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ABSTRACT

Existing transport and elastic models of porous rocks with fluids
are unable to simuftaneously simulate a wide range of experimentally
determined petrophysical properties. In this study, a unified netuork
model is constructed which represents the pore space of sedimentary
rocks as a three dimensional interconnected network of pore throats and
nodal pores. By using realistic pore shapes, one model can simulate
both transport and elastic properties of rocks. An experimental apﬁara-
tus has been constructed to measure the fluid permeability, electrical
conductivity, and porosity of rocks at various overburden pressures.
These petrophy#icai properties have been measured for a wide range of
sedimentary rocks. By adjusting th; distributions of pore sizes and
pore shapes in the network model, these and other data from the litera-
ture have been accurately simulated. Analysis of the pore sizes and
shapes which are required to simulate correctly the data provides the
basis for the unified study of the flou, storage and deformation proper-
ties of rocks.

The netuwork model is used to gain a fundamental understanding of
houw the pore space controls the physical propertieg of rocks and hou
these properties are interrelated. The model shous that a relationship
exits betuween permeability and formation factor for rocks in which the
hydraulic and electrical flow paths are similar; simulation of experi-

mental data helps determine in which rocks the hydraulic and electric



flow paths are similar. Analysis of model simulation shows that wide
distributions of pore shapes or pore sizes Jlead to different hydraulic
and electrical flow paths and that the behavior of permeability and con-
ductivity are related to percolation theory in these circumstances. The
model explains the strong correlation betueen the change in permeability
uith pressure and the absolute value of permeability and it suggests
that Archie’s exponent, m, is a measure of the decoupling between pore

volume and conductivity volume in the pore space.
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CHAPTER ONE

Introduction and Revieuw of Past

Pore Space Models

INTRODUCTION

The pore space of sedimentary rocks controls or influences most of
the petrophysical properties of the rock; such as permeability, electri-
cal resistivity, porosity, compressibility and elastic uave velocity.
Porous rock has long been treated, macroscopically, as homogeneous con-
tinuum; houever, in order to understand how the pore space controls the
petrophysical properties and how the various properties are interre-
lated, one must look, microscopically, at the hgterogeneous pore space.
Because of the complexity and variability of the pore space of a given
rock and because of the wide range of pore size, pore shape, and rock
matrix composition found betueen various rocks, realistic and quantita-
tive pore space models that represent a wide range of rock types are
difficult to construct.

Petrophysical properties such as permeability and electrical resis-
tivity were first related to the pore space by empirical equations such
as the Carmen-Kozeny equation for permeability, k:

rp’d
SollLesL)2

(Kozeny, 1927, Carmen, 1938, Wyllie and Spanger, 1852)



and Archie’s equation for resistivity formation factor, FF:

Le/L
FF = §-® =

(2)
 J

(Archie, 1941, Schopper, 1966)

Both models can be thought of as representing the pore space as a
“bundle of pore tubes” uhere the average pore tube radius is rj, tube
length relative to the sample length is LesL and‘pore volume relative to
the sample volume is ¢ (so is a pore tube “shape factor”and m is an
empirical quantity called Archie’s exponent). Although the models are
useful in representing general trends in the experimental data, they
give an unrealistic representation of the pore space. Percolation
theory, geometrical considerations and ion tracer studies (Kirkpatrick,
1973, Dullien, 1979, Winsauer et al., 1952) all suggest that the rela-
tive fluid path length (Les/L or tortuosity) should be in the range of
one to five. Calculations by Wyllie and Spangler (1952) and Dullien
(1975b) on tuenty-tuo different sandstones show that equation (2) yields
tortuosities of between 5 and 72.

Ouwen (1952) and Fatt (1956a,b,c) recognized that a more realistic
representation of the pore space was needed for accurate modelling.
Ouwen (1952) recognized that the high tortuosities found using Archie’s
law were unrealistic and devised an alternative view of the pore space.
His model consisted of large pores connected to-one another via smaller
pore tubes (see figure 1). Since resistivity is related to the cross-
sectional area of the conductor over its length, Ouwen postulated that
the pore tubes would contribute more to the resistivity of the medium

than the nodal pore. He constructed an analog model with pore
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FIGURE 1

Representation of pore space as
nodes (voids) and tubes (Owen 1952)

FIGURE 2

Representation of pore space as network
of connected tubes (Fatt 1956a,b,c)



configurations as shoun in figure 1 and found that the relative contri-
butions of the pore tube and nodal pores were related inversely to the
ratio of their radii. He suggested that a network of these pore ele-
ments would give the large formation factor/porosity ratios that are
observed uithout the use of high tortuosities.

Fatt (1956a,b,c) was the first to calculate the permeability and
capillary characteristics of a netuork of pores (see figure 2). The
pore elements Fatt used uere cylindrical pore tubes uwhose radii uere
randomly assigned from a given distribution. Unlike Owen, Fatt’s nodes
(the pore tube intersections see figure 2) had 2ero volume. The “perme-
ability” or more strictly speaking the hydraulic conductance of each
pore element was assigned according to the Hagen-Pouiselle pipe flouw
law:

Apqr®
3)

LITR Y
where AP=pressure drop across pore, R=pore length, r=pore tube radius,
w=fluid viscosity and Q=volumetric flow rate through pore.

Fatt calculated the permeability of a tuo-dimensional network of
pores by constructing a physical netuwork of resistors uhere the value of
each resistor corresponded to the hydraulic resistance of the pore it
represented. He simulated relative permeability and capillary displace~
ment by removing resistors whose “pore” had been invaded by the second
fluid. These resistors were placed in the same position in a second
netuork so that the relative permeability of each fluid could be calcu-

lated.



Fatt’s netuwork model proved to be a vast improvement over the bun-
dle of tubes model. The netuork model correctly predicted the capillary
hysteresis and the concavity of the relative permeability versus satura-
tion_curve -~ tuwo aspects of relative permeability which are aluays seen
in experimental data but not predicted by the simple bundlie of tubes
model.

Representing the geometry of the pore space as a network is most
useful in representing transport properties uhere the interconnectedness
of the real pore space is a controlling factor. Electrical netuork
theory or analogue resistor networks then allow for the exact calcula-
tion of the transport properties of the model given the individual pore
shapes and sizes. Although interconnectedness is not that important for
such petrophysical properties as porosity, compressibility and velocity,
the pore shapes and sizes are. In this paper we construct a network
pore space model to study both transpo?t properties (permeability and
electrical conduction) as well storage (pore volume) and elastic proper-
ties (changes in transport and storage properties wWwith pressure) of sed-
imentary rocks. Just as Owen (1952) found the pore-node-pore model
reduced tortuosities to believable levels and Fatt (1956¢c) found that
only a pore netuork could represent capillary hysteresis, ue shou that
improving the pore geometry and pore shape in a netuork model allous for
the correct representation of a wide range of petrophysical properties.
This “unified” pore space model not only'allous for the simultaneous
modelling of a wide variety of properties, but also leads to a more
realistic and unique model of the pore space and to a better understand-
ing of how the pore space controls various properties and how the prop-

erties are interrelated.



In this chapter past transport and elastic models are reviewed and
the probliems confronting the unification of established transport and
elastic models are analyzed. The second chapter presents the model
which we have developed and analyzes how the model reacts to changes in
pore parameters. The third chapter deals with the analysis of simula-
tions which match experimental petrophysical data with a discussion of
what information these simulations yield about the pore space and the

petrophysical properties that are controlled by the pore space.



REVIEW OF PREVIOUS NETWORK MODELS*

Netuworks have become standard tools for modelling the transport
properties of porous media since they correctly simulate the intercon-
nectedness of the real pore space. Networks have been used most exten-
sively to model immiscible capillary displacement (also knoun as capil-
lary desaturation and capillary pressure) 1-%> 11 3%, 22,116,715, 29,23, 2,27,
2%,%3,32, The notable deviations from Fatt’s method are the extension
of the simple pore tube network to a more realistic pore tube-nodal pore
network similar to Ouen’s (see figure 7) %127,1,%3,32, the extension
from immiscible to miscible flou “%*%L Y, the inclusion of annular flou
(two fluids flowing concurrently in the same pore tube) %2 and the
extension to three-dimensional networks 3% 22,29,%3,

Permeability and relative permeability have also been studied using
networks 13,3%,3%5,33,15,5,8,42,37, 2v,20,28 ,ith several improvements
‘over Fatt’s model. Rose 3% used a three-dimensional model and solved
the netuwork flow equations uith a computer rather than with an analogue
resistor network. Dullien and his co-workers 2,%,'% used pore tube
radii distributions calculated from real pore size distributions which
were obtained from mercury porosimetry and photomicrography of sand-
stones. Dodds and Lloyd “ calculated pore tube radii distributions from
sphere pack particle size distributions. Seeburger 36)37 calculated the
change in pore tube size uith pressure to model permeability variations
with confining presstre and Koplik 29 calculated the -

* : Reference numbers in this section refer to references
listed in Appendix A at the end of this chapter.



flow through spherical pores so that the pore-node-pore model could be
extended to permeability. |

Electrical resistivity (or formation factor) has not been as widely
modelled by the network method 31, 35,19%,17,18,38,8,25 23 hyut unlike
permeability and capillary pressure, it has been successfully applied to
crystalline 14,38,25,26 35 yell as sedimentary rocks. Netuorks have
also been used to study diffusion, dispersion and surface flow 5,29 3s
well as second order phase changes in insulator-conductor mixtures and

in ferromagnets near the Curie point 39,18,
Pore Geometry

Several different geometries of netuork models have been proposed.
The most popular of these are the two- and three-dimensional regular
lattices (see figures 3a,3b). The regular network or lattice allous the
construction of analogue models 12,13, 1% or the establishment of a set
of matrix equations that can be solved for the flow through the network
29,3% . Haring and Greenkorn 15 used a fully random netuwork in which the
pore tube radii and lengths are randomly assigned as uell as the posi=-
tion of the pore tube in space (in a regular lattice network the posi-
tion of the pore tube in space remains fixed). This model has the
advantage that real pore geometry is more random than alloued for in the
regular networks but it has the drauw back that random field theory
rather than electrical netuork theory must be used to calculate the
prope;ties of the model. This yields exact representations of disper-
sion '5 but only yields estimates of permeability and electrical resis-

tance and does not allow for any capiilary properties to be calculated.



FIGURE 3a

Two-dimensional square lattice
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Three-dimensional cubic lattice




Dullien’s model %:% 2,7 is constructed from sets of small networks
added together with the permeability and formation factor being calcu-
lated from simple statistical equations. Although Dullien gets excel-
lent results, he concedes that the lack of full connectivity in his
model leads to problems especially in the capillary characteristics of
the model 2,

Tuo-dimensional netuork models have been used more frequently than
the three-dimensional networks 3>16,35,33,14,%0,%1,25,042,37,20,1,32 yer-
sus 3Y,22,29,238,26,83 hecause of simplicity and reduction of computation
time, despite the three-dimensional model’s more realistic representa-
tion of the pore space. Rink and Schopper’s 33 use of the Cholesky
algorithm further reduces the computation required for the two-dimen-
sional model. Houwever, it has become increasingly evident that two-di-
mensional networks are not proper representations of three~-dimensional
porous media. Kirkpatrick '® and Larson et al. 33'have shoun that con-
duction in three-dimensions is via “clusters” of pores, i.e. flow and
conduction are not via single pore channels but rather through clusters
of adjacent pores. This “clustering” is much less pronounced in two-di-
mensional than in three-dimensional networks and it is seen from Seebur-
ger’s 37 and Chatizis and Dullien’s 2 flou charts that much of the flow
is via isolated channels, not clusters, in tuo-dimensional netuworks.
Another problem in the two-dimensional representation is that percola-
tion thresholds, which are responsible for capillary hysteresis effects
and are important in studying two-phase flou, are widely different in

tuo- and three-dimensional netuworks.
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The percolation threshold is defined as the percentage of elements
(pore tubes) that need to be present in the network for conduction to
occur across the network. Shante and Kirkpatrick 3% found that in
square (four tubes meeting at a node) two-dimensional and cubic (six
tubes per node) three-dimensional netuworks, the percolation thresholds
are 25% and 50% respectively. MWillemson “*3 points out that this problem
not only results in different saturations at breakthrough but also leads
to different residual saturations in tuo-dimensional networks as com-
pared to three-dimensional netuorks. UWe shou in the second part of this
thesis that even in situations far above percolation threshold, large
differences in pore size and shape can lead to the appearance of perco-
lation type phenomena.

Pore tube-nodal pore networks like those of Ouwen 3' and Koplik 2
have not been used as frequently 3',%:27,20,1 35 the simple tube model
30,11,13,3%,3,22,16,35,33,14, 15, 29, 40,41, 38,5,8,2,7,36,37,2%  gphere
packs Y.and photomicrographs of consolidated sandstones 7,9 shou that
the pore space can be divided into large “nodal pores” connected to one
another via smaller “pore throats” or “pore tubes.” The use of the pore
tube-nodal pore model is supported further by Owen’s 3! explanation (see
page 2) for the high resistivity/porosity ratio and by Dullien’s ?
tneory on the discrepancies betueen mercury porosimetry and photomicrog-
raphy pore size distributions (i.e. that the small pore sizes calcu-
lated by mercury porosimetry are the connections between the larger
pores seen in photomicrography). Both Rink and Scnopper 33 and Dullien
5 realize that the constriction of entrances to pores is an important

aspect of the pore space but they chose to model this phenomenon by
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using bulges in the middle of their pore tube elements while their nodes
have zero volume. Dullien 7 mentions that one of the problems with his
model is excessive viscous dissipation due to convergent-divergent flouw
at the nodes. This problem is eliminated in Koplik’s z°.pore tube-nodal

pore model by assuming slou laminar flow and large pores at the nodes.
Pore Coordination Number

The number of pores that connect together at a node is defined as
the coordination number and it has been studied extensively with feu
conclusive results. For a given size netuwork, increasing the coordina-
tion number increases the permeability and decreases the percolation
threshold. Tuo-dimensional netuorks with coordination numbers of 3.4,6,
and 8 (Seeburger 1984, Kirkpatrick 1973, Rink and Schopper 1968, Koplik
1982, Greenberg and Brace 1969) and three-dimensional netuworks with
coordination numbers of 4,6,8,10,12 and 18 (Rose 1956, Kirkpatrick 1971,
Greenberg and Brace 1969, Nicholson and Petropoulus 1971) have been
studied. Questions remain as to what coordination number exists in the
real pore space and what network coordination nuﬁber best fits experi-
mental data. SEM studies (Wienbrandt and Fatt, 1969, L. Yale personal
communication) have shoun that the pore coordination number varies from
between 3 and 8. Analysis of sphere packs shouws that cubic close pack-
ing and hexagonal closest packing both yield pore coordination numbers
of 6. Yuan (1981) shous that for various packings of spheres of differ-
ent sizes, the pore coordination number only varies betueen 4 and 8 in
three~-dimensions with most of the packings having an average coordina-

tion number of 6. We have found that coordination number affects the
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nature of two-dimensional netuorks much more than three-dimensional net-
works because of the nature of flou path differences in two and three

dimensions (Seeburger 1984, Nicholson and Petropoulus 1971).
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ELASTIC AND TRANSPORT MODELS:

TWO VIEWS OF THE PORE SPACE

The network models described in the previous section have been used
primarily to study how the pore space controls the transport properties
of porous media such as permeability, electrical conduction, and tuo-
phase flow. The effect of the pore space on the elastic properties of
rocks, such as compressional and shear velocity, pore and bulk compres-
sibility, and changes in transport properties with stress, has been mod-
elled using quite different approaches. One method is the dilute sus-
pension of pores model (MWalsh 1965a,b,c, Jaeger and Cook 1976, Watt et
al. 1976, Mavko and Nur 1979, Cheng and Toksoz 1979) and a second is
the self-consistent embedding of pores model (Walsh 1969, 0’Connel and
Budiansky 1974, Korringa et al. 1979, Watt et al. 1976, Cleary et al.
1980). Like the netuork model, b;th methods begin by calculating the
effect of a single pore and embedding an assortment of pores in the rock
matrix. The dilute suspension model assumes that the individual pores
are far enough apart so that their stress fields do not interact and the
effect of all the pores is simply the sum of the effects of each pore.
The self-consistent method calculates the effective elastic properties
of the rock iteratively as each pore is embedded. In this way, possible
interactions betueen close pores are simulated.

Because the real pore shape and pore geometry are too complex to
lend themselves to exact transport and elastic modelling, we must resort
to simplified shapes and geometries for which we can calculate the flow

and elastic equations and at the same time model the real rock response
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that we observe in experimental petrophysics. Unfortunately, network
and elastic models have used pore space representations which are very
different from each other thus making it difficult to unify transport
and elastic models. One difference is that in the network model a
highly interconnected pore geometry is used to simulate transport across
the rock whereas in elastic embedding models, the pores are assumed not
to have any physical connection.

The major difference betuween the transport and elastic models is
that they use pore shapes which are incompatible with the other model.
The simplest representation of a pore for both flow and elastic mod-
elling is a cylindrical pore tube or spherical pore (see figures 4a and
4b). The elastic equations for the deformation of a circular inclusion
in an otheruise solid matrix have been solved by Muskhelishvili (1953)
and others and have been extended to three dimensions for circular cyl-
inders aﬁd spheres by Goodier (1933) and Jaeger and Cook (1976). The
change in radius of the sphere or tube of circular cross-section from an
isotropic pressure, P, is given by:

2 (1-v?)
r(pP) = [1 - ——-—P] (4)
E
where E=Youngs modulus and v=Poissons ratio of the matrix. The effect
of a set of pores of this shape on the bulk modulus is calculated from

equation (4) to be:

1 ) 16(1-v2)3S;3 + T r;20
[1 + ] (5)

K* K 9(1-2v)Vv

0’Connel and Budiansky (1976)
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FIGURE 4a

Pore tube with circular cross-section
(cylindrical pore tube)

r = pore tube radius

1 = pore tube length

FIGURE 4B

Spherical or nodal pore with S = pore radius
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Here K=bulk modulus of grains or matrix, K¥=zeffective bulk modulus of
the rock with pores, ri=pore tube radius, Sij=spherical pore radius,
R=pore length and V=volume of sample. It can be seen from equation (4),
that the change in radius of pores of these shapes will not be great
until the isotropic pressure P approaches the order of Young’s modulus,
E. Since Youngs modulus is about S5E+5 bars for quartz (Birch 1966), a
change in pressure of 10,000 bars is needed to change the bulk modulus
by 8% and the permeability by 154 (using equations 3 and 4) for a rock
with cylindrical pores. However, most rocks show changes in elastic and
transport properties of 10% or more at pressures between 100 and 500
bars (Cheng and Toksoz 1879, Yale 1980, Jones 1978, Han personal commu-
nication , Fatt and Davis 1952, Gray et al. 1963, Chierici et al.

1967, Yale 1984, Dobrynin 1962, Wyble 1958).

Almost all of the network models revieued here used pore tubes of
circular cross-section. This is because the flouw and capillary charac-
teristics of pores of this shape are simple to calculate and because
most of the models uere not concerned with how the transport properties
change with pressure. Houever, the stiffness of the circular pore tubes
and spherical pores precludes their exclusive use in correctly modelling
the changes in elastic moduli and permeability at stresses found in the
upper 1000 kilometers of the Earth’s crust.

Most velocity models have concentrated on pore shapes which are
more compliant but still simple enough so that the elastic equations can
be solved exactly. The pére shape used most often in modelling veloci-
ties is the thin elliptical crack (Jaeger and Cook 1976, Walsh 1965a,b,

0’Connel and Budiansky 1974, Bruner 1976, Korringa et.al. 1979, Cheng
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and Toksoz 1979, Watt et.al. 1976) (see figure 5a). The elastic equa-
tions for elliptical cracks in two-dimensions and ellipsoidal and oblate
spheroidal cavities in three-dimensions (see figure 5b) have been calcu-
lated by Eshelby (1957) and Pollard (1973). Elliptical inclusions are
elastically convenient pore shapes because the strain field within the
ellipse is unitform. The elastic equations for ellipses of large aspect
ratio (b>.1¢) are similar to those for circles (Pollard 1973), but the

equations for thin ellipses (b{<{c) depend upon aspect ratio (Berg 1969):

2(1-p2)P
b(P) = bo[ 1 - -——————J (6)
ek
c(P) = ¢o until pore closing pressure then c¢(P.1)=0 7)

where b and ¢ are the semi-minor and semi-major widths of the pore and
o is the aspect ratio= bgs/cg. Aspect ratio, a, is defined throughout
this report as bsc at zero stress and therefore & does not change with
pressure despite changes in b and ¢ uith pressure.

