii of curvature, or low solid-vapor interfacial tensions.

Conclusions

A study of the behavior of water in porous rocks at partial fluid saturations suggests the

presence of connectivity percolation phenomena in some rocks, which is seen by NMR as a
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change in the relaxation angular frequency probability distribution function and in the sample
magnetization. In the relaxation rate distribution, it is seen with the appearance of much
higher relaxation rates (adsorbed states). In the magnetization, it is seen in a magnetization

much greater than mean field predictions.

Available NMR theory predicts these changes in the relaxation rate distribution at the
transition from the strongly diffusionally coupled to the weakly coupled, or decoupled, regimes
of pore space. Satisfactory explanation of the anamolously high magnetization awaits further

theoretical work.

Fluid mechanical considerations of flow stability predict How percolation at 669¢ water
saturation for rocks with pore sizes which are within the surface tension dominated regime.
Two possibilities of percolation exist, those on the individual pore scale and those on the mul-

tiple pore scale.

For pores with negative radii of curvature boundaries surface tension minimization argu-
ments predict that the lowest energy state, for typical values of the quartz-water-vapor inter-
facialh-tensions, which is‘therefore the most stable, at low fluid saturation is that which requires
the retreat of the water into disjointed annular pockets at the grain contacts. This argument
predigts physical disjointing of the fluid films at saturations ranging from 37% to 66%,

depending upon the packing arangement of the pore space, denser packed systems having a

higher water saturation percolation threshold.

Several explanations may be provided for rocks which do not seem to display this

-
-y

phenomena. The first option is that they are eflectively decoupled very close to full saturation
as would be the case for high S /V rocks. The éecond possibilit;- is that they remain connected
to very low saturations, which requires a combination of low S/V, low wettability and
specific pore size and geometry distributions. A third option is the existence of very large scale

heterogeneities, which could smear out these phenomena.
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surface tension. Lower curve are results including surface tension.
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Grain Boundary Pore With Incommensurate Air Fill-

er
At High Water Saturation

FIG. 9(a). Spherical grain pack pore fncommensurate air filler at high water saturation. All

angles and lengths shown are defined in the text
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Grain Boundary Pore With Commensurate Air Filler
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FIG. 9(b). Spherical grain pack pore commensurate air filler at low water saturation. All an-

gles and lengths shown are defined in the text.
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FIG. 9(c). Spherical grain pack pore fncommensurate air filler at low water saturation. All

angles and lengths shown are defined in the text.
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WIDEBAND ACOUSTIC RESPONSE OF FLUID SATURATED POROUS ROCKS:

THEORY AND PRELIMINARY RESULTS USING WAVEGUIDED SAMPLES
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94305

Abstract

The complex compressional and shear frequency-dependent elastvic constants of non-
porous and porous solids are measured in a frequency range 5 kHz to 1 MHz. The measure-
ments are performed in a continuous wave acoustic transmission bridge using cylindrical sam-
ples. Use of waveguided samples prevents problems of diﬁraction and wavefront spreading,
which are difficult to correct over broad frequency ranges. The theory of waveguided elastic
wave propagation in isotropic media with complex elastic constants ( generalization of the
Pochammer-Cree solution) is presented. The resulting dispersion relations are utilized in the
interpretation of the experimental results from solids with real frequency-independent elastic
constants, solids with real frequency-dependent elastic constants and rocks with complex
frequency-dependent eflctive elastic constants. For solids with frequency-independent complex
elastic constants ( constant @ ) theoretical results reveal the appearance of specific dissipation
peaks associated with waveguide geometry. An algorithm is formulated to invert the extension-
al and torsional shear experimental results, utilizing the theoretical dispersion relations, to ob-
tain the complex frequency-dependent elastic constants. Constant ¢ 1is found to be inade-
quate for describing the frequency dependent properties of most materials studied. Evidence

of the effects of pore scattering and the reduction of matrix moduli due to water adsorption is

shown for porous glass.

PACS numbers: 43.20.B, 43.20.H, 43.20.M
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Introducticn

The {requency dependence'of the elastic moduli of solids !, liquids 3, and porous solids
+12 has been the subject of numerous experimental and theoretical ®'*?! investigations. The
motivation of these studies has been the possible utilization of the frequency dependence as an
additional parameter to the more classical temperature and pressure dependence for the better
understanding of material physical and chemical properties. Possibilities exist for the applica-
bility of this frequency dependence for the creation of acoustic spectroscopy, which could re-
veal valuable information on molecular composition and motion for single phase materials, as

well as boundary interactions and phases geometry for multiphase materials.

Measurement of material elastic properties over a broad frequency interval requires the
overcoming of two major problems, the first of theoretical nature and the second of an experi-

mental nature.

The theoretical question is that of properly interpreting experimental results obtained on
a single saﬁxple over a frequency interval where the ratio of the wave’s wavelength to sample
dimensions varies greatly. This problem is particularly acute in measurements which span fre-
quency ranges where the wavelength goes from being greater than the sample size to being
smaller than sample size, as the theoretical corrections for diffraction and sample size effects
are generally relevant on asymptotic sides of this critical wavelength 22, In order to minim-
ize the interpretive problems the experiments here are conducted in cylindrical acoustic
waveguides where the elastic wave particle motion throughout the sample is described fully by
solution of the appropriate wave equations. As s;i.ds with complex (lossy) elastic moduli were
studied, the Pochammer-Chree solution for the propagation of elastic waves in lossless isotro-
pic cylinders was extended to the case of propagation in media with complex elastic moduli.
The importance of this solution is evident in the appearance of new specific loss peaks associ-

ated with the coupling of the loss mechanisms with waveguide geometry.
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Experimentaly, construction of broadband elastic wave sources and receivers for opera-
tion in the desired frequency band is a complicated task, due to the highly dispersive frequen-
cy dependence of both the mechanical and the electromagnetic impedances of most acoustic

. n
devices 2%,

The problem is complicated when these devices are constructed for the study of
lossy media, as the various methods of damping which involve significant loss of a‘coustic out-
put power may not be used. For this purpose sets of broadband compressional and torsional
shear piezoelectric (PZT) tranducers were designed and built with a smoothly varying frequen-
cy response over the frequency interval 5 kHz to 1 MHz. These transducers were used for the
study of non-porous solids with frequency independent elastic constants, solids with frequency
dependent elastic constants and porous solids with frequency dependent elastic constants. An
algorithm has been devised for the inversion of the the wave frequency dependent velocity and
attenuation for the complex frequency dependent dilatational elastic modulus C'12° and the
shear modulus C'44°. Preliminary physical interpretation is provided for the inverted elastic

moduli of plexiglass and porous glass.

The"ory of Wave Propagation in Cylindrical Waveguides With Complex Elastic

Constants.

The approach to calculating the dispersion relations for wave propagation in cylindrical
waveguides with complex elastic moduli is illustrated by first examining the complex one di-

mensional scalar wave equation

-2
Vz'ﬁ—Mp. 'W’/)=0 (1)

where p is the density , M = M + i M s the complex elastic modulus with M’ its real

part and M its imaginary part and 1 is the scalar potential.

A wave solution is assumed for ¢

11)%6_‘(#.’—“!) (0)

where ¥° = k' - ia is the complex wavenumber and w is the angular frequency. Inserting
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this solution into the wave equation we obtain

‘o W’
(k"2 By w—o0 (3)
or separating into real and imaginary parts
19 M,
e v v )
1t
. ! .
21k a=1 p L«J2 W

Equation (3) provides the dispersion relation between the complex elastic modulus and the
wave’s wavenumber and frequency. This relation must be satisfied at each point in the wave’s

path and in particular at every interfacial boundary.

If we specialize to the small loss case F' 2 >>ce%and M 2 >> M ? then we get

p WP

and

1_2a M’
Q k' M

where V is the wave phase velocity and % the specific (per wavelength) dissipation factor.

For three dimensional wave propagation in isotropic media with a vector wavefleld, two

. - . 2]
wave equations must be satisfied *°

Y- L —— VU =0 Ba
\% T (62)
for the shear motion, where Cj, = C;,, + 1 04’4' is the complex shear modulus and
2 3
2p-. L. 9 =0 6b
v L (6b)
for the compressional motion, where C;, = C,; + ¢ C,,' is the complex compressional

modulus ( Cy; = Cip, +2 CJ).

In the case of a cylindrical rod, these equations are written in the cylindrical coordinates

(r ,9,2z )as
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2 e ¥ 2 A 2 -
r (v° V¥, 5 r“)+¢(v ‘I/¢+r2 53 r2) PEAvAR) (7a)
s
Cu
for the shear wavefield and

1 0 od 1 8%°d % pw?
—_—— —_— — = - $ b
r Or (r or )+ r? 9¢° + 8z2 cy (b)

for the compressional wavefield.

For equation (7b) a solution can be written in terms of the cylindrical Bessel functions of

the first kind of order p, J, ;

7

- . smp¢ -ig’
S=A J, (ky r)cospéc z (8b)
where g = /5 ~ 1 H' is the z component of the complex wavenumber and
ky " = k,;’ -1 lcu” is the transverse component of the complex longitudinal wavenumber.

When this solution is inserted into equation (7b) we get

2
k= L (9b)
Ci
which is the dispersion relation for the compressional waves. The analogue of equation (4), it

states that the sum of the squares of the directional components of the momentum is a

preserved quaﬁtity, equal to the quantity on the right.

Examining equation (7a), we find that there are two possible solutions

V=B8M+CN

where
M=yx:¥ [ g-M=0
and
ca?® o . -
=2 .9gxM , v-N=o
wp

each of which satisfy the scalar shear wave equation

R 2 - (8a)
044

.
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This equation has a solution in terms of the cylindrical Bessel functions of the first kind

: Sinv -i 3" :
U=, (k, r)cos})‘é’.) e’

r 1 . 1t .
where k, ~ =k, -1 k, Is the transverse component of the shear wavenumber.

If we insert the solution into equation {8a) we obtain

2

* . W
k., 2+ﬂ2=”c, (92)

44

which is the dispersion relation for the shear waves.

The sound particle velocity which is obtained from the two potentials is

F:%‘-_—_v®+{§x§ (10)

whose components are

Ur =[Ak“. JP, (k“‘ T )+i /3' B‘]Pl (ku' r )'i-},%CJp (kts‘ T )] (S:ioszge_“j'z

v¢=[-€—AJP (k,,'r)-i—i ﬁ‘p BJp (k,,'r)—i—kt,'CJp (ktu‘f)]—51np¢5_;'a’:

k“ r cosp ¢

and

v, = [~ g AJ, (kzl‘ r )—kta'BJ (ku’ r)] coqu&e_;,a':
_ % (=)

where J, (z ) 3
z

In cases where the cylinder is surrounded by air the solution must satisfy stress-free

boundary conditions at r = a, where a is the cylinder radius. This requires that
1 . avr . Yy 1 dv $ . 8vz
0 == T == . + —_— —— — )
i i w [ ar me( r r d¢ )+ Cr dz ] (11)
1 . , Ov, Jv,
0 == Trz = — O — -
f w [Cu Jz ar )]
and

at r = a, where T}; are the {j stress components.
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If the particle velocity components are inserted into these boundary conditions we obtain

the following matrix equation

Ay Ap Ay A 0
Ag Az Ag ¢ 0

where A;; are matrix elements, given by

Apy=-Ch (k"2 +8°2)J, (ky" a )+ 2C5 k' J,)"" (ky" a)

7t

Ap=2C4 8 k, J (ke a)
2C1,

r

p kta. Jp (kt:‘ a )

!

. . . 1 .
A13:2044p[k“ Jp (}C“ G)—"G‘Jp (k“ a)]"}’

!

=218 k" J, (k" a)

A
A :(k!a"z-ﬁ.z)']p, (k!a‘ a )

i B8 .
Agg= Bapjp (ku ‘1)

2 . ' * 1 *
A31=Tp[ku Jp (ky ~ a )“G‘Jp (ky " a )]
9 ¢ . . , R 1 R
_A32 o= ! é P [ k(l Jp (kg, a ) - = Jp (kta a ) ]
k“ a a
) . 2k, .
A33 - ktt 2 Jp (kta a ) + t Jp (ktc a )

" The solution to this matrix equation is complicated. But if we specialize to the lowest
order modes, p ==0, then it is possible to decouple the last row from the top two. We obtain a
solution for which C=0, A,B % 0 from the top two rows, and a solution for which

A,B =0, C 5 0 from the third row.

The matrix equation for the ¢ =0, irrotational motion, is formed by requiring that

] - 5] (3

The solution of which requires that the matrix determinant be equal to 0.

All A12
Ag Ag

After rearranging, usirg some relations among Bessel functions, and requiring that

C4y # 0, we obtain the following equation for the determinant

(ko 2= B2 ) (= ) (R "2+ 872 ) To (k" 0 ) Ty (k" @) (14)



—(ku'g‘,@.g)ktl'QJl (kt:. a ){J:z(kel. a )'“Jo(kzl' ¢ )}
—2,5‘2}%1‘ ku’ Jl(ktl' a )[Jﬁ(kn' a )—Jo(ku‘ a )]ZO

The axial wavenumbers 8° which satisfy equation (14), a trancendental equation, togeth-
er with equations (9a) and (8b), for given material properties p, C4 and Ci,, are the complex
wavevectors of the extensional mode, a wave with combined axial and radial particle motion

which propagates along z, the axis of the cylinder.

The rotational solution formed from the decoupled last row of the A;; matrix requires
that A 53 = 0. This is satisfied if k&, ° == 0 or using equation (9a)

~

pw

g't= L2
OH

(13)
which is a torsional wave whose wavevector is influenced only by the shear characteristics of

the media.

It is important to recognize that the theory introduced here does not account for spatial
inhomogenuity of the density and elastic constants in a given material. This is because equa-
tions (6a) and (6b) originate from the homogeneous wave equation, rather than the more gen-
eral inhomogeneous wave equation. Theories utilizing the inhomogeneous wave equation for or-
dered ! and disorderd '® composite media predict strong dispersion of the collective vibra-
tional modes close £o the Brillouin zone, fz > 0.1, where z is the typical length scale for the
immhomogenuity. At lower frequencies the homogeneous wave equation becomes valid with the
effective elastic constants utilized in the equation being the lowest wavenumber (3 = 0) aver-
17

age of the material density and elastic constants fr = 0.1 may be taken as the upper

~—ey

limit for the applicability of the theory, without further modifications.

Having obtained the dispersion relations for the propagation of the extensional and tor-
sional modes through media with complex elastic cons'ants, some particular forms of these
moduli will be explored, with a view to obtaining some previously known results for simple

cases and understanding the implications of this theory for more general cases.



a. The Case of Real Frequency Independent Elastic Constants

The first case to be considered is the solution of equation (14), the extensional wave
dispersion relation, for lossless media, with real frequency independent elastic constants. This
requires setting

* ! * ’ * ! *
Ch=0Cny , Cu=Cy , Cp=Cyp , B =4 (16)
but &, and k; ° remain complex since the dispersion relations, equations (9b) and (9a),

which are now

2
/C“.?"{"HQ: p'uf (17b)
Cu
and
ku‘:"f‘/gz: p’o.lz‘ (17a)
Cy

show that if 4 % is greater than the parameter on the right side of one of these equations, then

ky * or k, °, respectively, will be forced to be pure imaginary.

The determinant equation for the extensional mode required by the boundary conditions,

equation (14), can now be written as

w 2 w 2 Gl" . .
[(V')—QHQ](‘V‘;)(ET)JMIM a ) Jo(ky  a) (18)
2 2
S0 =28 () = Ve ke )= To (k" a )]
-2 zk,,'k,,'.fl(ku'a)[JQ(k,,'a)—JO(kt,'a)]=0
01,1 1/2 1o/

c
where Vp = (——) is the compressional wave velocity and V, = (——) is the shear
p P)

-y

wave velocity.

