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Abstract 

 

 

This dissertation presents the results of using different inclusion and granular 

effective medium models and poroelasticity to predict the elastic properties of rocks 

with complex microstructures. Effective medium models account for the 

microstructure and texture of rocks, and can be used to predict the type of rock and 

microstructure from seismic velocities and densities. We show that if enough 

information regarding the rock microstructure is available, effective-medium models 

produce better estimates of the elastic properties of the rock matrix than the average 

of Hashin-Shtrikman (1963). We introduce the elastic equivalency approach, using 

the differential effective medium model, to predict the effective elastic moduli of 

rocks and attenuation. We introduce the porous grain concept and develop rock 

physics models for rocks with microporosity. We exploit the porous grain concept to 

describe a variety of arrangements of uncemented and cemented grains with different 

degrees of hydraulic connectivity in the pore space.  

We first investigate the accuracy of the differential effective medium and self-

consistent estimations of elastic properties of complex rock matrix using composites 

as analogs. At low porosity, the elastic moduli of the rock mineral matrix often 

dominate those of the whole rock.  A sedimentary rock matrix may be considered as a 

composite and may include mineral constituents with very different moduli and 

shapes. To describe the fabric of these rocks, an unmanageable number of parameters 

may be needed. We test whether the differential effective-medium (DEM) and self-

consistent (SC) models can accurately estimate the elastic moduli of a complex rock 
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matrix and compare the results with the average of upper and lower Hashin-

Shtrikman bounds. The testing was conducted using data from the literature on 

particulate-filled composites, covering a wide range of inclusion concentrations, 

inclusion shapes, and elastic modulus contrasts. We find that when the material 

microstructure is consistent with DEM, this model is more accurate than both SC and 

the bound-average method for a variety of inclusion aspect ratios, concentrations, and 

modulus contrasts. If relatively little information is known about the rock 

microstructure, the differential effective-medium approximation can estimate the 

elastic properties of complex mixtures of minerals more accurately than heuristic 

estimates, such as the arithmetic average of the upper and lower elastic bounds.  

Based on these results, we next pose a question: can a theoretical inclusion model, 

specifically, the differential effective-medium model (DEM), be used to match 

experimental velocity data in rocks that are not necessarily made of inclusions (such 

as clastics)? We first approach this question by using empirical velocity-porosity 

equations as proxies for data.  By finding a DEM inclusion aspect ratio (AR) to match 

these equations, we find that the required range of AR is remarkably narrow.  

Moreover, a constant AR of about 0.13 can be used to accurately match empirical 

relations in competent sand, shale, and quartz/calcite mixtures. We show that this 

finding can be practically utilized to (a) predict  from ; (b) describe velocity-

frequency dispersion between low-frequency and ultrasonic experiments; (c) predict 

the dry-frame elastic properties from ultrasonic data on liquid-saturated samples 

(where Gassmann’s fluid substitution is not applicable); (d) predict the attenuation of 

P-wave velocity; and (e) establish tight constraints for the ranges of possible variation 

of  and  at a given porosity in some mineralogies. We also apply this approach 

to laboratory data (rather than empirical equations) and find that, in most of the cases, 

we can indeed match the velocity data with a narrow range of aspect ratios within 

wide ranges of porosity and mineralogy.  

sV pV

sV pV

Although the actual rock may not be a physical realization of this mathematical 

model, we will show that there exist an elastic equivalency between DEM and the 

data.  Our hypothesis is that if such elastic equivalency can be established with a 
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narrow range of AR and for a wide range of real samples, we can find an idealized 

physical analogue to real rock and then use this analogue to interrelate different 

properties of real samples. 

When elastic equivalency is used to predict  from  in unconsolidated 

carbonate sediment, it is observed that the prediction is less accurate than for 

consolidated rocks and that it is necessary to multiply the DEM aspect ratios by an ad 

hoc factor in order to improve the prediction. In order to solve this problem, we 

next develop an effective-medium model for estimating the elastic properties of high-

porosity marine calcareous sediment and diatomite.   

sV pV

sV

The porous grain model treats sediment as a pack of porous elastic grains.  The 

effective elastic moduli of the porous grains are calculated using the differential 

effective-medium model (DEM), where the intragranular ellipsoidal inclusions have a 

fixed aspect ratio and are filled with seawater.  Then the elastic moduli of a pack of 

these spherical grains are calculated using different granular medium models and a 

modified (scaled to the critical porosity) upper Hashin-Shtrikman bound above the 

critical porosity, and modified lower and upper Hashin-Shtrikman bounds below the 

critical porosity.  In this study, the modified lower and upper bounds were found to be 

appropriate for carbonate marine sediment and diatomaceous sediment, respectively. 

The porous-grain model is also applied to estimate the effective elastic properties 

of three basic porous grain-aggregate scenarios, depending on the effective fluid 

connectivity of the intragranular porosity and in the grains. Each scenario is a 

simplified representation of the natural rock’s pore-space morphology and a closer 

representation of existing artificial composites. The realizations of each of these 

scenarios in composites or rocks are achieved either by creating or eliminating pore-

to-pore connections, or by changing the period of the externally applied stresses to be 

faster or slower than the pore-to-pore diffusion times. To determine the effective 

elastic properties of the saturated porous-grain material in the three different porous-

grain-aggregate scenarios, we use two models: the differential effective medium 

approximation (DEM) and the combination DEM-Gassmann, depending on whether 
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we wish to obtain the high frequency or the low frequency effective elastic moduli, 

respectively. In this approach, low and high frequency refer to fluid-related effects; 

but the wavelengths are still much longer than any scale of grains or intergranular 

pores. 

We find that when comparing the and  velocities predicted by our model 

with Ocean Drilling Program (ODP) data from three wells, the best match is achieved 

when the aspect ratio of intragranular pores is 0.5.  This model assigns finite, non-

zero values to the shear modulus of high-porosity marine sediment, unlike the 

suspension model commonly used in such depositional settings.  This approach also 

allows us to obtain a satisfactory match with laboratory diatomite velocity data. 

sVpV

A similar staged approach is used to determine the elastic moduli of a cemented 

porous grain aggregate at low cement concentration. This is achieved by introducing 

the porous grain concept into the cementation theory. Then, the combination of the 

cementation theory (Dvorkin et al., 1994) for porous grain material with a self-

consistent approximation, specifically, the coherent potential approximation (CPA) 

(Berryman, 1980), allows us to estimate the elastic properties of cemented porous 

grain aggregates at all cement concentrations (Dvorkin et al. 1999). Therefore, the 

porous grain model allows for a) varying the grain contact friction coefficient γ  in 

the whole range from 0 to 1, for smooth to infinitely rough grains, respectively; b) 

combining the self-consistent approximation with the cementation theory to account 

for intergranular cement volume fractions from 0 to 1; and c) considering porous 

grain textures and the effect of frequency. 

Our approach and models for non-cemented aggregates may be applied to 

sediment, such as calcareous and diatomaceous ooze, opal, and chalks. Our approach 

for cemented aggregates may be applied to carbonate rocks. The microstructural 

parameters of these models can be related to diagenesis and may be varied to mimic 

diagenetic processes of calcareous and diatomaceous ooze, and cemented and non-

cemented carbonate rocks.  
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Chapter 1      

Introduction 
 

 

 

 

 

1.1 Rock Physics Models 

This dissertation presents the results of using different inclusion and granular 

effective medium models and poroelasticity to predict the elastic properties of rocks with 

complex microstructures, such as carbonate rocks. Effective medium models account for 

the microstructure and texture of rocks, and can be used to predict the type of rock and 

microstructure from seismic velocities and densities.  

Most rock physics models fall within three general classes: theoretical, empirical, and 

heuristic (Avseth et al., 2005).  

1.1.1 Theoretical models 

The theoretical models are continuum mechanics approximations of the elastic, 

viscoelastic, or poroelastic properties of rocks. Biot (1956) was one of the first to 

formulate the coupled mechanical behavior of a porous rock embedded with a linearly 

viscous fluid. At zero frequency, the Biot equations reduce to the Gassmann (1951) 
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relations. Biot (1962) generalized his formulation to include a viscoelastic frame, 

followed by Stoll and Bryan (1970). Stoll and Bryan’s model used Biot's theory as a basis 

for the model, which account for losses due to inelasticity of the skeletal frame and to 

motion of the pore fluid relative to the frame. 

Elastic models may be classified into five kind of models: (a) inclusion models, (b) 

contact models, (c) bounds, (d) transformation, and (e) computational models (Avseth et 

al. 2005). In this dissertation we use elastic bounds, effective medium models, and 

transformations in all chapters. 

Inclusion models 

Inclusion models approximate rock as a continuous elastic solid containing solid or 

fluid inclusions. The solid inclusions may represent solid grains, and the fluid inclusions 

represent the rock pore space. Mineral inclusions stiffer than the rock matrix stiffen the 

rock, while softer inclusions, such as fluid and soft minerals, soften the rock. Most of the 

inclusion models treat the pores as ellipsoids (Eshelby, 1957; Walsh, 1965; Eimer, 1967, 

1968; Kuster and Toksoz, 1974; O’Connell and Budiansky, 1974, 1977; Cheng, 1978, 

1993; Berryman, 1980; Norris, 1985a; Hudson, 1980, 1981, 1990; Hudson and Liu, 1999; 

Crampin, 1984; Johansen et al., 2002; Jakobsen et al. 2003). Berryman (1980) 

generalized the self-consistent formulation so that both the pores and the grains are 

considered ellipsoidal inclusions in the composite material. The differential effective 

medium (DEM) theory models two-phase composite by incrementally adding inclusions 

of one phase to the matrix phase (Cleary et al., 1980; Norris, 1985; Zimmerman, 1991). 

Schoenberg (1983) and Pyrak-Nolte et al. (1990a, b) have considered inclusions in the 

form of infinite planes of slip or compliance, to model fractures. Jakobsen et al. (2003) 

synthesized many of the existing effective medium models and placed them on a 

common footing using the T-matrix formalism (Mavko et al., 2009). They also modeled 

the elastic properties of shales using the T-matrix formalism. Some of these inclusion 

models are used and compared in Chapter 2. 

