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ABSTRACT

Pore spaces are responsible for most of the physical properties of rocks. In
particular, they can drastically reduce the effective elastic moduli of porous mate-
rials. Several analytical methods have been constructed in the past to explain the
behavior of porous materials. However, they have been limited to a few rectilinear
pore geometries in homogeneous and inhomogeneous media. These simple solutions
are clearly inadequate to describe the elastic behavior of complex rocks containing
a broad distribution of pore sizes with irregular shapes.

An efficient numerical technique has been used to compute the deformation of
arbitrary shaped pores embedded in a two-dimensional homogeneous elastic solid
under the influence of appliéd stresses. The scheme is based in the boundary el-
ements method where single linear elements are used to generate solutions which
satisfy the prescribed boundary conditions. These solutioﬁs can be employed to
describe the behavior of the elastic moduli and seismic velocities in porous rocks.
Also, the numerical algorithm allows to compute the stress field induced by the
pores in the solid. In this way the effect of the interactions between pores caused
by stress concentrations can be studied from a quahtitative point of view.

Based on the results obtained with the boundary elements technique, we con-
struct a discrete theoretical model which explains the observed changes in porosity

and the static bulk modulus with pressure for selected samples of sandstones.



CHAPTER 1

THE ELASTIC MODULI OF POROUS ROCKS: A REVIEW

1. INTRODUCTION

Pore spaces are in many cases responsible for most of the physical properties of
rocks such as permeability, electrical resistivity, and porosity. In particular, they
can drastically reduce the effective elastic moduli of rocks. Several methods have
been constructed in the past to explain t};e behavior of porous materials. Some
of them are applicable to particular materials while others claim to produce the
correct response for a wide variety of solids. Due to the great amount of scien-
tific papers published on this subject and the diversity of methods and techniques,
it becomes cumbersome for the newcomer as v;'ell as the experienced scientist to
search for the most convenient and effective approach, if any, which can solve his
particular problem. To remedy this problem, several authors have written reviews
that summarize most of the app-roachesvde\.reloped in this field. Among others, we
can cite the excellent work by Watt et al. ‘(1976') about the elastic properties of
composite materials.

* In this study we intend to summarize some of the recent scientific trends in the
determination of the static elastic constants in sedimentary rocks with emphasis on
- sandstones. We must point out that this work does not pretend to ﬁubstitute past
reviews but extends or updates some of the techniques currently used in order to
determine the mechanical and elastostatic behavior of sedimentary rocks.

. We start by dividing the different methods in five major trends:

~



CLASSICAL METHODS
DISLOCATION METHODS
SELF-CONSISTENT METHODS
GRANULAR METHODS

NUMERICAL METHODS

As it was indicated before, we limit the scope of this paper to the description
of the static elastic moduli. It is important to make such a distinction because the
dynamic moduli (moduli measured or calculated at frequencies greater than zero)
can be in many cases up to one order of magnitude larger than the correspond-
ing static case. Treatments for the dynamic moduli can be found in Biot (1956),
Simmons et al. (1965), Tokséz et al. (1976) and Winkler (1983).

. Althoﬁgh much of the following review is general, some of the é.pproaches will
be discussed in more detail when they lead to an interesting (but ﬁot necessary

correct) result for sedimentary rocks.



2. GENERAL CONSIDERATIONS

Most authors use a particular notation to define similar concepts. This leads to a
tremendous misunderstanding in the scigntiﬁc work and also requires a great effort
by the reader to link ideas expressed in several studies. To alleviate in part that
problem, we will introduce or clarify elementary concepts that will be used in the
rest of this paper.

Porosity of a solid is the ratio between the total volume of the pore space inside
the solid and the total volume of the solid.

The aspect ratio is the ratio betiveen the minor and major semi-axes in an
‘ellipse. This concept is applicable only to ellipsoidal or rectangular pores.

Interactive pores are those which interchange a non-negligible induced stress
field. |

We must also state that all the approaches considered assume that the solid

is linear elastic, i.e. the components of the stress tensor are linearly related to the

components of the strain tensor. Then, the stress-strain relation can be written as:

Oij = Cijki€kl (2-1)
where ¢,k denotes the stifiness tensor. We have also used the Einstein summation
convention.

Now, the stiffness tensor of an isotropic body holds only two independent com-

ponents which are written as:

iyl = A6 8k + p(ibj1 + 8abji) (2-2)
These two components are part of the elastic moduli of the solid. The rest of the
moduli can be calculated from these two. For instance, the bulk modulus is related
to A and u by:

2
K=A+§# (2-13)



Other important relations are given in table 8-1 in chapter II.

Equation (2-1) together with equation (2-2) give us the clue to compute the
elastic moduli of a solid. First, the stresses and strains in the solid are calculated.
Then the elastic moduli are inferred by inverting (2-1) and using the definition of
the elastic moduli in (2-2) as the components of the stiffness tensor. Although this
procedure seems to be straightforward, in practice it becomes cumbersome because
calculations of the stress and strain fields within the porous solid are very complex.
Besides, a porous solid is no longer isotropic, so instead of computing the intrinsic
moduli, we must be content to calculate the average strain and stress fields which
give us the effective elastic moduli of the composite material. To clarify this concept,

let us write the average stress ﬁéld in a solid with a volume V' (Hill, 1963):
, 1
< ?;j > = V Va',-jdV

1
< €5 > = VLCijdV

These volume integrals can be converted to surface integrals by using the Gauss’

(2-4)

theorem. Then, (2-4) becomes:

<oy >= -% /;(T,-z,- + T;z;)dS |
1 (2~5)
< €5 >= v /s(n,-u,- + n;u;)dS
which give the average stress and strain in terms of the components of the traction
T; and t}}e displacement u; on the surface of the region occupied by the volume V.
The z; denotes the spatial coordinate, and n, is the component of the unit normal
vector to the surface. Equatioh (2-5) tells us that to calculate the effective elastic
moduli; it is only necessary to know the tractions and displacements at the surface

of the solid. The average stress and strain are linked now by:

< 0ij >= ¢jp < €1 > (2 —6)



where c* represents the effective stiffness tensor.

In the next sections, we will see that the ¢* as well as the average elastic field
can also be evaiuated using other methodologies.

Another important point to consider is the type of porous material we want to
model. Basically, most of the analytical approaches give solutions for sqlid bodies
composed of simple and symmetrical pore spaces like the circular and elliptical
cavities. This is due to the fact that the equations that govern the elastic behavior
of more complex geometries cannot be expressed in closed form, i.e. analytical
solutions are difficult and in many cases impossible to obtain. Then, a previous
knowledge of the structure of the solid as well as its petrophysical characteristics
is of capital importance to choose the analytical or numerical method that best

represents the particular sample analyzed.

3. CLASSICAL METHODS

We will nc;t spend r;:uch time on these methods because most of them are old —but
not obsolete— so they have been described elsewhere. We have included them fc}r
the sake of completeness.

In principle, these methods try to solve the differential equations derived of the
basic relations of elastostatic:

The equilibrium equation:

oiji +Fi=0 : (3—-1)
stress-strain relation:
Oij = Cijki€kl (3-2)
and the strain definition:
€j = -;-(ue.j +u5,4) (3-3)



subjected to specific phase boundafies and external boundary conditions. Several
types of boundary value problems can be defined for a solid according to the kind
of data prescribed at the boundaries. Then, a stress boundary value problem is one
for \!.;hich the components of traction Ty are specified at all points of the boundaries
while a displacement boundary value problem is one for which the components of
displacement u; are specified at these points. We can also have a problem which
combines the two boundary problems. In that case we must solve a mixed boundary
value problem.

Methods like those described above have been solved by many authors for
the case .of simple circular and glliptical cavities embedded in an infinitely elastic
isof.ropic and homogeneous solid. Among other we can cite,MﬁskeIishviIi (1953),
Sokolnikoff (1956), Landau and Lifshitz (1959), Hill (1963), Timoshenko and Good-
ier (1970) and Pollard (1973).

Some of the methods which fall into this catégory make use of mathematical
artefacts to solve the basic elastostatic equations. For instance, a convenient choice
of a particular system of coordinates like the curvilinear coordinates (Timoshenko
and Goodier, 1970) reduces the differential equations for boundary problems of
ellipses, hyperbolas and less simple curves. In other cases, one can make use of
complex variables to transform the region outside the cavity to the region inside a
unit circle and find the appropriate stress function for this simpler geometry. Such
a technique is known as conformal mapping (Muskhelishvili, 1953; -Savin, 1961;
Timoshehko and Goodier, 1970).

As it was stated before, most of the solutions obtained by the classical methods
are valid only for simple geometries with the exception of the conformal mapping
(Muskhelishvili, 1953), where solutions for quasi-triangle shapes can be found. Also,

such solutions are only valid for the static case and because they are derived for



isolated pores, they do not take into account the effect of the interactions of the

cavities embedded in the solid.

4. DISLOCATION METHODS

The techniques under this category are based in the well known theory of dis-
locations which has been described by several authors such as Volterra (1907),
Somigliana (1914), Bilby (1950, 1967), Landau and Lifshitz (1959), Bilby and Es-
helby (1968), and Weertman (1971) among others.

We can define a dislocation as the type of defect produced when cuts are made
in 2 medium which is not completely rigid. Then, the two sides of the cut are
displaced relative to each other and material is added or removed as necessary.
Finally, the cuts are rewelded. The displacement of the cut is called the Burgers
vector of the dislocation. We can represent a big straight cut along the y axis
as a cghtinuous, distribution of small dislocations, each of them represented by an
infinitesimal Burgers vector. Now,'let’s define U(z) as a function that represents the
relative displacement of the two sizes of the dislocation and B(z)dz as the number
of dilocations with Burgers vectors along dx. B(z) is called the dislocation density
function which is then given by B(z) = (d/dz)U(z). This is the simplest case of
dislocation, since all the Burgers vectors are parallel to one axis. Because Burgers
vectors are all parallel, they do not interact with each other (Bilby and Eshelby,
1968).

The above description is very useful to describe ellipsoidal flat cracks with
nonblunted walls where the displacement is concentrated along one axis and most
of the Burgers vectors (except in the small edges) are parallel. In the case of real two-
dimensional displacements (along two axes), we must introduce density functions
for each compo_nent of the Burgers vectors and we also must include interaction

8



terms between non-parallel vectors. Then, the equations we need to solve become
very complex and in many cases it is necessary to use a numerical technique as
will be shown in a later section. In< this section, we will revise a noninteractive
dislocation method used by Mavko and Nur (1978) to calculate the deformation of
nonelliptical thin cracks with aspect ratios much less than one. The main difference
with respect to elliptical pores is that the edges of the crack have been tapered. We
refer to this particular geometry as the tapered pore.

Tapered pores are more suitables to represent cracks in rocks than elliptical
pores because of their more irregular shapes. This is specially true for sedimentary
rocks like sandstones wﬁere visual inspection and common sense suggest that almost
no cracks are ellipsoidal cavities.

We start by representing the shape of the pore by a functién U(z) which is given
by a polynomial such as dU(+cp)/dz = 0, where ¢ represents the half-length of the
pore. Also, U(z) must be smooth and nonblunted in the interval (—¢o < z < ¢o) so
most of the Burgers vectors are parallel to the y axis. Then, thé dislocation de'nsit)'r

function is related to the shape of the pore by:

B(z) = -d—z—:(:—) (4-1)

The next derivation assumes that the crack is closed completely by a hydrostatic
pressure P, then pressure is reduced and the crack starts to relax. In this case, the

normal stress on the plane y = 0 due to the closed crack is:

ey B © B(2)
o¢(z) = 2"(1_")/ dz (4-2)

o T—2
It also can be shown that the external pressure P and the normal stress o°(z) are
related by the following integral equation:

€ .a"(z) -P

RN o



where ¢ is the half length of the pore for a pressure P.
For a given pore shape U(z) with length 2cq, equation (4-3) gives the relation
between the applied pressure P and the reduced length e.

To derive the deformation of a tapered pore, we represent the shape by:
U(z) = 2b[1 - (z/e0)?]*/? (4-4)

By solving the integral equation (4-3) we obtain the relation between applied pres-

sure P and pore half length ¢:

¢:=¢:(;[1—4—(—1—:‘:&‘%)2]1/2 (4-5)
and the deformed shape:
U(z, P) = 2b(c/e0)([1 — (z/c)*}*/? (4-6)
for |z| <e

Once the deformed shape U(z, P) is obtained, the bulk modulus of the solid
can be computed using the reciprocal theorem (' Timoshenko and Goodier, 1970).
The application of this theorem to a solid that contains N non-interactive pores
produces the follov(ring' relationship:
[
U(z, P)dz (4-17)
Let’s compare the above results to those obtained by using elliptical geometries.
When pressure is applied to an elliptical pore, the length of the crack ¢ remains
constant until the external pressure is big enough that the walls of the cavity collapse
and the pore virtually disappears. In the interval in which the pore remains opened,
‘the stress-strain relation remains linear. Once the pore closes, it stops contributing

to the elastic constant of the solid. The critical pressure at which the pore wails
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collapse is proportional to its aspect ratio. In a solid with several populations of
elliptical pores —each of them characterized by an aspect ratio— the stress-strain
curve looks like that presented in figure 4-1. This curve behaves like a continuous
straight line until a whole population disappears. Then there is a jump in the
stress-strain curve. The only way to achieve a smoothly varying curve is to have
a smooth distribution of aspect ratios. On the other hand, the stress-strain curve
for tapered pores is neither linear nor shows jumps because of the shortening of
the pore length ¢ asvshown in figure 4-1. The inherent nonlinearity in the stress-
strain curve resulting from tapered pores offers a more reasonable explanation for
the observed nonlinearity at very low pressure. For elliptical pores, the behavior
of the elastic moduli at low pressure (from 1 to 100 bars) can be explained only
by using unreasonably small aspect ratios (10~* to 10-%). However, because of
the shortening of the pore length ¢, the tapered pores with higher aspect ratios
can account for the same elastic behavior. However, since the tapered pores are -
vba.sically flat tﬁm pores, the internal area does not contribute much to the overall
poro;ity of the solid. Beczuse of the low internal area, tapered pores cannot be used

alone to construct a model for rocks with high porosity as in the case of sandstones.

11



Figure 4-1: Applied pressure versus volumetric strain for a rock with a distribution of pores. The upper
curve is for the elastic solid with no pores. The middle curve is for a solid with a uniform distribution (same
aspect ratio) of tapered pores. The lower curve is for a solid with uniform distribution of elliptical pores
with unstressed dimensions equal to those of the unstressed tapered pores. After Mavko and Nur (1978).
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5. SELF CONSISTENT METHODS

The analytical solutions derived in the previous methods can only be applied to
dilute concentrations of pores. The pores are sufficiently far épart so the inter-
action among the inclusions could be neglected. To overcome this limitation, Hill
(1965) and Budiansky (1965) independently introduced a technique called the self-
consistent method in which the effective elastic properties of the solid are calculated
iteratively as each pore is embedded. In this way, possible interactions between close
pores are simulated.

To apply the method to a porous material, one must calculate the effective
elastic properties of an infinity matrix with one inclusion. This is known as the
auxiliary problem. Then the self-consistent method presumes that certain averages
for the many-inclusion solid, such as the average stress or strain within an inclusion,
can be found by replacing the matrix of the auxiliary problem by a medium whose
elastic mbduli are those of yhe composite material. Thus the method uses the
same elastic solution of the auxiliary problem but accounts for interactions among

inclusions.

For a dry elliptical pore the above formulation leads to equations which relate

the effective elastic constants to the crack density parameter € defined by:

e = (2N/x) < A%/P > | (5-1)

where A is the area of the pore and P is the perimeter. N is the total number
of pores in the solid. The notation < :-- > denotes an average value. The crack
density parameter is related to the Poisson’s ratio by:

45 (v —vy)
8 (1-v3})[2-T(a,vys) +2v(3 + T(a,vy))]

€= (5-2)

13



T(e,ry) is an expression including elliptical integrals given in O'Connel and Budi-
ansky (1974). Once the effective Poisson’s ratio is calculated vsing (5-1) and (5-2),

the bulk modulus can be found by:

Hy o6 T

e 9{1—2;«,

Je (5 —3)

A strange property derived from this formulation is evident when the cracks
are totally filled with water. In this case, the relation between the effective bulk
modulus and the bulk modulus of the matrix is given by K¢/Ky = 1. However,
shear motion is possible. This is equivalent to saying that once the rock is fully
saturated, the effect of the pore spaces on the -;:ﬂmprﬁsibilit:,r of the rock disap-
pears. This result is contrary to what we observe in rocks {Nur and Simmons, 1969;
Han and Nur, 1986). Bruner (1976) has suggested that the self-consistent method
overestimates the effect that pores have in lowering the elastic moduli because it
takes interaciinn.EIIJEtW'&E:n. PE..EI'B of pores into account twice. Also, the results are
physically unreasonable, predicting negative Young’s shear and bulk moduli, and =
Poisson’s ratio greater than 1/2 for very high . A modification of the self-consistent
method that avoids counting these interactions twice has been outlined by Henyey
and Pomphrey (1952). They apply the method to solids with randomly distributed
penny-shaped cracks. In general, the equations derived b~_|,r this appreach must be
solved numerically. A general review of several forms of se!i'—c_nnsistent methods is

given by Cleary, Chen and Lee (1980).
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6. GRANULAR METHODS

So far we have described different approaches to the problem of computing the
elastic constants of rocks. The solid has been characterized by an elastic matrix
with inclusions or cavities embedded in it. However, several types of rocks, especially .
sandstones, were formed by the cumulé,tion of grains of many different sizes. Due to
petrophysical processes acting on these rocks, the grains posses a very rigid structure
(grains are not longer loose as in beach sands). In many cases that structure is so
stiff and the contact among grains is so strong that its elastic behavior resembles
that found in solids made of elastic matrices. Therefore, we may use the elastic

approaches describe above to study this kind of granular material.

Many authors haye attacke_d the problem by using more natural approaches
in which the properties of the rocks are determined by studying the interactions
of spherical packs of particles in contact. Most of these methods are based on
the Hertz contact theory (Hertz, 1881; Timoshenko and Goodier, 1970). Many
earlier papers treating this problem (Duffy and Mindlin, 1957; Deresiewicz, 1958)
considered regular packing of identical solid spherical grains. The main prediction of
this type of configuration is that the effective elastic moduli are directly proportional
to the cube root of the confining pressure. Also, the porosity of the pack depends
only on the way the spheres are distributed. Because of the limited ways that a
pack of spheres can be symmetrically organized, the effective elastic constants for

this model have been only predicted for a few values of porosity.

A more general and realistic approach has been considered by Brandt (1955). In
his approach, the granular rock has been modeled by a random packing of spherical
particles of different radii. From this model, Brandt was able to calculate the effec-

tive bulk modulus of a porous rock as a function of the conﬁnihg pressure, porosity
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and fluid saturation. Also, the effective shear stress as well as the sonic velocities
are computed assuming that the Poisson’s ratio for the rock is known. In all of the
papers described above, the grains composing the rock were not bonded together
initially. The contact over small areas of the grains was achieved by subjecting the
rock to large confining pressure.

Grains in well-cementeﬂ and well-consolidated sandstones are already bonded
and in many cases the contact area is deformed due to the conditions (pressure and
temperature among others) in which the rock was formed. Then the above methods
cannot describe accurately the initial conditions of the grains in the rock. Digby
(1981) calculated the effective bulk and the effective shear modulus of a random
packing of identical solid spherical grains. The method also considered the effect of
the initial bonding of the particles as indicated in figure 6-1. The deformation of
the contact region is small compared with the radius of the grain. Because all the
grain are identical, the magnitude of the initial porosity of the aggregate is fixed
and independent of the grain size. For randon;ly stacke.é spherical pa.rticlés, the~
porosity is about 39.2% (Westman and Hugill, 1930). Also the average number of
contacts per particle is fixed and equal to 8.84 (Smith, Foote and Busang, 1929).
This imposes a limitation on the type of rocks that can Se modeled by this approach.
Well-consolidated sandstones hold porosity values much lower than those presented
by this model. Figure 6-2 shows the effective bulk modulus calculated from this
model and the data for a sample of Fontainebleau A sandstone (see chapter III) as
a function of confining pressure. The adhesion radius B which is the ratio between
the adhesion region b (figure 6-1) and the particle radius R was 0.02. The first
thing to note is; that the magnitude of the bulk modulus in the model is much lower
than the sample bulk modulus. However, the relative change in bulk modulus from

0 to 225 bars is smaller than the change observed in the Fontainebleau A sample.

16



Figure 6-1: Cross-section of the surface profile of two spherical particles in contact. b indicates the radius
of contact while R indicates the radius of curvature of the spheres.
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Figure 6-2: Relative bulk modulus for the Fontainebleau A sandstone (open circles) and the Dighy model
(solid lme) The magnitudes of the absolute bulk modulus (in kilobars) for the sample and model at 225
bars are given at the right lower corner of the plot.
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We conclude that although the overall bulk modulus of the; model is low, due in
part to its high porosity, the structure formed by the random packing of spheres is
stiff enough to resist further changes caused by external forces. The data obtained
by the Fontainebleau A (porosity of 15.8%) show it to be much less stiff, probably
because it possesses very complain pores (among others) embedded in its efastic

matrix.