This equation was first derived by Pochammer ? | its low frequency asymptotes were
studied by Lord Rayleigh %, but the full solution was first obtained in 1941 by Bancroft 3!
This transcendental equation has been solved using the method of Dubbelday 32, where trial

values of ﬂ' are inserted into the determinant, equation (18). The trial values are increased,



until a sign change occurs in them. This value of 4 being close to the solution, this region is
expanded a'md new trial values inserted. This iterative sequence is terminated when the varia-
tion of the solution is less than 107 relative to the previous iterative solution. Bessel functions
are calculated using a series expansion %, taking 25 terms in the series. The format of solu-
tions of this equation is shown as the line in figure 1. The material constants used in caleulat-
ing the extensional  velocity dispersion are C'{Q = 10.152 - 10'° Dyne /em?,
Cy = 8.748 - 10'° Dyne /em®,  and p=27 g/cm® The eflective velocities are
Vp =32km/s and V, = 18 km /s. These elastic moduli are representative of the
effective elastic moduli of a typical sandstone. For c¢gs to mks conversion note
1.0 - 10'° Dyne /em® = 1.0 GPa, 1.0 - 10° ¢m /s = 1.0 km /s . Sample radius is 0.4 cm and
will be taken as such in all the following theoretical discussion, unless otherwise indicated.
The propagational (axial) phase velocity versus frequency shown in the figure is obtained from

the determined H , using the relation

2 (w)=VL(w)-

"The low frequency asymptote, valid when the shear wavelength is much greater than the
sample diameter, 2 a, is the bar velocity, V,, governed by Young’s modulus

C (3 Cla +2 Cy )

E - 7 7
Cr + Cy

(19a)

As the frequency increases, H increases, until k,; "% is forced to go negative, but k, *°
remains greater than zero. This indicates a decrease in the axial component of the particle
displacement of the wave and the velocity decreases towards the shear wave velocity. This is
the intermediate frequency regime, where 4 a == 1. The bar velocity is generally somewhat
smaller than the compressional velocity. In these situations there is no low frequency regime

and the intermediate regime extends to zero frequency.

X . . » . . .
At higher frequencies k, "2 goes negative as well. The wave velocity continues to de-

crease, passes the shear wave velocity and approaches the Rayleigh wave velocity, V,, given



by *

087 + 112 ¢

Vi=Vo (=055

) (19b)
where o is the Poisson ratio, the particle motion becoming increasingly localized along the

sample surface.

b. The Case of Real Frequency-Dependent Elastic Constants

Any variation of the real part of the elastic constants with frequency requires a variation
of the imaginary parts of the elastic constants with frequency, since the real and imaginary
parts are related to each other by the Kramer-Kronig relations. However, it is still possible to
examine separately the effects of a frequency-dependent real part of the elastic constants on

the wave velocity in the waveguided system if the loss is very small.

The following examination observes how frequency-dependent intrinsic elastic constants
combine with the waveguide boundary conditions in providing the tota} dispersion of velocity
with frequency. The study is intended to clarify the sensitivity of the extensional mode at
various points along it’s geometricaly induced dispersion curve to the dilatational modulus

P . '
Co vis-a-vis the shear modulus Cy .

The form of the: variation of the elastic moduli with frequency which is introduced into

the dispersion relations, equations (17a), (17b) and (18), is of a relaxational character, namely;

Cizo - Clrom
Clo (w) = Con) + —20 ~— 7120 20
12 () 1200 1-1—(0)7")2 ( )
and
04401"'04%0,
c. w———C’oo'+———-———
‘(W)= Cu R

where M, and M, are the values of the respective moduli at zero and infinite frequency and 7
the relaxation time, when the moduli attains its average value (Mg + M )/2. This variation
of the elastic constants is phenomenological for the present study, although there are

numerous physical processes in composite materials which exhibit this type of behavior 2310,
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Dotted lines and points in figure 1 show the theoretical extensional phase velocity of the
hypotetical sample which now has frequency dependent elastic constants. Dotted lines
represent a 409 dispersion in 01’2 , the + signilying that the high frequency vaiue, C’mm' ,1s
greater than the low frequency value, C’IQO’ , with the relaxation time being r, = 107 s . Note
that the changes induced by the frequency variation of C';Q are quite minor. The high fre-
quency compressional velocity is only 3.43 km /s, due to the relatively low Poisson ratio (
.267) of this material so that shear deformation is a larger component of the extensional mo-
tion. After o reaches its maximum value, at about 20 kHz, the dispersion curve is smooth
and runs parallel to the dispersionless case. This is typical of relaxation processes which have
no memory at higher frequencies of what occured at lower frequencies. The points in figure 1
represent the case of a +40% dispersion in C’;g , the relaxation time now being 107° 5. The
displacement of the dilatational relaxation to high frequencies brings it into the domain where
the mode behavior is mostly influenced by the shear properties, so that it is almost impossible
to distinguish the dispersive case from the nondispersive case. The effect of a dispersive C{Q
grows if the ratio of the dilatational to the shear elastic constants is enlarged (i.e., the Poisson

ratio is enlarged ).

Figure 2 shows the effect of a dispersive shear modulus C4; on the extensional mode
dispersion. The nondispersive hypothetical material (full line) has the same elastic constants
as that shown in figure 1, but a +40% dispersion in the shear modulus is introduced by enlarg-
ing 04400' , with 7, = 107 s . The changes induced (dotted line) by the shear dispersion are
very large, due to the shear modulus’ appearanc;'in both the compressional and shear veloci-
ties. With the dispersion, the compressional high frequency velocity is 3.58 km /s, the shear
high frequency velocity going ‘o 2.12 km /s . The dispersion curve therefore shows a great in-
crease in velocity at 20 kHz, thereafter paralleling from above the dispersionless curve. Points
in figzure 2 show the effect of displacing the shear relaxation time to 107° s . This brings the

conclusion of the velocity increases at about 150 kHz. Since the effect of the dilatational com-



ponent of the cumulative extensional mode particle motion is greatly reduced at this frequen-
¢y, the increases in velocity which we observe are much smaller than those seen for the 107 s
relaxation time.

¢. The Case of Complex Frequency Independent Elastic Constants

Understanding the propagation of waves in rods made of lossy materials, with the elastic
moduli being c¢dmplex, involves understanding initialy the effect of geometry on the measured
losses. The coupling of geometry with intrinsic loss is a result of the presence of the losses in

the boundary conditions, equation (11).

To understand this effect we will first consider the constant @ subset of attenuation
variation with frequency. Constant @ , a frequency independent ratio between the real and im-
aginery parts ol the elastic moduli, is known to be a useful approximation in charactarising
many materials at frequencies well removed from occurances of strong dispersion, that is where
w7t << lorwr >> 1, 7 being the charactaristic time scale for the dispersive phenomena ( see
equation (20)). It is also useful wl}en dispersive behavior is smoothly distributed over extreme-
ly broad time scales due to large scale intrinsic geometric or material inhomogenuity. The
form of the constant @ model which involves frequency independent complex elastic moduli is
the simplest form of dissipation, which makes it instructive for the purpose of understanding

the coupling of loss with the boundary conditions, as a precursor to the understanding of fre-

quency dependent loss phenomena found in realistic materials.

The existence of complex moduli requires use of the generalized dispersion relations,

equations (9a), (9b) and (14).
Figure 3 shows the theoretical extensional mode dispersion for a hypothetical sample
with a 10% complex C5, Cp==10.152 + 11.0152 ( - 10’ Dyne /em? ) and a purely real

shear modulus €,y == 8.748 + 10.0 ( - 10'® Dyne /em? ). Figure 3(a) shows the propagational

phase velocity, obtained from the resolved § | figure 3(b) shows the dissipation factor ﬂ' ,



whose units are 1/¢m, and figure 3(c) the (dimensionless) specific dissipation factor 1/Q,

which is computed as

2-4'

1 _2F
Qe 4
in analogy with equation (5).

Comparing figure 3(a) to the dispersionless plot in figure 1 (full line), which was comput-
ed for purely real elastic constants, we can see that the introduction of even a large imaginery
part into C o has a negligable effect on the phase velocity. Examining figure 3(b), we observe a
very dispersive 4 (w). Solution of the compressional wave equation ( equation (6b)) in
infinite media (with no boundary conditions) for the constant ¢ case gives
,5 ' {(w) == Cons - w, a linear variation of the dissipation factor with {requency, which is here
observed above 300 kHz, # a >4.2. At low frequencies we find an increasing dissipation fac-
tor, which peaks at about 100 kHz ( # @ = 0.9 ), and then decreases to zero at 170 kHz (
H @ = 1.8 ). This minima in Joss coencides with the lowest frequency inflection point in the
phase velocity dispersion curve, figure 3(a). At higher frequencies we find a sharp increase in
the dissipation factor which continues up to 250 kHz ( E' a = 3.2 ), coencidental with the
second inflection point in the phase velocity dispersion curve. Above this frequency the loss

factor gradualy goes to the high frequency assypmtotic linear variation with frequency. Figure
1 . . . . .
3(c), —a versus frequency, shows dispersive behavior quite different from that of figure 3(b).

At low frequencies we find a decrease in specific dissipation as frequency increases. The specific
dissipation goes to zero at 170 kHz, then rises sharply back to its low frequency levels at 250

kHz, and at yet higher frequencies drops gradualy to approximately half it’s peak value.

This behavior of the loss and specific dissipation is caused by the increasingly shear com-
position of the wave as frequency increases. At low frequencies, ﬂ' a < 1, the wave is already

largely shear in charactaristics, due to the low Poisson ratio, causing the specific dissipation

1 .
factor, —=, i1s much smaller than

L
Qy Q

= .1 which would have been the case for a purely dila-

,A
j
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tational wave (where shear effects can be neglected). As the frequency increases, the dilata-
tional component in the wave continues to decrease, and since the shear modulus has been set
to be purely real, the specific dissipation factor decreases until, at a frequency cl;>se to that at
which the dispersion curve crosses the material shear velocity, it vanishs entirely. Above this
frequency the loss increases, asymptoting to the Rayleigh wave attenuation coefficent, which

contains dilatational components. ’

Figure 4 is the analogue of figure 3 for the case of a purely real C 5 and a complex C
with a 10% imaginery part, C 4 = 8.748 + 10.8748 (- 10'° Dyne /em*®). The figure shows
extensional theoretical results for two radii cylinders, 0.4 and 0.8 cm, shown as lines and
points, respectively. Parts (a) and (b) of the figure also include, as dotted lines, theoretical con-

stant @ torsional shear results.

Figure 4(a) shows the extensional velocity results for this complex C,,. The plot for the
0.4 cm radius cylinder (line) is identical to figures 3(a) and 1, showing the lack of sensitivety of
the velocity to the imaginery part of the modulus. The 0.8 cm cylinder has a phase velocity
which becomes dispersive at approximately half the frequency of the 0.4 cm cylinder, illustrat-

ing the dependence of these extensional mode effects on the product § a .

From figure 4(b) it can be seen that the behavior of the extensional dissipation factor
,ff s significantly diflerent for a lossy shear modulus from its behavior for a lossy dilatational
modulus, figure 3(b.) The dissipation factor for the lossy shear modulus is an order of magni-
tude larger and exhibits an entirely different dispersive behavior. At low frequencies the dissi-
pation factor increases linearly with frequency, b:t is smaller than the torsional shear dissipa-
tion factor, the dotted lines in the figure. From ﬂ a =1 to H a = 2 ( 100 kHz to 220 kHz
for the 0.4 ¢cm radius cylinder case), it rises rapidly, thereafter flattenning and finally increas-
ing linearly as the constant @ solution of the shear wave equation in infinite media predicts,

which can be seen from the close agreement with the torsional dissipation factor at high fre-

quencies. By doubling the cylinder radius from 0.4 cm to 0.8 cm the strongly dispersive region



is brought to lower frequencies, illustrating the importance of understanding the geometry
effects in loss measurements, since these would give different results for differing diameter

cylinders measured at the same frequency.

Figure 4(c) shows the computed exensional specific dissipation factors for the two radii
cylinders. The specific dissipation factor is 0.09 at low frequencies, just below the value of 0.1

expected for a purely shear wave, and with increasing frequency rises rapidly until it more
1 . . .
than doubles at § a = 2.0, where a strong —@— peak is observed. At yet higher frequencies

the specific dissipation drops back to 0.09. The inflection point in the dissipation factor and
the peak in the specific dissipation factor are due entirely to having reached the frequency
where the wave traveling down the rod has a transverse component which is in essence a shear
standing wave, composed of two in phase lossy shear waves. The occurance of this peak is sole-
ly geometric in origin, so that it should not be confused with an intrinsic loss peak. This can
readily be seen from its occurance in the 0.8 cm radius cylinder at roughly half the frequency
as in the 0.4 cm cylinder, the maximum frequencies in both cases coenciding with the frequen-
cies where the two radii cylinders’ extensional velocities cross the shear velocity {see figure
4(a)). At frequencies above the specific dissipation peak the loss returns to be that of a compo-
site wave, with both dilatational and shear charactaristics, but since the shear character is still

dominant, the specific dissipation is close to that of a purely shear wave.

Inversion of Experimental Results for Complex Elastic Moduli

Measurements of the complex extensional @hd torsional wavenumbers versus frequency

may be inverted to obtain the complex, frequency dependent Cjp and C, .

The torsional shear results must first be inverted for C, , as values of the shear modulus
are needed as input for inversion of the extensional mode for C, . The torsional dispersion re-
lation, equation (15), is readily inverted for the shear modulus. Since equation (15) is identical

to the one dimensional dispersion relation, equation (4), it can be written in seperated form as



X _ ) [( ) - :H = 7 71 o (213')
p Wt v, Cu’+ Cy °
and
1 w , C4I4I
Y = 2 () = s (21b)
pw? Vi Cau’+ 0y °
where 4 has been replaced by ( -%—)
»
A simple algebraic manipulation of these equations gives
' X
C — - — Qﬁa)
X+ YY) (
and
1! }/' r
o = | 22b
H (X*+7?) (220)

After Cy; (w) has been determined, the extensional results may be inverted to obtain
C12 (w). The principle used in the inversion is to use the dispersion relation, equation {14), to
determine C,, . In obtaining the extensional wavenumber, the forward problem, p, Clo, Ciy,
and a were inserted into equation (14) and trial values of 8° were introduced to satisly the
dispersion relation. In the inverse; problem, p, C4, (w), 8" (w), and a are introduced into
equation (14), and trial values of C'[y (w) are iteratively attempted to satisfy the dispersion re-
lation. The iterative process may be started close to the desired solution, which increases the
rate of convergence, by recalling that the low frequency asymptotic value of the extensional
mode is the bar wave, governed by Young’s modulus E {equation {19a)). The complex form of

equation (19a) may be solved for CJ;, giving

-

- R4 * 2 - U
012 it 044 ’ [U 3 ] (23)
E°’ 1 w |2
U = » = ’ : [p( * ) ] ?
C a4 044 g

where E* is the complex Young’s modulus. The lowest frequency value of 8° and C, may
be used to obtain an estimate of C,. After convergence is attained at this frequency, the

resolved value of Cj, is used as the initial value for iterations at the next frequency, and so



on. The root finding algorithm utilized is the same as that used in obtaining the forward solu-
tion *. An advantage of this method with respect to non-linear least squares approachs is that
in the absence of noise the inverse is exact. Its disadvantage is a larger sensitivery to noise,
since beyond smoothing the data before insertion into the inversion program, no other noise

reduction method is used.

Figure 5 shows the application of the inversion algorithm to artificial data. The artificial
torsional shear velocity and dissipation factor used as input to the inverse are those shown in
figure 4(a) and (b) as dotted lines, generated from a  non-dispersive
Cy = 8748 + 10.8748 - ( 10 Dyne /em? ). The extensional velocity and dissipation factor
used as input to the program are those shown as lines, for the 0.4 cm radius cyiinder case, in

. M . . » e , 2 .
figure 4, generated from a non-dispersive C'y; == 10.152 + 10.0 - { 10'° Dyne ‘em*® ). Figurs

;

a

5(a) shows the real part of the input (points) and inverted (lines) moduli €'y, (1), and €y (2).
Figure 5(b) shows the complementary imaginery part of the moduli. It is clear from the figure
that both the real and imaginery parts of the input moduli have been recovered nicely by the
inverse. The relative error between the input and inverted moduli is 107>, allowing for two
iterations of the inverse at each frequency point. The imaginery part of Cya, which is zero in
the input data, requires a great number of iterations to recover exactly. In practical cases, in
order to expidite the inversion process, the assumption is made that for Qs greater than 10° (

measured as the ratio between the real and imaginery part of the respective modulus), the

modulus is taken as being purely real.