 



CHAPTER 1: INTRODUCTION                                     3 
 

Contact models 

Contact models estimate the elastic properties of a random aggregate of spherical 

particles. They are often used to approximate unconsolidated rocks. The elastic properties 

of the random aggregate are determined by the deformability and normal and tangential 

stiffnesses of their grain-to-grain contacts. Most contact models (Brandt, 1955; Walton, 

1987; Digby, 1981; Norris and Johnson, 1997; Makse et al., 1999; Jenskin, 2005) are 

based on the Hertz-Mindlin (Mindlin, 1949) solution for the elastic behavior of two 

elastic spheres in contact. The key parameters determining the stiffness of the rock are 

the elastic moduli of the spherical grains and the area of grain contact, which results from 

the deformability of the grains under pressure (Avseth et al, 2005). Dvorkin et al. (1994) 

described the effect of adding small amounts of mineral cement at the contacts of 

spherical grains.  

Spherical contact models have been used as helpful analogs of soft sediments, but, as 

with the inclusion models, they are also based on idealized geometries. They are not easy 

to extend to irregular grain shapes, distributions of grain size (Brandt, 1955), or aggregate 

of grains of different minerals.  

The porous grain model, introduced in Chapter 4 and 5, are based on granular 

medium models, and combination of several kind of models. 

Bounds models 

Bounds models calculate the elastic bounds of a composite material based on 

fundamental principles. The bounds are rigorous and are relatively free of assumptions 

about the material microstructure. The calculations of the bounds are based on the 

assumption that rock is a linear elastic composite material (Mavko et al., 2009; Avseth et 

al., 2009). The lower and upper bounds and their arithmetic average can be used as 

mixing laws and can be associated with sorting and cementing trends. Bounds rigorously 

describe suspensions (Voigt, 1928; Reuss, 1929; Hill, 1952; Hashin and Shtrikman, 1963; 

Walpole, 1966). Chapter 2 focuses on elastic bounds with effective medium models. 
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Transformation models 

Transformation models, such as the Gassmann (1955) relations for fluid substitution, 

are relatively free of geometric assumptions. The Gassmann relations take measured 

and  at one fluid state and predict the and  at another fluid state. Berryman 

and Milton (1991) presented a geometry-independent scheme to predict fluid substitution 

in a composite of two porous media having separate mineral and dry-frame moduli 

(Avseth et al., 2009).  

sV sVpV pV

Computational models 

In computational modeling, the rock morphology and properties are represented by a 

grid, and the elastic, poroelastic, or viscoleastic behavior is computed using finite-

element (Garboczi and Bentz, 1991; Garboczi and Day, 1995; Arns et al., 2002; Grechka 

and Kachanov, 2006; Makarynska et al, 2008; Mahyar et al., 2009) and finite-difference 

modeling. These numerical estimations are independent of idealized rock microstructures, 

and they have the capability to estimate the effects of features observed in thin sections 

on the rock elasticity.   

Computational modeling also uses discrete element models to simulate the 

simultaneous interactions of many discrete grains in a soft sediment (Garcia and Medina, 

2006, 2007). Computational modeling also uses hybrid discrete and finite element models 

for simulation of rocks (Fakhimi, 2008).  

1.1.2 Empirical models 

Most empirical models are based on experimental observations at specific physical 

conditions and specific data sets. The typical approach of empirical modeling is to 

assume some functional form of the trend of the data and then determine the empirical 

coefficients by calibrating a regression to measured data. Examples of these regressions 

are the - density relations of Gardner et al. (1974), the -  relations of Greenberg 

and Castagna (1992), and the -porosity-clay relation of Han (1986). In this dissertation, 

we use empirical models as proxies for data. 

sVpV pV

pV

An empirical model can be also obtained from the results of numerical experiments. 
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An attractive empirical approach is to use a neural network as a way to determine 

nonlinear relations among various rock physics parameters (Avseth et al., 2009).  

Usually, an empirical relation involves a two-step process: a modeling step to 

determine the functional form followed by a calibration step to determine the empirical 

coefficients (Avseth et al., 2009). 

1.1.3 Heuristic models 

A heuristic model is a non-mathematical rigorous way to relate parameters. In 

heuristic models, we present heuristic arguments to justify why rock physics parameters 

should be related in a certain form (Avseth et al., 2009). An example of these models is 

the Wyllie time-average, which relates velocity to porosity, sf VVV )1(1 φφ −+= . The 

time-average equation is equivalent to a straight-ray, zero-wavelength approximation, 

which is not valid when modeling wavelengths that are very long relative to grains and 

pores. Another example is the Hashin-Shtrikman bound curves. Although these bounds 

are rigorous, when modifying and using them to describe, for instances, cementing (upper 

bound) and sorting (lower bound) trends, they are heuristic. We argue that sorting is the 

softest way to add mineral to a sand, thus we heuristically explain why a lower bound 

equation might be expected to describe sorting. We also argue that cementing is the 

stiffest way to add mineral to a sand, thus we present arguments to explain why an upper 

bound equation might be expected to describe cementing. However, even though these 

arguments are reasonable, we are not able to derive these models from the first principles. 

In this dissertation, we use heuristic models, e.g. soft-sand model (Dvorkin and Nur, 

1996), as proxies for data. Hybrid models 

Hybrid models combine experimental observations (empirical relations) with 

theoretical bounds and models. An example is the evolution of the rock physics 

interpretation of Han’s (1986) experimental data set. Han (1986) measured and  

velocities of shaley sandstones with various porosity and clay content. Han observed that 

the velocity-porosity-clay follows trends of parallel contour of constant clay volume. Nur 

et al. (1998) observed that each of these contours had high- and low-porosity intercepts 

that had a clear physical interpretation: in the limit of zero porosity, which means that any 

sVpV
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model should rigorously account for the properties of pure mineral, while in the limit of 

high porosity (the critical porosity), the rock should fall apart. When a rock is falling 

apart, it becomes a suspension. Thus, instead of using empirical relations, Han’s data can 

be modeled using the upper Hashin-Shtrikman bound scaled to critical porosity, which 

better fits the data over a large range of porosities and can be extrapolated to porosity 

values out of the data set range. 

Another example of hybrid model is Dvorkin’s soft-sand model (Dvorkin and Nur, 

1996). This model is a heuristic model, which uses a the Hertz-Mindlin model to describe 

clean, well-sorted sands, combined with a modified lower bound to interpolate these to 

lower porosity, poorly sorted sands.  Such heuristic models attempt to mimic geological 

processes, but honoring physical principles that make the model universal (Avseth et al., 

2009).  

In this study, we use a hybrid of theoretical, bounds, transformations, empirical, and 

heuristic models to describe carbonate sediment. 

1.2 Chapter Descriptions  

All Chapters in this dissertation are self-contained. However, they are interrelated. 

Chapter 3, in part, is based on Chapter 2. Chapter 5 is an extension of Chapter 4 and uses 

results from Chapter 3. Chapter 2 focuses on using composites as analogs of rocks with 

different texture. We show that if enough information regarding the rock microstructure 

is available, effective-medium models produce better estimates of the elastic properties of 

the rock matrix than the average of Hashin-Shtrikman (1963). This Chapter will be 

submitted to Geophysics. In Chapter 3, we develop a methodology that consists of 

matching experimental with DEM and finding the range of AR required to achieve this 

match. We show that there exist an elastic equivalency between DEM and the data. Once 

the elastic equivalent model is found, it is used to predict the effective elastic moduli of 

rocks.  This Chapter will be published in Geophysics this year. In Chapter 4, we introduce 

the porous grain concept (Ruiz and Dvorkin, 2009) and develop a rock physics model for 

sediment with microporosity contained within the mineral phase (e.g., carbonate 

sediment and rocks, chalks, and opalines). This Chapter has been published this year in 
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Geophysics. In Chapter 5, we exploit the porous grain model to describe a variety of 

arrangement of grains and consider different degrees of hydraulic connectivity in the pore 

space. This Chapter will be summated to Geophysics this year. 

Chapter 2 focuses on using the elastic properties of composites as analogs of rocks 

with different textures and different elastic contrasts between their constituents.  The 

effective elastic moduli of a composite depend mainly on the volume fraction of each 

grain and interphase (cement) constituents, grain shapes, degree of anisotropy of the 

individual crystals constituents, stiffness contrast among phases, and the bonding state on 

the interface between the phases (Tong et al., 2001;  Hashin, 1991a and 1991b).  

In this Chapter, to model the elastic moduli of artificial composites, we consider the 

coherent potential approximation (CPA) (Berryman, 1980; 1995), and a differential 

effective-medium (DEM) approximation (Norris, 1985a). These two approximations 

always satisfy the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963), which are 

rigorous bounds, and produce physically realizable results (Norris, 1985a; Berryman, 

1995). We also test two models, which focus on the interaction of spherical inclusions at 

high concentrations, one developed by Devaney and Levine (1980) and the other by 

Mondescu and Muthukumar (1999).  

We test the effective-medium models on a large composite data set in order to 

evaluate their predictions for a wide range of elastic moduli contrasts and inclusion 

shapes, with the goal of finding which model will most accurately determine the effective 

elastic moduli of sedimentary rocks with complex matrices.  

We find that because the selected materials have microstructures are consistent with 

the DEM approximation, DEM provides consistently accurate predictions over a wide 

range of volumetric concentrations and with a fairly narrow range of aspect ratio.  

Chapter 3 focuses on the prediction of the elastic properties of carbonates. We 

introduce the concept of elastic equivalency between rock physics models, using the 

inclusion aspect ratio as a single fitting parameter. We exploit this concept to make rock 

physics predictions. This chapter is self-contained but it is based on the results found in 

Chapter 2.  In this chapter we limit ourselves to using only one inclusion theory, DEM, as 

formulated by Norris (1985a), with randomly oriented spheroidal inclusions.  Therefore, 
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we deal with isotropic rock.  Our approach consists of matching experimental data over 

wide ranges of porosity and mineralogy with DEM and finding the range of AR required 

to achieve this match.  Although the actual rock may not be a physical realization of this 

mathematical model, we will show that there exist an elastic equivalency between DEM 

and the data.  Our hypothesis is that if such elastic equivalency can be established with a 

narrow range of AR and for a wide range of real samples, we can find an idealized 

physical analogue to real rock and then use this analogue to interrelate different 

properties of real samples.  