7. NUMERICAL METHODS

In previous sections, the behavior of the elastic moduli in rocks has been analyzed
from the analytical point of view, i.e. we have looked for explicit equations that
describe such behavior. ‘With the exception of the granular methods, all the ap-
proaches have been limited to' very simple and regular pore geometries. This is
mainly due to the fact that solutions for more complex pores are not available in
closed form. This limited set of shapes, however, renders the analytical methods
virtually useless for the study of real rocks where we can éxpect any kind of ir-
regular pore geometries. Nevertheless, we must state that many types of synthetic
materials can be accurately modeled by those simple and regular shapes.

To study the elastic behavior of solids with complex pore spaces, we turn
to numerical techniques in order to provide the link between microstructure and
effective elastic properties. The three best known methods are: the finite diffe rence;s
method, the finite elements method and the boundary elements or intégral method.
In the last few years, the last two methods have been objects of extensive study for
which a great number of computer packages are currently available.

In the finite differences method, the differential equations are approximated by
difference equations. For instance, let’s suppose that a smooth function f(z) is gi\;en

by a series of equidistant values f;, f2,..., faforz =0,z = h,z = 2h, ...,z = (n—=1)h.
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Then we approximate the derivative df /dz by:

d -
&), Ll (1-1)

The resulting difference equations subjected to specific boundary conditions lead to
a system of algebraic linear equations. The solution of the system of equations for
the case of elastostatic problems gives us a discrete distribution of the values for
the stresses and strains (Timoshenko and Goodier, 1870).

The finite elements method is a technique for solving partial differential equa-
tions by first discretizing these equations in their space dimensions. The discretiza-
tion is carried out locally over small regions of simple but arbitrary shape which
are called the finite elements. As in the case of the finite differences method, the
discretization of the equations leads to a system of algebraic equations which must
be solved to calculate the stresses and strains in a finite number of points;. The fi-
nite elements technique is described in many texts, for example Zienkiewicz (1971),
'Cook (1974), Connor and Brebbia (1976) and Smiith (1982). |

To better understand how th; finite elements technique differentiates from the
finite differences method, let us review a simple elastostatic problem. Figure 7-1
shows an elastic and homogeneous rod with end nodes 1 and 2. The length of the
rod is L and u denotes the longitudinal displacement of points on the rod. The rod
is subjected to a uniform longitudinal force F. The equilibrium differential equation

that describes the system is (Smith, 1982):

9%u
RA‘é;z-+F=0 (7-1)

where « is the one-dimension equivalent of the stiffness tensor, and A is the cross-
sectional area of the rod.
In the finite elements technique, the variable u is approximatedfn terms of its

nodal values, u; and u3, through elementary functions of the space variable called

20



C‘—‘-‘D{rl : . §=>F =
F . _ 1\4 2 .
! ' I ;A

Figure 7-1: Sketch of a rod element. The nodes 1 and 2 are at the opposite edges of the rod. Two body
forces F; and F; are acting on the nodes along the z axis. L is the length of the rod, A is the cross section
and u is the longitudinal displacement.
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'shape functions’ which are given by:
u =~ Nyu; + Nau;

or using matrix notation:
u
u= (N, N,)(u;) (7-2)
for Ny=(1-£),and N2 = {.
Using (7-2) in (7-1) we have:

aZ vy (M) 4F=
rAgzaNi Na){, J+F=0 (7-3)

- Then, the partial differential equation has been replaced by a pair of ordinary
differential equations in the discretized space variables u; and u;. Now, if we

multiply (7-3) by the shape functions and integrate over the element (in this case
the rod), we find (Smith, 1982):

“(dD@-(R) e

Solving the system of equations (7-4), the nodal values u; and uz can be cal-

3 o

culated as a function of the rod length and the forces F; and F; acting on the
nodes.

To apply the finite differences and finite elements techniques to a porous solid,
the whole body must be covered by a mesh as shown in figure 7-2a. The number
of algebraic equations to solve is‘equa.l to the number of nodes in the mesh. As
a rule of thumb, the finer the mesh, the more accurate the solution. In practical
applications, the system of equations turns out to be very large and in many cases
sparse (Portney, 1982).

The boundary elements method —wh,ich.will be described in detail in the next

chapter— represents a more attractive approach because the discretization process
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Figure 7-2: (a) Elastic solid covered by a mesh. This mesh is used by the finite elements techrique to discretize
the corresponding differential equations. (b} In the boundary elements technique, only the boundaries of the
region to analyze (the pores in this case) are discretised.
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is applied only on the points of interest within the solid, i.e. the surface of the
pores (figure 7-2b). Then the system of linear equations is much smaller than the
system needed to solve the same boundary value problem by the finite elements
technique. Also the system of equations is no longer sparse and the numerical
technique becomes much more efficient.

Among the few authors who have used the boundary elements method to solve
elastostatic problems, we can cite Narendran and Cleary (1984). They employ a
technique based on the highly eﬁi.cient and physically realistic insertion of math-
ematically equivalent dislocation distributions to represent crack openings. This
method allows us to compute the stress and strain fields in arbitrarily shaped two-
dimensional cracks inside inhomogeneous regions as well as their associated stress

intensity factors.

8. CONCLUSIONS

Throughout this c}iapter, we haw;'e déscribed some of the current techniques used to
calculate the elastic constants in rocks. The present state of the art —based mainly
on the analytical methods— attacks this problem by modeling the rock with only
one type of pores (elliptical, spherical or tapered). These models are inadequate to
represent complex rocks like sandstones where the behavior of the elastic constants
is probably controlled by more than one kind of pore.

To obtain a more realistic representation of the pore spaces, we need to consider
more complex shapes that resemble what we observe in real rocks. Numerical
techniques are the best alternative to investigate the elastic behavior of complex
shapes.

In the next chapter, we will describe in detail the principles involved in the

boundary elements method and its application to the determination of the elastic

24



constants in porous rocks. Chapter III will outline the construction of a porous

model in which more than a pore geometry is considered.
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CHAPTER I1

COMPUTING DEFORMATION AND ELASTIC CONSTANTS IN
ROCKS USING A BOUNDARY ELEMENTS TECHNIQUE: THE DIS-
PLACEMENT DISCONTINUITY METHOD

1. INTRODUCTION

Although two-dimensiona! elastic problems have been studied for many years, they
have been limited to a few rectilinear pore geometries in homogeneous and inho-
mogeneous media (Sokolnikoff', 1956; Billby and Eshelby, 1968; Timoshenko and
Goodier, 1970; Mavko and Nur, 1978). This is due to the fact that solutions for
more complex shapes are generally not available in closed form. These simple solu-
tions are clearly inadequate to describe the elastic behavior of porous rocks where
we can expect a broad distribution of pox;e sizes with i;regular shapes. An accurate
approximate solution then must be found, using a numerical technique. Finite el-
ements is periiaps the most used technique to solve such p?oblems. However, that
method is time and memory consuming since it requires that the solution must be
found throughout the whole region where the pores are embedded. In this study
we use a numerical technique called the boundary elements method. This method
has the main advantage of computing the solutions only on the boundaries of the
pores and consequently, it leads to a more compact and efficient algorithm.

This study will be concentrated in the application of a boundary elements
method (sometimes known as the displacement discontinuity method), to the prob-
lem of the deformation of arbitrarily shaped pores embedded in an elastic solid,
and under the influence of external stresses. To test the numerical algorithm, some
interesting results are compared with existing results, for the special cases where

those are available in the literature..
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The study of the deformation of irregular pores can be very useful in obtaining
a clearer vision of the behavior of pores and cracks in real rocks, as individual
entities, instead of getting some average values over the whole material. Then, we
use these results to calculate some of the effective elastic properties of porous rocks,

for example: the elastic moduli, seismic velocities and elastic stress concentrations.

2. METHOD OVERVIEW

The boundary elements method is a numerical technique used to solve boundary
value problems in a very efficient way. Although the method is not new, it is not
very well known. This perhaps is due to the fact that many people have dedicated so

" much time to improving other numerical methods, for example, the finite differences
and the finite elements for which a great amount of software packages are currently
available. Also, most of the boundary elements programs which have been written
in the past are only nsefﬁl to solve very speciﬁé_ problems and thén it is not clear
how can they be extendéd to soive other types of problems. However, once the
basis of the method is understood, it is clear -th'at it can be applied to solve a wide
range of problems in the physical sciences in a more efficient way than traditional
numerical methods. We can cite many areas where the boundary elements method
has been successfully aéplied such as heat flow (Chang et al., 1973), viscoelasticity
(Rizzo and Shippy, 1971) and elastodynamics (Cole et al. ,1978).

Although our intention is to employ the boundary elements technique t6 solve
specific problems, we will try to keep the method as general as possible. In sections
3 and 4, we will follow very closely the general outline presented by Crouch and
Starfield (1983) in their excellent book, with emphasis on the physical meaning of
the method, skipping most of the algebraic zﬁanipulations.

In the rest of this section, we will present an overview of the technique. Suppose
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that we are interested in comr- : e (i.e. internal str

strain fields) of a cavity C em> = ' c solid, which is su

to specific boundary conditior. ' ' 2 an auxi'ary cuﬁe ]

2-1b) which is the image of C . .eof N ed lin.:ar
elements. Let us assume that the elas:ic response of a lin ubjected
to an external field is known (i.e. the analytical equatio- :ribe the
stress and strain fields at any point outside of the element;. 3 solution

in hand, we add the response of the N elements acting over the midpoint of a
particular element. This a.ddi.tion is warranted by the fact that the governing partial
diﬁ'erential‘equations are linear. At this point, a question arises: what should be the
strength of ‘each element? Although we do not know these strengths, we know, via
the boundary conditions on C, what their combined effect shéuld be. Now applying
the same procedure to the rest of the elements, we can write a system of N linear
algebraic. equ#tio_ns in which the unknowns are the strengths of each element. From
the computa.ﬁonal point of view3 a boundary elements method leads to a much
smaller system of algebraic equations than a finite elements scheme applied to the
same problem. Once the elastic response on the boundary is known, we can use
that solution to compute the stress and displacement fields at any location of the
solid.

The a.bové descripticn suggests that the method can be used to solve other
physical problems for which the principle of superposition is a.bplicable. For in-
stance, the wall of the cavity considered in figure 2-1 can be thought of as a line
of charges embedded in an external electric field. Then, the interaction between
the external electric field and the induced field which is generated by the charged
surface, can be studied by mean of a boundary elements method. |

In the next section, we will settle the fundamentals of the numerical technique
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Figure 2-1. a) Cavity C embedded in an infinity elastic solid. b) Auxiliary cavity C' made
of N linear elements which is used to represent the cavity C.
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from the point of view of the theory of linear elasticity.

3. GENERAL THEORY

Based on the ;a.bove description we will write a numerical procedure to solve a
boundary value problem. Although we will emphasize in elastostatic problems, we
will keep the procedure as general as possible so it can be easily adapted to solve a
wide range of physical and petrophysical problems.

The first step is to find the solution for a very simple problem which will be
used to build a more complex one. Suppose that there is a rectilinear element
embedded in an elastic body, which lies on the plane £ — y. The normal stresses
and displacements induced by that element at any location within the solid, can be

written in general as:

on(i,5) = Ia(5,5) 51 + L2(5,7) Sz ( )
“ » . 3-1
un(f,5) = Tai(,5)S) + 12253 :

fori,5 =1,2

The subindexes ¢ and j represent the coordinates of the reference system chosen
to define the solutions in (3-1). Since we are solving a plane problem, only two co-
ordinates are needed. It is important to note that we should choose the coordinate
system that best describes the symmetry of the particular problem (i.e., cartesian,
cylindrical, etc.). S; and S represent external perturbation factors from which the
local stresses and displacements in (3-1) will derive their strengths or magnitudes.
These factors can be visualized as applied forces, external stresses or prescribed
displacements. Then the solution in (3-1) is the response of the system to that per-
turbation. In our case, the response will always be linear. The I terms in (3-1) are

coefficients which depend only on the location and type of the system of coordinates
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used to pose the problem and they are independent of the external perturbation.
~ These coefficients are called influence coefficients or influence functions. Al-
though we have written (3-1) to represent the response of a rectilinear element due
to the perturbation produced by external sources, that type of expression can be
generalized in such a way that the elastic response for most problems in linear elas-
ticity can be written as a linear combination of influence coefficients and external

perturbations. For a two-dimensional problem that expression takes the form of:
r(’,J) = Irl(itj)sl + Irz(iaj)s2 (3 - 2)

The r represents the response of the system caused by the perturbations S; and
S;. Notice that in case the response has more than one component (for example

normal and shear stresses), equation (3-2) must be written in matrix form.

As an exampyle, let us consider a very simple but illustrative physical situa- -
tion known as the Kelvin’s problem (Sokolnikoff, 1956). In this problem a line of
concentrated force is applied along the z axis in an infinite elastic solid as shown
in figure 3-1. The components of the force are F; and F,. The solution for the

displacement in the y direction is given by:

_Fv , dg F, dg
u,—zy[(3 4v)g yay]+2p[ zay (3-3)

where:
-1
. = 2 2
g(z,y) = 1=7) Iny/(z% + y?)
p and v are respectively the shear modulus and Poisson’s ratio of the solid. Com-
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Figure 3-1. Line of concentrated force along the z axis and embedded in an infinity elastic
solid. The components of the force (F. and F,) are acting on the plane z — y.
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paring (3-2) and (3-3) we have that:

S = Fz
1 dg
= gt

1 dg
Ip =213 - 4)g —v3 ]

As we can see, the influence coefficients can be thought of as the Green functions
of the system, and the S terms are the perturbations which control the strength of
the displacements.

As was pointed out .._before, the inﬂﬁence coefficients depend on the spatial
location of the elements with respect to the system of coordinates used to define
the problem. If we change the orientation of the elements with respect to the
fixed system of reference using a translation, rotation or a combination of i?oth,
the functionél form of 'the; influence. coefficients will also change. Howevér, ;ince
the influence coefficients afe basically geometric entities, we caﬁ compute the new
coefficients in terms of the old ones By means of simple coordinate transformatiIOns
(Crouch and Starfield, 1983). We can better understand that property by saying
that the influence coefficients are also the elements of a tensor. A tensor can be
defined in a new coordinates system, using rotation and translation transformations
(Sokolnikoff, 1956). |

With these concepts in mind, we can continue to develop the numerical method.
Suppose that we have a cavity embedded in an infinitely elastic solid as shown in
figure 3-2a. Now we draw an auxiliary cavity as shown in figure 3-2b and we
divide its surface in N linear elements. These elements are small enough so they
follow the contour very closely. The walls of the cavity are subjected everywhere

to particular boundary conditions. These boundary conditions can be expressed
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Figure 3-2. a) Cavity embedded in an infinity elastic solid. Attached to the solid, there is
a system of coordinates (lower left corner). b) Auxiliary cavity made of N linear elements.
Attached to the element k, there is a local system of coordinates. The 2’ axis is normal
to the element while the y’ axis is perpendicular to it. r, and r, are respectively the
normal and shear responses of the system at k. S, and S, indicate the perturbation terms.

Boundary conditions are also defined along the pore surface. Midpoints are indicated by
dots within each element. '
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in term of external stresses, prescribed displacements of the external surface of the
cavity or both. N ow, we will focus our attention on the particular element & in figure
3-2b. We will place a local coordinate system to that element so we can measure
the amount of rotation and translation suffered by the element with respect to a
fixed coordinate system attached to the solid. The next step is to superimpose the
response produced by every single element at the midpoint of the element k. This
procedure is repeated for every element on the contour and for every component
of the response. Then, the actual response (two components) of the system can be

written as:

N N
=Y nLsh+ > 1i%s?

m=1 m=1 .
N N , (3-4)
rPle=) ILSn+ ) Ii4Sh
m=1 m=1
fork=1to N

The subindexes k and m indicate that the element m is acting oo the midpoint of
element k. The first superindex of the influence coefficients refers to the compo-
nent of the response on element k (row), while the second superindex refers to the
component of the perturbation acting on element m (column).

Now, the total resoonse of the system at the midpoint of a particular element
must be equal to the value of the boundary condition at that specific:point. In
this way, we construct a system of 2N linear simultaneous algebraic equations with
2N unknowns, where the unknown values are the perturbation terms S. Once the
system of equations has been solved, the values of the perturbation terms S can
be used to compute the elastic responses in other points of the solid. In the next
section, we will use this methodology to solve a specific elastic problem.

So far, we have applied the foregoing method to solve boundary value problems
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in plane bodies. Although many interesting problems in elasticity are essentially
two dimensional in nature, there are cases where the approximation of plane strain
or plane stress is no longer valid, mainly because stresses and strains acting on
the z axis are unconstrained. In that case, we have to deal with three-dimensional
tensors to correctly describe the elastic properties of the solid under study. For
such problems, it is not clear how can we apply the boundary elements method.
This is mainly due to the fact that instead of discretizing the coritour using linear
unidimensional elements, we have to consider thin surfaces. Then the process of
dividing a solid surface in small plane slices becomes cumbersome even for very
simple three-dimensional bodies. Also, equations for the system response are no
longer easy to write in the form given by (3-2). This does not mean that the
boundary elements method.ca.nnot be applied to three-dimensional bodies but a
more careful methodologr is required in order to establish an unambiguous way
to discretize the surface of a solid of revolution (See for example, .Brebbia, 1980
and Malbéqui et al., 1986). Nevertheless, tﬁere are abundant examples in nature,
especially in the case of pores in rocks, where the plane strain and plane stress
approximation can be used to produce excellent results. For the time being, we
will concentrate on solving two-dimensional linear elastic problems under the plane

strain approximation.
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4. THE DISPLACEMENT DISCONTINUITY METHOD.

In the last section we reviewed the general methodology used to implement a bound-
ary elements program. In this section, we will use that procedure to calculate the
stresses and displacements of a two-dimensional pore embedded in an elastic solid,

under the influence of external stresses.

In order to find an adequate solution, we must make some fundamental as-
sumptions about the properties of the pores and the solid we want to analyze. First
of all, the behavior of the porous solid is totally linear elastic. The solid’is isotropic
in the sense that the properties of its matrix are essentially the same for any point
within the body. ‘Pores are not restricted to specific sizes and their tips can be
rounded or very sharp. The reason to request this class of pores is that we are in-
terested in modelling the behavior of real rocks, specifically sedimentary rocks. But
rocks like sandstones present a broad distribution of pore sizes and shapes. This
means that if we want to model complex rocks we have to allow our model to bé
general but flexible. Last, we will restrict the differential equations4 which govern
the elastic behavior of the solid to obey the plane strain approximation. In this
case, the pore will be visualized as a tube as shown in figure 4-1, where the stresses
and displacements are unconstrained in the z — y plane but the length of the pore

tube along the z axis is fixed.

Because we will be dealing with pores with sharp and narrow tip;, we should
choose a solution for our linear element so that will not break down when the two
surfaces of the pore are close. Fortunately, there is an available solution that takes
into account that fact. This solution is based on the displacement discontinuity of
a line whose opposing surfaces have been displaced relatively by a constant amo‘unt'

along the line. To better visualize the problem, let’s consider a thin linear element
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Section

plane while the pore tube is defined along the z axis. The cross section can possess different

Figure 4-1. Three dimensional representation of a pore. The cross section lays in the z-y
geometrical forms.
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of length 2a as shown in figure 4-2. We can say that the upper surface is on the
positive side of y = 0 and is denoted by y = 0, while the lower surface is on
the negative side of y = 0 and is denoted by y = 0_.. Then the displacement
discontinuity is defined as the difference in displacement between the two sides of

the linear element and is given by:
D; = ui(z,y =0_) — ui(z,y = 04) (4-1)

where ¢ can be the z or y coordinates.

D and Dy are positives in the directions indicated in figure 4-2. To avoid an
overlap in the y axis, since the two components of Dy (+Dy and —D,) are pointing
in opposite directions, we will consider that the thickness of the element is larger
than the magnitude of the displacement D,,.

Solutions for this problem have been found by Crouch (1976) and they are

given by:
- of  d%f of
us = De[2(1- v )ay—ya 1+ Dy-0-w)3L -y 0
62 6f 62f
y=D.[(1-2v )——ya o9 L)+ D,l201 - oy Vagr!
—oun. 2 0S4 aaf]+2D[21r v2 1) (4-2)
Ozz = 4l dly aay yaaZ 4 ay3
e 3’f 33f
O'yy=2ﬂ z[ ya a 2]+ DV[ y-é—y?]
o*f
v=2uD:55 +ya 3]+2,u y[—yW]
where: _
_ -1 -1_Y¥Y -1_Y
f(xay)—47r(1_y)[y(ta‘n z—a \ta'n z+a) (4—3)

—(z-a)lnV[(z - a)? +¥?] + (z+ @) InV[z + )2 + y7]]

Because the group of equations in (4-2) have the same functional structure as

equation (3-2), they can be used to develop a numerical procedure for the boundary
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Figure 4-2. Representation of a displacement discontinuity across a linear element. The
displacements D, and Dy are positives in the directions indicated by the arrows. The length
of the linear element is 2a.
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elements method. In this case, the perturbation terms are given by the displacemenf
discontinuities D; along the surface of the cavity while the displacements u; and
stresses oy; represent the responses of the system. The solutions given by (4-2) are
valid only for the system of coordinates defined in figure 4-2. If the element needs to
be moved to a new position with respect to the original system of reference, we must
use coordinate transformations to obtain the valid influence coefficients for the new
position of the element. Because the boundaries of the cavity will be discretized by
N linear elements, the position and orientation of each element can be calculated
easily with respect to the system of reference used to define the shape.

