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Abstract 

 
In recent years, computational rock physics has gained reliability in predicting the 

properties of rocks, mostly due to the use of advanced imaging and computing 

techniques.  We believe that now computational rock physics can be used to produce 

useful data and understand relations among rock properties, similar to lab and log 

data. Computational rock physics is a rapidly evolving field and as such requires 

careful quantitative analysis of the components of this technology:  resolution, digital 

sample size, thresholding of the image, as well as the effects of the scale of the 

computational simulation.   

Here we address these issues by utilizing various mathematical and statistical 

techniques.  We begin with the traditional concepts of representative elementary 

volume (REV), finest resolution, optimal thresholding; and establish the transport 

properties trends at these conventional settings and utilize them as the base case.  We 

then examine the transport properties trends, specifically, porosity-permeability and 

porosity-formation factor, in the conditions that are not optimal by traditional 

standards.  Particularly, we explore the transport properties trends for the sample sizes 
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smaller than the REV, for resolutions coarser than the technically achievable 

resolution and for the binary images obtained using thresholds far from their optimal 

threshold. 

We find that in these unconventional situations, the computed values of, e.g., 

porosity, permeability, and formation factor, diverges from those computed on 

optimally produced digital rock as well as from laboratory results.  However, the 

trends between rock properties computed on these non-optimally generated samples 

often form trends that favorably match laboratory trends and, as a result, are of 

practical value.  These results imply that, we can obtain physically meaningful trend 

from these non-optimally generated samples. This means that we can produce the 

transport properties trends using a small fragment of rock instead of multiple physical 

samples required for producing these trends using traditional laboratory methods.  

However, our analysis is not exhaustive.  For example, our range of sample sizes 

varies only from core scale to micro-pore structure. Also, the samples used in this 

study are fairly homogeneous sandstones.  It will be interesting to extend this study 

beyond the scales studied here and for more varied samples. However, these analyses 

are beyond the scope of this thesis.  
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Chapter 1 

Introduction 
“The use of simulation is an activity that is as natural as a child who 

role plays with toy objects. To understand reality and all of its 

complexity, we must build artificial objects and dynamically act out 

roles with them. Computer simulation is the electronic equivalent of 

this type of role playing.” - Fishwick 
1.1 BACKGROUND 

Transport properties of porous media, including the transport of electrical current 

and viscous fluid, are a subject of wide interest in science and technology.  A detailed 

knowledge of the transport properties of fluids through porous media is critical for the 

successful design, preparation, and application of adsorbents and membranes in many 

industrial as well as for environmental processes that cover a very broad range of 

specialties: geology, engineering, chemistry, and physics. (Wernert et al., 2010).  

They are also extremely useful properties in geophysics, especially in pollution 

migration, CO2 sequestration, ground water management, nuclear repositories, 

hydrothermal systems and petroleum reservoirs.   
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Historically, the research in the field of transport properties has been focused on 

relating these properties to a wide range of rock properties, such as porosity (Carman, 

1937; Archie 1942; Berg, 1970, Bloch, 1991), grain size or grain size distribution 

(Krumbein and Monk, 1942; Chilingar, 1964; Berg 1970; Beard and Weyl, 1973; van 

Baaren, 1979; Iverson and Satchwell, 1989), mineralogical composition (Marion et 

al., 1989; Ahmed et al., 1991), clay content (Baptist and Sweeney, 1954; Waxman 

and Smits, 1968; Clavier, Coates and Dumanoir, 1977; Sen and Goode, 1988; Revil 

and Glover, 1998), salinities (Baptist and Sweeney, 1954; Keller 1966, Chang et al.., 

1983), temperature (Keller and Frischknecht,1966; Matthess, 1982; Hem, 1985; 

Sorensen and Glass, 1987; Clesceri et al., 1998; ) and surface area of the grain space 

(Carman, 1937; Johnson et al., 1987; Sheng and Zhou, 1988; Schwartz and Banvar, 

1989).  Several investigators related these transport properties to the statistical 

properties of pore or grain (Prager, 1961; Berryman and Blair, 1986; Rubinstein and 

Torquato, 1989; Adler et al., 1990) while others related them to geometrical attributes 

of the pore space in thin sections (Koplik et al., 1984; Doyen, 1988; McCresh et al., 

1988).  Lastly, capillary pressure data has been related to transport properties 

(Payatakes et al., 1973; Dullien, 1979; Swanson, 1981; Thomeer, 1983; Katz and 

Thompson, 1986; Constantinides and Payatakes, 1989).  The transport properties 

relationships with different rock properties mentioned here were derived either 

empirically or by replacing the actual system with some sort of model, such as a 

system of interconnected capillaries (permeability) or a network of resistor (electrical 

conductivity).  While this simplification provides an approximate trend and provides 
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an understanding of general properties trends, it ignores the complex geometry of 

porous media which limits the accuracy of these results. 

1.2 COMPUTATIONAL ROCK PHYSICS 

With recent development in technology, it is now possible to reconstruct a 

realistic 3D digital rock image with complex pore microstructure and mathematically 

calculate its transport properties.  The absolute and relative permeability can be 

accurately calculated using numerical methods such as Lattice-Boltzmann and 

network modeling (Auzerais et al., 1996; Bakke and Oren, 1997; O’Connor and 

Fredrich, 1999; and Keehm, 2003). The electrical conductivity, on the other hand, can 

be calculated by using finite element method (Martyrs and Garboczi, 1992; Arns et 

al., 2001).  

A 3D digital rock model can be reconstructed by three different methods: (a) 

Granular scale modeling, (b) 3D geostaitstical reconstruction of 2D thin-section or 

SEM images, and (c) CT-scan of a small rock fragment.  

The first method, granular dynamic simulation involves simulating the grains in 

the reservoir and then mathematically subjecting them to different geological 

conditions such as compaction and diagenesis, (Cundall and Strack, 1979; Jin et al., 

2004).  The advantage of using a granular dynamic simulation is that we have 

complete control over the geological conditioning as well as the size and shape of the 

grains. This helps in making a correlation between rock properties and different 

geological conditioning.  Even though numerically simulating the rock in such a way 

has its advantage, it still is not an exact replica of a real rock.   
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The second method involves using a thin section image to mathematically 

generate the 3D digital binary rock from 2D thin-section of the rock (Keehm, 2003; 

Kameda, 2005).  This entails converting the colored 2D thin section image into 2D 

binary image and then employing geostatistical simulation to convert this 2D binary 

image to 3D binary image.  This method can provide a way for acquiring a 3D pore 

structure for the rocks when we do not have any core sample.  The third method, 

involves CT-scanning a small fragment of rock to produce gray scale 3D intensity 

image (Dunsmuir et al., 1991, Spanne et al., 1994 and Coker et al., 1996) which 

reflects the density of the sample.  This gray scale 3D image is converted to 3D 

binary image using image classification methods. The third method of CT-scanning 

the small fragment of rock provides the most accurate representation of the pore 

microstructure among all the three methods.  

In this thesis, we explore different classification methods for converting the thin-

section images to binary image but the primary focus of this work is on the 3D digital 

rocks obtained from the 3D CT-scan of rock samples  Although a 3D digital rock 

obtained using the 3D CT-scan of the rock sample provides an accurate representation 

of the pore microstructure model, these models are only a few mm in size, while the 

smallest scale of measurements in Geophysics are laboratory measurements that uses 

a core plug which is at least few cm in length.  A comparison of the trends obtained at 

the micro-scale using digital rock physics methods to laboratory measurements was 

performed by Keehm (2003), Kameda (2005), Kameda et al. (2006), Dvorkin (2009), 

Dvorkin and Nur (2009), and Dvorkin et al. (2009). They found them to correlate 

fairly well.   
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In this thesis, we expand their work by first defining the traditional representative 

elementary volume (REV) (Bear, 1988; Keehm, 2003) and calculating the transport 

properties at this scale. We then progressively reduce the sample size further until 

there is no pore connectivity in the sample. We calculate the transport properties at 

each step. We compare the transport properties trends hence obtained to the 

laboratory measured trends as well as the theoretical relations and found them in good 

agreement. 

In this dissertation, we also explore the change in the transport properties trends 

with threshold used to create 3D binary image from 3D gray scale CT-scan data of 

sandstones and the resolution of the binary image.  With change in threshold, the 

transport properties trends remain stable.  Moreover, we find that the change in the 

geometry of the binary images with change in threshold closely resembles diagenetic 

quartz overgrowth for the selected sandstone samples.  The change in resolution, on 

the hand, changes the surface area of the samples. This results in change in 

permeability of the sample, while porosity remains constant. We also observe a slight 

change in electrical formation factor as we change the resolution. However, all these 

changes, both in permeability and formation factor, are small and remain within the 

scatter of the data. 

1.3 CHAPTER DESCRIPTION 

The following is a brief description of each chapter in this dissertation.  

Chapter 2 compares five different image classification methods for classifying the 

thin-section images to obtain the binary image and porosity.  The image 
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classifications discussed in this chapter are fairly subjective. Hence, we also discuss 

different sources of errors involved.  

Chapter 3 compares five different image classification methods for classifying 

CT-scan images to obtain 3D binary cube. It also describes various data samples, and 

their image preprocessing, that are used in Chapter 4, 5 and 6.  

Chapter 4 explores the effect of change in sample size as it decreases below 

traditional REV on the transport properties, in particular their trends.  It also discusses 

a method to decrease the variability in the case of smallest sample size in order to 

produce a tighter trend that matches laboratory trend. 

Chapter 5 examines the effect of threshold used for the image classification on the 

transport properties and their trends.  We also compare the change in the geometry of 

the binary images obtained at different thresholds to the thin-sections of sandstone 

samples as well as some theoretical work on diagenetic geometry (Keehm, 2003). 

Chapter 6 examines the effect of resolution of binary image on the transport 

properties and their trends.  
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Chapter 2 

Comparing Classification Techniques 
for Thin-Section Images 

 
2.1 ABSTRACT 

Porosity and binary images of colored thin-section images, used for 

geostatistically simulating 3D digital rock, can be obtained by using classification 

methods that classify image pixels into pore pixels and grain pixels.  We compare 

four different classification methods on three different thin-section images.  The 

classification of thin-section images involves identifying blue colored pore pixels 

(due to blue epoxy) in the image.  As colors are quantitatively defined using color-

spaces, we employ two different color-spaces, RGB and HSV, to define the blue color 

pixels for these classification methods.  The four classification methods are evaluated 

based on two criteria:  (a) porosity matching, which involves comparing the porosities 

calculated by classification methods to the porosity obtained from the Glagolev-

Chayes point-counting method, and (b) classification error which involves selecting a 
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few known grain and pore pixels from thin-section and evaluating if they were 

correctly classified by the classification methods.  Using the above two criteria, 

examining a thin-section in the RGB color-space, in general, gives better results than 

doing this in the HSV color-space.  The discriminant analysis method performs better 

than the other methods.  However, the performance of the different types of 

discriminant analysis methods varies from sample to sample.  The diag-quadratic 

discriminant analysis gives the best result even though it does not always give the 

least error for all three samples but it is the only method that gives low error in all the 

cases.  Since the type of discriminant analysis method with least error varies from 

sample to sample, therefore we recommend that in order to obtain the binary image 

and porosity from a thin-section image, we should apply all the discriminant analysis 

method to the sample and evaluate their performance on the basis of second criterion.  

The second criterion is easier to implement than the first one, which is fairly operator 

dependent and ambiguous.  By using the second criterion we experience fewer errors 

than by using the first one.  All the methods examined here, except multi-component 

thresholding are fairly subjective and operator dependent.  Hence, we also discuss the 

possible sources of error associated with each method. 

2.2 INTRODUCTION 

In this chapter we examine different image classification techniques for 

converting a colored thin-section image to a binary image of pores and grains and 

possible sources of errors associated with them.  The classification of a colored thin-

section image is a crucial step in statistically generating a realistic 3D binary digital 
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rock volume from thin-section images (Keehm, 2003), which in turn affects the rock 

properties computed on the 3D digital binary rock thus obtained.  A classification 

procedure provides us with two critical pieces of information that are used as input 

for statistical conversion of 2D image to 3D volume: 2D porosity and the binary 

training image.   

The thin-sections are often prepared by epoxy impregnation, which gives the pore 

space a blue color (Figure 2.1).  To convert a colored thin-section image to a binary 

image, it is necessary to pick out the blue-colored pore pixels in the colored thin-

section image.  Since the color is such a crucial element here, we explore different 

color-spaces, which are an abstract mathematical model describing the way colors can 

be represented as components of numbers.  In this chapter, we work with RGB and 

HSV color-spaces.  The RGB color model (Jain, 1989; Gonzalez and Woods, 1992) is 

an additive color model that defines color in terms of combination of primaries (red, 

green, and blue), whereas the HSV color-space defines a color in terms of hue (tint of 

color), saturation (amount of grayness), and value (brightness). 

 

Figure 2.1.  Colored thin-section of a rock. The blue color in the image represents the pore space.  
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In this chapter, we compare RGB and HSV to investigate four classification 

techniques divided into two groups:  threshold-based classification and cluster-based 

classification.   

The threshold based classification for colored images is not straightforward.  We 

can convert the colored image to an intensity image and then obtain a threshold for 

this intensity image.  However, in this case, we do not use all the available 

information.  Instead, if we optimally threshold the histograms of each component in 

a color-space (e.g. R, G, and B components; or H, S, and V components) and 

combine the results to obtain a binary image, we can obtain a reasonable 

classification.  We call this method multiple component thresholding.  

The cluster based classification involves classifying the pixels into pores and 

grains using cluster analysis.  Cluster-based classification is further divided into two 

subgroups: (a) supervised learning techniques which utilize training data to classify 

the groups and (b) unsupervised learning techniques which do not need any training 

data.  Within the supervised learning techniques category, we explore five different 

types of discriminant analysis method (Hastie, 2001; Krzanowski 1988; Seber, 1984) 

and a feed-forward back propagating neural network (Bishop, 1995), while in the 

unsupervised learning technique we examine the K-means cluster analysis (Hastie, 

2001; Seber, 1984). 

