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ABSTRACT

A number of simple mechanical models are presented for the tran-
sient or inelastic elements of a major“earthquake cycle: The gross
response to faulting is studied by approximating the earth's crust
and upper mantle as a stiff elastic lithosphere over a weaker ductile
asthenosphere. Several localized mechanisms for attenuation and material
relaxation are then discussed.

In the first case the transient postseismic response of a viscous
asthenosphere is examined. At time t = 0 a dislocation is introduced
instantaneously into an elastic layer (lithosphere) over a viscoelastic
half space (asthenosphere),. representing the sudden slip of a major
earthquake. The subsequent time dependent surface deformation is found
anaiytically for a screw dislocation (strike slip fault) and approximated
for.an edge dislocation (dip slip fault) uéing the correspondence prin-
ciple. The theoretical displacements agree with the postseismic defor-
-mation of the 1946 Nankaido (thrusf type) earthquake. Observed amplitudes
of displacements and time constants of 3-5 years yield for the astheno-
sphere a viscosity of 101'9—1020 poise and a 50 percent relaxation of
the shear modulus.

Three partial melt models of asthenospheric relaxation are consid-
ered to account for the observed time constant of 3-5 years: large scale
diffusion of melt through a porous matrix can decay ovér thousands to
billions of years, and is much too slow. Simple shearing in "penny-shaped"
cracks happens on a seismic time scale and is much too rapid. Intercon-
nected penny-shaped cracks at different orientations with respeét to the

principal stresses respond an an intermediate time scale by short range
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melt squirt from one crack to another, providing.a reasonable mechanism
to account for the transient deformation at Nankaido.

The second section focuses on the mechanics of strain accumulation
and reléase along a major strike slip plate boundary. Assuming an
elastic lithosphere a linear relation is found between the mean stress
on the fault, the average fault slip and the relative plate displace=~
ment away from the fault. From this a constant applied stress boundary
condition is seen to concentrate all strain changes close to the fault.
In contrast a constant plate speed condition can cause a varying strain
field out to distances from the fault comparable to the fault length.

Finally, two separate models are presented for the microscopic
details of deformation and attenuation withiﬁ the crust. In the first
model dislocation theory is used to study the deformation of realistic
(non-elliptical) cracks in a loaded elastic material. The cracks con-
sidered are two dimensional with non-blunted, tapered ends. Undgr com-
pression the cracks shorten by élosing near the crack tips: Stresses
remain finite everywhere. At a given load the effective rock compres-
sibility due to arbitrarily shaped tapered cracks depends only on crack
length, giving results identical to a distribution of elliptical cracks
of the same lengths. However, at different loads the varying length
causes the modulus to vary.

The second model describes the attenuation of seismic waves in
rocks with partially liguid saturated flat cracks or pores. The pres-
ence of at least a small fraction of a free gaseous phase permits the

fluid to flow freely when the pore is compressed under wave excitation.

The resulting attenuation is much higher than with complete saturation.
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The attenuation is sensitive.to the aspect ratios of the porés and
the liquid droplets occupying the pores, with flatter pores resulting
in higher attenuation. Details of pore shape other than aspect

ratio appear to have little effect on the general behavior provided

the crack width is slowiy varying over the length of the liquid drop.
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CHAPTER 1

TRANSIENT ELEMENTS OF THE EARTHQUAKE CYCLE

Nature of the Observationms

Most theories concerning earthquakes are based on elastic rebound--
the idea that elastic strain energy is gradually stored in the earth
and is abruptly released during episodes of brittle failure known as
earthquakes. In the context of plate tectonics, the process of straiﬁ
build-up and release at major plate boundaries repeats itself in a
roughly cyclic fashion. Comparisons of the acc;mulation of deformation
at the earth's surface before large earthquakes with the instantaneous
deformation during earthquakes show that they often approximately
cancel. Ihis led to the idea of a rebound (Reid, 1910).

However, additional transient displacements, lasting from minutes
to years——entirely unpredicted by elastic rebound--often accompany
moderate to large earthquakes. For example, following the 1966
Parkfield, California, earthquake (M = 5.5; right~lateral strike-slip)
near-surface fault creep continued, at a decaying rate, for several
years. Figure 1 (from Smith and Wyss, 1968; replotted by Scholz and
otheré, 1969) shows the postseismic fault slip inferred from five small-
scale geodetic stations established in the epicentral region. Although
little or no surface breakage occurred during the main event, as much
as 25 cm of slip accumulated in the 3 years immediately thereafter.

In addition, road damage occurring within several years before, and
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en~echelon cracks formed within a month before the earthquake (Allen
and Smith, 1966) suggest a preseismic transient.

Even the great 1906 San Francisco earthquake, which led H. F. Reiﬁ
to propose the elastic rebound mechanism, was followed by transient
deformation. Thatcher (1975) suggests that substantial postseismic
crustal strains, continuing for at least 30 years following the earth-
quake, can be inferred from geodetic resurveys since 1906. These
strains can be explained (though not uniquely) by V4 m of aseismic
fault slip from 10 to 30 km depth, without additional surface slip.
Thatcher (1975) also suggests anomalously rapid strain accumulation
during the 50 years prior to 1906, although the evidence is weak.

Perhaps the most spectacular example of measureable postseismic
deformation was observed following the 1946 Nankaido, Japan, earthquake
(M = 8.2; thrust type) where upheavals of as much as 2 m occurred over
a l to 3 year period. Figure 2 (from Matuzawa, 1964; Kanamori, 1973)
shows the rather complicated nature, in space and‘time, of the vertical
displacement. The transient mechanism has been interpreted either as
aseismic fault slip at depth (Fitch and Scholz, 1971) or viscoelastic
rebound of the asthenosphere without fault slip (see Chap. 2; also
Nur and Mavko, 1974). A similar analysis of postseismic uplift following
the 1964 Alaskan (thrust type) earthquake is reported by Brown and
others (1976). In this case the transient decay lasted about 1 to 8
years depending on distance from the fault trace, and was attributed
to fault slip.

Particularly short-lived transients have also been observed.
Figure 3 shows fault slip lasting only séveral hours, recorded after a

Matsushiro shock on September 6, 1966 (data from Nakamura and Tsuneishi,
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Deformation accompanying the 1946 Nankaido earthquake.

(a) Smoothed sea level at four tide guage stations (after Matuzawa,1964).
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normal to the fault trace (after Kanamori, 1973).

Pre-, co-, and postseismic vertical deformation along profiles roughly
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1967; replotted by écholz, 1972). A precursory aseismic slip with time
constant of 300 to 600 sec, starting about 1000 sec before the main
shock of the 1960 Chilean earthquake has beeﬁ inferred from long-period
surface waves and body waves (Kanamori and Cipar, 1975) and from free
oscillations (Kanamori and Anderson, 1975).

Further examples of transient deformation are reviewed by Scholz
(1972), Kanamori (1973) and Dunbar (1977).

In general these observations of pre- and postseismic deformation
are rarely better than qualitative evidence of transient phenomena.

The reliability and spatial distribution of geodetic data is par-
ticularly poor, and the time window of all observations is seldom
greater than a few tens of years. Uﬂambiguous intérpretation of the
mechani;ﬁ is usually impossible. Nevertheless, useful information
about the earthquake cycle can be gained from these observations:

1. The relaxation spectrum. Order of magnitude estimates of the
characteristic times of transients, whether they oééurred before ar
after an earthquake, or perhaps the lack of a transient, can put
constraints on proposed mechanisms. |

2. Scale. The approximate spatial dimensions and orientation of
the anomalous strain field can be an indication of the relaxation
mechanism and its depth.

A number of specific transient mechanisms and their relation to
these observations will be discussed throughout Part I of this thesis.
In particular we identify some potentially important relaxation processes
in the next section. Some simple strike-slip and dip-slip fault models

will be examined in Chapters 2 and 4.




The Viscous Element

In a strictly elastic earth, complete elastic rebound would take
place in a few seconds, with the charaéteristic time ofiétrain release
determined by the seismic source rise time, fault dimensions, and
rupture velocity. The only slow deformation would be the accumulation
of tectonic strain. In contrast, the observed pre-~ and postseismic
transients indicate a much broader relaxation spectrum. Our concept
of plate tectonics suggests steady plate motion over a period of at

3 years), and we might expect

least several seismic cycles (lO2 to 10
a steady accumulation of strain between earthquakes. However, episodes
of accelerated strain are observed indicating a localized viscous
instability which can initiate and arrest each strain event. Further-
more, seismic precursors and postseismic transients imply a rate-
dependent damping associated with the otherwise brittle release of
energy.

What are these transient mechanisms? A simple mechanical model
for the earth's crust and upper mantle, suggested by plate tectonics,
consists of a relétively elastic brittlg lithosphere overlying a
viscous, ductile asthenosphere. Geometrically we can distinguish
three general sources of relaxation within this model:

1. Relaxation in the asthenosphere. The asthenosphere is charac-
terized by high temperature relaxation mechanisms. Solid mineral
grains can flow plastically by atomic diffusion and the motion of
lattice dislocations (e.g. Gordon, 1965; Weertman and Weertman, 1975;

u Heard, 1976). This makes the polycrystalline composite fluidlike

over long time scales and can account for the large-scale, finite
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deformation implied by plate motion and the low strength implied by
isostatic equilibrium. In addition, enhanced deformation at grain
boundaries can occur resulting from dislocation motion and diffusion
(e.g. Ke, 1947; Zener, 1948; Anderson, 1967) or the viscous flow of
melt (Walsh, 1969; Mavko and Nur, 1975). Other loss mechanisms which
are relevant at seismic frequencies include thermoelastic, dislocation
damping, point defect diffusion, and grain boundary effects (e.g.
Anderson, 1967). We will discuss in more detail the possible role of
asthenospheric relaxation during major earthquake faulting in Chapters
2, 3 and 4.

2. Relaxation in the lithosphere. Based on analyses of glacial
rebound and lithospheric flexure (Walcott, 1973), the gross behavior
of the lithosphere appears to be essentially elastic on time scales
of up to several major earthquake tcycles (lO2 to lO4 years). Therefore
it seems qnlikely'that large-scale plastic flow or solid-state creep
in the lithogphere is important as a transient mechanism. (We will
discuss fault creep separately.) However, a smaller scale viscoelastic
response to sudden changes in the stress field might result from concen-
trated plastic flow at grain boundaries in the hot lower lithosphere
and from frictional sliding or viscous shearing of water at grain boun-
daries and fractures in the shallow crust. Regional diffusion of water
in response to dilatancy (Nur, 1973) or the sudden change of stress:
field due to an earthquake (Nur and Booker, 1972) might also occur
in the shallow crust.

.3. Fault creep. In addition to direct observations of surface
fault creep aseismic fault slip has been invoked at depth in the

lithosphere to explain pre- and postseismic surface deformation
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(e.g. Fitch and Scholz, 1971; Thatcher, 1975; Brown and others, 1976).
However, very little is known about the detailed stress-strain behavior
of the fault zone, aﬁd hence the physical mechanism of creep, at any
depth. ©Nason and Weertman (1973) conclude little more than the existence
of an upper yield phenomenon from shallow creep events. In the
laboratory transient stable sliding sometimes precedes stick slip on
frictional surfaces (Scholz and others, 1969) at conditions corres-

. ponding to several kilometers depth. At higher temperatures and pressures
Stesky (1974) observes a nonlinear stress-strain rate sliding law

similar to that expected for solid-state creep. In Chapter 3 we discuss
some general effects of fault slip on strain accumulation along a major

strike-slip fault.
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CHAPTER 2 -
POSTSEISMT.C VISCOELASTIC REBOUND

A simple, wideLY-accépted model for the mechanical behavior of
the earth's crust and upper mantle consists of a relatively elastic,
brittle lithosphere overlying a viscous, ductile asthenosphere.
Evidence for the existence of the asthenosphere comes from the viscous
rebound of the crust upon removal of surface loads such as the pcst
glacial uplift of Fennoscandia (Walcott, 1973), and Lake Bonneville
(Crittenden, 1963) where rebound followed the disappearance of the
water load. The brittleness and elasticity of the lithosphere are
implied by the abundance of crustal earthquakes and the associated
elastic rebound.

In a strictly elastic earth, complete elastic rebound would take
place in a few seconds, and the only slow deformation would be the
accumulation of tectonic strain. In contrast, in an earth with a
viscous element, a large earthquake would consist of an initial
elastic rebound, followed by a transient element of deformation con-
trolled by the viscosity.

The purpose of this study is to comstruct a dislocation model
which will enable us to estimate the time constant, the magnitude,
and the spatial distribution of the viscously induced post earthquake
deformation in the crust and upper mantle. We will then comp;re some

available rebound data with the theoretical results, in order to
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determine whether viscous deformation plays any important role in

postseismic deformation.

The Dislocatioﬁ Model

The problem is to determine the characteristics of time dependent
deformation which follows the sudden slip on large earthquake faults
in an earth which has an elastic lithosphere and a viscoelastic astheno-
sphere. The distribution of viscosity, and the dependence of viscosity
on stress in some regions of the asthenospheré are probably quite complex.
Furthermore, the slip on faults during large earthquakes may also be
rather complicated. Generally slip is not uhiform over the fault plane
and the relative strength of its vertical and horizontal components
are variable in space.

Because of lack of detailed information concerning either viscosity
in the earth or slip distributions on large faults, we will consider
a very simple model of the lithosphere-asthenosphere compésite and a
very simple model of a large fault. The lithosphere will be represented
by a single elastic layer with thickness H, overlying a linear visco-
elastic half space as shown in figure 1.

We consider two types of faults. A strike-slip fault will be
represented by a single screw dislocation in the elastic layer, with
a dislocation line at depth D < H below the free surface of the layer.
A thrust fault will be represented by an edge dislocation in the elastic
layer, with a dislocation line at depth D < H, and with a slip surface

with dip 6, measured from the free surface, as shown in figure 1.
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We will further simplify the problem by ignoring the process of
tectonic stress buildup. Instead, we will assume that at time t = 0
sufficient tectonic stress has accumulated to cause sudden slip or

stress drop on the fault.

Method of Solution

The solution to the elastic-viscoelastic problem is obtained in
two steps. In the first step we solve for the static displacements
and stresses in an elastic layered model with welded contacts. In
the second step we make use of the correspondence principle and the

Laplace transform to obtain the time dependent solution.

Screw and Edge Dislocations in the Elastic Composite

Consider a two dimensional elastic layer (region 1) with shear
modulus U3, bulk modulus K;, Poisson's ratio v; and thickness H, over
an elastic half space (region 2) with shear modulus U2, bulk modulus
K2, and Poisson's ratio v,. The surface x = 0, where x is upward, is
the free surface.

In one case we introduce at depth D a screw dislocation line
parallel with the z direction and with slip Au, as shown in figure 1.
The slip plane (mathematically, the branch cut) lies in the vertical
plane y = 0 (x >-D). The deformation associated with such a screw
dislocation is completely described by a single component of displace-
ment u, and the corresponding two shear stresses Or and cyz'
In the other case, an edge dislocation with constant slip Au

is placed at depth D, parallel with the z direction. The slip plane,

with arbitrary dip ¢, extends upward from the dislocation line in the

i _ - . ST e T e . ,_in«):» i
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positive x and y directions. Here the deformation is described by
the displacements u_ and u_ and the stresses 6__, O, and O__ .
X y XX° yy Xy

In the earth, we can measure directly only the deformation of

the free surface. For the screw the displacement at this surface

(x = 0) in our model is (see appendix).

Aufl -1y > Hi=Ho| n -1 y _ -1 y
u = m [ta“ (D) M nil [}Jlﬂiz] ‘{tan 2nH+D tan (ZnH-D 1)

The jump Au at y = 0 is the offset on the slip plane. When M1 = U2,
u, reduces to the well known expression for a screw dislocation in
an elastic half space. When uz = 0, u, describes the surface deformation
of a traction-free elastic layer with an internal screw dislocation.
For the edge dislocation, the free surface (x = 0) displacéments

in our model are given approximately by

\ (1—%?—) ot (az—alﬁp '
u = Avl——-_= f1+ 1) + ——— (f2+fi) + (f3+f3)
x (145 ,22) O (624E2)
781 1351
(2)

(1-52) (§2-6 12
ug = Au{—>Hi (g1+gl) + ——E1— (g2+g2) + (g3tgl)

(1+6:152) S+t

where Au is the magnitude of the burgers vector; Gi = 3 - 4vi; and

fi’ fi, g;» and gi are geometric factors given in the appendix.

The exact solution for an edge dislocation parallel to the boundary

of two joined elastic half spaces is given by Mura (1968). The so;ution
for an edge dislocation in a layer over a half space can be constructed
by evaluating the tractions at the desired free surface in the two
joined half spaces problem and superimposing a solution that exactly

cancels the tractions at the free surface. Lee and Dundurs (1973)

do this for. the case of an edge dislocation with the burgers vector
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normal to the free surface, but even with the loss of generality the
expression is unwieldy. Here the free surface displacements, equations
(2) are approximated by placing two equal and opposite edge dislocations .
in an elastic half space, sharing a common slip plane. A plane midway
between the two (x = 0) will represent the "free surface," and the
displacement at this plane is taken as roughly proportional to the

exact solution.

The Viscoelastic Problem

Suppose now that the lower half space is not elastic, but visco-
elastic. The correspondence principle provides an easy method to obtain
the slow, time dependent deformation in response to the sudden defor-
mation of a dislocation created at time zero. The principle states
that any formal solution of Navier's equation in the classical theory
of linear elasticity offers a corresponding éolution for a viscoelastic
bod&, provided the elastic moduli are replaced by corresponding complex
moduli in dynamic problems and a Laplace operator in the static»one.

It is also necessary that the elastic and viscoelastic problems have
identical boundary conditions. If the viscous behavior is due to a
shear process such as creep or relaxation of viscous fluid in pockets
of melt, then only the shear modulus y2 must be replaced by the corres-
ponding Laplace operator. For a standard linear viscoelastic solid
the Laplace'operator.ﬁ is

bg + b;s

T(s) =
u(s) = 2 ag + a;s

where ag, a1, bg, and b; are constants in the generalized relations

between the shear stress 0y and shear strain €5 1 #3):

(3)



20

(a0 + argp) oy; = (o + brg) €5 (@ #3) )

and s is the transform variable. ©Note that when ai; = b1 = 0, equation
(4) gives the relations for a linear eiastic solid with‘éhear modulus
U = bg/2a¢ and when a; = bg = 0, it yields the relations for a Newtonian
fluid, with viscosity n=bi1/2a0. Only shear relaxation is comsidered,
the bulk modulus Kz for the half space kept constant.

In order to obtain the complete viscoelastic solution, it is also
necessary to introduce the initial condition that Au is a Heaviside
step function:

Au(t) = Au H(t)

The Laplace transform of this condition is

AT = Au
S

Substituting'ﬁ and Au into the elastic solutions, equations (1)
and (2), and taking the inverse Laplace transform yields the following
time dependent displacements at the free surface (see appendix).

For the screw

(o]
tan T L + %% L (tan

Au 1
uz(t) = 7 D n=1

¥y _ -1_v . >
FoHeD A0 Faop) Fp(8) £ 0

and for the edge

ux(t) = Au[A(t) (£1+£]) + B(t) (f2+£3) + (£3+£1)] t>0
ug (t) = AulA(t) (g1+gl) + B(t)(gatgd) + (gstgd)] t >0

where Fn(t), A(t) and B(t) are time functions given in the appendix.

Discussion of Theoretical Results

The most important feature of both the edge and screw dislocation

models is the change with time of the surface deformation from an

Lo B SR B e e e e W s L
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initial configuration toward a final rélaxed state. Figure 2 shows

the horizontal surface displacement for a vertical strike-slip fault,
and figure 3, the vertical displacement for a thrust fault with 30° dip.
In both cases the ordinate is in units of fault slip and the abscissa

is in units of elasticblayer thickness; both plots are for faults

extending to a depth of 0.75 the layer thickness. The limiting cases,

at times t = 0 and t = <, are found by substituting U2 U(O).ana
H2 = H(®) respectively into the elastic solutions, where u(0) and
u(®) are the unrelaxed and relaxed moduli respectively.

Certain features are common to both models. First, the overall
amplitude of the éurface displacement is determined by and proportignal
to the fault slip, being largest right at the slip plane and tending
to zero far from the fault. For fixed material comstants (and fixed
dip in the dip-slip case) variations in fault depth simply stretch
or shrink the horizontal scale without changing the basic shape of
deformation. Shalldwer faults have a much more localized effect;
deeper faults, much broader. Deeper faults are also accompanied by
a larger and hence more measurable change in displacement with time
between initial and relaxed states, especially at distances of one to
five layer thicknesses from the fault trace (on the hanging wall side .
of a thrust).