To compute the displacements or stresses along the boundary of the cavity,
we will proceed in the same way as we did in the last section. We will divide
the boundary of the cavity into N small linear elements. VAgain, these elements
are small enough so that they match the contour very accurately. Each element
represents an elemental displacgment discontinuity. The next step is to form. a
system of linear equations analogous to tﬁat given by (3-4). Dépend_ing on the type-
of boundary conditions specified for the particular problem, we can write a system
of equations in which the response terms are: a) the stresses at the boundary,
b) the displacements at the boundary, or ¢) a mixed formulation in which either
stresses and displacements are prescribed. In the last case, we select the appropriate
stress and displacement equations to forﬁ a system of 2NV linear equations with 2N
unknowns. Applying convenient coordinates transformation on (4-1) (Crouch and
Starfield, 1983), we can derive expressions for the normal and shear stresses at
the midpoints of every element. Let’s denote the normal stress by o, and the
shear stress by o,. Then, the resulting stresses at the midpoint of the k element
can be expressed in terms of the superposition of the displacement discontinuity

components of the N elements (including the element k) as:
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N N
our=Y_ AiLDh+ Y A}%D:,

m=1 m=1
N N (4-4)
onli =Y AMDL+ Y APLD:
m=1 m=l
fork=1to N

where the A factors represent the influence coefficients for the stress equations and

are given by:

ALl = 2u|—sin2(Bx - ﬂ,,.)r,' — c082(Bx — Bm)T2 — F(5in 2(Bk — Bm)T's + cos 2(Bx — Bm)T4)]
AR, = 25[(cos 2(Bk — Bm)T's + 8in 2(8x — fm)T'4)]

A2l = 2u[25sin®(Bk — Bm)T1 + 8in 2(Bk — Bm)T'2 — F(cos 2(Bk — Bm)T's + sin 2(Bx — Bm)T4)]

AR = 2u[-T; + 7(sin 2(Bx — Bm)Ts — €08 2(Bk = Bm)T4)]

where:
= (2% — 2m) 08 B + (yk — Ym) €08 Bm

¥ = —(zk — Zm) 5in Bm + (Vk — Ym) c0s Bm
z; and y; are the coordinates for the midpoint of the element k, while z,, and y,
are the corresponding coordinates for the midpoint of element m. Angles 8; and
Bm are measured with respect to the system of reference fixed to the solid. The I’

terms are given by:

4ar(1-v)'(T-a)2+7° (T+a)2+7°
r 1 T—a T+a
2

=41r(1—v)[(f—-a)3+§’-(E-l-a)’-i-ii’]
__ 1 [(5-«:)’—?’_(5“)’—7’
T 4x(1-v)' (E-a)2+7° (T+a)2+7°
Pe= 3| (E-a) _ (E+a) |

4r(1-v)' (Z-a)2+7° (T+a)2+7°

Ts

The parameter a represents the half length of the linear element.
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Once the system (4-4) has been solved for the D}, and D2, we can find the

displacements at the midpoints of the elements, forming a system of equations for

the displacements which is given by:

N . N
w,)r =) BiLD.L+)> Bj2D?
m=1 m=1

N N (4-5)
un)k =Y BELDL+ ) B D?
m=1

m=1

fork=1to N

.and:

BJL, = [(1 = 2v) sin(Bx = Bm)T's + 2(1 = ¥) cos(Bx — Bm)Ts
— §(sin(Bx — Bm)T1 + cos(Bx — Bm)T)

B}, = [-(1 — 2v) cos(Bk — Bm)Ts + 2(1 — v) sin(Bx — Bm)Ts
~ §{cos(Bk — Bm)T'1 — sin(Bx — fm)T2)]

B2, = (1 — 20) eos(Bs — Bm)T's — 2(1 — 1) sin(Bs — Bm)T
— §(cos(Bi — Bm)T'1 — sin(Bx — frm)T2)]

Bir ={(1 — 2v) sin(Bk — Bm)Ts + 2(1 = v) cos(Bx — Bm)Ts

+ y(sin(Bk — Bm)T1 + cos(Bx — Bm)T2)]

T's ye _V)[In (Z-a)?+ Iny/(Z + a)? + ¥
el gt Y Y
o= —ma-n)™ z—a ™ 344

where the B terms represent the influence coefficients for the displacement equa-
tions. Notice that the values for the displacement discontinuities D}, and D2 in
(4-4) and (4-5) are the same. Then, the displacements u, and u, can be calculated

by using just the values for the D terms found in (4-4). Also, we can make use of
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(4-4) and (4-5) to find the stresses and displacements at any point (exterior to the
cavity) within the solid.

At the beginning of this section, it was pointed out that our main goal is to
compute the deformation of a cavity (pore) embedded in an elastic solid. This kind
of formulation is called the exterior problem. But the above forn:ulation is also
employed to solve another type of physical situation known as the interior problem,
which describes the elastic behavior of the internal points of a finite solid subjected
to an external field. The finite solid can posse;ss any shape and its contour might
be subjected to boundary conditions in the same way that the cavity of the exterior
problem is. But how can we distinguish between interior and exterior problems?. It
can be shown (Crouch and Starfield, 1983) that the influence coefficients for both
problems are essentially the same except for the diagonal of the B terms which is

given by:

~1/2 (for interior points) ' (4-6)

Bll - B?? - ‘
kk kk +1/2 (for exterior points)

Then, using the appropriate influence coefficients we can determine what kind of

problem we are dealing with.
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5. SYMMETRY CONDITIONS

The formulation we have described so far, applies to arbitrary pore shapes and it
leads to a system of 2N linear equa.tiéns with 2N unknowns. However, if the pore
presents one or several axes of symmetry, we can use this condition to reduce the
number of lineaf equations to solve. This can be accomplished by the fact that a
line of symmetry acts as a mirror of oné portion of the shape. Then we can include
the effect of the image element in the influence coefficients. As an example, let us
consider a problem where the lines of symmetries are z =0 and y = 0 as shown in
figure 5-1. The normal components of the displacement discontinuity for the real
and image elements are the same, but the shear components change sign each time
| 2 line of symmetry is crossed. These symmetry conditions can be incorporated into
the influence coefficients so we actually need to consider just.one quadrant (for in-
stance z,y > 0). Then the number of linear equations reduces to 2N/4 = N/2. The
introduction Qf symmetry conditions has tremendous repercussion in the numerical
efficiency of thé boundary elemenf ‘method. Reduciﬂg a system of linear equations
by half will decrease the processing time by a factor much larger than 1/2 because
the number of arithmetic operations involved in this process decreases more rapidly
than in a geometric progression. Also, the memory required to hold both the pro-
gram and data is reduced substantially as well. Fortunately, pores that we observe
in most rocks can be very well modeled by cavities that present at least one axis
of symmetry. As an example, figure 5-2a shows a SEM * picture of a crack in a
sample of Coconino Sandstone. This pseudo star shape is formed by the space left
when the surfaces of four grains are in contact with each other. Since sandstones
are formed mainly by the association of granular matter, this star shape is very

representative of the kind of pore we have to use to model that type of rock. Figure

* Scanning Electronic Microscope.
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Figure 5-1. Representation of the symmetry conditions in a pore. The z and y axes are
lines of symmetry. Notice that the portion of the pores in quadrants II, III and IV are
images of the portion which lays in quadrant 1. The magnitudes for the D; and D, at the
particular elements shown, are exactly the same. However, their signs changes as indicated
in the figure. Then, the influence coefficients can be re-written so they reflect the sign
changes of the displacement discontinuity perturbations at every quadrant an? for every
element. :
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: (b)

p——
Figure 5-2. a) SEM microphotograph of a sample of Coconino sandstone. The star
shape in the middle of the photo is a pore. The white line at the bottom represents 100
microns. The pore space has been filled with epoxy so it can be easily seen against the

black background. b) Representation of a star-shaped pore. Notice the.similarities between
the pore in (a) and the star-shaped pore. '



5-2b sketches a tentative model for a pore that can be used to represent pore spaces
in sandstone. This pore presents two axes of symmetry and it can be studied in the

context of the boundary elements method, by just discretizing 1/4 of its shape.

6. ANALYSIS OF THE PORE DEFORMATION

In the last sections, we have made a general revision of the boundary elements
method. In this section, we will use that technique to study the deformation of
a pore embedded in an elastic solid under the influence of external forces. The
study of such deformation can help us to get a better picture of the real behavior
of pores as individual entities instead of obtaining some average values as the self-
consistent approach does (O’Connell and Budiansky, 1974). Also, we can use that
information to compute other physical pa;rameter, for example the strain energy,
variation of porosity, elastic moduli and seismic veloéitia, hydraulic and electrical
conductance, among others. We will discuss more in detail how to campute some
.of these parameters in a later section.

Although in the last section we did not compute the deformation of the walls
of a pore, we did learn how the displacements can be calculated. In particular, the
boundary elements method gives us the displacements of the midpoints of e‘ach ele-
ment used to discretize the walls of the cavity. Since the initial shape (i.e. the shape
of the pore when no stresses have been applied) is known, then we use the values for
the displacements to predict the new spatial location of the midpoints;. Therefore,
we reconstruct the new shape of the pore by interpolating the new positions of the
midpoints. Although this procedure seems to be very simple, in practice it leads to
some difficulties that we will analyze next.

The first problem has to do with the magnitudé of the stress applied to obtain

a specific deformation. In the last section we did not make any comment about
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the limits for which the numerical method is valid. However, we did mention that
the process is valid only under the context of linear elasticity. In other words, the
equations have to obey Hook’s law which says that at every point of a linearly elastic
body, the components of the stress tensor are linearly related to the components of
the strain tensor. This is mostly true when the magnitude of the stress is small. But
the question of how small a stress magnitude has to be in order to follow Hook’s law
must be answered experimentally by plotting the strain-stress relation for different
solids. So, before wé use a technique like the boundary elements method as discussed
here, we must have a clear picture of the elastic response of the solid we wish to
analyze. Especially, we are concernea about the elastic behavior of sandstones.
Yale (1984) and Mendoza (1985) have used the concept of linear elasticity to study
a variety of sandstones at pressures up to 500 bars without noticing an appreciable
nonlinear behavior. In this study, we will be conservative so external pressure will
not be considered beyond 250 bars. Nevertheless, most of the important changes
in t}'1e hydraulic, electrical and elastic properties of sandstones have been observed
for the first 100 bars (Han and Nur, 1986).

Another aspect we have to consider in order to obtain the deformation of the
walls of the cavity has to do with the symmetry of pore space. Let’s suppose that
a particular pore holds a line of symmetry which lies on the z axis, so we only need
to describe the upper portion. If an external stress is acting parallel to the y axis,
the pore is going to reduce in size as its upper walls approach the z axis as shown
in figure 6-1a. Eventually the walls will touch the z axis but they can not cross it,
because in that case there would be an overlap between the upper and lower walls of
the pore as shown in figure 6-1b. To avoid a possible overlap, we have to implement
some constraints which forbid the walls of the pores to overlap. In general, the use

of constraints introduces those physical aspects of the problem that math leaves out.
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Figure 6-1. a) Representation of the deformation of a pore under uniaxial stress o,,. The
walls of the pore start to collapse in the direction shown by the inner arrows. b) Without
boundary constrains, the walls of the pore eventually overlap. This situation is physically
impossible.
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In our case, we introduce the constraints by impos;ing the condition that whenever
an element touches a line of symmetry to overlap its image, it will be fixed to the
point at least in the direction of the over]appiné.

The last aspect that we discuss has to do with the discretization of the surface
of the pore. Unlike analytical formulations, numerical methods deal only with a
finite number of points because of the storage limitations in a digital computer.
The numerical procedure used here gives us information only at the midpoints of
each element. But what about the other points? We can approximate this problem
by saying just that the other points inside an element behave in the same way
the midpoint does. In real situations this kind of approximation does not have
to be necessarily true but it represents a good starting point. We can always
improve the resolution of the method by choosing a shorter élement, but reducing
the size of the element will decrease the efficiency of the algorithm because it will
require more processing time and moré memory to store the corresponding system
of equations. So it is necessary to balance resolution and efficiency ia.ccording to the
class of problem we are solving and the type of computer available. Next, we will
apply the numerical procedure to some well known geometrical shapes for which
analytical solutions 'a.lready exist. These examples will serve to clarify the three
aspects previously discussed.

As a first example, we analyze the classic problem of a circular cavity embedded
in a linearly elastic solid under the influence of hydrostatic pressure. Solutions for
this problem are widely available in the literature (Sokolnikoff, 1956; Timoshenko
and Goodier, 1970; Muskelishvili, 1953). The first step is to determine the symmetry
conditions. Since a circle has a radial symmetry, we co-locate its center in such a
way that it coincides with the origin of a cartesian system of reference as shown in

figure 6-2. Then the lines z > 0 and y > 0 are lines of symmetry because the piece
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Figure 6-2. Circular pore centered at the origin of a system of coordinates. The radius
of curvature of the pore is given by R. The z and y axes are lines of symmetry so the
quadrants II, IIT and IV are images of quadrant I




of the circle which lies on the first quadrant has its corresponding images in the
other quadrants. From the time being, we only work with the 1/4 of circle conta.inedv
in the first quadrant. The second step is to approximate the circular shape by a
set of linear elements. We will start using a poor discretization, then the number
of elements will be increased to improve resolution. The numerical results for the

deformation will be plotted against the theoretical solution which is given by:

- g1 pA=v)
R(P)"‘RO(I E\/§ )

where R(p) indicates the new radius of curvature of the circle for a pressure p. Ry is

(6-1)

the initial radius. v and F are respectively the Poisson’s ratio and Young’s modulus
of the matrix. Since the circle is pushed by hydrostatic pressure, the deformation
is uniform along its surface. ‘

The first discretizatio-n consisted of four linear elements distribﬁted unifox;mly
along the surfa.cé as indicated in figure 6-3a. In this case, what we haveis a 16—sided
polygon. Figure 6-4 shows the ‘radius of curvature’ of the polygon (plus symbols),
measured at the midpoints, as a fu;xction of applied pressure in bax-s, compared to
the theoretical results (solid line). Notice that although the discretization is not
very good, the numerical results are similar to those found by using the analytical
solution. The second discretization consisted of seven elements as shown in figure
6-3b. The numerical results obtained by this type of discretization are indicated
with stars in figure 6-4. As we expected, the results improve as the length of
the elements becomes smaller. The next discretization consisted of 13 elements as
shown in figure 6-3c. For this particular model, the resultant polygon resembles
very well the circular cavity. The numerical results for this model are plotted
with triangles in figure 6-4. These results show a little improvement with respect

to those obtained by using seven elements. Increasing even more the number of
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Figure 6-3. a) Discretization for a four elements circular pore. b) A seven elements circular
pore. ¢) A thirteen elements circular pore. Notice how well this discretisation resembles a

circular are.
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Figure 6-4. Figure represents the results for the deformation of a circular pore model,
using the displacement discontinuity method under hydrostatic pressure. The pressure goes
from O to 200 bars. The line indicates the results predicted by the theoretical equation
(6-1). Plus symbols represent the 4 elements model. Stars indicate the results for the 7
elements model and triangles represent the 13 elements model results.
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elements leads to smaller improvement of the numerical r.esults, indicating that we
have almost reached the maximum resolution of the algorithm. Nevertheless, the
maximum difference between numerical and theoretical results for both the seven
elements model and the 13 elements model was less than 0.05% which is very small
indeed and therefore it is more than acceptable for most applications. The main
reason why the circular shape was very well modeled by a small number of elements
is due to the fact that such shape represents a very stiff structure and then its
aeformation is very small and uniform at every point of its surface. Because there
are not abrupt changes on the walls of the cavity, even when it is subjected to
large stresses, the behavior of the internal points of each element can be very well
represented by the motion of their midpoints. Figure 6-5 shows the deformation of
a single element for the 13 elements model subjected to an external pressure that
goes from 0 to 250 bars. Notice how small the displacements are, compared with
the length of the elementf

Besides the defo'rmation of the walls of the cavity, there is another physical
factor that can be used to help decide what is the minimum number of elements
necessary to obtain a satisfactory numerical model. That factor is the internal
area of the cavity. This area can be calculated by just integrating the discretized
points of the cavity surface. Table 6-1 shows the undeformed areas for the three
numerical models, compared with the area of the circle. Notice that although
the seven elements model seems adequate to model the deformation of the pore,
its corresponding area can represent roughly the internal surface of the circle. This
fact tells us that the seven elemeﬁts model is not very realistic and we must consider
a more complex model.

The circular cavity was useful to illustrate the principles involved in the bound-

ary elements method. However its solution is simple and smooth and then, it does
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Figure 6-6. Schematic representation of a tapered pore. 2¢ is the length of the pore, b is
the half width and s is the length of the pore into the page. The aspect ratio is defined as
a = b/c. Notice how sharps are the tips of the pore.
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take advantage of the symmetry of the pore shape. This can be accomplished by
considering the center of the cavity as the origin of the system of coordinates. Then
the figure is rotated until the tapered edges are pointing in the direction of the z
axis (fig. 6-6). As for the circular shape, it is only necessary to analyze just one
quarter of the pore since the other three quarters are the images of the first one.
Now let’s assume that the aspect ratio of the pore is a = 0.002 which is much
less than one. Also, the pore will be subjected to a hydrostatic stress. The next
step is to discretize the surface of the cavity. We start with five linear elements
as shown in figure 6-7a. Thé results for this pore model are shown in figure 6-8,
where the plus symbols indicate the model results and-the solid l.ine indicates the
predicted results obtained by using (6-2). As we see, the numerical results are not
consistent with the theoretical model. Now we double the nuxﬁber of elements to 10
as éhown in figure 6-7b. The numerical results are indicated by stirs in figure 6-8,
which again are not consistent with (6-2) but they represent an 1mprovement over
the five elements model. For a larger number of elements the solutnon improves
just a little bit until the model reaches 18 linear elements (fig. 6-7c). Then a big
improvement in the results can be noted. The results for an. 18 elements model
are indicated by squares in figure 6-8. As we can see, the numerical r&ults. fit
the theoretical model fairly well. Figure 6-9 shows the deformation of the walls of
the 18 elements model for different pfessures. In this model, we have used smaller
elements to discretize the pore tips. This obeys to the fact that we are interested in
modelling the tips deformation very accurately. Using a uniform discretization along
the surface leads to inaccurate results for the deformation of the tips. Increasing the
number of elements beyond 18 does not improve the results appreciably. Triangles
in figure 6-8 indicate the results for a model of 20 elements, while the resulting of

a 40 elements model are represented by squares. Notice that the results for the
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FPigure 6-5. Representation of the deformation for a single element in the 13 elements
circular model. Hydrostatic pressure goes from 0 to 200 bars. Notice how small is the
displacement of the element for the range of pressures used.
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TABLE 6-1

FIGURE AREA (um*)
circle 3.14
4 elements 2.90
7 elements 3.01
13 elements 3.12

* units of measure

not represent an excellent example to demonstrate the advantages and limitations
of the algorithm. Nevertheless, a circular pore is a type of structure we have to in-
clude in a realistic model for sedimentary rocks because as Yale (1984) has pointed
out, most of the pﬁrosity in sandstone is concentrated within very stiff structures.
Next, we shall consider a more complex pore geometry. Instead of modelling ellip-
tical pores which are unrealistic representations of pore space in sedimentary rocks
(Mavko and Nur, 1978), we will examine the behavior of a broad class of two dimen-
sional n.onelliptical cavities known as tapered pores. The deformation for this class
of structure has been obtained by Mavko and Nur (1978) using the well-developed
theory of elastic dislocations (Landau and Lifshitz, 1959; Bilby and Eshelby, 1968;
Delameter, 1974). A sketch of the geometry for this type of pore is presented in
figure 6-6. Let co be the half length of the pore and b its half width. Then the
aspect ratio is defined as a = b/ec. We will consider only noninteracting, flat planar
cracks with aspect ratio @ << 1. Under the above assumptions, we can write the

deformation of the half length as a function of applied pressure p as:

o(p) = coln - L1y 6-2)

The first step is to choose a convenient system of reference so that we can
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Figure 6-7. a) Figure represents a discretization for a five elements tapered pore. b) A

ten elements tapered pore. c) A eighteen elements pore.

e)

such points.
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d) A twenty elements pore and
a discretiration for a forty elements pore. Notice that small tip elements have been used

in the eighteen and twenty elements model to increase the accuracy of the defoPmations at
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Figure 6-8. The figure represents the results for the deformation of a tapered pore model,
using the displacement discontinuity method under hydrostatic pressure. The pressure goes
from O to 200 bars. The line indicates the results predicted by the theoretical equation
(6-2). The plus symbol represents the 5 elements model result. Notice that only one point
is represented. The other points fell far below the graphic scale. Star symbols indicate the
results for the ten elements model. Squares represent the 18 elements model- Triangles
indicate the 20 elements model and circles represent the 40 elements model results. Notice
the good agreement presented by the 18, 20 and 40 elements models, with respect to the
- theoretical prediction.
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Figure 6-9. Representation of the deformation of the walls for an 18 elements tapered
model under hydrostatic pressure. For simplicity, only the deformation of the first quadrant
is shown. Notice how the deformation decreases near the rounded part of the pore surface.
This portion is much more rigid than the rest of the pore surface.
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20 and 40 elements models are vefy close to both the 18 elements model and the
theoretical prediction. Also notice that the discretization of the pore surface for
the 40 elements model is very uniform, because the length of each element is very
small compared with the pore dimensions (fig. 6-7e). This type of behavior was
also observed for the case of the cir.ular shape. For a small number of elements, the
numerical results are far away from the theoretical model. Increasing the number of
elements improves the results a little bit. But once a certain number of elements has
been reached, the results suddenly converge close to the real (theoretical) solution.
Beyond that number, the solution seems to stabilize. Let us call that minimum
number of elements ‘the resolution number.’ We can say that before the resolution
number is reached, there is not enough information available to produce a stable
result but once we pass that number, the information becomes redundant and it is‘
not possible to resolve the system in more detail.