We compare these classification techniques, threshold-based classification and 

different cluster analysis techniques, using two criteria.  The first criterion is to match 

a physically measured porosity to the digitally derived value (porosity error).  The 

Glagolev-Chayes point-counting method (Galehouse, 1971) is used to obtain the 
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porosity of the thin-section.  Then Van der Plas and Tobi (1965) analysis is used to 

obtain a 95% confidence interval.  If the porosity obtained from the classification 

technique falls in this range, we consider the technique to be acceptable.   

The second criterion involves a priori classifying a few pixels in the thin-section 

image as pore or grain pixels based on visual examination of the image and then 

comparing these pre-classified pixels to the classification obtained from different 

classification techniques.  The classification error of the classification technique is 

defined as the number of pixels classified incorrectly. 

Overall, using the RGB color-space gives better results than using the HSV color-

space.  Discriminant analysis methods perform better than other methods but the 

results for different types of discriminant analysis method vary from sample to 

sample.  The results of all the other methods also vary from sample to sample.  This 

can be attributed to the fact that all the methods except multi-component thresholding 

are subjective and require operator input.  These sources of error and their effect on 

the output associated with each method are also discussed in this chapter. 

The rest of the chapter is structured as follows. In section 2.3, we detail the four 

classification methods under examination.  In section 2.4, we present the results 

comparing different classification techniques based on the two criteria described 

above for different thin-sections.  In section 2.5, we discuss the possible sources of 

errors for the classification methods.  In section 2.6, we present our conclusions.  

Finally, Appendix A provides the details of the implementation of the Glagolev-

Chayes point-counting method for the various thin-sections used in this chapter. 
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2.3 CLASSIFICATION METHODS 

We use three different thin-section images in our analysis (Figure 2.2) to analyze 

four different classification methods.   

 

Figure 2.2.  The three thin-section images used for comparing classification techniques. Sample 1 is 

the same as the thin-section shown in Figure 2.1  

As discussed earlier, the four classification methods are divided into two groups: 

threshold based classification and cluster based classification.  The following section 

describes the methods in detail. 

2.3.1 Threshold-based classification 

As discussed in section 2.2, the colors in an image are expressed using 

components of the color model, e.g. R, G, and B components; or H, S, and V 

components.  Hence, we have three histograms associated with a colored thin-section 

image, one corresponding to each component, in a particular color-space. Figures 2.3 

and 2.4 show the intensity image of the three R, G, and B components; and H, S, and 

V components for a colored thin-section (Sample 1) and the corresponding intensity 

histograms of each component.   
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Figure 2.3.  The red, green, and blue components of the colored RGB image for Sample 1 with 

corresponding histograms. 

 

Figure 2.4.  The hue, saturation, and value components of the colored HSV image for Sample 1 with 

the corresponding histograms. 

In order to segment the colored thin-section image, we classify the intensity of the 

three components of a color-space into two groups, pores and grains.  We then 

combine all these classifications, by identifying a pixel as pore only if it is classified 
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as pore in all the three components of the selected color-space.  All the other pixels 

are classified as grains.  This is termed as multi-component thresholding. 

For classifying the component intensity images into pores and grains, we use 

Otsu’s (1979) method to obtain the threshold for the histogram of every component 

except for the hue component.  The hue component in the HSV color-space quantifies 

the shade of the color.  For the blue color the general hue range is from 0.5 to 0.75.  

However, the tint or the hue of the blue color changes from sample to sample (Figure 

2.2).  Hence, a subjective decision was made for the hue component for every sample.  

This decision becomes very important in samples like Sample 2 where the blue color 

is not really blue but cyan and hence, the peak of the pore pixels in the hue is slightly 

shifted (Figure 2.5).  The range of the hue chosen for the three samples is shown in 

Table 2.1.  

 

Figure 2.5.  The hue histogram of Sample 2 showing the peak of the pore pixels between 0.4 and 0.6 

(cyan range) instead of between 0.5 and 0.75 (blue range).  
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Table 2.1.  The range of the hue component used to identify the pore pixels for the three samples. 

Sample Hue Range 

Sample 1 0.50 – 0.625 

Sample 2 0.425 – 0.575 

Sample 3 0.60 – 0.70 

 

2.3.2 Cluster based classification 

The cluster analysis techniques assign similar observations into subsets or 

clusters.  We use these techniques to classify pixels of the thin-section image into 

pores and different grain clusters.  For each thin-section we first identify the number 

of different types of grains and pore clusters (e.g., for Sample 1 we identified six 

different types of grain clusters -- Figure 2.6).  We can now supply either training 

data that include the attributes of different clusters (supervised learning technique) or 

the number of clusters into clusters we wish to divide our image (unsupervised 

learning technique).   

2.3.2.1 Supervised Learning Techniques 

The supervised learning techniques require training data in order to train the 

algorithm.  Small regions of thin-section image corresponding to pore and different 

grains are selected to create the training data (Figure 2.6).  These regions define the 

pore and grain clusters in the RGB and HSV color-space.  Note that the number of 

clusters identified using RGB and HSV color-spaces are different as different sets of 

components see the image differently.  Table 2.2 shows the number of clusters 

identified for each sample. 
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Table 2.2.  The number of clusters identified in each sample for both the color-spaces.  

Sample RGB color-space HSV color-space 

1 7 4 

2 5 5 

3 6 6 

 

We compared two different methods, discriminant analysis and neural network, 

for classifying the pore and grain pixels.  

 

Figure 2.6.  The training data for Sample 1 in RGB and HSV color-spaces. 

Discriminant Analysis: Statistical discriminant analysis is a technique for classifying 

a set of observations into predefined clusters based on the multivariate attributes of 

the observations (Hastie, 2001; Krzanowski 1988; Seber, 1984).  Simply put, 

discriminant analysis method assumes that the attributes of observation (R, G, and B; 

or H, S, and V) form a vector space, and it draws the boundary between different 

clusters by considering either first statistical moment (linear) or first two statistical 

moments (quadratic) of the cluster.  Based on the statistical moments used to classify 

the cluster and how the covariance matrix is estimated, the discriminant analysis 

method can be divided into five different categories:  linear, diag-linear, quadratic, 
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diag-quadratic, and Mahalanobis.  Appendix B presents the covariance matrices for 

all the samples. 

Linear discriminant analysis (L) involves estimating the means for each cluster 

and a pooled estimate of the covariance in multivariate attribute space.  In other 

words, the distribution of various clusters of pores and grains in the attribute space is 

assumed to have same shape, while its mean varies from one cluster to the other.  

Discriminant methods implicitly assume Gaussian distributions, but may be applied 

to data with non-Gaussian distributions.  Even when data are not perfectly Gaussian, 

discriminant methods have consistently performed amongst the top ten statistical 

classification methods (Hastie, 2001). 

Diag-linear (also known as linear naïve Bayes classifier) discriminant analysis 

(DL) is essentially same as the linear discriminant analysis method.  However, it 

assumes that different attributes of a cluster are independent of each other, i.e., the 

value of one attribute, say a red component, does not have any bearing on the value of 

another attribute, say a green component.  This means that the covariances of the 

attributes are zero, which also means that only the diagonal elements (variance) of the 

pooled estimate of covariance matrix are non-zero. 

The quadratic discriminant analysis method (Q), on the other hand, fits a Gaussian 

distribution with covariance estimates stratified by group. This implies that the 

distribution for all the different clusters of grains and pore have a different shape, as 

well as a different mean in the attribute space. 

Diag-quadratic (also known as quadratic naïve Bayes classifier) discriminant 

analysis method (DQ) is the same as the quadratic discriminant analysis except it 
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assumes that different attributes of a cluster are independent of each other. Hence, 

each covariance matrix estimated for different clusters has zero non-diagonal 

elements.  

The Mahalanobis method (M) uses Mahalanobis distances with stratified 

covariance estimates.  The Mahalanobis distance is the distance between two N 

dimensional points scaled by the statistical variation in each component of the point.  

For example, if x and y are two points from the same distribution which has 

covariance matrix C, then the Mahalanobis distance is given by 

)()'(),( 1 yxCyxyxr −−= −  (2.1) 

Neural Network:   A neural network is a mathematical model or computational model 

used for various applications like regression analysis, classification and data 

processing.  It consists of a set of highly interconnected entities, called nodes or 

neurons which process a weighted set of inputs to produce an output.  The weights for 

input are dynamically calculated during the iterative learning process (also called 

training the net) in which the observations of training data are passed one at a time to 

the network.  For example, when a neural network is used for classification, it 

processes observations one at a time, by comparing neural network’s classification of 

the observation (which in the beginning is arbitrary) with the known classification of 

the observation. The errors from the initial classification of the previous observations 

are fed back into the network at the successive iteration step and the weights of the 

input neurons are adjusted to minimize the error.   

There are many types of neural network algorithm available, e.g., feed-forward 
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neural network, radial basis function network, Kohonen self organizing network, 

recurrent networks, stochastic neural networks and modular neural networks (Rojas, 

1996).  We exploit only the feed forward algorithm in this study since it is the 

simplest type of neural network.  In this network the information moves in only one 

direction, forward. There are no cycles or loops in the network.  It has a layered 

structure:  one input layer, at least one hidden layer and one output layer. 

A neural network can be trained using different algorithms, such as back-

propagation algorithm, evolutionary computation methods, simulated annealing, 

expectation maximization (Rojas, 1996).  We use the back propagation method to 

train our network.  It is one of the most commonly used training algorithms.  It is a 

supervised learning method which implements the gradient descent leaning rule, also 

known as delta rule.   

To summarize, in this study we exploit a feed-forward, back-propagating neural 

network (Bishop, 1995).  The feed-forward algorithm used here contains two hidden 

layers with three and n nodes (three is the number of the components of the color-

space while n is the number of clusters we wish to classify our image into).  The 

parameter n represents the number of grains and pores (clusters) as identified in the 

training data, and hence it may be different depending on the color-space used.  For 

example, for Sample 1, for the RGB color-space, we identify six different types of 

grains and one pore or seven clusters, while for the HSV color-space we identify 

three different types of grains and one pore or four clusters (Figure 2.6).   

The neural network is trained using the same training data as used for the 

discriminant analysis methods to classify the thin-section. However, different 
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instances of training give a slightly different classifier, and hence a slightly different 

output.  In order to be statistically accurate, we obtain the classifications from 10 

different classifiers obtained by different training instances.  The mean and standard 

deviation of these 10 classification results are considered while discussing the neural 

networks.  

2.3.2.2 Unsupervised Learning Technique 

The K-mean clustering is an unsupervised learning technique for dividing 

 

n-

objects into k clusters (k <  n) based on their attributes.  It assumes that the object’s 

attributes form a vector space.  The task is to divide the objects into k clusters such 

that some metric relative to the centroids of the clusters is minimized.  Various 

metrics can be used, such as the maximum distance to the centroid for any object, the 

sum of the average distance to centroids over all clusters, the sum of variance over all 

the clusters, or the total distance between all objects and their centroids.  Here we 

minimize the squared Euclidean distance measured in the attribute space.  The 

number of clusters, k, was kept the same as that of the number of clusters identified 

for the training data in the supervised learning techniques. Hence, for Sample 1, in 

RGB color-space, we identify seven clusters while in HSV color-space, we identify 

four clusters. 

2.4 RESULTS 

All four classification techniques are used to obtain binary images of three thin-

section images.  We then calculate the porosity as the ratio of number of pore pixels 

to total pixels. We compare different classification methods using two criteria as 
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discussed in section 2.2. 

2.4.1 First Criterion: Porosity Error  

The first criterion evaluates the error associated with each sample by comparing 

the point-count measured porosity to the porosity of the thin-section samples obtained 

using each of the method discussed earlier in this chapter.  Henceforth, this will be 

termed porosity error.  Figure 2.7 shows the absolute error for each sample calculated 

using the following equation: 

( ) 100×−= PCSimError φφ  (2.2) 

where ϕSim (in fraction) is the porosity of thin-section obtained by a classification 

method and ϕPC (in fraction) is the point-count porosity of the thin-section. 

Figure 2.7 also shows the 95% confidence interval around the zero error which is 

calculated as +2σ and -2σ (Van der Plas and Tobi, 1965) for each sample, where σ is 

the standard deviation associated with the point-count porosity.  It is calculated using 

the following equation (Van der Plas and Tobi, 1965):  

n
pp )100( −

=σ  (2.3) 

where p is the volume percent of a fraction and n is total number of points counted.  If 

the error associated with the method lies within this interval, it is considered as an 

acceptable method for classification of the thin-section. 

In general, we observe a negative porosity error for most of the methods.  This 

implies that in most cases, porosity estimated by the classification methods is lower 

than the porosity estimated by point count method. 
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In particular, for the RGB color-space, the porosity errors of quadratic and diag-

quadratic discriminant analysis method consistently lie within the confidence interval 

for all the samples.  However, these two methods not necessarily give the least error 

for all samples.  The method that gives least error varies from sample to sample, e.g., 

for Sample 1 diag-linear discriminant analysis method gives the least error, while for 

Sample 2 multi-component thresholding method gives the least error.  For Sample 3, 

linear discriminant analysis method gives the least error.  However, as quadratic and 

diag-quadratic discriminant analysis methods are consistent for all the three samples, 

we recommend them as the best methods for RGB color-space using the first 

criterion. 

For HSV color-space, the K-means clustering method consistently falls within the 

confidence interval for all the samples.  Again, like RGB, the method that gives the 

least error varies from sample to sample.  For Sample 1, the diag-linear discriminant 

analysis method gives the least error, while for Sample 2 K-mean method gives the 

least method. For Sample 3, neural network gives the least error.  Again, as K-means 

method is the only consistent method for this color-space, we recommend it as the 

best method for HSV color-space using the first criterion.   

Comparing RGB and HSV color-spaces, we observe that, in general, RGB color-

space give less error than the HSV color-space.  

This criterion of comparing the porosity obtained using classification methods and 

the point count method is not perfect.  The porosity calculated using point count 

method divides the pixels in two groups while the cluster analysis methods divide the 

pixels into ‘n’ different clusters, where n>2.  If like cluster analysis methods, the 
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point count porosity is calculated using multiple groups instead of two groups, the 

variance associated with the point count porosity will increase, which means more 

classification methods  will be in acceptable range. Hence, current analysis provides a 

conservative determination of acceptable methods.  