Although P is isotropic pressure, the thin nature of the ellipse lets
it behave as if it were under a uniaxial stress perpendicular to the
semi-minor axis. Using the dilute suspension approximation, the effec-

tive modulus of a rock with elliptically shaped pores is:

1 1 20(1-v2)3c ;2R
[ 1 + ] (8)

K* K t1-2v)v

(Jaeger and Cook 1976)

where & is the length in the third dimension of a pore tube of ellipti-
cal cross-section and V is the volume of the rockl There will be a

change in the modulus of the rock when the pressure P equals Pc1, the

pore closing pressure:
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FIGURE 5a

Pore tube of thin elliptical cross-sectional shape

¢ = pore tube width
b = minor width
1 = pore tube length
b/c = aspect ratio of pore tube

FIGURE 58

Oblate spheroidal pore
¢ = pore radius
b = minor width



ek

P & ———— (9

2¢1-v2)

Therefore, a pore space where there is a continuous distribution of
aspect ratios among the pores will shouw a continucus change in vefocity
and bulk modulus with pressure which is seen in the experimental data.

Cheng and Tokscz (1979) calculated the aspect ratio distribution
needed to match P and § wave velocities for several different rocks.
Their results are summarized in Table 1, where a is the aspect ratio of
the elliptical pores and con(a) is the volumetric concentration of the
pores of that aspect ratio. We transliate this volumetric concentration
to the fraction of the total number of pores that have a given aspect
ratio. This fraction is calculated by dividing the volumetric concen-
tration by the aspect ratio and normalizing the sum to 100 percent. Me
make the assumption that the average pore width, ¢, does not vary sub-
stantially with aspect ratio, an assumption ﬁade by Cheng and Toksoz in
their calculations of con(a).

Table 1 shous that in Westerly granite, 99.5% of the model pores
must have aspect ratios less than or equal to .01. This is very differ-
ent from Boise sandstone where 63% of the pores have aspect ratios
greater than .01. This table also points out one of the shortcomings of
elliptical pore shape models. The three sandstones in Cheng and Tokso2
study are modelled as having 86% to 81% of their pores with aspect rat-
jos 0.1 or less, yet SEM photos shou feu pores uith aspect ratios less
than .1 for rocks within the Berea, Boise and Navajo formations (L. Yale
» 1984 and personal communication). Even in MWesterly granite, micro-~
scopic study has failed to show as many pores with aspect ratios less

than 1E-3, as Cheng and Toksoz model predicts (Hadley 1976).
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TABLE 1

Aspect Ratio Spectra from Inverted Velocity
versus Pressure Profiles (Cheng and Toksoz 1979)

Navajo Sandstone por=.161 Westerly Granite por=.009

a con(a) percent o con(a) percent
1.0 . 1416 9 1.0 .69€E-2 0.5
0.1 .0210 13 .01_ . 160 12
.01 .24g-3 1.5 1E-3 .30E~3 21
2E-3  .81E-3 30 4e-4 . 12E-3 35
5E-4 .28E-3 47 1E-4 .40E-4 30
Berea Sandstone por=.,163 Boise Sandstone por=.250

a con(a) percent a con(a) percent
1.0 . 140 10 1.0 . 1877 14
0.1 .022 17 0.1 .062 49
.01 .37E-3 3 3E-3 .16E-3 5
1E-3 .44g-3 26 1€-3 .33E-3 21
5E-4 .26E-3 44 5E-4 .62E-4 10

Note : a = aspect ratio of pores, bsc
con(a) = volumetric concentration of pores of
that aspect ratio
percent = percent of all pores with
given aspect ratio
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Just as the pores of circular cross-section were ineffective in the
elastic models, a pore space with a log distribution in aspect ratio of
thin ellipses does not model transport properties uwell. Lamb (1932) has
shoun the flow equation for pipes (or pore tubes) (see figure 5a) of
elliptical cross~section to be:

AP w b3c3

Q= (10)

4ul(b2+c?)
where b and ¢ are the length of the semi-minor and -major axis of the
ellipse and £ is the pore tube’s length. For thin elliptical pore tubes

where b{(c, this equation reduces to:

Ap AP
4 apt

where a=aspect ratio or bs/c of the cross-section of the pore. Assuming
that the pore width (c¢) and pore length (L) are kept constant, a pore
with aspect ratio 1E~3 conducts 9 orders of magnitude less fluid for a
given pressure drop than a pore of aspeét ratio 1E-0. Thin pores may
have a large pore width but one uwould need to increase the uWidth of an
aspect ratio 1E-3 pore 200 times to have it conduct as much fluid as an
aspect ratio 1 pore.

Percolation theory (Kirkpatrick 1973, Koplik 1981b) has shoun that
in a three-dimensional cubic network, 25% of the pores must have a non-
2ero conductance for a pore conduction path to exist across the network.
1f we assume that a set of aspect ratios (as found by Cheng and Toksoz
(1979) for Navajo sandstone) are distributed in a cubic network then ue
can perform the following thought experiment. Starting with a blank or

empty lattice of pores we randomly add pores to the lattice beginning
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with the pores of highest aspect ratio. After adding the a=1 and a=0.1
pores to the netuork we find that only 22% percent of the pores are in
place and there is no conduction path through the rock. Only after some
of the a=0.002 pores have been added do we have a non-zero probability
that there is a conduction path across the rock. 1In other words, we can
say that all the fluid that flous through the model rock must pass
through pores that have aspect ratio 0.002 or less. We have run com-
puter simulations of netuworks with this type of log distribution of
aspect ratios, and for realistic pore widths (10~100 um), the permeabil-
ity of these netuworks is not above 500 microBarcy. The Navajo sandstone
generally has a permeability of about 10 to 100 times that value sug-
gesting that thin elliptical pores do not conduct enough fluid to simul-
taneously match elastic and transport properties of rocks.

Another problem with.models that use log distributions of aspect rat-
ios is that they do not model changes in transport propefties With p}es-
sure properly. A network we constructed with Cheng and Toksoz’ (1979)
distribution of aspect ratios for Berea sandstone yielded a decrease in
permeability and electrical conductivity of 704 and 40% respectively for
a pressure change of 500 bars. Experiments on Berea sandstone (Yale
1984a) show changes of only 10% and 5% at 500 bars in permeability and
electrical conductivity respectively (see figure 21b and Appendix C).

One could argue that although the-pore space may approximate a net-
work of pores, a substantial part of the thin pores may be located
betuween the main netuork elements, i.e. they may not participate in the
flow at all. If this is assumed, ue must also assume that the thin

pores are smaller (smaller widths and lengths) than the pores of higher
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aspect ratio. This would substantially increase the fraction of the

pores of louw aspect ratio as calculated in Table 1 (where we assume the

width and length of the pores to be independent of aspect ratiol). 1If

the pores of aspect ratio less then 0.1 are half the size of the pores
of aspect ratio 1.0 and 0.1 for the Navajo sandstone then there must be
14 times as many thin pores (a<0.1) as wide pores («>=.1). MWith this
many thin pores we can not sustain the assumption that the thin pores do
not connect to the network of larger pores. We conclude that the number
of very thin pores needed to match velocity versus pressure data are not
compatible with experimental results on the transport of fluids through
rocks.

Mavko and Nur (1978) introduced a thin tapered pore shape because
of the unrealistic behavior of the thin elliptical pore. A pore tube
with this shape shoqh in figure 5. The deformation equations are again
calculated in the thin crack approximation (a<¢.1). The change in minor

and major widths are given as:

r 4(1"1}2) Y372

b(P) = bg}t~- P (12).
\ 3ak J
(- 4(1-p2) /2

c(P) = ¢o|t~ ———P (13)
. 3ak J

The variation in bulk modulus with pressure due to these cracks is
given by:

1 1 2n1~-v2)3Ic ;2R

—_—= _[ 1+ ] (14)

K* K (1-2v) v

(Mavko and Nur, 1978)
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FIGURE 6

Pore tube with tapered (TAP) cross-sectional
shape (from Mavko and Nur, 1978)
c = pore tube width
b = minor width
1l = pore tube length
b/c= aspect ratio of pore tube
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where c=major width, £=length of pore tube in third dimension, and
v=volume of rock. Notice that this equation is almost identical to the
elliptical and circular cases. The two differences betueen this shape
and the elliptical pore are first, the more realistic shape; most pores
end in grain-to-grain boundaries uhich are better represented by Mavko’s
pointed cracks than by the rounded ellipses. Secondly, equation 13
shows that the tapered pores major width changes Wwith pressure allowing
the modulus and elastic wave velocities to change gradually with pres-
sure without having to close completely before effecting the modulus as
elliptical pores must.

Although Mavko’s tapered pore shape is an improvement over the
elliptical shape because it allous K¥* to change continuously uith pres-
sure, the aspect ratios needed to model changes in elastic properties as
well as changes in transport properties such as permeability and elec-
trical conductivity are on the order of 1E-4 to 1E-2. MWith pores this
thin it becomes very difficult to model rocks with permeabilities of
greater than 1 to 10 milliDarcy or to model changes in transport proper-
ties with pressure. In order to unify transport and elastic models, we
must first specify a family of pore shapes which is compatible with both
the network and elastic models. These shapes must have large enough
aspect ratios to account for observed permeabilities and formation fac-
tors but they must also be compliant enough to allouw for the changes in
permeability, formation factor and modulus that are found experimen-
tally. In chapter 2 we introduce a family of pore shapes which satisfy

these criteria.
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CHAPTER TWO

A Unified Network Mode! and Its Response to Changes

in Pore Parameters

THREE~-DIMENSIONAL PORE SPACE NETWORK MODEL

We have developed a computer netuwork model to simulate and study
following six properties of porous sedimentary rocks.
fluid permeability, Kk
conductivity formation factor, CF
porosity, ¢
permeability change with stress, k(P)
conductivity change with stress, CF(P)
porosity change with stress, ¢(P)

We define the conductivity formation factor as the conductivity of

a fluid saturated rock divided by the conductivity of the pore fluid.

tonductivity formation factor is equal to one over the resistivity for-

mation factor which is more commonly referred to as simply formation

factor. We use “conductivity” uhen referring to the conductivity forma-

tion factor and “formation factor” mhen referring to its inverse, resis-

tivity formation factor. In addition to the above properties, the model

is being extended to study the anisotropy in permeability and electrical

conductivity, to examine the effect of pores on elastic wave velocities

(with Jorge Mendoza), and to model the effect of pores and frequency on
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the dielectric constant and resistance of porous rocks (uith Rosemary
Knight).

The main difference betueen our approach and past models is that we
simulate several different petrophysical properties in a single pore
space model. This unified approach yields a more realistic and unique
representation of the pore space than models concerned with only a sin-
gle property. The unified approach also allows us to study the rela-
tionships among various petrophysical properties and helps us better
understand houw the pore space controls these properties. Another impor-
tant departure from most previous models is the inclusion of static
elastic properties into a model which has predominantly been used to
study only transport properties in the past. This allous the model to
simulate the changes in permeability, electrical conductivity and poros-
ity due to changes in pore or confining pressure. We have developed a
set of pore shapes (called G6BP shapes and discussed in the section enti-
tled “Grain Boundary Pore Shapes’) which are compatible with both elas-
tic and transport modeling.

The goals of this project are to develop a model that uwill cor-
rectly simulate the six petrophysical properties for a wide range of
sedimentary rock#. Model simulations which match experimental data are
used to gain a better understanding of how the pore space controls vari-
ous petrophysical properties. In other words, uwe can analyze ex;ctly
how the distribution of pores affects the simplified model and then
infer what might be happéning in the real pore space. Analysis of the
model pore space also offers insights into the relationships among vari-
ous properties and is useful in determining the degree of correlation

betueen properties for a given rock.
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The model presented in this paper is a computer simulation of a
three-dimensional cubic netuwork of nodal pores and connecting pore tubes
(see figure 7). Me have extended the more wmidely used tuwo-dimensional
network to three-dimensions because it better simulates the flow charac-
teristics of real porous media (Kirkpatrick 1973, Larson et al. 19877).
The nodal pore-pore tube concept used by Ouen (1952), Koplik (1981a),
and Dodds and Lloyd (1971) is included to model tortuosities, storage
capacity and nodal flow more correctly. The regular cubic lattice is
used because it yields a pore coordination number of six (which appears
realistic for sedimentary rocks (Yuan 1981), it simulates isotropic flou
(Kirkpatrick 1973) and it simplifies certain numerical calculations.

In this chapter ue develop the pore shapes need to unify transport
and elastic models and then describe the unified model uwe have con-
structed. The second part of this chapter deals with how the model
responds to changes in the pore parameters, i.e. using the netuork as a
forward model to better understand how the pore space controls various

properties.
Grain Boundary Pore Shapes

As discussed in a previous section, differences in pore shape make
it difficult to combine previous elastic and transport models into a
single model. The thin tapered and thin elliptical pore shapes can not
be used in models for rocks with permeabilities greater than 1 to 10
milliDarcy without unrealistically iarge pore widths., Similarly, uwe can
not model changes in velocity, porosity, permeability, and conductivity
due to pressure with the circular pore tubes used in most transport mod-

els.
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FIGURE 7

Three-dimensional cubic network of
pore tubes and nodal pores
3X3X3 network with 28 nodes and 90
pore tubes
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Since most velocity and elastic modulus studies have been
approached from the point of view of igneous rocks, thin intergranular
cracks as pores have been realistic. But extrapolation to sedimentary
rocks, which are collections of grains that have been cemented together,
dogs not appear valid. A better approach is to use the properties of an
unconsolidated packing of grains. Hertz-Midlen contact theory (Timosh-
enko and Goodier 1971) has been used to calculate the elastic moduli of
ordered and disordered packings of grains (Murphy 1982, Duffy and Mind-
1in 1957). In these models velocities and elastic moduli are related to
the grain shape and size rather than the pore shape and size.

The flow of fluids through grain packings has an extensive litera-
ture and the flou equations for unit cells of various single sized grain
packings has been calculated approximately by Snyder and Stewart (1966),
and Stewart and Sorensen (1974). These equations turn out to be very
complex and valid only for packings of equidimensional spheres. No
investigation of how changes in pressure uould effect changes in the
flouw properties of these grain packs has been undertaken. The angular
nature of most sandstone grains and the effect of cements and over-
growths on the elastic properties make the extrapolation from grain
packs to consolidated sandstones even more difficult.

We have found that although the sphere packs may not represent con-
solidated sediments exactly, the idea of a pore as bounded by grains and
whose elastic properties are dependent upon the deformation of those
grains (Hertz contact theory), appears more effective in modelling the
transport and elastic properties of a porous sedimentary rock than mod-

els where the pore is an isolated inclusion in a homogeneous matrix.
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The pore tube shapes uwe introduce here will be referred to as GBP shapes
{grain boundary pore shapes) and they are illustrated in figures 8-12.

The shapes are formed by the smallest opening betueen four grains
in contact. Changing the roundness or angularity of the grains sur-
rounding the pore change the shape and deformation of the pore with
pressure. We can envision pores formed by cubic close packs (figure 8a)
or hexagonal closest pack (figure 8b). The differences between the tuo
are not large and the elastic and flou calculations for the cubic close
pack shape are simpler. Our shape is an approximation of the real pore
space and an approximation of a real grain pack. Figures 9a and 9b shou
a unit cell of a sphere pack and its hydraulic equivalent using GBP
shaped tubes and spherical nodal pores (as we do in the network model).
The flow in the unit cell of a sphere pack is controlled by the smallest
opening in the unit cell and is uhy the GBP shape is modelled as the
smallest opening betueen four grains in contact.

Adplying a force pushing all the grains together forces them to
deform at the points of contact and forces a change in shape and size of
the pore tube cross-section. The equations governing how the grains and
thus the pore shape will deform under stress are given by Hertz contact
theory (Hertz 1881, Timoshenke and Goodier 1972).

For two grains under a normal force n, uwhose radius of curvature at
their point of contact is R¥, the radius of contact, a, is given by:
C (3C1-y2)n yV/3
a = [—————-—— R*] (153
4E

The displacement of the centers of the two grains is given by B:

(186)

9(1-y2)2p2y1/3

2EZ R*
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FIGURE 9a

Cubic close packing of spheres

Hydraulic and electrical equivalent of Figure 9a
for flow in the z direction using GBP pore tubes
and spherical nodal pore.
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where y=Poissons ratio and E= Youngs modulus of the grains. For an
isotropic packing of grains, the normal force n can be converted into a

hydrostatic pressure P through the equation:

n = J2r*z p (Murphy 1982) an
shere r¥= the average radius of the grains. Since the radius of the
grains can be different from the radius of curvature at the point of
contact of the grains, a family of shapes as illustrated in figures

- 10a,b,c,d can be generated where the thinner (high R¥/r¥* or RC ratio)
pore shapes deform more for a given pressure. The Hertz equations can

thus be modified and normalized to:

a R*1 173 3/2(1-p2)py 173

—_— L_J L-_.---] (18)
r* r* 4€

B2 (rm 173 (3f2(1-p2)py2/3

. [_] [___] (19
r* R* 4E

where r¥zaverage radius of grain and R¥=radius of curvature at contact
point; a and B are normalized to the grain radius because the pore
width, ¢, of this shape is equal to our definition of average grain
radius, r¥*, R¥/r#* is independent of pore uidth so that the relative
deformation of a pore is independent of the absolute size of the pore
and is only dependent on the pore shape. The pore shape of the GBP
pores is characterized by the R¥/r* ratio which we denote as the ”RC”
ratio of the shape.

Equations 5, 8, and 14 all relate the effective bulk modulus to the
pore width and not to the pore shape. Therefore as a first order
approximation, we infer that the change in bulk modulus due to a collec-
tion of GBP pores is governed by the following equations:
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a(P)

c(P) = co(1 - ) (20)

Co

1 1 4nZc;2L

—_= —[ 1 + -————-—J (21

K* K v
where ¢= pore width, a=change in pore width from equation 18. This
equation is rigorous only for a dilute suspension of non-interacting
pores. In our model the pores are close enough to interact but we feel
that Hertz contact theory naturally imbeds part of the pore-pore inter-
action. Mendoza (personal communication) has suggested that the dilute
suspension model is rigorous only when the pores are more than one pore
radii apart. This is because the stress field caused by the crack tips
is almost negligible one pore radius away. In the case of the GBP pores
we assume in our deformation calculations that there is another pore
adjacent to and in contact with the pore we are studying (see figure
11). Hertz contact theory therefore essentially takes care of the
interaction of the stress field of the tuwo pores.

The differences between the thin elliptical, thin tapered and GBP
pore shapes are shoun in figure 12. Here uwe show the change in pore
width squared (¢2) (uhich is related to changes in elastic properties)

with pressure for the four pore shapes:

P

c(P)2 « (1 -~ =)2 circle (22)
E
P

c(P)? « (1 = —)2 ellipse (23}
ak
P

c(P)? ¢ (1 -~ —) tapered (24)
aE
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CHANGE IN COMPRESSIBILITY
FOR DIFFERENT PORE SHAPES
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FIGRE 12

Change in pore widt h squared, c2, with pressure for
different pore tube shapes. Compressibility related to ¢
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P 173 2
c(P)? « [1 - [—] ] GBP (25)
a*E

The aspect ratios for the thin elliptical and thin tapered shapes are
adjusted to match the change in c2? observed in a GBP shape of aspect
ratio .4 (RC=1) at 410 bars. The aspect ratio or a of each GBP shape is
defined as b/c as illustrated in figures 10a and b and a* is defined as
1/RC. Note that ue need to use much thinner elliptical and tapered (a
=1.5E~3 and S5E-3) shapes to match the high aspect ratio GBP shape. MWe
also note the step function, linear and non-linear behaviors of the
e]liptical. tapered and GBP curves respectively. Mendoza (personal com-
munication) has found that the GBP pores can correctly model the change
in bulk modulus and compressionaf velocity for several rocks with very
narrouw distributions of aspect ratios. Table 3 shous the relationships

between pore shape and aspect ratio for the GBP and tapered pores.

We start the network approach by analyzing the flou, storage and
deformation characteristics of each pore in the netuork. Netuwork theory
gives us a set of simultaneous equations which relate those microscopic
pore properties to the macroscopic rock properties of permeability and
conductivity. 1In the following section, we describe the equations which
relate the size and shape of the pore to its hydraulic and electrical

conductance, its volume and its elastic characteristics.
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Flow and Storage Equations for Pores

In order to calculate the hydraulic conductance of a pore tube, the
size and shape of the pore must be knoun. Each pore tube is assumed to
have a constant cross-section across its length and each pore is fully
characterized by specifying the pore tube length, cross-sectional shape
and cross-sectional width. MWe use three different pore tube shapes in
our model; circular cylinders, tapered cross-section pore tubes and pore
tubes with the GBP type shape. The simplest pore tube shape is a cylin-
der of circular cross section a where the hydraulic conductance can be
calculated from Hagen-Pouiselle pipe flow:

apur®
Q = —— (26)
8ul
where Q=volumetric flow rate, AP=pressure drop, &£=pore length, r=radius
of the pore, and p=viscosity of the pore fluid. The hydraulic conduc-
tance is defined as:
Q et
—_—F — 27
AP 8k

For pores of tapered cross-section, comparison of numerical and
analytical results shouws that the equation for flow in elliptical pores
is an excellent approximation.

nb3c3
HCON ¢ .685¢—m—— _ (28)
(bZ+c2)pp

For the GBP shapes, simple analytical solutions for the hydraulic

conductance do not exist. 1In order to calculate the hydraulic conduc-

tance, we first solve a dimensionless Poissons equation across a unit

cross-section of a pore tube:
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dZu %y

—_— — = (29

x2 2
where u=fluid velocity due to a unit pressure gradient perpendicular to
the cross-section and a no-slip or u=0 boundary condition is imposed
along the walls. Because the GBP shapes are hyperbolic, the solution to
Poissons equation is most easily solved numerically using a finite dif-
tference grid. The solution to the Poisson equation gives the fluid
velocity at all points in the cross-section perpendicular to the cross-
section. This velocity profile is then integrated to find the flux
through the cross~section and by integrating the flux in the direction
of the pressure gradient, the hydraulic conductance can be calculated.