From the above results we deduce that the resolution number is proportional to
the complexity of the shape. The more complex the shape is, the more information
will be required to properly model it. We can determine the resolution number
empirically by observing the changes in the numerical results as a function of the
number of elements. The number of elements for which the solution tends to sta-
bilize will represent thé resolution number. It is important to point out that the
resolution number is only an auxiliary parameter which serves as an indicator of
the convergence of the method and it does not have real physical meaning.

The numerical method as described in this paper is only valid under the context
of linear elasticity. Unfortunately, there are problems in elasticity which may not
be solved by using just linear equations. For such problems it is necessary to
utilize nonlinear elements to discretize the surface. Although the principles involved

in this type of problem are similar to those treated in section 3, the resulting
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system of equations may not be linear and other numerical techniques must then
be considered. We will not be concerned with that class of problems in this paper.

So far we have been concerned with the accuracy of the solution but we have
not discussed much about the efficiency of the algorithm. It is important to recall
that most of the strength of a numerical method lies in its efficiency. After all, a
computer program that produces very precise results but takes a very long time
to converge can be as bad as a fast program that produces wrong answers. To
study the efficiency of the algorithm, we will explore two major areas: memory
consumption and processing time.

Let’s considering the memory consumption. The program implemented in this
work is less than 40 kilobytes long. But besides the program,lenéth, it is necessary"
to consider the amount of memory used to hold the data. Basically the program
has to solve a system of linear equations and most of the memory is consumed by
holding the coefficients of a squared matrix. For a 50 linear elements model, 64 kilo- .
bytes of memory are required. From the examples presented above, a discretization
containing 50 linear elements seems to be more than adequate to represent very
complex pore structures. Then, program and data take less than 120 kilobytes
which is in the range of today’s microcomputers. Notice that the size of the system
of equations required to solve a similar problem by using the finite elements method
must be considerably bigger, because the mesh points have to cover the interior and
exterior points of the cavity.

The second point has to do with the processing time involved in the calcula-
tions. Again, most of the processing time is consumed by solving the system of
equations. The smaller the system, the faster the processing time. We can expect
a tremendous saving in computing time in a boun‘dary elements method. Table 6-2

presents some comparative processing times against the number of elements used.
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Those results were obtained with an IBM PC { microcomputer. The combination
of small memory requirement and fast processing makes the boundary elements
method a powerful tool to study boundary value problems in different physical dis-
ciplines. However, there are some limitations we have to consider. These limitations

will be discussed in a later section.

TABLE 6-2

NUMBER OF | TIME
ELEMENTS (sec)

5 3
10 9
20 38
40 159

t IBM is a registered trademark of International Business Machines Corporation.
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7. MEASUREMENTS OF THE STRESS CONCENTRATION

In the last section we used the boundary elements technique to compute the dis-
placements of the surface of a cavity. But as it was pointed out in sections 3 and 4,
we can also compute the stresses and displacements induced by the pore on the solid
matrix. The study of the behavior of local stresses around pores can lead to very
important practical applications. Among others, the computation of the stresses
around cracks is of capital importance for the design of engineering structures be-
cause it can help us to determine the limits of tolerances for which a particular
structure will not crack. But it can also serve to help understand the way that

pores interact inside rocks.

Inglis (1913) was perhaps the first to show that local stresses in an elastic
solid tend to concentrate in the vicinity of holes, notches, reentrant corners and
other types of geometric discontinuities. Such concentration raises the magnitude
of the stresses to a level several times that of the applied stress. It thus .beca.me
apparent that even suBmicroscopic flaws might be potential sources of weakness in
solids. Figure 7-1 shows the ratio between the stress field in the y direction, and the
applied stress op, near the tip of an elliptical hole. This ratio is called the elastic
stress concentration factor. In the case of a flat planar elliptical pore the ratio is

given by (Inglis, 1913):
W \/2(e]) (-
P

where b and ¢ represent the half width and half length of the pore respectively.
p is the radius of curvature at the tip. The magnitude of the stress concentration
factor is inversely proportional to p which means that we may expect very high stress
concentration around very sharp pore tips. It follows from figure 7-1, that the stress

concentration factor rises to a sharp peak near the tip of the cavity. However, the
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Figure 7-1. X and Y components for the stress concentration factor near the tip of
an elliptical pore with aspect ratio a = .002 and subjected to hydrostatic pressure. The
location of the elliptical pore is indicated by the dashed lines (The half width is not at
scale). Notice how small the stress concentration becomes at a distance of ¢ (half length)

along the z axis.
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stress drops rapidly along the z axis and away from the tip, and at a distance ¢ (the
half length of the pore) measured from the tip, the stress concentration factor has
decayed to a value approximately equal to one, which means that the local stress
at that point is almost equal in magnitude to the applied stress. Therefore, the
perturbation produced by the induced stress at that point is negligible.

For most complex shapes, the calculation of the stress concentration factor
becomes very complicated and an adequate analytical solution is difficult to find.
However, we can use a boundary elements method (for instance the displacement
discontinuity method) to compute the magnitude of the stress field outside of the
pore. In this way, the stress concentration factor can be calculated over a discrete
number of exterior points. lAs an example, let us compute the external stress field
‘induced’ by a tapered poie. The tapered pore will consist of 20 linear elements. The
aspect ratio a is 0.002 and the pore is subjected to hydrostatic pressure. Figure 7-2
shows the stress concentration factors for the components of the stress field o..
and o,y along the.z axis. :Again, the stresses reach a peak near the tip of tile
crack, dropping along the axis and becoming negligible at a distance equal to ¢.
The only major difference between figure 7-1 and 7-2 is that the magnitude of the
peak for the tapered pore is much greater than in the elliptical pore. This is an
expected result since the tips of the tapered pore are frery sharp. Figure 7-3 shows
the stress concentration factors for the components o.: and oy, computed along
the y axis. In this case, the magnitude of the induced stress field is less than in
figure 7-2, because the surface of the pore is very smooth at that location. However,
some studies have shown (Olson, 1986) that stacking several pores along the y axis
causes a strong interaction between the pores. We will not consider that case in
this study.

Having in mind the above results, we locate a second pore on the z axis in such
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Figure 7-2. X and Y components for the stress concentration factor mear the tip of a
tapered pare with aspect ratio a = .002 and subjected to hydrostatic pressure. The location
of the tapered pore is indicated by the dashed lines (The balf width is not at scale). Notice
how small the stress concentration becomes at a distance of ¢ (half length) along the z axis.
Also notice that the magnitude of the stress concentration is bigger than the presented by
the elliptical pore. However, the stresses drops more rapidly along the z axis.
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Figure 7-3. X and Y components for the stress concentration factor along the y axis of

a tapered pore. Notice how small are the stresses compared with those presented in figure
7-2.
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a way that the tips of either pores are separated by a distance 2¢. For simplicity,
the two pores are identical in shape and size. Because the stress concentration
induced by one pore is very small at the position of the second pore, their mutual
interactions can be considered negligible. (We have assumed here that the surfaces
of the poies do not hold any charge, neither are they magnetized, so that they can
be considered free from other perturbations. The only way that the two pores can
interact is through the stress field.) But when the separation becomes shorter than
2¢, the surface of the pores will be affected not only by the external stress field but
also by the stress concentra.tic.m induced by each one of the pores. As we expect, the
magnitude of the stress concentration is not constant, therefore the surfaces of the
pores are exposed to a non-homogeneous resulting stress field with its maximum
strength acting on the portions of the two pores which face up. |

The resulting stress field acfing on the surfaces of the pores depends mainly on
two factors: the shape of the pores and the separation between them. In most cases,
the resulting stress field exhibits a complex form and consequently, an analytical
formulation that describes such interactions is very difficult to find. Again, we can
use a boundary elements method to study the effect of such interactions. As a
practical example, let’s consider two identical tapered pores as shown in figure 7-4.
Since the pores are self-similar, we can choose the z and y axes as lines of symmetry.
Therefore, the pore on the left becomes the image on the pore of the right so that
it is only nec&sa.ry to consider the section of one pore that falls int.o the upper
right quadrant. There is nothing in the equations of sections 3 and 4 that prohibits
analyzing a system of two or more pores, as long as their surfaces are subjected to
specific boundary conditions. For this case, every element on the surface of both
pores will be exposed to the external stress field and the stress field induced by

the other elements. Figure 7-5 presents a sequence of images for the deformation
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Figure 7-4. Representation of the upper parts of two identical tapered pores. Since the
pores are self similar and the z and y axes are lines of symmetry, the pore of the left becomes

the image of the pore of the right.
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Figure 7-5. Deformation of the two self similar tapered pores considerate in figure 7-4.
The pores surfaces are subjected to hydrostatic pressure (0, 50 and 100 bars). For simplicity,
only the upper part of the pore of the right is shown. a) Deformation of an isolated pore.

-  This pore deformation is used as a reference. b) Deformation for a separation of 2¢ between
the two pores. ¢) Deformation for a separation of .4c. d) Deformation for a separation of
.lc. Notice the abnormal deformation caused by the mutual interactions. e) Deformation
for a separation of .04c. Now, the interaction between the two pores is very clexr, causing
a strong deformation on the walls of the pore.
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of a system formed by two tapered pores located along the z axis. For simplicity
only the deformation of the pore on the right is plotted for three external pressures
(O bars, 50 bars and 100 bars). As a reference, figure 7-5a shows the deformation of
a single isolated pore. Figure 7-5b shows the deformation for a separation of 2¢c. At
this distance, the interaction of the pores is almost negligible. Figure 7-5¢ presents
the deformation for a distance of 0.4¢c. The interaction of the pores is still very
small. Figure 7-5d shows the deformation of the pore for a separation of 0.1¢c. At
this distance, the effect of the interaction start to become no;ciceable. Figure 7-5e
shows the deformation for a distance of 0.04¢. At this point, the interaction between
the two pores is very clea;r, causing a strong deformation on the walls of the cavity.
Notice that the left part of the pore is much more deformed that the right part
because of its proximity to the’second pore. The effect of the interaction will have |
serious repercussions on the elastic behavior of a porous rock, because as we will
show in the next section, the deformation of a crack will govern the exhibited values
for the elastic moduli. and the seismic velocities of the rock.

The boundary elements method is not limited to analyzing the interaction of
two similar cavities. We can also use two or more irregular pores subjected to
any sort of external stress. However, the use of irregular shape may reduce the
symmetry of the problem. Concomitantly with this, the memory requirements and

the processing time will increase noticeably.
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8. ELASTIC MODULI AND STRAIN ENERGY

Potential theory predicts that any vectorial field (electric, gravitational, elastic)
stores energy. In particular, the stress field generated by external forces acting on
an solid stores potential energy. This type of energy is known as strain energy.
For an isotropic, homogeneous elastic solid that energy is distributed uniformly
over the matrix. But for a cracked material, part of the energy is stored in the
pore spaces. Then the pores act as springs which store potential energy when they

suffers deformations caused by applied forces.

The pore spaces are responsible for the lack of rigidity in a cracked material.
This lack of rigidity causes a reduction in the magnitudes of the elastic moduli.
However, the matrix of the solid still conserves its original values for the elastic
moduli. But what we measure m the lab is not just the magnitude of local elastic
constants but the average values over the whole material. Then, for an external ob-
server, the solid behaves like a homogeneous body, holding ‘eﬂ'eciive’ elastic moduli

which are lower in magnitude than those exhibited by the uncracked material.

When a porous material is subjected to external stresses, pores start to store
additional strain energy. (There is an initial amount of energy stored in the pore
at the moment of its creation.) While the pores reduce in size, there is a general
increment in the values of the effective moduli. Once the pores close completely,
they are no longer able to store more energy and the effective elastic moduli reach
their maximum values which correspond to those held by the elastic matrix. By
studying the variations of the strain energy stored in the pores, we may be able to

calculate the variations of the effective elastic moduli in cracked bodies.

In order to find some useful relationships between the elastic moduli and the

strain energy of a porous material, we will make use of a well known theorem of the
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theory of elasticity. This is known as the reciprocal or reciprocity theorem. The
theorem states that for an elastic body acted upon separately by two sets of trac-
tions, the work done by the first set of tractions acting through the displacements
produced by the second set of tractions is equal to the work done by the second set
of tractions acting through the displacements produced by the first set of tractions.
The reader interested in a rigorous proof of the theorem is referred to Timoshenko
and Goodier (1970). To better visualize the scope of the theorem, let us consider
the problem of an elastic solid under the influence of one set of given stresses o, and
o, which produce the displat;ements u, and u,. Both stresses and displacements
are known. Let’s supposes that the same elastic solid is subjected to another given
set of stresses o,, and o,, which produce a set of displacements u!. and u/ for which.
their magnitudes are unknown. Then the theorem states that the work dpne by o,
and o, on the displacements u!, and u) is equal to the work done by o/ and ¢} on

the displacements u, and u,. Mathematically, this can be written as:

fc(anu; + o,ul)da = fc(a:‘un +oju,)da (8-1)

where the integral is performed over the whole area of the solid.

The solution for the primed displacements is then given by an integral equa-
tion. Solution for this équation may become cumbersome especially for a complex
boundary value problem. In that case, a numerical method is required. If the the-
orem is applied to an embedded cavity whose boundaries have been divided into
small rectilinear elements, the integral equation can be used as the starting point for
another type of boundary elements method known as the direct boundary integral
method (Crouch and Starfield, 1983). We will avoid such formulation by dealing
with two simple physical situations.

First of all, let us consider an elastic solid with a volume V. The solid contains
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just one pore. Then, the solid is loaded by an external uniaxial stress oy,. Suppose
that the pore faces hold a stress which is equal in magnitude to o,, but acting
in the opposite direction as shown in figure 8-1a, so that the pore surface is in
equilibrium with the external force. In this case, the deformation of the solid is due
only to a reduction in ‘he dimensions of the matrix, so the system behaves like an
uncracked body.(This situation is useful to represent the behavior of an effective
solid.) Now let’s consider a second situation where the solid is loaded with the
same uniaxial stress but the pore faces are stress free as shown in figure 8-1b. Then
both the matrix and the pore exhibit a deformation. The displacements along the
z axis do not produce work because they are perpendicular to the applied stress
and the work is defined as the t?ot product between the force and the displacement.
Applying the reciprocity theorem to the system of figure 8-1 and after making someA
simplifications (Walsh, 1965) we end up with:

1 1 '
E—] =5 +w - (8-2)
where:
aU(C,oyy)
f 3oy ——YdC (8-3)

Equation (8-2) links the effective Young’s modulus E; with the Young’s mod-
ulus of the matrix Eo. The parameter w is related only to the pore and it was
derived by considering just the strain energy stored in the crack shape. The func-
tion U(C,o0,,) describes the crack shape. z is the length of the pore into the page
of figure 8-1 and it is fixed because of the plain strain approximation. The integral
is taken over the whole surface of the pore.

Now let’s suppose that the solid considered in figure 8-1 is subjected to hydro-

static pressure P. In this case, the displacements along the z and y axes produce
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Figure 8-1. Resulting displacements of a porous solid subjected to an uniaxial stress oy,,.
a) The walls of the pore are subjected to the same applied stress but it is acting in opposite

direction. b) The walls of the pore are stress free.
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mechanical work. Then applying the reciprocity theorem and after making some

simplifications (Mavko and Nur, 1978) we have:

1 1
E = X, +w (8-4)
where:
f 9U(Cy) 4 (8 —5)
doy,

Equation (8-4) links the. effective bulk modulus K of the solid with the bulk
modulus of the matrix Ky and the pore factor w. Equation (8-5), although similar
to (8-4) does not produce the same result because the deformation of the pore is
now dﬁe to hydrostatic pressure which pushes its surface from any direction. |

We can evaluate the pore factor w for an arbitrarily oriented crack, if the
variation of the shape 90U /8o is known. However, the functional form of t.he pore
factor w as given in equation (8-3) or (8-5) can be even more simplified by the
introduction of convenient symmetry conditions. Let’s represent the integral term
in equation (8-3) and equation (8-5) as

au(c, o)
loi do

(8 -6)

Now we make the assumption that the pore has at least one line of symmetry
as shown in figure 8-2. Also, the shape of the pore which is represented by U(z,0)
is a continuous function of z (there are no gaps on its surface). Using the symmetry
conditions, (8-6) can be written as:

2/“’(’) aU(z, a)

—c(e) 9o (8-17)

84



Ux,s)

/.-c B c

LinE 0F SymMmETRY

Figure 8-2. The figure shows a pore exhibiting a line of symmetry along the z axis. The
function U(z,0) is used to represent the pore surface.
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But the function U(z,0) touches the z axis at the locations of the pore tips,
i.e. U(£c,0) = 0. Using this condition, the partial derivative in (8-7) can be taken

outside the integral, becoming a total derivative. Hence (8-7) can be written as:

22 L : U(z,0)dz (8 - 8)

where the integral term in (8-8) is nothing more than the internal area of the pore.

For simplicity, let us write the integral in equation (8-8) as:

) U(z,0)dz = A(o) : (8-19)

where A(0) represents the internal area of the pore as a function of the applied

stress . Finally, the pore factor w can be written as:

z dA(o)

v =27 "g

(8 — 10)

From a numerical point of view, equation (8-10) leads to a more convenient and
stable way to compute the pore factor w, because the number of derivatives neces-
sary to evaluate has been reduced to just one. Computing numerical. derivatives is
not a very stable process, especially when a very fine discretization is not currently
available. On the other hand, computing the integral of a discrete function is a
straightforward process. Values for the internal area of the pore as a function of ex-
ternal stresses can be calculated by the displacement discontinuity method, because
the discrete shape U(z,0) is evaluated from the displacements of the elements at
the midpoints. Once the internal area is known, the pore factor w can be calculated

by discretizing equation (8-10) in terms of a finite difference given by:

z Alo +60) - Ao — b0)
|4 260

w(o) =~ 2 (8 —11)
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The value for the stress increment 6o in (8-11) must be adjusted empirically for
the type of pore considered. We can expect to use a large value for 60 if the walls of
the pore deform smoothly (stiff structures). On the other hand, we must use a small
value if the function U(z,0) changes abruptly with pressure. Once equation (8-11)
is evaluated, we can compute the effective bulk modulus and Young’s modulus of
the solid by plugging the pore factor w in equations (8-2) and (8-4).

Equations (8-2) and (8-4) were derived for a single pore embedded in an elastic
solid. However, a typical rock is made of a large number of pores. Then we can
superimpose the results obtained for several different types of pores to build a
general solution for the effective elastic response of the rock. Because the values of
the elastic moduli in the matrix do not change, we only need to substitute the w.

term in (8-2) and (8-4) by a summation over the N pores used to model the rock:

w——-»Zw; (8-12)

This superposition is also valid for interacting pores as long as we include all the w
terms associated with those pores.

In conclusion, to determine the elastic constants in a porous rock model, we
need to run two separate numerical simulations. In the first simulation, the pores are
subjected to a uniaxial stress. Then (8-2) will be used to obtain the effective Young’s
modulus of the model. In the second simulation, the pores will be subjected to a
hydrostatic pressure. For this case, equation (8-4) is used to compute the effective
bulk modulus of the model. But once two elastic constants are determined, we can
use their values to compute other moduli because only two elastic constants are
independent (Sokolnikoff, 1956). Table 8-1 shows some of the relationships between

the elastic constants and seismic velocities.
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TABLE 8-1

Shear Modulus: u= 9%(_5;;
Poisson’s Ratio: v=32F

P velocity: V= Y, % %‘g—.—%
S velocity: Vo= %93{1(_5"5

9. EXTENSIONS AND LIMITATIONS.

So far, we have described the basis for the boundary elements method. We have
also applied that method to solve the problem of the deformation of a cavity as well.
as the stress and strain fields induced by that cavity on the elastic solid. Then, we
have used these results to infer other elastic properties of the solid like the stress
concentration factor and the effective elastic moduli.

It was pointed out in section 2 that the basic principles used to develop the
numerical method can also serve as the starting point to study many other physical
situations involving boundary value problems. The applicability of the boundary
elements method can be better visualized by giving the algorithm a simple structural

form. Such structure is characterized by the following modules:
1) Formulate of the problem and specify the related boundary
conditions.

2) Find a convenient elementary solution for which the influence

coefficients can be computed.

3) Discretize the region where the boundary conditions are de-
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fined.

4) Calculate functional forms for the influence coefficients by ap-

plying coordinate transformations.

5) Set up the system of linear equations by considering the bound-

ary conditions at each element.

6) Compute other responses in the system, using the values for

the perturbation factors obtained in step 5.

This type of structure warrants that most of the computer code written for a
particular boundary elements program can be used to implement other boundary
elements programs. The maip difference will be in the module which contains .
the functional form for the influence coeﬁicignts. Then we can move from one
application to the other by exchaﬁging these modules. There are further advantages
of writing a modular program but perhaps the most important is that the process
of maintaining of the computer code becomes straightforward.