 

 



Chapter 2 

24 

 

Figure 2.7.  The error in porosity of thin-section as obtained using various methods when compared 

to the point-count porosity.  The solid horizontal line in each case represents the 0% error. The two 

horizontal dashed lines represent the 95% confidence interval.   

2.4.2 Second Criterion: Classification Errors  

The second criterion for quantifying the efficiency of classification technique 
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involves pre-selecting 100 known pore pixels and 100 known grain pixels in the 

colored thin-section image and then noting the percentage of these points that are 

classified incorrectly.  We call the percentage of incorrectly classified grain pixels the 

grain classification error, and the percentage of incorrectly classified pore pixels the 

pore classification error.  For the three thin-section images under examination Figures 

2.8 and 2.9 show the grain and pore classification errors in both color spaces, 

respectively.   

In general, we observe that grain classification error is less than the pore 

classification error for most of the methods. This implies that more pore pixels are 

misclassified as grain than the grain pixels misclassified as pore.  It means that 

calculated porosity will be smaller than the porosity of the thin-section.  This is 

consistent with the negative porosity error we observe in Figure 2.7.   

In particular, for RGB color-space, the diag-quadratic discriminant analysis 

method appears to be the best.  It does not give the least error in all the cases, but the 

error associated with this method remains in the lower range for all the three samples.  

For Sample 1, diag-linear discriminant analysis gives the least error, while for Sample 

2, diag-linear, quadratic, and diag-quadratic discriminant analysis methods perform 

equally well. For Sample 3, the diag-quadratic method shows the least error.  

For HSV color-space, none of the method gives small error for all the three 

samples.  For Sample 1, multi-component thresholding method gives the least errors`, 

while for Sample 2, k-mean cluster analysis gives the least errors.  For Sample 3, the 

quadratic discriminant analysis shows the least classification errors.   

Overall, the diag-quadratic method in RGB color-space gives the best result for 
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the three different samples amongst the methods examined here.  

 

Figure 2.8.  The grain classification error in the three samples for different methods and different 

color-spaces. 
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Figure 2.9.  The pore classification error in the three samples for different methods and different 

color-spaces.   

2.5 DISCUSSION 

The methods we examined for the estimation of porosity from the thin-section in 
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this chapter are fairly subjective.  This section discusses the possible sources of error 

associated with all the methods examined in this study.  As most of the errors 

discussed here are subjective and usually operator dependent, it is not possible to 

quantify these errors, however understanding the possible sources of error will enable 

the operator to minimize them.  

The multi-component thresholding methods are the only automatic methods 

discussed in this chapter.  However, as discussed earlier in section 2.3.1, this method 

is not entirely automatic for HSV color-space.  It requires a subjective decision from 

the user for the hue component, especially if pore pixels have a different tint of blue 

than usual.  This can be a source of error for this method.  

Furthermore, this method fails to consider all three components of a color-space 

together.  It calculates the threshold for individual components and then combines 

them.  It ignores the distribution of pores and grains in the multivariate space and 

instead considers the distribution in single variable space.  This forms another source 

of error for this method.   

The supervised learning techniques semi-automatically obtain the porosity of the 

thin-section.  The main source of error in this case is the training data supplied, which 

is obtained by visual examination of thin-section.  Figure 2.10 shows the change in 

the results of Sample 1 in RGB color-space with the change in the training data 

supplied for the discriminant analysis methods.  It only shows the change in the 

porosity error and pore classification error for the discriminant analysis methods since 

the grain classification error remains constant at zero in both the cases, and hence is 

not shown in the figure.  We observe a shift in the porosity error as well as pore-
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classification error when we change the training data.   

Apart from the errors due to training data supplied, the neural network 

simulations, as mentioned in section 2.3, return a different result for different training 

instances.  The standard deviation associated with these results is fairly large and 

hence, makes neural network an unreliable method for classification.  Moreover, the 

mean of these results gives a fairly large error for both the criteria when compared to 

other methods and hence, is not a reliable method for the classifications.  

 

Figure 2.10.  The effect of different training data on the porosity error and pore classification error 

calculated from the segmented images obtained using discriminant analysis methods for Sample 1 in 

RGB color-space.  Both porosity error and pore classification error show a shift in the results with 

change in the training data.   

For the unsupervised learning technique the main source of error is the number of 
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clusters supplied, which is again obtained by visual examination.  Figure 2.11 shows 

the effect of change in number of clusters supplied to k-mean cluster analysis on the 

three errors (porosity error, grain classification error and pore classification error) for 

Sample 1 in RGB color-space.  The change in number of clusters affects the 

classification process.  We observe that errors are highest for the two-cluster case but 

decreases rapidly as we increase the number of clusters.  However, the errors again 

increase slightly after showing a minimum error when number of clusters is four. 

 

Figure 2.11.  The change in the different errors for Sample 1 in RGB color-space as we change the 

number of clusters supplied to k-mean cluster analysis.  All the errors decrease as we increase the 

number of clusters from two to four, after which it again starts increasing slightly.  The final number 

of clusters (seven for Sample 1) is the same as the number of clusters supplied to the training data of 

supervised learning techniques. 

2.6 CONCLUSIONS 

In general RGB color-space gives better results than HSV color-space.  Hence, we 

recommend using the RGB color-space for image classification of thin-section 

images.  Discriminant analysis method performs better than the other methods 
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examined here.  However, the performance of the different types of discriminant 

analysis method varied from sample to sample.  Hence, we recommend all types of 

discriminant analysis method should be examined while converting colored thin-

section to binary image and their performance should be evaluated based on the 

second criterion that involves selecting the grain and pore pixels from the thin section 

and evaluating if they are classified correctly using the classification methods under 

examination. 

 

APPENDIX A:  POINT COUNT METHOD 

The Glagolev-Chayes point-counting method is used to obtain the porosity of the 

thin-section.  The counting intervals, hence the grid used for point counting varied 

between different images.  The counting intervals (grid spacing) for each were chosen 

after visual examination of the largest grain size in each image (Table 2.3).  In few 

cases, the numbers of points counted were fewer than 200 points.  In those cases, the 

thin-section image was rotated 180o and counted a second time as suggested by 

Livingood (2009). 

Table 2.3.  Point-counting parameters for the three thin-section images. 

Image Counting Interval 
(pixels) 

Number of 
points 

Sample 1 50 × 50 192 

Sample 2 130 × 130 192 

Sample 3 75 × 75 285 
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The errors associated with estimating a volume fraction using point counting 

method have been explored widely in the literature.  In this study we include the 

random error associated with the point-count method due to counting as discussed by 

Van der Plas and Tobi (1965).  Halley (1978) detailed errors associated with the 

estimation of porosity in thin-section in particular.  According to him, there are two 

main sources of error in this case:  (a) inclusion of submicroscopic porosity in solids 

and (b) edge effects caused due to the finite thickness of thin-section.  The error due 

to submicroscopic porosity can be decreased by a priori knowledge of the pore size 

distribution in the rock under examination.  The error due edge effect can be 

minimized by reducing the thickness of sample under examination. However, the 

error due to the edge effect increases substantially when (a) the grain size decreases, 

(b) the edge roughness increases, and (c) grain packing becomes tighter due to 

presence of small grains.  Hence point count method can’t be used to reliably estimate 

the porosity of a thin-section of tightly packed small grains.  The operator error 

associated with the point-count method is usually negligible compared to other errors 

(Solomon, 1963). 
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APPENDIX B:  COVARIANCE MATRICES 

Table 2.4.  Covariance matrix for Sample 1: RGB color space. 

 R G B 

R 0.0850 0.0541 0.0308 

G 0.0541 0.0532 0.0497 

B 0.0308 0.0497 0.0640 

Table 2.5.  Covariance matrix for Sample 1: HSV color space. 

 H S V 

H 0.0705 0.0155 -0.0025 

S 0.0155 0.0739 -0.0218 

V -0.0025 -0.0218 0.0522 

Table 2.6.  Covariance matrix for Sample 2: RGB color space. 

 R G B 

R 0.0147 0.0129 0.0117 

G 0.0129 0.0133 0.0123 

B 0.0117 0.0123 0.0126 

Table 2.7.  Covariance matrix for Sample 2: HSV color space. 

 H S V 

H 0.0443 0.0029 -0.0099 

S 0.0029 0.0109 -0.0072 

V -0.0099 -0.0072 0.0116 
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Table 2.8.  Covariance matrix for Sample 3: RGB color space. 

 R G B 

R 0.0704 0.0608 0.0203 

G 0.0608 0.0551 0.0206 

B 0.0203 0.0206 0.0170 

Table 2.9.  Covariance matrix for Sample 3: HSV color space. 

 H S V 

H 0.0230 0.0145 -0.0052 

S 0.0145 0.0665 -0.0125 

V -0.0052 -0.0125 0.0164 
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Chapter 3 

Comparing Classification Techniques 
for CT-scan Data 

 

3.1 ABSTRACT 

Gray-scale density images obtained by CT scans of rock samples can be 

converted into binary images of grains and pores using classification techniques.  The 

classification technique is applied to each 2D slice of a 3D gray-scale image to 

produce 2D binary sections.   We analyze five different classification techniques for 

CT scan images of two packs of loose sand and a sample of the Fontainebleau 

sandstone.  The classification error of each method is quantified by applying it to 

randomly selected CT-scan slices to find whether the method correctly classifies 

pixels as a grain or a pore where we are certain that it is the grain or the pore.  The 

porosity obtained for 3D binary digital rock by applying the classification techniques 

is also compared to the laboratory measured core plug porosity.  The discriminant 

analysis gives the worst results for the samples compared using both the criteria 



Chapter 3 

36 

explained earlier in this abstract.  The quality of the results obtained using 

Rosenfeld’s method fluctuates depending on the sample and the criteria and, hence, is 

not a reliable method.  Riddler’s and K-mean methods give fairly good results; 

however, Otsu’s method gives the best results for the samples compared using both 

the criteria.  

3.2 INTRODUCTION 

In this chapter we compare different classification techniques for the gray scale 

CT-scan image (or intensity image) in order to identify the pore space and obtain a 

binary image.  The 3D CT-scan image is a set of closely spaced consecutive 2D 

slices.  For simplicity, we concentrate on a few randomly selected 2D CT-scan 

images instead of all the 2D slices in the 3D set.  The classification of the CT scan 

images is a crucial step since it may strongly affect the rock properties computed on 

the 3D digital binary rock thus obtained.  Although there are other classification 

methods (e.g., watershed and edge detection methods), here, we concentrate on 

simpler classification techniques: classification by thresholding and classification by 

cluster analysis. 

Once we identify the optimal classification method, we can use it on all the 2D 

images in the 3D set to obtain a 3D binary image of pores and grains.  

The intensity in the raw CT-scan images corresponds to the X-ray attenuation, 

which in turn reflects the density and atomic number of the material (Figure 3.1).  

This is why dense minerals, such as pyrite and dolomite, appear bright, quartz appears 

darker, and the pores appear almost black.  The challenge in classification is to draw 
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appropriate and realistic sharp boundaries between grains and pores in a raw image 

where these boundaries are usually smeared.   

 

Figure 3.1.  3D rendering of raw CT-scan cubic image of unconsolidated sand (courtesy Ingrain). 

There are two possible criteria for selecting the optimal classification technique.  

One criterion is to match physically measured total porosity with the digitally derived 

value.  As the samples under examination are fairly homogeneous, we can safely 

assume that these two porosity values should be close to each other. The digital 

porosity is computed as the ratio of the number of pore voxels to the total number of 

voxels in the image. 

The second criterion is to a priori classify selected pixels in the image as pores or 

grains (by making a decision based on visual examination of the image) and then 

apply formal classification techniques to match this classification.  The less the error 

of this matching the better the classification technique.  This criterion is arguably 

valid but not entirely objective since the a priori classification is operator-dependent 

and can be ambiguous, especially at the transition bands between the grains and the 
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pores. However, the operator-based errors are usually small (Van der Plas and Tobi, 

1965). 

We use a combination of the two criteria to identify the optimal classification 

methods.  Note that in case of the first criterion, the physical objects compared (core 

plug and 3D digital rock) are different, and hence we do not expect the porosities to 

match exactly, yet they should be close to each other. On the other hand, in the case 

of the second criterion, we compare the same physical object (the 2D slices), so we 

can expect the classifications to match closely. 

We use these two criteria to compare the five classification techniques divided 

into two major groups: thresholding techniques and cluster analysis techniques.  

Unlike thin section image classification, the gray-scale CT-scan classification 

involves only one variable which makes it ideal for exploring different thresholding 

techniques.  In the thresholding group we explore three techniques: (a) Rosenfeld’s 

(Rosenfeld and Torre, 1983); (b) Riddler’s iterative thresholding method (Riddler and 

Calvard, 1978) and (a) Otsu’s (1979) method.  In the cluster analysis group, we 

explore the following two techniques: (a) the K-mean clustering method (Hastie, 

2001; Seber, 1984); and (b) the discriminant analysis method (Hastie, 2001; 

Krzanowski 1988; Seber, 1984). 

Amongst the techniques compared here, we find that the Otsu’s method is most 

accurate for all the samples.  Riddler’s and K-mean methods follow closely.  

Rosenfeld’s method works well for one of the sample examined here but it gives large 

errors for the other samples.  Discriminant analysis method does not give accurate 

results for any case examined here.  
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The rest of the chapter is organized as follows.  In section 3.3, we describe the 

CT-scan samples and their pre-processing, which we will use in the rest of the thesis.  

In section 3.4, we describe the five different methods compared here.  In section 3.5, 

we present our results comparing all the methods using the two criteria described 

above for the three samples.  In section 3.6, we conclude the chapter with the 

recommendations to be followed in next three chapters. 

3.3 DATA DESCRIPTION AND PRE-PROCESSING 

In this thesis we work with the CT-scanned images of three different rocks.  3D 

Computational Tomography (CT) of rock core sample images the rock fragment and 

yields a set of 2D intensity images. The intensity of these images corresponds to the 

X-ray attenuation, which in turn reflects the density and atomic number of the 

material (Ketcham and Carlson, 2001).  

In this section, we detail the rock samples used in this study as well as describe 

the necessary image pre-processing of the intensity image. 