Chapter 4 introduces the porous grain concept and merges it with the existing rock 

physics models. This model is applied to marine carbonate sediment, diatomaceous rocks, 

and chalks (Ruiz and Dvorkin, 2009). 

The porous grain model treats the high-porosity sediment as a pack of porous elastic 

grains, which represent minute calcareous or siliceous skeletons.  This principle of 

theoretically replacing the actual mineral with a porous material can be applied, as 

appropriate, to various mineralogies and used with any of the existing rock physics 

models, including such traditional relations as by Wyllie et al. (1956), Raymer et al. 

(1980), and Krief et al. (1990).   

Chapter 5 is an extension of the porous-grain model introduced in Chapter 4. In this 

Chapter, we develop a methodology to determine the effective elastic moduli of porous 

grain aggregates with various textures. The porous grain model is extended to allow: a) 

variations of the grain contact friction coefficient, b) combining the self-consistent 

approximation (Berryman, 1980) with the cementation theory (Dvorkin et al., 1994) to 

account for intergranular cement volume fractions from 0 to 1, and c) considering the 

effect of frequency. The porous-grains model can be applied to approximate three 

different porous grain-aggregate scenarios, depending on the effective fluid connectivity 

of the intragranular porosity in the grain. The model for non-cemented aggregates may be 

applied to sediment with porous grains. The model for cemented aggregates may be 

applied to carbonate rocks. The microstructural parameters of these models can be related 

to diagenesis and may be varied to mimic diagenetic processes of carbonate rocks.  
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Chapter 2       

Accuracy of DEM and SC 
estimations of elastic properties of 
complex rock matrix using 
composites as analogs 

 

2.1 Abstract 

At low porosity, the elastic moduli of the rock mineral matrix often dominates those 

of the whole rock.  A sedimentary rock matrix may be considered as a composite and 

may include mineral constituents with very different moduli and shapes. To describe the 

fabric of these rocks, an unmanageable number of parameters may be needed. 

Understanding the elastic behavior of synthetic composites, which are easier to model, 

enables us to quantify the effect of each parameter on the elastic moduli of the rock 

matrix independently. We test whether the differential effective-medium (DEM) and self-

consistent (SC) models can accurately estimate the elastic moduli of a complex rock 

matrix and compare the results with the average of upper and lower Hashin-Shtrikman 

bounds (HS). The testing was conducted using data from the literature on short-fiber-

filled composites, particulate-filled composites, and crystalline aggregates, covering a 

wide range of inclusion concentrations, inclusion shapes, and elastic modulus contrasts. 

We find that when the material microstructure is consistent with the DEM approximation, 



CHAPTER 2: ACURACY OF DEM AND SC ESTIMATIONS 13 

DEM is more accurate than both SC and the bound-average method for a variety of 

inclusion aspect ratios, concentrations, and modulus contrasts. DEM is found to be 

consistently accurate if a single effective inclusion aspect ratio is appropriately selected 

and held constant for the entire concentration range. If relatively little information is 

known about the rock microstructure, DEM can estimate the elastic properties of 

complex mixtures of minerals more accurately than heuristic estimates, such as the 

arithmetic average of the upper and lower elastic bounds. Finally, we propose a 

methodology for applying effective-medium models to estimate the elastic properties of 

sedimentary rocks with complex mineral matrices. 

2.2 Introduction 

The skeleton material of a sedimentary rock may be considered as a pack of glassy 

and/or imperfect crystalline grains and organic matter, completely or partially compacted. 

These grains may be entirely or partly welded by one or more cement minerals, and 

arranged in intricate ways. We call the composite rock skeleton material the matrix. In 

the matrix, different mineral grains may be randomly located in a continuous or 

discontinuous mode and may have random or preferred orientations. For instance, if in 

the rock matrix the grains are randomly spatially distributed and oriented, the matrix 

looks like a polycrystalline aggregate, where all crystallites (grains) are completely 

disordered. As another example, if the rock matrix contains one continuous and several 

discontinuous phases, we may treat the continuous phase as the host and the 

discontinuous phases as isolated host-embedded mineral inclusions. This is the case of 

hybrid composites. The mineral inclusions may be stiffer or softer than the mineral host, 

and of different shapes and sizes. In some rocks, this matrix may be composed of only 

two main minerals with simple microstructure. In other cases, this matrix may be 

complex, composed of several high-elastic-contrast minerals and having complex 

microstructure. To mathematically describe the structure of natural rock matrix, an 

unmanageable number of parameters is often needed, such as volume fractions of 

crystalline and amorphous material and their elastic moduli, nature of boding on the grain 

interface, type and volume fraction of cements. On the other hand, it is possible to 
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fabricate non-porous composites simple enough that they can be modeled with relatively 

few parameters. Therefore, by carefully selecting the parameters we are interested in, 

composites can be accurately mathematically modeled. Hereafter, we use the term 

composite to refer to artificial composites. 

Composites can be fabricated with several constituent phases. The simplest are two-

phase composites. Two-phase composites, including granular aggregates such as 

polycrystalline aggregates, can be classified in terms of the phase continuity and 

connectivity. Three main composite categories have been suggested (Ji and Xia, 2003; 

Gurland, 1979):  a) composites with a stiff-phase-supported frame (SPSF), in which the 

stiff phase is continuous, while the compliant phase is discontinuous in the direction of 

the applied load; b) composites with a compliant phase-supported-frame (CPSF), in 

which the stiff phase is discontinuous while the compliant phase is continuous in the 

loading direction; and c) composites with a transitional frame (TF), in which both the 

stiff and the compliant phases are continuous (TFC) or discontinuous (TFD) in the 

loading direction. When all phases are discontinuous, there is no well-defined matrix 

phase, such as in completely random polycrystalline materials. 

When fabricating composites, varying a specific host or inclusion feature, such as 

grain size, might create undesirable features. Examples of common undesirable 

experimental features are residual anisotropy, residual porosity or cracks, incompletely 

welded constituents, crystalline and/or glassy phases created by solid-solid reactions or 

during sintering, imperfect randomness, and inclusion agglomerations which increase the 

sizes of heterogeneities. Imperfections at the interface between the constituent phases and 

residual porosity are perhaps the two most common undesirable features. To mitigate 

these features, in some composites an adhesive ingredient is added to the mixture to bind 

the matrix and inclusions (Vollenberg and Heikens, 1990). By adding this ingredient, 

known as an interphase (cement), a three-phase composite is created. 

Composites can be considered as analogs of rocks with predesigned composition and 

microstructure.  The elastic properties of selected composite constituents can be designed 

to be the same as or comparable to those found in natural rocks. Combining these 

constituents, the composition and structural parameters of composites may be varied 
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independently, whereas in rocks the parameters can not be separately controlled. 

The effective elastic moduli of a composite depend mainly on the volume fraction of 

each grain and interphase (cement) constituents, grain shapes, degree of anisotropy of the 

individual crystals constituents, stiffness contrast among phases, and the bonding state on 

the interface between the phases (Tong et al., 2001;  Hashin, 1991a and 1991b). The 

bonding between phases (minerals) may be considered as perfect or imperfect. Various 

theoretical approaches for estimating the elastic moduli, such as micromechanics, 

variational principles, and multi-scattering theory, have been developed for perfectly 

bonded composite (e.g., Kuster and Toksoz, 1974, Hashin, 1963; Hashin, 1983; Torquato, 

1991; Nemat-Nasser and Hori, 1993; Berryman, 1980; Norris, 1985a; Devaney and 

Levine, 1980; Mondescu and Muthukumar, 1999). It has been observed that imperfect 

bonding has a significant effect on the elasticity of composites (Achenback and Zhu, 

1990; Vollenberg and Heikens, 1990; Gotz at al., 1991; Nan et al., 1997).  

In this study, to model the elastic moduli of materials, we consider effective-medium 

models, which are based on wave scattering theory. In these models it is assumed that the 

wavelengths are much longer than the size of the inclusions. Specifically, we consider a 

self-consistent model (SC) known as the coherent potential approximation (CPA) 

(Berryman, 1980; 1995) and a differential effective-medium (DEM) approximation 

(Norris, 1985a). These two approximations always satisfy the Hashin-Shtrikman bounds 

(Hashin and Shtrikman, 1963), which are rigorous bounds, and, as a result, they produce 

physically realizable configurations (Norris, 1985a; Berryman, 1995). We also test two 

models which consider the interaction of spherical inclusions at high concentrations, one 

developed by Devaney and Levine (1980) and the other by Mondescu and Muthukumar 

(1999), hereafter referred to as DL and MM, respectively. DL and M are not necessary 

realizable, depending on the values of the selected material elastic properties, shapes, and 

concentrations, they can produce results out side the Hashin and Shtrikman bounds. 

In order to formulate solvable equations, these theories are based on idealized 

assumptions about the material microstructures and mathematical approximations. The 

relationship between these mathematical approximations and the rock matrix 

microstructure is not always evident. However, each of these models still offers a useful 
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analog to the elastic behavior of a rock matrix with specific microstructure. For instance, 

a rock matrix where the host and inclusion parts can be identified may look more like a 

physical realization of DEM, whereas an aggregate of grains may look more like a 

physical realization of CPA. 

In any model that estimates the elastic-wave velocity in porous rock, the elastic 

properties of the mineral matrix are required inputs.  The correctness of this input is 

especially important in low-porosity rock, such as tight gas sandstone.  The matrix of 

such rock can include elements of contrasting elastic properties, such as hematite and 

clay, pyrite and clay, siderite and quartz, etc.  For example, in the tight gas sandstone 

shown in Figure 2.1, high-density and high-stiffness elements (white) are mixed with 

softer elements (gray).  