Most of the limitations found in the boundary elements method can be solved
and extended by rewriting a few modules. For instance, we can deal with nonlinear
elastic problems by including a module {or group of modules) that solves a non-
linear system of equations. Problems in inhomogeneous bodies can be treated by
discretizing the lines of separation between homogeneous regions. Then the numer-
ical technique is applied on selected points on those lines. A comp]et.te discussion
on the implementation of modules for different types of problems in linear elastic-
ity, including inhomegeneous and anisotropic bodies, is presented by Crouch and
Starfield (1983).

There are other aspects that can be incorporatedfnto the context of our formu-

lation, for example the effect of water saturation on the elastic moduli and seismic
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velocities in porous materials. The general approach we followed in section 8 is
only applicable to dry pores, i.e. the internal region of the cavity is totally empty.
(This treatment can also be used for air filled pores, because in this case the surface
of the pore behaves almost like a free surface.) However, an interesting situation
occurs when the pore spaces are completely filled with fluid (water, oil). We can
solve this problem by assuming that the surface of the pore acts as a boundary of
two inhomogeneous regions (fluid and solid). However, a rather simple solution can
be found within the low frequency limit by using the Gassman’s relation (Gassman,
1955). This relation links the bulk modulus of a dry sample with the corresponding

bulk modulus of the fully saturated sample. The general expression is given by:

_ KqiKod KyK;
K, -¢/(3(K°— Kg) Kd-K,) |

where Ko, Kd, Ks and K f are the bulk modulus of the solid matrix, the modulus

(9-1)

of the dry rock, the modulus of the saturated rock, and the modulus of the fluid
which fills the cavity. ¢ indicates the porosity of the rock.

However, equation (9-1) is not valid for the Young’s modulus. To determine
the value for the saturated modulus, we use the relation between the dry and
saturated values for the shear modulus. This relation says that the shear modulus
is independent of the degree of saturation of the sample. Using this fact, the Young’s

modulus for the saturated sample is given by (Mendoza, 1985):

1 1
1/(517*“5;—'97‘ (9-2)

In this way, both the bulk and Young’s moduli of a saturated sample can be deter-
mined by using their corresponding dry values given by equations (8-2) and (8-4).

There are other areas of application for the numerical technique, for example
the calculation of the hydraulic and electrical properties of rocks, because such prop-

erties are basically controlled by the geometry of pore spaces. In future research,
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we will try to combine most of the petrophysical properties of sedimentary rocks in
a unified model.

There are evidences "in situ” (Nur, personal communication) that systems of
active faults act as domains which may influence the creation of new faults. The
study of the interactions between cracks can be extended to macroscopic scales so
that the effect of the stress field induced by a system of active geological faults

under the influence of tectonic stresses can be better understood.

10. CONCLUSIONS

A numerical scheme has been developed for the analysis of deformations of arbitrar-
ily shaped cavities embedded in a elastic matrix under the influence of arbitrarily
applied stresses. The scheme 'is based on the boundary elements ﬁlethod where
single linear elements are used to generate solutions around the cavity which sat-
isfy the prescribed boundary conditions. The technique as formulated in this paper
is applied to two-dimensional pores but it can be extended to cover more general
formulations. The method has been applied to solve the problem of the effective
elastic constants and seismic velocities in rocks as well as the study of the interac-
tion between closed pores. It has also been suggested that the numerical algorithm
is suitable for the study of crack propagation, hydraulic and electric properties in
porous material, as well as the study of geological faults under the influence of tec-
tonic stress. Therefore, the method can serve as the starting point for the study
of more complex problems in areas of elasticity, rock physics, seismology and other
related sciences.

The scheme is efficient in terms of processing time and memory consumption
compared with other well-known numerical techniques such as the finite elements

method, and can be implemented in microcomputers like the IBM PC.
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CHAPTER III

MODELLING POROSITY AND THE STATIC BULK MODULUS IN
SEDIMENTARY ROCKS

1. INTRODUCTION

The last chapter described in detail how the boundary elements technique can be
applied to calculate the deformation of pores caused by external stresses, and also to
use that information to infer the elastic moduli of porous materials. In this section,
we will apply that numerical techniqixe to explore the elastic behavior of several
arbitrary pore shapes. Then, based on such results, we construct a theoretical
model which explains the observed changes in porosity and bulk modulus with
pressure for selected samples of saﬁdstons.

The theoretical model will consist of a discrete distribution of pores shapes.
Only a few pore shapes will be considered, although the number of pores for each
shape is not restricted. There are two reasons to consider only a small number of
pore shapes instead of a broad distribution. First, we are interested in identifying
which geometries are responsible for the main trend observed in the bulk modulus
and porosity, rather than fitting the data highly accurately; and second a forward
model will be used to simulate the changes in porosity and bulk modulus. In a
forward simulation, the pore parameters must be changed by hand (and common
sense). Therefore, the process of matching the experimental data becomes cumber-
some when the number of parameters and pore geometries increases. Results from
this study will serve to better understand the importance of the pore geometry in
the behavior of the elastic moduli. Also, they will be the starting point for most

complex simulations.
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2. EXPERIMENTAL DATA

The theoretical treatment presented in the last chapter is applicable only to the
study of static elastic constants. This imposes a limitation on the type of data that
may be used, because it is well known that the behavior of the elastic constants may
be severely affected by the frequency used to measure them (Biot, 1955; Simmons
et al., 1965; Winkler, 1983). This means that the elastic moduli derived by velocity
data measured at high frequencies can be up to an order of magnitude different than
the elastic constants measured at zero frequency. We do not intend to discuss the
nature of such observations here but rather to use that fact to restrict our present
analysis to a particular range of frequencies (i.e., zero frequency).

Data for several types of sandstones listed in the SRP rock catalog (SRP, 1986)
were available in the form of porosity as a function of appliéd pressure. All of the
samples used are composed of fine grains which are very well-consolidated and very
well-cemented, with porosities that oscillate between 9% and 20%. The clay content
in the solid matrix and pores is low. We restrict our present analysis to dry rocks.

A list of the sandstones and their corresponding porosities is presented in the next

table.
TABLE 2-1
SAMPLE POROSITY (%)
Fontainebleau A 15.9
Fontainebleau B 20.0
Santa Barbara 12.2
Nugget 10.0
Tory 14.7

The changes in bulk modulus can be computed from the porosity data by means

of a simple mathematical procedure:
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The bulk compressibility is defined as:

14V
B = Vi (2-1)
In a porous solid, the total volume V is given by:
V=VntV, (2-2)

where V,, indicates the volume of the matrix and V, represents the volume occupied
by the pores.

Assuming that the volume of the matrix V,, does not change appreciably when
pressure is applieci to the solid, the total change in volume with respect to pressure

can be expressed as:

a z a0 (2-3)
Now, the porosity of the material is defined as:
143
¢=v (2-4)
Then, the change in porosity with pressure is:
dav,
6 _ 5V -V (2-5)
dp | &
Substituting (2-3) in (2-5) and using the definition of porosity {2-4):
d¢ _1dV,
and using the definition of bulk compressibility (2-1), we finally obtain:
1 -3

where K represents the bulk modulus of the solid.
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In this way, the bulk modulus can be calculated if the changes in porosity wi'th
pressure are known. In practice, the application of this procedure imposes some
limitations which will be discussed next.

If the porosity data are represented by a finite number of points, then the
derivative in (2-7) must be computed using an approximated numerical technique
as in the case of the finite differences. Then the accuracy §f the results will depend
mainly on the behavior of the function, as well as on the number of points used to
represent the porosity data. Figure 2-1 shows a typical plot of porosity as a function
of pressure for the Fontainebleau A sample. Since the points in figure 2-1 tend to

form a smooth curve, they were interpolated by a continuous function given by:

-B
alc(ag(l—e( =) , (2-8)
where:
ay = 102
ag = -.06
asz = 1594

Porosity plots for the other samples look quite similar. The next table shows the

coefficients of the interpolating functions for the other samples used in this study.

TABLE 2-2

SAMPLE . a; az as

Fontainebleau B 101 -.05 1588
Santa Barbara 101 -.02 1789
Nugget 102 -.07 1385
Tory 109 -.30 1073

The use of a function to represent the porosity and the fact that the data are

relatively smooth, help to obtain stable values for the bulk modulus. Figure 2-2
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Figure 2-1: The figure shows a typical plot of the relative porosity as a function of pressure for the
Fontainebleau A sample. The magnitude of the porosity at 25 bars is 15.7%.
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Figure 2-2: The figure shows a plot of the relative bulk modulus as a function of pressure for the Fontainebleau
A sample. The magnitude of the static bulk modulus at 225 bars is 53.8 kilobars. Notice the huge change
in the relative value for the bulk modulus between 25 and 225 bars.
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shows the bulk modulus for the Fontainebleau A sample as a function of pressure.
The bulk modulus for the other samples follows a similar pattern.

To obtain a better idea about which pore geometries are more appropriate to
model the porosity and bulk modulus of the samples, we must get some preliminary
conclusions from the behavior of the curves in figures 2-1 and 2-?. The first thing
to note is that the change in bulk modulus from 25 bars to 225 bars is about 80%.
This is a large change which is observed only in static measurements and is mostly
due to the closing of pore spaces. It is clear that very stiff geometries like those
shown by circular and starlike pores will not be able to explain such large change
in the bulk modulus. (we will discuss these geometries in detail in a later section.)
However, ellipsoidal pores with small aspect ratios (Tokséz et al., 1976; Mavko et
al., 1978) are more suitable to .expla.in larger changes, although not as large as the
ones shown in figure 2-2. On the other hand, low aspect ratio cracks, can account
for porosities only between 0% and 1% which are too low for most sandstones. The
stiff geometries can easily account for much higher porosity.

These facts tell us that in principle we should try to combine large aspect ratio
geometries, which take care of the magnitude of the porosity, with low aspect ratio

geometries, which take care of the relative changes in bulk modulus, to model the

samples.
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3. THEORETICAL MODELS

The theoretical basis to compute the pressure dependence of the elastic constants
for a particular pore geometry was explained in the last chapter. In that section we
found that most of the elastic properties of the solid (including porosity and bulk
modulus) are governed by the internal area of the pore A(c). In particular, the

bulk modulus of a solid containing N pores is given by:

_ z; dAi(0)
X = % 2ZV . (3-1)

and the porosity as:
1 N
=7 ZA.‘(O’)Z,’ | (3-2)
These equations are also valid for grou;—s-lof interactive pores as long as they hold
mirror symmetries, so that they can be treated as one large and complex pore.
We first compare the results forvwell known geometries (circular and tapered)
with the porosity and bulk modulus obtained from the samples in order to figure out
in what direction we need to go to ogtain new pore geometries which can explain
such data. All the computations were made assuming that all the applied stresses
are hydrostatic. The first shape to try is the circular pore. The equation for circular

pores shown in the last chapter is:
- v?)
3-3
) (3-3)

This equation gives us the pressure depehdence of the internal radius of the circle

R(0) = Ro(1 - 221=¥)

R(o) if the original radius (at zero pressure) Ry is known. Then, the internal area
is given by:

A(0) = #R*(0) (3-4)
Using the values of 0.23 for the Poisson’s ratio v and 4 x 10° bars for the Young's
modulus of the matrix, the bulk modulus and porosity for the circular pore com-

pared with the data from the Fontainebleau A sample is plotted in figure 3-1. We
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Figure 3-1: The figure shows a model results for a group of circular pores against the data from the
Fontainebleau A sample. Line with squares represents the model results; black circles represent the ex-
perimental data. The number of pores has been adjusted to reflect a match in the magnitude of the porosity
for the model and sample at 25 bars. Two populations of circular pores were used: The first one consisted
of 480 pores with a Rg = 1.4um and 5 = Sum and the second was of 100 pores with Ro = lum and z = 3.
The magnitude of the bulk modulus at 225 bars was about 209 kbars.
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have adjusted the number of pores N to reflect a match in the magnitude of the
porosity for the model and sample at 25 bars. As was expected, the changes in bulk
modulus for the circular pore are negligible, because the variations in its internal
area with pressure are very small. However, this geometry has the advantage of
keeping porosity high because of its great internal area.

Let us now compare the results from a tapered pore with the data from the
Santa Barbara Sandstone sample. This sample also presents a large change in bulk
modulus from 25 to 225 bars (about 80%). A very low aspect ratio (a = 0.001)
was used for the pore model to try to match the large changes in bulk modulus and
porosity. The results are shown in figure 3-2. The number of pores was adjusted to
match the magnitude of the porosity at 25 bars. As we can see, the change in bulk -
modulus for the tapered pore is small compared with the data. The magnitude of
the bulk modulus turned out to be very small as well. If we tried to match the
magnitude of the bulk modulus, we would obtain an insignificant value in porosity.
This is due to the small internal area presented by the pore.

The next geometry to try is the cruciform crack or star-shaped crack. This type
of shape has been studied by several authors (Rooke and Sneddon, 1969; Kutter,
1970; Williams, 1971) and as it was pbinted out in the last( chapter, this geometry
is very representative of the kinds of pores we expect to see in sandstones. The
elastic response for the star-shaped pore becomes quite similar to that found in
circular pores when the number of spikes is greater than two (Kutter, 1970). For
these results, we have assumed that the number of spikes in the pore is even and all
of the spikes have the same length. The same kind of results can also be found for a
' more irregular type of star-shaped pore for which the lengths of the different spikes
are not the same, as long as the differences in length are small. (This result can

be obtained by analyzing the pore by means of the boundary elements technique
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Figure 3-2: The figure shows model results for a group of tapered pores against the data from the Santa
Barbara sample. Line with squares represents the model results; black circles represent the experimental
data. The number of pores has been adjusted to reflect a match in the magnitude of the porosity for the
model and sample at 25 bars. One population of tapered pores with aspect ratio of 0.001 and z = 12um was
used. The magnitude of the bulk modulus at 225 bars was about 5600 bars.
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described in the last chapter.) Figure 3-3 shows a four spikes star-shaped crack and
its internal deformation with pressure. As we expect, the change in bulk modulus
for this geometry presents the same characteristics as the circular pore. However,
the amount of porosity due to this type of pore is much smaller because of its
reduced internal area. The deformation of the pore with respect to applied pressure
can be increased if we group two or more pores close to each other so that they
are allowed to interact. Such a technique was also discussed in the last chapter.
This type of geometrical disposition is observed in sandstones where a group of at
least two star-shaped pores afe in close association. Figure 3-4 shows the internal
deformation presented by the same pore shown in figure 3-3, but when it interacts
with a self-similar crack located at a distance of 0.01¢ wherg ¢ is the length of the.
pore measured from opposite t;pikes. As we see, the deformation is bigger for an
interactive crack, but still it is not big enough to explain by itself the large change
in bulk modulus observed in the data. Figure 3-5 shows a model of star-shaped

cracks compared to the data from the Fontainebleau A sample. Again, the number

of pores N has been adjusted to match the magnitude of the porosity at 25 bars.

At this point, one may ask the reason why the star-shaped pore with an even
number of spikes of four or more becomes very rigid (the two spike case becomes
a tapered pore). What happens is that in a star-shaped pore with more than two
spikes, the stresses around the pore can thus be approximated by those around
a circular, ‘equivalent’ hole of a radius equal to that of the crack spikes (Kutter,
1970). In the case of two spikes, the stress pattern is not symmetric and it makes
the walls of the cavity less stiff. So far, our analysis has been restricted to an even
number of spikes. An odd number of spikes can also be treated by a boundary
elements method but due to the lack of two axes of symmetry (there is only one),

its analysis becomes more complex. We will not examine that case in this study.

105



-0,

v20t

STAR!

i
—

DD G DT
a ¢ 23 8

k.

g_L|L|
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Figure 3-4: a) Relative change of internal area and b) derivative of (a) for an interactive STAR1 pore. The
separation of tips between the two pores was of 0.01c. .
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Figure $-5: The figure shows model results for a group of STAR1 pores against the data from the
Fontainebleau A sample. Line with squares represents the model results; black circles represent the ex-
perimental data. The number of pores has been adjusted to reflect a match in the magnitude of the porosity
for the model and sample at 25 bars. One population of 9850 STAR1 pores with £ = 17um was used. The
magnitude of the bulk modulus at 225 bars was about 89.6 kbars.
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We will now review an intermediate type of pofe which is in between the tapered
and the star-shaped geometry. For simplicity, let’s refer to this particular family of
geometries as the pseudo-tapered (we could also use the term pseudo-star). This
geometry can be visualized as the space left by foqr quasi rectangular grains as
shown in figure 3-6.

Figures 3-7 to 3-10 show the deformations and their corresponding derivatives
for four different pseudo-tapered pores. The main differences between those pores
is the length of the spike parallel to the y axis. Notice that the slopes held by the
derivatives are much steeper than those presented by other shapes. The decompen-
sation in the stress field due to the incipient spike is responsible for the great change
in internal area of the pseudo-tapered pore. Once the spikg becomes large (about
0.1 times the length of the lméer one), the resultant stress field around the pore
becomes more symmetric and regular and the elastic response of the pore resembles
that presented by the circular and star-shaped pores.

The large variation in the internal area held by the pseudo pore, is responsible
for the large change in the bulk modulus of the solid which contains these cavi-
ties. This large change is big enough to be compared with that presented by the
Fontainebleau A sample as well as the other samples available. Figure 3-11 shows a
tentative model for the Fontainebleau A sample using the PTAPERED1 pore. We
have adjusted the number of pores N to match the magnitude and §hape of the
bulk modulus. However, because the internal area of the pseudo-tapered pore is
small, the porosity (magnitude and pressure dependence) could not be matched.

So far we have found four different types of elastic responses which are sum-

marized next:
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Figure 3-7: a) Upper portion of the pseudo-tapered pore PTAPEREDI. b) Relative chanée of internal area
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Figure 3-8: a) Upper portion of the pseudo-tapered pore PTAPERED2. b) Relative change of internal area
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Figure 8-11: The figure shows model results for a group of PTAPEREDI1 pores against the data from
the Fontainebleau A sample. Line with squares represents the model results; black circles represent the
experimental data. The number of pores has been adjusted to reflect a match in the magnitude of the bulk
modulus for the model and sample at 225 bars. One population of 9738 PTAPERED1 pores with z = 16um
was used. The magnitude of the porosity at 25 bars was about 0.8%.
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TABLE 3-1

GEOMETRY CHANGE IN K INTERNAL AREA
Circular small large
Star-shaped small medium
‘T'apered medium small
Pseudo-tapered large small

From the last table we could conclude that each of the individual pore geome-
t;'ives is not suitable to simulate the bulk modulus and the porosity of the samples
by themselves. However, if we mix them together according to some proportion,
we may find that the bulk mo.d'ulus and the porosity of the samples could be mod-
eléd, because the elastic responses of some geometries are complemented by others.
From a physical point of view, that assumption makes sense because a saqutone

is an aggregate of irregular grains which produce pore spaces having many types of

shapes and sizes.
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4. SCALES

At this point, it is useful to introduce some geometrical relations derived from the
discrete representation of the pore space. In the last chapter, we showed that in
order to apply the numerical algorithm, we must discretize the shape of the pore
as a set of interconnected straight lines. Perhaps, the most interesting consequence
of such discretization is that the internal area and the perimeter of a re-scaled pore
geometry (i.e. a magnified or diminished pore in which its z and y axes have been
multiplied by a constant value) can be obtained from the values of the unscaled
pore. If the pore geometry is ellipsoidal, we can then say that the corresponding
aspect ratios in both the original pore and the rescaled pore are exactly the same.
However, their perimeters and_interna.l areas are different. To derive the relations
that link area and perimeter in both pores, we first consider one linear element of
the pore walls.

Let y = az + h be the linear equation which represents one element of the orig-
inal pore. The area under the straight line for the segment defined by z; < z < z,
is given by:

Ao = /:2 (az + h)dz = 5;-(13 ~ z3) + h(z2 — 1) (4-1)

Now, let’s multiply the £ and y axes by a constant value m. The new equation for

the straight line will be given by y' = az + mh. The length of the new segment is

now mz; < z < mz; and the area is given by:

Ay = / (az + mh)dz = mz(g(zg - z2) + h(z; — ;) = m? A, (4 -2)

mzx;
Then, the new area is the old one multiplied by the square of the magnification
term. This result can be extended to all the elements of the pore and by using the
superposition principle, we can generalize (4-2) to be valid for the whole internal

area of the pore. It is easy to show that (4-2) is also valid for the circular pores
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which are made of a polygon of an infinite number of sides. For this case, the

internal area of the circle is given by:
Ag = ﬂ'Rg (4 - 3)

To rescale the pore, we multiply the radius of curvature Rg by m. Then the new
area is:

Ar = 7(mRo)? = m*rR2 = m? 4, (4 —4)

Using similar arguments, one can show that the perimeter of a rescaled pore
(perimeter,) can be calculated from the perimeter of the original pore (perimetero)
by:

perimeter; = m X perimeterg (4-5)

Rescaling a pore produces changes in the magnitude of the internal volume of
the cavity and the derivative of its area with respect to pressure. However, the
functional form and shape of the derivative for both the original and rescaled pores,
remain constant. (The internal area on both pores differs by the square of the factor
m which is independent of pressure.) This fact leads to a very important property
which will be discused next.