-

Experiment

The swept frequency measurements of the complex elastic moduli are obtained with an
acoustic transmission bridge of a similar design to the microwave electromagnetic transmission

bridges used in dielectric measurements.

Figure 6 displays the transmission bridge. The sources and the receivers of the transmis-



sion bridge are supplied by an Hewlett Packard 3577A network analyzer, but for explanation
purposes t}’lese are separated in the figure. Power is supplied via the variable frequency oscil-
lator output of the network analyzer, which provides a monochromatic sine wave of fixed am-
plitude at each frequency. To increase this output level, which is necessary for high loss sam-
ples, an Electronic Navigation Industries (Rochester, NY) 240L 40 watt power amplifier is used
in series with the network analyzer output. A power splitter divides the power between the

measurement and the reference branches.

The reference branch is merely an electric cable joining the power splitter directly to the
network analyzer reference (R) port. This branch provides the amplitude and phase of the sig-
nal going into the acoustic system, thus providing a reference needed for calibration of the

results obtained in the measurement branch.

The measurement branch consists of directional couplers and electrical impedance
matching networks on both sides of the acoustic section. The acoustic system consists of wide-
band PZT-5A extensional and torsional shear transducers which are epoxy bonded to a
cylindrical sample of known length ! and known radius a, whose elastic properties are to be
measured. The input transducers convert electric voltage into elastic strain and launch an elas-
tic wave of extensional (axial) or torsional nature, depending upon the transducer used in the
measurement, along the sample axis. After propagating a length [ through the sample the
elastic wave is converted back to electric voltage at the output transducers. The signa-I thus
obtained is then channeled into the network analyzer A port for measurement of the elastic

-

transmission properties of the sample.

The impedance matching systems, consisting of transformers and inductors, are a neces-
sary component of the system in order to compensate for the non-equivalent transformation of
electric energy to mechanical energy by the PZT transducers **?*, The highly capacitive,
frequency-dependent, electrical impedance of the transducers causes a great deal of the power

supplied by the system to be reflected back into the source. The power that is converted into
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elastic waves is phase shifted. The impedance matching systems reduce these effects by reduc-
ing the mismatch between the 50 ohm electric line and the transducers utilizing the broadband.
transformers, and by partially compensating for their capacitance with an inductor. These
matching circuits are placed at both sides of the elastic component of the measurement branch

since the impedance mismatchs occur equally on both sides.

The directional couplers (Mini-Circuits PDC-15-6, Mini-Circuits, Brooklyn, New York)
in the measurement branch are used to correct the transmitted signal, which is sampled at the
network analyzer port A, for the electric reflections that occur at the line-transducer interface
and elastic reflections at the sample-transducer interface. These reflections decrease the total
energy transmitted through the sample and, since we wish to know only the transmission pro-
perties of the sample, they must be corrected for. The amount of energy reflected from the in-
put signal is sampled by the directional coupler labeled Forward Reflection and goes into pert
B of the network analyzer. As there is reflection at the interface between the sample and the
receiving transducer, which is generally different from the input reflection coefficent, the source
and receiver directions are reversed at a later stage of the measurement and the Backward
Reflection directional coupler is connected into port B of the network analyzer so it too can be

compensated for.

In the network analyzer the amplitude and phase of the transmitted signal, port A, suit-
ably corrected for the reflections, is compared to the amplitude and phase of the reference (R)

branch.

-~y

From the phase difference between the branches , we obtain the sample’s phase velocity

using the relation

1 1

A¢ (w) = 96}? (/“)) - ¢A (w) = wl ( VR (w) - meple (w) ) (‘24)

where A¢ is the phase difference between the branches in radians following the propagétion

distance [ and Vz (w) and V,,.x (w) are the respective phase velocities of the reference and



the sample. Since the reference velocity is of order 10° faster than the speed of sound in the
sample it can be ignored. As the network analyzer measures only phase differences up to one
cycle (2 =), the number of cycles are recorded by counting the number of instrument zero

crossings.
It is possible to obtain also the sample group velocity using the relation

l 0Ad (w -
T——— == ‘egrotp (W) = _——_a_;)_(—l (QD)

grosp (w)

where the group velocity is related to the phase velocity, to first order in w by

Viroep (@) = Viphase () + ¢
By comparing the amplitudes in the two branches, after correcting for reflections, we ob-

tain the sample dissipation factor d ' , using the relation
—[%]wzf((ﬂﬁ” ~Bramte ' )1 (26)
where Amp, and Ampp are the amplitudes of the waves received in the two branches and
K = 4.353 is a conversion {actor from decibel to natural log. It is usually possible to ignore

ﬁR' " so the expression is further simplified.

The most vital component in a broadband system are broadband sources and receivers.
Ideally, these elastic wave sources will satisfy the following requirements. They should have a
relatively flat acoustic response over the required frequency range, possessing a minimum of in-
trinsic vibrational modes. For purposes of studying attenuating media, it is desirable to max-
imize the acoustic output for reasonable electromagnetic excitation power. Finally, the sources
should be robust, so as to lend flexibility to their use, particularly with regard to changing

pressure and temperature conditions.

In practice, these various requirements conflict, requiring that the developed transducer
be a compromise between the various demands. A case in point is that most acoustic wave

sources are damped in order to increase their bandwidth which clearly makes them less suited
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for use in attenuating media. Another example of relevance to this study is the attempt to use
large PZT crystal sources for low frequency acoustic work. This optimizes the acoustic output,
but the transducers tend to have a quite rugged frequency response near their.resonant fre-
quency. The large transducer size also gives these sources a strongly capacitive impedance so

that they are hard to drive electrically.

Two sets of broadband transducers (one extensional and one shear) were designed and
built with the assistance of Alan Selfridge (Ultrasonic Devices, Palo Alto, CA). The design is

similar to that proposed by Brown and Weight *.

The torsional shear transducer is shown face forward in figure 7(a) before insertion into a
metal housing, and in figure 7(b) in a side view after insertion into its housing. Figure 7(c)
shows the magnitude of the torsional, reflection corrected, transmission coeflficent versus [re-
quency for transmission through a rod of Fused Silica. The transducer is constructed from 2
Vernitron 56790-4 T,, poled PZT-5A plate (Vernitron Piezoelectric Division, Bedford, OH)
which was cut into eight isosceles triangular pies of thickness 0.113 ¢m, height 1.17 ¢m and
base. 0.97 cm. The central angle of each pie is 45 degrees. These triangles were ground smooth
and then electroded with vapor deposited gold. An unpoled PZT-5H bar (Channel C5700,
Channel Industries, Santa Barbara, CA) of rectangular crosssection 2.54 ¢cm by 2.54 ¢m and
length 15.24 cm is used as a matched acoustic impedance backing to the pies. It was gold
electroded on one end. The triangular pies were then arranged in the circular pattern shown in
figure 7(a) on the electroded face of the backing bar, care being taken that the poling of all the
triangles be in the same direction (in this case enticlockwise). The pies were epoxyed under
pressure to the backing bar, using insulating epoxy, so that the electrical contacts formed are
pressure contacts, which preserves the smoothness of the contact surface. An electrical cable,
shown in the upper right hand corner of figure 7(a), was silver epoxyed to the electroded face
of the backing and served as the positive electrical connection to the transducers. Electric

grounding to the transducers is provided on their top face by pressure epoxying to the metal



housing, figure 7(b). The metal housing consists of a stainless steel cylindrical shell of 2.54 em
radius outer diameter and 2.26 cm inner diameter, onto which a 0.076 cm thickness stainless
steel cap had been welded . A small cap thickness is neccesary in order to prevent the occu-

rance of half wavelength elastic wave resonances in the cap over the studied frequency range.

In early models of the transducers, the backing bar was then put in a chuck and the part
of the bar opposite the metal housing was surface ground into a four sided iscoceles triangular
cone shape, the triangle dimension being 7.23 cm length by 2.54 cm base. The top angle was
27.2 degrees . The lower part of the backing bar would then resemble the z face of a trigonal
crystal. The part which had been removed by surface grinding was then filled with a damping
material composed of a 50% volume percent mixture of tungsten powder and epoxy. The pur-
pose of this operation is to prevent reflections from the bottom of the transducer backing, an

objective which was accomplished at the considerable loss of acoustic output power.

Figure 7(c) shows the magnitude of the transmission coeflicent through lossless Fused Sil-
ica. The spectra is relatively smooth over the frequency range 5 kHz to 1.005 Mhz, which is
the studied frequency interval. There are two noteworthy features in the spectra, the first is
the strong decrease in»transducer power below 50 kHz, which prevents efficent use of the trans-
ducer at very low frequencies. The second feature is the weak power peak at 230 kHz, which is
the loaded resonant frequency of the transducer. The undamped resonant frequency of the

shear pies is approximately 1 Mhz, so the backing eflect can readily be seen.

The construction of the extensional transducers is similar. They are made of 0.259 c¢m
thickness, 1.27 em radii longitudinaly poled PZT-5A disks (Vernitron 4100). These disks were

epoxyed to identical PZT-5H backing bars as the torsional transducers and placed in identical

steel housings.

The samples are solid or rock cylinders of length 15 to 30 ¢m and radius 0.4 ¢m. Thin

samples are used to displace the geometry-controlled dispersive part of the velocity versus fre-
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quency curve ( as was previously shown in the theoretical section) to as high a frequency as
possible and to insu're that the samples are spatially homogeneous in terms of their mineral
and fluld composition, at experiments at partial water saturations. The fused quartz rods were
obtained from Ge‘neral Electric, the plexiglass { hardened acrylic resin) rods from ALN Plastics
and the Vycor rods from Corning Glass { Corning 7930, Corning Glass Corp., Corning, NY),
and conform to manufacterer specifications. The rock samples had quartz buffers of length 3
cm and radius 0.4 ¢cm between them and the PZT transducers. These buflers were necessary to

insure repeatable mechanical contact between the porous rocks and the PZT transducers.

To insure that water saturation and temperature conditions do not vary in the course of
the experiments, the acoustic part of the measurement branch, consisting of the PZT transduc-
ers, the quartz buffers and the rock samples, is inserted into a glass housing and maintained at
a constant vapor pressure and temperature. Accuracy of water saturation levels obtained is
better than 0.1% saturation. To insure equlibration thoroughout the sample volume after the
water saturation levels were changed by surface drying, the samples were left in the glass
housing for 24 hours before measurements were made. An estimate of the time ness'ecary for
equilibration may be made by assuming that the slowest equilibration process is diffusion
through the pore fluid. The time nessecary to diffuse from the sample surface to its center, a
distance a , is given by

2
a

6D

where D is the diffusion constant. Utilizing an effective diffusion constant for porous media of

Tp =
3.0 - 10% ¢cm?/s at room temperature (assuming a considerably tortuous path), we obtain a
diffusion time of 3.7 hours. As this time scale characterizes the rate of exponential decay of the
system to equilibrium, this time scale must be multiplied by the size of the changes induced in
the equilbrium state. Since the size of these changes is not well understood, a longer equilibra-

tion time was provided to the sample.



The measurements are controlled via an IEEE-488 port by an IBM/XT microcomputer.
The frequency range measured, commonly from 5 kHz to 1 MHz, is divided into 175 kHz inter-
vals. The network analyzer is programmed to sweep over an int'erval at a time, r;leasuring 400
frequency points in each interval. Each interval sweep takes 3 seconds using the instrument’s
+ 10 Hz bandwidth receiver filter and to improve the signal to noise ratio 84 sweeps are aver-
aged together. After the network analyzer has completed measurements over all the frequency
intervals, source and receiver are reversed and measurements of the Backward Reflection

coeflicent are conducted over identical intervals but with only 8 sweeps per interval. Total

measurement time is approximately 30 minutes.

The theory extended here is for infinite length cylinders, and ignores the boundary condi-
tions at the sample ends, which contribute to reflected elastic waves and thus to standing
waves at frequencies where integral multiples of the shear or extensional halfwavelength are
equal to the sample length. It is possible to analyse the frequency response in this fashion if
the measurement at each frequency is concluded before the elastic reflected wave can reach the
same end again, since this begins the process of building up the interference pattern essential
to the standing wave.'The full standing wave pattern is only acheived after Q cycles, so that
it was found that even for the lowest @ materials, it is possible to entirely suppress the stand-
ing wave by remaining for only 10 ms at each frequency point, for samples of 15 ¢m length or
more, this leading to the 3 second time per sweep. Figure 8(a) shows the extensional magni-
tude versus frequency and figure 8(b) the correspoﬁding phase shift versus frequency of a 16.0
cm. long sample of 75% water saturated Massillon Dark sandstone measured at two interval
sweep times, 1.4 s (lines) and 5.0 (points). The 1.4 s interval sweep rate is faster than that
nessecary to build up a standing wave, so that a smooth variation of the magnitude with fre-
quency is seen in figure 8(a), despite the fact that the frequency interval covered corresponds
to a phase shift of more than 5 wavelengths. There is evidence of transducer modes at 70 and

95 kHz, but these are broad and may be compensated for. The 5.0 s interval sweep rate plot
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in figure 3(a) shows the beggining of the development of.a standing wave pattern. There is a
peak in magnitude at the first symmmetric mode of the sample at 10 kHz followed by sizable
resonances at 25 kHz and higher frequencies. Between 45 and 70 kHz sharp transducer modes
may clearly be observed. Of interest is the great diffex;ence in the transmitted power between
the 1.4 8 and 5.0 8 sweep rates, which shows the eflicient energy storage in the standing wave
pattern. Figure 3(b) shows the smooth variation of the phase shift over the sample length ob-
served in the 1.4 s interval sweep plot. In the 5.0 s plot it is possible to observe a shifting of
the same phase shift spectra to lower frequencies ( for points at +180 degree phase shift, for
example, see 10 and 30 kHz). This would imply an interpretation of the sample as having a
lower phase velocity if the 5.0 s sweep rate response were used, utilizing equation {24), to
measure the sample velocity, compared to a utilization of the 1.4 5 sweep rate results. More
importantly, the 5.0 s sweep rate plot shows the appearance of new sharp oscillations in phase
at 30, 50 and around 65 kHz caused by the transducer modes. If these were used to obtain a
phase velocity we would observe a much lower phase velocity at frequencies above these oscil-
lations than it is in practice (since these oscillations add many multiples of 27 to the phase
shift). As Massillon Dark is among the most attenuating samples studied, it can be expected

that these geometric and transducer resonances play a larger role in less attenuating materials,

Following the measurement, the reflection corrected amplitude and phase are transferred
to the computer for data manipulation. The phase versus frequency results are converted to
velocity versus frequency using equation (24). The amplitude response of rocks requires an ini-
tial normalization to a lossless material, as there_are still acoustic-electric conversion losses to
account for. For this purpose the amplitude of Fused Silica (Q = 10° ) is used. The normal-
ized amplitude response may then be converted into a dissipation factor ﬁl " versus frequency
format using equation (26). Relative accuracy of the phase velocity measurements is estimated
at approximately 0.1% and of the dissipation factor about 10%, with the accuracy being

higher the lower the attenuation in the sample.



Results

a. Solids with Real Frequency Independent Elastic Constants

Solids with real frequency independent elastic constants were studied to show the appli-

cability of the present theory as well as to test the accuracy of the experimental system.

Figure 9 is a comparison of theory and experiment for the extensional mode in Fused Sil-
ica, over the frequency range 5 kHz to 800 kHz. The line in the figure shows the experimental
points using a 0.4 c¢m radius rod of 59 ¢m length. Since Fused Silica has a quality factor @ of
about 10%, the lossless theory can be applied to it. The solution of the theory, equation (22), is
presented as points, using CRC Handbook of Physics and Chemistry *° values for Fused Sili-
ca, Vp ==5.968 km /s and V, = 3.764 km /s . The agreement between theory and results is
good, considering that no effort has been made to vary the tabulated values, so as to improve
their fit to experiment. This experiment confirms our ability to use infinite cylinder theory,
even for a high @ material, provided the experiment is conducted at sweep rates faster than
thos&_a nessecary to establish the standing wave pattern. The experiment also shows that it is
possible to use only the p = 0 fundamental mode in data analysis. This is due to the nature
of the wave emitted by our transducers, which does not couple efliciently into the particle mo-
tion required by higher modes (p > 0), whose wave field is nonuniform with respect to the cir-

cumferental angle ¢ ( see equations (8b) and (9b)) .