3.3.1 Data Description 

We use two types of clastic sediment:  (a) two reconstructed samples of loose 

sand —beach sand from Pomponio Beach, California (PB) and coastal dune eolian 

sand from San Gregorio, California (SG); and (b) one Fontainebleau (FB) sandstone 

sample.  The first two samples were prepared by Kameda (2005) by mixing loose 

sand grains with epoxy, compacting these aggregates and letting the epoxy solidify.   

The Fontainebleau sample was cut from a large fragment of Fontainebleau 

formation (France), which is an early Oligocene (36–27 Ma) unit, 50–80 m thick, of 
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fine-grained, well-sorted, quartz arenite (Cooper, 1994; Thiry et al., 1988).  The 

Fontainebleau formation is a pure quartz formation which makes it ideal for 

experimentation and hence, it is an extensively studied formation.  The formation has 

several laterally extensive quartz-cemented horizons which is responsible for a 

variable porosity ranging from 7% to 15%. 

 

Figure 3.2.  Selected 2D slices of the samples used in this thesis.   

The PB and SG samples were scanned at University of Texas, Austin.  The details 

about the CT-scan can be found in Kameda (2005).  The FB sample was scanned at 

Ingrain.  The details about the CT-scan can be found at their website 

(http://www.ingrainrocks.com/).  

All three samples were CT-scanned at a resolution high enough to reveal the 

geometries of the pore space and mineral matrix.  However, the resolution of the FB 

sample is different from the PB and SG samples as they were CT-scanned at different 

locations.  Figure 3.2 shows selected 2D slices for all the three samples.  Note this 

figure shows the circular slices of each sample.  For all the analysis, we need a 3D 

digital rock cube and hence, from these circular slices, we extract the largest possible 

square.  The resolutions, the size of largest square area extracted, and the number of 
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slices for each case are shown in Table 3.1.  The size of the largest square and 

number of slices in turn define the size of the largest 3D digital rock we can obtain 

using the CT-scan data.  

Table 3.1.  The size of largest 3D digital rock obtained from CT-scan data and the resolution of CT-

scan data for the three samples. The resolution is the size of one pixel in mm.  

Sample Resolution Largest square 
size (pixels) No. of slices 

PB 0.01477 mm 725 by 725 522 

SG 0.01460 mm 725 by 725 522 

FB 0.00234 mm 600 by 600 800 

 

Kameda (2005) measured the porosity, permeability, and grain size distribution of 

the core plugs of the PB and SG in the lab. Gomez (2009) measured the porosity, 

permeability, and electrical conductivity of the FB sample (core plug GW28 in 

Gomez, 2009).  The grain size for the FB sands has been reported to be uniform at 

250 microns (Bourbie and Zinszner, 1985).  The laboratory measured parameters for 

the three core plugs are shown in Table 3.2. 

Note the high porosity and permeability of the PB and SG samples.  Since both 

the samples were artificially created from loose sands, they both are very near to the 

critical porosity state (~ 0.4).  
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Table 3.2.  Laboratory measured grain size, porosity, permeability, and electrical formation factor as 

measured by different researchers for the three samples. 

Sample 
Mean grain 

size 
(microns) 

Porosity 
(fraction) 

Permeability 
(mD) 

Electrical 
formation 

factor 
Measured by 

PB 437 0.34 58400 N/A Kameda, 2005 

SG 392 0.39 50000 N/A Kameda, 2005 

FB 250 0.18 896 17.32 Gomez, 2009; Bourbie 
and Zinszner, 1985 

3.3.2 Image Pre-processing 

The PB and SG samples do not require any image processing and are used as such 

in our study.  

The FB images, on the other hand, have speckle noise which is a random, 

deterministic, interference pattern in an image (Figure 3.3).  We need to remove the 

speckle noise from these images in order to obtain a 3D digital binary cube.  The right 

panel of Figure 3.3 shows the resulting speckled binary image if we don’t apply any 

noise reduction technique to remove the “salt and pepper” from the images.   
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Figure 3.3.  A small area (200 × 200 pixels) of a FB CT-scan slice (left) and converted binary image 

without any image processing. 

We compare common adaptive filters to remove the speckle noise.  Specifically, 

we apply the following 9-neighbor 2D adaptive filters: median filter (Marion, 1991), 

Frost filter (Frost et al., 1981) and Kuan filter (Kuan et al., 1987) to the image.  The 

median filter calculates the median of all the neighboring entries (in this case, 9 

neighbors) and assigns it to the pixel.  The Frost filter is an adaptive Weiner filter that 

is based on multiplicative noise model. It uses local neighborhood to calculate the 

local statistics (local mean and variance) which in turn is used to calculate the 

weights.  The Kuan filter is a local linear minimum mean square error (MMSE) filter 

based on multiplicative noise model.  It updates the noisy pixel by estimating the 

minimum mean square error using the local neighborhood mean and variance. A 

detailed comparative study of different filters used for suppressing speckle noise is 

given by Sudha et al. (2009). 

After applying these filters, we obtain binary images which are shown in Figure 

3.4.  For consistency, we use Otsu’s method to convert the gray scale images to 
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binary images.   

By visual inspection, we find that Kuan filter works best for these images. 

However, we still observe some speckles in the binary image.  In order to remove 

these remaining speckles, we apply a 27-neighbor 3D median filter to the 3D binary 

image obtained after applying the Kuan filter.  The final pre-processing steps and 

resulting images at every step is shown in Figure 3.5. 

 

Figure 3.4.  The comparison of binary images obtained after applying three different 9-neighbors 2D 

adaptive filters (Median, Frost, and Kuan) to the CT-scan image.  By visual examination, the Kuan 

filter gives the best result.  
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Figure 3.5.  The steps of the image pre-processing for CT-scan images of the Fontainebleau 

sandstone. The original image is first filtered using 9-neighbors 2D adaptive Kuan filter to reduce 

the speckle noise in the image (top-right). It is then classified using an optimal classification scheme 

(bottom-right). The set of binary images thus obtained is combined to form a 3D binary rock which 

is then filtered using 27-neighbors 3D median filter (bottom-left).  

3.4 CLASSIFICATION METHODS 

We examine different classification methods to convert an intensity image into a 

binary image.  As mentioned earlier in section 3.1, the classification schemes are 

divided into two groups: classification by thresholding and classification by cluster 

analysis. 
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3.4.1 Classification by thresholding 

Classification by thresholding involves analyzing peaks, valleys, and curvatures 

of the histogram of pixel values in an intensity image.  A histogram is a function 

 

f (x)  where 

 

x is the intensity value in the image and 

 

f  is the count normalized by 

the total number of samples (Figure 3.6).   

We explore three methods to find the optimal threshold by analyzing the 

histogram.  The methods we focus on are Rosenfeld’s convex hull method (Rosenfeld 

and Torre, 1983), Riddler’s iterative thresholding method (Riddler and Calvard, 

1978) and Otsu’s method (1979). 

Rosenfeld’s method is based on the shape properties of the histogram. The 

algorithm calculates the convex hull of the histogram, which is defined as the smallest 

convex set containing the histogram (O'Rourke, 1994).  The quick-hull algorithm 

(Barber et al., 1996) calculates the convex hull, 

 

H(x), which is then used to obtain 

the concavity of the histogram.  The difference between the convex hull and the 

original histogram 

 

H(x) − f (x)  defines the concavity of the histogram.  The highest 

concavity point is used as the threshold.  We modified this method slightly since the 

point of highest concavity in the CT-scans often lies either towards the beginning or 

towards the end of the histogram due to a sharp drop from the pore to grain peaks.  

Hence, we locate the two minima in the concavity curve and limit the search of the 

highest concavity point between these two minima (Figure 3.6).  This highest 

concavity point between the two minima of concavity forms the threshold for 

Rosenfeld’s method.   
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Figure 3.6.  Rosenfeld’s method. The blue vertical lines correspond to the histogram with 

normalized count or probability of the intensity; the dashed vertical lines are two minima in the 

concavity curve (bold red curve) – the maximum concavity between the two minima determines the 

threshold (solid vertical line).  The triangular shape (dotted lines) is the convex hull used to calculate 

the concavity as the difference between the convex hull and the histogram. 

Riddler’s iterative thresholding method is based on the assumption that a bimodal 

probability distribution function 

 

f (x)  is the sum of two Gaussian probability 

distribution models 

 

f1(x) and 

 

f2(x): 

 

f (x) = f1(x) + f2(x).  The initial threshold 

required to begin the iteration procedure is assumed to be the arithmetic mean of the 

intensities in the image.  At the following iterations, the means of each Gaussian 

model are computed and their arithmetic average is assumed to be the next threshold.  

The threshold at every iteration step serves to break the original histogram into two 

parts and two new Gaussian models are fit to these two parts. Iterations terminate 

when the difference between the two successive thresholds is sufficiently small.  In 

our analysis we terminate the iterations if the difference between two successive 
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thresholds is less than 10-10. 

Otsu’s (1979) method minimizes the weighted sum of within-class variance of the 

two clusters to establish an optimum threshold.  This minimization of within-class 

variance is equivalent to maximization of between-class scatter. 

3.4.2 Classification using Cluster Analysis 

Cluster-analysis methods separate pixels by sorting their intensity values into two 

clusters based on a different principle.  The two principles utilized here are: the k-

mean clustering method (Hastie, 2001; Seber, 1984) and the discriminant analysis 

method (Hastie, 2001; Krzanowski 1988; Seber, 1984).  

The K-mean clustering is an unsupervised learning technique for dividing n-

objects based on their attributes into k clusters (k < n), as explained in Chapter 2.  In 

this chapter, we use the squared Euclidean distance measured in the attribute 

(intensity) space for k = 2. 

The statistical discriminant analysis method is a supervised learning technique 

used to identify boundaries between different groups based on multivariate attributes 

of objects as detailed in Chapter 2.  In order to do so, a training data set of intensity 

values of two groups is supplied.  The criterion based on statistical moments of 

groups identified in training data is then used to categorize groups in the sample 

image.  In our implementation, the training intensity data supplied for the 

discriminant analysis was obtained from a randomly selected slice for each sample, 

by declaring a selected area as grain and another one as pore.  As our training data set 

has only one attribute, namely intensity, we only use linear statistical discriminant 
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analysis method for the present analysis.  The other statistical discriminant analysis 

methods (diag-linear, quadratic, diag-quadratic and Mahalanobis) gave worse results 

than the linear discriminant analysis for the selected 2d slices and hence are not 

presented in the current discussion. 

3.5 RESULTS  

The five classification techniques were used to obtain binary images of 2D CT-

scan slices.  Figure 3.7 shows the result for a randomly selected PB 2D slice.   

 

Figure 3.7.  The original gray-scale image of the PB 279 (top left) and its classified images resulting 

from the five classification methods as marked on top of each image.  Light pixels are grains while 

dark pixels are pores. 

As discussed earlier in section 3.2, the first criterion to evaluate the error 

associated with each sample is by comparing the laboratory measured porosity to the 

porosity of the 3D digital rock obtained using each of the method discussed.  Figure 
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3.8 shows the absolute error calculated using the following equation: 

 100×−= LabSimError φφ  (3.1) 

where ϕSim is the porosity of 3D digital rock obtained by a classification method and 

ϕLab   is the porosity of the core plug as measured in laboratory (Table 3.2). 

According to this criterion, Riddler’s, Otsu’s, and K-mean methods give results 

close to each other.  Otsu’s method gives lowest error among all the methods except 

for the FB sample.  However, the error in porosity obtained by Otsu’s method for the 

FB sample is reasonably small (~2%).  The errors in Riddler’s and K-mean methods 

for all the samples are fairly low as well.   

Rosenfeld’s method gives a low error for the FB and PB sample (~2% and ~1%, 

respectively) however it gives a high error (~8%) for the SG sample.  This high error 

in case of the SG is due to the oscillation in the one of the two peaks in the histogram 

for few of the SG intensity images (Figure 3.9).  The concavity curve for these 

samples does not provide an optimal threshold, and hence we observe a high error for 

the SG sample.  As the porosity calculated for the SG sample is higher than the 

laboratory measured porosity, we conjecture that the number of slices with erroneous 

high threshold is larger than the number of slices with erroneous low threshold. 

For all the samples, the errors are highest for discriminant analysis method.  This 

is predictable since we use the training data obtained from a single 2D slice to 

classify all the slices in the 3D CT-scan.  

Hence according to this criterion, Otsu’s, K-mean, and Riddler’s methods, in that 

order, give the best results and form possible candidates for the optimal classification 

scheme.  
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Figure 3.8. The error in porosity of 3D digital rock as obtained using various methods when 

compared to the laboratory measured porosity (Equation 3.1).  The x-axis shows different methods 

where Rf – Rosenfeld’s method; Rd – Riddler’s method; Ot – Otsu’s method; KM – Kmeans 

method; and DA – discriminant analysis method.   

 

Figure 3.9.  Rosenfeld’s method does not work for a few SG 2D slices as seen in the two examples 

shown above. In the first case the calculated threshold is lower than expected due to the oscillation 

in low intensity peak (corresponding to pore), while in the second case, it is calculated higher due to 

a small oscillation in the high intensity peak (corresponding to grain).  In the first case, the porosity 

calculated using the threshold will be lower than true porosity of the 2D slice while in the second 

case the porosity will be higher than expected.  The legends for this figure are same as Figure 3.6. 
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The second criterion to quantify the efficiency of each classification technique 

uses 50 known grain and 50 known pore pixels in the randomly selected slices and 

then noting the percentage of these points that were classified incorrectly.  The 

percentage of incorrectly classified grain pixels is henceforth called the grain 

classification error, whereas the percentage of pore pixels incorrectly classified is 

called the pore classification error.  Figure 3.10 shows the classification error of 

different methods for the three 2D slices.  

The pore classification error in each case for all the samples is 0%, while the grain 

classification error varies.  This means that in some cases when grain classification 

error is not zero, the porosity of the 2D slice is slightly over-predicted.    

Among all the methods, Otsu’s method shows the least grain classification error 

for all the samples.  In fact, it gives 0% error for the PB and SG samples while a 2% 

error for the FB sample.  A 2% error implies that out of 50 grain pixels identified by 

the operator, only one was misclassified.  This is an acceptable margin of error.  