Similarly, a greater change in displacement between initial and
relaxed states, without change in the horizontal scale, is accomplished
with a lower ratio of final viscoelastic shear modulus to initial

viscoelastic shear modulus, permitting a higher degree of relaxation

of the half space.
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DISPLACEMENT

STRAIN

b

Figure 2. Horizontal displacement and strain at the free surface
for the strike slip case. The initial deformation at t = 0 is the
coseismic part. As the asthenosphere relaxes the deformation

approaches the curves t = .
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UPLIFT

TILT

Figure 3. Vertical displacement and tilt at the free surface for

the thrust case.
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The time dependent deformation, following the introduction of a
screw dislocation spreads away ffoﬁ the fault with time, as shown in
figure 2. Although the large initial displacement (fig.” 2a) is confined
to a distance of about two layer thicknesses from the fault, the
subsequent slow change of displacement with time is pronounced at much
greater distances. The initial shear strain (fig. 2b) is high'éﬁd
localized. With time its magnitude on the fault itself decreases,
indicating a corresponding recovery of the initial stress drop, and it
also spreads out.

The time dependent displacements shown in figure 2a always increase
with time in the same sense as the initial motions at time zero.
However, the sense of strain change with time depends on position.
Beyond about three layer thicknesses from the fault, strain varies
with time in the same sense as the initial strain; however, near the
fault, strains clearly slow recovery in ﬁhe opposite sense to initial
strains.

The sudden appearance of the edge dislocation in the model produces
initial surface displacement and tilts similar to values in an elastic
half space (fig. 3). As time progresses'the deformation changes due
to the relaxation of the shear modulus in the lower half space, and
the surface displacement spreads out. For example, the hinge point
(at which the vertical displacement changes from upward to downward)
moves away from the surface break, as shown in figure 3a.

The tilts of the surface, normal to the fault strike, are shown
in figure 3b. Although the region of large tilt is confined to within
approximately two layer thicknesses of the fault, the changes with time,

relative to the initial tilt, occur over a broader area, as far away
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as four or five layer thicknesses. Unlike the deformation in a
homogeneous viscoelastic half space, the redistribution of displacement
and tilt measured at fixed points on the surface as a function of time
show complicated patterns. There are points in which the viscous
displacement is in the same sense as the initial displacement. In
other regions the sense is reversed. Similar complexity is apparent
in the changes of tilt with time. These complexities arise not because
of the viscoelastic zone but are due to the inhomogeneous structure.
In a homogeneous viscoelastic half space the time dependent displace-
ments and tilts do not change in sense anywhere.

The time behavior of the slow transient deformation is derived
in the appendix for both the screw ahd edge dislocations. In detail
the behavior is fairly complicated. However, in each case the initial

relaxation is approximately exponential, with a time constant of

T = on/w - (5)

where n is the viscosity of the viscoelastic asthenosphere and U1 is

the rigidity of the elastic lithosphere. The constant O depends on

the ratio of asthenospheric rigidity to lithospheric rigidity as well

as on the amount of viscoelastic relaxation. For moderate amounts of
relaxation, i.e. 0.2 < u(®)/u(0) < 0.8, and 1 < u1/u(0) < 2 the value of o
lies between 1 and 10. Thus, to a first order approximation, we might

use T = 5n/u;.

Application to the Earth

Our models show that crustal earthquakes with sufficiently deep

faults should be followed by measurable postseismic deformation, if

W
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some region in the mantle is indeed viscous (and part of the crust
elastic). The most spectacular example of postseismic deformation was
obtained following the Nankaido, Japan, 1946 thrust-type. earthquake
(M = 8.2, December 20, 1946).

In figure 4a we compare the results computed from a selected
edge dislocation model (dip 30°, depth 0.75 of the layer thickness)
with the observed coseismic and postseismic deformation along a profile
perpendicular to the surface break, reproduced from Kanamori (1973)..

The computed and the observed initial coseismic vertical displace-
ment are quite similar, both showing a zone of great uplift next to
the fault, and a broad zone of subsidence fufther away. The theoretical
postseismic vertical displacement is obtained by subtracting the initial
displacement from the final one, and the observed postseismic displace-
ment is obtained from changes in beach levels during the 17 year period
following the earthquake.

The similarity beéwéen the two postseismic curves is striking.
In both, most of the postseismic recovery takes place in the broad
region of initial subsidence, and in both the amplitude of recovery
is of the same order of magnitude as the initial amplitude of subsidence.
This indicates that the postseismic deformation of the Nankaido earth-
quake results in all likelihood from viscous adjustments in the lower
crust or the upper mentle of the earth.

In figure 4b we.compare computed displacement time functions at
selected points with observed vertical displacements measured at beaches
on Shikoku Island (Kanamori, 1973). Both displacement sets show the ini¥

tial, coseismic displacement, followed by slow added deformation; and both
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sets show large, similar variation of these shapes over small horizontal
distances.
The decay time T for the observed deformation is of the order of

1

5 years. Taking an average crustal shear modulus U; = 8'101 dyne/cmz,

T = 1.6'108 sec and o = 5, we obtain the viscosity n = 5'1019 poise.
This value is in gratifying agreement, though not identical, with
estimates based on very long viscous rebound from crustal loading in
Fennoscandia and North America. The amplitude of observed transient
deformation indicates roughly a 50 percent relaxation of the shear
modulus of the asthenosphere.

‘The agreement between the postseismic data and the model, based
on the current concepts of plate tectonics, provides not only an attrac-
tive explanation for postseismic deformation of large earthquakes, but
also a new confirmation that the asthenosphere behaves viscously, even
over short periods of time. Careful monitoring of deformation following
large earthquakes may thus be used as a new tool for studying the mantle,

and help to unravel the poorly understood physical processes responsible

for its overall rheology.

Appendix

Elastic Solution, Screw Dislocation

The elastic solution to this problem is well known and can be
found in Chou (1966), Rybicki (1971) or Chinnery and Jovanovich (1972).
Consider the geometry shown in figure 5a. An infinite elastic slab
(region 1) of thickness H and shear modulus u1 is sandwiched between

two elastic half spaces (regions O and 2) with rigidities uo and

; RN e . i e
(R~ oS S R N A S . B N
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Figure 5. Dislocation models in layer-half space composites,

showing dimensions.
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Uy respectively. A screw dislocation with axis parallel to the z
direction and burgers vector Au is inserted at a depth x = -D..
Since the behavior at the surfaéewx = 0 is sought, it is only
necessary to find the displacements in region 1. The effect of the
surfaces at x = 0 and x = -H can be included by replacing these sur-
faces with an infinite distribution of image dislocations. Each has

a displacement field uz(x,y) of the form

4 === pag~t
pA 2m n

_Z._) ’ (A—l)

X-a,
1

where bi is the burgers vector and a; is the position of the dislocation
or image along the x axis; the values bi diminish in size as ]ail
increases, allowing the infinite series to converge.

Summing over the contributions from all dislocations the total

displacement in region 1 is given by

_ Au -1/ ¥ vean—=l| ¥ n 1
u, o7 tan ° (x+D> + K-+tan — + nil(MK) tan (x—ZnH+D
(A-2)
“l__y tap~t |—¥ L -l vy
+ tan (x+2nH+D + K-tan (x—ZnH—D + ¥ tan (x-I-ZnH-D)
and the shear stress Oyz = ul(Buz/ay) is
Au | x+D x-D s a %~ 20H+D
R e L =) LA [y‘+(x—2nH+D)‘
(A-3)
+ x+2nH+D + R x~2nH-D + 1 x+2nH~D
y 2+ (x+2nH+D) y*+(x-2nH-D)* = K y*+(x+2nH-D)*
where
= Ho - M1 = Hz — M1
k= Ho + U1 and M H2 + Wy

If the surface x = 0 is a free surface, i.e. Ug 0 and K = -1, then

the displacement u, at the surface is

T . g
i A BT N e 2 P A T D A
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_ Au -1y - n -1 vy -1 __ vy
uz(O,y) =5 tan (D) + nil( M) [tan ol D tan 5mH-D (A-4)
and the shear stress Gyz is
[e]
Au D n 2nH+D 2nH-D
Oyz(o’y) T | y2+D? + nil(—M) y%+(2nH+D)? = yZ+(2nH-D)* (4-5)

Elastic Solution, Edge Dislocation

An elastic half space (region 1) with shear modulus U; and Poisson's
ratio V1 is in welded contact with a second half space (region 2)
with shear modulus Mz and Poisson's ratio vz, as shown in figure 5b.
The exact &isplacements in region 1 due té a single edge dislocation I,

lying in region 1 parallel to the z direction, are given by (Mura,

1968)
u_ = Au(Afy + Bfz + £3)
(A-6)
u, = du(Ag, + Bgz + g3)
where Au is the magnitude of thé burgers vector,
A= (1 - u2/u)/ (1 + §1(u2/u1))
B = (82 - §1ua/u1)/ (82 + ua/u1)
81 = 3 - 4v;
§2 =3 -'4vz
f£1 = mﬁ;ﬁ [sin ¢[8261 + 2—;‘721 + 2c((51-1)-r1’§- + %%1 - 4exey/r3) ]
. (A-7)

2 2
2X2 _yX2  4xd . 2¢ Acxz]
+ cos ¢[S;1ln ry - —;'%—'F 2c¢((§8, l);%-'l'—r—lz(-‘l- —r—g- —-;g—-)]

- '2'1?(‘5}1'1‘)' [—ezsin b + 1n £, cos ¢]

Hh
)
|

Sitvsenin e e
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2
f3 = —2ﬂ(§—1+1) [sin dL(8:141)0, + _2_:_%11 + cos ¢[(81-1)1n 1y - %]]

1 , 2x%3 X2 4x3 2¢c 4cx%)]
= X2 + - - 2 222
g1 TT08.F0) [51n ¢[811n 2 + 22 2¢((3 61);g- 3 Z il

- 2%o -2y . (Si+l)y 4x3y 4cxzy”
+ cos ¢[8162 + —r-%l + 2c( 2 + 2 3 + 3

-1
R T ) [1:1 r2 sin ¢ + Ozcos Cb]

2
g3 = —2-17(%81+l) [Sin o[(1-)1n 1) - %"?’1 * cos 1(51*1)6, - %%il]}

and ¢ is the dip of the slip plane (branch cut).

A free surface is crudely approximated by placing a second edge
dislocation II parallel to dislocation I and on the slip plane of I.
The burgers vector is negative that of I so that the slip is everywhere
zero except on the planar surface between the two dislocatioms.

The "free surface" is the horizontal plane midway between the two
dislocations parallel to the boundary of regions 1 and 2. The dis-
placements at the free surface due to this second dislocation are
obtained by replacing x1, X2, ¥, 1, r2, and ¢ in the expressions for
fi and 8; (i = 1,2,3) with x{, %3, y', r{, rl, and c¢' where

Xl =c-H

3H - ¢

>
o
il

y - 2D cot ¢

<
{1

(A-8)
e'=2H - ¢

1
(X{Z + ytZ) 2

=
e
(]

rf = (x)? +y'3)*

forming fi and gi (1 =1,2,3). The total x and y displacements at
the free surface are then the sum of those for the two individual

dislocations given by (A-6).
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Viscoelastic Solution

The correspondence principle and Laplace transform are applied
to obtain the time dependent deformation at the free surface when the
lower half space, region 2, is replaced by a viscoelastic half space.

The shear modulus u2 must be replaced by the operator

where s is the transform variable and ay, a;, by, and b, are constants

in the relation
(ag + 2,20, = (bo + b)e!. (A-9)
at’ " 1ij at’ "ij
between the deviatoric shear stress G]!_j and strain €]!.j for a standard
linear viscoelastic solid.
In addition, we choose the initial conditions that for the relaxation

problem the slip Au is a Heaviside step function in time. The Laplace

transform of this condition is

AG(s) = %‘i

Screw Dislocation

For the case of a screw dislocation with constant slip the expressions
Au(s) and 1(s) are substituted into the elastic solutions, equations
(A~4) and (A-5). Hence, the Laplace transforms of the surface displace~

ment and shear stress are

«© — n .
u (s)= -i—[%:—l- tan-l(%)] + Au T 1 [11 ~H(s) [tan—l(faﬂz:ﬁ-) - tan-l(——-z—)] (A-10)

pA T =15 1+u(s) 2nH~-D
- 1 Au D
Gyz(S) = Sl -;T—W]
(A-11)
by hu S 1 [mHE? [ 2m#D  _ 2nH-D
MU Cos [waGs) | | YT (2aEdD)? T Y+ (ZnH-D)”
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Taking the inverse transform L-l of equations (A-10) and (A-11) gives

_ Au y Au > -1
uz(t) == ( ) + — nEl[tan (ZnH+D) - tan ZnH D)]F (&) £>0 (A-12)
2y, A ég 2nH+D 2nH-D
Oyz(8) = '747175"' M1 n‘::l[7+(2nH+D)‘ yT+(2nH-D)Z]Fn(t) € >0 (a-13)
- SN e Ok
where Fn(t) L [s ) .
It is interesting to note that in equations (A-10) and (A-11)
the fundamental time information is contained in M = %%z%&%% This

is true since M is the only factor containing a modulus of the visco-
elastic layer and therefore the only factor containing the transform
variable s, except for the 1l/s in the initial condition. This inherent
separation of time dependence from geometry plus the linearity of

the Laplace transform permit the expressions for displacement and shear
stress to be obtained from a single evaluation of Fn(t?.

Skipping the details, Fn(t) is found to be

n
- (Pcyn _ n n!__c _ 5k dt ( -4 t) _

where

o = - Zag-=bg
2uia1-by

d=- 211_]_3.0+bg
2uia1+b,

- 2u1a,~-b,
P 2u a1+b;

Recall now equation (A-9) describing. the viscoelastic material

ago + alé = bge + b1é.




The relaxation function, i.e. the stress function in response to a

unit step of displacement H(t) for such a material is (Fung, 1965)
o(t) = 20 [1 - (1 - 220y Ty,
ag by a;

From this we see that at time t = 0+ the material can be characterized
by an initial elastic shear modulus u(0) = %b;/a; and at time infinity
by a completely relaxed elastic shear modulus H(®) = %bg/ap. The
characteristic decay time for this purely viscoelastic system is
T = a;/ap.

With this we can write

_ (=) u(0)
= 1 M . 1+ Hi

[N Te
‘.—l
li
Ol
e
1o

8
(N’

The relaxation time TE can be further expressed in terms of the
viscosity of the half space. The differential equation (A-9) describes
the two independent mechanical models shown in figure 6. For model A,
the relaxation time is given by

n

Te T W) -pu(=)

where n is the viscosity. For model B we have the alternate expression

_ w(0)-u(=)
Te © 12 (0)

€

The constant d in the exponential time term .can now be written as

Ao
SR A e ] SRR e B SRS it
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Figure 6. Two independent mechanical models described

by the same form of differential equétion (a-9).
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U (=) + B()
(1 - ) ( )
g=-E u(0) (0) M) model A
n H1
1 (0) U(O)
(A-15)
or u(0) (L 4 B ))
4=-X K1 “(0) U(O) model B
~ u(0) u(o)
Thus, somewhat of an ambiguity exists in interpreting the constant d
in terms of mechanical elements like viscosity, unless we know more
about the viscoelastic material corresponding to equation (A-9).
However, for a moderate range of relaxation, i.e. 2 < “EO; < 0.8,
and 1 < -—(-é—)- < 2 the expression for d in (A-15) can be summarized as
1 n
= % - — A-16
d K1 ( )

where 0 is a numerical constant (1 < & < 10) which depends on thé values

of W(*®)/u(0) and u1/u(0).

Edge Dislocation
For the edge dislocation with constant slip the expressions
Au(s) and U(s) are substituted into the elastic solutions, equation.

(A-6), yielding the Laplace transforms of the surface displacements

u (s) = BE(A(s) (£, +ED)HB(s) (ErHED+(E+ED) |

(A-16)
u () = ERMA(s) (g1+e])+B (o) (g2tgd)+(gs+e}) |
where
A(s) = (1-u(s)/u1)/ (1+81u(s)/11)
B(s) = (82(s)-61H(s)/u1)/(82(s)+U(s) /u1)

§2(s) = 3-4va2(s) = 3-2(3K2-21(s))/ (3K2+1(s))
K2 = the bulk modulus of region 2,

and fi’ fi, 8 and gi (1 =1,2,3) are as given earlier for the elastic

PR SHNSES S S SN z‘&m_.&
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case. Taking the inverse transform gives

AulA(t) (£1+E1)+B(t) (£2+£2)+(£3+E3) ]

ux(t)

uy(t) AufA(t) (g1+81)+B(t) (g2+g3)+(gatg}) ]

As in the screw dislocation problem there is again a separation

of time dependence and geometry. Skipping the details we find

A = ALY w52 - & - e

A-17

where

§ = (1-1(0)/11)/ (1+S 110 /M1)

8 _ (1-u(>)/uy)/(1-u(0) /u1)

Y (LHSqu(=)/u) /(3+6,u(0) /un)

Y = (#61u(®) /un) /[ (1+611(0) /1) T ]

a = (3+u(0)/u1) (1+3K2/1(0))-4(3K2/2u(0)-1)

b= [(3+u(°°)/u1)(1+31<z/u(0))-4(3Kz/2u(0)--1)]/T€

+ [(3+1(0) /11) (1+3K2/1u(®) ) -4 (3K2/ 20 (=) -1) 1/,

¢ = [(3+u(e) /1) (1+3K2/u(2))=4(3K2/21(*)-1) ]/ (1. T4)
d = (3-811(0)/u1) (1+3K2/u(0))~4(3K2/21(0)~1)
e = [(3-51u(°°)/u1)(l+3Kz/2u(0))-4(BKz/u(0)-1)]/T€
+ [(3-611(0) /11) (1+3KR2/u(®)) -4(3K2/2u(=)-1) 1/
£ = [(3-811(®) /1) (1+3Ka/u(=))=4(3K2/21(*) 1) 1/ (T T )

1
s; = [-b+(b2-4ac)2]/2a

sy = [=b-(b2-4ac)?]/2a

nan RN R L
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CHAPTER 3
MELT SQUIRT IN THE ASTHENOSPHERE

In Chapter 2 we have proposed a simple fgult model to explain
postseismic deformation accompanying major earthquakes that break
through a large fraction of the lithosphere. In our model the source
of deformation is viscous relaxation in the asthenosphere. We now
extend the study and some observations to say something about actual
materials that might be found in the upper mantle and that can produce
the observed relaxatiom. |

Figure 1 shows examples of upheaval observed as a function o}
time at four tide stations following the 1946 Nankaido earthquake.

The important point to note for éhis study is that the characteristic
ﬁime of relaxation is 3 to 5 years. The transient deformation given
by our model, though not a pure decaying exponential, was found to be

characterized by a time constant T given by

n is a viscosity of the asthenosphere, and U is the.lithospheric
rigidity. The constant & is a strong function of the initial and
relaxed shear moduli of the viscoelastic material, which in our model
is a standard linear solid. The observations at Nankaido suggest a
relaxed shear modulus of about 0.4 to 0.6 times the initial shear
modulus. This puts o between about 1 and 10 and gives an effective

viscosity of 1019 to 102O poise.
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Figufe 1. Observed upheaval as a function of time at four
tide stations on Shikoku Island, Japan. Dashed lines repre-
sent upheaval at the time of the 1946 Nankaido earthquake

(after Matuzawa, 1964).



We concluded that the observed postseismic deformation at Nankaido

is due to viscous relaxation in the upper mantle. However, the range

of viscosities obtained says little about the actual physical mechanisms .

causing the relaxation.

Partial Melt Mechanisms

The two dimensional model suggests that the spatial extent of
largest deformation, particularly at the surface, is roughly propor-
tional to the depth of faulting. At Nankaido the characteristic wave-
length of surface deformation is about 50 to 100 km. We expect, then,
that the major deformation is confined to within a few wavelengths
of the surface--say 100 km or so. If the lithosphere in this area
has a thickness of 70 km or less, with a shallow low velocity zone
(Kanamori, 1971), then we expect most of the viscous deformation
to take place within the low velocity zomne.

Seismic, heat flow and volcanic evidence indicate that portions
of the upper mantle~-in particular, the low velocity zone--may be
partially molten (e.g. Anderson and Sammis, 1970; Kanamori, 1970);
This suggests, then, that we investigate materials with up to a few
percent melt.

Consider, in general, rock systems consisting of pockets of a
fluid (melt) enclosed in a matrix of solid rock. To a sufficient
approximation the melt can be characterized by a Newtonian viscosity,
given by the ratio of shear stress to shear strain rate. In additiom,
at mantle temperatures the solid material itself might exhibit creep
or relaxation in shear. Whether or not the solid has a linear stress-

strain rate law depends upon the dominant solid creep mechanism (e.g.