The flou equation becomes:

APch
*FLRT (30)

q:
nR

where FLRT is the dimensionless hydraulic conductance found from inte-‘
grating the Poisson solution over a unit cross-section and a unit ltength
pore tube (¢ is the pore tube width). The hydraulic conductance is

defined here as:

Q c
HCON = — = FLRTe— (31)
ap 183

The change in hydraulic conductance with stress is found by calcu-
lating how each cross-sectional shape changes sith pressure (using Hertz
cﬁntact theory) and then solving for the hydraulic conductance of the
new shape (by integrating the Poisson solution for that shape). The
change in hydraulic conductances for pores of circular, thin elliptical,

thin tapered and GBP cross-section are shouwn in figure 13. Note that at
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Change in hydraulic conductance with pressure for different

pore tube shapes.

Alpha or A equals aspect ratio of shape
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500 bars stress, the percent change in hydraulic conductance is only
0.7% for a pore tube of circular cross-section whereas it is nearly 14%
for the GBP shape of aspect ratio 0.4. As with figure 13 on bulk modu-
lus comparisons, ue show the elliptical and tapered pores uwhich match
the change shoun by the GBP shape. Again much thinner elliptical and
tapered pores are needed to match the GBP shape and the GBP shape has
the highest order curvature of any of the shapes. This high order of
curvature in both permeability and bulk modulus is seen experimentally
in most sedimentary rocks.

The nodal pores in the modél are for the most part taken to be
spherical voids. Koplik (1981,1982) found the pressure drop across half
a nodal pore due to incoming fluid at rate Q from a pore of hydraulic

radius rh to be:

8Qu
AP = (32)
Rt
Rt
HCON = (33)
8u

The hydraulic radius of a pore tube is the radius of a cylinder that has
the same hydraulic conductance as the pore tube.

FLRTY /"
rh = c°[ ] (34)

n/8

Koplik (1981) ha; shoun that the radius of the nodal pore drops out
of equations 32 and 33 due to spherical symmetry. Although the previous
equations were valid for any laminar flow (Reynolds number<2000) Kop-
1ik’s equation is only valid for slow Stokes flouw. Our calculations

shou that the Reynolds number for single pore flow under geologic and
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reservoir flow rates is on the order of 1E-1 to 1E-3, well uithin the
bounds of slou Stokes flouw.

We have an analogous set of equations governing electrical flow
through the pore tubes and nodal pores. The electrical conductance of a
pore tube with any cross-section is given by:

A

ECON = (35

pR
where p=specific resistivity of the pore fluid, £=length of the pore
tube and A=area of the cross-section of the pore tube. For the nodal
pores, the change in the area of the conductor going from pore tube to
nodal pore must be taken into account. The electrical conductance equa-
tion for the nodal pore is:
w 1
ECON = -{————————:j (36)
p\1/re = 1/
where S=radius of the spherical nodal pore and re=electrical radius of
the pore tube connected to the nodal pore. Like the hydraulic radius,
the elgctrical radius is the radius of a pipe which has the same cross-
sectional area (and thus the same electrical conductance) as the pore
tube. The validity of equation (36) has been shoun experimentally by
owen (1952).
Since porosity is defined as the volume of the pore space divided
by the volume of the rock, the volumes of both the pore tubes and nodal

pores must be calculated. They are simply defined as:

VoL = AR pore tubes (37)
4

VOL = —enS3 nodal pores (38)
3
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Deformation and Pressure Dependence

In order to calcuiate the change in permeability, electrical con-
ductivity, and porosity, a set of equations governing the elastic defor-
mation of the pore tubes and nodal pores must be established. The shape
of each pore tube and nodal pore explicitly controls its deformation
with stress. 1In tuo earlier sections ue developed the elastic equations
governing the deformation of the pore tube shapes we have used. Because
the GBP shapes change size and shape as pressure is increased, ue can
not derive analytical solutions for the hydraulic, electric and pore
volume compressibilities for individual pores. MWe must numerically
solve for how the pore tube deforms with stress and then solve for
change in hydraulic and electrical conductance and volume of the
deformed pore.

Although the pore volume and bulk compressibilities are summation;
of the single pore effects, the hydraulic and electrical compressibili-
ties must be found by solving for the permeability and electrical con-
ductivity of the entire network at different pressures. In the next
section, we analyze the equations necessary to convert a collection of
hydraulic and electrical pore conductances into the permeability and

electrical conductivity of a netuork of pores.
Network Equations

As mentioned in chapter 1, the reason for representing the pore
space as an interconnected netuork of pores is to correctly simulate the
interconnected flow paths responsible for fluid and electrical transfer

across the rock. The reason ue project our model onto a cubic lattice
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is that in order to calculate the permeability and conductivity of the
netuork, we must simultaneously solve for the fluxes and pressure drops
across every pore in the network. The set of netuwork equations uhich
follow allow us to calculate the flow properties of the network from the
individual pore properties.

The netuwork equations are a set of simultaneous equations which
relate the hydraulic and electrical conductance of the individual pore
elements to the permeability and conductivity of the netuork. Using the
electrical analeg, the voltage drop, V3, across any given pore element
with resistance Rj;, for a current of I is:

V; = R3; Ij (39)
For the entire netuwork of pore elements, this can be reuritten as a set

of matrix equations:

Ry 0 Oy rI4Y =(V4
[U R2 U] [I z] [Vz] (40)
0 0 Ry/\I, Vs - .

or V = [R]1 ' 41)
Kirchoff’s circuit lau (Lobkouicz and Mellosimos 1975) states that
there can be no accumulation of charge at any node in the netuork and
the mass balance equation of fluid mechanics (Bird,Stewart and Lightfoot
1969) prohibits the accumulation of mass at any node in the network (for
an incompressible fluid). These two laus allow for the construction of

a matrix B which has the following properties:

Bi; = 1 if flow in element j is away from node i (42)
= -1 if flow in element j is towards node i (43)
=0 if element j and node i are not connected (44)
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If we define a vector J as the current applied to each node and a vec-
tor U as the voltage at each node (with respect to the last node) then

the following equations are true:

v = [R]l1 (45)
J = [B]1 (46)
v = (8Bt 47

These can be combined to yield:
(8] [R-'] (8% u =y (48)
Since R is a diagonal matrix:
[R*'] = [1/R] = [ECON] (49)
[8] [EcON] [BY] Av =1 (50)
where [ECON] is a diagonal matrix of all the electrical conductances of
the netuork elements. The hydraulic equivalent of equation 40 is:
[B] [HCON] [Bt] 4P = q (51
where [HCON] is a diagonal.matrix of all the hydraulic conductances of
the network elements.

The permeability and conductivity are found by specifying the flouw
rate or current, J(1), into the first node of the network, then solving
equations 50 and 51 for the pressure drop or voltage drop across the
network, U(1). The matrix I B CON Bt] is a septdiagonal banded symme-
tric matrix (for a three-dimensional cubic netuwork). If the network is
cubic with width, length and height of nXnXn nodes then the bandwidth of
the matrix is nZ and the rank is n3. Because the matrix is extremely
sparse, uwe have found that an over-relaxed iterative solution (Young
1971) is both faster and requires less storage than the direct solution

especially for matrices representing three-dimensional networks. The
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iterative solution starts must start with a “best guess” of the solution
and then converge from that to the final solution. Because the equa-
tions are solved through a sequence of pressures, the solution at the
previous pressure turns out to be an excellent guess for the solution
and the iterative scheme converges much more quickly than the pass at
pressure 0 uhere the “best guess” is a vector of all zeros.

Two major reasons for using the iterative approach for solving these
matrices are 1) even though the matrices are positive definite symme-
tric, they turn out to be algorithmically singular for most commercially
available direct (Gaussian elimination or Cholesky method) solvers and
2) there can be up to nine orders of magnitude difference in the values
of different matrix elements. The iterative algorithm we use converges
for matrices which are very nearly singular and the iterative process
does away With most of the truncation and roundoff error that would ham-
per a direct solution due to the large variations betueen matrix ele-
ments.

The iterative method used here is a variation of the standard
Gauss-Seidel iterative approach (Atkinson 1978) called SOR (Young 1971,
Dahlquist and Bjorck 1974). We first decompose the matrix A from the

equation Ax=b into three matrices:

[D}] = main diagonal of [A] (52
{L) = louwer triangular part of [A] - (D] (53)
[U] = upper triangular part of [A] - [D] (54)

Convergence of the solution is accelerated considerably (up to 500 times
faster) by including an overrelaxation factor, w, which is betueen 0 and
2 in general but for our matrices turns out to be limited to between 1.7

and 2.0. The basic iterative equation is then:

- 53 -



x(P+1) = (b = [LIx{P*Y) —[ylxtP))[D-"]u + (1-w)x(M (55)
The iterative process is continued until the normalized change in any
x(n) from the previous step is less than 1E-4. The number of iterations
need for convergence depends on the variability of elemental conduc-
tances which depends upon the width of the distributions. For networks
in which the variables are chosen from narrow distributions the method
converges in 20 to 50 iterations at optimal w and for wider distribution
the number of iterations can increase to between 100 and 300 but rarely

above that.
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NETUWORK SIMULATIONS

The previous section described how the network model developed here
can calculate the permeability, formation factor, porosity and their
changes with pressure, provided that the size and shape of all the pores
in the netuork is knoun. In the rest of this chapter we shouw the
results of preliminarQ simulations in order to 1) test the numerical and
statistical artifacts of the model and 2) test the effect of how changes
in pore parameters effect the petrophysical properties, i.e a foruard
model. This foruard modelliing helps us greatly in the next chapter uhen
we invert the experimental petrophysical data to yield information about
the pore space.

The pore parameters uhich are variables in the simulations are:

1) pore tube width, ¢

2) pore tube length, R

3) nodal pore radius, S

4) pore tube cross-sectional shape

The pore tube width, ¢ is the length of the semi-major axis of the pore

tube cross-section. Each of these variables is randomly assigned to
each pore in the network from some distribution of values. From the
equations specified in the earlier section, uwe can then calculate the
individual pore’s hydraulic and electrical conductance and its volume at
each of eight confining pressures and then a set of neiuork equations
calculates the permeability, formation factor and porosity of the simu-

lated network at each of the eight pressures.
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Numerical and Statistical Considerations

The first three pore parameters are assigned to each pore tube apd
nodal pore in the network from either single valued, uniform, Gausssian
or discrete distributions. Because of the calculations required for the
hydraulic and electriéal conductance of the pore shapes, the pore tube
cross-sectional shapes are assigned from a discrete distribution of val-
ues. Each pore is assigned several random numbers uwhich are generated
from a standard pseudo-random number generator. The value of each pore
parameter is assigned to a given pore depending on where the random num-
ber falls within the distribution of values for that parameter. This
method is statistically identical for large netuworks to randomly placing
pores of a specific value in the network. Our method has the advantages
that it honors discrete distributions more closely in finite netuorks
ané is much simpler to manipulate.

Correct calculation of transport properties using a Monte Carlo sim-
ulation necessitates a trade-off betuween statistically random distribu-
tions and computation times. Even in the smaller three-dimensional net-
works of 5X5X5 nodes, the number of pore elements, 400, is large enough
to get statistically valid distributions. The network model, however,
requires that these distributions must be randomly placed within the
netuork. 1In other words, the netuork must be large enough so that a
string of largest pores is not connected through the netuwork, giving an
anomalously high permeability or that a set of smallest pores does not
occupy a large portion of a given plane perpendicular to flow, giving an
anomalously lou permeability. At the same time uwe want to keep the size
of the network small, because the computer time increases gfeatly with
the number of nodes in the network.
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We have studied these problems for five sizes of networks. These
being 5X5X5, 8X8X8, 10X10X10, 5X5X10 and 5X5X20. The number of nodes
and number of pore elements for the 5X5X5 and 10X10X10 case are 126 and
1001 nodes and 400 and 3100 elements respectively. We ran 15 simula-
tions on each of the above 5 network sizes using the same pore parameter
distributions but changing only the pseudo random number seed. Differ-
ent random number seeds generate different sequences of pseudo random
numbers on the computer. Although the distribution of pore parameters
reﬁains the same with different seeds, the placement of pores of a par~-
ticular value is different. The variability in permeability, etc. due
to different seeds gives a measure of the non-randomness of the netuwork
due to less than infinite size. The 10X10X10 case gave the most consis-
tent results with only a 3.8% standard deviation in permeability among
. the runs. The deviations in conductivity, porosity and compressibility
were substantialiy smaller. The sxéxs case had the largest standard
deviation at 22% in permeability; however, the mean of the runs uas only
2.5% higher than in the 10X10X10 case. All the other sizes fell in
between the tuwo extremes. The average run time for the 10X10X10 case
was 200 seconds on an IBM 3081 and only 20 seconds for the 5X5X5 case.
Although the 5X5X20 network showed similar statistics as the 8X8X8 case
(both have about 500 nodes and 1500 elements), the 5X5X20 case needed
three times as many iterations to converge. In general, we have found
it easier to average a few 5X5X5 cases using random number seeds uhich
give reliable distributions than to run the 10X10X10 network. In match-
ing experimental data, we generally test 5X5X5 simulations until ue are

fairly close and then we go to the 10X10X10 case for the final matching.
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There have been questions raised as to network edge effects and
simulations of infinite networks (Koplik 1982, Nicholson and Petropoulus
1971). " Tuo possible netuwork configurations are 1) no flow out of the
netuwork, perpendicular to the average pressure gradient and 2) periodic
boundary conditions on the edges perpendicular to the average pressure
gradient. The periodic boundary condition is similar to assuming that
there are similar networks on the four boundaries perpendicular to the
average flow direction. We have found that this condition is superior
to the no-flow boundary condition and eliminates edge effects and
greatly reduces variations due to netuork size (using the periodic
boundary condition e found only a 2.5% difference in permeability
between the 5X5X5 networks and the 10X10X10 networks).

The one other computational problem that we have run into is the
determination of the optimal over-relaxation parameter, u. MWe have
found that w depends upoﬁ the width of the pore parameter distributions
when that width covers more than one order of magnitude. It also
depends a great deal on the size of the network. - For the 5X5X5 netuork
the optimal w (i.e. the w which allouws convergence of the solution in
the least number of iterations) is about 1.85 to 1.88. For the 10X10X10
netuworks, the optimal w is betueen 1.90 to 1.94. For pore shape distri-
butions using log uniform distributions in aspect ratio (used only for
tapered cross-sections to model! tight gas sands and granites), thg n for
5X5X5 networks needs to be as high as 1.92. The optimal w is very
important in that using a w that is 10%4 belou the optimal w will require
about 4 to 10 times more iterations than the optimal w. Over-relaxation

factors that are too far above the optimal uw generally cause the
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solution to diverge. As mentioned previously, without the over-relaxa-
tion factor, the nuhber of iterations to reach convergence is 50 to 500
times larger than with the factor. Although Young (1971) has derived a
uay to find the optimal w before trying to solve the equations, he even
suggests that trial and error is a faster method for finding the optimal
W. For most of our simulations the optimal w is within a narrouw enough
band that we can use a constant value that we have found from our past

simulations.
Pore Parameter Effects

We consider here the foruward model in an effort to understand hou
the variables effect the properties we are modelling. This is a first
step in both determining how the pore space controls various properties
and in inverting the model to yield information about the pore space.

As mentioned in the previous section the four pore parameters are pore
tube width, nodal pore radius, pore tube length and pore tube cross-sec-
tional shape. In the following section we go through each parameter and
how it effects each property and then see how the four properties are
coupled together.

YThe basic equations relating pore tube width, ¢, to each property

are:
hydraulic conductance (permeability) « c* (56)
electrical conductance (CF) « c? (57)
pore tube volume (porosity) « ¢c? (58)

This means that a 10% increase in the average ¢ should increase the

permeability by 46% and the electrical conductivity and porosity by 21%4.
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Calculations from network simulations with no nodal pores and all pore
tubes of the same shape and size (single valued distributions) shou
exactly this behavior. Therefore, as long as all the pores in the net-
work have the same size and shape, the effect of ¢ on permeability,
electrical conductivity and porosity of the network is the same as the
effect of ¢ on hydraulic conductance, electrical conductance and volume
of the individual pore tubes. In a real pore space, houever, the pore
sizes are distributed over some range and therefore the width, shape,
and mean of the distributions become important.

We have run several sets of simulation to test the effect of the
width of a distribution of pore sizes on permeability, conductivity and
porosity and the results are summarized in Table 2. This table lists
seven continuous uniform distributions of pore widths, all with an
arithmetic mean of 50 um. Uniform distributions are used as a uorst
case estimate of the effect of a wide distributions of pore widths.
Tests with Gaussian diétributions shou much smaller effects on the width
of the pore width distribution. The permeability, formation factor and
porosity of netuork simulations with pore widths assigned from these
uniform distributions are list in the “ACTUAL” columns of Table 2.

Because of the c¢* and c? dependence of hydraulic and electrical
conductances on pore width, we predict that the mean hydraulic and mean
electric widths should depend upon the width of the distribution. MWe
define the mean hydraulic width as the 4th root of the 4th moment of the

distribution of pore sizes:

Ch = ‘JE(c') =

(59)

[c1' +ca% + ...+ c;‘]"'

i
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Dist.

(um)

50

45-55

40-60

25-75

10-S0

5-95

1-99

Notes

TABLE 2

Effect of a Wide Distribution of Pore Widths

ACTUAL
perm ff
(mD)

2162. 27.73
2137. 27.96
2134. 28.21
2291. 28.95
2766. 29.44
2992. 29.38
3195. 29.17

poro

L1174

.1176

.1183

. 1225

. 1303

. 1337

. 1367

2nd M
(um)

50
50.11
50.39
52.24
55.45
56.79

§7.94

4th M
(um)

50

50.28

51.06

55.79

62.64

65.16

67.22

PREDICTED
perm ff
(mD)

2162. 27.73
2210. 27.61
2347, 27.31
3319. 25.48
5214. 22.66
6079. 21.63
6862. 20.79

netuworks with the given distribution of pore widths.

#2nd M” is a mean meighted to r2.

#4th M” is a mean uweighted to r4.

“PREDICTED” permeabilities are found by calculating the permeability
PREBICTED” formation

of a network uwhere all pores have width c=”4th M’.

factors and porosities are calculated from networks where all the pores have

widths of ¢="2nd M.

poro

L1174

1176

.1183

. 1226

. 1304

.1338

.1368

Hydr.

Elec.

tortuosity

1.0

1.03

1.45
1.89
2.03

2.05

: “ACTUAL” permeabilities, formation factors and porosities are for

”Tortuosity” is found by dividing predicted permeabilities and
conductivity formation factors by the actual values.
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The mean electrical pore width is defined as the square root of the

second moment of the distribution:

Ce = dE(Cz) s

[c12 +c22 4+ ...+ c;z]"z
(60)

i
where E(cJ) is the jth moment or the expected value of ¢J (Bouker and
Lieberman 1972), c; are the pore widths and i is the number of values in
the distribution.

The permeabilities of netuorks uhere all the pores have a pore
width equal to the mean hydraulic pore width are listed in Table 2 in
the “PREDICTED” column. The formation factors and porosities of simula-
tions where all the pores have pore uidths equal to the mean electrical
" pore width are shown in the #PREDICTED” columns also (the porosity is
related to ¢? and therefore to the mean electrical midth). Because the
hydraulic and electrical mean pore widths are ugighted towards the large
pore widths, they both increase with increased distribution width which
leads to increases in the ”PREDICTED” permeabilities and porosities and
decreases in the formation factors.

The YACTUAL” petrophysical properties shouw a different behavior
altogether. The “ACTUAL” permeability decreases for small increases in
distribution width and then only increases 48% when the width of the
distribution spans tuo orders of magnitude in pore widths. This is com-
pared to a “PREDICTED” increase of over 300% betueen the single valued
and widest distributions. The formation factor was predicted to
decrease 25% over the span of distributions yet it actually increased

5%. 0Only the porosity followed the predictions.
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Comparison of the network model with the bundle of capillary tubes
mode] (Archie 1942, Carmen 1937, Kozeny 1927)(see Morgan 1984 for a
review of capillary tube models) illustrates the reason mhy the “ACTUAL”
values are so different from the #PREDICTED” values in Table 2. In the
capillary models the pore space is representéd as a bundle of capillary
tubes which run the length of the sample, i.e. there are no conngctions
between adjacent tubes. MWe set up such a model where the pore tength,
£, equalled the sample length (i.e. tortuosity=1) and assigned pore
widths (or radii in this case) according to the distributions in Table
2. MWe found that the ”PREDICTED” values from Table 2 exactly matched
the values calculated from the capillary model. We infer that differ-
ences between the two models uwill yield information on the discrepancy
between “PREDICTED” and “ACTUAL” values in Table 2.