Figure 10 shows the torsional shear experimental results for the same sample of Fused
Silica. Theoreticaly, this mode is nonciispersive (“équation (16)) propagating at the shear velo-
city at all frequencies and the experimental results bear this out. The velocity measured exper-
imentaly is 3.78 km /s, which is slightly higher than the CRC *° value for this material. This
demonstrates the utility of the infinite cylinder theory for the torsional modes, while showing
that we only couple into the fundamental mode, others being highly dispersive.

b. Solids with Complex Elastic Moduli- Plexiglass
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The conclusions of the complex elastic modulus theory presented here have been exarmn-
ined utilizing two rods of plexiglass (acrylic plastic) of radius 0.476 and 0.63 c¢m. Plexiglass is

known to have a shear relaxation at approximately 8 Hz *°

, and was assumed to have a mostly
flat elastic response above this frequency range. The quality factor of plexiglass is about 40,

close to that found in many fluid saturated rocks, and it’s density is 1.18 ¢ [em?®,

Figure 11 shows the experimental results (lines ) for the extensional mode (a) velocity,
and (b) dissipation factor, respectively, for the 0.476 and 0.63 cm radius samples. Also shown
(as points) are theoretical results using constant @, frequency independent complex elastic
moduli, with C o= 158 + 10.0, Cy = 1.81 + {0.039 (- 10!° Dyne /em?) for the two radii
cases. The 0.476 cm theoretical and experimental results in 11{b) have been translated upward
by 0.2 ¢m ™ to facilitate easier viewing. Figure 12 shows the experimental (lines) and theoreti-
cal (points) (a) phase velocity, and (b) dissipation factor for the geometrically dispersionless
torsional shear mode. The theoretical results are obtained using the constant @ complex C4,

values given above for the extensional analysis.

" Figure 11(a ), a plot of the extensional mode phase velocity for the 0.63 and 0.476 c¢m ra-
dii rods, shows that plexigléss does not have frequency independent elastic moduli. In the
strongly geometrically dispersive region, the behavior of the velocity is close to that predicted
by constant @, which can be seen from the agreement of the theoretical and experimental
results for this region (80 through 150 kHz for the 0.63 cm cylinder, 100 through 200 kHz for
the 0.476 ¢m cylinder) for both the slope and the absolute value of the velocity. Below this
geometrically dispersive region there is a lack :af agreement between the experimental and
theoretical results. This is due to the intrinsic frequency dependence of the elastic constants,
which 1s not treated by the constant @ theory utilized. Figure 12(a), a plot of the torsional
shear velocity versus frequency, clearly shows the high dispersivety of the shear modulus in the

region 5 kHz to 120 kHz. Comparing the experimental phase velocities of the two radii

cylinders, we observe that the increases in velocity at low frequencies are found in both at the
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same frequency, which shows that these results are not geometry related, since in that case
they would have appeared shifted in frequency between both plots. The velocity for the 0.476
cm rod is higvher at 100 kHz, since it still retains a sizeable compressional contribution at this
frequency, while the 0.63 c¢m rod, as the theoretical plot for this radius cylinder shows, is al-
ready strongly in the geometrically dispersive zone. At frequencies above the the georr;etrically
dispersive zone (150 kHz for the 0.63 radius cylinder, 200 kHz for the 0.476 cm radius cylinder)
the results for the two samples again show differences, the 0.476 c¢m rod results being con-
sistently higher, due to the greater dilatational component. The differences between the results
for the two rods practically disappear at about 800 kHz, where the shear components in both

rods are clearly dominant.

Figure 11(b}, which shows the behavior of the extensional dissipation factor with frequen-
¢y, also reflects the large departure of plexiglass from constant @ behavior. The experimental
results are fit nicely by the constant @ theory in the areas where geometric effects dominate,
such as at 100 kHz for the 0.63 ¢m sample and 120 kHz for the 0.476 cm sample, but there is a
clear under estimation of the losses below this geometry controlled region, where the strongly
dispersive shear losses _dominate, as well as at frequencies above this region. The general trend
of the geometry related effects is seen , though, with the dissipation factor for the 0.63 ¢m rod
being consistently higher than for the 0.476 cm cylinder, at a_xll frequencies up to 550 kHz. This
is a result of the largely shear character of the attenuation (see remarks associated with figure
4) The fluctuations in the dissipation factor plots are partially the result of transducer modal
effects which could not be completely corrected for, and partially the result of material inho-
mogenuity which create phase interference effects. These effects will be examined in more de-
tail in future work, as they may contain information about material spacial correlation func-

tions.

Figure 12 examines the variation of the torsional shear velocity and dissipation factor for

plexiglass with frequency. This mode is not geometrically dispersive so it affords a view of the



variation of the shear charactaristics of plexiglass with frequency. Figure 12(a) shows the
strongly dispersive behavior of the shear velocity below 100 kHz, which was previously dis-
cussed in connection with the extensional mode, as well as a slight decrease in velocity above
400 kHz. Figure 12(b,) which shows the shear dissipation factor versus {requency, also exhibits
a flattening of the slope of dissipation versus frequency at about this fréquency. Thig suggests
a specific dissipation factor peak in plexiglass at.about this frequency. Since the shear dissipa-
tion factor is greater than the extensional dissipation factors, figure 11(b ), it is clear that
shear attenuation mechanisms are dominant in plexiglass, which is consistent with its polymer-
ic nature.

15,16

Recent articles have attempted to explain the specific dissipation peaks observed by

12

1 Tittmann

Spencer ', Murphy and coworkers in the kHz range in cylindrical samples of
fluid saturated rocks utilizing the Biot 3! solid-fuid coupling mechanism and its interaction
with the cylinder boundary conditions. The results obtained here show that specific dissipation
peaks may be obtained in cylindrical samples with complex elastic constants, in esssence
through a coupling into various dissipative modes, the Biot mechanism being only a specific
case of these. The results shown here for plexiglass show that these effects may be seen in non-
porous solids as well. The theoretical treatment mentioned above has ignored the fact that
12

the experiments of Murphy ' and Tittmann were resonant bar experiments performed on

87-%% that in finite length cylinders the end boundary

finite length cylinders. It is well known
conditions require a coupling of the orthogonal infinite cylinder extensional and flexural modes.
The ensuing resonant frequencies depend on the-tength to radius ratios of the finite cylinders.
Velocities determined from the frequencies of these resonances are, therefore, not generally in-
terpretable as the extensional or flexural wave velocities. The 5.0 s interval sweep rate spectra
shown in figure 8(b) illustrates this fact clearly. A corresponding treatment of the dissipation

factor of finite size cylinders will show, no doubt, that the the dissipation factors are sensitive

to this length to radius ratio in a fashion related to the velocity dependence. Preliminary
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results of resonant bar experments on plexiglass performed in this laboratory by Z. Wang *°

tend to support this dependence.

Following the gross comparison of the plexiglass experimental results with the constant
@ model, which demonstrated experimentally the coupling of the boundary conditions with
complex elastic moduli to influence the resulting frequency dependent attenuation, the results
may be inverted utilizing the inversion algorithm previously described. Figure 13 shows the
inverted frequency-dependent C'; and Cy4 of plexiglass. The experimental shear (lines in
figure 12) and the 0.63 cm radius experimental extensional mode (figure 11) results were used
as input to the inverse. Part (a) of the figure shows the real parts of €5 (1) and C' 44 (2), part
(b) the corresponding imaginzry part. Full lines in the figure correspond to the results of this

study, dashed lines to the results of Read and Dean *!

, measured with several differing sys-
tems over the frequency range 0.1 Hz to 400 kHz, and points in part (a) moduli determined
from group velocity measurements of Z. Wang on the same sample, C',; measured at 500 kHz
and C,, (derived from C,, measured at 1200 kHz) at 800 kHz. Examining the inverted shear
modulus Cy, of plexiglass, the dispersive behavior below 50 kHz may clearly be seen, charac-
tarized by a strong increase in the real part of Cyy, and a decrease in the imaginery part, as
frequency increases. A second feature in the shear results is a broad shear relaxation at approx-
imately 400 kHz. The form of this relaxation is quite classical, consisting of a peak in the ima-
ginery part of C,, and an inflection point in the real part of the modulus. The shear results of
Read and Dash * (dashed lines) show similar behavior with frequency, the large, low frequen-

cy, increase in the real part of the shear modulus in their study ending at lower frequencies

than in this study, and the imaginery part of the shear modulus being lower than those ob-

served here.

The inverted dilatational modulus C,, of plexiglass shows several interesting features.
The real part of Cy, is negative below 100 kHz, accompanied by a large imaginery part. At

100 kHz the real part of C; increases and goes positive, acccompanied by a strong increase in



the imaginery part, suggesting a dilatational relaxation. Above 100 kHz the real part of the di-
latational modulus increases slowly, followed by a strong increase above 400 kHz. The result of
the increases in C o is the increasingly liquidlike behavior of plexiglass as frequehcy increases.
The results of Read and Dash *! show similar increases in the real part of C o with frequency,
although the absolute value of the modulus they obtain over most of the frequency range stu-
died is larger and possesses a peak at approximately 40 kHz, which we do not ob¥erve. In
results for the imaginery part of o the results of this study agree more closely with those of
Read and Dash *!, although their peak in the imaginery part occurs at 40 kHz and ours at 120
kHz. Similar dispersive propzrties of plastics has been shown by Sacshe and Pao **. Despite
centroid smoothing of the data before its insertion into the inversion, the large degree of noise,
particularly in the imaginery part of C|,, prevents further physical interpretation.

¢. Porous Solids With Complex Elastic Moduli-Vycor

Vycor porous glass is a high porosity (30.96%) 243 horous glass with pores approximate-
ly 25 A° in radius. Its dry density is 1.52 g /em 3. It affords ins.ight into attenuation in a
porous material where grain and ﬁore scattering are small, since the eflects of scattering will be
important at frequencies higher than those studied here. As the pore space of vycor is created
through a leaching process the pore space is well interconnected and surface wetting effects are
smaller than those found in most sedimentary rocks despite an extremely high surface area (ni-
trogen BET method surface /volume ratio = 1.2 - 107 ¢m ™). The solid matrix is also well
connected, with a lack of sharp intergranular boundries. Material composition is 96.0%% amor-

phous Silica, 3% B,0 3 with the remaining fraction volatiles.

Figure 14 shows the experimental extensional (1) and shear (2); (a) phase velocity versus
frequency, and (b) dissipation factor versus frequency of a room dry (10% water saturated)
0.72 c¢m radius vycor sample. In figure 14(b) the extensional results have been translated up-

1

ward by 0.1 ¢em™. Figure 15 shows the inverted elastic moduli of vycor C, (1), and C,, (2).

Part (a) shows the real part cf the moduli and part (b) the imaginery part. In figure 15(a) the



low frequency dispersion of the real part of Cy is apparent. This dispersion in the shear
modulus is accompanied by a large imaginery part, figure 15(b), suggesting a low frequency
shear relaxation which is concluded by 100 kHz. Above 100 kHz the shear modulus is relatively
nondispersive, the imaginery part of the shear modulus slightly decreasing as the frequency in-
creases. (o of vycor shows a dispérsive region at low frequencies, where the real part is nega-
tive and the imaginery part is quite large. By 200 kHz the real part of €5 has become positive
and the imaginery part of the modulus has decreaed and gone negative, so that there is essen-
tially no attenuation of th dilatational mode. Between 200 and 350 kHz 5 is nondispersive.
Above 350 kHz the real part of C'y, decreases and the imaginery part of 5 increases, sug-
gesting the onset of the scattering mechanism. This high frequency negative dispersion of the
real part of the elastic moduli in dry porous materials, previously observed by other investiga-

4-8

tors , correlates well with the recent applications of multiple scattering theory to spatialy

. o
correlated porous materials 221,

The low poisson’s ratic of vycor throughout the frequency range studied together with
the low frequency relaxations seen in the results suggest to the role of the adsorbed water films
in decreasing the real part of the moduli and increasing the imaginery part of the moduli. A
way to measure the effect of the wetting process is to compare the material elastic modulus
with those derived from effective media computations, as these are based on a purely mechani-
cal interaction between the various components in the porous solid. Taking mean velocities for
vycor over the measured frequency range, Vp == 34 km /s and V, = 22 km /s, and com-
puting eflective material velocities using the sell”consistent results of Berryman ') utilizing
Fused Silica values C,, = 7.83 10" Dyne /em?,  Cu = 3.11 - 10" Dyne /em?, and
p =229 /em?® for the matrix, we find that the velocities may be matched only by using as
pore shapes the oblate spheroid shape with a one to five minor to major axis ratio. For the
spherical pore shape which is closer to reality for vycor ( as shown in transmission electron mi-

croscope pictures shown in reference 42), the estimated velocities using the self consistent ap-



proach are Vp ==4.49 km /s and V, == 2.76 km /s . This discrepancy between the sell con-
sistent {SCS) estimate for the actual pore shape and the actual measured effective values (EF),
9,10

previously observed for porous materials , may be used to estimate the wetting effects us-

ing the equation

Cuscs = Cuer =

OMSCS“CAAEF:( )"Tes

<|w <|n

where S /V is the surface to volume ratio and ~;; and ~4 are the eflective normal and tangen-

. . -~ .. 4
tial elements of the surface elasticity tensor **

, averages over the surface elasticity tensor over
all the internal surfaces of the porous material. The numbers obtained by such analysis for

the surface elasticity are of the order of those expected from the decrease in the silica-vacuum

surface tension upon wetting {== 10° Dyne /em ).

Conclusions

The theory of waveguided wave propagation in cylinders with complex elastic constants
has been presented. The consequences of the theory to the fundamental extensional and tor-
sional shear modes is shown and extended to frequency dependent complex elastic constants.
For the case of a constant @ variation of the elastic constants with frequency, a specific dissi-

4

pation peak is predicted for waveguided extensional mode experiments.

The results of experiments performed in a continuous wave acoustic transmission bridge
are compared to theory and confirm the specific dissipation peak. An algorithm is implimented
to invert the experimental measurements for thewcomplex elastic modull utilizing the derived
dispersion relations. Large deviations are found between the predictions of constant @ and

velocity and attenuation of the materials studied. Experimental results on vycor porous glass

suggest the large effect of surface wetting on the elastic properties.
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Appendix A- Forward Program to Compute Extensional Dispersion

The program CDISPCFOR is a FORTRAN 77 program to compute the velocity
and attenuation of the extensional mode as a function of frequency for given complex elas-
tic moduli Cyg and Cyy, density p, and cylinder radius ¢ . The complex wavenumbers are

computed using the complex Pochammer-Chree relations.

The present form of the program is written for frequency-independent complex elas-
tic moduli { constant @) although it may be enlargened to include any variety of
frequency-dependent moduli. The program reads the moduli and the density and prints
oub the material compressional velocity | shear velocity, bar velocity, Poisson ratio, and
Rayleigh wave velocities. It then asks [or the frequency interval over which the dispersion
relation should be evaluated and the frequency spacing within this interval. Final prompts
are for the accuracy of the determination of the solution and for the filename to store the
resolved velocity and dissipation factor. The program uses the method of Dubbleday 22
to determine the zeros of the dispersion relation in the complex plane. The method uses
trial values of the desired wavenumbers (from which velocity and dissipation factor are
computed) iteratively and moves in the complex wavenumber plane so as to box in the
desired solution in a square box of dimension 2DB (parallel to the real ‘axis) by 2DB
{parallel to the imaginery axis), where DB is the size of the interval in wavenumber space
for the particular iteration. The box is created by a pair of values BT 1 and BT 2, which
have the same real part but whose imaginery part is displaced ~-DB and +DB , respective-
ly, from the trial solution. When the values“o.f the dispersion relation for BT 1 and BT 2
are calculated, the sign of their difference indicates whether the real part of the sclution
lies at greater or smaller values than those of the trial solution. Once this is determined, a
new trial solution is picked whose real part is more towards the desired solution by a fac-
tor of DB. BT 1, BT 2 and the value of the dispersion relations at them are recomputed

and the process is repeated. The motion along the real axis ends when the sign of the
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dispersion relation between BT 1 and BT 2 reverses sign. At this point the interim solu-
tion is set as the average of BT 1 and BT 2 and a vertical pair BT 3 and BT 4 are picked
which have the same imaginery part but whose real part is displaced ~-DB and +D5,
respectively, from the interim value. This pair is used for motion parralel to the the ima-
ginef'y axis in a fashion identical to that described for 71 and BT 2, the imaginery part
of the trial value being changed by DB at each iteration. Depending upon the desired ac-
curacy of the determinaticn of the root, differing amounts of iterations must be made on
the horizontal and vertical pairs_at each frequency point, each iteration shrinking the size

of the bounding box by a factor of ten.