43
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Weertman, 1970; Gordon, 1965). In either case, an effective viscosity
can be assignéd to the solid, which may or may not be a function of
the shear stress.

When a strain field is very quickly applied, the initial response
of the system, as a whole, is essentially elastic, roughly describable
by a set of instantaneous (i.e. unrelaxed-or‘high frequency) elastic
moduli. However, the '"viscous'" elements in both the 1liquid and solid
phases immediately begin to relax, with time constants proportional
to the effective viscosities. For shear stresses on the order of tens
of bars or less (as expected at Nankaido) Gordon (1965) and Weertman
(1970) predict solid effective viscosities typically much greater than
1016 poise. However, the viscosities given by Clark (1966) for melts
are generally much less than 1012 poise. We expect, then, that when
.both solid and melt are present the melt will relax much more quickly
than the solid, and that on the time scale of fluid relaxation, the
solid can be treated as essentially elastic.

By what specific mechanisms, then, can the presence of melt cause
relaxation on the time scale observed following the Nankaido earthquake?
There are two obvious possibilities. The first is a large-scale viscous
flow or diffusion of melt through the porous, solid matrix. The second,

is simple shear relaxation within individual pockets of melt.

Flow in Porous Media

Consider first the case of regional flow of the melt phase over
large distances. The melt, occurring on grain faces and edges, might
form a continuous film throughout the consequently porous mantle rock.

As shown in figure 2, the abrupt thrusting of the earthquake causes
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Figure 2. Regional flow. Abrupt thrusting of an earthquake
causes regions of compression C and dilation D. As a result

viscous fluid in the porous half space diffuses from C toward D.
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a region of relative compression (C) and one of relative dilation (D).
The solid-melt system has an initial compressibility that depends on
the separate compressibilities of the solid and melt phases and on
the fraction of melt present. To an extent the pore pressure of the
melt resists compression of the system. But, as the melt flows or
diffuseé away from the region of compression, the pores collapse,
the effective compressibility increases, and the system appears to
relax. With this model the decay time, neglecting chemical and further
melting effects, is simply the liquid diffusion time (e.g. Nur and
Booker, 1972) given by

T = L®nB/4k’ @
where L is a characteristic length, n is the melt viscosity, 8 is
the effective compressibility, and k' is the intrinsic permeability.
In laboratory measurements rocks with as much as 10 percent porosity
seldom have permeabilities greater than 100 millidarcys (md). There-
fore, for the rocks cdnsidered here, with only a few percent melt,
100 md should be a high estimate for permeability. Using melt vig-
cosities of 103 to lO12 poise (Clark, 1966) and a length scale
appropriate for Nankaido of 50 km, the time constant comes out to be
103 to 1015 years—-3 to 15 orders of magnitude larger than the observed .
time. Hence, regional flow of melt such as this is much too slow to

account for the observed postseismic deformation.

Shear Relaxation

Consider next the melt on grain faces to be in the form of discrete,
unconnected inclusions within the solid matrix, as suggested, for

example, by Walsh and shown schematically in figure 3. In this case



47

*3oead 9yl jo aueld ay3z ol TolTeaed ssails iaeays Jo sjusuodwod SIXB[IA IToW

jo saapood. ; padeys Auuad,, ‘1eT] UTYITM MOTJ IBDOYS SNODSTA °SHOBID SNOISTA ¢ 9i1n3Tg

-~

A - - A I e

GORPIRT: MR A

RS



48

the relaxation mechanism is simple shearing within the weak viscous
pockets—-not really a flow. Walsh (1969) has solved for the mechanical
response to sinusoidal oscillations of such a system consisting of flat
.eliipsoidal or "penny-shaped" viscous pockets within an otherwise
elastic solid. His results-yield, for the composite, an effective

bulk modulué approximately equal.to the bulk modulus of the solid.
HoweVg:, the effective rigidity is dramatically reduced by the viscous
indlusions and is strongly dependent on viscosity and frequency.

Nur (1971) has shown that low pérosity fluid saturated rocks in
the laboratory do behave as predicted by the Walsh theory for viscosities
ranging over 13 orders of magnitude. Comparing the theoretical results
with aétual seismic attenuation and velocity data, Solomon (1972)
infers a value of lO8 poise and Nur (1971), a range of 106 to lO12
poise for the viscosity of melt in the low velocity zone over North
America.

In an analogﬁus wa} to Walsh we solved for the quasi-static
relaxation 6f the same system. The effective shear modulus of an
elastic matrix with elastic penny-shaped inclusions is given by Walsh
(1969). The shear stress 0 and shear strain € of the elastic inclusion
are related by

o = 2ue (3
where U is the elastic shear modulus. If, on the other ﬁand, the

inclusions are viscous then the stress-strain law is

g=2ng_i (4)

where n is the viscosity. Taking the Laplace transform of (4) gives

o = 2(ns)e (5)
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where s is the Laplace transform variable. Comparing (4) and (5)

we see that the transformed viscous problem is- identical to the elastic
problem if the shear.modulus is replaced by the operator (Ns). Hence,
we take Walsh's expression for the effective shear modulus of the
elastic composite and everywhere replace the shear modulus of the
inclusions by ns. This gives the transformed Laplace operator E(s)
corresponding to the effective modulus of the viscous-elastic composite.

Assuming that the relaxation time T will satisfy the condition
T > — (6)

where n is the melt viscosity and u: is the matrix rigidity, the
effective transformed modulus ﬂ(s) can be written as

5(ns+ap1) 7
ns

5 — (2c¢+5a)
H1

H(s) =

where ¢ is the melt concentration. The constant a is given by

- 3mo. 3ki+2u1
I W T (8)

where ki1 and M) are the bulk and shear moduli respectively of the
matrix and o is the ratio of minor axis to major axis of the ellipsoidal

inclusion. A step function in strain, then, results in a relaxation

time T of
= __ 3
T = U1 Zc+5a 9

If we consider the concentration range ].0-l <c¢c < 10—6, aspect
ratio 10-l <o < 10-6, and shear modulus u; = 106 bar (which include
the values used by Nur (1971) and Solomon (1972) to explain seismic
data) and use the decay time for Nankaido, this gives melt with

viscosities of 1014 to lO19 poise. This is about 6 to 11 orders of
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greater than the viscosities found in Solomon's analysis and is much
higher than we expect for magma (Clark, 1966).

This indicates that simple shear relaxation in flat pockets,
while consistent with losses on a séismic time scale, is much too

rapid to account for the longer postseismic relaxation.

Melt Squirt -

The two mechanisms just considered give wide bounds on the relaxa-
tion times possible from partially melted rock, but fail to account
for postseismic 'deformation lasting only a few years. Long distance
flow can decay over periods approaching the age of the earth, while
the Walsh-ﬁype flat viscous cracks relax in shear on a seismic time
scale. Clearly the 3 to 5 year recovery at Nankaidoc lies between
these two cases. We need to find a reasonable intermediate model--
one that can account for a seismic attenuation and low vélocity zone,
and that can subsequently relax on a time scale of several years.

Such a model is shown schematically in figure 4. Two or more flat
inclusions of melt, oriented in different directions, are connected.
This could correspond to melt on two adjacent faces of a single grain,
giving a crack length equal to a grain diameter or less—or the melt
might be a continuous film over many grains.

Two widely separately time constants are possible. Components
of shear stress oriented parallel to the flat cracks relax quickly,
on a seismic time scale, by simple shearing of the melt. In this
sense the model is identical to the flat Viécous cracks described by
Walsh. However, cracks oriented parallel to the principal stresses

as shown in figure 5 behave quite differently. Melt squirts out of
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Figure 4. Melt squirt., When two or more cracks at different

orientations are connected, applied stress can cause melt to

flow from one crack to another.
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the horizontal crack, which lies normal to the greatest compression,
and into the vertical crack, which is normal to the least compression.
In this case actual flow is required between cracks with- a relaxation
time much longer than for the simple shear relaxation. The length
of the flow path is, however, very short compared to the regional flow,
j"so that this process is much faster.

Recognizing that this is an extreme case of fluid diffusion in
a porous solid, the flow time constant can again be estimated from (2):

- L’n8
Ay

T
Since melt is assumed to form on grain faces, an estimate of permeability
can be obtained from flow between parallel plates. The permeability
of a unit area channel between plates with separation h is proportional
to h?. An isotropic rock with porosity c has an area fraction of pores
‘on any plane also equal to ¢, with an average of oﬁe-third of the pore

"channels" aligned in any given direction. This gives a rock per-

meability of
‘h? (10)

Since the actual flow channels are tortuous and irregular, and
not all pores are connected, this is probably an upper limit. Finally,

since a = h/L, the relaxation time is

T = &92% (11)

Because this model also responds as the Walsh viscous cracks, the
same parameters that successfully explain seismic data should also
account for the postseismic time scale. Nur (1971) suggests values of
-5

n = 107 poise, o = 10 and ¢ = 10-4 for a good fit to seismic data
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for the low velocity zone. These give a postseismic relaxation
time of T = 109 sec. Solomon (1972) proposes two layers to fit two
observed seismic attenuation peaks with ¢ = 10-2, n = 1Q$ poise

2, 10—5. In the relaxation model these give characteristic

and o = 10
times of 102 sec and 108 sec. The lO2 sec relaxation process would

be part of the long period seismic signal indistingﬁishable from the
seismic displacements.

The computed decay times of 108 to lO9 sec agree remarkably well
with the lO8 relaxation time observed at Nankaido. Although the
estimate of permeability (10) is high, the Nankaido area appears to
have a larger concentration of melt than the average low velocity zone
represented by the seismic data from which the wvalues for o and c were
obtained. Velocity and attenuation studies (Aki, 1968; Kanamori, 1970)
indicate as much as 2 percent soft or melted material and an extremely
low Q (80) beneath parts of Japan, whereas Solomon (1972) and Nur
(1971) found only 10-2 to 1 percenﬁ melt. Therefore we conclude that
this model provides a reasonable mechanism to account for the transient

deformation at Nankaido as well as seismic attenuation in the low

velocity zone.
Conclusion

The interpretation of the seismic low wvelocity zone as a region
of partially melten rock is now widely accepted. The existence of
partially molten rock explains the occurrence of basaltic volcanism,
serves as a mechanically soft zone for plate tectonics, and is also
generally consistent with oBserved low Q.and large negative gradients

of velocity with depth. It is therefore logical that we consider the
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same region as a zone of relaxation responsible for transient defor-
mation following large earthquakes on plate boundaries.

Table 1 summarizes the results of.three partial melt models that
were examined to explain the 3 to 5 year relaxation time of deformatian
following the 1946 Nankaido earthquake. Simple shear relaxation in
flat viscous cracks takes place on the order of seconds and is much
too rapid; regional flow over tens of kilometers takes thousands to
billions of years and is much too slow. But the squirt of melt between
pockets on the.order of a grain size combines simple viscous shearing
with very short distance diffusion for periods on the order-of years.
It is extremely fortunate that the relaxation time constants for the
three models are so different, allowing a cléar distinction between
them.

We conclude that if a molten phase is present then a reasonable
mechanism for transient deformation in the upper mantle is small scale
flow of partial melt as illustrated by the melt sduirt model. The
presence of the viscous fluid broadens the relaxation spectrum so that
two widely separated types of time constants are possible. Simple
shear relaxation parallel to cracks happens very quickly, on a seismic
time scale. This is exactly the behavior described by Walsh's theory
for flat viscous cracks. On thé other hand, melt squirt, or flow
from cracks of one -orientation to another, is much slower. The same
values of viscosity, aspect ratio and concentration needed to explain
seismic attenuation and velocity data with the Walsh theory are also

compatible with the Nankaido data using the melt squirt model.
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CHAPTER 4

THE MECHANICS OF STRAIN ACCUMULATION AND RELEASE
ON A STRIKE-SLIP FAULT

Mechanical models for various aspects of strain accumulation and
release on the San Andreas fault have been presented by a number of
authors (e.g. Scholz and Fitch, 1969; Savage and Burford, 1970;
Turcotte and Spence, 1974; Rundle and Jackson, 1976). However, despite
their common simplicity, the models predict fundamentally different
rates and scales of strain accumulation, because of ad hoc model
assumptions made in lieu of reliable data. .

In order to resolve some of these differences we examine the basic
mechanics of an earthquake cycle on a strike-slip system. The goal
is not to develop a particﬁlar model of plate interaction but to
see how much we can learn with the fewest model assumptions. In the
first section to follow we derive an expression for the mean stress
on a two-dimensional fault in terms of the total slip on the fault and
the boundary conditions far away. The méin features of strain change
during an earthquake cycle are discussed for both stress and displace-
ment boundary conditions. 1In the next sections the results are extended
to three dimensions and are used to evaluate some published models of
strain accumulation along the San Andreas fault. Finally some simple
relations between slip rate and strain rate are discussed with respect

to observed creep on the San Andreas.
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To begin, we approximate the lithosphere in the region of the fault
as a linear elastic slab as shown in figure 1. Elastic behavior
over time scales up to at least several major earthquake recurrence
times (102 to 104 years) is consistent with analyses of glacial rebound
and lithospheric flexure (Walcott, 1973) as well as our intuitive
concept of plate tectonics. However, localized deviations from linear
elasticity may occur in the shallow crust due to dilatancy or pore
fluid flow.

The upper plate surface is stress—-free. On the lower surface
we assume rate-dependent viscous shear tractions that are negligibly
small during much of the eartbquake cycle, but which may be substantial
during episodes of rapid strain release.

There are many sources of stress in the lithosphere (e.g. Turcotte
and Oxburgh, 1973). Driving mechanisms include a gravitational push
at ocean ridges and a pull at subduction zones. In addition astheno-
spheric tractions integrated over the entire plate area might contribute
a net drive or drag on the plate even though we have assumed small
tractions locally. Other sources accounting for stress gradients within
the lithosphere, though not necessarily providing a net drive or drag
include membrane stress, thermal stress and overburden stresses. For
the system in figure 1 we assume that the net effect of thg distant
driving force is to apply a nearly uniform shear stress Uyz = Jg.
At the fault plane, y = 0, the shear stress Oyz can vary significantly
with x and z resulting from variations in fault displacement and
frictional resistance stresses. However, for a system in equilibrium
the mean of Gzy at y = 0 must equal O¢ during periods when the viscous

shear tractions from below are negligible.
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Figure 1. Simple mechanical model of the earth's crust and
upper mantle suggested by plate tectonics and isostatic rebound:
A relatively elastic lithosphere over a weaker ductile astheno-

sphere.
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In two dimensions, assuming no variation with z, the equilibrium

of stresses can be written simply as

zy

i
o St

along any vertical section of the plate. At distances from the fault
greater than L, the variations.in_czi about the mean die out by Saint-
Venant's principle so that Ozy(x) ~ Op. Shorter wavelength variations

of Ozy on the fault will die out even faster.

Boundary Conditions in the Two-Dimensional Problem

To investigate the boundary conditions in the two dimensional
system we can use the Betti-Rayleigh reciprocity theorem to find a
relation between the applied stress 0o at |y| > L, the displacement
U(x,y) at |y| > L and the fault slip Au(x) = U(x,0+) - U(x,0" ). The
theorem states that for a body acted upon separately by two sets of
tractions, the work done by the first set of tractions acting throﬁgh
the displacements produced by the second set of tractions is equal
to the work done by the second set of tractions acting through the
displacements due to the first set of tractions. To apply the theorem
consider the two sets of tractions shown in figure 2, The system on
the left is loaded at the sides by uniform stresses 0¢ and on the fault
faces by variable resistance stresses cf(x). The resulting displace-
ménts are the relative slip Au(x) on the fault and a fairly uniform
displacement +Up at the sides. The system on the right has identical
stresses Jo¢ applied to.both the sides and the fault faces, resulting
in U(x) = 0 on the fault and fU§ at sides. Applying the theorem we

can write
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0 _dx = 0o (1)
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L .
200UoLD - 09D/ Au(x)dx = 20,UJLD (2)
By noting that 2UJ = WOo/U where u is the plate shear modulus we can

rearrange (2):

L

WE£-= 2Uo -1 J Au(x)dx (3)
M L 0
Defining AUp = 2Up and Au =7 [ Audx, (3) becomes
0
oo = & (bUs - Au) (4)

Equation (4) is an extremely simple relation between the relative
plate displacement at y = *W, the average fault slip Au and the mean
or applied stress Og. Nothing has been assumed about fault material
properties or the details of seismic or aseismic creep. Differentiating

with respect to time we obtain:

&o = -% (AUs - Aw) , (5)

The simple interprétation of (5) is that if the gross plate speed Aﬁo
exceeds the fault slip rate Au because of frictional resistance or
locked portions of the fault, then the mean stress in the plate grows.
The mean stress is relieved when the fault slip rate A& exceeds AU .
To find the effect of different boundary conditions we can apply
equations (4) and (5) to a hypothetical major earthquake cycle.
Figure 3 shows schematically strain accumulation and release with a
constant stress boundary condition. We pick as a reference state a
point in time after a major earthquake and any resulting postseismic
relaxation, as represented in figure 3a. We assume nothing about the

distribution of stress or slip on the fault at this time other than

the mean stress must equal Og because of the constant stress boundary
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Figure 3. A hypothetical earthquake cycle with constant stress
boundéry conditions. Fault slip is shown schematically on the

right. Corresponding surface displacement is on the left.
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condition. If aseismic fault slip takes place somewhere below the
surface (presumably below the brittle seismic layer in California),
surface strain accumulates as shown in 3b. The width of the zone of
strain accumulation along the fault is approximately the depth of the
slip zone. The change in slope of the reference line at the fault
trace is exactly twice the change in shear strain Eyz at the surface.
Although the mean stress remains fixed, the local stress is generally
relieved in the slipped regions and concentrated elsewhere on the fault.

Hence the stress at the fault trace is increased by ¢ g = Zusyz. Below

y
the surface little can be said about the details of the stress concen-
tration unless the shape of the slip is known. However, since stress
tends to be largest at the tips of slip zones, the surface stress is
probably not the maximum stress.

Qutside the zone of strain accumulation the stress deviations
die out, and the reference line flattens reflecting the constant stress
Og. The net offset of the reference line represents rigid block dis-
placement of the two plates outside the zone of strain accumulation.
From equation (4) we see that if 09 stays constant, any increment of
plate displacement AUy must be exactly equal to the average fault slip
Au. Hence the reference line offset equals the net fault slip that
has occurred since the reference state.

As the buried slip continues to grow the net plate offset and
the near-surface stress on the fault will also grow, as in 3c. The
width of the zone of strain accumulation may increase or decrease
depending on the depth of slip.

If a major earthquake occurs, like the 1906 San Francisco event,

a substantial amount of near-surface fault displacement takes place




as shown in 3d. If the only mode of shallow fault slip is through
major earthquakes as witﬁ most of the 1906 break and the 1857 Fort
Tejon break (Kerry Sieh, pers. commun.) then the seismic. displacement
must equal the net plate displacement for the earthquake cycie. Any
net slip deficiency over the cycle must be taken up by other faults
in the plate or result in permanent deformation. Along:the San Andreas
fault in California we observe that coseismic slip, whether from large
or small earthquakes, is confined to the upper 15 to 20 km of the crust.
Therefore the abrupt surface strain change should be confined to within
10 to 20 km of the fault. This is a general result of the elastic
theory of dislocations (e.g. Kasahara, 1958; Chinnery, 1961; Walsh,
1969) for the case of constant mean stress Og.

In general the sum of the seismic slip plus preseismic slip will
not be constant with depth, but should reflect a slip-deficient
region near the base of the seismic slip zone. This results because
the preseismic slip must taper upward and the seismic slip must taper
downward in order to avoid infinite stresses. This slip deficiency
has to be made up as a postseismic adjustment in order to return the
slip and stress to the reference state. A second source of postseismic
adjustment involves the asthenosphere. If we assume a somewhat viscous
or viscoelastic asthenosphere, then the abrupt seismic motion resembles
slip in a half space more than slip in a plate. As the viscous
tractions relax the system becomes more platelike and surface strain
changes may occur as predicted in Chapter 2. In addition a post-
seismic increment of net plate offset should,appéar equal to the seismic

plus postseismic contributions to Au as predicted by equation (4).
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The offset is identically zero for a given slip in a half space but
is finite in a plate.