The main difference between the two models is the interconnected-
ness of the pore space. In the capillary model fluid is constrained to
flow the entire length of the sample within a single capillary. There-
fore, the large pores carry the largest part of the total flow through
the sample. In the network model, fluid enters different pores at each
nodal pore depending upon the hydraulic conductance of each adjoining
pore and the pressure drop across it. Because the pore tube widths are
randomly placed within the network lattice, there is little chance that
a string of large pores will connect through the sample to allow for a
capillary tube effect. This means that the “path of least resistance”
for a fluid particle (or electric particle) will be larger than the sam-
ple length for a netuwork with distributed pore widths. It also means
that the ratio of ”ACTUAL” to #“PREDICTED” values is a measure of the

fluid path length or tortuocsity of the netuork.
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These tortuosities are listed in Table 2 for the hydraulic and
electrical flow paths. Because there is a larger variation in hydraulic
conductance than electrical conductance for the same pore width distri-
bution (¢" versus c? dependence), we find that the hydraulic tortuosity
is always greater than the electric tortuosity. Alsq note that both
tortuosities increase with an increase in the width of the distribution.
The difference in hydraulic and electrical tortuosities suggests that
the hydraulic flouw paths are different from the electric flou paths and
that one should not‘attempt to correlate permeability and formation fac-
tor for netuworks or rocks where there is a very wide distribution of
pore widths. The porosities are the same in the two models because the
porosity does not depend on the conﬁectedness of model, only on the
total pore volume over sample volume. One interesting observation is
that the increase in mean hydraulic and electric widths is nearly bal-
anced by the increase in tortuosity for netuorks uhere the variation in
pore widths is an order of magnitude or less, which suggests that the
width of the pore tube distribution is not significant in changing the
permeability or formation factor unless it spans more than an order of
magni tude.

Equations 26, 33, and 35 show that the hydraulic and electrical con-
ductances of the pore tubes are related to the inverse of the pore tube
length and that the pore volume is directly related to pore tube length.
Because permeability and conductivity are normalized to the length of
the sample over the area of the sample, an extra factor of &' is added
to the conductance equations provided the network is cubic and all the

pore tubes have the same length. Porosity is pore volume over sample
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volume so that porosity is also related to 2-2 for a cubic network. An
increase in pore length decreases all three properties according to the
square of the increase. Simulations on cubic networks with no nodal
pores yield these relationships.

Assigning pore tube length from a distribution of lengths is found
to be unrealistic unless extreme precautions are taken. Increasing the
width of a distribution of pore lengths while keeping the arithmetic
mean constant, removes the dependence of permeability conductivity and
porosity on network size because the average £ is constant and the over-
all size of the network depends only on the average £. This means that
permeability and conductivity are dependent on £°' for constant mean
distributions and porosity is dependent on R. As these relationships
are first order, we expect permeability, conductivity and porosity to be
related to the first moment or arithmetic mean of the distribution.
Since uwe are holding the mean constant, the width of the distribution
should have no éffect. Simulations run using & capillary model and net-
work model shou the properties of the capillary model to be unaffected
by the width of the distribution of pore lengths but in the netuwork
model only the porosity is unaffected by the distribution width. Perme-
ability and conductivity both increase 20% when the distribution spans
tuo orders of magnitude in values. Analysis shouws that these increases
are due to fluid and electrical flow path lengths that are less.than
sample length, i.e. tortuosities less than 1. This is unrealistic and
is due to the lack of a placement algorithm which requires all flow
paths to be of realistic length. Because of the predicted lack of

dependence of permeability, conductivity and porosity on the
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distribution of pore lengths, ue confine our simulations to those uwhere
all the pore tubes have the same length.
For cubic networks of pore tubes with no nodal pores the reliation-

ships betuween properties and pore width and length become:

permeability « ¢c%/R2 (61)
conductivity « c2/82 (62)
porosity « c2/82 (63)

Note that the relationships for conductivity and porosity are the same
and that both are dependent on the ratio of ¢ to £. We suggested ear-
lier that permeability and conductivity are not related to one another
when their flow paths are different. Here ue see that if the ratio of
pore width to radius is constant in.a set of simulations, the porosity
and conductivity will remain fixed while the permeability can vary sub-
stantially. This illustrates that a knowledge of what the pore parame-
ters are can yield a great deal of insight into the relationships
betuween petrophysical properties.

Another difference betuegn the capillary tubes model and our net-
work model is the presence of nodal pores at the junctions of pore tubes
in the netuork. Nodal pores are an essential part of our network model
considering our starting point for pore shapes is a sphere or grain
pack. As shoun in figure 10b, an equivalent representation of a grain
pack is a GBP shaped pore tube connected to a spherical nodal pore con-
nected to another GBP shaped pore tube. The presence of nodal pores
also accounts for tuwo experimental observations which have not previ-
ously been uell explained through past pore space models. Equations 62

and 63 suggest that without nodal pores the network model predicts a one
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to one relationship betueen porosity and conductivity uﬁich translates
to an Archie’s exponent of 1. Empirical evidence shous that Archie’s
exponent is rarely belouw 1.6 and rarely above 3. Capillary tube models
have accounted for this by making the pore tubes very tortuous (see
equation 2). Houwever, tortuosities as high as 10 to 70 are neeﬂed to
mode! rocks with high Archie’s exponents. MWith nodal pores accounting
for 30% to 90% of the pore volume, the netuork model exhibits Archie’s
exponents between 1.6 and 3.0 uwith tortuosities of 1.

A second observation is that conductivity aluways decreases more
with pressure than porosity, yet the no nodal pore network model pre-
dicts both conductivity and porosity to change the same with pressure.
The capillary tube model assumes that the change in conductivity is
equal to the change in porosity to the power m (Archie’s exponent).
Experimental data (Fatt 1957, Chierici 1967, Yale 1984a) all shou that
this last assumption underestimates the conductivity at pressure by
betueen 20% and 60%. Only by allowing a large part of the pore space to
be taken up by spherical (and thus “stiffer”) nodal pores, can the rela-
tionships betueen the change in conductivity and change in porosity be
correctly reproduced.

Nodal pores, houever, make it more difficult to analyze the rela-
tionships between rock properties and pore parameters. Equations 38 and
36 shou that:

pore volume of nodes « §°

conductance of nodes « 1/(1/re - 1/8)

Doubling the nodal pore radius does not increase the porosity eight

fold because:
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nodal volume + pore tube volume
$ = (64)
sample volume

or

$3. and c¢22
¢ « (65)
(£+S)3

The relationships for permeability and conductivity are:

c*72 and ¢?3
k « (66)
(L+S)

c2/2 and 1/(1/rg-1/8)
CF « (67)
(2+S)

We see that all three properties are related to all three pore parame-
térs. It is this non-linear coupling betueen properties and parameters
that makes it very difficult to construct a true inverse model. The
three properties and three parameters do insure that a foruard model
that fits some experimental data will be unique for a constant set of
pore shapes. Simulation tests of nodal pore size distributions shou
that the width of the distributions has no effect on permeability or
porosity and the effect on conductivity is less than 5% even when the
distribution varies over two orders of magnitude. Therefore, we let all
nodal pores have the same radius.

The last pore parameter we mentioned earlier was pore tube cross-
sectional shape. Table 3 shous the full set of pore tube shapes used in
our model along wWwith their aspect ratios, effective hydraulic and elec-
tric radii and their hydraulic and electrical conductance. The conduc-
tances are normalized to the conductance of a pore tube of circular

cross-section, with unit radius and unit length. Note that the
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TABLE 3

List of Aspect Ratios and Conductances for Various Pore Shapes

shape alpha Rh Re HCON ECON

CIRCLE 1 1 1 1 1

GBP-RC1 .414 4N .523 4.92E-2 2.73E-1
GBP-RC2 .251 .319 .402 1.03E-2 1.62E-1
GBP-RC3 .183 . 247 . 341 3.72€-3 1.16E-1
GBP-RC4 . 144 .203 .301 1.70E-3 0.%1E-1
GBP-RCS .120 .174 .273 9.17E-4 7.45E-2
GBP-RC6 .100 . 152 .252 5.34E-4 6.35E-2
GBP-RC8 .079 .123 .221 2.29E-4  4.88E-2
GBP-RC10 .065 .105 .199 1.22E-4 3.96E~2
G6BP-RC15 .044 077 .165 3.52E-5 2.72E-2
GBP-RC20 .034 .062 . 144 1.48E-5 2.07E-2
TAPa5E-2 .050 .105 .223 1.22E-4 4.97E-2
TAPa 1E-2 .010 .032 .100 1.05E-6 1.00E-2
TAPa5E-3 .005 .019 07 1.30E-7 5.00E-3
TAPa2.5E-3 .0025 .0112 .050 1.56E-8  2.50E-3
TAPa1E-3 .001 .0056 .032 1.00E-9 1.00E-3
TAPaSE~-4 .0005 .0033 .022 1.00E-10 §5.00E£-4
TAPa1E-4 .0001 .0010 .010 1.00E-12 1.00E-4

Note : alpha = aspect ratio of the cross-sectional

shape
Rh = effective hydraulic. radius of pore shape
i.e. radius of circular pore tube with
same hydraulic conductance
Re = effective electrical radius of pore shape

i.e. radius of circular pore tube uith
same area and electrical conductance

HCON = hydraulic conductance of pore tube of this
shape with unit uidth and length relative to
a pore tube of circular cross-section with
unit width and unit length

ECON electrical conductance of pore tube of this
shape relative to pore tube of circular

cross—-section
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hydraulic conductances vary over tuelve orders of magnitude but the
electrical conductances vary over only four orders of magnitude. for
thin pores, the effective electrical radius is always greater than the
effective hydraulic radius so that the hydraulic conductance is less
than the electrical conductance squared. The thinner the pore the
larger this discrepancy betueen effective hydraulic and electrical
radii.

One of the major differences between this model and past netuwork
models is the inclusion of réa]istic pore shapes whose deformation with
pressure allous for the calculation of the changes in permeability, con-
ductivity and porosity with pressure. The variation of the change in
hydraulic conductance With pore shape is illustrated in figure 14a for
several different pore shapes. These curves are equivalent to the
change in permeability for netuork simulations where all the pores have
the same pore shape. Note that the change in hydrauiic conductaﬁce at
500 bars is only 0.74 for pores of circular cross-section (see figure
13) but over 90% for pores uith very thin (a=2.5E-4) tapered cross-sec-
tions. The TAP or tapered pore shapes introduced by Mavko and Nur
(1979) are used for modelling rocks uwith very thin pores because of the
numerical difficulties in calculating the hydraulic and electrical con-
ductance of very thin G6BP shape pore tubes. The nearly linear behavior
of the conductance curve and the need for low aspect ratio pores, makes
the TAP pores undesirable in the regime spanned by the G68P shaped pores.

Ffigure 14b shous the change in electrical conductance with pressure
for a variety of pore shapes. Note the percent decrease is less for the

same shape at the same pressure than in the hydraulic case. This is
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NORMALIZED PARAMETER

HYDRAULIC CONDUCTANCE VS. PRESSURE
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Change in hydraulic conductance with pressure for different
GBP and TAP pore shapes. Number after TAP- refers to aspect ratio
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NORMALIZED PARAMETER

ELECTRIC CONDUCTANCE VS. PRESSURE
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Change in electrical conductance with pressure for different
GBP and TAP pore tube shapes.
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expected since for a given decrease in effective radius the hydraulic
conductance should change more than the electrical conductance because
of their respective ¢* and c? dependences. Empirical evidence also sug-
gests that conductivity tends to decrease only 5% to 60% at 500 bars
compared to 8% to 90% changes in permeability at the same pressure.

The changes in permeability, conductivity and porosity are depen-
dent to a large extent exclusively on pore shape. If all the pores in
the netuwork have the same shape then the percent change in permeability
is equal to the change in hydraulic conductance for that pore tube
shape. Similarly the change in conductivity is due for the most part to
the change in the electrical conductance of the pore tubes. The
(1/r-1/8) relationship for the resistance of the nodal pores can change
the conductivity decrease with pressure between 1% and 15% but rarely
more than that. Because the nodes are assumed to be spheres whose vol-
ume changes very slouly u%th pressure, the change in porosity is related
to

fraction of pore space change in pore tube
$(P) « occupied by pore tubes X volume with pressure (68)

Unlike pore tube width, pore tube length and nodal pore radius, the
cross-sectional shape of the pore tubes are assigned from various dis-
crete distributions of values. Discrete rather than continuous distri-
butions are used because of the lengthy numerical calculations required
to find the hydraulic and electrical conductance of each pore tube
shape. Because the changes in permeability, conductivity and porosity
are all controlled by a single distribution of pore tube shapes, we have
no lack of data to fix the mean, width and shape of the pore tube shape

distribution. This is the reverse of the situation for pore tube width,
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length and nodal pore radius where we have three parameters to fit just
three properties. We discuss the effect of distributions of pore shapes

on petrophysical properties in the next chapter.
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CHAPTER THREE

Inversion of Experimental Data for a Quantitative

Representation of the Pore Space

INTRODUCTION

Few pore space models have been rigorously compared with experimen-
tal data (Dullien 1979, Cheng and Toksoz 1979) . Many models have sim-
ply been representations of the pore space which reproduce general
trends observed in the data (Fatt 1956a,b,c, Greenberg and Brace 1969,
Haring and Greenkorn 1970, Harris 1965, Koplik 1981a, Korringa et al
1979, Larson et al 1977, Mavko and Nur 1979, 0‘Connel and Budiansky
1974, Seeburger 1984). As shoun in chapter one, matching general trends
can help discriminate between various pore shapes, but exact comparison
with experimental data yields much more information about the pore space
~and usefulness of the model.

Pore space modelling can be done from tuo approaches, one being the
method used by Dullien and his coworkers (Dullien 1979, Dullien el al.
1976, Dullien and Dhawan 1974,1975). In their approach photomicrographs
and mercury injection data are used to calculate pore size distributions
for various sandstones and then these distributions are the input data
for their network pore space model. Iﬁ other words they try to predict
properties such as permeability and formation factor from the pore size

distributions in the real rock. The other approach, taken by Cheng and
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Toksoz (1979), is to invert specific petrophysical data through a pore
space model to get a representative (but model dependent) pore shape
distribution. Analysis of hou these predicted distributions vary from
rock to rock yields information about the differences betueen the rocks.

In our model we adopt the latter approach because the goals of this
project are to use the network pore space model developed here to gain a
better understanding of how the pore space controls various properties,
how the properties are interrelated and what differences in model simu-
lations between rock types tell us about the differences between rocks.
One ultimate goal of the project is to accurately model n properties
with (n-1) or (n-2) variables so that (n-1) or (n-2) experimentally
méasured properties can be used to predict on§ or tuo other properties
that may be difficult or impossible to measure in the field. We will
concentrate in this study on analy2ing the distributions of pore size
and shape which ue obtain from “inverting’ the experimental petrophysi-
cal properties, to better understand hou the pore space controls these
properties.

The model is only pseudo-inverse in that many simulations are run
with different pore size and shape distributions until the experimental
data is matched. The model pore space is simple enough so that ue can
analyze hou those distributions effect the various properties and from
there infer hou the real pore space may be effecting or controlling the

properties in the real rock.
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Experimental Petrophysical Database

The petrophysical properties ue simulate are permeability, poros-
ity, formation factor, and their variations with isotropic confining
stress. Although there are many studies concerning one or two of these
properties (Brace and Orange 1968, thierici et al. 1976, Dobrynin 1963,
Fatt 1953,1957,1958b,c, Fatt and Davis 1952, Ferrell et al. 1962, Gray
et al. 1963, Handin et al. 1863, Jennings et al. 1981, Jones and Quens
1979, Jones 1978, MclLatchie 1958, Murphy 1982, Walls 1978, 1979, Wyble
1958, Zoback 1975), there are very feu uwhich shou results for permeabil-
ity, formation factor,'porosity and their variations with stress (Dobry-
nin 1963, Chierici et al. 1967, Gray et al. 1963, Wyble 1958) and none
which have also measure bulk modulus or Vp and Vs along with the flou
properties of permeability and formation factor. Because of this, ue
will concentrate on simulating permeability, formation factor, and
porosity at various pressures. The lack of a full range of petrophysi-
cal properties versus pressure, the lack of microscopic analysis, and
the lack of sufficient data density (pressure interval between data
points in Chierici et al. 1967 is large) have prompted Qs to undertake
our own experiments. In this way we have been able to measure all of
the petrophysical properties we wish to measure (permeability, formation
factor, porosity, and bulk modulus versus pressure) under more cont-
rolled conditions and since uwe have the rock samples we can perform
detailed microscopic analysis to make sure pore shapes and sizes are
realistic and we can perform other experiments on the same sample if we

wish to add properties to the model.
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EXPERIMENTAL SETUP AND PROCEDURE

We have constructed an experimental system (shoun in figures 15 and
16) to measure steady state fluid permeability, electrical resistance,
and pore volume change at confining pressures betueen 0 and 700 bars and
pore pressures of betueen 0 and 50 bars. The system includes a heavy
duty stepping motor (680 oz/inches torque) which drives a dual cylinder/
single piston flou system. The stepping motor rotates a threaded piston
which forces fluid out of cylinder A, past a differential pressure
transducer (0-10 psi) through the rock sample in the pressure vessel,
and then into cylinder B (see figure 15). The total volume of fluid in
tﬁe system remains constant (at about 45 cc) so that driving the piston
at a steady rate induces a very steady flouw rate. The constant volume
of the system also allous flow at elevated pore pressures (up to about
50 bars). Valves ! and 4 are open and valves 2 and 3 closed when flou
is from cylinder A to B and valves 2 and 3 are open and 1 and 4 c¢losed
when flow is from cylinder B to A. This allows us to maintain a con-
stant flow direction within the sample (see figure 15).

Pulses from an HP8116a signal generator are amplified by a Superior
Electric translator which drives the stepping motor at a constant rate.
For different rocks the motor can be run at rates from .00025 to 2.5
revolutions per second yielding flow rates of between .00221 to 22.1
ce/minute. Pressure drops across the sample of between 1 and 10 psi can
be accurately measured with a Sensotec differential transducer allowing
us to measure permeabilities between 30 microDaries and 3 Darcies. A

HP3497a Data Aquisition unit provides an HP85 computer with the driving
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frequency of the motor and the pressure drop across the sample (see fig-
ure 16).

The permeability, k, of the sample can then be calculated from the
flow rate, Q, pressure drop, AP, sample cross-sectional area and length,
A and £, and fluid visicosity, pu. Darcy’s lau states that:

Qu
K = ~————— (69)
A AP/R

Flow rate, Q, is related to motor driving frequency by:

Q = frequency (Hz)/ 271.5 (Hz2/cc/sec) (70)
The differential pressure across the sample is corrected for gravita-
tional flou (-0.0383%2 psi) and flow resistance of the tubing leading
into and out of the pressure ves#el (~0.651%Q psi). Dimensional analy-
sis shous that even at the highest flow rates (0.5 ccs/sec), the Reynolds
number is betueen 1E-3 and {5-1 for pores with radii betueen 5 and 50
um. Th;s is not only within the limits of laminar flou, but also uithin
the regime of slouw Stokes flou.

Porosities are measured at atmospheric pressure with a helium
(Boyles lauw) porosimeter. The change in porosity with pressure is cal-
culated by measuring the volume of fluid expelled as the confining pres-
sure on the sample is increased. The A cylinder and positive side of
the pressure transducer are sealed off from each other and from the rest
of the system. The confining pressure is increased on the saturated
sample within the pressure vessel which raises the pore pressure and the
pressure on the negative side of the pressure transducer. The piston is
then stepped out of cylinder B until the pore pressure returns to its

original value. The number of steps required to accomplish this
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transiates into the volume of fluid that was “squeezed’ out of the sam-
ple due to the pressure increase and is equal to the decrease in pore
volume. The change in poré volume is measured to within 171000 cc or to
within 0.1% of the pore volume change.

The electrical resistance of the sample is measured using an AC
resistance technique uwith tuo electrodes at frequencies betueen 1000 and
5000 Hz2. As shouwn in figure 16 the pulse generator provides a constant
frequency and constant amplitude sinusoidal voltage. A knouw but vari-
able resistance is put in series with the sample. The AC voltage across
the knouwn resistor and the sample are compared to calculate the resis-
tance of the sample. Since the tuo resistances are in series the cur-
rent across each is the same and the resistance of the sample can be
calculated from:

4V sample
Rgam = =™ Rres (71)-
vV resistor
Platinum mesh electrodes are used on either end of the samples and the
samples are saturated with a 0.505 M NaCl (2.9% by uweight) brine uhich
has a resistivity of 0.2347 ohm~m. Sample resistance is divided by sam-
ple length over sample area to yield sample resistivity uhich was
diQided by brine resistivity to yield resistivity formation factor, FF.
Conductivity formation factor is calculated from 1/FF.

All three measurements are taken at various pressures as the con-
fining pressure is increased. All curves of permeability, conductivity
and porosity versus confining pressure presented in this report by “vale
(1984)” (see figures 17 through 23) are the average of two or three

pressure cycles. In all the measurements, pore pressure is kept
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constant at betuween 10 and 40 bars except the Fahler samples for uhich
the pore pressure was maintained at 140 bars.