To increase the rate of convergence, the program utilizes the low [requency assymp-
tote of the extensional mode, the bar velocity, as the starting point for iteration at the
lowest frequency point desired. The iterative process at higher frequencies begins by us-
ing as a trial value the result of the previous frequency point, the wavenumber at the new

frequency w; being adjusted to the frequency shift from the previous frequency w;_; using

the equation

s

Blwi )= Blwia) ——

Wi

An important problem which the program overcomes is the fact that higher order
solutions to the dispersion relation become possible at frequencies above fa == 2.0 {which
is the cutoff frequency for the first higher order mode). These higher order modes pro-
pagate at a faster phase velocity, so the program uses the parameter JOE, which is deter-
mined by the Poisson’s ratio of the material and the relative change of the propagational
velocity between successive frequency points, to start the iterative process at slightly
higher wavenumbers in this critical frequency region. Lack of this feature in early versions
of the program made solutions oscillate between the various order solutions. It may be

that these cscillations lead some investigators '*'% to consider the existence of stop bands

[
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(zero group velocity regions) in this frequency range. Of importance for convergence is
also the usage of many orders in the series approximation of the Bessel functions, which
influences the dispersion relation highly in a region where the functions are close to their
ZET0s.

.

The program results are printed to a user defined program in an unformatted for-
mat, so that they may be read by BASIC language plotting programs, or by an unformat-
ted read in FORTRAN. The configuration of the printing is as {ollows:

Line 1. HF, V5, V,

Line 2: TP

Lines 3 through (FP+2): I}, Vi, 3 T =1,2,..FF,

where HF is the maximum value of the {requency in kHz, Vp is the material compression-
_al velocity, and V, the material shear velocity, the latter two values given in km /s . FP
is the number of frequency points. Lines 3 through (FP+2) each contain three values; the
frequency point (in kHz), the extensional mode velocity at that point (in km /s ), and the
imaginery part of the wavenumber at that point (in 1/e¢m ). The imaginery part of the
wavenumber appears with a negative sign before it since the absolute value of the (nega-
tive) imaginery part corresponds to the value of the (positive) attenuation.

The main program is lollowed by a Bessel function subroutine. This function is com-
putgd from a series expansion 3. To increase the computation rate, the value of the fac-
torials of numbers {rom one through fourty are included in the body of the program,
which prevents having to compute them anew at each entry into the subroutine. If more

than fourty terms of the series expansion of the Bessel function are needed, the value of

more factorials must be izcluded in the subroutine.

.
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CDISFC.FOR— THE FORWARD FROGRAM
MAIN FROGRAM TO COMPUTE COMFLEX DISFERSION RE_ATION
FOR EXTENSIONAL WAVES IN A CYLINRICAL ROD

USING COMPLEX FOCHAMMER-CHROE RELATIONS

THIS VERSION IS FOR INFUT COMFLEX ELASTIC CONSTANTS
AND COMFUTES IMAGINERY FART OF WAVENUMEER TOO.

USES ALGORITHM OF DUERLEDAY, SIAM J. OF AFFLIED MATH.
VoL 83 (), 1127, 1983 '
VARIAELE DECLERATION SECTION REGTNS S % % %653 3 3 2 3 3 36 3 3¢
INTEGER*4 N,M,I1,SF,FP,FLAGL,FLAGS

REAL*8 X,COMP, XMIN,XMAX,DX,CMIN,CMAX ,CR,XX,C12R,0121,C44R,

REAL%*8 VF , VS, VE,F, W, KL, KE,A,XL,XE,CI

REAL*8 PI,LF,HF,DF,J0E

REAL*B ANSM,ANSMO,DLTA,VY kY VEE,KEE,VR,CHE

REAL#8 FOI,RHO,SANSHO,2ANSH, SANSVO,SANBY, 8H, SV, DE,DLTAI

COMPLEX*1S6 ZL,ZIS,ZLO, Z0L1,ZL2,250,2581,238%

COMPLEX=*1S KTLETS,ANS,BTOBTMAX,BETMINO , BTMIN

COMFPLEX=16 C11,C12,C44,KL2,KSZ2,R,ET

COMFLEX*16 BTL,EBTZ,BTI,BT4,BTO0,BTMAXO

COMFLEX* 14 ANST  ANSZ, ANSZE ANSS

CHARACTER®&4 FNAME

DIMENSION CRAS0O) , XX {(Z00) ,CI (500

VARIARLE DECLARATION SECTION ENDS® %43 % %30 % %% 3 % %8 % % 5

B HFH A FHRAF AR FF R R H AN TR AR B ER BT FSITERETA L FE TS

*+xxx2FPARAMETERS USED ARE:

REHD=DENSITY 0OF MATERIAL (G/CM=x2)

C12=L0ONG. COMFLEX MODULUS OF MATERIAL (DYNE/ (CM#x2))
(ALSO TERMED LAMEDA)

C44=SHEAR COMPLEX MODULUS OF MATERIAL (DYNE/ (CHx#2))
(ALS0O TERMED MU

VF=COMFRESSIONAL VELQOCITY OF MATERIAL (CM/S)

VE=GHEAR VELOCITY OF MATERIAL (CH/8)

VY=RERAR VELOCITY 0OF MATERIAL ((CM/S)

VR=RAYLEIGH VELDOCITY CF MATERIAL (CM/S)

FOI=FOISSON'S RATIO OF MATERIAL (DIMENSIONLESS)

R=(C12)/{C44)y (DIMENSIONLESS)

3 n

NVE=VELOCITY 0OF WAVE FROFAGATION IN MATERIAL (CM/S)

F=FREQ (CYCLES/S)

W=ANGULAR FREQUENCY =ZxFIxfF (1/8)

E=WAVENUMEBER (1/7CMD

FL=LONGITUDINAL WAVENUMRBER =(W/VF) (1/Cn
FKS5=8HEAR WAVENUMEBER = (W/VL) (1/7CM)

FY=EAR VELOTCITY WAVENUMEER =(W/VY) (1/CM)

o
¥

—t

KL2=SQUARE OF COMFLEX TRANSVERSE COMFONENT OF LONG. WAVENUMEER
FKSZ=80QUARE OF COMPLEX TRANSVERSE COMONENT OF SHEAR WAVENUMEER

BT=Z COMFONENT 0OF FROPAGATIONAL WAVENUMERER = (W/VE) (1/7Cr

FTL=TRANSVERSE COMFONENT OF LONG. WAVENUMBER

=50RT (KL##2-RT»*+2) (1/7CM)
ETS=TXXANSVERSE COMFONENT OF SHEAR WAVENUMEBER
=S0RT (KS## 22— Tw##2) (1/CM

A=RADIUS OF CYLINDER (CM)
ZL=KTL*A (DIMENSIONLESS)
L2S=KTS*A (DIMENSIONLESS)
ZLO=J0(ZL) «ZL1=J1(ZL) = ZL2=J2{(ZL)
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250=J0(Z8) :Z281=J1(7Z8) = Z82=J2(I%)
END OF FARAME LnS FOR PROGRAM #4533 334384 %8% %505 %
FPI=Z2.141592654D

WRITE (#,250) '~FRDDme TO CALCULATE VELOCITY AND ATTENUATION-

WRITE (»*,230) ° 0OF EXTENSIONAL WAVES IN A LOSSY CYLINDER'
WRITE (2%,250) ° COFYRIGHT STANFORD ROCH FHYSICS 1985,1986'
FORMAT (10X,A)

READ IN VALUES OF COMPLEX ELABTIC CONETANTS AND THL DENBSITY

WRITE (%, (A\) ') * INPUT MTL. CI12R, 0121 (1.0D10 DYNE/ (Chiexll) )

READ (=,&) LC12R,C121
FORMAT (D15.7,D15.7)
C12R=C12R%1.0D10
Ci1Z21I=C121%1.0D10
CiZ2=DCHMFLX(C12R,C121)

WRITE (x, " (A\Y ") * INFUT MTL. C44R,C441 (1.0D10 DYNE/ (CM»=1)

READ (#,6) C44R,C441

CA4R=C44R#1.0D10

C441=C441I+1.0D10

C44=DCMFLX (C44R,C441)

Cl11=C12+2,0D0x*C44

WRITE (¢, (A\)Y ") * INFUT MTL. DENSITY (B/CM=x3)

READ (%,4) RHO

FORMAT (D15.7)

VP=DSORT (CDARS (C11/RHO) )

VE=DSORT (CDAES (C44/RHD) )

WRITE (#,11) ° VYF(EM/S)=",VF/1.0D0S, ‘U5 (KM/S)=",VS/1.0D0S
FORMAT (A,3X,D15.7,3X,A,3X,D15.7)

NEXT TWO (VY AND VSS) ARE USED TO LIMIT RANBE OF ET
VY=DSORT (VS##Z# (I, ODO*YF#%2—4, ODO*#VS##T) / (VF#%#2-VS%*2) )
VS5=V5

R=C12/C44
FDI=Q.5DQ—O.5DO%(VS%%2)/(VP%%2~VS*%2)
WRITE (%,9) ° VWHEM/S)=",VY/1.0D0S, "FOI=",F0I

FORMAT (A, 3X,DI15.7,3X, A,_x Di2.E

VR=VS5% ((0.87D0+1., 12D0*F01)Y / (1. 0D0O+F0IY)

WRITE (%,135) ° VR=",VR/1.0D0OS

FORMAT (A,2%,D15.7)

WRITE (=, (AN) ") ° INFUT CYLINDER RADIUS (CMH

READ (#,8) A

WRITE (#,° (AN)Y ") ° INFUT FRED. RANGE-IN HERTZ (LF 4HF)
READ (#,7) LF4HF

FORMAT (D15.7,D15.7)

WRITE (%, (A\) ") ° INFUT FREGOU SFACING-IN HERTZ (DF)
READ (%,8) DF ‘
FORMAT (D1S.7)

CHS=1.0D~-0%5

WRITE (=, (AN) ") " INFUT ACCURALCY (DEFAULT=1.0D-05)
READ (#,8) CHS

WRITE (=, (AN) ") ° INFUT FILENAME TD STORE DATA
READ (&, (A\) ") FNAME

Fop ARt E R NFARAMETER READING COMFLETED
CHMIN=1.0D1Z2

CMAX=—1,0D~17

FR=IDINT ((HF~LF) /DF)

y
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FR=FF+1
FREQUENCY LOOF
DO 10 I=1,FF
F=LF+DF» (I-1)
W=D, ODORF I #F
CALL BESSEL (N, X,M,COMF)
Kle= (2, 0DOs*PI*F) /VF
KO= (2. 0DO*FI#F) /VS
KY= (2, 0DO*FI#F) /VY
KSS= (2, ODO*P I#F) /VES
L 2=DOCMELX (RHO#W#* %2, 0. 0DO) /011
KS2=DCMPLX (RHO®W=%2,0.0D0) /C44
WRITE (%,64) ° F(Hz)=',F, KLA= ,KL*A, KSA=',KS*4
FORMAT (4,3X,D15.7,3X,A,3X,D15.7,3%,A,3X,D135.7)
NOW RUN EETTA LDOF
ANSM=1,CD+13
ANSMO=1.0D+17
BTO=DCMFLX (0, 99DO#KY , 0. O)
ETHMAX=DCMFLY (0. 99D0#HSS, 0.)
IF (I.BT.1) EBTO=BETOO:W
IF (I.GT.1) ETMAX=BTMAXO®)
BTMINO=ETMAX
DE=REAL (ETMAX-ETO) /100, DO
IF (KS#A.GT.2.0D0) DE=DE/1.3D0O
IF (KS#*A.BT.4.0D0) DE=DE/2.0DO
IF (KS#A.BT.6.0D0) DE=DE/1.5DO
BEGINNING OF LOOFS ON BETA
FIRST COMES HORIZONTAL FAIR ET1 AND ETZ
J=1
ET=ETO
BEGINNING DF HORIZONTAL LOOFS FOR Jr1 DR HIGHER ITERATICNS
CONT INUE
ET1=ET-DCMFLX (O.0DO,DE)
ETL=CSORT (MLI-RT1#%2)
KTS=CSORT (KSZ-ET1%#D)
ZL=ETL*A
21S=KTS#A
CALL EBESSEL (0,ZL,30,2L0)
CALL EESSEL (1,ZL,30,701)
CALL EBESSEL (2,ZL,30,7L2)
CALL BESSEL (0,78,30,2S0)
CALL BESSEL (1,25,30,751)
CALL RESSEL (2,75,30,782)
NOW CALCULATE THE DISFERSION FUNCTION FOR ETI
ANS1= (KS2=2. ODO*BT1%:2) #Z51#R* (KL2) #ZL0
ANS1=ANS1— (KSZ-2. ODO*ET1%%2) #2581 % (KL2-BT1#%2) % (ZL2~ZL0)
ANS1=ANS1— (2. 0DO*BT1%%2) #KTL*KTS#ZL 1% (ZE0-750)
WRITE (%,6%) ° F=',F, BT1=',REAL(ET1),AIMAG(BT1), ANS1="
,REAL (ANS1) ,AIMAG (ANS1)
FORMAT (A,2X,D15.7,2X,A,2X,D15.7,2X,D15.7,2%,A,2X,D15.7,2X
,D15.7)
NOW DO THE SAME FOR EBT2
ET2=BET+DCMFLX (0. ODO, DE)
KTL=CSORT (KL2-EBT2%%2)
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FTS=CERRT(KEG2-ET2%x2)
ZL=KTL#A
IS=FT8%A
CALL BESSEL (0,7ZL,30,ZL0)
Call BESSCL (1,ZL,230,Z1L0)
CallL BESS (2,ZL,30,ZL2)
CaLL Bt“f"‘ (0,Z8,30,Z580)
CALL BESSEL (1,Z5,30,I81)
CALL EBESSEL (2,15,30,;I82)
NOW CALCULATE THE DISFERSION FUNCTION FOR BTZ2
GNS2= (KGS2-2., 0DO#BT2x%u42) #Z81#R» (KLL2) =#ZL0
ANS2=ANGS2— (KSZ-2. 0DO#BT2##2) # IS 1 # (FLZ2-BT2*x2) » (ZLL2-ZLO)
AN52=ANSZ~(2.0DO%BT2%%2)%KTL%KTS%ZLI%(ZSZ—ZSD)
WRITE (#,63) ° F=',F, EBTZ=",REAL(BTZ) ,AIMAG(EBTZ) , ANGE=
JREAL (ANSD) ALMQG(ANC“
NOW WE OBTAIN HORIZONTAL SIGN
SH=ATMAG (ANS 1) #REAL (ANSZ2) —AIMAG (ANSZ) #REAL (ANS1
SANSH=DSIBN(1.DDO,SH)
IF (J.EQ.1) SANSHO=SANGSH
IF (SANSH.NE.SANSHD) THEN
WE HAVE FOUND OUR ROOT-SIGN HAS REVERSED
WE SET FARAMETERS AND GOTO VERTICAL FART
GOTO Z7
ENDIF
MOW WE MAKE NEW HORIZONTAL FAIR (SIGN HAS NOT REVERIED)
FIXING THE DIRECTION OF MOTICN BY THE SIGN SANSH
ET=RBT+SANSH*DCMFLX (DB, 0. 0DO)
J=J+1
GOTO Z6