Let’s start by writing the equation for the bulk modulus of a homogeneous

population of pores, i.e. pores with the same size and only one aspect ratio.:

1 1 2m¢2NzdA
=0+ ——— (4-6)
K; Ko V do
where mg indicates the magnification of the pores within the populations with
respect to a reference pore with magnification m = 1.

Now, let’s assume that the solid contains two populations of pores. Both
p

populations are made of the same type of pores (same aspect ratio) but different
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sizes. Calling m; the magnification of the first population which contains N; pores
and m, is the magnification of the second population which contains N, pores. The

bulk modulus for the solid which holds the two populations is given. by:

1 _1 . 2 2 2y 44 g _
Kf—K0+V(N1m1 +N2m2)da (4-17

Now, by picking convenient values for N; and N2, we can see that equation (4-7)
produces the same result as equation (4-6). Then, by equating (4-6) to (4-7) we
find that:

ﬁ = Nlmlin-*;zszzz

(4-8)

To get equation (4-8) we have assumed that the length of the pore tubes z is constant '
for all the populafions.

The meaning of equation (4-8) is that a particular population of pores with
specific size can be split in many populations of the same type of pores. This
conclusion clearly aﬁ'ectsvthe uniqueness of the theoretical model and it will be
discussed in more detail in section 6.

As was pointed out before, the shape of an ellipsoidal pore can be characterized
by a geometrical relation called the aspect ratio which measured the eccentricity
of the ellipse. This description is useful for other regular pore geometries like the
circular and tapered pores. However, once the geometries become more irregular,
the aspect ratio becomes meaningless. Based on the results obtained in (4-2) and
(4-5) we will introduce a new factor that can be.used instead of the aspect ratio to
characterize more irregular geometries. As with the aspect ratio, this factor must
be invariant to changes in the pore scale.

In order to find such a factor, we start lodking at the ratio between the external

surface of the pore and its internal volume which is known as the surface to volume
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ratio. Separating this relation in its primitive components we have:

S perimeter X z
(V Jo area X z ( )

The surface to volume ratio for a rescaled pore is then:

S m X perimeter X 2 .
(Fh=

m2 X area X z (¢-10)
which is clearly not equal to (4-9) due to the factor m in the denominator. Then
the surface-to-volume ratio is not invariant to the scaling property. Now, if we
define the ratio between the surface and the square root of the volume, we end up
with a parameter which is independent of the scale used and still is related to the

geometry of the pore. To make it dimensionless, we multiply the internal volume

by the length of the pore z. If we call this parameter ¢ factor it will be given by:

perimeter _

We must recall that (4-10) has been introduced only to facilitate the description of
irregular shapes and may not have any other physical meaning. (A similar factor
was introduced by O’Connel and Budiansky, 1974 to define the pore density in
materials containing elliptical cracks. See chapter I.)

The next table contains the ¢ factor as well as the aspect ratio (where appli-

~ cable) for some of the geometries presented in section 3.

TABLE 4-1
GEOMETRY ASPECT RATIO Y FACTOR
Circular R=1 ) 1 3.5
Starl n/a 16.1
Ptapered2 n/a 46.9
Ptaperedl n/a 50.8
Tapered .002 57.8

As we can see, the ¢ factor is inversely proportional to the aspect ratio.
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5. SIMULATIONS

So far we have settled the theoretical basis for modeling the pressure dependence of
the bulk mddulus as well as the porosity of several samples of sandstones. We have
also explored the elastic responses for several pore -geometries. In this section we
will combine these two aspects to obtain a model which can explain the observed
data. As was pointed out in a previous section, we will make use of a forward model
so only the most representative pore shapes will be considered. This implies that
the model will contain a minimum number of geometries which are able to represent
the most remarkable aspects of elastic response (average shape and magnitude).
The first step in the simulation is to establish a working model for the rock.
From now on, it will be assumed that the rock can be characterized as a cubic solid
filled with an elastic matrix. The volume of the solid is abéut 10° (um)3, where
um denotes unit of measux;e. The réason to use an arbitrary system of measure
instead of a standard system like the CGS, is because equations (3-1) and (3-2),
which establish the functional form of the bulk modulus and porosity of the rock,
are independent of the system of units used to define the pore and rock dimensions
as long as these two parameters are measured with the same system of units. The

following table summarizes some of the matrix properties.

TABLE 5-1
MATRIX PROPERTY VALUE
Young’s modulus 4 x 10% bars
Poisson’s ratio 0.23
Density 2.65
Total volume 105 um?®

Other elastic parameters like the matrix bulk modulus are derived from the
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values given in the above table.

The elastic matrix is embedded with pores of different shapé. Then the model
will be characterized by:

1) Pore shapes

2) Number of pores pcr shape

3) Length of the pore tubes for each shape

Modifying each one of these parameters, will produce a change in the behavior
of the bulk modulus and porosity of the model. Then, to simulate the observed
data, it is necessary to keel; changing the values of these parameters until the
model results match the data.

We start the simulation analyzing the Fontainebleau A sample. Figures 5-1
to 5-3 show the results of the simulation. Figure 5-1 shows the bulk modulus'
simulation. The solid line represents the model results while the dots répresent the
data results. Although the plot shows only a match of the relative bulk modulus,
it has also been required that data and model coincide in magnitude at a pressure
of 225 bars. The biggest differences between data and mode! are about 4%. This
error could not be reduced because of the small and limited number of pore shapes
used in the model. Figure 5-2 shows the relative porosity as a function of pressure
for both model (solid line) and data (dots). Magnitude of the porosity for model
and data was required to coincide at a pressure of 25 bars. Figure 5-3 shows a
histogram representing (a) the number of pores used in each geometry (in percent)
and (b) the internal volume occupied by all the pores of a given shape (in percent). «
Two important conclusions can be made from the histogram:

1) Most of the porosity is concentrated in the stiff pores (circular)

2) Pores with bigger ¢ factors tend to be more abundant than pores with

smaller v factors.
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FONTAINEBLEAU A

BULY MODULUS (22SB) = S3.8 Kb

RELATIVE BULK MODULUS

014 T T T
25 75 125 175 225

PRESSURE (bars)
- ADEL @ ©vaATA

Figure 5-1: The figure shows the results of the relative bulk modulus simulation for the Fontainebleau A
sample. Line with squares represents the model results; black circles represent the experimental data. The
mode] parameters were adjusted to reflect a match in the magnitude of the bulk modulus for the mode! and
sample at 225 bars as well as a match in the porosity at 25 bars.
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FONTAINEBLEAU A
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Figure 5-2: The figure shows the results of the relative porosity simulation for the Fontainebleau A sample.
Line with squares represents the model results; black circles represent the experimental data. The model
parameters were adjusted to reflect a match in the magnitude of the bulk modulus for the model and sample
at 225 bars as well as a match in the porosity at 25 bars.
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Figure 5-3: The figure shows a histogram representing the percent number of pores used per geometry and
the percent volume occupied by all the pores of a given shape to model the Fontainebleau A sample.

125



Due to the fact that the model was not computed by using an ordinary inversion
technique (like the least square method), it is difficult to obtain a quantitative
parameter or set of parameters like the resolution and covariance matrix (Mendoza
et al., 1985. See chapter V.) which describe the co.ntribution and stability of the
solution for each of the pore geometries involved in the simulation. However, we
can introduce some perturbations by eliminating one geometry and then comparing
the new response of the model with respect to the original one. In this way, it is
possible to get a good estimate about the role played by a particular shape within
the model. Figure 5-4 shows the behavior of the relative bulk modulus generated by
a model when each of the géometries has been eliminated. Figure 5-5 is very similar
to figure 5-4 but it shows the relative change in porosity. Figure 5-6a shows the
variation in magnitude for the .bulk modulus at 225 bars while figure 5-6b presents
the variation in magnitude for the porosity at 25 bars for the ﬁerturbed model. From
these figures we can conclude that both the circular pores and the PTAPERED1
pores, are the major contributors to the simulation. The STARI1 pores contribute
on a minor scale. Other pores have a minimal contribution to the general trend but
they can be used to smooth the curve a little bit more.

Figures 5-7 to 5-9 show the. results obtained by modeling the Fontainebleau B
sample. Although its elastic behavior is similar to that found in the Fontainebleau
A sample, the porosity is now 19.6%. Because the porosity is larger, it was necessary
to increase the volume occupied by the circular pores as shown in ﬁgufe 5-9.

Figures 5-10 to 5-12 show the model results for the Santa Barbara sample,
while figures 5-13 to 5-15 present the simulations for the Nugget sample. These two
samples have lower porosities (11.7% and 9.3% respectively) and in both cases, the
bulk modulus was modeled fairly well. This is probably due to the fact that the

lower the porosity the less complex the pore space is and therefore the more easily
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Figure 5-4: The figure shows the behavior of the relative bulk modulus simulation when each of the geometries
has been eliminated. The solid line indicates the results of the experimental data. Symbols indicate that all

but that particular pore are included in the model. For instance, the open circle indicates that the model
contains all the geometries except the circular.

x107¢
100.

2
'/"
-
4
[

- N¢-- DATA !
AN i

] A ]
]

0 no ptaperedl

o
v-]
1

8
2]
T

X no ptipered2

CreiNOPOY MECwnpe
T

97.5
+ no ptaperedd
9. N A no ztarl 4
! no circular at 75 bars -) .74 i
%.5 |- -
96. 1 | ) _ | i1 1 1 | 1
2., 6S. 1G6S. 145, 185. 225,

Fressure (bars)
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Figure 5-6: a) Histogram representing the variation in percent of the magnitude for the bulk modulus at 225
bars in the models presented in figure 5-4. The numbers at top of the bars indicate the magnitude of the
bulk modulus for that particular model. b) Histogram representing the variation in percent of the magnitude
for the porosity at 25 bars in the model presented in figure 5-5. Numbers at top of the bars indicate the
magnitude of the porosity. ‘ -
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FONTAINE BLEAU B

BULK MODULUS (225b) = 63.7 Kb

RELATIVE BULK MODULUS

0.1+ T T T
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— MODEL @ DAT:

Figure 5-7: The figure shows the results of the relative bulk modulus simulation for the Fontainebleau B
sample. Line with squares represents the model results; black circles represent the experimental data. The
mode] parameters were adjusted to reflect a match in the magnitude of the bulk modulus for the model and
sample at 225 bars as well as a match in the porosity at 25 bars.
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FONTAINE BLEAU B

POROSITY (25b) = 19.6 %
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Figure 5-8: The figure shows the results of the relative porosity simulation for the Fontaineblean B sample.
Line with squares represents the model results; black circles represent the experimental data. The model
parameters were adjusted to reflect a match in the magnitude of the bulk modulus for the model and sample
at 225 bars as well as a match in the porosity at 25 bars.
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Figure 5-9: The figure shows a histogram representing the percent number of pores used per geometry and
the percent volume occupied by all the pores of a given shape to model the Fontainebleau B sample.
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SANTA BARBARA

BULK MODULUS {225b) = 114 Kb

RELATIVE BULK MODULUS

0.2 4 T T -1
25 75 1258 17% 225
PRESSURE (bors)
— MODEL @ o

Figure 5-10: The figure shows the results of the relative bulk modulus simulation for the Santa Barbara
sample. Line with squares represents the model results; black circles represent the experimental data. The
model parameters were adjusted to reflect a match in the magnitude of the bulk modulus for the mode] and
sample at 225 bars as well as a match in the poroeity at 25 bars.

132



SANTA BARBARA

POROSITY (25b) = 11.7 &

RELATIVE POROSITY

0.98 T 11 1
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— MODEL © Data

Figure 5-11: The figure shows the results of the relative porosity simulation for the Santa Barbara sample.
Line with squares represents the model results; black circles represent the experimental data. The model
parameters were adjusted to reflect a match in the magnitude of the bulk modulus for the model and sample
at 225 bars as well as a match in the porosity at 25 bars.
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Figure 5-12: The figure shows a histogram representing the percent number of pores used per geometry and
the percent volume occupied by all the pores of a given shape tc model the Santa Barbara sample.
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NUGGET

BtaK MODULLS (225b) = 82.3 Kb

RELATIVE BULK MODULVS

.14 T — ~
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Figure 5-13: The figure shows the resunlts of the relative bulk modulus simulation for the Nugget sample.
Line with squares represents the model results; black circles represent the experimental data. The model
parameters were adjusted to reflect a match in the magnitude of the bulk modulus for the model and sample
at 225 bars as well as a match in the porosity at 25 bars.
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Figure 5-14: The figure shows the results of the relative porosity simulation for the Nugget sample. Line with
squares represents the model results; black circles represent the experimental data. The model parameters
were adjusted to reflect a match in the magnitude of the bulk modulus for the model and sample at 225 bars
as well as a match in the poroeity at 25 bars.
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Figure 5-15: The figure shows a histogram representing the percent number of pores used per geometry and
the percent volume occupied by all the pores of a given shape to model the Nugget sample.
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it is simulated by a simple model.

The last modeled rock was the Tory sample. This rock is a little peculiar with
respect to the rest of the samples because the change in bulk modulus between 25
and 225 bars is less than that of the other samples (65% against 74% or more).
Because of this smaller change, we need to use a pair of interactive tapered pores
with an aspect ratio of 0.002 and a separation between the tapered edges of 0.04c
(¢ is the half length of the pore). Figures 5-16 to 5-18 show the results of the

simulation.

6. UNIQUENESS OF THE SOLUTION

Once the thepretica.l models have been presented, it is important to discuss the
scope and limitations of the sir-nula.tion.

To start, we will say that the models presented in this study are terribly
nonunique because the average values for the bulk modulus and porosity —which
is what we measure— are independent of the geometrical disposition of the pores
within the rock. In other words, we can locate all the pores in the model within one
corner of the solid or we can randomly distribute the pores within the whole body
and get the same result in both cases. The explanation of this fact is not difficult
to understand. First, porosity refers only to the total volume occupied by the pores
regardless of how such volume is distributed. Second, as was discussed in the last
chapter, bulk modulus is measured (and also modeled) by subjecting the solid to
hydrostatic stresses. Then, the pore spaces will deform at the same rate no matter
how we orient them. We can refuse this argument by saying that the pores must be
separated by some distance so that they do not interact but, with more than 80%
-of the solid occupied by the elastic matrix, there is enough room inside to safely

distribute the pore spaces. Even though we may consider some interactive pores,
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Figure 5-16: The figure shows the results of the relative bulk modulus simulation for the Tory sample.
Line with squares represents the model results; black circles represent the experimental data. The model
parameters were adjusted to reflect a match in the magnitude of the bulk modulus for the model and sample
at 225 bars as well as a match in the porosity at 25 bars

.
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Figure 5-17: The figure shows the results of the relative porosity simulation for the Tory sample. Line with
squares represents the model results; black circles represent the experimental data. The model parameters

were adjusted to reflect a match in the magnitude of the bulk modulus for the model and
as well as a match in the porosity at 25 bars. model and sample 3¢ 225 bars
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as in the case of the STAR1 pores, the space occupied by the matrix is enormous.

To constrain the pore distribution inside the solid, it is necessary to take into
account other parameters which are more dependent on the spatial disposition than
the two parameters we have considered in this study. Among the parameters that
are spatially dependent we can cite: the Young’s modulus or electrical and hydraulic
properties (Owen, 1952; Kirkpatrick, 1973; Seeburger, 1984). Future work will
involve the use of these kind of parameters.

There are other factors which can also reduce the uniqueness of the simulation.
For instance, the scaling property exhibited by the pore geometries can generate sev-
eral models with the same ¢ factor but with different magnification whiéh produce
exactly the same results. Again, we need to introduce a physical property which
depends not only on the ¢ fac£or but also on the magniﬁcaiion of the pore. The
surface-to-volume ratio discussed in section 4 could be used to partially remove that
ambiguity since such a ratio measures the proportion of internal area and perimeter
of the pore which varies for two identical pores with different magnification.

From the above discussion, we can conclude that the porosity and bulk modulus
are not the most convenient parameters to establish a unique model that represents
the elastic properties in rocks. However, because the porosity and bulk modulus
do not depend on the spatial distribution of pores in the rock, they are easier to-
modeled. Therefore, they represent a convenient way to dévelop and test theoretical
models which incorporate new pore shapes. If a particular geometry is not suitable
to match the observed bulk modulus and porosity data, we do not expect that such
geornetry fits any other elastic moduli. Therefore, a theoretical model as described
in this study, can be used as a starting point to construct more complex and then

realistic models of the elastic behavior of porous materials.
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7. DISCUSSION

In the last section we discussed the main reasons why the numerical simulations
considered in this study do not lead to a unique solution. In this section, other
aspects of the simulation will be considered.

The main point to consider has to do with the kind of theoretical model used to
describe the rocks. As was mentioned before, the solid is represented by an elastic
solid matrix which has been filled with cavities. The stress and strain fields inside
the matrix obey Hook’s law, i.e. strains inside the solid are proportional to the
ai)plied stress field. In pr'mcipie, this is a simplistic representation of a sedimentary
rock, which in real life is more heterogeneous and complex than that. However,
the good agreement observed between the experimental data and the simulation
results indicate that in principle, a linear elastic model is a good approximation
to the real behavior of the .'vsa.ndstones, at least for the samples considered in this
study. We attribute most of the discrepancies observed between model and data
mainly to thé small number of pore geometries considered and, on a miﬂor scale,
to the simple representation of the solid matrix which does not take into accoﬁnt
local phenomena like cementation, clay content, small changes in elastic properties
(heterogeneities), and others. We have been careful to chose samples which are
relatively clean so that the effect of clays is small. (Tosaya and Nur, 1982; Han and
Nur, 1986.) However, Han and Nur (1986) have pointed out that in order to model
elastic constants in solids with moderated to high clay contents, it is important to
include some terms that account for the presence and effect of clays on the behavior
of the elastic moduli and seismic velocities. Unfortunately, theoretical models that
take into account the mechanical effect of the clays within the pores and matrix are

scarce and more research must be done in that area.
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8. CONCLUSIONS

The numerical models discussed in this study give us a global information about
some elastic properties of the solid as well as the possible internal structure of the
pore spaces, regardless of the geometrical disposition of the cavities within the body.

The use of the boundary elements method as a numerical technique to study
the elastic response of solids opens a great number of possibilities because it allows
exploration of more complex and real geometries than the analytical methods per-
mit. Yet there are problems which can be solved by including more powerful and
sophisticated algorithms, under the context of the boundary elements technique.

To remove some nonuniqueness, it is necessary to consider other properties, for
example: Young’s modulus and hydraulic properties.

An inversion technique is mandatory to produce a more concise model of the

pore spaces.
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COMPUTER LIST OF THE PROGRAM BEM.5
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/% PROGRAM BEM S (z) STANFORT UNIVERSITY 1986

»
~

*****************************************l‘(\
b

JORGE MENDCZA

ROCK FYESICS BROJELT
OEPARTMENT OF GEOPHYSICS
STANFORD UNIVERSITY
STANFORS, CA 94303

This is version 5.30 (27/09/1986) 1BM PC/XI/AT.

N OO RO &
B2 S is a program that uses the Displacerent Discontinuity Methoa #
(A beundary elements algorithe) to compute the cefcrmatics of a3

pare subjected tc externai stresses. This prosrae has its rogis in
the program TWODD described by Crouch and Starfieid [1983) Bounda~
ry tlement Methods in Solids Mechanics (Gecrse Alien & Unuin Ltd).

The program is tatally written in C lansuase ard it has teen rum
suzesstully in an [BM PC personal computer using Microszit € ver-
sicns 3.x and &.x as well as in a VAX 750 running under UNIX goe-

rating system, The prograr reads an input file cantaining the data

f22» t=g zamzand line argurent. The syntax is:

ben_S Cinput)?

No exir2 optians are availabie.
The input file must contain the foiicwing tormas:

{Al} items within the sare line are separated by

no speciai location within the line is necessary for the items).