As a second example we consider a hypothetical ear;hquake cycle
with constant plate velocity, as shown in figﬁre 4, Once again a
reference state (4a) is chosen after a major earthquake and any resulting
postseismic adjustment. As the plates proceed to move past each other
a net offset appears in the reference line. If no slip occurs anywhere
with depth a uniform strain field develops with respect to the reference
(fig. 4b), with the change in uniform stress given by equation (4),

Agy = %-AUO. If slip does appear a zone of anomalously high strain
develops along the fault as in the previous example. Away from the fault
the uniform shear persists corresponding to a mean stress A0o = %-(AUO—AG).
As long as any portion of the fault remains locked (AUo-Au) will always

be positive resulting in a stress increase. At the fault trace the

slope of the reference line is a direct measure of the near-surface

stress and strain increase, as in the previous example. However, this
time the near-surface stress is the sum of the stress concentration

due to relaxation deeper on the fault plus the increase in mean

stress.

If a major earthquake occurs, near-surface slip will change the
strain field near the fault and a slip deficient zone is again expected
at depth (fig. 4d). Postseismic slip adjustment is required to return
to the reference state of stress and strain (fig. 4e). In addition,
the asthenospheric relaxation must also be considered. With the dis-
placement boundary conditions, AUgs will not change significantly
during the few minutes of seismic rupture. If the plate-asthenosphere

system responds like a half space during seismic slip, then the coseismic

.
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boundary conditions.

earthquake cycle with displacement
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contribution to Au is zero because of the infinite~plate (half space)
thickness. Hence, the reference line retains a nonzero slope.

However, during postseismic relaxation the system becomes more platelike,
and the reference line must flatten to the reference state, showing

only a rigid block displacement.

The Effect of Three Dimensions

In order to bring the previous two-dimensional discussions into
perspective we consider the role of boundary conditions in a three-
dimensional plate geometry. Figure 5 shows a simplified version of
the San Andreas fault in California. The shaded portions of the fault
rep?esent regions that slip only during major earthquakes (e.g. 1906
break to the north, 1857 to the south); unshaded portions presumably
slide stably or with minor seismicity between earthquakes in order to
accommodate net relative plate motion. For simplicity bends in the
fault and slip on nearby faults are ignored, and the locked and active
zones are shown to be of comparable length q.

During much of the earthquake cycle the slip and stress on the
fault face are highly variabie with position. Vertical variations
in slip result in stress variations about the local mean, as discussed
earlier, which smooth out away from the fault over distances comparable
to the vertical wavelength. Likewise, variations in slip horizontally
along the fault define a second wavelength of variation comparable
to the zone length q. Hence during most of the earthquake cycle when
asthenospheric stresses are small we should expect a fairly broad zone
of width q along the fault within which the accumulated stress and

strain vary significantly as we move from locked to slipping regions.
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Figure 5. Simplified elastic plate model of the lithosphere in
California. The San Andreas fault is modeled by a straight, ver-
tical plate boundary. The regions represent currently locked
portions of the fault approximately coinciding with the 1857 and

1906 earthquake ruptures.




This conclusion, a result of Saint-Venant's principle, has a
bearing on the previous two-dimensional analyses. Because the length
of each locked region and the length of the active region between are
at least several times the plate thickness and more than 10 times
the earthquake rupture depth, a two-diﬁensional description of each
section alone has some validity within.say, q/2 of the fault. However
we are not free to choose arbitrarily stress vs. displacement boundary
conditions. If, as Savage (1975) suggests, the mean stress 0y is
constant in time, then figure 3 applies, and strain changes should be
confined to less than a plate thickness from the fault. However
equation (5) demands that for G =0 the plate speed A&o must equal A&.
Since A& is highly variable with time on the locked zone the plate
speed must also vary with time away from the fault. 1In contrast,
the adjacent unlocked portion of the fault would very likely have
constant slip rate AT under constant stress resulting in a constant
plate speed. This discrepancy in plate speeds cannot be accommodated
without strain accumulation at large distances from the fault. We
conclude that the constant stress condition is not likely to hold in
three dimensions if adjacent regions of.the fault have significantly
different slip behavior.

A more reasonable starting place is to note that at a distance
nvq away from the fault strain perturbations in space and time due to
slip differences on the fault should be essentially zero. The motion
at q should be steady, consistent with our intuitive notion of plate
tectoﬁics. Closer to the fault at q/2 the displacement field may be
less steady, but a two-dimensional description of each section becomes

fairly good. If the plate speed is constant at q/2, then the analysis
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in figure 4 requires uniform shear strain accumulation and release out
to distances tq/2 from locked portions of the fault. If the plate
speed is not constant at *q/2 then the-variation in speed is itself
an indication of strain change at *q/2.

It is clear that neither a constant stress nor constgnt velocity
boundary condition is rigorously wvalid for a two-dimensional approxima-
tion of a 3~D fault geometry. A constant stress near the fault implies
an infinitely soft boundary; a constant velocity implies infinite
rigidity. The important point is that only a constant stress condition
in two dimensions can completely eliminate changes in the strain field
at distances from the fault greater than the plate thickness. It
appears that two-dimensional analyses can be quite useful to predict
or interpret strain accumulation, but a variable stress or nearly
constant velocity boundary condition must be used. Accumulation and
release of sﬁrain is expected out to distances comparable with the

fault length (i.e. out to the limits of the 2-D analysis).

Discussion of Some Published Models

Until recently Reid's (1910) suggesfion that accumulatedlstrain
is released during seismic fault slip has been taken quite literally.
For example, Scholz and Fitch (1969), noting that coseismic strain
along the San Andreas dies away at distances from the fault comparable
to the rupture depth, argued that all accumulated strain must also
die out just as rapidly. They correctly stated that if most of the '
hundreds of kilometers of relative plate motion that has occurred
along the San Andreas are to be accommodated along a single fault,

then the strain accumulated must somehow be released. Since they saw
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no mechanism to release strain beyond a few tens of kilometers from
the fault, they argued that no strain can accumulate there. What they
neglected to consider was the influence of slip deeper on the plate
boundary during the earthquake cycle.

Observations of pre- and postseismic crustal deformation, as
reviewed in Chapter 1, were perhaps the first real clue that the
rebound process was more involved. To explain these observations
Scholz (1972) attributed all transient crustal deformation
to aseismic fault slip. However, a rather complex pattern of slip
was required, including substantial backslip, to fit the observations
at Nankaido (see Chap. 1). Nur and Mavko (1974) suggésted the simple
alternative e#planation that the Nankaido postseismic transient was
due to viscous relaxation in the asthenosphere (see Chap. 2).

It seems likely that both viscous relaxation and aseismic slip
should occur after major earthquakes. As mentioned earlier, shallow
strike-slip earthquakes require substantial slip adjustﬁent near the
bottom of the rupture to accommodate the net plate offset. Deeper
ruptures that break through the entire litﬁosphere might in principle
require less slip adjustment. A similar statement would apply to major
thrust-type earthquakes. In contrast the viscous component of adjust-
ment occurs as the earthquake stregss field relaxes in the asthenosphere,
and the surface strain evolves from a half space to plate respohse to
faulting. For shallow earthquakes a small viscous adjustment is expected,
since the stresses fall off quickly with distance below the rupture.
Deep earthquakes interact much more with the asthenosphere and produce

a larger relaxation.
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Turcotte and Spence .(1974) propose the two-dimensional strike~-slip
fault model shown in figure 6. The model is essentially that described
in figure 3 of this chapter with the added assumptions that the lower
plate surface is stress-free throughout the earthquake cycle, and that
the portions of the fault that slip aseismically are also stress—free.
The resulting earthquake cycle can be described in terms of equation (4).
Figure 6a shows the reference state of zero stress and strain at a point
in time following a major earthquake and any subsequent relaxation.

As the plates move past each other slip occurs at depth as shown in 6b.
The mean stress increases and is concentrated entirely in the locked
portion of the fault. The exact form of the displacement field is

given by (eq. (4), Turcotte and Spence, 1974):

., M2 . Tz . Ta
31n(§i? #\/g;nz(if--51n2(if

U=ARe{ln Sin(%% (6)
where z = x + iy, L is the plate thickness, and a is the depth of the
locked zone. Far from the fault the displacement (6) reduces to:

U= Al - 1o sin(3D)] (7)
Equation (7) shows as we derived earlier that away‘from the fault,
perturbations due to variations in slip die out, and the strain field
is uniform shear. By defining U = Uy at y = W, equation (7) can be
rewritten as
TE = (AU + 24 1n sin(ZD) (8)

Comparing (8) with (4) we see that the mean stress is Og =-%%% or

A= Z%%L » and the average slip is

—4LUQ

Au -

-2A 1n sincg%) = In sin(%%
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Figure 6. Accumulation and release of strain in a plate with a
fault locked to a finite depth. (a) No displacements, (b) dis-
placements with fault jocked near surface, and (c) displacements

after failure of the fault (after Turcotte and Spence, 1974).
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When the failure stress is reached on the locked fault, an earthquake
will occur, and subsequent postseismic adjustment returns the fault
to its original state of zero stress and strain, as shown in figure 6c.
Turcotte and Spence (1974) extend these results qualitatively
to three dimensions. Because the mean stress on the fault varies during
the seismic cycle a nearly uniform strain field proportional to the
mean stress accumulates and is released out to distances from the
fault comparable with the fault length (i.e. out to distances where
a two-dimensional description is still valid).
Savage (1975) criticizes the two—~dimensional model of Turcotte
and Spence based on comparisons of preseismic, coseismic, and post-
seismic slip. Figure 7a shows fault slip and stress as a function
of depth on the fault. U; is the displacement (half the relative fault
slip) and o1 is the stress on the fault at the end of the strain
accumulation phase. (The stress singﬁlarity is due to the assumption
of a perfectly locked, stress—free crack. A more realistic model can
be found, but should not change the basic conclusions of the analysis.)
To estimate the seismic slip, Savage solves for the displacement that
completely cancels the preseismic stress concentration on the locked
fault. This displacement (half the relative fault slip) is plotted
as Uz in figure 7a. As we will see below, the Turcotte~Spence model
now requires an enormous amount of postseismic slip both at the surface
and at depth to achieve the stress-free state shown in figure 6c. |
As a modification Savage suggests that a constant stress boundary
condition is more appropriate. In this case, a nonzero strength is
required either on the unlocked fault or in the asthenosphere. The

near-surface stress is seismically released and transferred downward,
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keeping the total load on the vertical section constant. By not
requiring complete stress relaxation, postseismic slip is necessary

only to remove slip deficiencies. Savage suggests the final slip

state shown as Us in figure 7a. As shown earlier, an obvious consequence
of the constant stress boundary condition is that in two dimensions
strain accumulation and release is confined to within a few tens of
kilometers of the fault.

In light of our previous analysis neither version of the model
seems entirely appropriate for the San Andreas fault. Besides requiring
enormous afterslip, the Turcotte and Spence model ignores viscous
interaction with the asthenosphere, even during thg seismic and post-
seismic phases. This might not change significantly the expected
postseismic surface deformation in California because of the shallow
depth of seismicity. However Lachenbruch and Sass (1973) point out
that the lack of a localized heat flow anomaly along the San Andreas
strongly suggests a broad zone of viscous shearing below the seismo~
genic zone. This could include viscous shearing due to the astheno-
sphere as well as permanent inelastic deformation of the lithosphere
itself. Neither the Turcotte and Spence model nor ours allows for the
latter possibility. Brune (1974) suggests that the very broad observed
anomaly might just as well be due to heat generated over the entire
depth of the fault in the lithosphere. This would imply a time averaged
stress of less than 200 bars for the upper 20 km of the fault, and a
larger value of about 500 bars below. 1In either case a substantial
strength is required on either the deep fault or in the asthenosphere,

at least during portions of the seismic cycle.
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A second problem concerns the relation between plate motion and
preseismic, coseismic and postseismic slip. Savage's suggestion of
a nonzero final stress reduces the required amount of postseismic slip.
However as shown in figure 7a, substantial postseismic surface slip
is still required to catch up with the bottom of the plate. Such
surface slip has not been observed following either the 1857 or 1906
breaks.

If, in addition to the postseismic stress recommended by Savage,
we require a nonzero preseismic stress deep on the fault, a larger
relative coseismic slip is possible. Consider the case of a constant
creep strengh S below the seismic zone. The.preseismic displacement

field is obtained by superimposing a uniform shear field given by
u

onto the stress-free solution given by equation (6). Away from the

fault the totalvdisplacement reduces to
. AT Sy Ta
U= (2L + u)y A ln sin(2L €D

Comparing equation (9) with equation (4) we obtain the mean stress

Jg =<%§¥ +Sor A= %%-(00—8). Hence, for the same amount of preseismic

slip the mean stress is increase by S. The increased coseismic dis-
placement (half the relative fault slip) that will cancel the stress

" on the locked fault is obtained by adding the displacement

~5a /(%
U= /1-@Q (10)

which corresponds to a uniform stress drop S, to the displacement
calculated by Savage. The coseismic surface displacement (for the case

a/L = 0.15) is given by:




79

U=1.17a+ 32 (11)

A simple condition we can impose to find S is that during an
earthquake cycle the total slip everywﬁere on the fault‘ﬁust equal
the net plate offset. According to equation (4) this is equivalent
to requiring that the net stress change over omne fullvcycle be precisely
zero. If we artificially start the system at a state of zero stress
and strain, then equation (9) gives the plate displacement measured
at y for the preseismic slip shown in figure 7a. If the seismic and
postseismic slip smooth the displacement everywhere on the fault to
some value §, then the postseismic mean stress is proportional to the

difference between the plate offset and fault slip:

= B AT S L in(may
Co = v [(ZL + u)y A ln Sln(ZL) §] (12)

For the case of zero creep strength and postseismic stress, given by

Turcotte and Spence, the total fault displacement (from equation 12)

must be
§ = A(—T-ZT% - 1n sin %‘7 (13)

which gives § = 6.17A for a/L = 0.15 and y/L = 3. This is a factor of
5 greater than the maximum coseismic slip and a factor of 3 greater
than the preseismic slip shown in figure 7a. Savage's suggestion that
the slip only catch‘up with the bottom of the plate or § = 2.13A

for a/L = 0.15, y/L = 3, gives a mean stress after postseismic adjust-

ment of
oo = -;‘; 4.04A + S ‘ (14)

This value is somewhat larger than the preseismic creep strength S,

which means that the strength must vary in a repeatable fashion during
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the earthquake cycle. The net plate offset that must now be added
during each cycle to repeat the process is § = 2.13A. An alternative
is to assume that following postseismic adjustment the mean stress on
the fault equals the preseismic creep strength--that is, the strength
stays constant. Substituting this condition into equation (12) gives
the same total fault slip § = 6.17A as the stress-free case. This
still requires a very large postseismic slip at depth. However, with

a nonzero creep strength, the coseismic slip is larger and the required
postseismic surface slip is reduced.

The magnifude of the stresses and slip can be estimated for an
earthquake like the 1906 San Francisco event, assuming 5 m of surface
offset and a rupture length of 15 km. To solve for the value of S
that gives no postseismic surface slip we simply equate the coseismic
slip given by equation (11l) with the required value of §. For the two

alternative values of slip we obtain:

5 —“f § = 6.17A
S = for (15)
HA § = 2.13A
a
Setting 20 = 5 m we obtain
0.4 8§ = 6.17A
A= for (16)
1.2 § = 2.13A
Combining (15) and (16) and taking u = 5‘105 bars, S becomes
68 bars, 6§ = 6.17A
s = :
37 bars, 6§ = 2.13A

The mean stress drop is equal to the average preseismic stress on the

locked fault:
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89 bars, § 6.17A

98 bars, § = 2.13A

Figure 7 shows the stress and slip for_these two cases ﬁpr comparison
with the stress-free fault. The case with 5.= 2.13A (fig. 7b) requires
the smallest postseismic slip at depth, but the creep strength must
vary over the course of the cycle. The case with § = 6.17A requires

a very large postseismic slip at depth, but the creep strength is
constant. At present we cannot resolve the appropriate model.

The differences between the Turcotte and Spence and the Savage
versions of the model can be summarized in terms of boundary conditioms.
Savage prefers a constant stress condition, which in two dimensions
confines strain accumulation close to the fault. We have already seen
that this type of boundary condition is not compatible with a three-
dimensional model. On the other hand, Turcotte and Spence favor a
displacement boundary con&ition which gives a variable mean stress.

We have proposed a modification which changes the strength distribution
on the fault, but retains the displacement boundéry condition. Estimates
of the mean stress variation can be obtained from equation (4) for the
1906 San Francisco earthquake cycle. Using equations (8) and (16)

the preseismic value of AU is given by

Ta 1.2 m, 6 6.17A
AT = -2A 1n Sin(if' =

3.4 m, &

2.13A

The postseismic value of AU, assuming the slip smooths to 5 m everywhere,
is Ad = 5 m. If the postseismic slip takes place quickly, the plate
offset AUo is essentially unchanged. Assuming a fault break q = 400 km
long, the two-dimensional description is limited to no more than about

200 km on each side of the fault. Therefore equation (4) predicts

PR %55
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a .stress variation between the pre- and postseismic phases of

Sm-1.2m _
~4-10°m 4.7 bars, ©

6.17A

ATo =

5m-3.4m
4-10°m

i

2 bars, § = 2.,13A

corresponding to a strain change of

9-107%, 6 = 6.17A

4-107°, s

2.13A

Aseismic Slip Rates

Our previous analysis showed that the surface deformation more
than a plate thickness from the fault is a direct measure of (1) the
reiative plate offset, (2) changes in the mean stress on the fault,
and (3) the total fault slip. Unfortunately no observations of the
far field deformation exist for faults like the San Andreas. Closer
to the fault where most measurements are made the deformation is a
function of both the far field boundary conditions and the details
of slip on the fault itself. Since little is known about either the
boundary conditions or the precise nature of slip and material properties
at depth, there is consideréble uncertainty in interpreting measurements
of strain accumulation.

In this section we explore some general relations between the
rate of fault slip at depth and strain accumulation at the surface.
Since we assume very little about the distribution of strength on the
fault many details about the spatial distribution of strain cannot
be predicted. However we find that the time behavior of observations
allows a good guess of the plate boundary conditions and the nature of

stress drop that accompanies slip. The discussion applies to long
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periods of strain accumulation after postseisﬁic relaxation, if any,
is complete. The system is presumably in a state of steady strain
buildup. , N

In general the stress on a fault like that in figure 1 will be
highly variable with position. The average stress will equal the far
field applied stress O¢ during periods when the asthenospheric tractions
are zero, and is linearly related to the average fault slip AU by
equation (4). Variations of stress about the mean are linearly related
to variations in fault slip and can be thought of as the deformational
stress or dislocation stress Oy For aseismic motion inertial terms
will be absent, and the local stréss will be in equilibrium with the
creep strength S wherever sliding occurs:

o +0_,.-8=0 (17)

D
Consider first the case where the relative slip rate Aa(x,z)
is everywhere constant in time, though variable in space, during the
period of strain accumulation. Since op is a linear function of
Au(x,z), dD must also be constant in time, and not identically zero
unless A4 is identically zero. Likewise by equation (5) &o will be
constant (or zero) for either a constant stress or constant plate speed
boundary condition. Therefore the surface strain rate, regardless of
spatial dis;ribution will be constant in time as long as the lithosphere
behaves linearly. In fact the only way to obtain constant strain rates
at arbitrary surface locations is to have constant or zero slip rates
at depth, and constant plate displacement rates far from the fault.

Therefore a constant rate of deformation at a number of stations is a

strong indication of constant slip rates.
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The relation between strain rate and stress depends on the fault
creep law. If the creep strength S is an arbifrary function of position
and a monotonic increasing function of the slip rate Au(x,z), then
in principle we can solve for At as a function of S. Using equation (17)

we can write

Au = £(x,z,8) = f(x,z,Go+OD) 18y -

For AG to be constant in time equation (18) requires that 0o + 6D =0
wherever slip is occurring. 50 is constant in space by definition.
Consequently 8D’ the rate of stress drop on slipping portions of the
fault, must be constant in space and in time as long as the slip rate
AG is constant. If instead, S is a simple function of position,
independent of slip rate, then by equation (17), the sum (50 + &D)
must be zero. Again this implies that éD be constant in space and
time for AG constant.

If S is a more complicated function of élip rate or time, sa&
exhibiting an upper yield or softening, then it is difficult to predict
exactly the stress change éD' However, the long-term behavior, averaged
over several episodes of yielding and stress release, can very likely
be approximated as fluctuations about some mean strength. If this
mean strength is constant during much of the phase of strain accumula-
tion or is monotonically related to the time averaged slip rate,
then the time averaged stress drbp &D should be constant in space
and time if the average slip rate is constant in time.