The system is run through a HP3497a Data Aquisition unit which is
in turn controlled by a HP85 micro-computer across a HP-IB interface bus
(see figure 16). The 8116a pulse generator is also computer controlled
and allows the computer to select the driving frequency of the stepping
motor, mode and type of signal (constant frequency pulse for permeabil-
ity, burst pulse for porosity, and constant frequency sine wave for for-
mation factor), and allows the computer to count the number of pulses
output by the 8116a during porosity versus pressure measurements. A set
of mercury relays within the 3497a controls various switching functions
for the translator and pulse generator and the 3497a’s high resolution
A/D voltmeter allous transducer voltages to be output to the computer.

The permeability of the Fahler samples (see Table 4) was measured
using a transient pulse technique (Brace et al., 1978). Permeability is
measured by applying a 1 bar gas pore pressure differential across the
sample and measuring its decay as gas flous through the sample. The
rate of decay is related to the permeability and a complete description
of the technique is found in KWalls et al. (1982) and Walls (1982). For-
mation factors and porosity versus pressure for the Fahler samples are
measured using the same techniques as the rest of the sample

All samples used are two inch diameter core plugs, drilled either
from quarry blocks or larger drill cores. The cores were cut to betuéen
1 and 3 inches in length and then their faces surface ground parallel to
within 0.002 inches. Samples were then flushed with 5 to 10 pores vol-

umes of deionized water to remove any salts and loose particles. No
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organics were present in the samples so that a Soxlex extraction was not
performed. To preserve the clays in the samples, they uwere never dried
above 70°C. All Fahler samples and the Tertiary 807 sample were from
drill cores and the rest of the samples uere obtained from building
stone quarries by Leslie Yale. Detailed petrographic descriptions of
these rocks can be found in the SRP Rock Catalog, volumes 1 and 2

(L.Yale 1984a,b) and in Appendix B of this report.
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Experimental Data Analysis

We have collected and compiled experimental data on permeability,
formation factor and porosity and their éhanges with pressure forvtuen-
ty-eight sandstones. The data is presented in figures 17 through 23 and
is summarized in Table 4. 1In each of the figures, permeability, conduc-
tivity formation factor and porosity are plotted against isotropic con-
fining pressure to 500 bars. The data as plotted are normalized to the
values of permeability, conductivity and porosity at 10 bars pressure
and these values are given in the lower left corner of the plots and are
also listed in Table 4. Resistivity formation factor is used for com-
parison purposes in Table 4 but conductivity formation factor versus
pressure is plotted in all the figures. Table 4 also lists the rock
name, group type and source of data. The rock name is either a forma-
tion name or its geologic age followed by a reference number or letter.
The “group type” classifies the rock according to the relationship
between the permeability and conductivity changes with pressure.

As shoun in Table 4, the experimental data sets are divided into
four main groups as designated by the first letter of their group type.
The first eleven rocks in Table 4 are classified as part of the “N” or
“normal” group because they all exhibit changes in permeability uwith
pressure that are related to the 1.5 to 2 pouer of the change in conduc-
tivity with pressure (see figures 17a through 19¢). Fatt (1957,1958a)
suggested that permeability should change with pressure roughly as the
square of the conductivity change with pressure due to the ¢ and c?
dependence of permeability and conductivity on pore width. Rocks within
the ”N” group follouw this general trend.
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Table 4

Absolute Values of Petrophysical Properties for
Experimental Data Sets

Rock name Perm. FF Poros. Type Reference
Indiana O 30.3 12.1 .267 NH Yale (1984a)
Torpedo 45.0 42.4 .202 NM Dobrynin (1962)
Branford 2.5 95.1 .109 NM Wyble (1958)
Fahler 162 0.270 293, .030 NL Yale (1984a)
Triassic 41 42.4 144. .212 NM chierici (1967)
Cambrian 16 9.5 308. .137 NM Chierici (1967)
Fahler 154 0.009 128. .044 NL Yale (1984a)
Fahler 192 0.007 282. .046 NL Yale (1984a)
Pliocene 35 36.9 157. .201 NM Chierici (1967)
Triassic 26 67.7 17.3 . 180 NH Chierici (1967)
Triassic 27 72.3 20.1 .181 NH Chierici (1967)
Tensleep 163. 19.0 .297 SH Fatt (1957)
Massillon DV 6.90 27.4 . 190 SM Yale (1984a)
Kirkuood 12.3 40.5 . 152 SL Wyble (1958)
Fahler 142 0.018 165. .076 SL Yale (1984a)
Fahler 189 0.019 739. .019 SL Yale (1984a)
Massillon OH 129. 23.8 . 161 CH Yale (1984a)
Berea 100H 49.0 17.2 . 165 CH Yale (1984a)
Miocene 7 4.40 383. .083 tM Chierici (1967)
Falher 161 6.010 424. .023 cL Yale (19%984a)
Boise 901. 12.0 .258 LH Yale (1984a)
Triassic 38 400. 12.7 .205 LH Chierici (1867)
Tertiary 3807 152. 14.9 .218 LH Yale (1984a)
Cambrian 6 23.0 89.2 .081 LH Chierici (1967)
Berea 500 494. 20.1 . 197 LM Yale (1984a)
Cambrian 14 31.9 51.9 . 109 LH Chierici (1967)
Triassic 34 352. 13.8 . 199 LH Chierici (1967)
Beaver 10.0 90.0 .070 LM Yale (1934a)

Notes: Permeability (Perm.), Formation factor (FF) and
Porosity (Poros.) are all measured between 0 and 10 bars
pressure. These values are referred to as the “absolute
values” of permeability, formation factor and porosity.
formation factor and porosity.
Type refers to the “group type” of the rock uith:
First letter N, S, C, or L refering to the relationship
betueen permeability and conductivity versus pressure
Second letter H, M, L refers to the percent change in
permeability at 400 bars contining pressure
The petrology of all Yale (1984a) sample is found
in Appendix B and in the SRP Rock Catalog vol.1
(L. Yale 1984a,b)
Figures 17-23 shouw the changes in permeability, conductivity
and porosity with pressure and Appendix C contains the
plotted information in tabular form for all these rocks.
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The tuenty-eight rocks in this study are classified into subgroups
according to the percent decrease in permeability over 400 bars of con-
fining pressure. The #“H” designation in the second letter of the group
type means the rock exhibits less than a 20% change in permeability when
confining pressure is increased from 10 to 400 bars. Rocks in the ”M”
subgroup show decreases in permeability of betuween 20% and 60% and rocks
in the ”L” subgroup have permeabilities at 400 bars that are less than
40% of their original permeability.

Figures 17a through 17d show that the change in permeability, con-
ductivity and porosity with pressure varies greatly from rock to rock.
The decrease in permeability varies betueen 8% and 90%Z at 400 bars pres-
sﬁre, the decrease'in conductivity is betuween 5% and 60%4 and the
decrease in porosity ranges from 2% to 25%. MWe also see no correlation
betueen the absolute value of permeability, conductivity, or porosity
and the inclusion of rocks in the #N” group. Permeability varies
betueen 7 microDarcies and 72 milliDarcies and porosity betuween 3% and
27% among the rocks in the ”“N” group.

Figures 19d through 20d show a wide “split” betueen the permeabil-
ity versus pressure curve and the conductivity versus pfessure curve.
The rocks represented in these figures have permeability versus pressure
curves swhich are equal to the 2 to 3.5 pouer of the conductivity change
with pressure and are classified as part of the ”“S” or #“split” group.

As with the #“N” group, rocks with a wide range of petrophysical proper-
ties fall into this group as permeabilities vary between 20 microlarcies
and 161 milliDarcies and the percent change in permeability varies

betueen 20% and 90% at 400 bars confining pressure.
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The next four figures (Figures 21a through 21d) represent rocks
which are designated in Table 4 as belonging to the ”C” or “cross-over”
group. They exhibit changes in permeability and conductivity with pres-
sure that Qre nearly equal. The conductivity versus pressure curve is
more concave than the permeability versus pressure curve and that the
former cross-over the latter at high pressure. Again a uide range of
absolute values and percent changes with pressure of petrophysical prop-
erties are represented by rocks in this group.

Figure 22a through 23d represent eight rocks in the “L” group and
they show the conductivity versus pressure curve “louer” than the perme-
ability versus pressure curve. There are more rocks with high perme-
abi!ities in this group than in the other groups as permeability varies
betueen 12 milliDarcies and 900 milliDarcies among the rocks in the ”L”
group.

Analysis of these tuenty-eight experimental déta sets yieldg the
following relationships.

1) There is a continuous variation in the relationship betueen the
permeability versus pressure curve and the conductivity versus pressure
curve as ue go from rocks in the ”S” group and ”N” group where perme-
ability decrease with pressure as the 3 to 1.5 pouwer of the conductivity
to the ”C” and ”L” groups where the conductivity decreases as the first
to second pouer of the permeability change ;ith pressure. Our groups
are arbitrary divisions on a continuous range of effects.

2) Although there does not appear toc be any correlation betueen the
values of petrophysical properties and the inclusion of rocks in the #N”

and ”“C” groups, wWe do note that rocks in the #S” group tend to have
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louer.permeabilities than rocks in the other groups and that rocks in
the ”L” group tend to have much higher permeabilities than rocks in the
other three groups (see Table 4).

3) Porosity and porosity change uwith pressure appear to be indepen-
dent of the group type and the change in porosity with pressure appears
only ueakly related to the absolute value of porosity. Our only obser-
vation is that rocks with porosities less than 8% tend to shou decreases
in porosity of more than 10% at 400 bars confining pressure and rocks
with porosities greater than 8% tend to have changes in porosity with
p;essure of less than 8% at 400 bars pressure. The change in porosity
does appear to almost aluways be less than the changes in permeability
and conductivity with pressure.

4) The experimental data do show a strong correlation betueen the
absolute value of the permeability and the percent decrease in perme-
ability with pressure. Specifically, rocks in this study uwith perme-
abilities of less than 1 milliDarcy all showed decreases in permeability
of more than 70% at 400 bars confining pressure, those with permeabili-
ties betueen 1 and 10 milliDarcies had changes in permeability betuween
30% and 60% at 400 bars, most rocks mith permeabilities between 10 and
100 milliDarcies showed changes less than 30% at 400 bars and those with
permeabilities greater than 100 milliDarcies showed less than a 10%
change in permeability at 400 bars confining pressure. Interestingly,
we did not see this sort of correlation betueen the absolute value of
conductivity or formation factor and the chanﬁe in conductivity with
pressure as the tuwo values appeared to be fairly independent of one

another.
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In order to understand these relationships, we next simulate nine
of the twenty-eight data sets with our model in order to investigate the

influence of the pore space on the petrophysical properties of the rocks

studied.
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DATA SIMULATION

In this section ue attempt to determine how uell specific experi-
mental data can be fitted with the netuork model and whether various
features observed in the experimental data can be simulated and
explained. The main thrust of this section is to analyze the pore space
simulation parameters to determine houw the pore space controls the vari-
ety of rock property patterns and houw the various petrophysical proper-
ties are interrelated. Because the actual pore space of rocks is too
cdmplex to be described fully, we search for a model representation
which contains the salient features of the pore space so that the petro-
physical properties are reproduced, yet is simple enough to reveal hou
the pore space parameters and their distributions control the physical
properties of rocks.

As discussed in chapter two, the four pore parameters are:

1) pore tube width, ¢

2) pore tube length, R

3) nodal pore radius, S

4) pore tube shape
The values of ¢ and & are the same for all pore tubes, § is the same
for all nodal pores and the pore tube shapes are randomly assigned from
a distribution. Even though ¢, £ and S in a rock may be distributed
over some range of values, the petrophysical data we use at present only

allous use to simulate the mean value of ¢, 2, and S. The magnitude and
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shape of the permeability, conductivity and porosity versus pressure
curves allouw us to more rigorously specify the distribution of pore
shapes uwithin the rock. There are five variables then in our simula-
tions, three to describe the mean pore width, mean pore length and mean
nodal radius and two to describe the distribution of pore tube shapes.

The simulation of experimental data involves tuo to three steps.
The first step is to match the normalized permeability, conductivity and
porosity versus pressure curves without regard to the absolute values of
the properties. As mentioned in chapter 2, these curves are almost
exclusively controlled by the distribution of pore shapes in the model.
The distribution of pore shapes is adjusted until all three simulated
curves (permeability, conductivity and porosity versus pressure) match
the experimental curves to within 2%

The second step is to adjust the pore tube midth, pore tube length
and nodal pore fadius to bring the absolute values of the permeability,
conductivity aﬁd porosity to within 104 of the experimental values.
Because nodal pore size does effect the change in conductivity and
porosity with pressure, small changes in the pore shape distribution are
often necessary at this point to bring all six properties close to the
experimental values. The first tuo steps require betueen 15 and 25 sim-
ulations to accomplish for any one experimental data set. Comparison of
the normalized curves (type 1 plots) and ;bsolute values betueen the
model and experiment shouw the degree of matching (see figures 24a and
é4b for example).

For three of the experimental data sets we have extended the

matching process to a third step which entails refinement of the
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absolute values of the model until they are uitﬁin 1% of the experiment.
This data is then presented in ”type 2”7 plots (see figure 25 for exam-
ple) where the model data is plotted over the experimental data on an
absolute rather than normalized scale. The type 2 plots shouw the abil-
ity of the model to match experimental data very closely. The type 1
graphs represent the changes in permeability, conductivity and porosity
better and the type 2 graphs converge very slouly to the final match (10
to 30 additional iterations) because of the strong coupling betueen pore
parameters. The fit of the type 2 graphs is also very dependent on the
percent change in a particular property. For instance, a 1% difference
in the absolute value or an extra 1% change in porosity appears as a
large mismatch because the overall change in porosity is only 5%. But
.for permeability, a similar 1% difference would appear as a very good
match because of the 30% overall change in permeability at 500 bars.

The difficulty in getting the type 2 matches suggests that there is a
high degree of uniqueness in this model.

Table 5 lists the nine experimental data sets analyzed by rock name
and group type as defined in Table 4. It also lists the values of the
pore space parameters of the simulation which best matches the experi-
mental data. Archie’s exponent, m, and the p/c ratio are calculated
from the experimental values of permeability, conductivity and porosity
according to the following equations.

CF = 1/FF = ¢™ or m = log(CF)/log($) (72)

JVpermeability
pse = (73)

conductivity
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Rock Name

A)Triassic 27
B)Pliocene 35
C)Triassic 41
D)Massillon DV

E)Fahler 188

F)Miocene 7

G6)Fahler 161

H)Tertiary 807

1)Cambrian 6

Type

NH
NM
NM
SM
SL
em
CcL

LH

LH

Model Simulations of Experimental Data

1.

76

.15

.20

.99

.67

.39

.60

.17

.79

TABLE §

perm/cond

5.40
30.2
29.7
2.28

3.22

25.4

1.34

5.81

13.5

¢/ S 71

10.4/11.7/26.2
35 /110 7190
80 ,180 /300
13.5/12.3723.5

70 +» 25 7130

30 » 707180

45 s 8/ 40

15.85710.7/26.2

15 7 12 760

Pore tube shapes

50% 1.4

25% 2,3,4,5

25% 5,6,8,10
1542 70%8 15410

20%1-2 6072.5-3
20%no pore

1042 3043 607420

30%5-3 10%2.5-3,1-3
15%5-4 35%1-4

4041 60%15

10%CIR 25%1
30%15 35%20

Note: c=pore tube width (in um), S=nodal pore radius (in um)
L=pore tube length (in um)

Fraction of pore tubes with a given shape is given

in the third column.

GBP pores listed by RC value 1,2,3,4,6,8,10,15,20
TAP pores listed by aspect ratio 1-2,5-3,2.5-3,1-3,5-4,1-4

CIR stands for pore tubes of circular cross-section

no pore” means pore tube site not occupied by a pore

Group type for experimental data same as Table 4

m=Archies exponent

for experimental data where
log (CF)/log (porosity)

psc = (permeability)?/2 * formation factor
with permeability in Darcies this ratio has units
of microns (Darcy =

.987 micron?)
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Permeability has units of (microns)? in equation 73, so that ps/c has
units of microns. The ps/c ratio and exponent m characterize the rela-
tionships between permeability and conductivity and between conductivity

and porosity for the rock sample.
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A) Triassic 27 sandstone (Chierici 1967)

Figure 24a shous the permeability, conductivity and porosity versus
pressure for this sample and is flanked by figure 24b which displays the
same curves for the network simulation uhich best matches the experimen-
tal data. MWe note that the curves match very well and the absolute val-
vues of permeability, formation factor and porosity (as shoun in the
lower left corner of the plots) are within 14 of each other. The high
degree of correlation betueen the simulation and experimental data is
shown in figure 25 (a type 2 plot) where both model and experimental
data are plotted together.

The simulation has pore parameters of ¢=10.4 um, R=26.2 um, S=11.7
um and pore tube shapes divided evenly betueen the GBP-RC1 shape and the
GBP-RC4 shape. The experimental data set is classified as belonging to
the ”N” group and ”H” subgroup (see Table 4 and 5}. This signifies that
the experimental data shou the permeability decreaéing with pressure as
the 1.5th to 2nd'pouer of the conductivity change with pressure (”N”-
group) and that the overall decrease in permeability at 400 bars pres-
sure is less than 20% (“H” subgroup). Analysis of over 800 simulations
has shoun that simulations uwhere the distribution of pore shapes is nar-
rou (width of distribution equal to +-50% of the mean aspect ratio) and
uniform, fall into the “N” group. Fatt (1957, 1958a) suggested that
permeability should change as the square of the conductivity change if
the fluid and electricity were conducted through the same cylindrical
pore tubes. For our pore shapes, we find tﬁat if the hydraulic and
electrical flow paths are the same, the permeability should be related

to the 1.7th to 1.9th power of the conductivity versus pressure. This
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suggests that rocks which fall in the ”N” group and can be gsimulated
with narrow uniform distributions of pore shapes which have hydraulic
and electrical flouw paths which are the same. We shou in some later
simulations that rocks which fall into the #S”, #C” and ”L” groups tend
to have different hydraulic and electrical flou paths. The similarity
of flow paths is important in finding relationships betuen permeability
and conductivity. - For instance, a small change in mean pore width or
mean aspect ratio for rocks with similar hydraulic and electrical flou

paths means that permeability is related to the square of the conductiv-

ity.
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Comparison of experimental data (*) and model simulation (0)
for Triassic 27 sandstone (Chierici 1967) Type 2 plot
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B) Pliocene 35 sandstone (Chierici 1967)

Figures 26a and 26b show the experimental data and the network simula-
tion of that data. Note that the permeability, conductivity and poros-
ity versus pressure curves are very similar in the tuwo plots and that
the absolute values of the petrophysical properties are within 10% The
&ifferences and similarities between the Pliocene 35 data and the Trias-
sic 27 data are reflected in the pore space parameters used in their
respective simulations.

The Pliocene 35 data set falls into the #“NH” category as did the
Triassic 27 data, houwever, the permeability decrease in the former at
500 bars is nearly 21% compared to only 15% in thé latter. The fact
that both rocks fall into the #N” group is explained by their narrow and
uniform distributions of pore shapes (see Table 5} and the larger
decrease in permeability for the Pliocene 35 data is due to the presence
of thinner (louwer aspect ratio and higher RC values) pores in'&he Plio-
cene 35 simulation. Figure 14a shou§ that the thinner the pore shape,
the larger the change in hydraulic conductance with pressure. The mean
aspect ratio for pore shapes in the Pliocene 35 simulation is .175 as
compared to .279 for the Triassic 27 simulation (see Table 3 for the
aspect ratios of different pore shapes). Because the hydraulic and
electrical flouw paths are similar uwe note a corresponding increase in
the percent change of conductiviﬁy with pressure betueen the Triassic 27
and Pliocene 35 simulations due to the thinner pores.

The major difference between the Pliocene 35 data and the Triassic
27 data is the nearly 8 fold increase in formation factor (from 20 in

the Triassic 27 to 157 in the Pliocene 35 data). The porosities are

- 107 -



very similar and the permeabilities vary only by a factor of 2. The
high electrical resistivity of the Pliocene 35 sample accounts for the
high m=3.15 and the high p/c ratio=30.2 um as compared With the values
of m=1.76 and ps/c=5.4 um for the Triassic 27 sample. 1In chapter 2 ue
shoued that the conductivity was strongly related to the ratio of pore
width to pore length (c/8) which means that formation factor should be
related to &/7c. The R/c ratio for the Pliocene 35 simulation is 5.43
compared with a value of only 2.5 for the Triassic 27 simulation. The

very large nodal pores are related to the very large Archies exponent of

3.15.
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C) Triassic 41 sandstone (Chierici 1967)

We see from figures 27a and 26a that the Triassic 41 and Pliocene 35
‘data sets are very similar except that the permeability and conductivity
of the Triassic 41 change approximately 8 percentage points more than in
the Pliocene 35 sample. This is again reflected by the thinner pore
shapes in the Triassic 41 simulation in figure 27b. The mean aspect
ratio of the pore shapes in the Triassic 41 simulation is .091 compared
with an a=.175 in the Pliocene 35 simulation. The Triassic 41 data
still fall into the #”N” group as shoun in figure 27a and the simulation
in figure 27b shous a uniform and narrou distribution of pore shapes.
The data also fall into the #M” subgroup which is explained by the louer
méan aspect ratio of the simulated pore shapes.