Ling 1:

prosran nane

Ling 2¢

+ Neme 0t the 2utput tiles {up tc 8 characiers). This

nate wiii e used to build the gutput names by
adding the cOrrespOncing extensions. For examp.e:
t2r @ prozear nare T tesy, the procram wiil gore-
rate the tolisuing output tiles:

test.det : cantains defarmaticns,

test.prn ¢ contains areas ang energy facidrs
test.ext : contains external stresses

NUMBS NUMOS KSYM

No¥32

NGMOS

KSYM

Line 3:
FREC D
PR

-

3
U

Line &:
NUPRZS
NUPRES

{ nymser 2t straignt line Soundary segments used to

cetine zouncary contours {Up 2 32 1ines)

numcer gt gther iine sesments {not on a bouncary)
alorg which displacements and stresses are to &2
zamputes. Uc not use it for muitipie pressures

: 3 y=0 is a iire of sycmetry (see *ig., 1)

1

& x=U ang y=0 are !ines 0% symratcy

S y=0 is 2 line cf symmetry and pore has zonjusate

: Pzisstn’s ratio

: Yaung's modulus

Zern Zera. Not uses in this version (but required)

: Nusber gf stresses or pressures to campute.
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Line 5 ¢c B4NUPRES-1:

PXX PYY PXY

PXX : Stress aiong x axis {nesative means camsressign)
FYY : Stress aiong y axis

PXY : shear stress in piane x-y

Ncte: stresses must br given in the same units as Yzunc's maduiu
Line SENUSRIS to S+NUFRESENUMBS-1:
4 X325 YBED XENG YEND 1 0 D

i : One. No usec in this versizn (but required)
XBz5 : x goordinate 0f begining ot line secrent
Y3zt t y zpordinate of beginins 2t line secment
ENG t x zaordinate 2% end ot line secment

YEND ¢y coardinate of end ot line segment

1t ¢ Qne Zers Zero. Not used (but required)

Note: the iaformarion for each seoment uses one line

Line 3+NUPRES+NUMBS:

XBES YBEG XEND YEND NUMPB

Note: These coordinates define the sesrents external to ¢he boun-
daries of the pore where dispiacements ang stresses are {0
be computed,

X3zs t x zoordinate of tirst point on line

YEEG t y goordinate of first point an line

XEND ! x cogrdinate 0t last point on iine

YEND : x cacedinate of last point on linme

NUMPB : number of ecualily spaced points betueen the spe-

citied tirst and last points

See exampies at the end ot the program
FERREE RN RN AR KRR RER AR KRN RO ER IR AR RN
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#inzivde(stdic.h)
#incluce(matn.h)

#detire sizel B3 /% Detinine veztor size ¥/
#det'ne sizeZ 100 /% Detinine matrix size ¥/
#d tine pressy 20 /% Detining % of pressures ¥/

tiset phiproprlyarZscanscons ) xtempsytenpyyitenas
ti0at 5xx598xxXNI5YYSsSYYNISXYS 1 5XYNIUXS SUXNIUYS IUYR]
static +icat clsize2](size2lixneulsizell yneuisizeil bbuitisizell;
main{argey argv)
int argci
.

char ¥areoulli -
{ /% start main ¥/

FILE Xipl,%4pZ,%4p3 ¥4pb %fapen{ ) ¥iclose();
int j;numbsvnumasnksym;n;numbe:num»kode:ne)m:mn;ms;nn;ns;i»
inyissjnsjsinpointonumesnumebinisjjjsnupres: jpressectias=,G60=33

static ‘nt kodisizell;

tlgat e:xsym:ysymxpxxxpyy:pxy;sw;xend;xbes;yend;ybes,bvs»bvn>
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sizeranciescoshysindidelxrdelystemslytenpZiarea;

static +ipat xnlsizellsymlsizetdialsizellysinbetlsizel lscosbetls 2ot
bisize2l dlsizel] areaZlpressulreprelpressul;

static tloat epxx[pressulippyyipressulippxylpressuliene-ovipressuli
char titlel8C01 namel 707, %anamel 3 iname2l 7005
/% t21 & argvill cortain imput tile ¥/

/% t22 containe gutput cefcrration tile #/
/% 23 zontains output external $ielf ¢iig #/

cls(})i
srines{? 85 version S.3 (07/89/84) [BM BZ . \~");
grined(” Stantg~d R2=k Fhysics\n®);
printt(” (c) Stanfcr: University\n\n?);

it (aravlil == NULL) /% check data tiie ¥/

[ print#{®Usage: ber S input_deta.pre \n”);
exit{f); ]

/% read input data ¥/

tpl = fopenlarsu(1]i?r¥); /% check it file exist */
it (fpl == N{iL)
{ perror("Couidn’t oren data file?)s
abort()s ]
s~inté{"Reading tite %s\n¥iarguill)s
o= dszant(tpl ) "hs?,sitle); /% read title ¥/
itz 1) lrereer(i)s) /% chezk nuzhe- 3% argurents ¥/
printt(¥. 2}
j = tscant(#p1,7%d %d %d”r8numbs,bnumps 8ksyn);
it { =3 [rerrar(2)i)
printd(®...%);
i+ {nu=bs ) {szel ~ 1)) /% check max size of array ¥/
{ printt{"Maximum number of pciats a boundary exceeded\n”)i abart(); ]
it (ksym ¢ 3 i1 ksyz ) 9)
{ prinst{#Syaeetry {ksym = %d) nct alloeec\n"sksym); adest()i ]
% {ksye == 3 || ksyz =2 5)
sestiag = 1§
it (ksym == S}
ksye = &3

j = tscant($p15?%% %t %t %1% %per 8er8xsymidysyn);
it ( ji=4) {rerror(3);)

prinst(¥., .. "} :
J = tszant(#pl,"%é” knupres)i /% Read # ot pressures ¥/

it t=l) {rerror(])il
srintt(¥.\n*);
tor {i227i¢ nupresiitt)
{
j = tscant{fpl *%¢ %% ¥, bpxxoBpyysbpxy); /¥ Read pressures ¥/
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it (j 123} {rerror(é);)
eoxxl il = pxx;

2eyylil = ayyi

oPXyLil = pxyi
printt{”...”);
}

printf{”\n”);

stropy({nareZstitie)d

strzatinarels”. dedd);
+27 = ‘zzen{pamely YuM)i
it ($p2 == NULL
I perror(”Couidn’t open autput 4iie”);
zccre ()i } i
terintt(1pZ,"%e \n”)nupres); /% Nusber ¢ pressures ¥/

/¥ writes the symmetry conditions %/

suitzh {ksym) {
/% case it printt(”No symmetry congitions impOsed.\n?);
breaki
£252 2 printt("The line x = %4 is 3 line cf symmetry\n”ixsyn);
breaky */
case 3: s=iatt("The line y = %% is a line ot symmetry\n”,ysym);
hreaks

zasz 4t printt{"The lines x = % and y = %4 are !ines of symmetry\n®
yxSymrySym) i

breaki- .
cetacit: perror(”Symretry condition are not weii detined”);
abort();
] /% erd suitch #/

.

it {numgs > 5) /% Open utput tile for external fieid ¥/
{ /¥ Start 14 1001 ¥/
strepy(namestitie)s
strcat(name,? ext”);
423 = igpen{name)’u’};
PFOL 423 == NULL)
U perror(“Couidn’t coen external tieid tile”);
exit(9)s )

03 %/

()
~
Y
m
9
o
"—

-
i |

/% lnitiz'izes common variabies #/
invariabie(e);

/% setine locationsy sizes, orientations anc Bouncasy conditions o¢ ¥/
/% bouncary eiements. %/

Sounzond(8nurbesdnumbs 8numi kod, bkodesdxbee s dxendsbyendsyhes 85vus ,8bvn,
Rsusxmyymiassinbetscoshetsbrtpl)i
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tor (m=lim(znunbeintt)

{
size =2.%alre); _
ancie = 180.%atanZ(sinbet{nlscoshe«[nl)/pii

printt{"\nPressure loop\n?};
/% S-essire 0GP start nere #/
tar (jpreslijprednupresi jprest)
{ /% Start pressure icop PG ®/
exx =_pexxl jprel;
pyy = ppyylipreds
Pxy = ppxyijprels
it { jere > 3)
initbutt{p);

/% bgjust siress pougndary vaiues fCr initial siresses. ¥/
instress(numce,kod pxxipyyrpxyscasoetssinbetsb);

/% ln this blocks the program wiii compute the influence zoetficients
and set up the syster 2t 2igebraic equations. ¥/

influzoeti(numbe dkoderkodsksymsxmyynycaskesssinzer,asxSymrysyn) s
/% Salve system of algebraic equatigns. ¥/

n = Z¥aumhe;

soiveibrdin)i

/% compute boundary displacements and stresses ¥/

printt{'F = %d 7, jpretl);
compbound{numbesksymipxxrpyyspxy xsymiySymyxeiymscasbet sintet arcs1p2, jprels

/% Campute displacements and stresses at specified points in the bacy */

i+ {nuzos > 0)
/% Start 14 1303 ¥/

—

extfie!d{numcs numbesksymsoxxspyy pxy 1 XSyg ySya xey® ards
cosbetssingetyfpistads jprel)s
1 /% End ¢ 10C3 %/

/% Cempute the new position af the boundary resarness of the symmetry ¥/
newbcund(numbe,tpZidarearsectiag)i
arealljprel = -areai

} /% Snd 2ressure loop POOL ¥/

strecpy(namestitie)s
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streatinames”.prn”);
tph = topen(nameru”);
it ( tpd == NULL)
{ perror{”Couldn’t open enersy/area tile”);
exit(10); ]
terintt{tph,*1\n"};
tprintf{ipbs"Nd\n”nupres);
tprintt{tpbs?xs\n?);
ferintd($p2,"05\n” L tie);
tprintt(1pZ,”Faisson’s Ratia » Youns’s modulus\n?)i
tprintt($p2)"%6.2¢  NiD.&E\n")prie)i
tprinti(4p2,)"Externa: stresses xx» yys 225 Area\n’};
ter (jpre=Qi jore(nupresi jprett)
{
area2l jpre] %= 2.7 /% Compute the uwhoie area ¥/
it (sectiag == Q)
area?( jprel ¥= 2.7 /% (ompute area for 1/4 of symretry ¥/

tarinti{$p2)”%e %z Ne %g\n”yopxx[jprelippyyliprelspexyl jpredraresZl jpred)i
sprinti(tobs"Ns Ns\n”,tabs{ppyyljprel) areaZl jerel);
)
tprintt{fpb,"hé\n" nupres-1);
torintt{tphy¥ed\n?);
/% Corputing strain energy tactor:
This reutine only works for uniaxial and hydrostatic sressures,
The uniaxial stress must be appiied to the Y axis

¢ /dp [ integral ( Ubxsp) ) ] fram ¢t -c ¥/

it (nupres ) 1)

tarinsd(4p2/"External stress yy » Energy Factor\n’)i
tar {pre=3; jered(nupres-1)ijprets)

{ /% computing the derivative at eprel] pressure ¥/

eneroyl jprel = (area2l jpre] - arealljpretl])/{poyyljpre] - ppyylipretil)s
epre{ jere] = (ppyyljprel + ppyyljpret11)/2;

terint+{fp2:”%s %e\n’yeprel jprelsenergyl jprel)s

tarintt(tpbr?he  %e\n” tabs{eorel jprel)senergyl jprells

torintt(tpby"As\n”stitle);
tprintt{¢ph,”Internal area\n”);
torintf(tph,"Energy tactor\n?);

} /% End main ¥/

/% (COCCECec o NN %/

init!()

{ /% Start initl ¥/
SXXS=5XXNZ5yy5S5yyn=5Xy5S5XyNSUXSSUXNEUYSSUyn=l, i

1 /¥ End intil ¥/

scivel(bixin) /% Splve the system 0t linear equaticms ¥/

int aj

tloat *bi¥x;
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{ /¥ Start sgive ¥/
int nastajajjois
tigat sumixm;

nb = n-1;

tor(j=1i j(=nbi j+t)

{ /% Start locp solve 0001 ®/
I = j¢ls

ter{ =it jj(zni jist)
{ /% Start icae sz ove 112 ¥/

xmo= (el el jILd)s
tor (i=jii(znii+s)
(0300} = (eljid0i]) = (el I0i 1) kxai
#b4i0) = (R(b3j))) = (®los)) ) exms
} /% End loop solve 0002 %/
)] /% End loop soive 0OCL %/

*(x+a) = (R(b4n))/(cfnIln])s
tor (j=lij(=nb;jt+)
{ /% Start 'c2p scive OOC3 ¥/
Ji= =i
I = jjtls
sur =0,
tar (i=iiid=niits)
sue = sum + (c[JJ30id) ® (¥{xti))s
¥(xtjj) = ( (®(b#jj)) ~sce)/( e0jjiLiid )i
] /% 222 lzzp soive 0004 #/
} ' /% Enc soive ¥/

coett{xryscxrcyraicesbssinbymsyr)
int msya)
‘lgat xsyscxscyr2scosbrsings
{ /% Start coett ¥/
tioat Sian)CDSZEIXbeb)PIS)rZSJff1;f32;sz;fb3;fbﬂ»+b5)fbéif57i
uxdsuxan)uycs uvan)sxxdss5xxdnrsyydsiSyydnssxydsssxydn,
cosbZisinbZi

c3s2b=cosh¥cost-sink¥sing;
sinZt=2.%sind¥cosh;
tosbl=rcsorzashi
sinpZ=sinb¥sink;

xb=(x-cx}¥czsbt(y-cy)¥sinb;
yb= ={x-zx)¥sinbt(y~-cy)¥cosbh;

ris=(xh-3)%{xb-a)tybkyb;
#25={xbtz) k{xbta)tybkyb;
#11=.S%io0z(rlis);
$12=.5%10g(r25);
tb2zconk($11-412);

it (yp i=3.)
453= ~conk{atan{(xs+a)/yb)-atan({xb=a)/yk});
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{
*£3=l.5
i+ (fabps(xb) ¢ a)
tb3=zconkpi
)

ttlzconk{yb/ris-yb/r2s);
!

R - N SV NP b . o
thl=zon¥iixt-zi/sls={xbral/y

5):
¥rist=((xbta)¥(xasa)-ynkyn)/(r2s%-25)}

r
4
~

\
I
ts5zcank({{xb-a)¥{xs-2a)-yckydj/(r1

-
7

v
] /A

t07=Z kconkybk{{xk-2)/{ris¥ris)~{xpsa)/(r2s%r25));

GXC5% -pri¥s nb¥th2+prZ¥cosb¥ibIsyck{sinbkibl-cossNist);
dxanz =prikcosdXibZ-pr2¥sint¥in3~yb¥{cosh¥thbtsinb¥4hs);
uyds=pri¥cosb¥thZ4pr2%sinp¥ib3-yb¥ (cosb¥ibi4sinn¥ibd);

uycn= -pri¥sinp¥ib2+pr2¥cas¥tb3-ybk(sinb¥tbl-zagh¥ib5);

5xxa5=cansk(Z, ¥cosbZ¥ b+ inZo¥thSsyb¥ (cos2b¥thb-5in2o%i07));
sxxdr=cans¥ (-10Styb¥ (s in2b¥tbbtrasZbiih?));

syyde=cons¥ (2, ¥s5inbZ¥inb-5in25%155-ybk(cos20¥ink-5in25%457));
syyenszansk(-15S-yb¥(5inZ5¥2Lscos25%107));
sxycs=consk(sinZ5kibb-cos2bktbStyb¥{sin2o%iob4cas2o¥i07) )
sxydn=zonsk{~ybk(cosZo¥tob-sin2bktb7) )

uxs=uxstasynkuxds;
uxnsuxntuxdn;
Sy&2iys+msym¥uyds;
uyn=uyntuvdnj

§XX§=5xx5TrSyn¥sxxds;
5xXN=3xxntsxxgni
5yys=syystasymksyyds;
sSyyn=syyntsyydn;
SXy5=5xystmsym¥sxyds;
SXYRE5XyNtsxyen;

ans

/% nd coeft ¥/

/% This routine uarns that an error has occurred
when the procrar read the dats tiie ¥/
rerror(i)

int i
{

printt(’Fscant # = %d"i);

perrer(”? Argument mismatch in data tile”);
abort{);
J

/% This rpoutine compute displacements and stresses at specitiec points
in the body ¥/

extfie5d(numcs:numbe;ksym;pxx:pyyypxy,xsym;ysym:xm;ym;a;d;:asbet»sinbet>fp1,
tpds jere)
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int numos)numoesksye, jpre;
‘lpat pxxspyysBxysxSymrysym;
¢igat kxe ¥ym k3, ¥d,¥cosbets#sinbets
FILE %¢pl,%¢p3;
{ /% Start exttieid ¥/
int npointynumpynumpbInis jsjns jssjjjoni
tloat xbegiyizgixendryendsdelxsdelyixprypruxsuysSigxxssigyyrsigxy,
" xJiyjrajrcosbjssinbj;

tarintt(#p3,"2ressume & = Rd\n?) jpretl);
torintt($s3,¥0isplacements ans stresses at specified peints in the pocy.\n');
to-intt{tp3,*X £0-0%2 Y (0-0%D ux Ly )3
torintt($p3,¥ SXX sYyY SXY¥\n#)i
$4iushitpd)
npaint = 0j
printt(®\n¥);
tor (n=lind=numcsintt)
{ /% S+2-t logp 0009 %/
JiJ =tscant(tplh "%t %3 Ni A% %2"i8xbesiBybesidxendsfyencrdniradls
4 (i) =8 ) { rerror(b)i )}

arined{”g");

nump = numoptls
delx = (xenc-xbes)/nu=pi
deiy = (yend-ybeg)/numpi
it (numpz ) 0)
UMDt
it (deixkdelx + delykce'y == 0.)

4.
auee =i

igr (ai=limid=aumpinits)
{ /% Start ltocp ODIT ¥/
xpexbecs{ni-1)¥deix;
ypybegt(ni=i)¥delyi

ux=l.i
uy=3.{
§igxx=pxx}
5igyy=pyyi
§igxy=pxyi

sgr {j=li j(=nuntei j4+)
{ /% Start logp OOL1 #/
in=2kj;.
Js=jn=ij
init!()i
xj= *{xz=})i
yi= klyetj);
aj= *atj)i

it (sqrtl{{xp=xj)¥(xp=x)) + {yp=yj)®(yp-yj)) ( 2.%aj)
g0to errOrs
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toshbj = #{cosbettj)s
sins} = ¥(sinbettj);
coett{xpryprxjryjrajrcossjssindjslls

switch (ksym) { /% Start suitch ¥/

tase 1: breaks;

case 2¢ xj = 2.%xsym-(¥{xmtj));
caett{xprypsxjryjoajscoshjr=sinbjr=1);
oreak;

zase 3t yj = 2.%ysym-{¥(yrt]));
esett(xpryprxjryjsajs=casbhsingji~1)i
break;

zase b xj = 2. %xsym-(¥{xmtj));
coett{xpryprxiryjsajrcosdjr=sindjr=~1);
xj = ¥{xmtj)i
yj = 2.¥%ysyn=-{%(yntj));
coett{xprypixjryjraji-coshjrsinbji=1)i
xj = Z.%xsym-(¥{xmt]j));
coeft(xpryorxjryjrajr~cosnjr=sinbjsl)s
breaky

defauit: hreak;

1 /% Ead suitzh #/

uxzuxtuxsk(*{d js) ) tuxn*(¥(d4 jn))i
uysuytuysk{¥(g+js) ) tuyn¥(¥{dt.in));
sigxx=5 igxxtexxs¥(¥{dt js) Jtsxxn¥(¥(d+jn))i
sigyy=sioyy+syys¥(¥(dtis))tsyyn¥(¥(d4jn));
5igxy=5igxytsxysk(¥(d+js)  +sxynk{¥(dt n))i

/% Eng loop CCL1 */

—s

npcintdd;

tprinti{1p3)”h8.6¢ NB.6t NB.be NB.&e NE.Z¢ %B.Zt %3.3t\n”,
XPIYPIUX Uy 513XX15i5yys5igxy)i

ttiusn(453)s

error:
Jii = Jij
} /% End lgop I0i0 %/
) /% Enc loop GCO9 ¥/
printt(*\n”);
] /% End extfield ¥/

/% This routine adjust stress boundary values for initial stresses ¥/
instress(numbeskodspxxspyyspxyscasbetssinbetsb)
int numbes¥kod;
tlost pxxspyyrpxys
t1oat ¥cosbet,¥sinbet,¥b;
{ /% Start instress ¥/
int nynnyns;
float cosbisinbisigsysign;

tor (n=lin{=numbeintt)
{ /% Start loop D003 ¥/
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nn=Zkn;

ns=nn=1;

tosos #{zosbettn):

sinbz ¥(sinbet4n);
5ig5={pyy-pxx)¥sinbkcasbipxy*{cosbkcoshb-sinb¥sinb);
sign=pxx¥sinb¥sinb-2, ¥pxy¥sinbkcoshbtpyyXcosb¥cashi

switch (¥(kadtn)) { /% Start switch &/
tase 1: ¥{b+ns) = ¥(btns) - sics;
¥(btan) = ¥(b+nn) ~ sign;
Sreaks
case 2: breaks
case 3¢ #{btan)

¥(b4an) = sign;

hreak;
tase &: ¥{btns) = ¥(btns) - sigs;
“breaks
cetault: breaks
)] /% End suitch #/
} /% End lcop D003 #/
) /% End instress ¥/

/% This routine initiaiizes comran varianies */
invarias e z)
tioat ej
{ /% S:a~t invariazie ¥/
pi=d . *atan{l. )i
czan = LG ke iR(L -2 )5
sons = ef{l.+pr)s
pri = 1.=Z.%pr;}
prZ = 2.%{i.-pr)}
i /% End invariable ¥/

/% This routine detine iczation sizes etz of bouncary elezments ¥/
zouncond{nurbe,nusdsnumskodskodes xbegrxencsyend,ybeg bvs sbvnssurxeryes
arsinbetrcosbetsbrtpl)
int ¥numbe;¥nurbs)¥nums¥kod) kkodes
ticzt ¥xbeg,¥xendskyend)¥ybessXbus,kbuns¥su)¥xm)kyms¥a,¥sinbet,¥zasbet)
¥
FILZ #fpli

/% Start bouncand ¥/

~—s

int jonesmymniwsyjjjs
tloat xdiyds

¥nuece = 0;

tor (j=1;j<¢={¥numps); jt+)
{ /% Start foop O0CC! ¥/
Jii=tscant{$pl,?%d %1 %f %% %¢ %d ¢ A4, num,
xtearybegsxend)yend;kodesbvssbun);
it {Jjj '=8) { rereor(5); }
printi(¥4¥)}
it ( j==1)
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xtemp = ¥xbeg;
yterp = ¥ybes;

)

x0 = (¥xend - ¥xbeg}/(¥num);

yd = (¥yend - ¥ybeg)/(¥num);
¥su = sqrt{xd¥xd + yd¥yd);

tor {ne=line={%nun)ine+s)