Riddler’s and K-mean methods consistently give a 2% error for all the samples, 

while discriminant analysis gives the worst result for all the samples.  Rosenfeld’s 

method, on the other hand, shows a slightly higher error for the FB sample (~6%).   
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Figure 3.10.  The grain and pore classification error in the randomly selected 2D slice of three 

samples.   The x-axis show different methods where Rf – Rosenfeld’s method; Rd – Riddler’s 

method; Ot – Otsu’s method; KM – Kmean method; and DA – discriminant analysis method. 

Hence according to this criterion, Otsu’s, k-mean, and Riddler’s methods, in that 

order, give the best results and form possible candidates for the optimal classification 

scheme.  As Otsu’s method is the best method amongst the methods compared, it is 

the recommended method for classification of CT-scan images. 

3.6 CONCLUSION 

We compare five different classification techniques for three samples used in next 

three chapters. We identify Otsu’s method as the best classification method for these 

three samples based on the two different criteria. We will use Otsu’s method in 

Chapter 4 and 6 to convert the CT-scan images into 3D binary image.  
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Chapter 4  

Sample Size and Transport Properties 
Trends 

 

4.1 ABSTRACT 

Representative elementary volume (REV) is often used for representing rock 

properties at large scale.  In this paper we explore the change in the porosity-

permeability, and porosity-formation factor trends as we change the scales of 

observation below the defined REV for the three digital rock samples described in 

Chapter 3.  The objective is to identify the smallest scale at which the physical trends 

can be identified.  The rock properties are obtained using numerical simulation of the 

digital rocks of varying sizes, from REV size, which is defined as ten times the 

autocorrelation range of the 3D binary image of the rock samples, to the smallest 

scale at which there are still connected pores present to allow the fluid flow and 

electrical conduction across the sample (~1.5 times of autocorrelation range of the 

binary rock sample).  The rock property trends, porosity-permeability, and porosity-
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formation factor, remain constant at all the subsample sizes and match laboratory 

measurements.  However, the scatter in these trends increases as the subsample size 

decreases.  At the smallest subsample size examined, the scatter becomes significant.  

This scatter can be reduced by using a moving porosity window average. 

This study demonstrates that we can obtain meaningful rock property trends using 

the digital rocks at a scale much smaller than the REV sizes.  

4.2 INTRODUCTION 

Geophysical measurements span a large range of scale from seismic level, to log 

level, to core sample laboratory level, and finally to CT-scanned micro scale level.  In 

order to deal with such large range of scale, geophysicists often refer to a 

representative elementary volume (REV). The REV is defined as the smallest volume 

over which a measurement can be made that will yield a value representative of the 

whole (Bear, 1988).  In other words, the rock properties obtained at a scale smaller 

than the REV fluctuate considerably, while at a scale larger than the REV these 

fluctuations are significantly less.  However, the concept of the REV does not shed 

light on how the physical trends between the rock properties change above and below 

the REV.  

Kameda (2005), Kameda et al. (2006), Dvorkin (2009), Dvorkin and Nur (2009), 

and Dvorkin et al. (2009) explored the effect of scale on rock-property trends like 

porosity-permeability, porosity-formation factor, and porosity-elastic moduli.  They 

compared the trends obtained at the micro-scale using digital rock physics methods to 

trends measured at laboratory measurements and found them to correlate fairly well.  
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However, they did not formally define the REV for these rocks and simply compared 

physical trends obtained at micro-scale to laboratory scale.  This micro scale may or 

may not be above the REV for these rocks.  

In this chapter, we extend their study by first defining the REV in terms of the 

autocorrelation range of the 3D binary image (Keehm, 2003). We next obtain 

physical trends, porosity-permeability and porosity-formation factor, at this scale 

using different rock property simulations: Lattice Boltzmann for permeability and 

FEM for electrical formation factor.  We then obtain the rock properties trends for 

sample sizes below REV and compare them with the laboratory data as well as the 

theoretical relations.  We find that the trends between these properties are fairly stable 

with respect to the size of the sample.  However, the scatter around these trends 

increases as we decrease the subsample sizes.  This becomes significant for the 

smallest sample size for the samples used in this study. 

This scatter in the smallest sample size is reduced by employing a moving 

porosity window averaging.  This involves computing power averages for the 

permeability and formation factor of all the subsamples whose porosity fall into the 

window and then plotting it versus the arithmetic averaged porosity of the subsamples 

in the window.  We successfully obtain a tight trend using this method, when we use 

an arithmetic average for permeability and a harmonic average for formation factor 

for the three samples used in this study. 

This result implies that, at least for the cases explored, we can experiment at the 

below-REV level and still obtain physically meaningful, stable, and usable results – 

trends between physical properties of sediment.  The advantage of using smaller size 
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samples instead of the REV size sample is that at smaller scale, we span a larger 

portion of the trend using the same fragment of the rock, whereas the REV-sized 

samples are concentrated in a smaller portion of the trend.  The smaller size samples 

are also computationally inexpensive and hence, are faster to process. 

In this thesis we concentrate on porosity-permeability and porosity-formation 

factor trends.  Formation factor-permeability trends is not considered here, since the 

theoretical relations between these two properties require some estimate of pore 

diameter of the physical sample, which is not available.  

The rest of the chapter is structured as follows.  In section 4.3, we first define 

REV in terms of autocorrelation range of 3D binary image.  We then present the 

REVs for the three samples used in this study, as calculated by using their 

autocorrelation range.  In section 4.4, we describe different computer simulation 

algorithms used to determine the porosity, absolute permeability, and electrical 

conductivity. In section 4.5, we present our results. In section 4.6, we discuss porosity 

window averaging as a method to reduce the scatter for the smallest sample, followed 

by our conclusions in section 4.7. 

4.3 AUTOCORRELATION RANGE AND REV 

Keehm (2003) gave a quantitative recipe for determining an REV of homogenous 

and isotropic rocks from a one-dimensional autocorrelation range computed in a 2D 

binary image of rock: L > 10a, where L is the linear size of an REV cube and a is the 

autocorrelation range.  Since the rock samples used in this study (two artificial 

sandstone samples and a Fontainebleau sample as described in Chapter 3) are fairly 
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homogeneous and isotropic, we define the REV, in accordance to Keehm’s result, as 

ten times the autocorrelation range of a 3D binary image of rock.  

In order to determine the autocorrelation range a, the autocorrelation function 

A(h) is computed on the 2D binary images: 

 

A(h) = f (r) f (r + h) , (4.1) 

where h is the distance between two data points, one at location r and the other at 

r+h.  This function can be one-, two-, or three-dimensional.  Here we use the 1D 

autocorrelation function following the procedure described in Keehm (2003) but we 

compute it in all three directions.  For each of these directions, we then compute the 

variogram γ(h) using 

 

γ(h) = C(0)(1− A(h)), (4.2) 

where C(0) is the covariance of the data. This function is then fit by an exponential 

form: 

 

γ(h) = C(0)(1− e
−

3h
a ). (4.3) 

The parameter a is the autocorrelation range – essentially the distance h at which 

the variogram levels out. 

Typical variograms for the three samples, Pomponio Beach (PB), San Gregorio 

(SG), and Fontainebleau (FB) are shown in Figure 4.1.  The resulting autocorrelation 

ranges are listed in Table 4.1, where a for each sample is averaged for all the 

directions.  The scatter with respect to the direction is small which indicates that all 

three samples are isotropic and homogeneous with respect to a. 
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Figure 4.1.  Typical variograms for the FB, SG, and PB plotted against the lag vector which is given 

in grid units. The autocorrelation range (a) is about 30, 15, and 17 grid units for the FB, SG, and PB, 

respectively. 

Table 4.1.  Autocorrelation ranges (a) and REV sizes of the samples under examination. 

Rock Mean a 
(pixels) 

Std a 
(pixels) Mean a (mm) Std a 

(mm) 
REV 

(pixels) 
REV 
(mm) 

PB 16.8 0.8 0.2481 0.0118 ~ 170 ~ 2.5 

SG 14.9 0.6 0.2201 0.0089 ~ 150 ~ 2.2 

FB 30 6 0.070088 0.014199 ~ 300 ~ 0.7 

 
Based on Table 4.1, the REV sizes for the three samples (PB, SG, and FB) are 

about 170, 150, and 300 pixels, respectively, or 2.5, 2.2, and 0.7 mm.   

We randomly select REV sized samples from a larger host 3D binary rock 

samples, which are produced from CT-scan images as described in Chapter 3, and 

calculate their porosity (ϕ), absolute permeability (k), and the electrical formation 

factor (F) using different computer simulations.  We repeat these computations on a 

large number of subsamples smaller than REV, randomly selected from the same host 

3D image.  The smallest subsample size used in these experiments is about 1.5 times 

autocorrelation range because at scales smaller than this the connected pore space 

may disappear, resulting in zero permeability and conductivity.  Figure 4.2 show a 
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typical 2D slice of each rock sample used in the present study with the 2D 

representation of the subsample sizes for which different physical properties were 

simulated. 

 

Figure 4.2.  Selected segmented 2D slices of the samples used in this study.  From left to right:  the 

Fontainebleau, Pomponio Beach, and San Gregorio samples. The different squares in each slice 

represent the size of the subsamples for which ϕ, k, and F were computed. The subsample sizes are 

shown in pixels as well as relative to their mean autocorrelation range. 

4.4 COMPUTING ROCK PROPERTIES 

In this section we describe the simulations used for determining the rock 

properties porosity, permeability, and electrical conductivity.  

The porosity of the 3D binary sample is simply the ratio of the number of the pore 

voxels to the total number of voxels. 

The absolute permeability is determined using the lattice Boltzmann method 

(LBM), which simulates viscous fluid flow in the pore space.  LBM models the fluid 

as consisting of fictitious particles (mass fractions), unlike traditional computational 

fluid dynamics methods which numerically solve the conservation equations of mass, 

momentum, and energy.  These particles propagate and collide on a regular lattice.  In 
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the collision, the mass fractions are modified in such a way that mass and momentum 

are conserved and correct the relation between strain rate tensor and stresses, as used 

in the Navier-Stokes equations.  Arguably, the paramount feature of LBM is that it 

does not require any idealization of the pore space, but rather simulates viscous fluid 

dynamics in a real pore space that we obtain from segmenting the CT-scan images.  

The LBM code we use for fluid flow simulation was developed and described in 

detail by Keehm (2003).  This simulation produces the total volumetric fluid flux 

through a sample in response to the applied pressure difference.  The absolute 

permeability is the ratio of these two values normalized by the fluid’s viscosity, the 

sample’s length and its cross-sectional area. 

The electrical conductivity at full water saturation and the corresponding 

formation factor are computed as a solution of the Laplace equation with charge-

conservation boundary conditions using a conjugate gradient technique (Arns, et al., 

2001).  The three-dimensional voxel structure is first converted into a discretized 

conductive medium by assigning conductivity values to each voxel.  A potential 

difference is applied diagonally across the sample and the system is relaxed using the 

conjugate gradient technique to evaluate the field.  This method was implemented in 

the finite-element (FEM) code by Martys and Garboczi (1992).  In our application of 

this FEM code, the mineral conductivity is set to zero, the water conductivity 

 

σ w  is 1 

Siemens/m.  The formation factor 

 

F  is simply calculated as the ratio of the 

conductivity of water to that of the sample: F =  σt / σw  
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4.5 RESULTS 

As mentioned earlier in section 4.3, for each group of same-sized subsamples, we 

randomly select a certain number of subsamples depending upon their relative sizes. 

The numbers of subsamples randomly selected for each size group for the three 

samples are summarized in Table 4.2, 4.3, and 4.4.  

Table 4.2.  The number of subsamples in each group of same-sized subsamples for the Fontainebleau 

Sandstone sample. All these subsamples were randomly selected from a 600 ×600 ×800 binary cube. 

Subsample Size 

(Pixels) 

Subsample Size 

(mm) 

Subsample Size 

(autocorrelation 
range) 

Number of 
subsamples 

300 ×300 ×300 0.702×0.702×0.702 10 a 5 

200 ×200 ×200 0.468×0.468×0.468 7.5 a 10 

150 ×150 ×150 0.351×0.351×0.351 5 a 10 

100 ×100 ×100 0.234×0.234×0.234 3 a 20 

75 ×75 ×75 0.175×0.175×0.175 1.75 a 100 

50 ×50 ×50 0.11×0.11×0.11 1.5 a 1000 
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Table 4.3.  The number of subsamples in each group of same-sized subsamples for the Pomponio 

Beach sample. All these subsamples were randomly selected from a 625 ×625 ×522 binary cube. 

Subsample Size 

(Pixels) 

Subsample Size 

(mm) 

Subsample Size 

(autocorrelation 
range) 

Number of 
subsamples 

170 ×170 ×170 2.5×2.5×2.5 10 a 10 

150 ×150 ×150 2.2×2.2×2.2 8.8 a 10 

100 ×100 ×100 1.5×1.5×1.5 6 a 25 

50 ×50 ×50 0.74×0.74×0.74 3 a 100 

25 ×25 ×25 0.37×0.37×0.37 1.5 a 1000 

 

Table 4.4.  The number of subsamples in each group of same-sized subsamples for the San Gregorio 

sample. All these subsamples were randomly selected from a 625 ×625 ×522 binary cube. 

Subsample Size 

(Pixels) 

Subsample Size 

(mm) 

Subsample Size 

(autocorrelation 
range) 

Number of 
subsamples 

150 ×150 ×150 2.2×2.2×2.2 10 a 10 

100 ×100 ×100 1.5×1.5×1.5 6 a 25 

50 ×50 ×50 0.74×0.74×0.74 3 a 100 

25 ×25 ×25 0.37×0.37×0.37 1.5 a 1000 

 

By reducing the size of subsamples we drastically expand the porosity range these 

subsamples cover.  This is illustrated in Figure 4.3, 4.4, and 4.5 where the mean 

porosities and their standard deviations are plotted for each group of the same-sized 

subsamples for each sample, respectively.  In each case, the mean porosity of these 

groups oscillates around the laboratory value.  At the same time, for all the samples 
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the variance increases with the decreasing subsample size. 

 

Figure 4.3.  Porosity means and corresponding standard deviations (vertical bars) for six groups of 

the same-sized Fontainebleau subsamples. The symbol on the far right is from laboratory 

measurement on the actual physical sample. 