As an exgmple we approximate the locked portion of the San Andreas
fault as a two-dimensional fault similar to that in figure 6. The

fault is locked to depth a. Below the locked zone slip occurs with
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an unknown spatial distribution of rates, but the rates appear to be
constant in time. If the creep strength S (or its long-term average)
varies arbitrarily with depth but is constant or monotonic with slip
rate, then the rate of stress drop 6D is constant in space and time
below depth a. The changing displacement field that will give a con-
stant stress drop over the lower portion of fault is exa;tly that given
by the time derivative of equation (6), with A = ZLéD/Wu. That is,
the change of stress and deformation is the same as for a stress-free
fault surface with the same distribution of locked portions. For a
fault with a/L = 0.15 as in our previous examples the slip rate at
the plate bottom is

AG = 4.3A (19)
The relative plate speed measured at y = *3L is given by

AUs = 12.3A (20)
The strain rate at the fault trace is

2

3y U = 3.4A/L (21)

N

We can determine A from a measurement of any one of the quantities in
(19), (20) or (21) and consequently solye for the remainder of the
deformation field. The northern locked portion of the San Andreas
around San Francisco is difficult to describe with the model since
active slip on the Hayward and Calaveras faults complicates the strain
field (Thatcher, 1975b). Nevertheless an approximate fit can be tried
using a strain rate of 0.17 + 0.04 x lO_6 yr-l (from 1938-61) measured
on the Point Reyes-Petaluma triangulation arc where the region most
approximates a locked plate boundary (Thatcher, 1975b). Equating

with equation (21) we obtain A ~ 0.5. This gives a relative plate
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speed of W6 cm/yr. This value of plate speed is higher than either

the V5.5 cm/yr determined by Atwater and Molnar (1973), the 3.7 * 3 cm/yr
determined by Sieh (pers. commun., 1977), or the 3.2 * 3 cm/yr reported
by Savage and Burford (1973). The most likely explanation is that the
strain rate of 0.17 x 10—6 is due to both slip at depth and the compli-
cated pattern of fault slip to the southeast in the San Francisco Bay
area, and is therefore greater than might be expected along a more
two-dimensional section of the fault. Turcotte and Spence (1974)
performed a similar calculation using an even larger value of strain
rate measured south of San Francisco.

Several points can be made with this example. if the creep strength
stays constaﬁt while the slip rate is constant, regardless of other
details of the strength law, then the mean stress must increase linearly
with time. This is true because the plate speed, equation (20),
is constant and is greater than the slip rate, equation (19)'. In
contrast, if a constant mean stress boundary conditionvis imposed,
as suggested by Savage (1975) then an observed constant slip rate
requires that the creep strength decrease linearly with time as the
fault slips. From equation (9) the strength must change precisely
as § = -ﬂuA/ZL. Although we cannot eliminate this possibility,
such a precise relation does not seem likely to occur. Similarly a
creep strength that is constant or monotonic increasing with siip rate
must result in a decaying slip rate if the mean stress is kept constant.

It should be added that a constant stress drop analysis like this
requires a slight modification to be strictly valid. In general a
slip distribution that results in a uniform stress drop will cause

stress singularities just outside the slip. This concentration would
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probably result in a brogdening of the slip zone which would eliminate
the singularities but may slightly increase the observed rate of strain
accumulation.

A direct example of a nearly constant observed slip rate is the
active region of the San Andreas fault between San Juan Batista and
Cholame. Figure 8a shows a smoothed record of 22 years of creep at
the Cinega Winery near the northern end of the active region. Although
the detailed record (fig. 8b) is episodic, the long-term rate is
remarkably constant at V1.2 cm/yr. In general the active portion of
the San Andreas has slipped fairly uniformly in time for the last
several decades, with the greatest rates of 2.5 to 3.1 cm/yr near the
center and tapering to zeéro at each of the locked ends (Sieh, pers.
commun., 1977)..

If the constancy of the surface slip is indicative of gsimilar
deeper slip, then the previous discussion applies. A constant stress

boundary condition implies that the average creep strength is decreasing

‘linearly with time. However, we see no reason for the material

properties to change systematically in this way. On the other hand

a constant long-term creep strength, allowing for repeatable fluctua-
tions associated with local yielding, implies a velocity boundary
condition and a small gradual increase in mean stress on the fault.

We can estimate the relation between fault creep rate and plate
speed using the simple model in figure 9a. The central portion of the
fault with length q: is slipping uniformly in time. The strength on
the slipping portion is unknown but is assumed to be constant in time.
At each end a portion of fault with length gq; is locked to depth a.

The deformation along the locked portions is roughly two dimensional
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as in figure 6 and the displacement is given by the time derivative
of equation (6). Beyond "L from the fault the deformation reduces to:

Ta

2T (22)

U= Ay - A;ln sin

210,

[

where A; = and 0, is the mean stress acting on the locked portion
of fault. Hence, away from the locked fault the effect of the deep slip

is the same as replacing the locked fault with a uniformly slipping

Ta

fault with slip rate —Azln sin 5T

Throughout much of the central active region, the fault is insensi-
tive to the exact distribution of stress and slip on the locked portions
of fault, as long as q: is several times longer than L. Hence the
description of creep on this section is approximately reduced to the
two~dimensional plane stress problem shown in figure 9b with the
partially locked portions of fault replaced with the equivalent uniform
slip inferred from equation (22). The solution of Turcotte and Spence
(1974), given by equation (6) for the strike-slip system in figure 6
is eéuivalent to the éntiplane deformation of an infinite row of co-~
planar cracks, each of length 2a and separated by 2(E-a). By simply
multiplying equation (6) by 1/(1+v) where v is Poisson's ratio the
solution for plane stress shearing of the infinite row of cracks is
obtained. Using this solution to approximate the system in figure 9b
is equivalent to assuming that the average stress and displacement
behavior at great distances away along the fault are somewhat similar
to that in California. Using this modified form of equation (7),

the plate speed Aﬁo at y = q resulting from shearing becomes

>y 2 mq: _ g2 - Ta
A¥e = Ay I;G'[q1+qz 1n sin 2(q1+q2)J 2A21n sin 57 (23)

where A, (q1+q2)01/mU, 01 is the mean shear stress across the entire
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Figure 9. (a) Simplified San Andreas fault model similar to
figure 5. (b) Map view of fault model showing active and par-

tially locked portions of fault for plane stress calculation of

fault creep.
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system, and the last term in (23) is added to correct for the partial
slip on the locked portions of the fault. The average stress O
across the locked portions. of fault is-related to the mean stress O;

across the entire system by a simple weighted average:

+
0y = (Sé23£901

which is equivalent to assuring that the entire load integrated over
the plate away from the fault is equal to the stress integrated over

the fault face. Hence A1 and A2 are related by

Solving for Al in equation (23) gives

AL - AUq (24)
ot T _T92 | _ 4L inTa
‘(L+v)[ q1+q2 In sin 2(q1+q2)J W@ In sinyr

Finally the slip rate Ad on the active portion of fault is given by
the plane stress form of equation (6) plus the correction for effective

slip on the locked portions:

Tz 2 TZ L2 Tq2
. i +\/ -
A = (iAl) 1n SIn orgr TV G ~ s Gy’
+v

mq2
sin 7 (qi+az)
(25)

- 4A1-§? 1n sin g%
where z is distance along the trace of the fault as shown in figure 9b.
To estimate the creep rate in the active region of central California
we set a = 15 km, L = 100 km, q2 = 400 km, and q1 = 300 km. (Approxi-
mately 100 km is added to the length of the active San Andreas from
San Jgan Batista to Cholame to include the extra compliance due to
slip on the Hayward and Calaveras faults.) Substituting into equation

(25) this gives
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Ad = 0.7 AU
for the maximum creep which is near the center of the active region.
Away from the center the rate should taper to zero at the locked ends
of the fault.

Kerry Sieh (pers. commun., 1977) has determined that the long-
term slip rate (over many earthquake cycles) for much of the San Andreas
fault is about 3.4 to 4.0 cm/yr based on geologic evidence. Sieh
also reports a maximum creep rate for the last several decades of 2.5 to
3.2 em/yr. Using AUp = 3.4-4.0 cm/yr in equation (26) gives a maximum
creep rate of At = 2.4-2.8 cm/yr. The good agreement between theory
and observation is perhaps fortuitous given the crude calculation.
Nevertheless a number of points can be made. During steady strain
accumulation the average slip rate anywhere on the fault should be
less than the plate speed as long as substantial portions of the fault
are locked. This is the same conclusion drawn by comparing equations
(19) and (20) for a two—dimensiopal fault. The locked portions of
fault and the elastic strength of the plate resist motion on slipping
portions, even if the creep strength on the slipping portions is zero.
As a result, a slip deficiency accumulates over this part of the earth-
quake cycle which must be made up when an earthquake relieves the
locked ends. Sieh (pers. commun.) has indicated that the 1857 break
may have extended as far as half way through the present active region
of the fault. This may have made up for at least part of the deficiency
from the previous cycle. 1In general, a period of accelerated creep
is expected.on the activé region after seismic release of the locked
ends. No evidence for or against this accelerated creep has been

reported for central California immediately after either the 1857 or
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1906 earthquakes. However, the same form of adjustment can explain
the postseismic slip at depth following the 1906 break (Thatcher,
1975a). : | -

A final comment concerns precursory slip. In figure 7 the pre-
seismic slip is plotted as ui1 for a range of fault creep strengths.
In each case the slip tapers to zero at the locked portion of fault,
just as in our present discussion of surface creep. This is an intuitively
reasonable result for any elastic material. The important point is
that before the locked portion is released seismically, the deep slip
cannot everywhere catch up with the net plate offset, regardless of
the creep strength. Any episode of precursory slip or instability
at depth can be interpreted as a reduction in creep strength. Con-
sequently, even if the instability is perfect and the creep strength
drops to zero, the slip deficiencies at depth cannot be completely
made up in preseismic slip. Seismic evidence in California indicates
that the deep slip is'nét corrected during earthquakes. Therefore we
would always expect at least some postseismic slip after major earth-

quakes on previously locked portioms of fault.
Conclusion

We have examined some simple aspects of stress and strain accumula-
tion along a strike-slip plate boundary. In two dimensions a constant
stress boundary condition confines all strain changes during an earth-
quake cycle to within a few tens_of kilometers of the fault. In con-
trast, a constant plate speed boundary condition results in a small but
varying component of uniform shear out to great distances from the

fault. Along the major active and locked regions of the San Andreas
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fault a two-dimensional analysis has some validity. However, the
three dimensionality of the system determines the bouﬁdary conditions
for the two—dimensional approximations. It appears that when adjacent
portions of the fault vary from smoothly slipping to locked behavior,
each section alone is best described by constant plate rate boundary
condition. This suggests that shéar strains on the order of 479 X lO-6
accumulated and were released out to distances of hundreds of kilo-
meters during the 1906 San Francisco earthquake cycle.

Using this type of analysis we have proposed a modification to
the Turcotte and Spence (1974) model of the San Andreas. By adding
a nonzero creep strength at depth on the fault a larger stress accumulates
on the locked portions, allowing a greater coseismic surface slip.
This can eliminate the need'for postseismic surface slip to accommodate
the net plate offset. The magnitude of creep strength depends on a
number of factors. If the seismic surface slip is assumed to just
equal the accumulated preseismic sliﬁ at the bottom of the plate, then
a minimum preseismic creep strength of about 37 bars is needed to account
for 5 m of surface slip during an event like the 1906 San Francisco
earthquake. However, this implies that the creep strength at the
beginning of strain accumulation is greater than it is just before an
earthquake. On thé other hand, if the creep strength is constant
during the entire period of strain accumulation, a creep strength of

at least 68 bars is required, and the seismic slip is greater than

the preseismic slip at the bottom of the plate.
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PART II: THE EFFECT OF CRACKS ON WAVE PROPAGATION IN ROCKS
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CHAPTER 5
THE EFFECT OF NON-ELLIPTICAL CRACKS ON THE COMPRESSIBILITY OF ROCKS

Introduction

The mechanical behavior of rocks depends strongly upon the geometry
of pore space. 1In particular, long narrow cracks, ranging from micro-
cracks to joints and fractures, can drastically reduce the effective
modull of a rock system. The closing of microcracks, for example,
can account for the typically observed increase in modulus with increasing
confining pressure below several kilobars (e.g. Birch, 1960; Brace,
1965; Simmons and others, 1974). Similarly, Nur (l§7l) attributed
the directional depen&;ﬁce of seismic velocity in nonhydrostatically
stressed samples to the anisotropic closure of cracks.

Theoretical models for the mechanical behavior of rocks containing
cracks and pores have been presented by a number of authors. Many
of these models incorporate the solution for the deformation of the
individual cracks under applied stress. Consequently only two-dimen-
sional elliptical cracks and three~dimensional ellipsoidal cracks were
considered (e.g. Eshelby, 1957; Walsh, 1965a; 0'Connell and Budiansky,
1974; Kuster and Tolsoz, 1974), since solutions for more realistic
cr;ck shapes are generally not available in closed form. The choice
of elliptical shapes has several important consequences, particularly
for very thin cracks. Under increasing hydrostatic compression the
crack length remains constant and stress singularities appear at the
blunted crack tips. Berg (1965) has shown that at sufficiently high

pressure the thin elliptical crack abruptly closes, making contact
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simultaneously over the entire crack surface. Since the compressi-~
bility is a function of crack léngth and aspect ratio it is not
clear which of the calculated effects are real or just artifacts of
the assumed elliptic shape.

Both visual inspection and common sense suggest that almost no
cracks in situ are ellipsoidal cavities._ We expect that instead typical
cracks are irregular in shape, possessing in particular a wide range
of edge configurations. Cracks may terminate with blunt edges, such
as the ellipsoidal case, or with very fine edges such as at a contact
of two slightly irregular parallel surfaces. The compliance to stress
of the latter cracks may be quite different from ellipsoidal ones,
leading to.a different overall compressibility of the rock. It is
therefore important to determine the elastic respomnse of a rock with
nonellipsoidal cracks, and compare the results with the ellipsoidal
case.

In this chépter we examine the influence of a broad class of non-
elliptical, two-dimensional cracks on the effective compressibility
of (dry) rocks. In the first section that follows we compute the
deformation of an almost arbitrarily shaped thin crack using the well-
developed theory of elastic dislocations. A particularly simple set
of closed form polynomial solutions is obtained in a manner similar to
Delameter (1974). In the second section the effective compressibility
is computed as a function of crack deformation. The general case as
well as specific examples are presented. The remainder of the chapter
gives a discussion of the model in comparison with the elliptical crack
results, including the interpretation of a typical stress—strain

curve.
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Calculation of Crack Deformation Under Hydrostatic Pressure

We approximate the rock as an isotropic elastic solid containing
a distribution of randomly oriented (dry) cracks or por;s of the type
shown schematically in figure 1. For mathematical convenience the
pores are treated as two dimensional cracks in plane strain, and the
separate pores are assumed not to interact. Furthermore, only flat
Planar cracks are considered, with aspect ratio o << 1 (where a = b/ec,
and ¢ and b are the half length and maximum half-width of the crack).
By limiting our study to flat, two dimensional cracks we can easily
solve for the crack deformation under varying hydrostatic pressure
by applying two dimensional elastic dislocation theory. (See for
example, Bilby and Eshelby 1968).

The problem of opening a crack under tension is conceptually
simpler and more conveniently posed thaq crack closing under pressure.
Therefore, in the derivation of crack closure that follows we first
close the crack with a large confining pressure and then study the
crack shape as the stress is relaxed. For hydrostatic stress the
crack shape is path independent (ie. a simple function of applied
stress), so that the crack closing problem is exactly equivalent to
the opening problem.

Consider a thin crack of shape Uo(x) and length 2cO (figure 1)
where Uo(x) and dUO/dx are continuous, smooth functions of x. (We
define these as the reference state of zero stress and strain regard-
less of the stress history leading to the formation of UO.) In our

analysis we will emphasize non-blunted cracks with tapered ends such



101

ST .Axvob Aq uaaT8 ‘yaprm ayg

‘po3je1a8ex9 umoys

‘spua poiade] YITm YOBIO TRUOTSUBWTP-OM] Je1I V

*T 2an814g




102

dU_(tc )
o
= 0. The effect of these cracks will be compared specif-

that Ix
ically with elliptical cracks for which solutions already exist (eg.
Walsh 1965, Berg 1965).

Imagine that a hydrostatic stress =P (stress is defined as positive
in tension) is applied so that the crack is just closed. The strain
field is a superposition of the uniform hydrostatic strain and the
pertubation due to the closed crack. This perturbation is just the

strain field due to a continuous distribution to infinitesimal elastic

edge dislocations with density function

_d (1)
Bo(x) T dx Uo(x)
Likewise, the stress field is given by
o,, = -P'S,, +0,.°
1] i 1]
where Gi.c is the stress due to the closed crack. In particular the
normal stress on the plane y = 0 is
o) = ~P'(x) + 0 _°(x)
where
¢ B (2)
Clyy = U oo (2)
00 (X) 2'TT(1~\)) _i. X—2Z dz
o

(eg. Bilbly and Eshelby, 1968). Here, u is the intrinsic shear
modulus of the rock material and v is Poiséon's ratio. Because Uo(x)
is smooth and Bo(tco) = 0, the stresses are finite everywhere including
the crack tips and cz > 0 very far from the crack.

If the hydrostatic stress is now slightly relaxed by an amount

t (which is equivalent to superimposing a tension T ), the crack will
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begin to reopen over a region -c<x<c where c ey with shapes U(x,P)
where P = (P'-t). (We have assumed for simplicity that the.original
crack is symmetric, ie Uo(x) is an even function of x. This assures
that the deformed crack at any value of P>0 is also symmetric.) The
crack opening U(x,P) at this point can be thought of as a new dis-
tribution of infini£é;;ﬁal elastic edge dislocations with density func-

tion

_ aU(x,P)
BOGE) = = T (3)

The problem of finding the deformed crack shape reduces  to finding
the distribution of dislocations B(x,P) subject to the conditions that

the opened crack faces are stress free, ie.,
o +1+0°=0 |x|-<c ‘
o ’ — (4)

c ., 4 : . .
where o~ is the stress due to the crack opening dislocations:

c
c = 3! B(ZQP)
2w (1-Vv) _i X-2z dz (3)

g

and U(x,P) = B(x,P) = 0 for lxl > c. The density function B(%x,P)
is found by solving the integral equation obtained by combining (4)

and (5).

FB(z.B) 4. _ _ 21(1-V)

o T (0,5 (0P x| < c (6)

-C

where the right hand side of (6) is a known function of the original
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crack shape Uo(x), and the applied hydrostatic pressure P. The con-
dition that a solution to equation (6) exist with finite stresses

everywhere is given by

¢ coc x)-P
I oy dx = 0
-c

(See Muskhelishvili 1953, p. 256).

Using the integral (B-3 Appendix B), this becomes

c 0 (%)
P ='l J= 2 dx
T cc-x
—-c
(7)
o . dUg(z)
3 u 0 z
T 2w (1-v) j\/c‘-xz 4 X-Z dzdx
-c -c,

For a given original crack shape U0 with length 2co, equation (7) gives ?
relation between the applied hydrostatic pressure P and the reduced
length c. We will see with some numerical examples in a later section
that for cracks with tapered ends (ie. no stress singularities) crack
closing from hydrostatic stress is accompanied by crack shortening.

The solution of equation (6) is given by:

B(x,2) = 2020/ f

(z)-P
(x—z)\/c -z

7 dz [x| <e (8)
(see Muskhelishvili, 1953, p. 257) where c is given by equation (7). The
actual crack shape is found by integrating -B(x,P):

X (Z)-P
oGPy = 220 Tll:u\) fV et-t f (t—z)\/c =22 |"Xl Sc (9

Equations (8) and (9) can be slightly simplified by dropping P (or
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adding any constant) from the integrand since

¢ dz

-J;Tt—_-z—)mr=0, | le] < el

Hence, the shape U(x,P) is determined by (9), once half length c

is specified.
The normal stress on the plane y = o is xero over range [xl< c,
but for |x|>c is given by

U=oo°—P+0° (10)

Substituting for 02 and o° from equations (2) and (5) this gives

¢ B (2) + B(z,P)
J95 o 0 ?
o - —
P+ 27 (1~v) _f " dz lx| > ¢
%o
or (11D
¢, 2 [U (z) - U(z,P
[ ~ -
0=—P+—-——u————-— 92 o\? (z,P)] dz !X|>C
2r(1-v) —co X=Z

where B(x,P) = U(x,P) = 0 for ¢ < |x|< ¢yt

It should be pointed out that'equations (7), (9), and (11) are
strictly valid only for single, isolated cracks. As we will see in a
later section certain cracks make contact at their centers before com-
pletely closing, forming two adjacent cracks. In this case, (7, 9
and (11) apply only before the center makes contact. More general ex-

pressions for the multiple crack case are given in appendix A.
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) '
Levels of applied stress outside of the range -P < ¢ < 0 (ie.,

outside the range O<P<P') where -P' is the closing stress (or P' is
the closing pressure) require additional care. Crack deformation in
tension with respect to the reference state of stress cannot be found
unless additional information is given for the stress or strength in
the plane y = o.for [xl > cye On the other hand, calculation of the
stress and strain fields for levels of compression greater than the
crack closing pressure, ie. P > P', are straight forward. The strain
field for continued hydrostatic loading after crack closure is the
superposition of the uniform hydrostatic strain due to P and the strain
due to the distribution of dislocations Bo(x). Likewise the stress
field is given by Gij.=_fPéij + Oijc where Gijc is.the stress due
to the closed crack. In particular the normal stress on the plane y = o
is .

co(x) = -P + S, (%)
where dg is given by equation (2).