{ /% Start jcop 0002 ¥/
{¥numbe)+4i

m=(¥nurte);
¥{xmim)={%xbeg)t.5%(2. ¥ne-1. ) ¥xd;
¥{ymér)={¥ybeg)+.S¥(2. ¥ne-1. )%yd;
¥(atn)=.Sk{¥su);
%{sinbettm)=yd/ (¥su);
¥(cosbet+m)=xd/ (¥su);
¥(kod+n)= ¥kodej
pnzZ¥n;
ns=rpn-13
¥(btme )z ¥busi
¥(btmn)z ¥ouni
bouttlms] = ¥bvsi
bhu#élmn] = ¥bun;

3 /% End ioep 003Z ¥/
] /% End izcp OOTI %/
printt{”\a”}; )

JJJj = ¥numpe;
xneul jjj41l = ¥xend;
y temp = %yenag;
) /% Eag bounzond ¥/

/% This routine computes the intiuence coetfizients znd set up the systen
54 algebraic equations. %/
intlucoeft{numbeskssesknd ksymrxmoymicosbetssinbetsarxsymyysyn)
int numbe, ¥kade, ksym» ¥kodi
tloat xsymsysym?
tipat ¥xms¥ym,¥cosbet,¥sinbet,¥a;
{ /% Start intlucaett ¥/
int inyisyjnyjs;
register Jjsii
tioat xisyiscosbissinbisxjryjicosbjrsinbjsaji

tor(i=1ii(=numbe;itt)
{ /% Start loop 0004 #/
inzZ%i;
is=in~1i
xiz *¥{xmi)s
yiz ¥ynti);
toshi= ¥{cosbetti);
sintiz #(sinbetti);
¥kode= *¥(kod+i);
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tos(i=li j¢=nurhe; j+t)
{ /% Start locp 0009 #/
inzZ¥ i
Jszin=13
intti();
xj= B(xetj)s
yJ l(yméj);
csshjz ¥{cosbet+))i
sinz, = H(sinzet+i)s
aj= #Matj)i

coettlxiryisxjryjraircastjrsinnjsi)s

suitch (ksye) { /% Start suitzh #/

gase 1: break;

case 2: xj = 2.¥%xsym= ¥(xmtj)i
coeftxisyisxjryisajrcosbjr=sinbjs=1}i
break;

cese 3 yj = 2.¥ysyz- ¥lyrij);
:QE++(XEin;xjayjrajx‘tDSbJ!Sinbj)'l)i
break; '

case &t x; = 2.¥xsym= *{x2t))i
coetdxisyisxiryjoalrzaszji=sinkjh=1)3
xj = *(xmtj)i
yj = 2.%ysyn- %{y=+j);
coett{xisyioxiryjrajs=zasdjssingjo=1)i
x; = 2.8xsye= #{xmtj)i -
saetil{xiayiax iy rali=2s8Dj1=5in0jsi)s
sreaks

detauit: breaks

] /% End seitch ¥/
seitch ( *(koce) ) { /% Start seitzh ¥/

case 1:

(cTis3ljs])=(syys-sxxs)¥sinbikcosbitsxysk{casbi¥cosbi-sinbiksindili
(:[iS][Jn3)=(5yyn-sxxn)*s3nbi*:asbi+Sxyn*(:nsbi*cssbi-sinbiﬁsinbi);
(=0iniljs)=sxxsksinbi¥sinbi=2, ksxys¥sinpikeoshitsyys¥casikcosnis
(efinlljn3)=sxxnksinbiksinti=2. ¥sxynksinbi¥coshitsyynkeoshikeostis
hreaks
case 2:
(elis2(js])=uxskcesbituys#sinbii
(efis]linl)=uxn¥casbituyn¥sinbii
(elindljs])= -uxs*sinbituyskcosbii
{clind{jn))= -uxn*sinbituynkcosbij
breaks
case 3t
{elis]ljs))=uxs¥cosbituys¥sinbii
(elis]ljnd)=uxnXcasbituynksinbi;
(clinlljs])=sxxs¥sinbi*sinbi~2.%sxysksinbi%cosbitsyyskcasbikoashis
(efindljnl)=sxxn¥sinbi*sinbi=2.%sxyn¥ksinki¥zosh +syyn¥kcoshikcashii
break;
case &
lelisiljs)=(syys-sxxs)¥sinbi¥cosbitsxys¥(cosbi¥easbi-sinbi¥ksingi)i
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{elislljnll=(
lelinllisl)
(elinljnd)

-uxs¥sinbituys¥zoshii
= -uxn¥sindituyn¥cosdii

breaks
default: breaki
} /% End suitch */
) /% Ead icoe 3005 #/

} _ /% End ioop D004 ¥/
} /% End intiucoett ¥/
/% This routine computes boundary disciacenents anc siresses ¥/
zamabaund(nunbesKSyn I PXXIPYY I PXYIXEYR) ySYR) Xy yTcCsbetssinnetyasd
int nurs2iksymy jpres
f15a% PXXIPYyIPXy I XSymyySyms
tipat ¥xmrkym %costet)¥sinbets¥a,#d;
CILT ®4p25
{ /% Start comptound ¥/

int inyisyjnsjsi
resister jrii

$icat xisyiscoshissinbisuxnegruynes sigxxssigyyssigxysxjryjsa izashjy

5inbj)usP05)URPCS ) LUENEG I UNNES I UXPAS ) UYPDOS)S iS5 5igni

tar {i=13i{=numde;jitt)
{ /% Start loop 000 ¥/
in = 2%

is = in=1i

xi ¥xmti)i

y ¥lymti)i

zoesi = #(coshetti)s

i ¥(s'nbetti)s

$1nb

uxnes = 0.3
uyneg = 0.3
Sigxx = pPXXi
sigyy = pyyi
51gxy = pxy)

tor (j=1;j{=numbei j++)
{ /% Start loop 0007 #/
Jno= 2%
Js = jn=1;
init()i
xj = *¥xntj)i
yj = ¥(yntj)i
ai= *atj)s
zosbj = ¥{cosbett))i
sinbj = *(sinbettj)s
coettlxisyisxjryjrajscosbjrsinbisl)i

suitch (ksym) { /% Start suitch ¥/
case 1: break;
case 2¢ xj = 2.%xsym= ¥{xmtj)i
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coett{xisyisxjryiralscestjr=singjr=1)i
breaki

case 3¢ yj = Z.dysym- ¥(ymij);
coettl{xiryisxjsyjraji-cosbjrsingjr=1)i
preaks

case b xj = 2.%xsym~ ¥(xntj)i
coett{xisryirxjoyjrajocashji=sinp =14
xj = #{xmtj);
yj = 2.%vsym~ ¥(ymsj)i
ccett{xisyirxjryjrajo=cssdjisindjs=1)s
x) = 2.%xsyr~ ¥lxat])i
szett(xisyixjryjsajo=casnjr-sintji1}i
Jrears

Zetauit: breaki

} . /% End switch ¥/

uxneg=uxnegtuxsk (¥{dtjs))tuxn¥ (¥(d+jn));
gynee=uynegtuysk (¥(c+)s) ) tuynd (¥{dtjn)}i
sigxx=sigxxtsxxsit (¥{dtjs))tsxxnk (¥(d¢jn));

Sioyyssigyyssyys# (¥{d+js))tsyynk (¥(d¢jn));

sigxy=sigxy+syysit (¥{dtjs))tsxyn¥ (¥{dtjn));
/% End loop QD07 ¥/

usnegzuxnes¥cosbituynesksinki;

unres= -uxnecksintituyneckzsshis

uspos=usnes- k{d+is)s

unpcs=unnea- ¥{d+in);

Uxpssu5PasKCashi-Lnposksingii

uypss=uspss¥s ‘nbidunsoskeashis
s'gs={sigyy-sisxx)%sinbi¥casbi+sigxy¥{cosbikeospi-sinbiksind
sign=sigxx#sinbiks . npi-2.¥sigxyksindikcosdiss gyyXecsbikzash

arintf(”.7);

i

e
t

/% Campute the new positinn of the boundary regariess 0¢ the axes ot

it
{

syemetry. The new pasiticn is stzred in xnewi) and ynee[]
{i == 1}
xrewt] = xtemp + uxnes;
ynew[D] = ytemp + uynes;

)

xnewli] = xa{i] + uxnes:
yneulil = yelil ¢ uynes;

/% End loop 0006 ¥/

it { uxnes ¢ 0)

xneulnunaesl] += uxnes;
yneulnurce+i] = yltemp + uynes:
print{¥\n¥);

/% End compbound #/
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/¥ This routire compute the new position 0f the boundary reserness ot
the sympetry ¥/

nevbouns (numbes 2 arearsectiag)
int numdersectias;
tloat *areai
FilZ #io;
{ /% Start newbound ¥/
int numbersD) i=Tynunber2=0;
tigat temp:
t!oat integral{)i
register i)nurbarnumdal;

numba = numbe; /% nucber ot elements ot the array ¥/
/% ¥ppapxpx STATT V pight SECTION ®¥esxxaxx ¥/
it { ynew[3I = 0.)
{
numser = 0} /% index £+ the tirst elemens ¢ tre array ¥/
purbatti
)
gise
{ /% Start else ¥/
tor. fislii(=numbeiits)
{ /% Start tor ¥/
it ( ynewlil == 3.)
{
numper = i1
numca = numbe - number 415
brezki
}

eise it { ynewiil > 0.)

—x

numoer = i=1;

numta = numba - number +1;

temp = (xnewli] = xneu{i=1])/{ynew[:] - yneu{i-11);
xneu{nurber] = xnew{i-1] - <erp * ynew[i-1]
yrewlnumber] = 0.5

preaks

) /% End for ¥/
] /% Snd else ¥/

it (1 == nunbet!)

{
printf(”Pore colapses\n”’);
exit{1);

]

[% RXxaxExax% END Y STCTION ¥ XXXXEARXX %/
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7% wpxexapnkes X lett SEOTION  skkaxxdsry ¥/

it ( sectlag == )

{ /% Start it X section ¥/

nusbaZ = nueba-1; /% nurber of elements of the array ¥/

it ( xmewlnumbeti] )= 0.)

{
ayrses2 = aumies+l; /% index st the iast element of the ar-ay #/
numoazss;
}
glse
{ /% Start else ¥/
tor (i=numbe;idnumper;i==)
{ /¥ Start tor ¥/
it { xnew(i] == 0.)
{
number? = ij
nuembaZ = nurhal - (aurke -rurses2);
breaks
i
eise it { xnew[i] > 0.)
{
surser? = il
nunbaZ = nunsal - (numbe-number?);
teze = {ymewli] - ynexliti])/(xnew{il - xnewlitil);
ynevlaurser2] = ynewl 411 - temp ¥ xnewlidll;
xneulnurcer?) = 0.3
areak;
)
) /% End for %/
} /% End else %/
] /% End if X section ¥/
/% FENakaaner END X lett SECTION aexxxxsxxexx ¥/

/% suERRaEeREk Y lett STOTION ddesxsxsxsx »/

it (sectlag == {)
{ /% Start “it® Y, Jett section ¥/

numbaZ = numba-li /% number ot elements ot the array ¥/

it ( ynew[nu=bett] )= (0.)

t -
numberZ = numbet!; /% index of the [ast element ot the array %/
numpaZ+ts

eise
{ /% Start else ¥/
tor {i=numbe;idnurberii==)
{ : /% Start for ¥/
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it ( ynewli] ==10.)
{
number? = iy
numbaZ = numbaZ - (numbe -numper);
break;
]

else it { ynewiil > G.)

{
S

nurserZ = i41;

numtaZ = numbz? - (numbe-nurper2)s

temp = (xnewlil = xnewli+i])/(ynewli] = ynewlitil);
xnewinunber2) = xnewl:$i] - temp ¥ yneulitlds

ynewinunber2] = 0.
break;
)
i : /% End tfor %/
] /% End else ¥/
) /¥ End it Y lett secticn ¥/
/¥ FARXREXARKEX End Y left Section XAXERXRXXRRXX %/

tprintt{1p2,"%e \n”ynuzbaZtl);
tprinti{tpZ:”ns \n”)s /% Type ot graphic ¥/
tor { i=numberii{=nunger?;i+t)
tprintt{$p2,7%12.8¢ %12.84\n" yxnewl i Jsynewlil);
t4lush($:2);

/% Campute 1/4 o+ tte area cf the pore ¥/

] /% Eng nmeubzund ¥/

/% This poutine re=initiziizes the array BL] ¥/
initbutt(s)

tloat ¥b;
{
int i
sar{i=0ii(sizeZs i44)
b4 = prutilils

tizas in-ezre!{ximyyinyndaa)l

/% This rcutine computes the intesral cf a function detined by a
set ot points ximyyin %/

+loat xin{Dyyinlls

int ndata;

{
int iini
tloat xoutsinitialstinalsintervalstempltemp2;
ticat foutlsizeZl;

/% ndata = number 0t points ot the function to integrate
xin{] = array of X axis of function to integrate
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yinl] = array of Y axis of funztion t0 integrate
tunction return tre value of integra!

n = nuzber CF interpsiates points { Approx Z¥ncata ) %/

n = Z¥ndatai
initial = xinlQ)

tinal = xin{ndata-i)i

interval = ( fina! = initial ) /nj
nes)

t3r ( =8;i(m “)

{

it (i==n-1)

xaut = tinali

gise

x0ut = initial + {i¥intervai);

ineint{ndatasxinsyinsxoutsdtempl)i

toutli] = tespl;

)]

/% Compute the integral ¥/
tozad{nyinitial tinalstout,8tern?)i
return{terpl);

}

lineint{nsxstrxxstx)
/% This routine approxirates 2 tuncticn whose vaice is given
at n points on 2 n interval of the x axis. The interpolation

u585 3 5iraigh |ine Hetween twl adyacents pdints.

The argurents are:

" input  Numser ot points usec to approximate the function
X input Array of X axis values ot N given points
+ input Array 0t tunztion vaiues at N given points

xx  input Value at which approxisation is to be made
tx output Functicn approximation at xx
x20] is the meximum x value and x[n-1] is the minimur x vaiue. ¥/

e v ,ra I
dizes xLtn i ¥

{ /% start lineint. %/

int i1ji
tigat tempi

it (xx > xC03 1 xx ¢ x[n=11)
{ printf{®Number out of range xx = %f \n”sxx)j
exit{l); )]

tar { i=Diidniits )
{ /% Start For ¥/
it { xx == x[il)
{
#tx = t{1]s
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breaks

)

else it { xx ¢ x[i] &% xx > xLitt] )
{
temp = ($[i41] = $0iDM/(xDi4t] - x[id)s
¥tx = +{1] + temp ¥ (xx = x[i]);
breaks

} /% End Tar ¥/
) /¥ End lineint ¥/

/% This routine computes the cetinice integral ot 2 function
0* 2 set GY a28ints by the trapeznidal rule %/

tpzod(myxosxhryrtpa
int m :
t1oat xosxhyyl) ¥tpas

/% brguments-are:
m = Numder of function values (input).
xo = Lower [imit of integration (input).
xh = Upper limit ot intesration (input).
y = One-dimensional array ot function
values given at m equally spaced
paints betueen xo and xh (input).
tpa = Value af integral {outputl).
¥/ l
{
int irtms
tigat disars

n-1;
(xh = xa)/(tm¥2.);
= 0.;

re

m

»x O

[T TR | ]

tp

tor (i=0ii{=p-2iitt)
{
ar = di ¥ (y[i) ¢+ yLit1d)i
Xtpa = %tpa + ari
]
)]
e L it sttt Rttt T e eeeessssssasessssssslsssssssassi
% The following is an exampie of an input file for a 1B elerents
tapared pore as shoun in figure 2:
digitation is always counterclockwise

testing ' {program name)
1804 {NUMBS NUMOS KSYM)
0.230000 4.000000e+005 0 O (PR £ 00) {Bars)
2 (NUPRES)

0090 ' (FXX PYY PXY) {Bars)
-50 -5C 0 {PXX PYY PXY)
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0.000030
C.

103D
1010
0.000192 1 0 D
5615 0.0203201 2 0
8‘56 5 0. UDDBZE 0. 800357 g.e0ee2 1 0 g
.BO0357 0.0004462 0.711230 0.000701 £ 0 0
.7:1230 3.00070% 0.429234 0.000960 1 0 0
0.000940 0.55415C Q.00:189 1 0 0
5;5: 2.00:389 3.495344 (.301325 1 0 1
4 0,27:1326 0.4383C3 0001463 100
1040

100

18080

1080

10130

1010

1080

100

[¥3 ] -l) (1l

A
A 8383 0.001463 0.392157 0.001570
.392:57 0.C01570 0.338481 0.001692
.338531 0.001692 0.278075 0.0C1814
.27807¢ 0.00:814 0.213904 0.001875
0.2139G4 0.003875 0.140820 §.06195:
0.14082C 0.001951 0.058824 0.002012
0.CS8824 0.002012 0.008913 0£.802327
£.0089:3 0.002C27 0.000000 0.002027

DDC)(JL‘ID::DQ(:I(::CI(:)»-—
O*
~
~0
~
[#Y)
e~

i
!
{
{
1
!
1
!
1!
!
i
!
!
1
i
1

¥¥k% end exampie ¥¥k

(1 XBEG YBEE XEND YEND 1 C D)

In case NUMOS = § and NUPREZS = 1 (PXX = <50 PYY = -50 PXY = 0)
the last input of atcve example is follows by:

0 0.002063 0-3 10 VAZIZ LZIZOKEND VEND AYFRI
The gutput files are:
(1) detarmation file = testing.det
2 : {NJPRES)
2 (Number ot midpaints)
ng {igncre this iines plotsirs =zematizn)
1.00000230 0.000000C0 {cocrdinates xoy of right most point ot pore)
a. 98933~32 0.008C1540
0.95578645 0.00004858
3. 9ZL26250 0.000:i5250 {nec pcsitions of midenints ot pore bouncary
J.83057¢33 0.0002598C. atter PXX anc PYY number 1 have been
0.827798400 0.00038130 appiied.
0.75379345 0.00057150
3.67023230 0.00083050
0.592692C2 0.00107450
0.582534702 0.06125750
0.467023L9 0.00139450 X1y
0.61532999 0.00151453
0.35541900 0.00143100
0.30837832 0.00175300
0.26398930 0.00184450
0.17736199 0.00191300
0.0998223C 0.00198150
0.03386850 0.00201950 .
0.00445650 0.00202780 J
£.0003C200 0.00202700 csordinates x»y of lett =mcst point of pore)
19
ns
0.9613732¢ 0.000000¢0
0.9s08:918 0.0C0000%  (same as above but for second set
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0.
8.
L.7
0.6
8.5
0.3
0.4
3.4
8.3
0.3
g

g

L

92627357
88059747
82800841
SS8i032
7024362
527CCC0
2585262
6702749
1333276
36542
2837961
.26599132
LAT736353
.099€2377
0338711

n&e%

Uco

0.00446140
0.00003C30

testing

0.02005433
0.00016372
£.00028170
G.B0047593
0.00274330
£.00100174
§.0012C288
0.0013562C

Bnigsscn’s Ratic » Youns’s modulus

19.23

g 0 0 0.004793
§ 0.004561

- e
=od ~aU
1

Externs!

=25 4.631625e-336

4.00C00C0E+2DS

Ixtesnal stresses xx» yyr 21y Arez {Ares is the new interna! arez of tre

stress yy » Energy ractor

ot FXX» PYY, PXY)

scre tor the given stresses)

(Eneray facts:r is the w factar detined

in chapter 3)

{2) stress =energy fiie = testing.prn
lenore this file. It is only used to export the internal area and

enargy tactor gata to LOTUS 123 spreacsheet prograr,

{3) txternai field = testing.ext
Pressure # = |
Dispiacements and stresses at specitied points in the body.

X C0-O0RD
5.000328
C.ccotae

0.8C0C58

- 0.002020
0.000002

0.030000
0.000000
0.000800
0.065500
0.500000

Y CO-O0RD
L.274573
0.547115
g.819638
1.09220%
1.364744
1.637286
1.9u9829
2.1823712
2.434914
2.720457
3.000000

UX
.GCOC00e+LIS

.000G3Ce4000

oo 3

0.000000e40CC
0.02000Ge+200
0.0000G0e+0038
0.000000e+002
0.000CC0e+000
0.0C200024000
0.C0CSEGet00C
0.000D0Ge+000

UX : Displacenent along x axis
UY : Displacement along y axis
SXX : Normal stress aiong x axis
3YY : Normal stress along y axis

SXY : Shear stress aieng plane x-y

Uy
~3.998727e-005
=4.037236e-005
-3.923013e-005
-3.5657742¢-00%
-3.339220e-005
~3.027000e-005
=2.744451e-0C5
=2.496910e-005
-2.282616e-0CS
-2.097455e-005
-1.937060e-003
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SXX

-44.,4
~44.,22
~4¢. 71
~48. 7%
-49.85
-50.36
=50.57
-50.63
-50.462
-50.58
-52.83

SYY
-48.94
-48.05
=45.81
-L4.88
-44.97
-45.47
-46.06
-46.52
-47,18
-47.5!
-47.84
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Figure 1: Symmetries supported by the program BEM-S.
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1073 TAPERED PORE
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Figure 2: Digitation of a 18 elements tapered pore. Notice the digitation process goes from right to left.
Due to 1/4 symmetry, we have used ksym = 4.
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