Despite the similarities in their petrophysical properties
(perm=42.4 versus 36.9, FF=144 versus 157, porosity=.212 versus ,201 for
the Triassic 41 and Pliocene 35 samples), the'pore parameters in-their
respective simulations are widely different (c=80 versus 30, 2=300 ver-
sus 190, S=180 versus 110). Analysis of why these parameters are dif-
ferent demonstrates how the complex relationships betueen pore parame-
ters and petrophysical properites affects the simulations.

Because the mean pore shape has an aspect ratio of .091 in the
Triassic 41 simulations, its effective hydraulic radius is only .138
(see Table 3) as compared with the effective hydraulic radius = .238 for
the mean pore shape in the Pliocene 35 simulation. This means that the
pore uwidth, ¢, in the Triagsic 41 simulation must be 75% greater than
the ¢ for the Pliocene simulation if both are to have the same absolute

permeability. The Triassic 41 data and simulation do have a slightly
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higher permeability than the Pliocene 35 but this results in only a 0.7%
further increase in ¢. Because formation factor is related to R/c, ue
must increase the pore length to maintain a formation factor of 150 in
the Triassic 41 simulation. 1Increasing the pore length then necessi-
tates a further increase in pore width to maintain the correct value of
permeability. Increasing the pore length increases the total volume of
the netuork and therefore decreases the porosity. Nodal pore radius
must also be increased to maintain the same porosity.

In the end we need a 58% increase in pore length which leads to an
additional 30% increase in pore width (above the 78% needed to compen-
sate for the thinner pores in the Triassic 41 simulation) and a 64%
increase in nodal pore radius. The &f/c ratio of the Triassic 41 simula-
tion is 3.75 as compared with R/c=5.43 for the Pliocene 35 simulation.
This difference is due to the relatively small 39% difference in effec-
tive eiectrical radii of the mean pore shapes between the two simula-

tions.
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D) Massillon DV sandstone (Yale 1884a)

The Massillon DV sandstone is classified in the “$” group because of
the split between the permeability and conductivity versus pressure
curves (see figure 28a). The simulation of this data in figure 28b
shous that the absolute values of permeability, formation factor and
porosity as well as their percent decreases at 500 bars are uell matched
but the experimental curves are more concave than the simulation curves.
Figure 29 shows a type 2 plot of both simulation and experimental data
and suggests that the lack of a better fit in the type 1 plots is due to
large decreases in permeability and conductivity at pressures less than
50 bars confining pressure. The experimental and simulated curves above
50 bars pressure are simil#r in figure 29.

Table 5 shoug that the values of ¢, %, and S for the Massillon DV
simulation are similar to the pore parameters in the Triassic 27 simula-
tion yet the absolute permeability and change in permeability with pres-
sure are very different between the two simulations (6.6 mD versus 72 mD
and 38% versus 15% change at 500 bars for the Massillon OV and Triassic
27 samples respectively). The distribution of pore shapes in the Mas-
sillon DV simulations explains these differences and all suggests a fun-
damental difference betuween rocks in the #N” group and rocks in the ”S”
group.

In the Massillon DV simulation 15% of the pore tubes have a GBP-RC2
shape (a=.251) and 85% have GPB-RC3 and RC10 (&=.077) shapes. In chap-
ter 1 ue discussed the role of percolation theory on network with a wide
distribution of pore shapes. For a cubic network, percolation theory

{Shante and Kirkpatrick 1971, Kirkpatrick 1973) has shoun that if the
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pores of a given shape occupy less than 25% of the lattice, there will
not be a continuous path of pore of that shape across the lattice. This
means that in the Massillon DV simulation there is not a continuous path
of RC2 shaped pores across the network and therefore all fluid and elec-
tricity must pass through RC8 shaped pores in order for there to be con-
duction across the network. Because permeability is related to the
effective hydraulic radius to the fourth power, it is controlled by the
smallest or thinnest pore the fluid must pass through. The RC8 shaped
pores control the permeability which results in the louw permeability and
a large decrease in permeability with pressure for the Massillon DV sim-
ulation.

The decrease in permeability at 500 bars pressure for the Massillon
DV simulation is only 0.7% less than a simulation shere all the pores
have RC8 shape. However, the conductivity change at 500 bars is more
than 6% less in the Massillon DV simulation than it is in a simulation
with all RC8 shaped pores. In other uords, the RC2 shaped pores “pull
up” the conductivity versus pressure curve more than they pull up the
permeability versus pressure curve. The difference in electrical con-
ductance betueen pores of RC2 and RC8 shaped pores is only a factor of
3.3 compared to the factor of 45 difference in their hydraulic conduc-
tances. This allows the RC2 shaped pores to contribute more to the
overall electrical conductance than they contribute to the overall
hydraulic conductance of the network and explains the louw formation fac-
tor and smaller than expected change in conductivity with pressure. 1t
is the “pull up” of the conductivity curve that gives the #S” group

rocks the split in the permeability and conductivity versus pressure
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curves. The low ps/c ratio = 2.28 for the Massillon DV sample as com-
pared with the psc ratio = 5.4 for the Triassic 27 sample is due to the

fact that the RC2 pores contribute to conductivity but not to permeabil-

ity.
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Comparison of experimental data (*) and model simulation (0)
for Massillon DV sandstone (Yale 1984). Type 2 plot
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E) Fahler 183 tight gas sandstone (Yale 1984)

The Fahler 189 data in figure 30a also belongs in the ”S” group.
Unlike the other four rocks simulated thus far, the Fahler 189 exhibits
very large changes in permeability, conductivity and porosity with con-
fining pressure and it falls into the ”L” subgroup because of its 80%
decrease in permeability at 400 bars. 1In order to simulate these large
changes with pressure, we use tapered shaped pores (Mavko and Nur, 1978
also see figures 5a,b) with very lou aspect ratios. The simulation in
figure 30b shous that there is nearly an order of magnitude spread in
the aspect ratios of the pores, with 20% of the pores having TAPalE-2
shapes and 60% with TAPa2.5E-3 shapes. The other 20% of the pores are
assumed to be closed at all pressures.

The a=1E-2 pores account for less than 25% of the network and
therefore the a=2.5tE-3 shaped pores control the permeability and its
change with pressure. The split, which is very evident in figure 30b,
is again due to the contribution of the a=1E-2 to electrical conduction
whereas they do not contribute to hydraulic conduction. The conductiv-
ity versus pressure curve has been “pulled up” by 13% compared to a sim-
ulation where all the pores have a=2.5E~3 shape. The permeability ver-
sus pressure curve on the other hand is only 1.5%4 different from a
simulation where all pores have a=2.5E-3 shape.

Interestingly, the pore width, c, in the Fahler 189 simulation is
close to the pore width in the Triassic 41 simulation (70 versus 80 um)
yet their permeabilities are more than 3 orders of magnitude apart (20
microDarcies versus 43 milliDarcies). Considering just pore width and

pore length, we would predict the Fahler 189 simulation to have a
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permeability 3 times larger than the Triassic 41 simqlation. This com-
parison illustrates the very large effect pore shape has on permeability
in the model. The mean aspect ratio of the Triassic 41 simulation is
«=.091 compared to the «=.0025 for the controlling pores in the Fahler
189 simulation. Table 3 shous that there is more than a factor of
10,000 difference in hydraulic conductivities between pores of these two
shapes which totally accounts for the difference in permeability betueen
the two samples and their simulations.

We also find that the psc ratio for the Fahler 189 sample is very
close to that of the Massillon DV sample (2.28 versus 3.22 um) and that
both are louwer than average. The median ps/c ratio for~the 28 data sets
in Table 4 is 7.2 but the median and mean p/c ratio for the 5 #“S” group
data sets is 3 um. The split in the permeability and conductivity ver-
sus pressure curves and the difference in the mean ps/c ratios both sug-
gest that there are some electrical flow paths which do not contrisute
greatly to the hydraulic flow, i.e. a decaupling betuween permeability

and conductivity occurs for rocks uwhich fall into the ”S” group.
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F) Miocene 7 sandstone (Chierici 1967)

Figures 31a and 31b shou the permeability, conductivity and porosity
versus pressure for the Miocene 7 sandstone and the model simulation
which best fits the experimental data. The Miocene 7 data set is clas-
sified as “CM” as the conductivity change with pressure nearly equals
the permeability change with pressure. The simulation for the Miocene 7
data shouws the conductivity curve crossing over the permeability curve
at 150 bars. The match betueen model and experimental plots is excel-
lent in both curve shape and overall change in properties with pressure.
The absolute values of permeability, conductivity and porosity match
within 5%.

The distribution of pore tube shapes again explains the relation-
ship betueen the permeability versus pressure and the conductivity ver-
sus pressure curves. The simulation in figure 31b shows that 40% of the
pore tubes have GBP-RC2 or RC3 shapes'uhilé the other 60% have GBP-RC20
shape. The aifference in aspect ratios of «=.20 for the RC2 and RC3 and
a=.034 for the RC20 shapes leads to a 230 fold decrease in hydraulic
conductance for the RC20 versus RC2-3 shaped pores.

In this simulation, the a=.20 shaped pores occupy 40% of the lat-
tice and therefore there is a continuous path of pores of this shape
across the network (according to percolation theory). Because of the
large difference in hydraulic conductance, the RC20 shaped pores con-
tribute less than 0.5% of the total fluid flow across the network and
the decrease in permeability with éressure is only 10% more at 500 bars

than in a simulation where all the pores have RC3 shaped pores.
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However, because the electrical conductance of the RC20 pores is
only 5.7 times less than the RC2-3 shaped pores, betueen 15% and 20% of
the total electrical flow through the network is carried via RC20 pores.
The large contribution of RC20 pores to electrical flou causes the
decrease in conductivity with pressure at 500 bars to be 90% more than a
netuwork simulation of all RC3 shaped pores.

Because the hydraulic conductance of the pore tube is very sensi-
tive to its size and shape, the largest aspect ratio pores which form a
continuous path across the netuork control the permeability. Electrical
conductance on the other hand does not change as much with changes in
pore shape (see Table 3) as hydraulic conductance which allous it to
”3verage” more of the pore space. In the ”S” group, the low aspect
ratio pores control the permeability and the high aspect ratio pores
#pull up” the conductivity versus pressure curve. In the #C” group, the
'high aspect ratio porés occupy more than 257 of- the network lattice and
therefore control the permeabk]ity. The lou aspect ratio pores serve to

“pull down” the conductivity versus pressure curve.
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G) Fahler 161 tight gas sandstone (Yale 1984)

The Fahler 161 experimental data is portrayed in figure 32a and falls
into our #“CL” category. The cross-over is very clear in the data and in
the simulation in figure 32b. As with the Falher 189 simulation, the
shapes of the permeability, conductivity and porosity versus pressure
curves in this simulation are not as concave as the experimental data.
We mentioned in chapter 2 that thin tapered pore shapes are used when
very louw aspect ratio shapes are needed (for large changes in petrophy-
sical properties with pressure) because numerical problems make it
impossible to calculate the deformation of GBP-RC30 to GBP-RC100 shaped
pores. Figures 14a and 14b demonstrate that in general the GBP shaped
pores show more concave permeability and conductivity versus pressure
curves than the TAP tapered shaped pores. We suggest that a better fit
to these curves can be done with very thin GBP shaped pores once ue have
improved our numerical calculations.

As in the Miocene 7 simulation, there are enough pores of high
aspect ration (a=5E-3) to form a continuous path across the network yet
there are a considerable number of pores of much smaller aspect ratios
(50% of the pores have a=5E-4 and 1E-4). The hydraulic conductance of
the TAPaSE-3 shaped pores is four orders of magnitude higher than the
hydraulic conductance of TAPalE~4 shaped pores and the «=5E-3 and
a=2.5E-3 shapes therefore control the permeability. The electrical con-
ductivity of the a=5E-4 pores is 10% that of a=5E-3 pores and figure 14b
shows that pore tubes of these shapes yield changes in electrical con-
ductance of 48% and S0% respectively at 500 bars confining pressure.

The a=5E-4 and a=1E-4 contribute to a large portion of the electrical
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conductance and “pull down” the conductivity versus pressure curve. A
netuwork of all TAPaS5E-3 pores has a change in conductivity of 354 at 400
.bars yet the thinner pores in the Fahler 161 simulation “pull doun” the
conductivity curve so that ue see an 80% decrease in conductivity at 400
bars.

We note that the permeability of the Fahler 161 sample is louer yet
the conductivity is higher (formation factor lower) than the Fahler 189
samhle. The pore width in the Fahler 161 simulation is lower than ¢ in
the Fahler 189 simulation which explains the lower permeability yet this
should lead to a higher formation factor also. The increased conductiv-’
ity is due to the presence of the thin pores which contribute to elec-
trical flow (to bring doun the formation factor) but do not contribute

to hydraulic flouw.
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H) Tertiary 807 sandstone (Yale 1984)

Figure 33a shous a sandstone in our “LH” group where the conductivity
exhibits a larger decrease with pressure than the permeability. The
Tertiary 807 simulation in figure 33b is an excellent match and the
absolute values are uwithin 1% of the experimental values (a three step
simulation). A type 2 plot is shoun in figure 34 for the experimental
and simulated data.

A comparison of the Tertiary 807 simulation with the Triassic 27
simulation in figure 24b helps illustrate the effect of the different
pore parameters used in the two simulations. In both simulations nearly
half the pore tubes have GBP-RC1 shape and this is reflected in the very
similar permeability versus pressure curves in the two plots. The pore
length and nodal pore sizes are similar and the absolute values of for-
mation factor and porosity are within 25%. The main difference is that
half of the pores in the Triassic 27 simulation have RC4 shape and in
the Tertiary 807 simulation they have RC15 shape. This difference is
reflected in the 50% larger decrease in conductivity of the Tertiary 807
simulation as compared with the_Triassic 27 simulation. Again the thin
pores in the Tertiary 807 simulation contribute 15% to 20% to the over-
all electrical flou but nearly nothing to the hydraulic flou. Since the
thin pores deform more with pressure than the pores of higher aspect
ratio, the conductivity curve is “pulled doun” by the thin pores. The
conductivity change at 500 bars is 226% higher in the Tertiary 807 simu-
lation than in a network of all RC2 pores. The higher permeability in
the Tertiary 807 simulation is due to the small increase in pore uidth,

¢, over the Triassic 27 simulation.
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1) cambrian 6 sandstone (Chierici 1967)

Figures 35a and 35b shouw the plots for the Cambrian 6 experimental data
and its simulation. As with the previous simulation, the conductivity
decreases more with pressure than the permeability (”L” group) and we
find the pore shapes again widely distributed between CIRCLE and RC20
shapes. The circular (10%CIR pores) and RC1 pores control the perme-
ability (14% change over 500 bars) yet the very thin pores (RC15 and
RC20) yield a decrease in conductivity which is even greater than in the
Tertiary 807 simulation (19% versus 17% at 500 bars).

Although the pore width and pore shapes are similar the Tertiary
807 simulation, the larger pore length (60 um versus 26 um for the Cam-
brian 6 and Tertiary 807 simulations respectively) serves to increase
the formation factor (80 versus 15), decrease the permeability (25 ver-
sus 150) and cut the porosity by nearly tuo-thirds (.217 versus .074)
for the Cambrian 6 simulation.

These last two simulations show that as in the #“S” and ”C” groups,
rocks in the ”“L” group have electrical flow paths that are different
from the hydraulic flow paths. By comparing the differences in electri-~
cal and hydraulic conductances for the different pore shapes we can get
a rough idea of what percent of the total electrical flow is through
which set of pores. We are presently developing a flow analysis algor-
ithm to allow us to analyze exactly how much fluid and electricity flous
through each individual pore and houw this relates to the overall flou
through the netuwork. The 1400 fold difference in hydraulic¢ conductances
for the RC1 and RC15 shaped pores (Tertiary 807 simulation) suggest that

less than 0.1% of the hydraulic conductance should be along RC15 shaped
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pores. Yet analysis of the differences between the Tertiary 807 simula-
tion and a simulation of all RC! shaped pores suggests that as much as
2% of the flow may be through RC15 shaped pores. For conductivity, dif-
ferences in electrical conductances betueen RC1 and RC15 shaped pores
suggests that 12% to 15% of the electrical conductance is via the RC15
shaped pores. Analysis of the conductivity versus pressure curves for
the Tertiary 807 simulation and a simulation of all RC1 pores shous that
as much as 507 of the electricity may have to pass through RC15 shaped
pores. Without a doubt there is a decoupling betueen permeability and

formation factor in rocks which exhibit the “L” group behavior.
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CONCLUSIONS

We have developed in this paper a pore space network model which
for the first time unifies six important petrophysical properties into
one model. MWe have shoun that the permeability, conductivity, porosity
and their changes with confining pressure can be accurately simulated
with a single set of pore space parameters. Houwever, any model is only
as useful as the information derived from it. We have found that the
model advances our understanding of the relationships betueen petrophy-
sical properties and betueen petrophysical properties and pore space
parameters. Specifically we draw the follouing conclusions from our
analysis of the network simulations.

Relationships betueen permeability and formation factor are tied to
the similarity of hydraulic and electrical flow paths. In Table 4 ue
divided the experimental data into four groups depending on the rela-
tionship between the permeability versus pressure and conductivity ver-
sus pressure curves. Our simulations shoued that rocks which fall into
the ”N” group have narrow and uniform distributions of pore shapes sug-
gesting that the hydraulic and electrical flow paths are the same. Hou-
ever, rocks in the other three categories have either larger (”S” group)
or thinner (”C” and ”L” groups) pores which effect the conductivity
without influencing the permeability as much.

Simulations of data sets from the #8”, #C” and ”L” groups have -
shouwn that between 104 and 25% of the current flowed through pores which
conducted less than 0.5% of the fluid. One method of analysis (see Cam-

brian 6 simulation analysis) even suggests that upwards of 504 of the
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current may pass through pores uwhich conduct less than 2% of the fluid
flow in rocks in the “L” group. This shous that because hydraulic con-
ductance is so sensitive to the pore shape and width (see Table 3), it
is controlled by a very narrow distribution of pore shapes; uhereas,
electrical conductivity is influenced by a wider distribution of pore
shapes.

The group type is found to be dependent on the width of the pore
shape distribution and the percent of the network occupied by certain
pore shapes. The ”N” group is characterized by pore shape distributions
which are uniform and narrou (aspect ratios within the distribution vary
ess than +-502 of the mean). The #S” group simulations have a wider
distribution of pore shapes uwith less than 25% of the pores having
aspect ratios greater than the mean. The #C” group has distributions
with widths similar to the #S” group but with more than 30% of the pores
héVing aspect ratios.greater than the mean. The simulations in the ”“L”
group also have 30% or more of the pore aspect ratios higher than the
mean but the distributions of pore shapes tend to be wider than in the
”¢” group. We saw that the behavior of the permeability and conductiv-
ity versus pressure curves is related to whether or not the percent of
high aspect ratio pores is above the percolation threshold (25% for
cubic lattices).

The pores which control the permeability in the ”L” group tend to
have high aspect ratios and high hydraulic conductances leading to the
observed trend of high permeabilities among rocks in the “L” group (see
Table 4). We also noted a slight correlation betueen lower than average

permeability and rocks which fell into the #S” group. This is explained
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by the effect of the lower aspect ratio pores on permeability in the 7S~
group rocks.

The permeability change with pressure is shoun to be directly
related to the aspect ratio of the controlling pore shapes. The thinner
the pores the larger the change in permeability with pressure. The sub-
groups in Table 4 are characterized by pore shapes of aspect ratios
greater than .25 for the “H” subgroup, betueen .05 and .25 for the 7MW’
subgroup and aspect ratios less than .05 for simulations in the “L” sub-
group. The three orders of magnitude change in hydraulic conductance
for a one order of magnitude change in aspect ratio is responsible for
the correlation betueen absolute value of permeability and pore shape
aspect ratio. This in turn explains the correlation betueen absolute
value of permeability and the change in permeability with pressure (see
Figures 17 through 23).

The correlation betueen Archie’s exponent and the percent nodal
volume is shown in Table 6. Here the exponent, m, is calculated from
the simulated values of porosity and conductivity at 10 bars pressure
(referred to as absolute values). MWe see that when the fraction of the
pore volume occupied by the nodal pores is high the exponent m is large.
This suggests that Archie’s exponent is a measure of the decoupling
between porosity and formation factor and that a large exponent (m > 2)
means that most of the pore volume is in pores which do not contribute
A much to the resistance of the sample. The large resistance of pore
tubes as compared to nodal pores and the decoupling of porosity and for-

mation factor was first recognized by Owen (1952).
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TABLE 6

Relationship between volume of nodal pores
and Archies exponent, m

Rock name volume in nodes m
Cambrian 6 36% 1.69
Gulf 807 40% 1.79
Triassic 27 50% 1.75
Fahler 161 60% : 1.60
Fahler 189 70% 1.67
Massillon DV 4 75% 2.00
Miocene 7 81% 2.35
Pliocene 35 - 872 2.95

Triassic 41 99% 3.03

Note : volume in nodes is the fraction of the total pore
volume that resides in the nodal pores. Rest of pore volume
resides in pore tubes. m=Archies exponent for simulated data
with m = log (CF)/log (porosity)
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Problems with the match between simulations and experiment yields
information of possible improvements to the model. The shape of the
permeability versus pressure and conductivity versus pressure curves for
the Fahler simulations are more linear than the experimental curves sug-
gesting that the thin GBP shaped pores should be used.