B S SE % S5 S 3 3 SE S 2030 30 3 30 36 50 3 36 56 36 6 36 K I 36 3 I 2 3 KKK N K H RS R

NOW COME VERTICAL FAIR EBTZ AND ET4

J=1

ET=(BT1+RBT2) /2.0DO

BEGINNING OF VERTICAL LOOFS FOR Jx1 OR HIGHER ITERATIONS

CONT INUE

ETZ=RT-DCMFLX (DE, Q. ODO)

FTL= CCDPT(VL“—ET st )

ETS=CSORT (KEZ~ETI#%2)

ZL=ETL*A

2S=ETS%A
CALL RESSEL (0,ZL,20,ZL0O)
CALL EBESSEL (1,ZL,Z0,ZL1)
CALL BESSEL (2,ZL,30,ZL2)
CALL BESSEL (0,Z5,30,Z80)
CALL BESSEL (1,75,30,I81)
CALL BESSEL (2,715,30,152)

NOW CQLCULAT? THE DISPERSION FUNCTION FOR EBT3

ANSZ= (KS2-2. GDOxETI®%2) # 78 1#R%* (KLL2) *ZL O

ANSZ= ANC*—(LSQ 2.0ODORTIe%D) #2851 # (KL2-BTI#%2) # (ZL2-ZL0)

ANSZ=ANSI— (2. ODO*BTI#4#2) #KTL#KTS*ZL 1% (152-250)

WRITE (#,65) * F=',F, BTE=" ,REAL(EBTZ) ,AIMAG(BTI), ANSI="

LJREAL (ANST) ,AIMAG (ANE3Z)

NOW DO THE SAME FOR BT4

BT4=RT+DCMFLX (DE, 0. ODO)

NN
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CALL
Call
Call
CaLl
CALL
CaLL

NOW CQLCULQTE THE'

ANS4= (K

ANS4=ANS4~ (K32~

ooow e oo

Mmoo m o

S")

CTL=0SORT (KLZ- T41*“)
S=CSORT (KS2~-ET4%x2)

EL (0,ZL,30,7L0)
EL (1,7L,30,ZL1)
L (2,7ZL,30,70LD)
SEL (0,25,30,250)
SEL (1,7S,30,251)
(2,78,30,182

0w

WNwwuw o
{!
T

1431
M

DISFERSION FUNCTION FOR EBTA4

2.0D0OxBT4xx2) IS xR (KL2) *ZLO

2. 0DO#RT4xxl2) #7811 (KLE2-BT4#22) % (ZL2-Z1L00

ANE4=ANS4- (2, ODO#ET4%:2) #WTL¥TES*ZL 1x (ZS8X-73M)

WRITE (%,565)

,REAL (ANS4) ,AIMAG (ANE4)

NOW WE OBTAIN VERTICAL SIGN
SU=AIMAG (ANEZ) #REAL (ANEA) —AIMAG
SAMNEV=DSIGN(1.0D0,5V)

IF (J3.EQ.
IF (SANES

1) SANSVO=SANEV
LMNELSANEVO)  THEN

© F=',F,'BT4=' ,REAL (ET4) ,AIMAG (ET4), 'ANS4=

(ANS4) *REAL (ANETZ

E HAVE FOUND VERTICAL ROOT-SIGN HAS REVEREEZD
WE ZITHER GOTC HORIZONTAL FOR NEW ITERATION
OR WE TERMINATE

ANS= (ANST+ANE4) /2. 0DC

ET=(BT3+ET4) /2.0DO

BTMIN=ET

WRITE (%#,84) ° BTMIN=',REAL (BETMIN) ,AIMAG (ETMIN)
FORMAT (A, 2X,D1i5.7,2%X,D15.7)

DLTA=CDAES ( (ETMIN-ETMING) /BTMINO)

DLTAI=DAERS (AIMAG(ETHMIN-BTMINO) / (AIMAG (BTMINO) +1. 0D~

—v»—\)

IF (DARS(AIMAG(BTHMINY /JREAL(BTMINY Y. LT.1.0D-10) DLTAI=CHS
IF (DLTA.GT.CHS.0R.DLTAI.BT.CHS) THEN

BETMINO=BTMIN

CONDITION FOR IMAG(ET) >0

WRITE
s “ANS
FDRM T
D15,

JOE= CONDI

I

(3,

F O(AIMAG(BT).GT.0C.0DO)
DE=DB/10.D0O
J=1
COTD 26
ELSE
AX(I)=F/{1.0D
CROI)=(2.0D0O*
CI(IY=AIMAG(E
8% ° BTMIN=" (REAL(ET
sREAL (ANS) ,AIMAG (ANS)

BT=DCMFLX (REAL (BT ,0.0D0)

0%)
FI*#F) /REAL (BTMIN*1.0D0OT)
TMIND '

MIN) ,AIMAG (BTMINY , 'VE=",CR (I}

(A,2X,D15.7,2X,D15.7,2%,A,2%X,D15.7,2X,A,2X,D15. 7, 2X%

7)

BTCO=BTIMIN*
TION T3 MAKE FPROGRAM

S0 AS TO AVOID HIGHER MODE SOLU

JOE=ARS(REAL (BTO-ETMI

IF (I.G6T.1) JOe=ARS((CR({I)-CR

IF

IF (KS5S%A.G6T.6.0D0C) JOE=

(JDE.GT.1.01D0) BTOO=B
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LOOK FOR HIGHEST BETTA SOLUTION
TIONS

N /REAL(ETMINY ) %3, 5D01

;TN

(I-1)) /CRAI-1))#2.8D0O/ (FOI#*»4/2)

1.0D0
BTOO#1.10DO
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BTMAXO=BTMIN*1.20D0/W
GOT0 10
ENDIF
ENDI

NDW WE MAKE NEW VERTICAL FAIR (SIGN HAS NOT REVERSE
FIXING THE DIRECTION OF MOTION RBY THE SIGN SAMSV

BT=ET-SANSV=DCMELX (0. 0DO, DE)

J=J+1

GOTO 38

CONTINUE

STOF

RESULTS FRINTING SECTION BEDG TN 553 3 3 5 5 3 3 33 3 ¢
OFEN(8,FILE=FNAME, STATUS="NEW ' ,ACCESS='SEQUENTIAL
FREQUENCY—IN kHz ,CR(I) —IN km/s.CI(1)—IN 1/cm
SIGN DF CI(I) IS5 REVERSED TO MAKE IT NEGATIVE
WRITE (8,%) HF/(1.0DOT) ,VF/1.0D0S,VS/1.0D0S
WRITE (9,%) FF

DO 20 I=1,FF

")

D)

WRITE (8,:#) REAL(XX (1)) jREAL(CROIN) y—1.0xREAL(CI(IN)

CONTINUE

CLESE (B)

END

S S S 36 S AE 3638 SH 6 5 3 2096 T 3 9E 36 40 S0 5F 36 2036 3 S 6 S0 3 2 % 6% F K
O R R R R L PR T T R T RS S
R R
SURBROUTINE EH JEL (N, Z,M,COMFZ)

N=DRDER OF RBEBSEL FUNCTION OF FIRST KIND (In(Z))
Z=COMFLEX ARGUMENT

M=AMOUNT OF TERMS TD TAKE IN SERIES EXFANSION
COMFZ=COMFLEX ANSWER-OCUTFUT 0OF THE SUBROUTINE
VARIARLE DECLARATION SECTION REGINS HERE
INTEGER=4 N,M,I,J,K

REAL=*B X ,JF,JINF,Y,FA40)

COMFLEX*146 Z,C0MFZ

NMEXT LINES ARE FACTORIALS DF 1 TO 40

DATA FA/1.42.,6. 424, ,120. ,720. 3040, 40220,

,fé:S&O.13628800.q3991bduﬁ,,4 7900156D+08,56.227021D+09

,8.71783D+10,1.3074&7D+12,2.09227D+135,3. 5 SéBle , 6. 402I7D
\.JD'*'PV-‘
a 6. 2044D+27,1.55112D+25,4.0Z29D+26,1.0888D+28,3. 04888D+29
,8 B8417D+I0,2.6525D+32,8., 222 BDFQQ,~.6 13D+35,8. 683TD+I6

1.21&4D+17,2.43290+18,q,1”909 +19, 1. 1”40*21,3.59

y 2. 95230438, 1. 0333ID+40,3,7199D+41,1.376ED+43
|5.2302D+44. 2. 0398D+46 .8, 1591D+47/
COMFZ=(0.0DO, 0. ODO)

DO 10 I=1,M

J=1-1

HAVE TO COMFUTE FACTORIALS HERE
COMFUTING J FACTORIAL

JF=1.0D0

IF (J.EQ.0) GOTO 25

JF=FA (J)

NOW COMPUTING (N+J) FACTORIAL
JNF=1.0DO

IF ((N+J).EQ.0) BOTO 30
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19

JINF=FH{{ (N+J))

END OF FACTORIAL COMFUTATION

IF (J.EQ.0) THEN
COMPZ=COMPZ+DCMFLX({1,0D0) / (JF=INF))
60T 1
ENDIF

COMPZ=COMPZ+DCMFLX (((=1,0D0) =*%J) / (JF*INF) )= (Z/2.0D0) % (ZxJ

CONT INUE
CONTINUE

IF (N.EQ.O) GOTO 18

COMPZ=COMPZ# (Z/2.0D0) #+N

CONT INUE

X=REAL (COMFZ)

Y=AIMAG (COMFZ)

WRITE (%,19) REAL(Z) ,AIMAG(Z) X,V

FORMAT (IX,D15.7,3X,D15.7,3X,D15.7,3%,D15.7)
RETURN

R R R R L

R B & R LR R R R e
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Appendix B- Inverse Program to Compute Elastic Moduli

The program DISPIFOR is a FORTRAN 77 program to compute the frequency-
dependent elastic moduli ¢4, and €, from the experimentaly determined dependence of
the torsional shear and extensional (velocity and attenuation) results on frequency. The

material density and the cylinder radius must also be provided.

- s .

The program requests the names of the files containing the torsional and the exten-
sional results. It is important that both files contain results taken at the same frequencies.
The format of these files'is identical to the output files of CDISPC.FOR, the forward pro-
gram discussed in Appendix A. The program will then request the material density and
the cylinder radius. The program then requests names for the ¢, versus frequency and
the C'yy versus frequency files, which are the final outpus of the program. Finally, the user
may chose to have centroid smoothing for a selected number of cycles, which is important
for noisy data, and the user selects the accuracy of the inversion. In practice 15 smooth-

) v
. ) . . o
ing cycles and an accuracy of 107 gives non-oscillatory results with fast convergence (1

minute per frequency point) even for very noisy data.

The program initially reads the tersional data file and computes the complex C 4.
Optional smoothing of the shear modulus follows, the shear results being later sent to the
selected file. The arrangement of the printed shear results is as follows;
Line 1: FF(N), REAL(M34), REAL(MNY)

Line 2: N

Lines 3 through (N+2): F;, Real (C 4y ), Imag (C ) { =12,...N
where FF(N) is the maximum frequency in kHz, and REAL(MX4) and REAL(MNY) are
the maximum and minimum values, respectively, of the real part of the shear medulus in
units of 1.0 - 10" Dyne /em? N is the number of frequency points. In lines 3 through

{N--2) there are each three values; the frequency in kHz, the real part of the shear

modulus, and the imaginary part of the shear modulus at that frequency, the latter two in
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o . 2
units of 1.0 - 10" Dyne /em ™.

The program then reads the extensiona! file, changes the velocity and attenuation
values at each frequency to a complex wavenumber, and then {cptionaly) énmoths these
results. The first step in the actual inversion of the extensional results is a calculation of
the complex Young’s modulus, which is used as the starting point for the iteration process
at the lowest frequency value. Following this step the iteration process begins for the
lowest frequency point. The iterative process uses two pairs of trial values, o and Cyan
being the horizontal pair, and (53 and (s, being the vertical pair. The horizontal pair
has an imaginary part displaced —=DC and +DC from the trial value, where DC is the
iteration interval size in the elasiic modulus plane. The horizontal pair are used to move
parallel to the real €, axis. The vertical pair have a real part displaced ~DC and —~DC
from the trial value and zre used to move parrelel to the imaginary O, axis. More com-
plete details of the iteration process may be found in Appendix A, the mechanism of the
iterative determination of the zeros of the dispersion elation being entirely analogous for
the forward problem as for the inverse.

After (|5 has been determilned to the desired accuracy at all the frequency points,
an.opcional smoothing may be applied to the data. The last step of the program is the
priniting to the desired data file of the ', results. The printing format is identical to that

used for the shear modulus.

.
8]
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DISFI.FOR —-THE INVERSIOMN PROGRAM

MAIN PROGRAM TO COMRPUTE COMFLEX ELABTIC MODULI

FROM DISFERSION RELATIONS FOR TORSIONAL AND

FOR EXTENSIONAL WAVES IN A CYLINDRICAL ROD

USING -COMPLEX FOCHAMMER-CHROE RELATIONS.

USES ALGORITHIM DOF DURBRLEDAY, 8IAM J. OF AFPFLIED MATH.

VOL 82 (5)y, 1127, 1983 )

VARTIABLE DECLARATION SECTION BEG NGt 5 400005 2 32t

INTEBER=4 N,M, 1,87, FP,FLAGL,FLAGES, MM

REAL=4G MAXX,MAXY (MINY UL U2, FF

REAL %8 X,COMF, XMINM;XMAX DX CHIN,CMAX ,C12R,C121,C44R,C441

REAL®*8 VF,VE,VE F, W, KL, KS, A, XL, XS

REAL*E FIZLFHF,DF,JOE XY, W1l W2, WG

REAL®*E ANEM,ANSMO,DLTA,VY ,EY VES,KES,VR,&A,BR M

REAL#B POI,RHG,SANSHO ,SANSH, SANSVO, 5ANSV ,SH, SV, DC, DLTAT ,DLT

COMRPLEX=8 C4a,BT,C12,XC, XYL, XXC,MXAZ, MNZ,MX4 , MINS

COMPLEX=16& ZL,28,2L0,20L1,Z1.2,Z50,251 ,252

COMFLEX®16 ETL,ETSANS,C1Z20,C12MAX,C1EMINO

COMPLEX*16 CL12MNGCIEMX0O,E ER

COMFLEX =146 C11 ,KL2,K82,R

COMFLEX®16 C121,C122,C122,C124,C1200

COMFLEX1& ANS1,ANSE,ANST, ANS S

CHARACTER®S4 FNAME (FMCA441  FNESA4AZ JFNEBT ,FNAMES OFT

Ui, u2,FF,Ca4,87,C12

DIMENSION UL (2810) ,U2(2810) ;FF(Z2810)

DIMENSION Ca4(2810) (BT(2810) ,C12(2B10O)

VARIARLE DECLARATION SECTION ENDSH 5553 9% 3 36 5 3 36 36 3 36 50 36 36 % 2

P B i R o Rt Ea o el e s s Vet e A it e ah L b b e b R A o B

s$xxrtFARAMETERS USED ARE:

RHO=DENSITY OF MATERIAL (G/CM#x3I)

C1Z2=LONG. COMFPLEX MODULUS OF MATERIAL (DYNE/ (CMe*Z))
(ALSO TERMED LAMEDA)

C44=CSHEAR COMFPLEX MODULUS 0OF MATERIAL (DYNE/ (CM#x23)
(ALSO TERMED MW

VEF=COMFRESSIONAL VELDOCITY 0OF MATERIAL (CM/S)

VS=SHEAR VELCCITY OF MATERIAL (CM/S)

VY=BAR VELOCITY 0OF MATERIAL (CM/S)

VR=RAYLEIGH VELOCITY OF MATERIAL (CM/3S)

FOI=FOIGSON'S RATIO OF MATERIAL (DIMENSIONLESS)

R=(C12) /7 (C44) (DIMENSIOMLESS)

VE=VELOCITY OF WAVE FROFAGATION IN MATERIAL (CM/S5)

F=FREQG (CYCLES/S)

W=ANGULAR FREQUENCZY =I2xFIxF .. (1/5)

K=WAVENUMBER (1/0M)

KL=LONGITUDINAL WAVENUMBER = (W/VF) (1/7CM)