 

500 microns
10 microns

 
Figure 2.1:  Tomographic slices of a 3D CT-scan image of tight gas sandstone.  Left:  

micro-CT resolution.  The pore space is not discernable.  The elements of 
varying density, from high (white) to low (dark gray) are apparent.  Right:  nano-
CT resolution.  The micropores appear black and embedded into light-gray 
crystals.  White crystals represent high-density and high-stiffness mineral.  The 
dark-gray (lower-density) background is relatively soft.  Courtesy Ingrain, Inc. 

 

The intricacy of this matrix becomes especially clear in the nano-scale image, where 
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high-density and very stiff crystals (white), together with lower-density and less stiff 

crystals (light gray), are embedded into a low-density and soft matrix (dark gray). 

If microstructure information is completely absent, the traditional method of 

estimating the effective elastic moduli of a matrix from the elastic moduli of its elements 

is Hill’s (1952) average, which is the arithmetic average of the elastic upper (Voigt) and 

lower (Reuss) bounds.  One can also use the arithmetic average of the upper and lower 

Hashin-Shtrikman (1963) bounds (HSA).  Methods that set bounds on the effective 

composite elastic moduli are helpful for rock matrices and composites with low contrast 

in stiffnesses. However, in a situation where composites or rocks are made of contrasting 

elastic components, the difference between the upper and lower bounds can be large, 

which makes the Hill-average approach a poor estimate. If enough information regarding 

the rock microstructure is available, effective-medium models produce better estimates 

than the average of theoretical bounds. Consider, for example, a mixture of pyrite, whose 

bulk ( K ) and shear ( G ) moduli are 147 and 133 GPa, respectively, and clay with K  = 21 

GPa and G  = 7 GPa (Mavko et al., 1998).  At 30% pyrite concentration, the difference 

between the Voigt and Reuss bulk modulus bounds is about 30 GPa, and that between the 

upper and lower HS bounds is about 20 GPa.  For the shear modulus, these differences 

are about 35 and 20 GPa, respectively. Because of the resulting large uncertainty of 

estimations by the bound method, we test whether the effective-medium models, which 

can give better predictions for specific phases’ stiffness contrasts and microstructures, 

can better estimate the elastic properties of a sedimentary rock matrix. It is important to 

bear in mind that each theoretical model is applicable only to the specific material elastic 

contrasts and microstructures for which it was formulated. 

We test the effective-medium models on a large data set of CPSF and SPSF 

composites in order to evaluate their predictions for a wide range of elastic moduli 

contrasts and inclusion shapes, with the goal of finding which model will most accurately 

determine the effective elastic moduli of sedimentary rocks with complex matrices.  

The effective-medium approximations can be subdivided into two basic groups: a) 

asymmetric models, which are consistent with materials where host and inclusions can be 

identified, such as CPSF and SPSF composites, and b) symmetric models, which are 
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consistent with materials where no matrix can be identified, such as TF composites. 

DEM models multiphase materials by incrementally adding inclusions of one phase 

to the phase identified as the matrix (Cleary et al., 1980; Norris, 1985a; Zimmerman, 

1991; Mavko et al; 1998). DEM requires identifying any one of the mineral constituents 

as the matrix and all other minerals as isolated embedded inclusions. Therefore, DEM 

may generate more effective elastic-modulus estimates than the number of phases present 

in the rock. For a multiphase material, with specific volume concentrations of different 

phases, it is possible to obtain different estimates of the effective moduli, by altering the 

order of the differential addition. This is also true if the material has inclusions of a single 

phase, but of different shapes.  If the stiffest mineral is identified as matrix, the rock 

matrix will behave as a SPSF composite. If the softest mineral is identified as matrix, the 

rock matrix will behave as a CPSF composite.  

CPA, like DEM,  also uses the solutions for the deformation of isolated inclusions, 

but the interaction of inclusions is approximated by replacing the background medium 

with an as-yet-unknown effective medium (Berryman, 1995). CPA produces only one 

estimate, regardless of the number of phases and inclusion shapes present in the rock. The 

rock is treated as an aggregate of all constituents, and none of mineral phases plays the 

role of matrix for the others (Berryman, 1995; Mavko et al., 1978). Berryman (1995) 

gives a specific form of the CPA approximation for multiphase composites. 

DL approximation is also based on a self-consistent formulation of multiple-

scattering theory. This approach assumes that the inclusions are spherical. In the 

particular case where the concentration of inclusions is low, this model reduces to the 

CPA. However, at high inclusion concentration, when the multiple-scattering effects are 

not negligible, DL estimates differ considerably from the CPA estimates (Devaney and 

Levine, 1980). 

MM approximation is used for computing the effective elastic properties of a 

composite material containing rigid, mono-sized, spherical particles, which can either 

overlap or not, and are randomly dispersed in a host material. This model allows for an 

inclusion volume fraction that is high enough for a percolation transition to occur and 

clusters to form (Mondescu and Muthukumar, 1999; Sahimi, 2000).  
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DEM, DL and MM are consistent with materials where a matrix and inclusions can 

be identified, such as particulate composites, and yield formulas that are not symmetrical 

in the two phases. On the other hand, CPA is symmetric in all of the mineral constituents. 

DEM and CPA are realizable MM and DL methods are not  

We find that because the selected materials have microstructures of the CPSF- and 

SPSF-type, which are consistent with the DEM approximation, DEM provides the most 

consistently accurate predictions over a wide range of volumetric concentrations and with 

minimum flexibility of input parameters (e.g., aspect ratio). 

2.3 Composite Datasets 

For testing the accuracy of the DEM and CPA models, compared with the HS bounds, 

we used twenty-three two-phase composite experimental data sets from the literature. 

These composites cover a wide range of inclusion concentrations and elastic-modulus 

contrasts (Tables 1 and 2). In most of these data sets, mixtures of different concentrations 

of constituents, such as resins, polymers, rubber, metals, and single crystal polycrystalline 

powders, were used to make non-porous composite samples.  

The composite systems (matrix/inclusion) cover two main types: a) CPSF and SPSF, 

with an organic material (polymer) as host and glassy, organic, or metallic materials as 

inclusions, and b) composites with a polycrystalline material as host and polycrystalline 

materials as inclusions. In all the composites, the embedded inclusions are randomly 

located and oriented. An exception is the enstatite/forsterite composite system data set (Ji 

and Wang, 1999), which consists of mixtures of crystalline powders.  

Table 1 shows the elastic moduli and densities of the composites materials used, and 

the sizes and shapes of the inclusions. Table 2 shows the density contrasts, the bulk and 

shear-modulus contrasts between host and inclusion materials, the type of test conducted 

to measure the elastic properties (ultrasound, resonant bar, or static measurements), and 

the composite type, based on the classification described in the introduction. In some of 

these isotropic composite data sets, the measured density and elastic moduli are available, 

and in others only the P-wave velocity ( ), bulk ( ) or Young’s (k EpV ) modulus is 

available.  
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rφMost of these composite samples appeared to be free of residual porosity ( ); 

however, in some of the composite samples rφ  can be estimated, or it is reported, such as 

in the enstatite-forsterite system (Ji and Wang, 1999). The residual porosity, rφ , is 

determined by computing the difference between the theoretical and measured density, ρ  

and , respectively, as ρρρφ /)( mr −= . mρ

 
Table 2.1: Data sets used in our study. Here, spheroids refer to oblate spheroids 

(close to spherical particles). In most data sets, the inclusion aspect ratio (AR) 
distribution or average (AR) is not reported. The inclusion size range or average 
and the constituent density are not reported in some data sets. 

              Host Properties                           Inclusion Properties
References Host K h G h ρh Inclusion K i Gi ρi Size (μm) Shape

(GPa) (GPa) (g/cm 3 ) (GPa) (GPa) (g/cm 3 )

Lees and Davidson (1977) PMMA 5.80 1.25 1.17 Crystabolite 69.00 12.50 2.32 Spheroids

Zhang et al. (1996) Resin 5.31 1.82 1.25 Aluminum 77.44 24.77 2.68 5-300 Spheroids

Bridge and Cheng (1987) Polypropylene 4.29 1.44 0.91 CaCO3 67.00 33.10 2.70 Spheroids

Gomez et al. (2000) Epoxy 5.52 1.38 1.14 PZ-Ceramic 163.52 52.05 7.70

Piche and Hammel (1986) Resin 5.70 2.00 1.18 Iron 166.24 82.86 7.84 50 Spheroids

Piche and Hammel (1987) Resin 5.70 2.00 1.18 Iron 166.24 82.86 7.84 Flakes/Fibers

Nguyen et al. (1996) Resin 8.00 1.60 1.26 Tungsten 306.00 162.00 19.30 0.5-5 Spheroids/short fibers

Sugawara et al. (2005) Resin 5.34 1.69 1.15 Tungsten 306.00 162.00 19.30 1 - 3. Spheroids

Lees (1973) Vinyl 4.51 0.40 1.26 Tungsten 325.72 162.31 19.30

Richard (1975)   Polyester 5.02 0.58 Glass 40.40 29.05 Spheroids

Smith (1976)          Epoxy-Polymer 4.73 1.08 Glass 46.91 30.89 Spheroids

Doi et al. (1970) Cobalt 181.50 79.43 Carbide 382.08 298.10 1 - 23.