 

Figure 4.4.  Porosity means and corresponding standard deviations (vertical bars) for five groups of 

the same-sized Pomponio Beach subsamples. The black circle on the far right is from laboratory 

measurement on the actual physical sample.  
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Figure 4.5.  Porosity means and corresponding standard deviations (vertical bars) for four groups of 

the same-sized San Gregorio subsamples. The black circle on the far right is from laboratory 

measurement on the actual physical sample.  

Permeability and formation factor are calculated using the simulations described 

in section 4.4, for all the subsamples. The mean permeability and formation factor are 

obtained using power averaging method as given by 

,
/1 jj

i

N
X

X 









= ∑

  (4.4) 

where X can be k or F, N is total number of subsamples and j is the power averaging 

exponent. The means are calculated for six different values of j (1, -1, 0.5, -0.5, 2 and 

-2), as shown in Figures 4.6, 4.8, and 4.10 for absolute permeability and 4.7, 4.9, and 

4.11 for formation factor for the three samples.  The error bars in each case represent 

the standard deviation of the data around each mean.  Note that when j =1 the power 

average is equivalent to arithmetic average, while when j = -1 it is equivalent to 

harmonic average.  We compare these power averages to the laboratory 
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measurements of the sample.  However, we do not have a laboratory electrical 

measurement for the two artificial samples, so we do not have any criteria for 

evaluating the efficiency of any of the methods for formation factor for the two 

samples.  
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Figure 4.6.  Permeability means and corresponding standard deviations (vertical bars) for six groups 

of the same-sized FB subsamples. The black circle is the laboratory measurement on the actual 

physical sample. The horizontal dashed line is drawn through the laboratory measured data. 
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Figure 4.7.  Formation factor means and corresponding standard deviations (vertical bars) for six 

groups of the same-sized FB subsamples. The black circle on the far right is from laboratory 

measurement on the actual physical sample.  The horizontal dashed line is drawn through the 

laboratory measured data. 
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Figure 4.8.  Permeability means and corresponding standard deviations (vertical bars) for five groups 

of the same-sized PB subsamples. The black circle on the far right is from laboratory measurement 

on the actual physical sample.  The horizontal dashed line is drawn through the laboratory measured 

data. 
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Figure 4.9.  Formation factor means and corresponding standard deviations (vertical bars) for five 

groups of the same-sized PB subsamples.  No laboratory data was available for the formation factor.  

The horizontal dashed line is drawn through the mean of the largest sized group. 
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Figure 4.10.  Permeability means and corresponding standard deviations (vertical bars) for four 

groups of the same-sized SG subsamples. The black circle on the far right is from laboratory 

measurement on the actual physical sample. The horizontal dashed line is drawn through the 

laboratory measured data. 
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Figure 4.11.  Formation factor means and corresponding standard deviations (vertical bars) for four 

groups of the same-sized SG subsamples. No laboratory data was available for the formation factor.  

The horizontal dashed line is drawn through the mean of the largest sized group. 

Note that we have logarithmic scale in all these figures (Figures 4.7 to 4.11), 
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which means that the differences in the means of computed permeability and 

formation factor for different groups of same-sized samples and the laboratory 

measurement are not evident in these figures.  Hence to compare these differences, 

we next calculate the relative errors of the means of each group of same-sized 

subsamples, with respect to their laboratory measurements. It is calculated as 

,
L

LX
Err

−
=   (4.5) 

where X  is the mean of a property (permeability or formation factor) of the group of 

same-sized subsamples, and L is the laboratory measured property value.  Figure 

4.12, 4.13, and 4.14 respectively show the relative errors for the Fontainebleau, 

Pomponio Beach, and San Gregorio samples.  As mentioned earlier, we have 

laboratory measured formation factor value only for the Fontainebleau samples.  

Hence, we cannot calculate the relative error associated with the formation factor of 

the Pomponio Beach and San Gregorio samples.   
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Figure 4.12.  The relative error in the permeability and the formation factor estimation using 

different averaging methods for the Fontainebleau sample.  The horizontal axis in all these plots is 

the size of the subsamples used, given in pixels. 

 

Figure 4.13.  The relative error in permeability estimation using different averaging methods for the 

Pomponio Beach sample. The horizontal axis represents subsample sizes. 
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Figure 4.14.  The relative error in permeability estimation using different averaging methods for the 

San Gregorio sample. The horizontal axis represents subsample sizes. 

In these figures, we observe high relative errors for all of the samples, which 

indicates that none of these averaging methods give a mean closer to the laboratory 

measurement for any of the subsample sizes.  This shows that we cannot use the 

subsamples at REV size or below to predict the permeability and formation factor at a 

larger scale.  However, both these rock properties form trends if plotted versus 

porosity (Figure 4.15, 4.17, and 4. 19 for permeability; and Figures 4.16, 4.18, and 

4.20 for formation factor).  Note that in these figures we are plotting the computed 

porosity, permeability, and formation factor data for different subsample sizes and not 

their means or standard deviations. 

We plot the experimental physical trends measured in the lab for the 

Fontainebleau sample (Figures 4.15 and 4.16) along with the computed data for 

various subsample sizes.  We obtain similar trends for the Pomponio Beach and San 

Gregorio sands (Figures 4.17 to 4.20).  For the Pomponio Beach and San Gregorio 

samples, however, we only have one measured value for porosity and permeability, 
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and no measured laboratory data for formation factor.  Therefore, we cannot present a 

laboratory-measured trend for these samples. Instead, we display theoretical relations 

of Kozeny-Carman (Carman, 1937) and Archie (1942), respectively.  

The Kozeny-Carman permeability is calculated using the following formula: 

,
)1( 2

32

φ
φ

−
××

=
dBK   (4.6) 

where the permeability is in mD; B is the geometric factor (here we used B = 5 for 

both the samples); d is the grain size (microns); and ϕ is the porosity (fraction). The 

grain size of the PB and SG samples was measured by Kameda (2005) using sieve 

and laser particle size analysis (Table 3.2).   

Archie’s equation is 

,maF −= φ   (4.7) 

where a is a constant, m is the cementation constant, and ϕ is the porosity. Here, 

following Gomez (2009), we use a = 1, and three different values of m = 1.6, 1.8, and 

2.0 for all the samples. 

The computed subsample trends are qualitatively close to experimental physical 

trends measured in the laboratory for the Fontainebleau sample (Figures 4.15 and 

4.16).  For the Pomponio Beach and San Gregorio samples, on the other hand, we 

observe a qualitative consistency in the trends for different subsample sizes.  Even 

though the range of the sampling scale in these two samples is not as large as in case 

of the Fontainebleau sandstone (from laboratory to micron scale), the relations 

between these physical properties across different subsample sizes are consistent.  
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This shows that computational rock physics can be used to create a physical trend 

between rock properties by moving below the REV.  The key here is to focus on 

trends between values rather than on the values themselves.   

 

Figure 4.15.  Permeability versus porosity for the Fontainebleau sandstone. Our computational 

results are plotted for a varying size of the subsamples.  Blue crosses are from the classical dataset 

by Bourbie and Zinszner (1985) while red squares are from Gomez (2009). 
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Figure 4.16.  Formation factor versus porosity for the Fontainebleau sandstone.  Our computational 

results are plotted for a varying size of the subsamples.  Red squares are the data from Gomez 

(2009).  The solid and dashed lines represent the Archie equation for a =1, and varying m = 1.6, 1.8, 

and 2.0, as indicated.  
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Figure 4.17.  Permeability versus porosity for the Pomponio Beach sand.  Our computational results 

are plotted for a varying size of the subsamples.  The red square in each of the plot represents the 

laboratory measurement (Kameda, 2005).  Kozeny-Carman trends are plotted for comparison. These 

permeability-porosity curves are calculated using Equation 4.6 for B=5, and three different grain 

sizes: mean grain size, dmean = 437 micron; minimum grain size, dmin = 150 micron; and 

maximum grain size, dmax = 900 micron, as reported by Kameda (2005). 
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Figure 4.18.  Formation factor versus porosity for the Pomponio Beach.  Our computational results 

are plotted for a varying size of the subsamples. No laboratory measurement for the formation factor 

was available for this sample. Archie’s relations for a =1, and varying m = 1.6, 1.8, and 2.0 (as 

indicated) are plotted for comparison. 
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Figure 4.19.  Permeability versus porosity for the San Gregorio sand.  Our computational results are 

plotted for a varying size of the subsamples. The red square in each of the plot represents the 

laboratory measurement (Kameda, 2005).  Kozeny-Carman trends are plotted for comparison. These 

permeability-porosity curves are calculated using Equation 4.6 for B=5, and three different grain 

sizes: mean grain size, dmean = 392 micron; minimum grain size, dmin = 135 micron; and 

maximum grain size, dmax = 850 micron, as reported by Kameda (2005). 
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Figure 4.20.  Formation factor versus porosity for the San Gregorio sand.  Our computational results 

are plotted for a varying size of the subsamples.  No laboratory measurement for the formation factor 

was available for this sample. Archie’s relations for a =1, and varying m = 1.6, 1.8, and 2.0 (as 

indicated) are plotted for comparison. 

4.5 DISCUSSIONS 

Although the computed subsample trends are close to either laboratory or 

theoretical trends, however the variance, which measures the scatter, in these trends 

increases as the sample size decreases.  In other words, we observe large variances in 

permeability and formation factor at a fixed porosity value. This scatter is especially 

pronounced for the smallest subsample size which can make it difficult to discern a 



Chapter 4 

83 

unique trend.  We reduce this large scatter by using moving porosity window power 

averaging method.  

The porosity window power averaging method involves generating a small 

porosity window of fixed width, which is 0.003 or 0.3% here.  We compute various 

power averages (Equation 4.4) for the permeability and formation factor of all the 

subsamples whose porosity fall into the window, and then plot it versus the arithmetic 

averaged porosity (j = 1) of the subsamples in the window.  This window-based 

averaging produces a physically meaningful trend for permeability as well as for the 

formation factor from the smallest subsamples which are much smaller than the REV 

(Figures 4.21 to 4.27).  The power averaging used here is in essence a data reduction 

method applied here to produce a reasonably tight trend. 

We observe that among all the power averaging method explored here for the 

porosity-permeability trend, power averaging the permeability with m = 1 

qualitatively gives the trend closest to the laboratory or theoretical trends amongst all 

the averaging techniques examined, while for porosity-formation factor trend, power 

averaging the formation factor with j = -1 qualitatively gives the closest results for all 

the samples.  Note that while permeability is a measure of the fluid flow, the 

electrical formation factor is a measure of resistance to the electrical flow. This 

explains the inverse relation of the best averaging methods for the two properties. 
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Figure 4.21.  Permeability versus porosity for the Fontainebleau sandstone. The moving-window 

data reduction (described in the text) of permeability and porosity for one thousand 50×50×50 

subsamples are plotted as light blue circles.  Blue crosses are from the classical dataset by Bourbie 

and Zinszner (1985) while red squares are laboratory measurements by Gomez (2009).   
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Figure 4.22.  Formation factor versus porosity for the Fontainebleau sandstone. The moving average 

of formation factor and porosity for one thousand 50×50×50 subsamples are plotted as light blue 

circles. The solid and dashed lines represent the Archie equation for a =1, and varying m = 1.6, 1.8, 

and 2.0, as indicated.  
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Figure 4.23.  Permeability versus porosity for the Pomponio Beach sand.  The moving average of 

permeability and porosity for one thousand 25×25×25 subsamples are plotted as blue circles. The 

red square is the laboratory measurement for the sample. The solid line and the dashed lines 

represent the Kozeny-Carman equation for different grain sizes (minimum, dmin; maximum, dmax; 

and mean, dmean) as indicated.  
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Figure 4.24.  Formation factor versus porosity for the Pomponio Beach. The moving average of 

formation factor and porosity for one thousand 25×25×25 subsamples are plotted as light blue 

circles. The solid and dashed lines represent the Archie equation for a =1, and varying m = 1.6, 1.8, 

and 2.0, as indicated.  
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Figure 4.25.  Permeability versus porosity for the San Gregorio sand.  The moving average of 

permeability and porosity for one thousand 25×25×25 subsamples are plotted as blue circles. The 

red square is the laboratory measurement for the sample. The solid line and the dashed lines 

represent the Kozeny-Carman equation for different grain sizes (minimum, dmin; maximum, dmax; 

and mean, dmean) as indicated.  
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Figure 4.26.  Formation factor versus porosity for the San Gregorio sand. The moving average of 

formation factor and porosity for one thousand 25×25×25 subsamples are plotted as light blue 

circles. The solid and dashed lines represent the Archie equation for a =1, and varying m = 1.6, 1.8, 

and 2.0, as indicated.  

4.6 CONCLUSIONS 

We observe that even though the absolute values of porosity, permeability, and 
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formation factor vary as we decrease the sample size below the traditional REV size; 

the trends between porosity-permeability and porosity-electrical formation factor 

remain qualitatively consistent across the scale. The variance in the simulated 

measurements increases as we decrease the sample size, and hence obtaining a 

meaningful relation from the smallest subsample size becomes difficult. We 

overcome this problem by averaging these measurements using different power- 

averaging methods in a moving porosity window.  

These results imply that, we can obtain physically meaningful trend from the 

samples below the traditional REV size.  In fact, by using the small size samples we 

span a larger portion of the trend as compared to REV size sample, providing the 

Geophysicists a better trend to work with.  Another advantage of using smaller size 

sample is that they are computationally inexpensive and hence, are faster to process. 

Our analysis is not exhaustive. For example, our range of scale varies only from 

core scale to micro-pore structure scale. It will be interesting to explore scales beyond 

the core scale.  Also, the samples used in this study are fairly homogeneous. Another 

interesting research path would involve testing this result for wider variety of rocks.  