Expressions (2) - (11) can be quite difficult to evaluate fof
arbitrary crack shapes, usually requiring numerical solution. However,
a broad class of analytic solutions can almost trivially by found when
polynomials are used to express U0 and UE . In particular, the pro-
perties of Chebyshev polynomials.simplify considerably the necéssary
integral relations. Such closed form solutions are useful to quickly
assess the effects of various crack features on the properties of rocks.
In the remainder of this section a specific method of polynomial solution

of the crack problem is didcussed; and two simple illustrative examples

of crack closure are presented.
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When‘the crack shape Uo(x) is smooth with tapered ends and
continuous derivative Bo(x), the corresponding _02 (x), given by
equation (2), is continuous and finite over the interval —c S x 2.
We can therefore approximate Gg to arbitrary accuracy over this
interval by a polynomial of sufficiently large degree n:

c )
g (x) 2R (X)= I rx !xl <c
o} n k=0 k (12)

Where the rk are constants. FFor simplicity we once again assume
symmetric cracks.) For computational purposes this polynomial form
for cg(x) is a convenient starting point for generating crack solu-
tions, (as well as for other dislocation applications like fault slip).
However, it is often necessary or desirable to start with a prescribed
crack shape Uo(x). In this case the function 02 can be obtained
from equation (2) using a numerical Hilbert transform. Alternatively, .
the shape Uo(x) can be approximated with some convenien; form like
UO(K) =\/ ¢2-x? $,(®)

where Sm(x) is an even polynomial such that the derivative Bo(f Co) =0,
The Hilbert transform, equation (2), can then easily be found using
equation (16).

With the polynomial form, equation (12), in hand, the relation

- between applied pressure and crack length, equation (7), becomes

n
z rkckYk

k=0 (13)
even

o
]
= |

where the constants Yk are given in Appendix B. Similarly the

expression (8) for B(x,p) becomes
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-2(1-v) x, 2 n X (14)
> 1-() kié b U (D) x| < e

B(x,P) =

where the Un(x) are Chebyshev polynomials of the second kind (Hoch-
strasser, 1964) and the constants bnare defined in Appendix B. Finally

the crack shape U(x,P) is found by integrating equation (14):

X 2 1
U(x,p) = 2LV N1-© L vu  Ddr x| < (15)
H -c k=2

even

In order to find the normal stress on y = Q0 outside of the

crack opening this expression for B is substituted into (5) and (10):

-3
c/{1-(3 n
_sCc_p_1 ¢ 2 >
o =0, P-z JV— E b U _;(Ddz x| > ¢ (16)
- k=2 ]
even :

The last term in (16) is given by

. 2
sgn(x) [/ -1 k§2 b U B - el x| > e
even

where Q(x) is an polynomial obtained by.expanding (x/c)-1 as a
polynomial in x, multiplying term by term with anUn_l(x/c), and dis-
carding all negative powers of x (Muskhelishvilli, 1953, p. 253). The
same technique is used to find og (x) for |x|>co.

To illustrate some important features of nonsingular crack closure
two simple crack shapes are now computed. Consider a crack of the

form




, _
) ]3/2 (17)

x
UO(X) = 2b[1 - (C

o

where <y is the crack half length and b is the maximum half width.

: , c ¢ .
From equation (2) the stress 9 (x) is computed:

c 2
O’C(x) =_._.._.:.3E_..b___ fo-z- }__(E_ZEQL dz
o m(l-v)e, _, ¢ X~z
)

Integrals of this form can be evaluated by expressing the polynomial
factor in the integrand in terms of Chebyshev polynomials Un and using
equation (B-5) (see Appendix B).

c
Hence Go becomes

5 c(x) - _=3ub [2(§

et 2-
o 2(1~v)c, e ) 1] x| < e

(o]

‘which is of the convenient polynomial form given by‘equation (12). Sub-
stituting this expression into (13) we obtain the relation between

applied pressure P and crack length c:

P = —=3ub [(g Y2 2 1]
)

2(1—\))c0
or
8
2(1-V)ec (18)
c=c [1~ —_—D P]l/2
0 3ub a
Finally, the deformed crack shape is obtained from equation (15):
2 _ (19)
2
UR) = &) - & 1Y x| < e

o
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From (19) we see that at crack.closure , ie., U = 0, the crack
length ¢ -+ 0., Substituting ¢ = 0 into (18) we obtain the closing

pressure P':

3ub - 3
2(1-v)e, 4 (1-v%)

P' = ocoE

where 9, is the original aspect ratio b/c andkE is Young's modulus
This is consistent with the usual rule of thumb that the crack closing
pressure is numerically "ao E. The exact numerical factor will vary
with the crack shape. In comparison, Berg (1965) found that the

pressure required to close an elliptical crack of aspect ratio ao is

The ratio of tapered crack closing stress to elliptic crack closing

stress for identical aspect ratios is

=3
2

.P!
P!
e

Hence, the tapered crack is stiffer than an elliptic crack of the same
dimensions, in terms of the closing stress.

The stress on y = 0 outside the crack is computed from equation

2
-2'2(2 )£ dsgnlx), [ D -1 c < x| < ey
o o

2
~2'2(Z Jsgn(x) [(S )J(f) -1 -\/(;:’S - x> c,
o o ]

(16):

where -P' is the closing stress.

Figure 2a shows the crack shape, equation (19), plotted for
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several levels of applied stress.  The most prominant feature of

the deformation is the crack shortening accompanying closing. For
example, the inner contour (2a) shows the crack at .75 the closing |
pressure. 1In this case the crack width is reduced to ~.1 the
original width while the crack length is reduced by a half. The
relative changes in width and length are described by the aspect ratio

o , where o = U(0,P)/c and is obtained from equations (18) and (19):

2
Cc
a = ao(c )
(o]

=a (1-3)
Here ol is the original aspect ratio. As suggested by the figure,
o decreases ( the crack gets flatter) with increasing pressure. Al-
though both U(0,P) and c approach zero with closing, their ratio also
goes to zero.

A major'consequence of the crack shortening under pressure is the
elimination of stress singularities at the crack tips, which occur for
example with an infinitesimally thin elliptical crack. Bounded stress
concentrations, however, do appear, Figure 2b-shows the normal stress
on the plane y = 0 plotted for several levels of applied stress. For
all open cracks the stress over -c < x<c is zero as expected for
free surfaces. Over the range ¢ < x < s the stress rapidly increases
to a peak compressive stress at the original crack tip, greater than
the applied pressure. For [x|>c0, the stress falls off and assympto-
tically approaches the applied stress far from the crack. 1In each
case the stress is quite non-uniform over the closed portions of the

crack. This differs substantially from the case of an elliptical crack

- St el e L
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which does not shorten under pressure. The elliptical crack closes
suddenly and uniformly over its whole length at the closing pressure,
and the stress over the closed crack is uniform (Berg, 1965).

As a second example consider a crack with shape

2 L 2
U0 = 201 -3&) - 1.3¢) 1/1-E)
o o o

where s is the crack half length and b is the maximum crack half width.

The dislocation stress corresponding to the closed crack is obtained
from equation (2):

- c( ) = -10ub

. clowb 33
41(1—-\))cO

[27¢)* - 12¢2)% + ]

e} o}

which is once again in the convenient polynomial form given by equation
(12). The relation between applied stress and crack length is given

by

__-ub__ 10 81 ,c .4 ., .2 33
T (1-v)c_ 41 [8 (c ) - 6(c )T - 7?4
o ) )

P (20)

Finally, the deformed crack shape is

-2b X |4 c |2 X
U= 56 ) + (2763 )%-401E )2 + [-81E) " + s0E )2 %P (21)
41c c c c c o
o o o] o o o}

Figure 3 shows the crack shape, equation (21), plotted for several
levels of applied stress. Once again the crack shortens as it closes,
although the shortening is slower than in the previous example. In
addition, as the applied pressure increases the crack faces touch in

the center, forming two adjacent cracks, before completely closing.
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The overall crack width at this stage is obtained by setting x = 0 in
‘the expression for U in (21) and equating U = 0, giving ¢ = .7co.
Using this value in equation (20) the applied pressure causing initial
contact is:

_ 1.12ub

Pl o= s
(l—\))co

Deformation beyond initial contact cannot be described with the'single~
crack expressions (20) and (21). The multiple crack theory outlined

in Appendix A can, in principle, be used to extend the results. However,
the simple solutions made possbile for ;ingle cracks by the Chebyshev

- polynomials are no longer available. Nevertheless, we expect qual-
itatively, that the normal stress on the closed portions of the crack .
will increase from zero at the crack tips to peak stress concentrations
at the center as well as the original crack tips with a fall off to the
applied stress far from the crack. The central contact should result

in an abrupt stiffening of the crack and rock at the contact stress.
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Calculation of Bulk Modulus

To find the effective bulk modulus of the porous rock we follow the
example of Walsh (1965b) and Jaeger and Cook (1969) and use the Betti-
Rayleigh reciprocity theorem. The theorem states that for an elastic .
body acted upon separately by two sets of tractions, the work done by
the first set of tractions acting through the displacements produced
by the second set of tractions is equal to the work done by the second
set of tractions acting through the displacements produced by the
first set of tractioms.

To apply the reciprocity theorem, consider the two sets of tractions
shown in figure 4. The rock with volume V has a distribution of N non-
interacting flat cracks of the type shown in the figure. The system on
the left is loaded by an externally applied stress - &P resulting in crack
deformation 8U(x). The crack faces are stress free. (The deformation
8U(x) 1is an incremental change in crack shape defined as positive in
opening and isbgiven by 8U(x) = &P- 3U(x,P)/3P). The system on the right
has the same uniform stress -~&P applied to both the external surface
and the crack faces. In this case the system, at least externally,
behaves like a solid block without cracks. Applying the reciprocity

theorem we can write.

N C.
sp - QKB =8P - %1; +6P T 4 J* U, (x)dx
i=1 -C

i
where V is the volume of the rock sample, K is the intrinsic bulk
modulus of rock material, K' is the effective bulk modulus of the porous
rock and di is the crack length into the page of the ith crack. The

summation is over all cracks in the rock. Rearranging the equation we obtain

N c, U,
1 _1_1 RS S 3
TroF .k /75 dx
i=1 -C
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which gives the effective compressibility (equal to the inverse effective

bulk modulus) in terms of the crack deformation dU, as found in the

previous section. In the limit as &P + 0, the effective com-

pressibility becomes:

1.1 1y o, 51t (22)
k' K v, op %
=1 -c,
i
Since U(x,P) = 0 at x = ic, the derivative can be taken outside the integral.

Hence (22) can be written:

Cc.
4 4 ;1 oy(x,p)dx (23)
. V dp

i=1 -y

1
o=z

1
4

As an example, consider the case of a rock containing a distribution
of N identical cracks of the form given by equation (17) and plotted in
figure 2. To find the compressibility at some level of applied stress

P, we compute the derivative

9y _ 3U/ac
oP dP/de

where P and U are given by equations (18) and (19). Therefore:

U _  2c(1-v) /[, (X2
-2 TR 1 (c)

Substituting into (23) the compressibility becomes

i _1.XN 2
K' K+V mn Te“d
Or expressing u in terms of K:
_y2 2
l\ = l-(l + ZE.LL_E_l.ﬁs_Q) (24)
K K 3 (1-2v) V



The effective compressibility given by (24) is a function only
of the crack dimensions ¢ and d; and the number of cracks N. 1In fact
this result is exactly the same as for an elliptical two dimensional
crack in plane strain with the same dimensions (See for example Walsh,
1965a and Jaeger and Cook, 1969, p. 315). The generality of this
result is shown as follows.

Suppose that the rock contains a distribution of non-interacting,
arbitrarily shaped flat, non-singular cracks with dimensions ¢ and d.

Using equation (3) we can write:

3P I g B (25)

X
3B (z,P)
S s dz

-C
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since B(¥c,P) = 0. It can be shown (Appendix C) for arbitrary (symmetric)

flat, tapered cracks that

9B _ _ 2(1-v) X
9P T chQXT (26)

Therefore, substituting (26) into (25) we obtain

0U(x,P) _ —2(1-v) /—_2; )
aP u ¢ 27

Finally, using (27) in (22) the compressibility can be written
1 _ 1, 7md-v) Ne’d
K' K u \

or expressing u in terms of v and K:

21m (1-v%) Nc2d

1 _1 '
TR TT Ay v (28)
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Once again the compressibility given by (28) for an arbitrary
shape is exactly the saﬁe as for a distribution of flat 2-D elliptical
cracks in plane strain with the same dimensions. This is a remarkable
result which says that although different crack shapes deform and
shorten differently under varying levels of hydrostatic stress, the
overall compressibility at any given value of stress is independent of
crack shape (assuming flat symmetric, non-interacting, non singular,
2-D cracks). Hence, any convenient crack shape, including the ellipse
can be used for computing the compressibility in terms of the crack
dimensions. However as a consequence, nothing about crack shape can be

inferred from the compressibility at a single value of pressure.

DISCUSSION

The derivation of effective compressibility in the previous section
is based upon the calculated incremental volumetric strain de resulting
from infinitesimal excursions of stress dg about a given hydrostatic

load, ie,
do = K'de (29)

Such excursions might result, for example, from ﬁassing a wave through
a statically loaded sample; the incremental modulus would idezlly be
the local slope of the quasi-static stress-strain loading curve. However,
in practice the agreement between static and dynamic modulus is often
poor.

To trace out the entire stress—strain curve we substitute the

crack dependent effective bulk modulus into equation (29) and integrate:

€ ~P 2y N c,2d;
f dg = =!’. +.2_Tr.._.(.l_-l_)_ 1
5 €% é(l 3 (129 % v (30)
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An essential feature of the pennyshaped crack or 2-D elliptical crack
model considered by Walsh (1965a) is that while a given crack is open,
its length ¢ is independent of stress. Hence over any interval of

stress in which no cracks close, the integrand of (30) ié‘a constant

and stress-strain relation is linear. If we generalize to non-elliptical
shapes, but constrain the crack length to be constant the stress-strain
relation remains linear. When the increasing applied pressure reaches
the closing pressure of ome or a set of elliptical cracks (the closing
pressure is determined by the shape and aspect ratio) those cracks
suddenly stop contributing to the summation in (30) and the compressibility
takes a discontinuous jump. The jump will be small if only one of many
cracks close at a time. Hence a distribution of elliptical cracks can
give an approximately "continuous' compressibility. Im fact with this
model the only way to achieve a smoothly varying compressibility is to
have a smooth distribution of aspect ratios.

Non-singular cracks, on the other hand, change length with varying
stress. Hence, the integrand in (30) is not constant and the stress-strain
curve is not linear. Consider, for example, a rock with N identical
cracks of the type given by equation (18). Substituting into (30) and

integrating we obtain:

_P _B,. B o < p (31
£ = X - X P + 2KP " P P < P
where 2'”(1—\)2) 2
B = Jv(i=av) Nde,

The first term in (31) is just the intrinsic linear compressibility of
the rock material. The second term, also linear, makes the rock more

compliant and is equivalent to the effect of a distribution of elliptical



cracks of the same original dimensions. The last term makes the rock
less ‘compliant and is due to the crack shortening; ie. the modulus at

a given pressure depends only on the crack length, so that the crack
shortening causes stiffening. Equation (31) is plotted in figure 5 and
compared with the linear intrinsic and equivalent elliptical crack curves.
At very low stresses, the quadratic term is negligible so the stress-
strain curve follows the elliptical crack curve. At larger pressures the
quadratic term becomes significant, and the curve deviates substantially
from the elliptic crack line. At Pé the equivalent elliptic cracks

close causing an abrupt change in slope of the elliptic curve. If no
other cracks were present, the new slope would be the same as the intrinsicf
Above Pé the tapered crack curve continues smoothly to P' where the
tapered cracks just close. The slope at P' is equal to the intrinsic
slope. Hence there is no abrupt change in modulus at crack closure.

The exact shape of the stress strain curve will differ for different
crack shapes. However for any tapered crack we expect the curve to be
nonlinear and to take on smoothly the intrinsic slope at crack closure.
As a result interpretation or prediction of features like porosity and
modulus under varying confining pressure will depend upon the specific
crack model chosen. Furthermore the invefsion of velocity or modulus
data to obtain crack distributions (Simmons et al. 1974, Toksoz et al,
1976) is inherently non-unique.

Under nonhydrostatic conditions cracks under shear, whether
partially or totally closed, may undergo frictional sliding at contact
points and crack tips. Since the normal stress varies continuously over
the crack faces in contact, the frictional stress will also vary. The

spatial extent of sliding will depend on the levelof applied shear.
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Figure 5. Applied pressure vs. volumetric strain for a rock with
a distribution of cracks. The ﬁpper curve is for the uncracked
rock. The middle curve is for a distribution of identical tapered
cracks. The lower curve is for a distribution of identical ellip-
tical cracks with unstressed dimensions equal to those of the

unstressed tapered cracks.
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Again this differs from the elliptical crack which has frictional-
sliding only after the crack is completely closed. After closure the
frictional stress is uniform across the crack since the normal stress
is uniform. For either crack model frictional sliding will produce
hysteresis in the stress=-strain curve and dissipation of mechanical
energy.

The importance of the non elliptic crack model is not only in
interpreting the bulk modulus of rock, but also for predicting the
closure of cracks with depth in the earth's crust (e.g. Brace, 1975),
and the flow of fluids in the cracks. Elliptical cracks close abruptiy
at confining pressures Pc of the order Pc = oE (e.g. Berg, 1965), where
o 1is the aspect ratio and E is Young's modulus. Consequently it is
often suggested that fine cracks cannot exist at depth within the crust,
as they are totally closed due to confinement.

This conclusion becomes less obvious when we comnsider the more
realistic non elliptic cracks. Their closure is gradual, and the
pressure or depth of closure depends on their unstrained initial ;hape.
It is conceivable for example that some cracks such as joint with somewhat
irregular surfaces may never close completely under confining pressure.
Instead, only portions of the éracks may close, leaving irregular cavities
which are very rigid. Therefore so long as rock in the crust is brittle
and sufficiently strong, it should be able to support some connected
porosity, to depth of perhaps several kilometers. Finally, the fluid
pressure in an elliptic crack, induced by compression of the rock is
uniform throughout the crack (Eshelby, 1957). Consequently no flow is
induced. Any other crack shape however will produce nonuniform compression,
with subsequent fluid flow. Although the magnitude of such flow is not yet

clear, it may play a role in attenuation of seismic waves in rock (Mavko and
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Nur, 1977). Such an effect does not exist in elliptic cracks.

Conclusion

We have used dislocation theory to study the deformation of rock
with flat non elliptical cracks under hydrostatic stress. The general
expression for crack shape as a function of pressure has been developed
in terms of a triple integral involving the original crack shape and the
applied stress. Evaluation of theée integrals is particularly simple
when the original crack shape is appropriately described in terms of
polynomials.

The most prominent feature of the deformation of tapered cracks under
compression is crack shortening. A cénsequence of the shortening is the
elimination of stress singularities at crack tips. However bounded stress
concentrations do occur. The normal stress on the closed portions of the
cracks increases rapidly but continuously from zero at the open face to a
peak value at the original crack tip. In contrast a thin elliptic crack
simply flattens under compression. The length stays constant until at
sufficiently high pressure the crack abruptly closes, making contact
simultaneously over the entire crack surface. The stre§5concentration
is unbounded outside the crack tips, and after closure the normal stress
is exactly uniform over the closed crack faces.