Biwa (2001) PMMA 5.91 2.25 1.19 Rubber 2.71 0.56 1.13  0.05 - 1 Spheroids

Ji and Wang (1999) Enstatite 104.60 74.20 3.17 Forsterite 126.30 79.80 3.20 12 Spheroids (AR=0.67)

Pernot and Rogier (1993) Glass-Ceramic 35.42 28.80 2.65 Stainless 160.80 74.20 7.95 < 50 Spheroids (AR~1)

Hasselman and Fulrath (1965a) Glass 43.85 33.71 Tungsten 195.54 148.10 30 Spherical

Hasselman and Fulrath (1965b) Glass 43.85 33.71 Alumina 281.92 163.50 50-100 Spheroids(AR=0.1-1.0)

Hasselman and Fulrath (1963) Zirconium-Carbide 239.86 202.95 6.70 Graphite 4.79 4.54 1.90 100-200 Flat and Spheroids

Nishimatsu and Gurland (1960) Cobalt 172.37 79.56 Carbide 418.61 288.22

Quesenberry et al. (2003) Epoxy 2.47 0.92 1.19 Glass 46.90 30.90 2.54 Spheres/short fibers

Dunn and Ledbetter (1995) Aluminum 73.48 27.10 2.70 Mullite/Alumina 173.5/255 89.5/163 3.17/3.99 30/45/100 Short rods/Spheres

Vollenberg and Heikens (1990) Polypropylene 3.25 0.55 Chalk 19.44 14.58 3.5/30/130 Irregular (AR ~1)

Gaudig et al. (2003) Ferrite 163.49 79.85 7.84 Graphite 2.50 1.71 1.90 Vermicular/Spheroidal

Ledbetter and Dunn (1995) Ferrite 163.49 79.85 7.84 Graphite 2.50 1.71 1.90 Spheroidal  
 

Most of the selected composites are polymer based. During the tests conducted on 

polymer composite samples, multiple mechanisms, associated with the constituent’s 

characteristics and test type (static or dynamic) may take place simultaneously 

contributing to different amounts of change in the elastic properties of the tested 

composite. To quantify the effect of a single mechanism, the composite samples need to 

be constructed and tested carefully. Interactions between the composite constituents may 
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cause changes in the microstructure of the composite and consequently produce changes 

in its effective elastic moduli and behavior. Different tests or different material 

combinations may induce different mechanisms. For instance, choosing large inclusion 

sizes reduces the formation of clusters of inclusions; applying small strains reduces 

breaking of the inclusions; and choosing spherical inclusions avoids preferred 

geometrical rearrangements and reduces residual anisotropy. When the inclusion volume 

fraction is large, interactions between inclusions may be large, and new mechanisms arise, 

such as friction at the inclusion contact area. In reinforced polymer composites, two main 

mechanisms may occur (Aksel and Hubner, 1996): a) the detachment of the host polymer 

from the inclusion surface (dewetting) and b) sliding of the polymer chains on the 

inclusion surface. Different combinations of material components may exhibit different 

degrees of adhesion between the host and the inclusion surface. The strength of the 

electrostatic bonds in the host polymer itself may be much higher than the strength of the 

bonds between the host and the inclusions surface. High-strain tests, such as those 

applied in stress-strain tests (static), may induce cracks in the host material. These cracks 

may have a large effect on the composite elastic moduli. Low-strain tests, such as those 

produced by ultrasonic tests, do not induce cracks, but may activate mechanisms in the 

interface between the host and the inclusions. 

The embedding of an inclusion phase may cause spherulization, which changes the 

morphology and crystalinity of the host polymer. The magnitude of the changes may 

depend on the shapes and inclusion volume fraction (Vollenberg and Heikens, 1990). The 

first row of the polymer spherulites at the inclusion may act as an interphase. In this case, 

the two-phase composite becomes a three-phase composite. The elastic properties of this 

third phase are different from those of the host polymer and inclusion. The thickness of 

this interphase might depend on the inclusion characteristics, such as size and shape.  

In practice, the connectivity among inclusions depends not only on the affinity 

between the inclusion and host materials, but also on the procedure used to construct the 

samples. If there is a strong affinity between the host polymer (or other material) and the 

inclusion material (e.g. ceramic, metal etc) a thin layer of a different polymer material 

surrounding each particle might appear even at high inclusion volume fraction. Usually, 
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if warm pressing or screen-printing is used on mixtures of inclusions with a fluid polymer, 

the constructed composites will usually have higher degree of connectivity than the 

composites where the inclusions are initially placed in contact, with a polymer then added 

using vacuum impregnation and backfilling (Gomez et al., 2000). 

2.4 Comparison of theoretical and experimental data 

2.4.1 Effect of stiffness contrasts 

Figures 2.2 to 2.8 show the measured elastic properties and theoretical predictions for 

the two-phase composite data sets. The theoretical density of the mixtures, ρ , is given by, 

1121)1( ρρρ CC +−= , where 1ρ  and 2ρ  are the densities and  and  are 

the volume fractions of the two-phase composite constituents.  Since in all data sets the 

difference between calculated densities and measured densities is very small, we use the 

theoretical densities in our modeling. For the application of DEM described in this 

subsection, the aspect ratio of the inclusions was 1 (Figures 2.2 to 2.9), and for CPA the 

aspect ratio was 1, for both host and the inclusions. 

1C 12 1 CC −=

In most of the composites, the experimental velocities fall inside the Hashin-

Shtrikman bounds. At small inclusion concentrations, the lower Hashin-Shtrikman bound 

( ) gives accurate results for the CPSF composites (Figures 2.2 to 2.5), and the upper 

Hashin-Shtrikman bound ( ) gives accurate results for the SPSF composites.  

−HS
+HS

At low concentrations, the DEM, CPA and DL predictions for CPSF composites with 

aspect ratios close to unity approach the lower Hashin-Shtrikman bound ( ). For 

SPSF composites the model predictions approach the upper Hashin-Shtrikman bound 

( ). At high concentrations, the difference between the model predictions and  or 

 increases. 

−HS

+HS −HS
+HS

For the entire range of inclusion concentrations, the predictions of DEM and CPA lie 

between the bounds (Figure 2.2-2.9). The DL predictions also lie between the bounds, 

but only for moderate concentrations. MM produces results that may lie inside or outside 

the  bounds (Figures 2.4, 2.5, 2.7, and 2.9).  

HS

HS
Notice that as concentration increases, the prediction accuracy for all models 

deteriorates. The inclusions in most of the composites are spheroidal and have different 
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ranges of particle sizes (highly polydispersed). When small particles are present, they 

usually tend to agglomerate in clusters, such as in the cobalt/tungsten-carbide (Co/WC) 

system, even for low concentration values (Sahimi, 2003). As particle size increases, the 

tendency for clustering is reduced. At high concentration, the inclusion phase becomes 

more continuous because the degree of connectivity between particles increases. 

Theoretically, if the inclusion sizes are appropriately distributed, volume fractions close 

to unity could be achieved by nesting smaller inclusions within the interstices of the 

larger inclusions. However, the inclusion size spectrum in real composites has a restricted 

range, so the maximum inclusion volume fraction cannot approach unity (Phan-Thien and 

Pham, 1997). In powder metallurgy, a maximum concentration of 0.9 can be reached by 

compaction and plastic deformation of metal particles. In polymer-bonded explosives, the 

particles may occupy volume fractions greater than 0.9 (Banerjee and Adams, 2004).   

As the inclusion volume fraction increases, more inclusions aggregate to form 

clusters. The volume fraction at which the first single cluster of inclusions spans the 

sample is called the percolation threshold volume. Depending on the contrast between the 

host and inclusion velocity, this single cluster may be the fastest (or slowest) way for a 

wave to propagate through the sample, for wavelengths that are smaller than the cluster 

size. At the percolation threshold, a transition occurs in the effective elastic properties of 

the material (Stauffer and Aharony, 1994; Gomez et al., 2000; Nur et al., 1998). 

 

http://en.wiktionary.org/wiki/range
http://en.wiktionary.org/wiki/particle
http://en.wiktionary.org/wiki/size
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Figure 2.2. Left column: Measured and calculated effective density of the materials. 

Middle and right columns: comparison of ultrasonic experimental to calculated 
effective  and  velocities, respectively. The aspect ratio used in DEM and 
CPA was 1. All composites in this Figure are of the CPSF type. 
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Effective-medium models apply only to statistically homogeneous media. A 

moderately heterogeneous material may be assumed to be statistically homogeneous. 

Thus there exists a representative elementary volume (REV), and any part of the 

statistically homogeneous system with a volume considerably larger than the REV has 

identical physical properties (Gueguen et al., 1997; Gueguen et al., 2006). Beyond a 

certain degree of heterogeneity, effective-medium models are not valid; thus close to the 

percolation threshold, either below or above, these models should not be applied.  

Decreasing the oblate inclusion aspect ratio is equivalent to increasing the 

connectivity between inclusions, such as in rocks with large number of fractures, or 

clustering of inclusions in composite materials. Thus, the percolation threshold will be 

reached earlier in materials with low-aspect-ratio inclusions than in those with high-

aspect-ratio inclusions.  
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Figure 2.3. Left column: Measured and calculated density. Middle and right columns: 

comparison of ultrasonic experimental to calculated effective  and  
velocities, respectively. The aspect ratio used in DEM and CPA was 1. These two 
composites are of the CPSF type.  
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The change in continuity or connectivity of the inclusion phase occurs gradually. The 

rate of this change, as more inclusions are added to the material, depends on the size and 

shape spectra of the inclusions. CPA gives a percolation transition of 0.59 for spherical 

inclusions. For irregularly-shaped and polydispersed particles, a percolation transition 

occurs at an inclusion volume fraction of about 0.59 (Sahimi, 2003). If the volume 

fraction is increased above the percolation transition, the continuous host material 

becomes discontinuous and the role of host and inclusion is switched. During this 

transition, the composite material goes from the CPSF (SPSF) to TF (TFD or TFC) type 

and ends as the SPSF (CPSF) type. During the transition, both phases, host and inclusion, 

may become continuous, forming a composite of the TFC type. As the concentration 

increases, more inclusions come into contact, but they cannot overlap, such as they do in 

the Co/WC system (Table 1). Thus, the final composite type is not exactly of the type 

CPSF or PSFS; rather it is a pack of particles welded by a cement phase (the host). The 

elastic properties of the pack depend on the area and forces at the contacts. However, 

from the Co/WC data set shown in Figure 2.7, it is not clear whether there is a 

percolation transition.  