The Pliocene 35 and Triassic 41 simulations have very large nodal
pore sizes Which account for over 90% of the pore volume in these twuwo
simulations. Because we normally assume the nodal pores to be spherical
these large nodal pores reduce the change in porosity with pressure to
less than 1% at 500 bars. Because both the experimental data sets show
nearly 8% porosity change at 500 bars we assumed a more compliant nodal
pore for these tuwo simulations which matches the experimental data quite
well (compliance between that of spherical pore and true sphere pack).
The smaller change in simulated porosities than experiments for the Fah-
ler samples suggests that the more compliant nodal pores should also be
used here. In order to avoid adding another variable (nodal pore
shape), it might be better to use a more compliant shape for all the
simulations but then the exact hydraulic and electrical conductances for
the neuw node shape must be solved.

Another problem ue have encountered is the very small changes in
conductivity with pressure in some rocks above 300 or 400 bars confining
pressure. The Fahler 189, Massillon DV, and Pliocene 35 simulations all
failed to correctly reproduce the conductivity change between 350 and
500 bars. ~In the Torpedo sandstone there is very little change in con-
ductivity betueen 450 and 950 bars (see Appendix C). Success in simu-
lating this behavior may yield additional information about the pore

space.
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Significance of a Unified Petrophysical Model

The results from any simplified model! are model dependent. The
aspect ratio spectrum Cheng and Toksoz (1979) calculated with elliptical
pores is ditferent from the spectrum calculated using Mavko and Nur’s
tapered pores for the same rock which is different still from a spectrum
calculated using our GBP shaped pores. Mendoza (personal communication)
has found that for several sandstones the aspect ratio to match Vp and
bulk modulus versus pressure spans less than one order of magnitude in
aspect ratio compared to over 4 orders of magnitude spread in Cheng and
Tokso2’s (1979) spectra for similar rocks. The more realistic the
model, the more unique and less model dependent the results should be.

The pore size distributions calculated from mercury injection or
qapil!arv displacement porosity are dependent on the assumption that all
the pores are tubes of circular cross-section with the capillary pres-
sure linearly debendent on pore width. A thin GBP or tapered shaped
pore tube has a much higher capillary pressure than a cylindrical pore
tube of the same width. Therefore a distribution of capillary pressure
can be translated into a distribution of pore radii using pore tubes of
circular cross-section or a distribution of aspect ratios using GBP
shaped pores of the same width.

It has recently been suggested that nuclear magnetic resonance may
yield the pore size distribution of a rock (Schmidt, personal communica-
tion). A distribution of surface area to volume ratios (SA/V) of pores
may be translated to a pore radii distribution using either spherical or

cylindrical pore tubes. Again the SA/V ratio is linearly related to the
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pore radius. Houwever, our calculations show that for constant width
pore tubes of GBP, elliptical or tapered shape, the SA/V ratio is lin-
early dependent upon aspect ratio.

A problem with our present model is the lack of enough petrophysi-
cal data to fix the distribution of pore sizes. Houwever, by combining
the pore size distribution calculated from mercury injection or NMR
measurements with the pore shape distribution from our model, we can
eliminate the distribution of capillary pressure or SA/V ratios due to
aspect ratio to yield a more realistic pore size distribution. In this
way uWe can remove some of the model dependence of the results as well as
erasing the dichotomy of pore shape and pore si2ze that plagues most pore
space models.

Just as the addition of realistic pore shapes help unify transport
and elastic models in our network model, the addition of other petrophy-
sical properties should help bring the model pore space closer to the
true pore space of rocks. The network model is not in and of itself a
unified pore space model but simply a framework from which to build a
unified model. MWe have shouwn that the interconnectedness of the netuwork
lattice is important for calculating transport properties and that pore
shape is very important in calcuiating elastic properties. Pore size is
probably more important in simulating capillary pressure and SA/V ratio
and Knight (1984) has recently suggested that pore geometry and coordi-
nation number may be influential in explaining the frequency dependent
dielectric constant.

By combining all these petrophysical properties into a single model

we hope to gain an even greater understanding of the pore space than we
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have done here. The question is whether more properties necessitate
more variables. To make the model predictive we must keep the number of
variables to less than the number of properties we are simulating. Hou-
ever, as we have already seen, different properties are influenced by
different portions of the pore space. Porosity is strongly controllied
by the nodal pores which have a second order effect on permeability and
conductivity. Simulations of experimental data have shoun that in rocks
with a wide distribution of pore shapes (or sizes), conductivity is
influenced by a much larger range of pore shapes than permeability. The
linear dependence of capillary pressure and SA/V ratio on pore radius
(or pore aspect ratio) suggests that capillary pressure and SA/V ratio
are influenced by an even wider spectrum of pore sizes and shapes. Sim-
ulations by Mendoza (personal communication) using the GBP shaped pore
tubes, have shoun that velocity is influenced in some rocks by thinner
pores than are needed to match permeability, conductivity and porosity
versus pressure curves.

Houever, just as we shoued that experimental data sets in the N~
group had similar hydraulic and electrical flou paths and that rocks
with low Archie’s exponents had strong correlations betueen formation
factor and porosity, Mendoza has found that the pore shape distributions
used to fit Vp and bulk modulus versus pressure are very close to our
pore shape distributions (to fit permeability, conductivity and porosity
versus pressure) for a few rocks. It is only by simulating all the
petrophysical properties in a single model that we can understand what

the relationships are betueen the petrophsical properties and wmhen they

apply.
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APPENDIX B

Petrographic Information for Rock Samples Measured

In This Study

The petrographic description of the 14 samples in Table 4 whose

source is “Yale (1984)”7 (this study) is listed in the following appen-

dix. This information was given to us by Leslie Yale and is from the

SRP Rock Catalog, volumes 1 and 2. Further information about these

rocks can be found in those volumes. Some small differences exist

betueen our and L. Yale’s sample names as follous:

This study
Berea 500
Fahler 142
Tertiary 807
Indiana DV
Massillon DV

Massillon DH

Appendix B

Berea 5-600

Fahler 18E142

Gulf Coast sandstone 14807
Indiana dark

Massillon sandstone dark

Massillon sandstone dark

Our tuc Massillon samples were taken perpendicular to ”“DV” and par-

allel to ”DH” the bedding planes of the rock. With the exception of the

Indiana DV (taken perpendicular) and Berea 100H (taken parallel), all

other cores showed no distinct bedding.
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ROCENAME Eeaver sandstone

Descript: QUARTZARENITE-~fine to medium grained, well sorted, moderate
porosity cemented by gquartz overgrowth

Framework Brains

Quartz 78%
Chert 0%
Feldspar tr.
Carbonate 0%

Lithics 1%

Opaques 0%

Other

Contacts: long > cc >> sut = tan

Cement/: quartz overgrowth—-—-16% clay-~-very fine grained rims on original
Matrix quartz grains-~trace

Alter-: none apparent

ation

Fore interparticle--void space largely filled with quartz overgrowths--S5%

ROCK.NAME Rerea 100 sandstone

Descript: SUBLITHARENITE--very fine to fine grained,very well sorted,moderate
porosity with gtz overgrowth,carbonate,clay,and minor chlorite cement

Frameworlk Grains

Quartz S3%

Chert 2%

Feldspar 3%

Carbonate 0%

Lithics 8% argillaceous

Opaques tr.

Other glauconite, heavy minerals=--=tr.

Contacts: cc > sut > long > tan

Cement /S gtz overgrowth——11%Z clay--v. fine grained interparticle rim cement
Matris minor fine grained sericite on grain boundaries-—-6% carbonate--in-
terparticle—-7% chlorite-—as alteration of lithics, gtz and fldsp-—-1%

Alter-: feldspars are corroded, replaced by 'clay and calcite, quartz altered
ation to carbonate (zeolite?)
Pore interparticle--.05-,.15 to .25mm--%9% over half the clay is within

all argillaceous lithic grains or altered feldspar grains
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ROCKNAME Eerea S~600 sandstone

Descript: OQUARTZARENITE--fine to medium grained, well sorted, very high
porosity with Fe oxide, quartz overgrowth, and clay cement

Framework Grains

Quartz bb%

Chert 1%

Feldspar 1%

Carbonate 0%

Lithics 12 argillite, chert
Opaques 0%

Other

Contacts: cc > sut > long > tan

Cement/: quartz overgrowths—--5% clay~--1% Fe oxide--8%

Matrix

Alter-: corrosion of quartz, feldspar

ation

Pore interparticle-~-.2-.4mm to .Smm~-157 grain dissolution of feldspar

and rims of quartz--27%

ROCKNAME Boise sandstone

Descript: ARKOSE--fine to medium grained, very well sorted, high porosity with
minor carbonate-clay cement

Framework Grains

Quartz 28%
Chert O%
Feldspar 447
Carbonate o%

Lithics 1% argillaceocus
Opaques tr.
Other biotite, muscovite, heavy minerals--2%

Contacts: 1long > cc > tan > sut

Cement/: “"clay"—~-replacement of feldspar——46% carbonate-—replacement of
Matrix feldspar~~37%Z chlorite--tr.

Alter-: feldspar altered to clay, carbonate 1lithics altered to chlorite and
ation muscovite

Pore interparticle--13% very fittle cementation of original pore space
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ROCENAME Fahler 18E142

Descript: OUARTZARENITE--fine grained,

quartz overgrowth,

very well sorted,
carbonate and clay cement

low porosity with

Framework Grains

Guartz JS%

Chert 8%

Feldspar J%

Carbonate 0%

Lithics 2% mudstone

Opaques 0%

Other

Contacts: 1long = cc = sut >x> tan

Cement/: qtz overgrowths--2T7% carbonate--blocky interpart. local replacement

Matrix of qtz~--12% clay~--7% opaques--2% chlorite--very fine to medium
grained books--1% Fe oxide with clay--1% sericite in pore space—--2%

Aiter-: local carbonate replacement of quartz grains, all feldspar altered

ation

Fore interparticle--.125mm--3% early quartz overgrowth has destroyed

most of original porosity

ROCENAME Fahler 18E1S4

Descript: SUBRLITHARENITE--very fine to fine grained, very well sorted., low
porosity with carbonate, quartz, clay, Fe oxide, opaque cement

Framework Grains

Quartz 247

Chert B%Z

Feldspar 2%

Carbonate o%

Lithics 47. argillac. chert--2% argillite--2%

Opaques 1%

Other tr. muscovite

Contacts: cc = long > sut >> tan

Cement/: cthalcedony—1% opague--3% Fe oxide--4% carbonate--blocky grains

Matrix cement and replacement of quartz, chert grains--2S% quartz over-
growth==20% kaolinite--3% clay--medium grained repl. of chert--S%

Alter—-: feldspar altered to clay quartz, chert grains replaced by

ation carbonate

Pore intergrannular-—17%
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ROCKNAME Fahler 18E161

Descript: SUELITHARENITE--medium grained, well sorted, very low porosity with
qQuartz overgrowth, carbonate, and clay cement

Frameworhk Grains

Quartz 2S%
Chert 32%
Feldspar 1%
Carbonate o%
Lithics 134 argillaceous chert--5/ argillite--7%4 phyllite--1%
Opaques 0%
Other %

Contacts: cc = sut = long >> tan

Cement/: qtz overgrowth-—12% carbonate--fine to medium grained interparticle
Matrix —-%% chert/chalcedony--locally devaeloped by chert grains--3’ opaque
--irregular cement intergrain replacement--~3% clay=--J% clay/mica--2%

Alter-: feldspar altering to clay
ation
Fore very low porosity due to 1) lithic clast deformation, 2) chert grain

deformation, 3I) quartz, cartonate, chert cement

ROCKNAME Fahler 118E162

Descript: SUBLITHARENITE--fine to medium grained, well sorted, low dissolution
porosity with quartz overgrowth, Fe oxide, clay cement

Framewor) Grains

Quartz 467

Chert &%

Feldspar 0%

Carbonate 0%

Lithics 8% argillacecus/Fe oxide rich chert--1%Z muscovite schist--tr,
Opaques ]

Other lithics cont. siltstone--1% phyllitic chert--1% argillite~-1%

Contacts: cc = long > sut >> tan

Cement/: quartz overgrowth—25% Fe oxide cement--interparticle-—8% clay
Matrix cement——very fine to fine grained interparticle--4% chlorite--
replacement of feldspar—tr.

Alter-: feldspar altered to chlorite~-=tr.
ation
Pore dissolution--moldic character--2% less extensive quartz overgrowth

with remaining pore space filled by Fe oxide and lack of calcite cmt.
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ROCENAME  Fahler 1BE189

Descriptt: SUBLITHARENITE--medium grained, well sorted. very low porosity with
quartz, carbonate, chalcedony, Fe onxide cement

Frameworl: Grains

Quartz 27%

Chert 27%

Feldspar 3%

Carbonate 0%

Lithics 117 argillite~-7% argillaceous chert--4%
Opaques Q% :

Other muscovite-—~tr.

Contacts: cc = sut = long »> tan

Cement/: qtz overgrowth--13% opaque--47 carbonate--%9% fine grained quartz-
Matris chalcedony adjacent to chert grains~-47% clay--fine to medium grain
ed clays as cement adjacent to clay altered lithics—~2%

Alter-: feldspars intensely altered to clay + carbonate opaques (hematite,
ation magnetite) and/or carbonate replace chert grains locally
Fore very low porosity, permeability cement type controlled by local

grain i.e. chert cement near chert grains

ROCKNAME Fahler 1BE192

Descript: QUARTZARENITE--fine grained, well sorted, very low porosity with
guartz overgrowth, carbonate, Fe oxide, clay, pyrite cement

Framework Grains

Guartz 28%
Chert 3%
Feldspar 0%
Carbonate o%

Lithics 2% argillaceous
Opaques Q%
Other

Contacts: cc > long > sut >> tan

Cement/: qtz overgrowth—-22% clay--v. ¥. grained interparticle or rim cement
Matrix --11% Fe oxide(hm,goethite)-=-interparticle, intergrown with clay--9%
pyrite~—framboidal—-4% clay-~fibrous interparticle--2% carbonate--1%%

Alter-: none noted
ation
Pore none noted--very extensive quartz overgrowth, carbonate, and Fe

oxide cement
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ROCENAME Bulf Coast sandstone 14807

Descript: SUBARKOSE--fine grained, well sorted, high intergranular porosity
with clay, quartz overgrowth and pyrite cement

Framework Grains

Quartz S52%

Chert S%

Feldspar %

Carbonate 0%

Lithics J%Z argillite--tr., clay rich chert--J%

Opaques R Y

Other muscovite, glauconite, garnet, biotite

Contacts: cc = leng > tan > sut

Cement/: pyrite--v, f. grained, disseminated in pore space--17 quartz over-

Matrix growths--partly corroded and discontinuous--7% clay--rims clasts
plugs pore space--9/. Fe oxide--plugs pore space--tr. carbonate--tr.

Alter~: feldspar locally altered to clay

ation

Fore interparticle-=-12% grain dissolution--2% late corrosion (grain

dissplution) of guart:z overgrowths has enhanced porosity

ROCHNAME

Descript:

Framework

Quart:z
Chert
Feldspar
Carbonate
Lithics
Opaques
Other

Contacts:
Cement/:
Matrix
Alter-:
ation

Fore

interparticle--8%

Indiana dark sandstone

SURARKOSE--fine grained,

well sorted, moderate porosity with
hematite and clay cement :

Brains

S7%
tr.

7%

0%

tr.

tr.

heavy minerals tr.

long = tan > cc > sut
hematite(sclay?)--interparticle replacement of feldspar,lithics--22%
clay--rims clasts, replacement of clast msargin of feldspar—--35% .

feldspar and chert rich lithics altered to clay + hematite

hematite is likely a mix of hematite and clay

Indiana dark has less pressure solution and greater total % cement
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ROCKNAME Massillon sandstone dark (banded)

Descript: QUARTZARENITE-—-medium grained, well sorted, high porosity with Fe
oxide, clay, quartz overgrowth, and chert cement

Framework Grains

Quartz C61%

Chert 1%

Feldspar 1%

Carbonate o%

Lithics 1% micacecus
" Opaques Q%

Other

Contacts: cc * long = sut > tan

Cement/: Fe oxide--interparticle--1S% clay--interparticle, medium grained,
Matrix locally plugs porosity--54 chert-—-interparticle, locally plugs
porosity——1%4 quartz overgrowths—-corroded by later dissolution

Alter-: corrosion of quartz grains
ation
Fore interparticle--12% dissolution—--tr. quartz overgrowths corroded by

later dissolution

ROCENAME Massillon sandstone dark (banded)

Descript: QUARTZARENITE--medium grained, well sorted, high porosity with Fe
oxide, clay, quartz overgrowth, and chert cement

Framework Grains

Quartz 61%

Chert 1%

Feldspar 1%

Carbonate 0%

Lithics 1% micaceous
Opaques 0%

Other

Contacts: cc > long = sut > tan

Cement/: Fe oxide-~interparticle--15% clay--interparticle, medium grained,
Matrix locally plugs porosity—--5% chert—-interparticle, locally plugs
porosity-—1% ., quartz overgrowths—-—-corroded by later dissolution

Alter~: corrosion of quartz grains
ation
Pore interparticle--12% dissolution—-~tr. quartz overgrowths corroded by

later dissolution
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APPENDIX C

Experimental Petrophysical Bata in Tabular Form

A1l the experimental data sqff_Jigjed in Table 4 and represented in
Figures 17 through 23 are listed in this appendix. The differential
pressure (confining pressure - pore pressure) that each measurement uas
taken at is listed in the #“PRESS.” column. Permeabilitie§ are in milli-
Darcies (mD) or microDarcies (ubl). The change in properties with pres-
sure is shoun in the #“NORM.” columns and it is this data that is plot-
ted in figures 17 through 23. Note that the absolute values of
resistivity formation factor are listed in the ”FF” columns but that
normalized conductivity formation factor is listed in the #“NORM.” col-
umns. All data not measured in this study (Yale 1984) has been digi-

tized from published figures.
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FRESS.
(BARS)

10.
40,
R0,
190.
290.
390.
430.

FRESS.
(BARS)

0.
&8.
136.
204,
272.
442,
714.
98s.

FRESS.
(BARS)

O.
17.
34.
S1.
68.
102,
136.
170.
204.
238.
272.
306.
S40.

PERM
(mD)

30,30
29.80
29.54
29.08
28. 66
27.95

27.61

PERM
(mD)

45. 00
41.40
39.60
38.25
37.35
26.00
34,20

32.8%

FERM
(mD)

2.50
2.36
2.24
2.13
2.04
1.89
1.75
1.63
1.53
1.44
1.37
1.23

1.30

NORM.
FERM

1.0Q00
. 984
« 975
«960
. 946
. 922

.911

NORM.
PERM

1.000
.20
- 8890
-850
- 830

.B0OO’

« 760
730

NORM.
PERM

1.000
« 943
.894
. B51
-.817
754
. 4698
«&S3
«613
8576
. 549
.531

« 520

INDIANA DH
YALE (1984)
FRESS. FF
(BARS)

10. 12.09
20. 12. 16
45. 12,30
70. 12.37
120. 12.44
170. 12.49%
220. 12.81
270. 12.54
320. 12.55
370. 12,57
420. 12,60
4706. 12.60
TORFEDO

NDRM.
COND

1.000
. 994
. 983
.978
972
. 968
. 966
.964
. 963
962
« 960
« 959

DOEBRYNIN (1962)

PRESS. FF
(BARS)

0. 42.50
34. 44,22
102. 45.%0
204. 47.359
J06. 48. 46
442, 4%.30
714. 49,77
86. 49.88
BRANFORD

WYBLE (1958)

PRESS. FF

(BARS)

0. 95.10
17. 99.17
4. 102.92
S1. 106.73
6B. 109.82

102. 114.86
136. 120.69
170. 12S.4¢&
204, 128.51
238. 131.35
272. 132.64
306. 1335.01
340. 133.38
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1.000
. 961
« 926
. 893
.877
.B62
.854

.8%2

NORM.
COND

1.000
. 959
. 924
.891
«B66
.828
.788
.7S8
-« 740
. 724
717
.713
« 713

FRESS FORO.

(BARS)

10.
40.
90.
190,
290.
390.
490.

PRESS PORO.

(BARS)

0.
34.
102.
204.
J06.
442,
741,
986.

PRESS PORO.

(BARS)

0.
17.
S1.
é8.
102,
136.
170.
204.
228.
272.
J06.
340.
34.