The compressibility of a rock containing'a distribution of arbitrarily
shaped flat tapered cracks is exactly the same as for a distribution of
flat elliptical cracks with the same lengths. Therefore at a given vglue
of pressure the compressibility is independent of the (2-D) crack model
chosen. Consequently nothing about crack shape can be inferred from the
compressibility at a single value of pressure. However, at different
confining pressures the varying length causes the modulus to vary. As a

result interpretation or prediction of features like porosity and modulus
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under varying load will depend on the specific crack model chosen.
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APPENDIX A
The multiple crack case can be treated following Muskhelishvili
(1953, p. 256). Comnsider a set of coplanar. thin cracks with tapered
ends, each of the type treated separately in the text of this paper.
The original shape of the ith crack is Uio with tips at a0 bio as

shown in figure A-1. If the hydrostatic stress -P' is applied large

enough to close all of the cracks, the normal stress on the plane

y =0 is
C
= _p!
UO(X) P' + 00 (x)
where
N bi B. (z)dz
. C(x) - u E: io
o 2m(1=Vv) X-Z (A-1)
i=1 " a,
i
-4 -
and Bio(x) ol Uio(x) : (A-2)

If the compression is relaxed to P <P' some of the cracks will
reopen over the range a, < x «<b_,, where a, > a , and b, <b ., with shape
i i i oi i oi
Ui(x,P). The crack opening Ui(X’P) corresponds to a distribution of
infinitesimal elastic edge dislocations with density function
B, (x,P) = - = U(x,P) (A-3)
i Ix ’
The integral equation for Bi expressing the condition of stress~free

crack faces is

N b, B.(z,P)
z i 1 dz
i

_ =27(1-v) c
- u [UO(X)‘P] (A=4)

X=-2
i aii x_<_bi, i=1,2,3,....N

The conditions that a solution to (A-4) exist with finite stresses everywhere

Gt i ‘wv.v‘-; X - .
i R R B
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is given by:

o k.. ¢
N bi X [Oo (x)-Pldx

N =0

k=0,1,2,...,N-1
Bl 10 (xea) (-2 (A=3)
=1 1 |
The solution of equation (A-4) is given by:
b,
N N 1 oS3 -p
B(x,P) = 2(1-V) [T (x-a,) (b _x)]l/Z 5 0 iz
™y 1T 1=1 X
(x-2)[ I (z-a;) (by-2) ] (A=6)
a; i=1 -

a; < x f_bi i=1,2,3,...,N

The actual crack shapes are found by integrating -B(x,P):

X

Ui(x,P) = - ,[ B(z,P)dz
a
i
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‘APPENDIX B
Given the polynomial form, equation (12), ‘the expressions for
crack length, equation (13) and B(x,P) equation (14) are found as

follows. Substituting (12) into (7):

1 ¢ Borx
P== /[ I rﬁ dx
m -c k=0 ¢ -=x (B"l)
even
or setting z = x/c
n 1 k n
=L k z =1 k,
P=g 1o fTr 2 =7 Lorevy (B-2)
=0 -1 k=0
even even
The integral in (B~2) is given by
m k=20
1
Y, = [ dz = 0 k=1,3,5,...
k \;l—zz (B-3)
kel | k=3 1, k=2,4,6,...
k k-2 ""72

Similarly, substituting (12) into (8) B(x,P) becomes

2(1- c R (z) -P
B(x,P) = —iaﬁglJ c2-x* f (x—Z)\/ctjzzdz x| <c

-C

or setting t = x/c

1 R (et) - P
2(1-v) X\ 2 n
B(x,P) = ———=/1-(=)° [ dt x| < e
™ ¢ -1 & - Vi B

By expanding the polynomial Rh(ct) in terms of Chebyshev polynomials

of the first kind, Tn(t):

n
R (ct) = kEO b T, (t) lt] <1

even (B—4)
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the expression B(x,P) can be written as

1 T (t)dt 1
2(1-v) X\ 2 o n dt
B(x,P) = =" /1.2 [ b f + (b -P) [ —m————
T ¢ k=2 %1 - nf1-t? ° " 1 & -/1-¢?
even ¢ - ¢
x| < ¢
But
1 T (t)dt -0 _,(2) n > 2] <1
S = z| £
1 @Eo/i-t 0 n=0 (B-5)
1J1-22 U . (t)dt
— = T_(2) 2] <1

-1

where the Un(x) are Chebyshev polynomials of the second kind (Hochstrasser,

1964). Hence B(x,P) becomes simply

n
B(x,P) = l%-gl—;i)— /1 - (—ff)zki2 b U &) x| ¢ (3-6)

even
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APPENDIX C
The independence of compressibility on crack shape is shown as
follows. Through algebréic manipulation it can be shown that for symmetric

tapered cracks the solution given by equation (8) is equivalent to

c [ (z)-P]Mc 2.z d

_2(1-V) 1 2
B(x,P) TR g _£ —z (c-1)
Differentiating we obtain
(z) P JVec? -z2
9B _ 2(1-v) | -c(3c/3P)
OP Ty (c®-x%)3/2 — X~z

c
1 ; J"——_‘ 3¢ /9P c (Oo (z)-P)c

- + dz
Jef-x" . ¥ dz Jet=x" | (x~2),/c*~z°
Using both (8) and (C-1l) this can be written:

3B _ _-—¢ 2(1- c?-z? c Sc
‘S'I—,-"Z_‘Z‘B(X P) BP m cZoxZ B(x,P) 3P

_=20-v) 0 Gfeteg?

= T2 —

WMJE X" _. X-Z ‘ (C-2)

The integral in (C~2) can be evaluated to give

%% - —2(%;\)) ‘[C-fo[ x| < c (C-3)
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CHAPTER 6
WAVE ATTENUATION IN PARTIALLY SATURATED ROCKS

The velocity and attenuation of seismic waves in crustal materials
are étrongly dependent upon pore fluid content and the details of pore
geometry. The degree of wave interaction with fluids is in general
determined by the shape, and hence compliance, of the pores within the
solid matrix of mineral grains. Rocks with flatter pores are more
sensitive to the details of the fluid and its ability to support or
transmit compressional and shear loads; rounder, more rigid pores are
less sensitive to the presence of fluids. In the low frequency
limit pore fluids influence the system through their density, com-
pressibility, and distinct lack of rigidity; at higher frequencies
viscous and inertial interactions are introduced.

This dependence of velocity and attenuation on pore geometry and
fluid properties can, in principle, serve as a diagnostic of material
structure both in sitﬁ and in the laboratory. Nur (1971) and Solomon
(1972), using equatioﬁs from Walsh (1969), made estimates of upper
mantle partial melt configuration from the velocities of teleseismic
compressional and shear waves. Related experimental work on the
dependeﬁce of velocity on partial melt was reported by Anderson and
Spetzler (1970). Nur (1973) interpreted observed temporal velocity
anomalies as diagnostic of dilatant strain and varying pore water

saturation in the crust prior to certain earthquakes.
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In exploration geophysics, a substantial effort has been made to
develop more detailed theoretical and experimental correlations between
longitudinal wave velocities, rock type and fluid content in the shallow
crust. The goal in oil and gas exploration is to be able to distin-
guish reliably between gas, oil, and water in situ, as well as to infer
their relative concentrations, rock type, porosity and permeability.
Similar problems in geothermal exploration concern assessing water and
steam content, as well as permeability and state of fracture.

Work by Domenico (1974), Kuster and Toksoz (1974a, b) and Elliott
and Wiley (1975) indicates that the velocity of a liquid-saturated
rock can differ substantially from that in the same rock with a partial
saturation of a free gaseous phase. The two rocks in contact can
account for a large reflection coefficient and an observed "bright
spot." However, the dependence of velocity on the amount of gas
saturation is very weak over the range 10 to 90 percent. The contrast
in velocity is an indicator of gas, but a poor quantitative measure
of economic value.

In this chapter we present a model of one particular mechanism
for wave attenuation in partially saturated liquid-gas systems. The
model predicts that for certain rocks with at least a small concen-
tration of very flat pores, even a small amount of water can dramatically
enhance the dissipation of energy of compressional waves. Furthermore,
the level of attenuation is directly dependent on the actual concen-
trations of liquid and gas, as well as on the fluid viscosity and pore
shape. This can in principle serve as an independent data point on
the state of saturation of porous rocks. However not enough data are

presently available to adequately test the model.



In the first section that follows we will discuss some general
considerations of fluid attenuation and introduce our model of partial
saturation. In the second section mathematical formulag.are derived
for calculating attenuation of compressional waves. The remainder
of the paper gives a discussion of the model results including sim-
plified expressions for attenuation for specific pore geometries,
limiting expressions at high and low frequencies, énd comparison with

other models of fluid attenuation.

Fluid Attenuation

The primary source of fluid attenuation in porous media (ignoring

nonmechanical effects) is relative motion between the solid and liquid.

Such motion results in shearing stresses in the fluid and, consequently,

viscous dissipation of mechanical energy. In our model of attenuation
we examine the details of flow and energy dissipation on the scale of
the individual pores. We approximate the rock as an isotropic elastic
solid containing a distribution of randomly oriented, partially
saturated cracks or pores of the type shown schematically in figure 1.
We assume that the liquid is segregated into one or more discrete
"drops" within each pore that flow as the pore is deformed. For
mathematical convenience the separate pores are treated as two-dimen-
. sional cracks in plane strain with width, d, (into the page) equal

to 'some function of the half-length, ¢. Furthermore, the separate
pores are assumed not to interact, and only flat cracks with aspect
ratio ac_< 0.1 are considered (where a, = ao/c.and ao is the maximum
pore half width in the plane of the page). Rigorously, this might

limit our applications to low porosity igneous rocks. However,
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conceptually, the notions of dissipative flow that we will develop are
quite applicable to more closely spaced, equidimensional pores. We
will also find that flat pores give a much larger effect than the same
volume of equant pores.

Qur treatment of the details of flow in the individual pores will
be reminiscent of Biot's (1956a, b) for the general porous solid except
for the emphasis here on undersaturation. In this study, details of
pore geometry will be retained, and both high and low frequencies

are addressed.

Mathematical Derivation: Longitudinal Waves

A longitudinal (compressional) wave passing through our material
exerts oscillatory stresses which can be resolved into normal and shear
components in the plane of each pore. In this section we find the
attenuation resulting from the normal component of excitation on the
individual pore; a later section treats the shear component. For a
given wave and distribution of crack orientations the total attenuation
can then be found from a summation of both components over all pores.

We will find, in fact, that the shear édmponent of dissipation resulting
from either compressional or shear waves gives a negligible contribution
for most cases of interest involving water.

Seismic attenuation is estimated for a given fluid geometry by
solving for the specific dissipation function Q-l of the fluid-elastic
composite, given by:

-1 @
=T

where ¢ is the energy dissipated in the fluid phase during one cycle of
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sinusoidal oscillation and W is the peak energy stored during the same

cycle. The spatial attenuation function can then be found from:

where dx is the attenuation coefficient for plane wave amplitude decay
with propagation and Cp is the compressional phase velocity at frequency
w. The methoa of solution will be to solve for the fluid flow field

in each single partially filled pore resulting from a prescribed
oscillation of the pore walls. The elastic energy of the rock surrounding
the pore will then be obtained for the same oscillation.

For this study pore geometries are limited to long narrow two-
dimensional cracks as shown in figure 1. Surface tension is neglected
except for the assumption that during seismic oscillation, each fluid
drop remains intact rather than breaking up into smaller drops or
losing contact with one or‘both of the pore walls. Because the pores
are undersaturated ;he flow is incompressible for most frequencies and
geometries of interest (see appendix A). Furtherﬁore, by assuming
that the crack halﬁ width a(x) is a slowly varying function of x,
the flow is essentially one-dimensional for small oscillations of the
pore walls about the static position. Hence the approximate equation

of motion governing the fluid flow reduces to

du _ 9P 32y .
Pae ™~ 3x T My? (1

where u is the x-component of velocity, p is the density, n is the
viscosity and P is the pressure of the fluid. (A discussion of the
assumptions involved in obtaining the equation of motion (1) is given

in appendix A.)
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The boundary conditions for the fluid are stated in terms of pore
wall displacements (see fig. 2). For very small strains, the pore
half width a(x,t) is assumed to oscillate about the static shape
a(x) as

a(x,t) = a(x)[1 + Eeiwt] (2)
where € << 1. Although the motion in (2) is in the y direction, the
y-component'of fluid velocity is neglected in the 1-D approximatiom.
However, the oscillation in (2) results in a volumetric oscillation
which causes a pressure gradient and a lateral displacement or flow of
the fluid.

3
At any station, x, with local pressure gradient 5%, the solution

of equation (1) for (approximately) parallel-plate flow is given by

cosh( %?—y)

u(x,y) = :3§é§l~§i; 1- — sV = n/p (3)

COSh('TT a(x))

The weak x~dependence is contained in P(x) and a(x). The explicit
time dependence is dropped here and in the remaining derivation since
all quantities go as eimt. Since the flow is incompressible, the net
flow at x must be equal to the rate of change of volume A(x) of the
portion of the pore to the right of x. Hence

a(x) .

I ux,y)dy = -A(x) (4)
-a(x)

and we can solve for the pressure gradient from (3) and (4):

iwp

x) z (5)
2a I:l —%ﬁ tanh\/l—\l;’-aJ

where

AGx) = 2 —a-a-t-"a(x,c)dx.

O M
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Figure 2. Liquid drop subject to oscillations of pore walls.
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By combining (3) and (5) the flow field is obtained:

/iw
cosh v 7

1 - —
. cosh\/——(2 a
ux,y) = 2L . Y (6)
SRy ey £op
a,/iw Vv

The energy dissipation & for the entire pore during one cycle is
found by solving for the shear stress T = n g% s and integrating the

energy dissipation density over the period and the volume of fluid:

0 = J [ g ToThILdV
VT
3 md D _Ads
TITw T R ™

where * means complex conjugate and R(x) is given in appendix B.

To find the peak elastic energy stored in the rock during oscilla-
4 tion of the pore we use the Betti-Rayleigh reciprocity theorem. The
theorem stétes that for a body acted upon separately by.two sets of’
tractions, the work done by the first set of tractions acting through -
the displacement produced by the second set of tractions is equal to
the work done by the second set of tractions acting through the dis-
placements produced by the first set ofhtractions.

In the derivation that follows we divide the rock into elements
of volume, each containing a single pore. A uniform traction is applied
to the boundary of each volume equal to the peak stress from the
propagating wave., TFor cracks oriented at some arbitrary angle with
the direction of propagation the applied traction can be resolved
into normal and shear components of stress in the plane of the crack.
The crack compression from the normal component results in the fluid

flow and attenuation derived above. The crack shearing from the shear
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component of stress results in the flow problem to be treated in a
later section. (In most cases of interest the shear dissipation will
be negligible.) To find the stored energy, W, for the arbitrarily
oriented crack both components of stress must be considered. Jaeger
and Cook (1969, p. 313) show in detail how this energy varies with
orientation for the simple case of a dry crack and how to sum over

a random distribution of orientations. In our problem the crack has
a nonuniform internal fluid pressure distribution given by equatian (5)
which will modify the energy W from the simple dry case. We will
only solve for the case of cracks perpendicular to the plane-wave
propagation, in qrder to determine the first;order fluid effects on
propagation. However, in principle, variation with orientation can
be found by repeating the derivation which follows, keeping careful
note of the resolved components of stress, in a fashion analogous

to Jaeger and Cook. We expect that this would result in only a small
perturbation on our results.

Walsh (1965a, b) discusses the difficulties and uncertainties
associated with choosing the uniform stress vs. a uniform strain
boundary condition, as well as the difference between the penny-shaped
crack and a two-dimensional crack in plane strain or plain stress.

He concludes, as we do, that the differences resulting from these
various assumptions are negligible compared to the overall level of
approximation in the analysis.

To apply the reciprocity theorem, consider the two sets of tractions
shown in figure 3. The system on the left is loaded by an externally
applied stress corresponding to the peak stress of the seismic wave.

The pore wall displacement s(x) is due to both the external stress O,
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Ci
q -3

Figure 3. Applying the reciprocity theorem to a rock under two
sets of applied stress. On the left only the induced pore pres-
sure is applied to the pore. On the right the applied stress o

is applied to the pore making the rock deform as though uncracked.
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tendiﬁg to close the crack, and the instantaneous intern#l fluid pressure
distribution P(x) tending to keep the crack open. The system on the
right has the same external stress 0 applied to both the external and
internal surfaces. In this case the system, at least externally,

behaves like a solid block without the cavity or fluid. Applying the

reciprocity theorem we can write

¢ g o g ¢
-2d [ P(x) i a(x)dx + 0 % V=o w V- 20d J g(x)dx (8)
-C -C

where V is the volume of the block, M is the elastic modulus of the

solid rock, M' is the effective elastic modulus of the rock-fluid

system and the dimensions ¢ and d are as given in figure 1. The
integral on the left is negligibly small and can be dropped (see
appendix D). For the case of plane wave propagation of a compressional
wave, M = A + 2u where U is the shear modulus and A is Lame's coefficient

for the intrinsic rock material. Rearranging equation (8) we get:

2 2 ¢

ag ag

-]2—'-34—'-‘[=—2]3—]:'4-V+0'd fS(x)dx (9)
-C

W=W_ +W
o P

The first term on the left is recognized as the total strain energy
of the composite system W, which we are seeking. The terms on the
right are the strain energy Wo of a comparable rock without porosity,
plus the energy contribution Wé due to the presence of the pore. 1In
order to relate the displacement S(x) to the applied stress O

it is convenient to consider a crack with uniform pore preSSure.F
(see appendix C). For very small stresses G and P (as for a wave)
the resulting small pore displacement and its integral Wp can be

written as
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o 2
5(x) » 2ERUE) 1oy (10)

~ T9(9-P)c’d(1-E)
P E - -

W

(11)

where £ is Poisson's ratio, E is Youngs modulus and P is a uniform pore
pressure. With nonuniform pressure P(x) the energy Wp can still be

written in the form (11) if the presSutelg is chosen as

—

c P [A*-D]
! < . ax (12)
-C c =X

o~
AN

where P(x) is obtained by integrating equation (5) (see appendix C).
Setting S(0) = ao€ we can solve for 0 in terms of P and € or

=P + sacE/Z(l-Ez). Finally, combining this with equations (9) and
(11) and setting A = U and § = 1/4 we arrive at the total strain energy
in terms of € and P:

8

W=7

Va22(1+--‘{’—)+ ()[3cxe(1+-"’)+()] (13)

Here Y is the porosity and o, is the crack aspect ratio.
The specific dissipation function Q_l can now be given by combining

equations (7) and (13)

D s
3 _d ; AA*R(z)
-1 5 5“”5 é aa(x) x
Q = = ~mr- = (14)
W Buve %e? (14 %)+“6—V(% ) [0, £+ "’6)+(§)]

Results: The Parallel-Walled Pore

Consider the specific example cf a pore where a(x) is approximately
a constant (i.e. a (x) = ag) over the region occupied by the drop of

length 2D. Here R(z), where z = a(x)vw/2v, is independent of x, and
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A(x) = +2xeagige "t

Equation (7) can easily be evaluated to give the
energy dissipated per cycle:

243
0 = AED gz) : (15)

The pressure distribution P(x) is obtained by integrating equation (5)
and taking the real (in phase) part:

2
P(x) = Re [/ —g% ix = 9’—299 (D*-x%)Y (2) (16)

where Y(z) is given in appendix B. Using equation (12) we get finally
the equivalent uniform pressure P that appears in the formula for W:

2
= _ WED 2
P = 5= cPyY(2) (17)

where Y is also given in appendix B. The attenuation Q“l can be found
by replacing these simplified forms in equation (14).

A plot of Q_l vs. z and w for the parallel walled pore is given
in figure 4. The most striking feature'ig the sharp peak at w = W,

and the rapid fall off at both high frequencies, where Q-1 2 w—5/2’

. w. This high frequency result must

and low frequencies, where Q-
be used with caution since for certain geometries the assumption of
incompressibility (appendix A) is violated before such high frequencies
are achieved. For most applications however the frequencies of interest
are well within safe bounds.

Let us examine more closely the asymptotic behavior. Table 1
gives the high and low frequency forms of &, P, W, and Q‘.l based on
the limiting forms of R(z) and Y(z). The new parameters are B, the

volume concentration of liquid in the rock and Qg = ao/D, the aspect

ratio of the drop.
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Figure 4. The frequency dependence of Q-'l for the parallel

walled pore in compression.
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Physically, the iow frequency expressions (W << 2V/a2) correspond
to Poisseuille flow. That is, the inertial terms are negligible, and
the flow is governed by the balance between viscous shear forces and
the pressure gradient driving the flow. These viscous shear stresses
are proportional to w; the average dissipation goes as w?; and the
dissipation during one period, T = 27/w, varies as w.

The fluid pressure P, varies as nwdD?/a® at low frequencies.

The pressure-shear balance is obvious here since peak velocity = wéD/a,
shear stress ~ nwSD/a?, and the integrated shear force over the drop
length = nwdD?/a® this equals the change in pressure force over the
length of the drop = Pa. For the case of water, the low frequency
pressure is usually small compared with the stress in the rock.