Another example where a percolation transition might occur is the sintered enstatite 

(En)/forsterite (Fo) set (Ji and Wang, 1999). In this particular data set, the particle sizes 

of the starting material before sintering are smaller than 15 μm. The grain sizes are 

distributed normally and have a mean value of 10-15 μm. Clusters of En or Fo are not 

observed at SEM scale. The measured  and  velocities of the mixtures fall below 

the ; this may be due to the residual porosity of the specimens, which is about 0.5%-

1.2%, as calculated from theoretical densities and volume fractions.  

sVpV
−HS

Numerical wave propagation modeling of epoxy-resin/tungsten and epoxy-

resin/piezoceramic composite systems has shown that at low concentrations (<0.25) the 

formation of clusters of inclusions has negligible effects on the dynamic (low-frequency 

limit) elastic moduli of the composites (Gomez et al., 2000). However, at high inclusion 

volume fractions (> 0.30) the effect of connectivity due to clustering becomes significant, 

and the elastic moduli start increasing faster and depart from the lower HS bound (Gomez 

et al., 2000). In real composites, the percolation is not reached at the same inclusion 
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volume fraction for all materials. In the laboratory, images of the epoxy-resin/ceramic 

composites show that the degree of connectivity among inclusions is low, even at high 

volume fraction of ceramic inclusions (Gomez et al., 2000). Notice that the  versus 

volume fraction of ceramic is very close to the lower HS bound (Figure 2.9). Based on 

sectional micrographs of the tested epoxy/ceramic samples Gomez et al. (2000) 

concluded that this behavior was probably due to the low degree of connectivity among 

inclusions at high inclusion volume fraction and not due to residual anisotropy, residual 

porosity, microcracks or/and poor adhesion between host and inclusion. Figures 2.2-2.5 

and 2.9 show that the departure from the lower HS bound starts at different 

concentrations, depending on the inclusion aspect ratio, type, and elastic moduli. For 

instance, for the polypropylene/CaCo3, polyester/glass, and hard-epoxy/glass systems, 

the departure from the HS- starts at an inclusion volume fraction of about 0.4, 0.35, and 

0.30, respectively, whereas for resin/aluminum, resin/iron, and resin/tungsten, the 

departure starts at about 0.10, 0.15, and 0.10, respectively.  

pV
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Figure 2.4.  Comparison of static experimental to calculated shear and Young’s 
moduli. The aspect ratio used in DEM and CPA was 1. These two composites are 
of the CPSF type.  
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Figure 2.5.  Comparison of experimental to calculated Young’s modulus. The aspect 

ratio used in DEM and CPA was 1. All composites are of the CPSF type. 

 

Figure 2.9 shows the Young’s moduli for a glass-ceramic/316-L-stainless data set. 

This data set consists of mixtures of glass-ceramic and embedded 316-L-stainless 

particles (Pernet, 1993).  These composites were prepared by the hot-pressing technique. 

The sizes of the stainless steel inclusions are <60 μm, with an inclusion size average of 

about 25 μm. The inclusions are approximately spherical. For these composites, the 

dynamic Young’s moduli are considerably below the lower Hashin-Shtrikman bound at 

all inclusion volume fractions (Figures 2.6). Pernet (1993) concluded that this reduction 

in the Young’s modulus was probably due to the incomplete adhesion between the host 

and inclusions. They estimated an unwelded surface fraction of about 20%. In this case, 

as in the previous example for the epoxy-resin/piezoceramic, the low degree of 

 



CHAPTER 2: ACURACY OF DEM AND SC ESTIMATIONS 30 

connectivity among inclusions at all inclusion volume fractions may also contribute to 

this behavior. 
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Figure 2.6. Left: Measured and calculated density. Middle and right columns: 

comparison of ultrasonic experimental to calculated effective  and  
velocities, respectively. The aspect ratio used in DEM and CPA was 1. These 
composites are of the SPSF type. 
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Figure 2.7.  Comparison of dynamic experimental to calculated Young’s modulus. 

The aspect ratio used in DEM and CPA was 1. These composites are of the SPSF 
type.  

 

Table 2.2 shows the models that give the best visual overall agreement with the 

composite experimental data sets. DEM gives the best overall agreement with the 

experimental data, for most of the CPSF and SPSF composites. However, CPA produces 

more accurate results than DEM for the epoxy/glass (Quesenberry et al., 2003) and 

Co/WC systems (Doi et al., 1970). CPA and DEM produce similar results for the 
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resin/tungsten (Sugawara et al., 2005) and enstatite/fosterite systems (Ji and Wang, 1999), 

which are composites of the type CPSF and CPSF-TF-SPSF, respectively. 
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Figure 2.8.  Comparison of ultrasonic experimental to calculated Young’s modulus. 

The aspect ratio used in DEM and CPA was 1. These composites are of the TF 
type.  
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Figure 2.9.  Comparison of ultrasonic experimental to calculated velocity (left) 

and dynamic measured to calculated Young’s modulus (right). The aspect ratio 
used in DEM and CPA was 1. These two composite systems are of the CPSF 
type.  
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Table 2.2:  Models that give the best fit for each composite data set. For some 
composites two or more models may produce the same or approximately the 
same results, such as DL equal DEM (DL = DEM) or DL  approximately equal to 
DEM (DL ~ DEM). In some cases both model predictions agree reasonably with 
the data, but their results are not the same, such as DEM/CPA.  

Elastic Properties' Contrasts Test Composite Best Fit
References κ i /k h Gi/Gh ρi/ρh Type Type Model

Lees and Davidson (1977) 11.90 10.00 1.98 Ultrasonic CPSF HS- 
Zhang et al. (1996) 14.58 13.60 2.14 Ultrasonic CPSF DEM = DL
Bridge and Cheng (1987) 15.60 23.00 2.98 Ultrasonic CPSF HS- / DEM ~ DL
Gomez et al. (2000) 29.62 37.72 6.75 Ultrasonic CPSF HS-
Piche and Hammel (1986) 29.17 41.35 6.67 Ultrasonic CPSF DEM
Piche and Hammel (1987) 29.17 41.35 6.67 Ultrasonic CPSF DEM
Nguyen et al. (1996) 38.25 101.25 15.32 Ultrasonic CPSF DL / DEM
Sugawara et al. (2005) 57.30 95.86 16.78 Ultrasonic CPSF CPA/DEM/DL
Lees (1973) 72.28 405.78 15.32 Ultrasonic CPSF DEM
Richard (1975)   8.05 49.73 Static CPSF HS-/DEM
Smith (1976)          9.91 28.62 Static CPSF DEM
Doi et al. (1970) 2.11 3.75 Res.Bar CPSF/TF/SPSF CPA
Biwa (2001) 0.46 0.25 0.95 Ultrasonic SPSF HS+
Ji and Wang (1999) 1.21 1.08 1.01 Ultrasonic CPSF/TF/SPSF All  Good
Pernot and Rogier (1993) 4.54 2.58 3.00 Magnetorestrictive CPSF HS-
Hasselman and Fulrath (1965a) 4.46 4.39 Res.Bar CPSF DEM
Hasselman and Fulrath (1965b) 6.43 4.85 Res.Bar CPSF DEM
Hasselman and Fulrath (1963) 0.02 0.02 0.28 Res.Bar SPSF DEM
Nishimatsu and Gurland (1960) 2.43 3.62 CPSF/TF/SPSF ??
Quesenberry et al. (2003) 18.99 33.59 2.13 Static CPSF CPA
Dunn and Ledbetter (1995) 2.36 3.30 1.17 Static/Ultrasonic CPSF DEM
Vollenberg and Heikens (1990) 5.98 26.55 2.42 Static CPSF CPA
Gaudig et al. (2003) 0.02 0.02 0.24 SPSF DEM/CPA
Ledbetter and Dunn (1995) 0.02 0.02 0.24 SPSF DEM/CPA  
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Table 2.3: P- and S-wave impedances and reflection coefficients,  and , and 
RCp and RCs, respectively. The last column (on the right) shows the normal 
wave incident elastic reflection coefficient (RCE). 

sIpI

        Host Impedances    Inclusion Impedances          Reflection Coefficients
References Host Ip Is Inclusion Ip Is RCp RCs RCE

Material Material

Lees and Davidson (1977) PMMA 18.9 1.3 Crystabolite 199 29 0.827 0.915 0.809

Zhang et al. (1996) Resin 19.3 2.2 Aluminum 296 66 0.878 0.936 0.845

Bridge and Cheng (1987) Polypropylene 16.3 1.8 CaCO3 300 89 0.897 0.960 0.912

Gomez et al. (2000) Epoxy 2.9 1.3 PZ-Ceramic 42 20 0.872 0.882 0.980

Piche and Hammel (1986) Resin 22.3 2.6 Iron 2169 650 0.980 0.992 0.980

Piche and Hammel (1987) Resin 22.3 2.6 Iron 2169 650 0.980 0.992 0.980

Nguyen et al. (1996) Resin 28.7 1.8 Tungsten 10075 3127 0.994 0.999 0.995

Sugawara et al. (2005) Resin 19.5 2.0 Tungsten 10075 3127 0.996 0.999 0.997

Lees (1973) Vinyl 10.1 0.2 Tungsten 10463 3133 0.998 1.000 0.997

Richard (1975)   Polyester Glass

Smith (1976)          Epoxy-Polymer Glass

Doi et al. (1970) Cobalt Carbide

Biwa (2001) PMMA 24.4 3.1 Rubber 4 1 -0.725 -0.662 -0.269

Ji and Wang (1999) Enstatite 1629.9 358.8 Forsterite 743 255 -0.373 -0.169 0.041

Pernot and Rogier (1993) Glass-Ceramic 14.0 8.7 Stainless 45 24 0.529 0.471 0.814

Hasselman and Fulrath (1965a) Glass Tungsten

Hasselman and Fulrath (1965b) Glass Alumina

Hasselman and Fulrath (1963) Zirconium/Carbide 4455.6 1117.0 Graphite 21 9 -0.991 -0.985 -0.957

Nishimatsu and Gurland (1960) Cobalt Carbide

Quesenberry et al. (2003) Epoxy 6.5 0.8 Glass 224 78 0.943 0.980 0.877

 Dunn and Ledbetter (1995) Aluminum 697.9 85.8 Mullite/Alumina 2814 284 0.603 0.536

Vollenberg and Heikens (1990) Polypropylene ~16.3 ~1.82 Chalk ~86 ~32.1 0.680 0.893

Gaudig et al. (2003) Ferrite 1584.0 254.8 Graphite 9 3 -0.989 -0.975 -0.969

Ledbetter and Dunn (1995) Ferrite 1584.0 254.8 Graphite 9 3 -0.989 -0.975 -0.969  

2.4.2 Effect of inclusion shape 

In this subsection we investigate the effect of inclusion shape on the effective elastic 

moduli of composites. Figure 2.10 shows the HS bounds and DEM bulk modulus ( ) 

predictions as a function of inclusion volume fraction (kaolinite or dolomite) and aspect 

ratio for hypothetical CPSF and SPSF rock matrix types.  

k

The CPSF composites consist of mixtures of kaolinite and dolomite. In this case 

kaolinite plays the role of host, and dolomite the role of inclusions. The properties of the 

minerals are shown in Table 4. The volume fraction of kaolinite was varied from 0 to 1.  