KS=EHEAR WAVENUMBER ={W/VS) (1/CM

EY=RAR VELOCITY WAVENUMBER =(W/VY) (1/CM)

KLEZ=SQUARE OF COMFLEX TRANSVERSE COMFONENT OF LONB. WAVENUMERER

HS2=50UARE OF COMFLEX TRANSVERSE COMONENT 0OF SHEAR WAVENUMEER

BT=Z COMFONENT OF FPROFAGATIONAL WAVENUMDBER = {®W/VE) (1/7Cr

KTL=TRANSVERSE COMFONENT OF LONG. WAVENUMRER

=SORT (KL #2-BTx%2) (1/7CmM)
ETS=TRANSVERSE COMFONENT OF SHEAR WAVENUMBER
=50RT (KEB#x2-BT¥x2) (1/7CM3

pa
(D
;.)
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A=RADIUS DOF CYLINDER (IM)
ZL=KTL*A (DIMENSIONLESS)
2S5=KT5=4 (DIMENESIONLEES)

ZLO=JO(ZL) :ZL1=31(ZL) ¢ ZL2=J207Z1)

ZS0=J0(Z8) $ZS1=J1(7Z8) ZST=JT(Z€

ZND OF FARAMETERS FOR FROGRAM 3 e05 % 00 i 25 98 63 3 2% 4 083058 203k
PI=%,141592654D0 _

WRITE (%,102) ° FROGRAM TO INVERT TORSIONAL AND EXTENSIONAL S
WRITE (%,102) ° VELDCITY AND ATTENUATION FOR COMFLEX C44,C12°
WRITE (%,;102) ° CORYRIOGHT STANFORD ROCE FPHYSICS 19867
FORMAT (10X,A)

B R L e D I I e R s
READ IN ALL FPROGRAM INFUTS

WRITE (=, (A\)Y ") ° INFUT TORS. SHEAR FILENAME -
READ (»,101) FNC441

FORMAT (&)

WRITE (=, (A\) ") 7 INFUT EXTENSIONAL FILENAMET

READ (3,101 FNET

WRITE (ﬂ,' (ANY ") 7 INFUT MTL. DENSITY (G/CMsxZ)

READ (*,4) RHO

FORMAT (DIZ.7)

WRITE (=, " (AN)Y ") 7 INPUT CYLINDER
READ (*,8)
FORMAT (D1S.7)

s
>

b
(i
C
43]
]
X

WRITE (=, (AN) ") 7 INFUT FILENAME TO STORE C44
READ (%,1E7) FNAMES
WRITE (=, (AN) ") 7 INFUT FILENAMZ 70 STORE C12

READ (x, 187) FNAME
FORMAT (A)

WRITE (%, (A\) ') ' DD YOU WANT SMOOTHING (Y/N)

READ (%,187) OFT

IF (OFT.EQ. N'.OR.OFT.EG. n’') GOTO 191

WRITE (#,° (A\) ') ° NUMEBER OF SHOOTHING CYCLES

READ (#,18%) MM

FORMAT (14)

DLT=1.0D-04%

WRITE (%, (A\) ) ° INVERSIOW ACCURACY (DEFAULT=1.00L~04)7
READ (%,4) DLT

3 ot RN *‘K‘k%“‘-’ Sl L T S I B el - S U I JD S AR T S S R I A R T R e S 3
SUE-FROGRAM TO COMFUTE C44 FROM TORSIONAL SHEAR RESULTS
TORSIONAL SHEAR MODE 1S BEDMETRICALLY NON-DISFERSIVE
FIRST READING IN DATA FILES

OFEN (7,FILE=FNC441,STATUS= 0LD ' ,ACCESS=" SEQUENTIAL
REWIND 7

READ (7,%) MAXX,MAXY,MINY

READ (7,%) N

DO 99 I=1i,N

READ (7,%) FF(I),U1(I),U2(I)

ASSUMPTICON MADE IS THAT UZ(I) =0

FF(I)=FF (I)#1.0E03

UL (I)=U1 (1)#1.0E09

CLOSE (7)

WRITE (#,%) ' READ TORSIONAL SHEAR FILES

P R
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NMOW MAKIMGE C44 CALCULATIONS

MXL4=DCMFLX (~1.0D1Z,0.0D0;

FiNA=DCMFLX (1.0D13,C. 0D

DO 201 I=1,N

W=2,0D0OwFI#FF (1)

ADD DAMRFER TD UWUZ2(I) TO FREVENT DIVISION RY ZERO
UZ2(I)=UR(I)+1.0E~10

AL=1,0D0/ (RHO®N®2)

BR=0/A

LA=0G% C W /UL (I ) s 2--U2 (1) wae)

BER=RE+ (2, 0D0Ox* (W/UL1 (1) )U201))
C441=1.0D0O/ (BE* ( (AA/BE) *x2+1,0D0))
C44R=C44 1% (AA/BR)

C44 (1) =DCHMFLX (C44R,C441)

IF (REAL(C4L4 (1)) .BT.REAL (MX4)) MX4=C44(1)

IF (REAL (C43 (1)) JLT.REAL (MN4) ) MN4=C44(1)

WRITE (#,202) " FREQ=",FF (1), C44R=",C44FR, 'C441I=",C441
FORMAT (A,2X,E15.7,2%X,A,2X,D1S.7,2X,A,2%,D15.7)
CONTINUE

OFTIONAL THREE FDINT SHMOOTHIMNG OF C44 F0LLOWS
IF (OFT.EQ. "N .OR.OFT.EQ. 'n’) GOTO 212

DO 211 J=1,MM

AC=C44 (1)

DO 209 I=2, (N—17

AYT=C44 (1)

CA43(I)=(0, 25D0C*AC+0. S5+ XYL+0.25D0=C44 (I+1))
KC=XYC

CONTINUE

FRINTING SHEAR RESULTS
OFEN(B,FILE=FNAMES,STATUS= "NEW" ' ,ACCESS="SEQUENTIAL )
FREQUENCY=kiHz, MODULI=(1.0D10 DYNE/(CM#*+Z))=1.0GFa

WRITE (8,%) FF(M)/1.0EOZ,REAL(MX4) /1. 0EL1O,REAL (MN4) /1. ELO

WRITE (8,#) N
DO 21 I=1,N

WRITE (8,%) FF(I)/1.EOZ ,REAL(CA4(IN) /1. EL1Q,AIMAG(CS2(IN) /1. ELO

CONTINUE

CLOSE (&)

WRITE (#,2) 7 FINISHED C44 DETERMINATIONS

END OF C44 DETERMINAT TN 5362605 2630 08 202050 36 3 6 36 36 %36 % 3 38 % %

READ IN EXFERIMENTAL EXTENSIONAL WAVENUMBER FILE#¥ssipssgrsss

OFEN (7 FILE=FNET,STATUS="0LD" ,ACCESS="SEQUENTIAL )
REWIND 7

READ (7,%) MAXX MAXY MINY -
READ (7,%) N

DO 299 I=1,N

ASSUMFTION MADE IS5 THAT ALPHA=XY »=0
READ (7,%) FF{I) X, XY

W=, ODO#PIxFF (I)%*1.0D0OZ

X=X#1.0D05

XY¥==1.0D0%XY

ET(I)=DCMFLXY ((W/X) 4 XY

CLOSE (7))

DO 225 I=1,N

WRITE (#,226) ° BT(I)=", REALA(BT(I)) ,AIMAG(ET (1))
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FORMAT (A,3¥,D15.7,3X,D15,7)
CONT INUE
DDTIHNAL T

XC=HESFS X (I-1), XYC=HEEFS X (D)

1F (DFT EQ. LORLOFT.LEQ. 'n') BOTO 235

DO 228 J=1, M

XC=8T (1)

DD 227 I=2, (N-1)

XYC=ET (1)

W1=0, 25D0O%FF (I-1)

W2=0. SDOXFF (1)

WI=0., ZSDO%FF (I+3)
BT(I)=(N1ﬁXC+W2%XYC+N3%BT(I+1))/(wl+w2+wi)
XC=%XYC

CONT INUE
WRITE (=,%; °~ FINISHED REQDING EXTENSIONAL DATA FILES
R o T TR e e

NOW ESTIMATE YOUNG 'S MDDULUS (E) USING BT (Z)
FOR IMFUT TO STARTING FOINT OF EXTENSIONAL IRNVERSICN

W=2,0DO*FI%FF (2) #1, Oﬁﬁ*

E=DOMFLI (RHQ#W*=2 , 0, 0D0) /JREAL (BT (Z) #%2)

EE=S/REAL (044 (T))

C1R0=REAL (CA4 (T2 * (2. GDO-EE) / (EE-T. 0DO)

WRITE (#,95) ° E=',REAL(E), C120=",REAL(CIZC) ,AIMAG(CIZO
FORMAT <A,ZX,D1€.,,_X A,3X,D1S.7,3X,D15.7)

R R R R - S IR S R A B A RS

CMIN=1.0D1Z

CMAX=-1.0D-13

FREQUENCY L OOF St 2333538 3% 930 550 90 55 36 36 5 % % 96 30 3¢ % %
MXEZ=DCMFLX (-1.0D1Z,0.0D0O)

MINZ=DCMFLX (1.,0D13,0,0D0O)

DO 10 I=1,N

W=2,0DO#FIxFF(I) =1 ,0D0OT

Call BESSEL (N,X M, COMF)

SHEAR VALUES Aur CALCULATED ONCE FOR EVERY FRECQUENCY
FS=W/SORT(CARS ((C44 (1) /RHOY Y
VS“““CNPLV(DHD%w“RZ,O QDM /C44 (1)
S=CEORT (KER2~-RT (1) %x2)

CALL FESSEL (025,225,250

CALL EBESSE (1,28,25,7Z151)

CALL BE&SEL (“,ZS,hq,ZS“\
WRITE (#,64) ° FiHz)=",FF(I)#F1.0D0OT, "HE*a=" ,KS*A "
FORMAT (A,32X,D15.7,3X,A,3X,D15.7)
NOW RUN Ci12 LOOF
ANSM=1.0D+13
ANSMO=1.0D+132
C12MAX=C120+1,35D0
IF (I1.6T7.1) C120=C1200
IF (I1.GT7.1) Ci2MAX=C12MX0O
C12MINO=C12MAX
DC=ABRS(REAL (CI12MAX-C120) ) /30.DO
IF (FES#A.GT.2.0D0O) DC=DC/2.0D0O
IF (MS#*A.067.6.0D0)Y DC=DC/1.5D0

)
m
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c NOW MAKING C44 CALCULATIONS
MX4=DCMFLX (~1.0D13,0.0DO)
MN4=DCMFLX (1.0D1Z,0.0DO)
DO 201 I=1,N
W=2.0DO*F I*FF (1)
c ADD DAMFER TO UZ2(I) TO FREVENT DIVISION EY ZERO
U2 (1) =U2(I)+1.0E-10
AA=1.0D0O/ (RHO#W%*2)
BE=AA
AA=AA* ( (W/UL (1)) %*2-UZ (1) **2)
BE=EE* (2. 0DO* (W/U1 (1)) *U2(I))
C441=1.0D0/ (BE* ( (AA/EE) **2+1.0D0) )
C44R=C441*% (AA/BR)
C44 (1)=DCMFLX (C44R,C441)
IF (REAL(C44 (1)) .GT.REAL (MX4)) MX4=C44(I)
IF (REAL(C44(I1)).LT.REAL (MN4)) MN4=C44 (1)

C WRITE (#,202) ° FREQ=",FF(I), C44R=",C44R, 'C441=",C44]
C 202 FORMAT (A,2X,E15.7,2X,A,2X,D15.7,2X,A,2X,D15.7)

201 CONTINUE
C OFTIONAL THREE FOINT SMOOTHING OF C44 FOLLOWS

IF (DFT.EQ. 'N’.OR.OFT.EQ. 'n’) GOTO 212
DO 211 J=1,MM

XC=C44 (1)
DO 209 I=2, (N—1)
AYC=C44 (1)
C44(1)=(0.25D0*XC+0.S5*#XYC+0.25D0O*C44 (I+1))
209 XC=XYC
211 CONTINUE
C FRINTING SHEAR RESULTS
212 DFEN (8,FILE=FNAMES,STATUS="NEW ' ,ACCESS='SEQUENTIAL *)
C FREQUENCY=kHz, MODULI=(1.0D10 DYNE/(CM#*#*Z))=1.GFa

WRITE (B,%) FF(MN)/1.0EOZ,REAL (MX4)/1.0E10,REAL(MN4) /1.EL1OD
WRITE (8,%) N
DO 21 I=1,N
WRITE (8,%) FF(I)/1.EQZ,REAL(C44 (1)) /1. E10,AIMAG(CA4 (I /1. E10
21 CONTINUE
CLOSE (8)
WRITE (*,%) ° FINISHED C44 DETERMINATION-
C END OF C44 DETERMINATION® %3 %3 3 % % 3 % X 3% % 3 % 3% % 3% % % %%
'C READ IN EXFERIMENTAL EXTENSIONAL WAVENUMBER FILE*®*xxx®x¥xxxx*x*
OFEN (7,FILE=FNERT,STATUS="0LD  ,ACCESS="SEQUENTIAL ")
REWIND 7
READ (7,%) MAXX,MAXY ,MINY -
READ (7,%) N
DO 299 I=1i,N .
C ASSUMFTION MADE IS THAT ALFPHA=XY»>=0
READ (7,%) FF(I) , X,XY
W=Z, ODO*FPI*FF (1) *1.0D0OT
X=X*¥1.0D0S
XY=~1.0DO*XY

299 ET(I)=DCMFLX ((W/X) ,XY)
CLOSE (7)
C DO 225 I=1,N
C WRITE (%,226) * BT(I)=', REAL(EBT(I)) ,AIMAG(ET(I))
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Z26 FORMAT (A,3X,D15.7,3X,D1S5.7)
225 CONTINUE
OFTIONAL THREE FOINT WEIGHTED SMOOTHING OF EXTENSIONAL DATA
XC=KEEFS X (I-1), XYC=KEEFS X (I)
IF (OFT.EQ. 'N’.OR.OFT.EQ@. 'n’) GOTO 23S
DO 228 J=1,MM
XC=ET (1)
DO 227 1=2,(N-1)
XYC=ET (1)
W1=0.25DO*FF (I1-1)
W2=0. SDO*FF (1)
WI=0.2SDO*FF (I+%)
ET (1) = (Wi*XC+W2#XYC+WI*ET (I+1)) / (W1+W2+WT)
227 XC=XYC
228 CONT INUE
235 WRITE (%,%*) ° FINISHED READING EXTENSIONAL DATA FILE’
FEEFAFXFAFIRXEXF XXX FEFXXE XX XXX XX TR X
NOW ESTIMATE YOUNG'S MODULUS (E) USING ET(3I)
FOR INFUT TO STARTING FOINT OF EXTENSIONAL INVERSICN