Hence, at sufficiently low frequencies, the energy W is approximately
the energy of a dry porous rock, independent of w. The point at which
the pressure dependent (i.e. frequency dependent) terms in W become
comparable to the dry rock energy determines the position of the peak
in Qml and can be found by examining equation (13). This point occurs
at P/e = uac (see appendix B). Depending on the viscosity and pore
size, this point can occur either in the Poisseuille flow regime or

in the higher range of inertial flow. When within the Poisseuille
limits, the condition on P/e is equivalent to w, = 8T %-aca.

The condition for Poisseuille flow and therefore a condition on
the low frequency form of ¢ in table 1 corresponds to z < 1, w < 2v/a?
or f < v/ma®., For a water system vV = 0.0l cgs, so that £ < 0.003/a

where a?

is in centimeters and f is in hertz. For the case of joints
or fractures where a = 1 mm, the low frequency expressions are restricted

to frequencies below Q.3 hz; for pores or microcracks where a * 0.1 mm,

P U e VCR ORI e DA e Vi



152

the restriction is f < 30 hz. It would seem that for exploration
frequencies the low fréquency approximation is generally adequate.
However, where unusually wide cracks or high frequencies are encountered
(in the laboratory, for example) the cother forms should be used.

The viscosity always appears with frequency as the product Nw in
the poisseuille flow expressions (in table 1). This is é characteristic
of viscous flow that can be particularly useful. For éxample in the
laboratory, we can define nw as an effective frequency w' = nw and
measure the frequency dependence of liquid-solid systems by varying
either the real frequency w or the fluid viscosity.

The dependence of Q_l on crack shape and water content, given
by B/afzuc2 at the lowest frequencies is rather strong. Table 2
gives some numerical examples of Q—1 for several cases computed using
the lowest frequency formula in table 1. The trend from top to bottom
is to decrease each aspect ratio by a factor of 10. Although the total
fluid content has also decreased by a factor of 10 from the first to
last example, the attenuation has increased by three orders of magnitude.
This is expected since the dependence is on the square of each aspect
ratio and linear in fluid concentration. Examples 2 and 3 are for the
same rock, i.e. identical pore shapes, and total porosity. In this
case, the approxipate doubling in saturation gives a factor of 10
increase in attenuation due to the combined changes in B and Qe

Computed values of Q_l for some specific rocks, Boise Sandstone,
Bedford Limestone, and Troy Granite at 50 percent water saturation
and £ = 1.6 hz are shown in table 3. These are computed using the low
frequency formula and aspect ratio data taken from Toksdbz and others

(1976). To estimate the upper limit of attenuation we assume for

P
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Boise Sandstone

1 o,
1.8x107 % 1
6.9x10"% 1. x10°t
1. x107% 2.5%107°
1. x107% 2. x1073
1.5x10" 1.5%107°
2. x107% 1. %1073
1. x107* 5. x10”%
2, x107° 1. xi07%
Bedford Limestone

v a.

1. x107t 1.

2. %1072 1. x107t
2.5x107> 1, %1072
5. x107% 5. x107°
5. x107% 4, x1073
7 .xl()”4 3. xlO-3
6. x107% 2. %1077
4. x10”" 1.5%107°
5. x107% 1. %1073

. x10”

. x10°

. x10°

. x10°

Table 3

. x10

. x10

. x10

1.2x1073

2.5%10”%

2.5%107%

3.5x10" 4

3. x10-4

2. x10-4

2.5%10"%

5.4x10°
1.3x107°
6.2x107°
4.2x10°
3.3x10™"

4, x10~

5. x10°
1.7x1077
4.1x10°
1.8x10°
7.9x10°
1.7x107°

1. 100

A
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(Table 3 continued)

Troy Granite

¥ o o B Q!

1. x1073 1

5. x107% 1. x107%

1.5x1073 1. x1072 2. x1072 7.5%107% 3. %1078
5. x107° 5. x107% 1. x107°  2.5%107° 1.7x107%
7.5x107° 4. x107% 8. x107% 3.5%107° 5.8x10™%
1. x107% 2.5x1-"% 5. x107% 5. x107° 5.4x107°
5. x107° 1. x107% 2. x107% 2.5x107° 1. x1071

6 5 -5 6

5. x10° 1. x10° 2. x10 2.5x10"
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simplicity that all pores are oriented alike,'and that each pore 1s exactly
half or 90. percent filled with water. The contributions from the first
two pore shapes from each rock type are not computed because the quan-
titative reliability of the model is low for such large aspect ratios.
However, the trend indicates that smaller aspect ratios dominate the
overall behavior, almost independent of the porosity of each aspect
ratio group. The Q-l for the last two pore shapes for Boise Sandstone
and Troy Granite are calculated using equation (14) since for these
extremely small aspect ratios, the low frequency assumption of‘a
negligible fluid pressure used to calculate W breaks down, even though
the flow is still in the Poisseuille regime. All three rock types
show a similar sensitivity to saturation and a dominance of flatter
pores or cracks in determining the overall attenuation. Although the
three rocks are very different in nature, the population of small
aspect ratio cracks is somewhat similar in each.

The high frequency behavior of dissipation and attenuation,
table 1, is governed by the increasing importance of fluid inertial
stresses with respect to viscous stresses. In particular, the high
frequency limit of pressure is a balance between pressure gradient
*P/D and inertial stress =p(w2€D) where w?eD gives the acceleratiom.
The peak in Q—l occurs where the stored energy W transitions from the
constant dry rock value to the pressure dependent high frequency value.

As mentioned above this occurs at P/ec = Mo, . When the peak occurs in

3
/ 8muo
inertial flow, the P/e condition is equivalent to w_ = 8mua.” |
o —————T—

Pa
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Shear Component of Excitation

Consider once again the nearly parallel walled pore of width Zao
over the region occupied by the drop of length 2D. This time the pore
is excited by a pure shear in the plane of the pore as shown in figure 5.

The equation of motion is

du_, du
t - V5

with the boundary conditions on velocity of:

inget y = +a

u=
. iw
~iwse™t y

-a
o

at the upper and lower pore walls respectively. The flow field can

easily be found:

iw
§ sinh (yy \’) ot
u(y,t) = T _ (18)
sinh (a /%) .

The energy dissipated in the entire pore during one cycle is found

exactly as in the compressional problem and is given by

. /Zw /Zw
_ szwnGZDd sinh: 5 a + sin > a

® - (19)
shear Y 2/ W 2 /W 2/W 2f W
sinh /2v a cos /Zv a + COShv/;V a sin /Zv a
or in the limits of high and low frequency:
4mune?pad w << 2v/a?
@ = : (20)
shear - 4mw?né2nd /o w >> 2v/a?

2w
The relative importance of dissipation is shear and compression for
this.geometry is found by taking a simple ratio ¢ (compression)/é.(sheér)
with identical pores and fluid and equal amounts of peak pore displace-

ments. Using equation (20) and table 1:

st Ay S A e bt - R e
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1/af2 w << 2v/a? ‘ :
= (21)
® 1/3 a2 § >> 2v/a? '
shear A f

o ;
compression

It is clear that for small aspect ratios the dissipation is shear will
be many orders of magnitude smaller than for compression in either limit.
The interpretation of this is simple. The fluid velocity in the shear
case is approximately the pore wall velocity =wd. This gives an average
fluid shear stress of nwS/a. On the other hand, the fluid velocity
in the compressional case is on the order of :wG/afz, with a fluid
shear stress :an/afza. The flow in compression is amplified by the
aspect ratio.

We shoul@ emphasize that these analyses of dissipétion in shear
and compression refer to the shear and compressional components of
stress resolved on each individual crack. The results are not iden-
tically the dissipation that would be associated with S and P wave
propagation. For either type of wave, each crack depending on its
orientation, would have bofh a shear and compressional contribution
to energy dissipation in the fluid and strain energy stored in the

elastic matrix.

Other Geometries

The parallel pore is particularly useful in understanding the
characteristics of the model because the integral in equations-(6)
and (13) for compressional dissipation can very easily be evaluated.
For other simple pore geometries the integral can also be evaluated
if we work in the low frequency regime such that R(z) = 1.

Consider the two geometries shown in figure 6. In each case the

pore half width is given by a(x) = ao(x/c)n, n=1, 2, and the maximum

e i R DT, it ool
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Figure 6. Two simple drop geometries.' The upper drop is a

linear or triangular wedge. The lower drop has parabolic shape.
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pore displacement is §. Using formula (6) we first note that

A(x) = zao xn+l iwt
n nt+l
or .o 40282 2n+2 (22)
AA* = 5
cn (n+1)?
The dissipation ¢ is then
3muwe?v
S— n=1
O¢
¢ = (23)
4TMWe?V -
n= 2
%

This result compared with table 1 for the parallel pore suggests
that for low frequencies the fluid dissipatidn can be approximated for

a variety of geometries by

(24)
where g is a geometric factor which we have found to vary from 1 to

47 for the specific geometries studied. This rather weak dependence

on geometry suggests that the results derived for the parallel pore

have general applicability, particularly for order-of-magnitude behavior,

Comparison with Other Models

Perhaps the most comprehensive single treatment of wave propagation
incorporating dissipative fluid motion was presented by Biot (1956a, b).
His formulation assumes a fully saturated porous material and includes
the effects of fluid compressibility and coupled fluid and solid
stress. At low frequencies the relative fluid flow is assumed to
resemble Poisseuille flow in a flat or circular duct, while at higher

frequencies inertial terms are also included (laminar flow is always.
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assumed). This microscopic flow field is used only to establish a
frequency dependent proportionality between the average flow and the |
stresses transmitted to the solid rock. Details of pore shape and local
flow are thereafter neglected and lumped into parameters which relate
only the averaged solid and fluid motions on a scale much greater than
the pore size.

The elimination of local flow and the condition of complete liquid
saturation treated by Biot severely limit the amount of flow and
dissipation that can occur under wave excitation. White (1965, p. 133)
shows that for the saturated medium, the only sources of relative fluid
motion from the passing wave are viscous drag due to acceleration of
the solid with respect to the fluid and pressure gradients between the
peak and trough of the passing wave. His numerical example of a water-
saturated sandstone shows negligible dissipationm.

In our model we specifically neglect the large-scale acceleration
and diffusion and look only at the local flow. In this sense our
mechanism of dissipation is more a point property. In addition, the
undersaturation provides a strong local heterogeneity which causes
locally high pressure gradients and flow.

At low frequencies Q—l is proportional to w in both Biot's model
and ours, although the magnitude of attenuation is much greater in ours.
At higher frequencies the dependence is quite different. Biot's

. -1 s -1 X
expression for Q — varies as w ° while ours varies in a complicated

5/2

fashion toward w at very high frequencies.
Another model of attenuation in porous media is by White (1975).
His treatment resembles Biot's in that lumped parameters describe

the material and flow properties on a scale much greater than a pore
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dimension. Only low frequency viscous flow is considered. White
includes undersaturation by considering regions of dry rock containing
many pores imbedded in regions of saturated rock also containing many
pores. High pfessure gradients and flow occur at the contact between
wet and dry rock and result in large attenuation. At low frequencies
White's expression for Q"1 varies as w while at higher frequencies
(still within the Poisseuille range) Q-1 goes as w_l. A similar
dependence is predicted by our model for the two frequenecy ranges within
Poisseuille flow shown in table 1. The only physical comparison we

can make between the two models is to suggest that the contact region
between wet and dry in White's model is somehow similar to our descrip-

tion of the individual partially saturated pores.
Discussion

We have presented a simple model to describe the attenuation of
seismic waves in rocks with partially liquid saturated flat cracks or
pores. In this study the presence of at least a small fraction of a
highly compressible gaseous phase permits the fluid to flow freely
when the pore is compressed under seismic excitation. This leads to
viscous shearing in the fluid and high energy dissipation. In general,
the attenuation increases with increasing liquid concentration.
However, only partially saturated pores contribute, and as successive
pores saturate, the attenuation will fall off. In the limit of
complete saturation the flow is stifled and the attenuation is expected
to essentially disappear as is predicted by Biot's formulation.
Likewise, the dissipation from pure shear distortion of the rock, whether

completely saturated or not is negligible.
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For compressional waves the attenuation or Q_l is found to be
extremely sensitive to the aspect ratios of ;he pores and the liquid
droplets occupying the pores, with flatter pores and drops resulting
in higher attenuation.

Details of pore shape other than aspect ratio appear to have little
effect én the general behavior provided the crack width is slowly
varying over the length of the liquid drop.

A limiting factor in actual values of attenuation in the laboratory
and in situ is the distribution of liquid throughout the various shaped
pores. Our results indicate that a wide variety of rock types have
a sufficient number of flat pores to produce measureable attenuation
in priqqiple. However, if significaﬁt number of these pores are either
empty or completely saturated, the attenuation will drop. Factors
like temperature, surface tension (capillarity), and liquid and gas

pressure must be comnsidered.
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APPENDIX A
THE FLUID EQUATION OF MOTION

In our trea£ment of fluid flow within the individual pores of a
rock we assume that the fluid behaves as though incompressible. Usually
the principal requirement for this to be approximately true is that the
fluid speed be small compared to the speed of sound Vp (Batchelor, 1967,
P. 174). Our results indicate that the peak fluid velocity is on the

order of WeD, Then for incompressible flow we demand

[X¢
€ << = ——
weD VP p .

For water V_ = ]_03 m/sec and for strains € < 10-'4

this becomes

wD << 107 m/sec Al
A second requirement that we can impose is that the volumetric
strain due to fluid compression be small compared with the volumetric
strain imposed as a boundary condition, i.e.
P § '
—_— <L — =g
Kf 3

Our results give a peak fluid pressure of

2
WEe
IE;%;— w small
o
P o~
w?pD%e w large
Then the requirement becomes
nwep? nwd?
—— << g 3 =5 < K w small
a ‘K a £
o £ o
2°n2 K
WOD'E (¢ ¢ 3 w2p? <<-?? =v? w large

. - o
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These are more restrictive than Al. For water Kf = 2'101 dyne/cm2 and

n = 10—2 dyne—sec/cmz. Therefore we require:

EET << 2-10%% gec™t w small
£
wD << 105 cm/sec w large

Within these bounds of incompressibility then the equation of

motion for the fluid is (Batchelor)

where D/Dt = /5t + u*V. We will assume that n is constant with time
and position.

For two dimensional pore, G; = g% = (0, Furthermore if the pore

width is slowly varying, i.e., §-§§'<< 1 and the pore strains are very

small, then the flow is approximately unidirectional and we can neglect

Ju 3%u ,
the terms u = and 3%Z ° Hence the equation of motion becomes

u_ e, 3%
Pt = " TN e
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APPENDIX B

FREQUENCY-DEPENDENT EXPRESSIONS AND THEIR LIMITING FORMS

The frequency dependence of ® and P(x) is found as follows. The

flow field is given by equation (6):

cosh %ﬁy
L- 10
-A(x) cosh > a

u(x,y) = =
2a(x) 1- i‘\/:w tanh /—1)9- a

The shear stress T = n -g—-;l; is then

T(xay) = DAL Y. Sl v
2a {1- L -\)—- tanh /2 a] cosh ] a
a,/iw v o ARY

The average dissipation rate per unit volume of fluid is given by

2 [ W / / 2 [ W
1 o = wp AA* sinh 7y 7 cos? > Y + cosh? y sin? IR

2n 8a? T(2) cosh®z cos®z + sinh‘z sin z
where
T(z) = 1 - l|tanh z + tanh z tan®z - tanhzz tan z + tan z]
z 1 + tanh®z tan‘z J
+ 1 ‘tanh?z + tan?z
2z°] 1 + tanh®z tan‘z
= L
z a /55

Finally, integrating over the volume and period gives

® = ]7. TTdnAA*z sinh 2z - sin 2z dx
0 4a’wT(z) | cosh®z cos“z + sinh®z sin’z
3 md D Adx
=& —= [ =~ R(z)dx
2 W 0 a



168

R(z) = z sinh Zz - sin 2z
6T(z) | cosh®z cos’z + sinh“z sin‘z

The asymptotic expressions given in table 1 are found by noting that

at large z, sinh z ~ cosh z and at small z by expanding the trigonometric -
and hyperbolic functions in power series and dropping higher order terms.
Hence the definition of large and small z is z >> 1 and z << 1 respec~
tively or in terms of w: w >> %5-, w << %; .

The peak pressure P(x) is obtained by taking the real part of the

integral of equation (5):

9P _ A(x)iwp
o0x 1 /v [iw
2a[l - Y Ea-tanh 5 a]
X
P(x) = Re[P_ + f 2E dx]
o 0 ax

For the parallel drop we set A(x) = 2x€aoiw, and assume for simplicity
that the pressure at the edge of the drop, x = D, is zero, Po = 0,

This gives

2
= WEP 2 2 _1 /v fiw -1
P(x) = 5 (D°=x")Rell > Jim tanh Y al
2
= 9——25-3 (D2-x2)Y(z)
(cosh 2z + cos 2z) [(cosh 2Z + cos 2Z) -‘g;(sinh.22+-sin 22)]
Y(z) = - —
[(cosh 2z + cos 2z)~é%{sinh 2z + sin 2z)]% + [sin z - sinh z]?
2v

" To find the equivalent pressure P for the case of a drop centered in

the pore we plug this value of P(x) into equation (12):

2 D 0*-x) (D% - D]
P = LEC Y(2) 2 S SN € dx
2 T3 Jeo-x
_ wlepc?

2m Y1(2)
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where

2
v=18-22/1-& +02d-J1sut Y

The high and low frequency limits of Y(z) are found in the same manner
as R(2z).
The frequency at which the pressure dependent terms in W become

comparable to the dry rock energy can be found by examining equation (13):
W= 287\.1V0L2€2(1+9w) “V()[—as(1+ l)+<~)]

The second term equals the first at

In either limit Y << ac or Y >> ac this becomes

mird}

= UG
H c

although for noninteracting cracks we are restricted to Y < ac.
Setting Y = 1/2 and using the high and low frequency expressions-for

Y(z) from table 1 we have:

= oy ' small
E’ (o4
E = 2 2

_w__éEﬂS‘-__ w large

Then in terms of w the transition in W occurs at

8ﬂuac
w = ——H__— w small (Poisseuille)
8
w = [ —n w large (inertial)
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APPENDIX C
SHAPE APPROXIMATIONS IN CALCULATING ENERGIES

The separate calculation of ? and W assumes a certain degree of
uncoupling between the details of the fluid flow field aﬁd strain field
in the rock around the pore. In a rigorous approach the pore strain
€ in equation (2) is a function of x and is coupled to the fluid pressure
distribution P(x).

The general form for the dissipation ¢ is given by equation (7)

as a function of A where

. B i - '
A(x) = 2 5t a(x,t)dt

O M

This can be rewritten using (2) as
. X
A = 2iwe ¥t J a(x)e(x)dx
0

In our calculations for specific geometries we simplify the integral
by replacing €(x) by an appropriate average constant value € such that’
X

S a(x)dx
0

A = 2ipeei¥t

We further assume that this constant value of € is approximately the
strain that would occur for a uniformly pressurized pore deforming as
equation (10).

In general the pore wall displacement S(x) resulting from uniform
confining pressure and uniform pore pressure will depend on the details

of crack shape. However, Mavko and Nur (1977a) have shown for a broad

B RIS SN S N L S S
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class of 2-D flat crack shapes that for very small increments of loading,
as we might expect from a passing wave, the incremental change of pore

shape is elliptical in form, i.e.

da(x) _ 2c(1-E%) / x, 2
o E - (c)

Then we can approximate s(x) by

- Y - 2
S =2 (0 -F - =R 8D o &

which is equation (10). The maximum displacement is S(0) = 2(0-§3d(1-£2)/E.

Comparing with equation (2) the maximum displacement is a_€ so that we

set
2
2(0 =Pl =87 . ;¢
E o
Equation (8) shows that the energy W depends only on the integral
’ c
of crack displacement S = J S(x)dx. Hence, for calculating W any

approximation of‘pore wall deformation S(x) is valid asrlong as it has
the cofredt average valué‘g. Mavko and Nur (1977b) have showﬁ that for
a broad class of 2-D flat cracks the integrated aisplacement due to
pressure distribution P(x) is exactly the same as for a uniform pressure

P where P is an appropriately weighted average of P(x), equation (12).
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APPENDIX D

The pore pressure term in equation (8) can be shown negligible as
follows. Since the bulk modulus of water Kf is less than M, the modulus

of rock then

Cc Cc
2d S P(x) < a(x)dx < 2d [ P(x) Ki a(x)dx
' -C M -c f

In appendix A we require for the incompressible analysis to be valid
that P << EKf, then
C B(x c
2d S —é—-—l 0 a(x)dx << 2d [ oe a(x)dx
-c £ -c
But by equation (2), €a(x) = S(x):

c c

2d S og a(x)dx = 2d g J S(x)dx
-c -c
Therefore
c c

2d [ P(x) % a(x)dx << 2do0 [ S(x)dx
-c -c
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