The SPSF composites consist of mixtures of kaolinite and dolomite as well, but in 

this case the dolomite and kaolinite play the role of host and inclusions, respectively. For 
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each composite type, two kinds of inclusion shapes were considered: a) oblate spheroidal, 

with aspect ratios varying between 0 and 1, to mimic flake or penny shaped inclusions; 

and b) prolate spheroidal, with aspect ratios varying between 1 and 30, to mimic fiber 

like inclusions.  

At a fixed inclusion volume fraction, the bulk modulus varies over a wider range for 

oblate spheroids than for prolate spheroids (Figures 2.10). The same behavior is observed 

in both composite types, CPSF and SPSF. The range of bulk moduli variation for oblate 

spheroidal inclusions includes the range for prolate spheroids. This means that two 

materials with the same constituents and volume fractions, and with different inclusion 

aspect ratios, may have the same elastic bulk modulus. For oblate spheroids, the 

maximum bulk-modulus variation occurs for aspect ratios between 0 and 0.25; it varies 

smoothly from 0.25 to 0.5; and the variation between 0.5 and 1 is very small. On the 

other hand, for prolate spheroids, the maximum bulk-modulus variation occurs between 1 

and 10, and it varies smoothly for aspect ratios greater than 10. The same behavior is 

observed for the shear moduli. 

Figure 2.11 shows the DEM and CPA bulk modulus prediction as a function of volume 

fraction of dolomite and kaolinite for hypothetical CPSF and SPSF materials, respectively. The 

calculations were done for two aspect ratios: 0.01 and 1. Notice that DEM and CPA do not 

completely fill the space between the upper and lower HS bounds (Figures 2.10 and 2.11). 

Materials with elastic moduli between the HS bounds are physically realizable. This means that 

these effective-medium approximations cannot model all possible realizable material 

microstructures (Figure 2.11).  

 
Table 2.4:  Elastic properties of rock mineral constituents (Mavko et al., 2009). 

Material K G ρ
(GPa) (GPa) (g/cm 3 )

Hematite 100.20 95.2 5.24
Gulf Clay 21.00 7.0 2.60
Dolomite 94.90 45.0 2.87
Calcite 76.80 32.0 2.71
Quartz 37.00 44.0 2.65
Pyrite 147.40 132.5 4.93
Kaolinite 1.50 1.2 1.58
Water 2.25 0.0 1.00  
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Figure 2.10. HS-bounds and DEM bulk modulus predictions as a function of 
concentration and aspect ratio for theoretical CPSF kaolinite/dolomite 
hypothetical rock matrix (upper frame) and for SPSF-dolomite/kaolinite 
hypothetical rock matrix (lower frame). Left column: CPSF (top) and SPSF 
(bottom) composites with oblate spheroidal inclusions.  Right column: CPSF 
(top) and SPSF (bottom) composites with prolate spheroidal inclusions.  

 

Figure 2.12 shows the bulk modulus predicted by DEM and CPA as a function of 

aspect ratio, for the same CPSF and SPSF composites shown in Figures 2.10 and 2.11. 

The aspect ratio of the inclusions is varied from 0.001 to 100. For the SPSF composite 

type, the bulk modulus was determined for four different volume fractions of kaolinite: 

0.01, 0.05, 0.15 and 0.25.  The same volume fractions of dolomite were used the CPSF 

composite type.  

CPA produces smaller bulk modulus than DEM for a fixed aspect ratio. The 
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difference between the CPA and DEM estimates is small at low concentration and 

increases as concentration increases for both CPSF and SPSF materials. 
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Figure 2.11. Left: Bulk modulus as a function of volume fraction of dolomite, for 
hypothetical composites of the type CPSF, where kaolinite is assumed to be the 
host and dolomite the inclusions.  Right: Bulk modulus as a function of volume 
fraction of kaolinite, for hypothetical composites of the type SPSF, where 
dolomite is assumed to be the host and kaolinite the inclusions. In both composite 
types, the inclusions were assumed to be spheroidal, and the DEM and CPA 
predictions were done for two AR values: 0.01 and 1. The arrow indicates the 
direction of increasing aspect ratio. The upper and lower HS bounds are also 
shown.  

 

The DEM and CPA predictions of elastic properties as a function of aspect ratio were 

compared with experimental data. The predictions were compared with six CPSF 

composite types (one resin/aluminum, two resin/tungsten and three resin/iron systems) 

and two SPSF types (zirconio-carbide/graphite and cast iron). The elastic properties of 

these composites are shown in Tables 1 and 2.  
The resin/aluminum system consists of mixtures of aluminum powder randomly 

embedded in clear epoxy resin matrix with the aluminum concentration ranging from 
zero to 0.47 (Zhang et al., 1996).  The aluminum powder particles had an aspect ratio 
between 0.1 and 1.0, while their size varied from 5 to 300 μm (polydispersed). The 
measured and predicted P- and S-wave velocities, as well as the bulk density are shown 
in Figure 2.13. At small concentrations of aluminum powder, below 0.12, the Hashin-
Shtrikman lower bound gives accurate predictions of  and  of the mixture. CPA sVpV
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accurately predicts  and  in the concentration range between zero and 0.25, but for 
concentrations greater than 0.25 it starts to overpredict the data.  The mismatch between 
the CPA prediction and the data increases at high inclusion concentrations. The best  
and  predictors in the entire inclusion concentration range are DEM and DL, which 
produce practically the same results. The aspect ratios versus porosity needed to match 
DEM velocities predictions to the data are essentially porosity-independent but slightly 
different for   and .  

sVpV
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Figure 2.12. DEM and CPA bulk modulus prediction as a function of aspect ratio, for 

concentrations: 0.01, 0.05, 0.15 and 0.25.  The arrows indicate the direction of 
increasing concentrations. The aspect ratios vary from 0.001 to 1 for oblate 
spheroids and from 1 to 100 for prolate spheroids.  Upper frame: DEM 
predictions for CPSF kaolinite/dolomite hypothetic composites (left) and for 
SPSF dolomite/kaolinite composites (right). Lower frame: CPA predictions for 
CPSF kaolinite/dolomite hypothetic composites (left) and for SPSF 
dolomite/kaolinite composites (right). 
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An accurate overall visual agreement between the measured and the theoretical  

and  velocities is found when a single aspect ratio equal to 0.37 is used in the entire 

concentration range. We deem this finding important because it illuminates the stability 

of predictions of two different measured properties with a single theory and single input 

parameter (the aspect ratio). 
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Figure 2.13. Upper frame: Left: Theoretical and measured density. Right: Aspect 

ratios needed to exactly match the DEM -velocities (ARp) and -velocities 

(ARs) with the measured ultrasonic velocities. Lower frame:  (left) and  
(right) versus volume fraction of aluminum as measured and predicted by DL, 
and DEM and CPA for fixed inclusion aspect ratio 0.4 (Data from: Zhang et al., 
1996). 
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The resin/tungsten system consists of mixtures of epoxy and tungsten particles 

(Nguyen et al., 1996).  The particle size distributions were obtained using the diffraction 

pattern laser beam technique.  The shape of the particles was obtained by scanning 

electron microscopy.  Smaller particles (about 0.5μm) were essentially short fibers (AR ~ 

8), while larger particles (about 5μm) had a spherical shape (AR ~ 1).  

The measured and predicted P- and S-wave velocities as well as the bulk density are 

shown in Figure 2.14. The velocities were computed assuming spherical inclusions (AR 

= 1). At small concentrations of tungsten powder, below 0.05, the Hashin-Shtrikman 

lower bound gives accurate predictions of  and  of the mixture. CPA predicts  

and  accurately in the concentration range between zero and 0.4, approximately, but 

for concentrations greater than 0.4, it starts overpredicting and becomes even less 

accurate at high concentrations. When assuming spherical inclusions (aspect ratio 1), 

DEM underpredicts the velocities for concentrations greater than about 0.05. The best  

and  predictor for spherical inclusions in the whole inclusion concentration range is 

DL model (Figure 2.14). This model accounts for inclusion interaction at high 

concentration. However, this model assumes spherical particles, so when the particles are 

not spherical its predictions are not accurate. For the composite with average particle size 

5μm, the DL predictions agree with the experimental values because the particles are 

approximately spherical. However, for the composites with average particle size 0.5μm, 

the experimental data deviate from the DL model predictions because these particles are 

not spherical, but rather short fibers.  
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Figure 2.14. Comparison of theoretical and measured ultrasonic  and  

velocities versus volume fraction of tungsten. Upper frame: The aspect ratio used 
in DEM was 1 and in CPA was 1 and 1 for matrix and inclusions respectively.  
Lower frame: The inclusion aspect ratio used in DEM and CPA was 9.5. 

sVpV

 
For the 0.5 μm average inclusion size, DEM produces the best estimates when the 

inclusions are modeled with a single aspect ratio, but considering the inclusions as short 

fibers and modeled with prolate spheroidal inclusions. The best agreement between 

predicted and measured velocities is found for an inclusion aspect ratio 9.5, which agrees 

with the SEM observations of tungsten powder inclusion (Nguyen et al., 1996). Figure 