. 2670
. 26446
« 2633
2617
. 2604
<2591
. 2578

« 2020
. 2012
. 1996
.1984
-1976
.1961
. 1953

.1941

« 1090
. 1068
. 1049
.1041
» 1029
«.1013
. 100}
. 0992
. 0989
.0984
. 0980
.0977
. 1057

1

1

NORM.
POR

« 000
. 991
. 986
. 980
975
. 971
. 966

NORM.
POR

. Q00
P96
. %88
.e82
.978
.971
. 967
. 961

NORM.
POR

. 000
. 980
. 962
. 955
« 944
. 929
.918
.910
. 907
.03
. 899
.896
.97Q



FAHLER 162

YALE (1984)
PRESS. PERM NORM. PRESS. FF NORM. PRESS. PORO. NORM.
(BARS) (uD) PERM (BARS) COND (BARS) POR
25, 273.9 1.000 10. 293.4 1.000 10. .0297 '1.000
&60. 123.2 . 450 60, 404,.2 . 726 60. .0263 . 886
110. 74.6 .272 110, 48S.4 - 605 110. .0250 .842
1460. S1.7 . 189 160. S64.7 « 520 160. .0240 .BO8
210. 40.2 « 147 210, 625.6 <469 210. .0235 791
260, 34.0 . 124 260. 668.1 439 260. .0231 .778
310. 29.1 . 106 310. 729.0 «403 310. .0228 . 768
S60. 758.5 « 387 360. 0227 . 764

TRIASSIC 41
CHIERICI (19&7)

PRESS. PERM NORM. PRESS. FF NORM. PRESS PORO. NORM.
(BARS) (mD) PERM (BARS) COND (BARS) POR

0. 42,40 1.000 0. 144,00 1.000 0. .2120 1.000
So. 39.90 «941 S0. 150.94 « 954 S0. .2073 . 978
150. 36.59 «863 150. 161.98 . 889 150. .2027 . 956
250, 34.13 - 805 250. 167.64 . 859 250. .1997 .942
450. 3t1.28 .73 450, 173.%1 .B828 4%0. .19SS 922

CAMER1IAN 16
CHIERICI (1967)

PRESS. FPERM NORM. PRESS. FF NORM, PRESS PORO. NORM.
(BARS) (mD) PERM (BARS) COND (BARS) POR

0. $.45 1.000 0. 308.00 1.000 0. 1370 1.000
S0. 8.67 «917 S0. 332.61 . 926 S0. 1340 .978
150. 7.83 «829 150. 358.97 .858 150. .1304 - 952
250. 7.38 .781 250. 376.99 .817 250. .1286 . 939
4350. 7.03 <744 450. 399.48 771 450. .126S .923
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FRESS.
(BARS)

25.

&0,
110.
160,
210,
260,
310,

PRESE.
(BARS)

25,

&0.
110,
160.
210,
260.
310,

PRESS.
(BARS)

O.
40.
&7,

104,
13S.
168.
199,

240,
271.

208.
341.

FERM
(uD)

PERM
(uD)

7.1
S.3

M'JN&A&
[FRLE N7 Ne

PERM
{mD)

120. 00
112.88
110.70
107.75
10S5.37
103. 60
102.56
101.21
100.32
99.34
98.359

NORM.
FERM

1.000
« &30
.411
. 288

[edad
. -

« 200
<177

NORM.
PERM

1.000
« 744
560
«4S9
«391
«349
.329

NORM.
FERM

1.000
947
. 923
.898
.878
.B63
.8S85
.B43
.B36
.828

s
L3 - 2

FAHLER 154
YALE (1984)

FRESS. FF
(BARS)

10. 128.8
60. 167.8
110. 191.5
160. 211.9
2190. 228.8
260. 242.4
310. 252.S

360. 262.7

FAHLER 192
YRLE (1984)

PRESS. FF
(BARS)

10. 262.5
&0. 282.9
110. 33S.8
160. 3&3.0
210, 388.2
260. 421.0
310. 426.5
J60. 441.4

TENSLEEP
FATT (1957)

PRESS. FF
(BARS)

0. 19.00
40, 19.41
67. 19.64

104. 19.88
135. 20.01
168. 20.12
199. 20.18
240, 20.27
271. 20.31
308. 20.36
341. 20.40
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NORM.
COND

1.000
. 768
.&73
. 608
« 363
«531
.S10
« 490

NORM.
COND

1.000
« 228
.782
. 723
. 681
. 623
.611

. 598

NORM.
COND

1.000
. 979
« 967
« 956
« 250
. 944
<942
« 937
<936
« 933
.931

PRESS.
(BARS)

10.

60.
110.
160.
210.
260.
310.
360.

PRESS.
(BARS)

10.

60,
110.
160.
210.
260.
310.
360.

FRESS PORO.

(BARS)

0.
40.
&7.

104,
135.
168.
199.
240.
271.
308.
S41.

FORO.

.0442
. 0403
.0387
L0377
.0372
10368
0363
0361

FORO.

. 0458
.0418
« 0402
« 0390
.03B4
- 0379
.0376
. 0376

. 1460
.1456
.1453
.1452
. 1449
.14464
. 1446
. 1444
.1444
. 1444
. 1442

NORM.
FOR

1,000
212
.876
.853
.842
. 833
.821
.817

NORM.
POR

1.000
. 913
.878
. 852
.828
.828
.821
.B21

NORM,
POR

1.000
- 997
<995
« 995
. 992
« 991
« 991
« 991
. 989
. 989
. 988



FRESS.
{BAFS)

Q.
S0.
1850.

=,
28¢.

450,

FRESE.
(BARS)

0.
S0.
150.
250.
4350.

FRESS.
(BARS)

0.
S0.
150.
250,
4S0.

FPERM
(mD)

36.%0
35.24
32.88
31.40
29.70

FERM
(mD)

&7.70
&5.74
42.76
&1.20
S8.97

PERM
(mD)

72.30
69.48
66.30
66.30
62.61

NORM.
FERM

1.000
. 9SS
.891
.851
.805

NORM.
FERM

1.000
« 971
. 927
. 504
.871

PLIQCENE 35
CHIERICI (1%67)

PRESS. FF NOFRM.
(BARS) COND

0. 157.00 1.000
S0. 163.20 L9682
1S0. 165.79 947
250. 172.34 «911
450, 175.42 «895

TRIARSSIC 26
CHIERICI ((1967)

PRESS. FF NORM.
(BARS) COND

0. 17.30 1.000
S0. 17.82 « 971
150. 18.23 . 949
250. 18.87 .217
450. 19.20 . 901

TRIASSIC 27
CHIERICI (19&7)

PRESS. FF NORM.
(BARS) COND

0. 20.10 1.000
So. 20.53 . 979
150. 21.22 . 947
250. 21.47 935
450, 21.82 <921
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PRESS FORO.

(BARS)

0.

50.
150.
250.

450.

PRESS FORQ.

(BARS)

o.
S50.
150.
230.
430.

PRESS FPORO.

(BARS)

oi
S0.
150.
250,
450,

.2010
« 1970
. 1940
.1918
1871

. 1800
«1777
.1751
« 1737
<1710

. 1810
.1788
«1759
«1747

<1728

NORM.
FOR

1.000
. 980
« 965
. 954
931

NORM.
FOR

1,000
.987
973
. 965
« 950

NORM,
FOR

1.000
. 988
.972
« 968

«9S3



FREES.
(BARS)

20.
4(’.
0.
140.
190.
2490.
290.
390,
4%0.

FREES.
{BARS)

0.
17.
34.
Si.
&E.
102.
136.
170.
204.
238.
272.
306.
S40.

PRESS.
(BARS)

25.

60.
110,
160.
210,
260.
J10.

FERM
(mD)

6.85
6.37
5.87
S.63
S.26
S. 18
S5.05
4,90

4.87

FERM
(mD)

12.30
10.71
9.94
9.31

.77

8.13
7.68
7.27
6.93
6.7
6.49
6.32
6.19

PERM
(ud)

18.0

[
mganygno
NOmO =

.
-

NORM.
PERM

1.000
« 930
.857
.822
.783
.752
737
.71S
.711

NORM
FPERM

1.000
.871
" .808
. 757
.712
- 661
. 624
. 591
« 568
- 947
«S28
.514
« 503

NORM.
FPERM

1.000
. 559
.311
.213
« 163
- 139
114

MASSILLON DV
YALE (1984)

FRESS. FF NORM.
(BARS) COND

10. 27.35 1.000
z0. 27.80 . 784
45. 29.20 937
70. 30.11 . 908
120. si1.21 .876
170. 31.82 . 860
220. 32.18 . 850
270. 32.45 . 843
320. 32.73 .B36
370. 32.88 .832
420. 33.02 .828
470. S33.16 .825

¥IRKWOOD
WYBLE (19358)

PRESS. FF NORM.
(BARS) COND

0. 40.50 1.000
17. 42.23 « 959
34. 4z.88 923
o1. 45.15 .897
48. 46.13 .878

102, 48.10 .842
136. 49.45 .819
170. 50.31 .805
204. S1.27 790
238. S1.99 . 779
272. S2.46 £ 772
S06. S2.67 . 769
340. S2.01 - 764

FAHLER 142
YALE (1984)

PRESS. FF NORM.
(BARS) COND

10.  164.9 1.000
60. 1BB.2 .B76
110. 201.7 .e17
160. 211.4 .780
210. 221.1  .746
260. 228.9 .720
310.  230.8  .714
360. 230.8 .714
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FRESS FORO.

(BARS)

20.
30,
4Q.
60.
?0.
140,
190,
240,
290,
S40.
290.
450.

PRESS PORD.

(BARS)

Q.
17.
34,
S1.
68.

102.
136.
170.
204,
238.
272.
306.
340.

PRESS.
(BARS)

10.

60.
11C.
140.
210.
260.
J10.
360,

.1901
. 1892
. 1886
. 1877
. 1869
. 1859
. 1853
. 1848
«1842
. 1838
.1823

. 1825

<1820
. 1508
« 1497
. 1487
. 1480
. 1458
. 14T
«1441
1436
« 1430
.1424
-1421
- 1420

PORQ.

. 0762
.0716
. 0698
. 0688
. 0681
«0&77
0673
<0872

NORM.
FOR

1.000
.995
. 992
. 988
. 983
. 978
« 97
972
« 969
. 967
. 964
. 260

NORM.
FOR

1.000
. 992
.985
. 978
974
«999
< 95¢
. 948
N LH]
. 941
937
«?TS

<934

NORM.
POR

1.000
. 940
.?16
. 903
.894
.888
. 887
.882



FRESS.
(BARS)

23.
110.
160.
210.
260,
210,

FRESS.
(BARS)

10.
40.
6S.
90.
140,
190.
290.
I90.
490.

FRESS.
(BARS)

10.
70.
180.
280.
380.
480.

FPERM
(ubD)

19.6
8.7

b=
.-

4,9

Y
» o

3.7

PERM
(mD}

129.60
124,25
122.96
121.97
120.88
119.89
118.70
117.61
116.12

FERM
(mD)

49,00
47.21
46.30
45.95
45.54
45.04

NORM.
FERM

1.000
.A436
«310
«=43S
. 210
.187

NORM.
PERM

1.000
.959
.949
.941
.933
.925
.916
. 908
.8%¢

FAHLER 189
YALE (1984)

FRESS. FF

(BARS)

10. 738.9
110. 1114.6
160. 1239.8
210. 1295.3
260. 1347.2
310. 1382.8
360. 1357.9

MASSILLON DH

YALE (1984)
FRESS. FF
(BARS)

10. .79
20. 24,05
4S. 24.66
70. 25.11
120. 25.59
170. 25.82
220. 22.96
270. 26.03
320. 26.13
370. 26.19
420, 26.25
470. 26.30
BEREA 100H

YALE (1984)

PRESS. FF
(BARS)

20. 17.1%
45. 17.46
70. 17.74
120. 18.04
170. 18.20
220. 18.26
270. 18.31
320. 18.36
370. 18.36
420. 18.38
470. i8.38
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NORM.
COND

1.000
. 663
. 596
.S70
.548
.S546
.S44

NORM.
COND

1.000
. 989
« 965
. 948

. 930

.922

w916
.914
.211
.908
. 906
. 905

NORM.
COND

1.000
.984
969
. 953
. 945
« P42
« 939
. 936
. 936
.938
. 935

PRESS.
(BARS)

25.
110.
160.
210.
260.
310.
360.

FRESE FORO.

(BARS)

10.
20.
“OQ
&5S.
90.
140.
190.
290.
390.
4%0.

PRESS
(BARS)

10.

SSQ
110.
160.
210.
260.
360.
4640.

PORO.

.0185
.0168
L0159
.0154

. 0150

.0148
.014%

«160%
« 1607
. 1598
. 1591
.1588
.1578

.1572

. 1565
. 1558
. 1552

PORO.

1650
. 14629
. 1620
«1£12
1607
« 1603
. 1596
. 1590

1

1

1

NORM,

POR

. 000
.908
. 859
.832
.811
. 800
. 805

NORM.

POR

.000
.999
.993
.989
.985
.981
.977
.972
.968
.964

NORM.

POR

. 000
. 987
. 982
. 977
.974
.972
. 968
.964



MIOCENE 7
CHIERICI (1967)

FREEE. FPERM NORM. FRESS. FF NORM. PRESS PORO. NORM,
(BARS) (mD) PERM (BARS) COND - (BARS) FOR
C. 4.42 1.000 0. 3I83.00 1.000 0: .0830 1.000
S0. 4.19 « 249 S0. 401.89 « 953 S0. .0813 <979
1SC. 3.93 .B8B8% 150. 429.37 .892 150. .0789 « 950
250, 3.72 .B42 250. 449.00 853 250. .077S . 934
4S0. 3.52 . 797 450. 476.96 « 803 450. .0762 .918
FAHLER 161
YALE (1984)
FREES. FERM NORM. FRESS. FF NORM. PRESS. PORO. NORM.
(BARS)  (uD) FERM (BARS) COND (BARS) POR
25. 10.3 1.000 10. 423.2 1.000 10, .0230 1.000
&60. 7.3 -710 60, &89.4 «615 60. .0194 . 843
110. S.2 « S04 110. 916.5 « 463 110. .0180 . 783
140, 4.1 397 160, 1088.8 -390 160. .0170 «739
210. S.S « 346 210. 1184.9 358 210, .016467 . 726
260. 3.1 « 307 260. 1302.6 . 326 260. .0164 «713
S10. 2.8 278 310. 1378.8 - 308 310. .0161 « 700
S60. 14146.9 . 269 360. .0160 - 696
BOISE
YALE (19B4)
FRESS. PERM NORM. PRESS. FF NORM. FRESS PORO. NORM.
(BARS)  (mD) PERM (BARS) COND (BARS) FOR
10. 901.90 1.000 10, 11.99 1.000 10, .2576 1.000
20. 897.30 995 35. 12.12 « 990 20. 2571 « 998
40. B90.63 . 988 60. 12.37 .« 969 40, 2565 « 996
0. 8B2.351 . 979 110, 12.58 - 933 6S5. .2558 . 993
190. B45.82 9460 160, 12.464 . 949 90. .2554 . 991
290. BS5.63 . 942 210. 12.66 - 947 140. .2547 . 989
I90. B52.57 . 945 260. 12.73 .942 190. .2542 . 987
4%0. B842.28 « 734 310. 12.79 . 938 240. .2537 . 985
S60. 12.83 « 934 290, .2532 . 983
460, 12.85 « 933 3J40. .2528 « 981

3%90. .2522 979
440. .2517 « 977
490. .2512 «975
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FRESE.
(BARS)

o.
S0.
150,
250.
450.

FRESS.
(BARS)

10.
40,
?0.
140.
190.
290.
390.
490.

PRESS.
(BARS)

0.
S0.
150,
250.
450.

FERM
(mD)

400.00
393.60
384.80
377.60
349.20

FERM
(mD)

132.20
146.05
141.52
139.19
136.60
134.76
132.98
131.27

PERM
(mD)

23.00
22.29
21.46
21.02
20.59

NORM.
FERM

1.000
. 984
. 962
. 944
. 923

NORM.
PERM

1.000

<930

.874
.863

NORM.
PERM

1.000
- 969
. 933
«914
895

TRIASSIC 38
CHIERICI (1947)

PRESS. FF NORM.
(BARS) COND
0. 12.70 1.000
S0. 13.33 «9S3
150. 12.5S « 937
250. 13.69 .928
450. 1z.82 919
TERTIARY BO7
YALE (1984
PRESS. FF NORM.
(BARS) COND
10. 14.90 1.000
20. 15.06 . 989
45, 15.62 « 953
70. 16.04 . 929
120, 16.51 « 903
170. 16.84 .88S
220. 17.04 .873
270. 17.17 .868
320. 17.33 860
370. 17.42 .858
CAMBRIAN &

CHIERICI (19467)

PRESS. FF
(BARS)
0. 89.20
S0. 94.3%
150. 99.44
250. 10Z.84
450. 107.73
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NORM,

COND

1.000
. 945
. 897
. 859
.828

PRESS PORO.
* {BARS)

0.
S0.
1350.
250.
450 L]

FRESS
(BARS)

10.
40.
0.
140.
190.
290,
3 o.

4%0.

PRESS PORO.

(BARS)

0.
S0.
150.
250.
4S0.

NORM.

POR
. 2050 1.000
« 2025 . 988
.1991 .971
. 1980 « 966
« 1960 . 956
PORQ. NORM.

POR
2180 1.000

.2148 .985
.2121 973
. 2106 « 66
. 2096 962
. 2082 9355
. 2072 <950
« 2064 <947
NORM.

FPOR

. 0810 1.000
. 0802 « 990
. 0789 974
.0778 « 961
. 07469 . 949



PO

FRESS.
(EARS)

10.
20.
S0.
0.
140,
190.
2%0.
390,
430G,

FRESS.
(EARS)

0.
50.
150.
250.
4%0.

FRESS.
(BARS)

Q.
SO,
15¢.
250.
450,

FERM
(mD)

494, 60
428,12
476.79
472.99
467.55
462,90
455,57
450.04

442,22

FERM
{mD)

21.90
31.13
30.05
29.48

29.22

T e anan

FERM
(mD)

352.00
349.8%
342.85
S37.57

3229.47

NORM.
FERM

1.000
. 987
<964
. 956
« 945
. 936
.923
.910
.£94

NORM.
PERM

1.000
.954
.97a
.959
.936

BEREA 500

YALE (1984)

FPRESS. FF NORM.
(BARS) COND
10. 20.13 1.000
40. 20.49 . 982
{0. 20.64 975
140. 21.14 . 952
190. 21.43 « 931
240, 22.17 . 908
290. 2.45 .889
340. 22.91 .879
39C. 23.33 .B&3
440, 24.34 . 827
490, 25.12 -.801
CAMBRIAN 14
CHIERICI (1967)
FRESS. FF NORM.
(BARS) COND

0. S$1.90 1.000
SO. 54.01 961
1S0. SS.69 932
250. $9.31 «875
450, &1,.28 .847

TRIASSIC 34
CHIERICI (1967)

FRESS.

{BARS)

0.
SO.
150,
250.

450.

FF

13.890
14.24
14,57
14.78
14,95

NORM.
COND

1.000
969
. 947
.94
.« 923
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FRESS FORQ.
- (BARS)

1Q.
20.
40.
65.
- Q0.
140.
1290.
240,
290,
340.
I9C.
430.
45G.

FRESS PORO.

(BAKRS)

0.
S0.
150.
250,

450.

FPRESS PORO.

(BARS)

0.
S0,
150.
250.
450.

-1970
1964
19356
. 1948
1942
.1932
. 1926
1922
.1918
.1914
1911
. 1908
- 1604

. 1090
. 1073
. 1058
« 1047

<1033

« 1990
- 1950
. 1924
. 1906
. 1885

NORM.,
POR

1.000
. 997
A
. 989
. 986
. 981
.578
.576
. 974
972
.970
. 968
.96L

NORM.
POR

1.000
. 984
.971
961
. 948

NORM.
POR

1.000
. 980
. 967
. 958
.947



	Network modelling of flow, storage and deformation in porous rocks - by David Yale
	Abstract
	Table of contents
	List of symbols
	List of figures and tables.
	Chapter One - Introduction and review of past pore space models
	1. Introduction
	2. Review of previous network mdels
	A. Pore geoletry
	B. Pore coordination number

	3. Elastic and transport models: Two views of the pore space.

	Appendix A
	Chapter Two - A unified network model and its response to changes in pore parameters
	1. A three-dimensional pore space network model
	A. Grain boundary pore shapes
	B. Flow and storage equations for pores
	C. Deformation and pressure dependence
	D. Network equations

	2. Network simulation
	A. Numeridal and statistical considerations
	B. Pore parameter effects


	Chapter Three - Inversion of experimental data for a quantitative representation of the pore space
	1. Introduction
	A. Experimental petrophysical database

	2. Experimental setup and procedure
	3. Experimental data analysis
	4. Data simulation
	A. Triassic 27 simulation
	B. Pliocene 35 simulation
	C. Triassic 41 simulation
	D. Massillon DV simulation
	E. Fahler 189 simulation
	F. Miocene 7 simulation
	G. Fahler 161 simulation
	H. Tertiary 807 simulation
	I. Cambrian 6 simulation

	5. Conclusion
	A. Significance of a unified petrophysical model


	References
	Appendix B
	Appendix C