W=2,0DO*FI#FF (2) *1.0D0O3
E=DCMFLX (RHO*W**22, 0. 0D0) /REAL (BT (IT) *%2)
EE=E/REAL (C44(Z))
Cl120=REAL(C44(Z) ) # (2. 0DO-EE)Y / (EE~T. QDO
WRITE (%,93) ' E=',REAL(E), 'C120=" ,REAL(C1Z20) ,AIMAG(CIZ0
5 FORMAT (A,ZX,D15.7,3X,A,3X,D15.7,2ZX,D15.7)
T R R R R R Y R T R R
CMIN=1.0D13
CMAX=-1.0D-13
FREQUENCY LOOF 3% %% 39 5% % 9 3% 5 % 3 3% % % % % % % % %
MXZ=DCMFLX (-1,.0D13Z,0.0D0)
MNZ=DCMFLX (1.0D13Z,0.0D0O)
DO 10 I=1,N
W=2.0DO*FI*FF (1) *1.0D0O=
CALL BESSEL (N,X,M,COMF)
SHEAR VALUES ARE CALCULATED ONCE FOR EVERY FRECGUENCY
FS=W/SART (CARS((C44 (1) /RHO) )
ESZ=DCMFLX (RHO*W*%*2,0.0D0) /C44 (1)
ETS=CS0RT (KS2-BT (1) *%x22)
2S=kKTE*A
CALL BESSEL (0,Z5,25,Z80)
CALL BESSEL (1,Z5,25,Z51)
CALL BESSEL (2,ZS,25,ZI82)
WRITE (*,64) F(Hz)=",FF(I)¥1.0DOT, "ES*A=" ,kS*A "
&4 FORMAT (A,3X,D15.7,3X,A,3X,D15.7)
C NOW RUN C12Z LOOF
ANSM=1.0D+13
ANSMO=1.0D+13
C12MAX=C120*1.5D0O
IF (I.6T7.1) Ci120=C1200
IF (1.67.1) C12MAX=C12MX0
C12MINO=C12MAX
ZS - DC=ARS(REAL (C12MAX~-C120)) /S0O.DO
IF (KS*A.GT.2.0D0) DC=DC/2.0DO
IF (KS*A.G6T.6.0D0O) DC=DC/1.5D0
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BEGINNING OF LOOFS ON C12%%3535 3% 3 9 3% % % 3% 3% %
FIRST COMES HORIZONTAL FAIR C121 AND Ci122
J=1
Ci1Z(IY=C120
BEGINNING OF HORIZONTAL LOOFPS FOR J:»1 DR HIGHER ITERATIONS
CONT INUE
C121=C12(I)-DCMFLX (0.0DO,DC)
C11=C121+2.0D0*C44 (1)
R=C121/C44 (1)
EL2=DCMFLX (RHO*W*%*2,0,0D0) /C11
KETL=CSQRT (KL2-BT(I)*#*2)
ZL=ETL*A

CALL BESSEL (0,ZL,25,ZL0)

CALL BESSEL (1,7ZL,25,ZL1)

CALL BESSEL (2,ZL,25,ZL2)
NOW CALCULATE THE DISFERSION FUNCTION FOR C121
ANS1=(FES2-2. 0DO*BT (1) %#%#2) #ZS1#R* (KL2)*ZLO
ANS1=ANS1 - (ES2-2.0DO*EBT (I) #%2) #ZS1# (KL2=RT(I)*%*2) * (ZL2-ZL )
ANS1=ANS1- (2. 0DOXBT (1) %#%2) kK TL#*KTS*ZL 1% (ZS2-250)
WRITE (%,65) ' F=',FF(I), 'Ci21=',REAL(C121),AIMAG(C121), 'ANS1="
sREAL (ANS1) ,AIMAG (ANS1)
FORMAT (A,2X,D15.7,2X,A,2X,D18.7,2X,D135.7,2X,A,2X,D15.7,2X
,D15.7)
NOW DO THE SAME FOR C122
C122=C12(1)+DCHMFLX (0. 0OD0O,DC)
Cl1=C122+2,0D0*C44 (1)
R=C122/C44(1)
KL2=DCMFLX (RHO*W»*%x2,0.0D0) /C11
ETL=CSQRT (KL2-BT (1) *x2)
IL=ETL*A

CALL BESSEL (0,ZL,25,ZL0)

CALL RESSEL (1,ZL,25,ZL1)

CALL EBESSEL (2,ZL,25,ZIL2)
NOW CALCULATE THE DISPERSION FUNCTION FOR Ci122
ANS2=(KS2-2. 0DO*BT (1) #%2) #ZS1#R* (KL2) #ZL0O
ANSZ2=ANS2—- (KS2-2. ODO*BT(I) ##2) #ZS1# (KLZ2~ET (I) *%2) * (ZL2-ZL Q)
ANSZ2=ANS2—~ (2. 0ODO*ET (1) ##2) *kKTL*TS*ZL 1% (Z82-Z80)
WRITE (%,868) *° F=',F, 'C122=',REAL(C122) ,AIMAG(CI22), "ANSZ="
+REAL (ANS2) ,AIMAG (ANS2)
NOW WE OEBTAIN HORIZONTAL SIGN
SH=AIMAG (ANS1) *REAL (ANS2) -AIMAG (ANSZ) *REAL (ANS1)
SANEH=DSIGN (1.0D0O,SH)
IF (J.ER.1) SANSHO=SANSH -
IF (SANSH.NE.SANSHO) THEN

WE HAVE FOUND OUR ROOT-SIGN HAS REVERSED

WE SET FPARAMETERS AND GOTO VERTICAL FART

G070 37

ENDIF
NOW WE MAKE NEW HORIZONTAL FAIR (SIGN HAS NOT REVERSED)
FIXING THE DIRECTION OF MOTION BY THE SIGN SANSH
C12(I1)=C12(I)+SANSH*DCMFLX(DC,0.0DO)
J=J+1
GOTO 26
I T T R T R T X N R T R R R R R TV VR R Ry
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NOW COME VERTICAL PAIR C123 AND C124
J=1
C12(I)=(C121+C122) /2. 0DO
EEGINNING OF VERTICAL LOOFS FOR J>1 OR HIGHER ITERATIONS
CONTINUE
C123=C12(I)-DCMFLX (DC,0.0DO)
C11=C123+2.0D0O*C44(1)
R=C123/C44 (1) -
KL2=DCMFLX (RHO*W*%2,0.0D0) /C11
KTL=CSQRT (KL2-BT (1) #*2)
ZL=KTL*A
CALL BESSEL (0,ZL,25,ZL0)
CALL BESSEL (1,ZL,25,ZL1)
CALL BESSEL (Z2,ZL,25,ZIL2)
NOW CALCULATE THE DISFERSION FUNCTION FOR C1Z
ANSI= (KS2-2. ODO*ET (1) ##2) #ZS1#R* (KL2) #ZL0
ANST=ANSI— (KS2-2. ODOXBT (1) #%2) #ZS1# (KL2-ET (1) *##2) * (ZL2-ZLO)
ANSI=ANSI— (2. ODO*ET (1) ##2) *ETL*L TS*ZL 1% (ZS2-250)
WRITE (%,65) ° F=',F, 'C123=",REAL(C123),AIMAG(C123), ANSI="
,REAL(ANSE),AIMAG(ANSE)
NOW DO THE SAME FOR C1Z24
C124=C12(1)+DCMFLX (DC,0.0DO)
C11=C124+2.0D0O*C44 (1)
R=C124/C44 (1)
KL2=DCMFLX (RHO*W**2,0. 0DO) /C11
KTL=CSORT (KLZ2-ET (1) #%2)
ZL=KTL*A
CALL BESSEL (0,ZL,25,ZL0)
CALL BESSEL (1,ZL,25,ZL1)
CALL EESSEL (2,2L 25,7L3)
NOW CALCULATE THE DISFERSION FUNCTION FOR C124
ANS4=(KS2-2. ODO*BT (1) %#%2) #ZS1 *R* (KL2) *ZLO
ANSA=ANS4- (KS2-2. ODO*BT (1) ##2) #ZS1 % (KL2=ET (1) #%*2) * (ZL2-ZL Q)
ANS4=ANS4— (2. ODO*BT (1) #%2) ¥ TL*KTS*ZL 1% (ZS2-ZS0) :
WRITE (%,65) *° F=',F, 'C124=',REAL(C124),AIMAG(C124), ANS4="
,REAL (ANS4) ,AIMAG (ANS4) :
NOW WE OEBTAIN VERTICAL SIGN
SV=AIMAG (ANST) *REAL (ANS4) —AIMAG (ANS4) *REAL (ANST
SANSV=DSIGN (1.0DU,SV)
IF (J.ER@.1) SANSVO=SANSY
IF (SANSV.NE.SANSV0O) THEN
WE HAVE FOUND VERTICAL ROOT-SIGN HAS REVERSED
WE EITHER GOTO HORIZONTAL -ROR NEW ITERATION
OR WE TERMINATE
ANS= (ANS3+ANS4) /2. 0DO
C12(I1)=(C123+C124) /2.0DO
C12MN=C12 (1)
WRITE (%,84) ° C12MIN=',REAL (C12MN) ,AIMAG(C12MN), 'DC=",DC
FORMAT (A,2X,D15.7,2X,D15.7,2X,A,2X,D15.7)
DLTA=CDAES ( (C12MN~C12MINO) /C12MINO)
DLTAI=DABES (AIMAG (C12MN-C12MINO) / (AIMAG (C12MING) +1. OD-12))
IF (DAERS (AIMAG(C12MN) / (REAL (C1ZMN)+1.D07)).LT.1.D-04) DLTAI=DLT
IF (DLTA.GT.DLT.OR.DLTAI.GT.DLT) THEN
ERROR IS NOT YET TO STANDARDS,REDUCE DC AND ITERATE AGAIN
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C12MINO=C1ZMN
DC=DC/10.D0

J=1
GOTO 36
ELSE
C ERROR IS TO STANDARDS,SET START FOINT FOR NEXT FREQUENCY
WRITE (%,85) ° C12MIN=',REAL(C12MN) ,AIMAG(C12MN)
1 , 'ANS='  REAL (ANS) ,AIMAG (ANS)
8s FORMAT (A,2X,D15.7,2X,D1S5.7,A,2X,D15.7,2X
1 ,D1S5.7)
» MAX IMUM-MINIMUM DETERMINATION FOLLOWS

IF (REAL(CI12(I)).GT.REAL (MX2)) MX2=C12(I1)
IF (REAL(C12(IY).LT.REAL (MN2)) MN2=C12(I)
C1200=C12MN+*1, 0DOQ
Ci2MXQ=C1200*1,40D0
GOTO 10
ENDIF
ENDIF
NOW WE MAkE NEW VERTICAL PAIR (SIGN HAS NOT REVERSED!
FIXING THE DIRECTIDN OF MOTION BY THE SIGN SANSV
C12(I)=C12(I)~-SANSY*DCMFLX (0, 0DO,DC)
J=J+1 )
GOTD =8
10 CONTINUE
C X2 LTSS S 2SI SR L LSS S R R 2L 2 2 2 2 L b X X )
c OFTIONAL SMOODTHING OF C129%%5%35 % % %3 % % 3% 3% 3% %
IF (OFT.EQ. 'N'.OR.OPT.EQ. ‘'n°) GOTOD 359
DO 351 J=1,MM
XC=C12(1)
DO 38T I=2, (N-1)
XYC=C12(1)
Cil2(I)=(0.2SDO*XC+0,S#XYC+0.25DO*C12(I+1))
57 XC=XYC
ISl CONTINUE ’ v
c C12 FPRINTING SECTION BEGINSH #3533 % 2 3 5% % % % % %%
359 OFEN(B,FILE=FNAME ,STATUS="NEW ' ,ACCESS="SEQUENTIAL ")
C FREQUENCY=KkHz ,MODULI=1.0D10 DYNE/ (CM*#2)=1.0GFa
WRITE (8,%) FF(N) ,REAL(MX2)/1.E10,REAL (MN2)/1.,E10
WRITE (8,%) N
DO 20 I=1,N
WRITE (B8,%) FF(I),REAL(C12(I))/1.E10,AIMAG(CIZ2(I))/1.E10O
20 CONTINUE :
CLOSE «(8) -
END
W I I I I I A I I I I I I I I I I AP I W I I IE I I I I IE I K I I I KW
XTI IETLISISLETE SIS LIS S S LSS 2 2 2 2 2 2 2 L X X 2 3
3 36 I I I I I I I I F I I I I I I I I W A I eI I I W I I IS I I I I I I I K
SUEROUTINE BESSEL (N,Z,M,COMFZ)
N=0ORDER OF ERESSEL FUNCTIDN OF FIRST KIND (In(2Z))
Z=COMFLEX ARGUMENT
M=AMOUNT OF TERMS TO TAKE IN SERIES EXFANSION
COMFZ=COMFLEX ANSWER-OUTPUT OF THE SUEBROUTINE
VARIAEBLE DECLARATION SECTION BEGINS HERE
INTEGER#4 N,M,I,J,K
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REAL*8 X,JF,JNF,Y,FA(40)
COMFLEX%*16 Z,COMPZ
NEXT LINES ARE FACTORIALS OF 1 TO 40
DATA FA/1.,2.,56.,24.,120.,720. ,5040.,403220.
,¢6_880.,2658800.,39916800.,4 790016D+08,6.227021D+09
48.71783D+10,1.30767D+12,2.0 7D+1u,3-5568D*14 6£.40227D+15
,1.21644D+17,2.4329D+18,u.10909D+19 1.124D+21,2.585D+22
2044D+23,1.55112D+25,4,0329D+26,1.0888D+28, 3. 04888D+29
,s 8417D+30,2.6525D+32,8.2228D+33,2 6U1QD+QJ,8 68I3TD+36
3 2.9523D+38,1.03TTD+40,3.7199D+41,1.3763ID+43
,5.230°D+44,-.U '98D+46,8. 1591D+47/
COMFZ=(0.0D0,0,0D0)
DO 10 I=1 /M
J=1-1
HAVE TO COMFUTE FACTORIALS HERE
COMFUTING J FACTORIAL (JF)
JF=1.0D0
IF (J.EQ.0) GOTO 22
JF=FA(J)
NOW COMPUTING (N+J) FACTORIAL (JINF)
25 JNF=1.0CDO
IF ((N+J).ER.Q) GOTO 30
JNF=FA ((N+J))
END OF FACTDRIAL COMPUTATION
0 IF (J.ERQ.O) THEN
COMFPZ=COMFZ+DCMFLX({(1,0D0) / (JF*JNF))
GOTOD 31
ENDIF
COMFZ=COMFZ+DCMFLX ( ((-1. UDU)**J)/(JF*JNF))*(Z/E.UDU)**(”*J)
1 CONTINUE
10 CONTINUE
IF (N.EQ.O) GOTO 18
COMFZ=COMFZ%*(Z/2.0D0) #*N
18 - CONTINUE
: -RETURN
END
ETZXTTELTE SRS EETI LSS LSS LS LR L 2 X 2 0 2 2 2 2 8 0 2 & 8
**************************************;******
ITITTLTELILTLL LSS ISR S22 L 222 2 2 2 2 2 X 22 2 2 2 8

- s b s e s

-t
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Appendix C-Surface Influence On Effective Elastic Constants

In this section proof will be provided for equation (27) of the text, the equation which
provides an estimate of the effect of surface elastic constants on the elastic moduli of compo-

site materials. The static strain energy of a solid of volume V and area S is given by

W=/[ Culr)ej(r)eua(r) dV + [ %m(r) e;(r) eu(r) dS (C1)

v S
where C;j; are the position dependent bulk elastic moduli and ~;3 are the surface elastic
moduli. For the bulk case indexs ¢,j,k,! range from 1 to 3, while for the surface moduli

these range from 1 to 2 (only in the plane of the surface which will be taken as the xy plane).

We now define some spatialy averaged strain quadratics, denoted by < >

<€; €y >g = r)eu(r)dS

I

<= =

<€; €4 >y

f
s
f €i(r)eu(r)dvV
|4

and

St St
<€ ew>r = (1- 7) c <€ >y + (—V‘) * <€j5 €y >s

where T signifies total and [ is the effective thickness of the surface layer.

Having defined thse averages equation (C1) can be written as
V Ciugr - <€ij eu>1 =V Cluses - <€j eu>v + 85 iju - <e&5 e >s  (C2)
where the effective moduli (EF) are those taking into account both bulk and surface interac-
tions, the self-consistent (SCS) those using only bulk interactions, and the surface elastic

moduli tensor component 7;;; now corresponding to an effective surface elastic moduli, an

average over the possibly heterogeneous surfaces.

Equation (C2) can be written as

<€;5 € >vy S <€ €y >s

C3
<é&j €q>rT Vv <€y € >T (C3)

Cijuer = Cijuscs -

which is a general expression for the eflective elastic moduli. For a prescribed strain and
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moduli distribution within the volume and on the surfaces, a unique solution may be given for

these effective moduli.

The expression may be simplified by using some intuition regarding the sign of the strain
quadratics and an assumption regarding the absence of strong strain deviations. If the surfaces

are joined to the bulk then

= <€ g >s5 = <¢€5 >y
since otherwise the surfaces would detach. Absence of strong strain concentrations would im-
ply that

<€j € >y = <€ € >1
so that one finally obtains
Cijugr = C S)- c
ijuer = Cijuscs — (7) Viskt (C4)

which is identical to equation (27).
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