However, these analyses are beyond the scope of this chapter.   
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Chapter 5 

Threshold Sweeping and Transport 
Properties Trends  

 

5.1 ABSTRACT 

A new method for obtaining a range of porosity, permeability, and formation 

factor using a single 3D CT scan image is introduced.  It involves systematically 

varying the threshold of the 3D gray scale image to obtain slightly different 3D binary 

cube, and hence a different set of porosity, permeability, and formation factor values 

each time.  This is called threshold sweeping.  We examine the effect of threshold 

sweeping on the transport properties (porosity, permeability, and formation factor) 

and their trends. We observe that although the absolute values of transport properties 

change with threshold, the trends among them remains stable.  This implies that 

physically meaningful trends between rock properties can be obtained just from a 

single 3D CT-scan by simply moving the gray-scale threshold.  Further analysis of 

these different binary cubes reveals that the change in thresholds mimics the quartz 



Chapter 5 

92 

cementation in sandstone. 

5.2 INTRODUCTION 

In Chapter 3 we compared different image classification methods for converting 

2D gray scale CT-scan slices to 2D binary slices and identified Otsu’s (1979) 

thresholding method as the best method among them, which is then used to threshold 

all the 2D slices in 3D CT-scan image to produce 3D binary cube.  We compute 

porosity (φ), permeability (k), and electrical formation factor (F) on this optimally 

classified binary 3D image (Chapter 4, section 4.4).  However, if we shift the 

threshold from its optimum value and thus re-classify the original intensity cube, we 

can obtain a binary cube with different porosity, permeability, and formation factor.  

We can repeat this exercise for different threshold values around the optimum value 

and obtain a range of porosity, permeability, and formation factor for these 3D binary 

cubes.  We call this procedure of using different thresholds to obtain different 3D 

binary images as threshold sweeping.   

In this chapter we explore how the threshold sweeping affects the transport 

properties, porosity, permeability, and formation factor, and the trends among them, 

specifically porosity-permeability and porosity-formation-factor trends.  In this study 

we use two artificial samples, Pomponio Beach (PB) and San Gregorio (SG), and a 

Fontainebleau sandstone sample (FB) as described in Chapter 3, section 3.3. 

We observe that although all the transport properties vary as we change the 

threshold, the trends formed by them are stable and physically justifiable.  

Furthermore, we observe that the change in the binary images with threshold is 
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similar to the quartz overgrowth observed in the rocks.  

The rest of the chapter is structured as follows.  In section 5.3, we discuss the 

threshold sweeping methodology.  In section 5.4, we present the results of the 

threshold sweeping.  In section 5.5, we compare the 2D binary slices with different 

thresholds to the thin-sections of sandstone samples with quartz overgrowth, as well 

as with other theoretical studies. Finally, in section 5.6 we present our conclusions.  

5.3 THRESHOLD SWEEPING 

A threshold divides the intensity histogram of a CT scan image into two parts: 

pores (lower intensity pixels) and grains (higher intensity pixels) (Figure 5.1).  As 

discussed earlier in Chapter 3, section 3.3, the intensity in the CT-scan image 

corresponds to the density of the material. Hence, the denser material, grains have 

higher intensity while the void space or the pores have lower intensity. 

 

Figure 5.1.  A typical intensity probability density function indicating the typical positions of grain 

and pore peaks.  

In Chapter 3, we use Otsu’s method to obtain an optimal threshold for each of the 
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2D slices in the 3D CT-scan images.  This means that we have a different threshold 

for each slice in a sample.  For each sandstone sample used in this study (FB, PB, and 

SG), we construct a histogram of these Otsu’s thresholds for all the slices of the 

sample (Figure 5.2). These histograms show that the threshold values for different 

slices of a sample are very close to each other.  For the Pomponio Beach (PB) and 

San Gregorio (SG) samples, in fact, thresholds for different slices converge to a 

single threshold value.  The variation among the threshold values among individual 

slices is slightly more pronounced in the Fontainebleau (FB) case than in the other 

two cases.  Still, even for the Fontainebleau, these thresholds fall with an interval of 

ten intensity units.  Since the thresholds for different slices of a sample are so close to 

each other, instead of applying individual thresholds to 2D slices, we can apply a 

single threshold to all the slices to obtain the 3D binary image without changing the 

resultant 3D binary cube drastically, as long as this common single threshold is close 

to these individual threshold range.  However, if we change this common single 

threshold value significantly, the resultant binary image will change considerably.   
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Figure 5.2.  Histogram of threshold values of all the 2D slices for the three samples. 

We utilize this concept to test the effect of change in threshold on different 

transport properties as well as their inter-relationship.  This can be done by applying a 

constant threshold value to all the slices and obtaining a 3D binary image.  From this 

binary 3D image, we randomly select ten REV sized samples (Chapter 4, section 4.3) 

and calculate their porosity, permeability, and formation factor as described in 

Chapter 4, section 4.4.  We then change the threshold value to obtain a different 3D 

binary image and repeat all the other steps to obtain a new set of porosity, 

permeability, and formation factor.  Throughout the exercise, the ten subsamples 

selected in the beginning are not changed.  We call this method threshold sweeping. 

We apply threshold sweeping to all the three samples (FB, PB, and SG). The 
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threshold values for which we obtain the 3D binary images are summarized in Table 

5.1.  

Table 5.1.  List of threshold values for all the sample used in threshold sweeping to obtain different 

binary cubes. The mean Otsu’s threshold for all the samples is also given for reference. 

Samples Mean Otsu’s 
Threshold (I.U.) Threshold values (I.U.) 

FB 127 120, 130, 140, 150, 160, 170 

PB 12078 10000, 10500, 11000, 11500, 12000, 12500 

SG 11923 10000, 10500, 11000, 11500, 12000 

 

5.4 RESULTS  

For all the three samples, the variation of three computed transport properties with 

the threshold value is shown in Figure 5.3.  Porosity and permeability increase with 

increasing threshold, whereas the formation factor decreases with increasing 

threshold.  This is because as we increase the threshold, more pixels are classified as 

pores (low intensity pixels) than grains (high intensity pixels).   
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Figure 5.3.  The change in transport properties observed with change in threshold.  Top to bottom:  

porosity, permeability, and formation factor versus threshold.  Left to right:  FB, PB, and SG.   

For all three samples, Figure 5.4 shows cross-plots of porosity and permeability, 

while Figure 5.5 shows cross-plots of porosity and formation factor of the computed 

data obtained by threshold sweeping.  In addition, we also plot the laboratory 

measured porosity-permeability and porosity-formation factor trends for the 

Fontainebleau sample.  As discussed in Chapter 4, we cannot produce a laboratory 

measured trend for these artificial samples since we have only one measurement for 

the Pomponio beach and San Gregorio samples. Therefore, for these samples we plot 

the theoretical relations of Kozeny-Carman (Carman, 1937) and Archie (1942), 

respectively, as described by Equations 4.6 and 4.7, respectively, in Chapter 4. We 

plot the Kozeny-Carman for three different grain sizes: mean grain size, minimum 
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grain size, and maximum grain size observed in the sample (Kameda, 2005) while we 

plot Archie’s equation for three different values of cementation constant, m = 1.6, 

1.8, and 2.0. 

 

Figure 5.4.  Porosity-permeability cross-plots for the FB, PB and SG sands obtained using threshold 

sweeping are plotted.  For the FB, we also plot the laboratory data (Bourbie and Zinszner, 1985; 

Gomez, 2009) while for the PB and SG we plot Kozeny-Carman relations for different grain sizes: 

mean grain size, dmean; minimum grain size, dmin; and maximum grain size, dmax (Kameda, 2005).  

The numbers in the legend show the threshold used for each group of digital samples. 
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Figure 5.5.  Porosity-formation factor cross-plots for the FB, PB, and SG samples.  For the FB 

samples we also plot the laboratory data from Gomez (2009). The curves in each plot are Archie’s 

relation for cementation factors, m = 1.6, 1.8, and 2.0 as indicated in the plots.  The numbers in the 

legend show the threshold used for each group of digital samples. 

For the FB sample, we observe a good qualitative fit between the computed data 

and laboratory data for both porosity-permeability and porosity-formation factor 

trends (Figure 5.4 and 5.5). For the PB and SG samples, Figure 5.4 shows a robust 

qualitative fit between the Kozeny-Carman curves calculated for these samples using 

the mean grain size, while Figure 5.5 shows a qualitative fit between calculated data 

and the Archie’s equation. The computed data points for the PB and SG move along 

the theoretical curves, very much similar to what we observe in a collection of 
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different laboratory measured physical samples of the same rock type.  However, the 

trends obtained here are from just one physical sample per sand.  This means that by 

varying threshold, we can produce physically meaningful and justifiable porosity-

permeability and porosity-formation factor trends. 

We next plot porosity-permeability computed data trend for the three samples 

together along with laboratory measured data for the Fontainebleau sandstone from 

Bourbie and Zinszner (1985) and Gomez (2009) (Figure 5.6, left).  Computational 

permeability-porosity trends for the PB and SG in Figure 5.6 are congruent with the 

experimental and computational FB trend.  However, the latter is shifted vertically 

down from the former two trends due to the difference in the mean grain size which is 

about 250 microns in the FB sample (Bourbie and Zinszner, 1985) and, 392 and 437 

microns in the SG and PB samples, respectively (Kameda, 2005). The grain size of 

the sample is directly proportional to the permeability of the sample (Kozeny-

Carman, Equation 4.6).  

The difference in the mean grain sizes between the PB and SG samples is not as 

large as difference between the FB and SG samples.  Hence, while we observe a clear 

jump in the trends from the FB samples to the SG samples, the difference in the PB 

and SG trends is not as considerable.   

Figure 5.6 also shows the porosity-permeability trend when the permeability (both 

computed and laboratory measured permeability) of all the samples are normalized by 

square of mean sample grain-size (Figure 5.6, right).  We observe that the vertical 

shift between the trends is not as significant in the second plot.  However since the 

slopes of the porosity-permeability trends for different samples (FB, PB, and SG) are 
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different, therefore we still observe some shift in the trends. 

 

Figure 5.6.  Left:  Porosity-permeability cross-plot for computational data produced by threshold 

sweeping for the FB, PB, and SG, along with the laboratory Fontainebleau data from Bourbie and 

Zinszner, (1985) and Gomez (2009).  Right: Porosity-normalized permeability cross-plot for 

computational data produced by threshold sweeping for the FB, PB, and SG along with the 

laboratory Fontainebleau data from Bourbie and Zinszner, (1985) and Gomez (2009).  The computed 

permeability as well as laboratory measured permeability of each sample is normalized by square of 

mean grain size of that sample.  

Similarly, we plot porosity-formation factor computed data trend for the three 

samples along with the Fontainebleau laboratory data (Gomez, 2009) and Archie’s 

equation (Figure 5.7). The grain size of the sample does not affect the formation 

factor of the sample. Hence, all the three computed data trends lie close together. 
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Figure 5.7.  Porosity versus formation factor for computational data produced by threshold sweeping 

for the FB, PB, and SG, along with the laboratory Fontainebleau data from Gomez (2009).  The 

curves are Archie’s relation for three different cementation factor, m =1.6, 1.8, and 2.0 as indicated 

in the plot. 

5.5 DISCUSSION 

To understand the physics behind the property variations versus the change in 

threshold, we choose a small portion of randomly selected slices from all the samples 

and obtain three binary images by applying three different threshold values (Figure 

5.8).  We observe that the grains systematically grow into the pore space as the 

threshold increases, very much like diagenetic cement accumulating on the grains in 

real rock (Figure 5.9, from Avseth, 2000).  As a result, both porosity and permeability 

decrease in a very systematic way observed, e.g., in the Fontainebleau sandstone 

(Bourbie and Zinszner, 1985).  In essence, a mathematically imposed increase in 

threshold invokes a geometry that resembles a quartz overgrowth for these CT-scans.  

This correspondence becomes especially striking when we compare Figure 5.8 to 

Figure 5.10 where the growth of diagenetic cement is shown on a real sample of the 
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Fontainebleau sands (Haddad et al., 2006). The Fontainebleau formation, as discussed 

in Chapter 3, section 3.3.1, is a pure quartz formation with several laterally extensive 

quartz-cemented horizons due to quartz overgrowth (Cooper, 1994; Thiry et al., 

1988).  

 

Figure 5.8.  Image of randomly selected slices for three increasing threshold values for the three 

samples.  The smallest threshold produces grains as black while the rest are pores (red, orange, and 

white).  For the next threshold value, the grains are black and red while the pores are orange and 

white.  Lastly, for maximum threshold used, the grains are black, red, and orange while the pores are 

white.  The pore space systematically shrinks as the grains grow to include red and then orange 

areas.  
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Figure 5.9.  A thin section of a North Sea sandstone showing a diagenetic cement rim (dark gray) 

around a quartz grain (bright white).  (From Avseth, 2000). 
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Figure 5.10.  A Fontainebleau sandstone image in plane polarized light showing cement growth into 

the pore space from the originally deposited grains. Arrows I and II highlight thin, isopachous bands 

around the detrital grain and the overgrowth (From Haddad et al., 2006). 

A similar effect was observed by Keehm (2003) when they computed the 

permeability of a random dense pack of identical spheres (the Finney pack) while 

systematically and uniformly increasing the radii of the grains to imitate progressive 

cementation.  They also numerically simulated various diagenetic processes, in which 

the pore-filling mechanism (diagenesis) was controlled by flow rates. They classified 

the pore-filling mechanisms into four basic groups (Figure 5.11); the grain-pore-

boundary–related mechanism (Group I), the low-flux–related mechanism (Group II), 

the high-flux mechanism (Group III), and random filling (Group IV). In their analysis 

using the synthetic pore geometry (a random dense pack of spheres) and the 

Fontainebleau sandstone, they found that the Group I diagenesis mechanism closely 

follows the Kozeny-Carman relation (Figure 5.12). Similarly for the porosity-

formation factor trends, Archie’s law is closest to the Group I diagenesis mechanism 

(Figure 5.13).   

These observations support the idea that the grain-pore boundary diagenesis 

method, e.g. quartz overgrowth, is closely related to the theoretical relations as 
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Kozeny-Carman and Archie’s relation, in corroboration with our earlier observations 

in this section.  

 

Figure 5.11.  Cross-sectional view of fluid flux distribution (arrows) and filled pore nodes (red area) 

according to the different pore-filling mechanisms. The length of arrow denotes the magnitude of the 

flux. Gray areas are initial grains. (From: Keehm, 2003) 
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Figure 5.12.  Porosity-permeability trends for different pore filling mechanisms. (From: Keehm., 

2003).  

 
Figure 5.13.  Porosity-conductivity trends for different pore filling mechanisms. (From: Keehm, 

2003).  

The effect of a progressively increasing threshold and the invoked binary 

geometry depends on the relative spatial distributions of low, intermediate, and high 
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pixel intensity values.  The resemblance to a diagenetic pore filling mechanism 

occurs when there is a smooth gradation from low, through intermediate to high 

values.  A different spatial scenario is one where the low intensity values are 

separated from the intermediate values by spatially intervening high intensity values.  

This for example might be the case of rims of high density (and high intensity) 

cement surrounding grains of intermediate intensity, with the pores being the lowest 

intensity.  However, since any imaging (including CT scans) imposes a smoothing 

operation, the images will be the result of a convolution with the instruments point 

spread function.  This smoothing effect will tend to create gradations from low, to 

high, through intermediate intensity values.  This effect is shown in Figure 5.14.  In 

Figure 5.14, top left shows a synthetically created random spatial field with low and 

intermediate intensities disconnected by high intensities, created using a standard 

geostatistical truncated Gaussian simulation.  Bottom left shows the corresponding 

geometry invoked by an increasing threshold.  Notice that unlike Figure 5.8, the red 

does not surround the black.  However as soon as a small 3x3 smoothing filter is 

applied to the original gray scale image to obtain a smoothed image (top right), the 

increasing thresholded geometry shows resemblance to diagenetic cement growth 

with red surrounding black, followed by orange and white (bottom, right). 
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Figure 5.14.  Effect of spatial distribution of grayscale and smoothing on the geometry invoked by 

increasing threshold.  Top left: a synthetically created spatial field with low and intermediate 

intensities disconnected by high intensities.  Bottom left shows the corresponding geometry invoked 

by an increasing threshold.  Top right: smoothed grayscale image corresponding increasing 

thresholded geometry shows resemblance to diagenetic cement growth with red surrounding black,. 

Bottom right shows the corresponding geometry invoked by an increasing threshold. 

5.6 CONCLUSION 

We discovered that a trend between porosity and permeability, and between 

porosity and formation factor can be obtained from a single digital sample by simply 

classifying it by spanning a range of threshold values, a process that we refer to 

threshold sweeping, at least, for samples used in this study.  This variation in 

threshold will change porosity as well as permeability and electrical conductivity.  

However, the data points thus produced fall into very systematic and relatively tight 
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porosity-permeability and porosity-formation factor trends.  These trends are 

consistent with laboratory measurements on samples whose pore space geometry is 

altered by quartz overgrowth.  This phenomenon is valid for the samples examined 

here and is likely to hold for clastic rock with quartz cementation.  The practical 

implication of this finding is important:  just a few digital samples can be used to 

create a massive geologically plausible database. 
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Chapter 6 

Resolution and Transport Properties 
Trends  

 

6.1 ABSTRACT 

Resolution of an image influences the details depicted by the image and hence 

may affect the porosity and pore connectivity of a 3D image.  We analyze the change 

in transport properties -- porosity, permeability, and formation factor – and their 

interrelationships or trends, specifically porosity-permeability and porosity-formation 

factor, as the resolution is coarsened up to ten times of the finest resolution by linear 

interpolation.   

As the resolution is coarsened, we observe a little change in porosity and 

formation factor while permeability increases.  The coarsening of the resolution 

results in reduction in specific surface area (surface area divided by the volume) as 

the pores assume blocky shape and since permeability is the only property that 

depends on specific surface area, we observe a change in permeability only.  
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However, when the porosity-permeability trend for different resolutions are compared 

against laboratory and theoretical relationships, the increase in permeability lies with 

in the scatter of the data and hence, is acceptable. 

This result implies that we can acquire the images at lower resolution and still 

obtain meaningful results. 

6.2 INTRODUCTION 

The resolution of an image is defined as the size of a single voxel in length units.  

The size of voxel in an image affects the details that can be depicted in the image, and 

hence it may also affect the porosity and pore-connectivity in 3D. In this chapter, we 

explore the change in porosity (φ), permeability (k), and the formation factor (F) as 

the resolution of the image is changed.  We first image a porous rock fragment at the 

finest resolution available, and then coarsen this grid, and compute the transport 

properties of the digital object as a function of resolution for the three samples 

Fontainebleau (FB), Pomponio Beach (PB), and San Gregorio (SG), described in 

Chapter 3, section 3.3. 

Specifically, the CT-scan images used to obtain the 3D binary rock images in 

previous chapters are scanned at a fixed resolution.  We do not change that resolution 

by re-scanning the object as that is beyond the scope of this paper.  Instead, we 

mathematically interpolate ten randomly selected REV-sized finest scale subsamples 

onto the coarser grid to imitate the effect of coarser resolution.  Following this 

procedure, we re-compute the porosity, permeability, and formation factor for these 

coarse-grid 3D binary images using the computational rock physics methods 
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described in section 4.4 of Chapter 4.  Throughout the exercise, the ten subsamples 

selected in the beginning are not changed. 

As we coarsen the resolution of 3D image, the porosity of the 3D binary images 

remains essentially unchanged while the permeability increases slightly.  This 

increase in permeability is due to decrease in specific surface area (surface area 

divided by the volume) as the resolution coarsens.  However, when we compare the 

porosity-permeability trends for different resolution to the laboratory and theoretical 

relation, this increase in permeability with resolution lies within the scatter of the 

data.  The change in resolution affects the formation factor very little.  This might be 

due to change in cementation factor in Archie’s relation with resolution.  However, 

the change in formation factor is very small to deduct any relation definitely. 

These results imply that we can obtain the CT-scan images at a coarser grid 

without affecting the rock physics trends.  However, this study is not exhaustive, and 

hence we recommend testing the effect of change in resolution on rock physics 

properties and finding the best possible resolution. 

6.3 METHODOLOGY 

For the three samples, Fontainebleau (FB), Pomponio Beach (PB), and San 

Gregorio (SG), we randomly select ten REV-sized samples (Chapter 4) from the host 

sample.  We then linearly interpolate these samples to make each voxel n-times the 

size of the original voxel, where n varies from two to ten.  The methodology involves 

linearly interpolating the finest resolution digital rock samples onto a coarser grid. 

We employed linear interpolation technique for achieving this.  The linear 
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interpolation technique calculates the intensity value at an unknown point x between 

the two known points x0, x1 that have intensity value y0, y1, respectively, by using 

,)(
01

01
00 xx

yy
xxyy

−
−

−+=  (6.1) 

However, since we require the intensity value at the coarser grid, the interpolation 

technique simply picks the values at these coarser grid points from the finer grid, 

without using any interpolation.  For example, if we interpolate the finest resolution 

sample to a resolution twice the voxel size of the finest, the algorithm will simply 

pick every other grid value of the finest resolution sample.  

The various resolutions for all three samples in terms of their dimensions in 

voxels and their resolution in mm/voxel are shown in Table 6.1 to Table 6.3, 

respectively.  For all these samples at various resolutions, we then calculate the 

porosity, permeability, and electrical formation factor as described in Chapter 4, 

section 4.4.  

Note that the autocorrelation range in mm, remains unchanged as we change the 

resolution; hence the REV size in mm remains consistent as well.  However, the 

number of pixels in REV size cube changes as we coarsen the resolution as less 

number of pixels is required to represent the same length.  
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Table 6.1.  The resolution and equivalent REV size for the FB sample. 

Resolution Resolution (mm/voxel) REV Size (voxels) 

Original (1x) voxel size 0.00234 300 

2x-voxel-size 0.00468 150 

3x-voxel size 0.00702 100 

4x-voxel size 0.00936 75 

5x-voxel size 0.0117 60 

6x-voxel size 0.01404 50 

7x-voxel size 0.01638 43 

8x-voxel size 0.01872 38 

9x-voxel size 0.02106 34 

10x-voxel size 0.0234 30 

 

Table 6.2.  The resolution and equivalent REV size for the PB sample 

Resolution Resolution (mm/voxel) REV Size (voxels) 

Original (1x) voxel size 0.01477 170 

2x-voxel-size 0.02954 85 

3x-voxel size 0.04431 57 

4x-voxel size 0.05908 43 

5x-voxel size 0.07385 34 

6x-voxel size 0.08862 29 

7x-voxel size 0.10339 25 

8x-voxel size 0.11816 22 

9x-voxel size 0.13293 19 

10x-voxel size 0.1477 17 
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Table 6.3.  The resolution and equivalent REV size for the SG sample. 

Resolution Resolution (mm/voxel) REV Size (voxels) 

Original (1x) voxel size 0.01477 150 

2x-voxel-size 0.02954 75 

3x-voxel size 0.04431 50 

4x-voxel size 0.05908 38 

5x-voxel size 0.07385 30 

6x-voxel size 0.08862 25 

7x-voxel size 0.10339 22 

8x-voxel size 0.11816 19 

9x-voxel size 0.13293 17 

10x-voxel size 0.1477 15 

 

6.4 RESULTS  

The porosity, permeability, and formation factor for different resolutions are 

shown in Figures 6.1, 6.2, and 6.3, respectively.   

For all three samples, the porosity is approximately the same at all the resolutions.  

The permeability, on the other hand, increases as resolution is coarsened. The 

formation factor shows very little change as the resolution is coarsened.   
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Figure 6.1.  The porosity, permeability, and formation factor (top to bottom) at different resolutions 

for the Fontainebleau samples. 
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Figure 6.2.  The porosity, permeability, and formation factor (top to bottom) at different resolutions 

for the Pomponio Beach samples. 
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Figure 6.3.  The porosity, permeability, and formation factor (top to bottom) at different resolutions 

for the San Gregorio samples. 
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For all the samples, we also plot porosity-permeability, and porosity-formation 

factor trends (Figures 6.4 and 6.5, respectively).  We also plot the laboratory 

measured trend for porosity-permeability and porosity-formation factor trend for the 

Fontainebleau sample.  As discussed in Chapter 4, because we have only one 

measurement for the Pomponio beach and San Gregorio samples, we cannot produce 

a laboratory measured trend for these artificial samples. We instead plot the 

theoretical relations of Kozeny-Carman (Carman, 1956) and Archie (1942), 

respectively, for these samples.  The Kozeny-Carman and Archie’s relations are 

described by Equations 4.6 and 4.7, respectively, in Chapter 4. We plot the Kozeny-

Carman for three different grain sizes: mean grain size, minimum grain size, and 

maximum grain size observed in the sample while we plot Archie’s equation for three 

different values of cementation constant, m = 1.6, 1.8, and 2.0. 

The porosity-permeability trend shifts vertically as the resolution coarsens.  This 

is consistent with the previous observation that the permeability increases slightly as 

we coarsen the resolution.  However, this shift lies within the scatter of the laboratory 

data for the Fontainebleau sample and within the two Kozeny-Carman theoretical 

trends for minimum and maximum grain size distribution for the Pomponio Beach 

and San Gregorio samples.   

The porosity-formation factor trend, on the other hand, shows little change with 

resolution.   



Chapter 6 

120 

 

Figure 6.4.  Permeability versus porosity for computed data produced by varying the resolution for 

all three samples. For the FB sample we also plot laboratory data (Bourbie and Zinszner, 1985; and 

Gomez, 2009) while for the PB and SG, we plot Kozeny-Carman trends for different grain sizes 

(dmean, dmin, and dmax).  
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Figure 6.5.  Formation factor versus porosity for computed data produced by varying the resolution 

for all three samples.  Archie’s relation is also plotted for comparison for different cementation 

factors, m =1.6, 1.8 and 2.0, as indicated. 
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6.5 DISCUSSION 

3D rendering of the original as well as coarsened images of the samples under 

examination are displayed in Figure 6.6 (Fontainebleau), 6.7 (Pomponio Beach), and 

6.8 (San Gregorio Beach).  We observe that the pores in the coarsened images attain 

blocky shapes and, as a result, the pore specific surface area decreases (pore surface 

area divided by the total volume) as shown in Figure 6.9.  This increases the 

permeability as the permeability is inversely proportional to the square of the specific 

surface area (Figure 6.10).  The porosity, on the other hand, does not directly depend 

on the specific surface area (Figures 6.11).  Hence, it remains practically unchanged.  

The formation factor change slightly with the resolution (Figure 6.12).  This might be 

due to the change in cementation factor (m in Equation 4.7) with change in specific 

surface area.  However, the change in formation factor is very small to determine any 

relation between the two factors.  
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Figure 6.6.  3D rendering of the Fontainebleau sample the coarsened samples. The original image is 

very close to the 2x rendering shown in the figure.  
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Figure 6.7.  3D rendering of the Pomponio Beach sample for the original as well as the coarsened 

samples. We do not show the 10x coarsened sample here; however, it is fairly close to the 9x 

coarsened sample. 
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Figure 6.8.  3D rendering of the San Gregorio sample for the original as well as the coarsened 

samples. . We do not show the 10x coarsened sample here; however, it is fairly close to the 9x 

coarsened sample. 
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Figure 6.9.  The specific surface area (mm-1) of different samples as a function of resolution for all 

three samples.  
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Figure 6.10.  The specific surface area versus permeability as a function of resolution for all three 

samples.  There is an inverse relation between permeability and surface area. 
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Figure 6.11.  The specific surface area versus porosity as a function of resolution for all three 

samples. There is no apparent relation between porosity and surface area. 
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Figure 6.12.  The surface area versus formation factor as a function of resolution for all three 

samples.  There is a slight correspondence between the two properties; however, the change in the 

formation factor with surface area is fairly small. 
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6.6 CONCLUSION 

We observe that, at least for the three samples examined here, the change in 

resolution have little effect on the porosity and electrical formation factor.  It does 

affect the permeability but the change is within the scatter present in the laboratory 

Fontainebleau trend and the theoretical trends for Pomponio Beach and San Gregorio.  

Thus, it is not necessary to acquire an image with the finest technically attainable 

resolution.  In many cases, coarser resolution is sufficient.  In order to ascertain this, a 

workflow where one or two fine-scale images of a rock type under examination can 

be taken to explore how the coarsening of the images affects the desired rock 

properties.  If the property remains within the scatter of data, then a coarser (and 

cheaper) imaging protocol can be implemented. 
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