2.14 shows the predictions compared with the experimental data. DEM slightly 

overpredicts  at high concentrations. The and  velocities of these composites 

with fiber particles can also be modeled using oblate spheroidal inclusions with AR = 
sV sVpV
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0.13. CPA predictions also match the measured data if an inclusion aspect ratio 8.5 is 

used. 
CPA estimates are also accurate, when the aspect ratio for the tungsten spherical 

particles and the resin (host), both are equal to 1. CPA overpredicts both and  at 
high concentrations. However, for both oblate and prolate spheroid, it is possible to 
match the CPA results with the experimental data, using the aspect ratio as a fitting 
parameter. As shown in figures 2.10-2.12, the aspect ratios necessary to achieve an exact 
fit would be lower than those found with DEM. Figure 2.15 shows the aspect ratios 
versus volume fraction of tungsten needed to exactly match the DEM velocities with the 
measured velocities for samples with short-fiber and spherical inclusions. The aspect 
ratios needed to match the  velocities are very close to those needed to match the  
velocities.  
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Figure 2.15. Left: aspect ratios needed to match DEM  and  velocity 

predictions with measured data for composites with 0.5 μm inclusions with 
aspect ratios about 8.5 (short fibers). Right: aspect ratios needed to match DEM 

 and  predictions with measured data for composites with 5 μm inclusions 
with oblate spheroidal inclusions. 
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The second resin/tungsten data set consists of mixtures of epoxy and embedded 

tungsten particles (Sugawara et al., 2005).  The densities of the composites with tungsten 

powder of 1 μm particle size are no different from those of composites with tungsten 

powder of 3 μm particle size. The density of the composites did not depend on the 

particle size of the tungsten powder. However, as the concentration of tungsten powder 

increased, the difference between the measured values and the calculated values 
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increased. In this case, the measured values of the density may be as much as 10% 

smaller than the calculated values. This large residual porosity may cause reduction of the 

material elastic moduli. 
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Figure 2.16.  Left: bulk density for the 1μm and 3μm inclusion sizes. Middle: 
Predicted and measured velocity. The aspect ratio used in DEM and CPA was 
0.18.  CPA would also match the data if an aspect ratio equal to 0.25 were used. 
DL underpredicts the data because the particle may be not spherical. Right: 
aspect ratios needed to match DEM and CPA  velocity with measured 
velocities. (Data from:  Sugawara, 2005).   
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Figure 2.17.  Predicted and measured velocity. The aspect ratio used in DEM and 

CPA was 6.  CPA also matches the data for an aspect ratio lower than 6. DL 
underpredicts the velocities, because the particle may be not spherical. 
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The first resin/iron system consists of mixtures of epoxy resin and 50 μm-spherical 

iron inclusions (Piche and Hammel, 1986).  The second and third resin/iron systems 

consist of iron flakes and short-fiber inclusions of different shapes (Piche and Hammel, 

1987). The iron inclusions, in all three data sets are randomly oriented, having aspect 

ratios AR ~ 1 (spheroids), AR = 0.20 (flakes) and AR = 20 (short fibers). The powder of 

flake-like (oblate spheroid) particles has a long axis length of about 100 +/- 5 μm and 

short axis length of about 20 +/- 5 μm; the average AR is about 0.20 +/- 0.06. SEM 

images show that the bulk of the material appears to be compact and free of voids and 

that the inclusions are homogeneously distributed with random orientations. The particles 

were well separated for concentrations up to the 0.12 to 0.15 range, while the presence of 

contiguity became obvious at higher volume contents. The fiber inclusions have a broad 

distribution of lengths, ranging from 500 to 2000 μm with average diameter of about 70 

+/- 20 μm. The average aspect ratio for the fibers (prolate spheroids) was estimated to be 

about 20 +/- 10. The samples appeared to be free of voids, and the fibers uniformly 

distributed in the matrix with random orientations. Velocities were measured at 0.5 MHz, 

which ensured that the measurements were free of dispersion, since wavelengths were 

much longer than most particle sizes. The measured and predicted P- and S-wave 

velocities for the three resin/iron systems with different inclusion shapes (oblate 

spheroids, short fibers and flakes) as well as the bulk density are shown in Figure 2.18. 
The composites with spherical and flake shaped inclusions were modeled with DEM 

using aspect ratios 0.50 and 0.15, respectively (Figure 2.19, top and middle frames). The 
flake shaped inclusions were modeled as penny shaped inclusions.  In order to match the 
measured  and  velocities for the composites with fiber inclusions, it was necessary 
to use two different aspect ratios, 7 and 22, respectively (Figure 2.19, bottom frame). 

pV sV

At small concentration of spherical iron inclusions, lower than approximately 15%, 
the  gives accurate predictions of  and  of the mixture.  −HS pV sV

When assuming spherical inclusions (aspect ratio 1), DEM underpredicts the 
velocities for concentrations greater than about 0.25.  
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Figure 2.18.  Left: Bulk density for iron fiber (open circles), iron flakes (filled 
circles) and iron spherical (open triangles) inclusions. Middle: P-wave velocity 
for iron fiber (open circles), iron flakes (filled circles connected with lines) and 
iron spheres inclusions. Right: S-wave velocity for iron fiber (open symbols) and 
iron flakes (filled circles) inclusions.  (Data from: Piche et al., 1986 and 1987).   

 

The fibrous and plate shaped inclusions increase the and  velocities of the 

composites more than the spherical inclusions. The amount of increase depends on the 

aspect ratio of the inclusions. The specific surface area (SA) is one of the most important 

inclusion characteristics affecting the elastic properties (Babu et al., 2005). The amount 

of specific surface area (SA), which is a measure of the area of contact between the host 

and inclusions, depends on the inclusion size. A given volume of small particles has a 

higher specific surface area than the same volume of large particles. However, if the 

inclusions are too small, undesirable features might appear in the composite 

microstructure. The finer the particles are, the greater their tendency to agglomerate. 

Agglomeration increases material heterogeneity, and it can not be controlled, varying in a 

random manner, causing random variations of elastic properties. 

sVpV

The zirconium-carbide/graphite system consists of mixtures of graphite particles 

embedded in zirconium-carbide hosts. The size of the graphite particles ranged from 

approximately 20 to 30 μm. The graphite particles are polycrystalline and their shape 

ranged from relatively flat to nearly spherical, with the majority being approximately 

equidimensional. Residual porosity was not observed within the zirconium carbide host. 

The different values of Young’s moduli, measured in two perpendicular directions, 
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indicate the presence of residual anisotropy.  
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Figure 2.19.  (left) and  (middle) velocities versus volume fraction of iron as 

measured and predicted by DEM for fixed aspect ratios: 1 for spherical 
inclusions; 0.12 for plate like inclusions; and 7 and 22 for fiber like inclusions. 
Aspect ratios (right) needed to match the DEM -velocities (ARp) and -
velocities (ARs) with measured velocities. (Data from: Piche and Hammel, 1986 
and 1987).   
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This anisotropy is probably caused by preferred orientation of the graphite particles 

during hot-pressing (Hasselman and Fulrath, 1963). Figure 2.20 shows measured and 

predicted Young’s modulus. The data can be modeled with DEM assuming spheroidal 

inclusions with a fixed effective aspect ratio equal to 0.3. DEM follows the trend of the 

data better than CPA, for the same inclusion aspect ratio. As shown in Figures 2.10-2.12, 
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in SPSF composites, the elastic moduli decrease as aspect ratio decreases. These 

composites can also be modeled assuming fiber-like inclusions with aspect ratio 7, which 

is an unrealistic shape for the graphite inclusions.  
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Figure 2.20. Young’s modulus versus volume fraction of graphite as measured and 
predicted by DEM and CPA as a function of volume fraction of graphite. The 
symbols show the measured data in two perpendicular directions (open and filled 
circles). The HS bounds are also shown. Left: Young’s modulus predicted by 
DEM and CPA for a fixed aspect ratio 0.3. Right: Young’s modulus predicted by 
DEM and CPA for a fixed aspect ratio 7. (Data from: Hasselman, and Fulrath, 
1963).    

 

The iron/graphite system (ferritic cast-iron), which is not usually considered a 

composite material, is sometimes treated as a composite material consisting of graphite 

particles embedded in iron host (Ledbetter and Dunn, 1995; Gaudig, et al, 2003). The 

graphite phase, which is polycrystalline, was assumed to consist of randomly dispersed 

and oriented inclusions. Nodular iron contains nearly spherical graphite particles, 

whereas grey iron contains flakes, or disc-shape graphite particles. 

Figure 2.21 shows the measured Young’s modulus with the DEM and CPA 

predictions as a function of aspect ratio. Both DEM and CPA predictions are in good 

agreement with the experimental data. The DEM aspect ratios determined by matching 

the measured Young modulus exactly agree with the experimental aspect ratios measured 
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by Lohe et al. (1983) and corrected by Gaudig et al. (2003). 
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Figure 2.21. Left: Young’s modulus versus aspect ratio of graphite inclusions as 
measured and predicted by DEM and CPA for fixed porosity 0.11. The horizontal 
curves represent the HS bounds.  The symbols show the experimental data as 
measured by Okamoto et al., 1983 (open circles), Lohe et al., 1983 (open 
squares) and Speich et al., 1960 (filled circles). Right: DEM-predicted versus 
measured aspect ratios. (Data from: Ledbetter and Dunn, 1995; Gaudig et al., 
2003). 

2.4.3 Effect of order of incremental addition 

As stated in the introduction, DEM may produce several estimates of the elastic 

properties of multiphase materials, depending on how the order of addition of each of the 

different phases is carried out (Bruggeman, D., 1935; Norris et al., 1985a; Nemat-Nasser 

and Hori, 1993; Phan-Thien and Pham, 1997; Endres, 2000; Markov, et al., 2005). This 

dependence is caused by the hierarchical microstructure imposed on the constructed 

composite by the addition process. An increasing inclusion size is implied by the order of 

addition. Previously added inclusions are considerably smaller than those added later. 

The order of addition sets the inclusion-size relationship among the different composite 

phases (Phan-Thien and Pham, 1997; Endres, 2000; Markov, et al., 2005). It is not 

obvious which of the possible DEM estimates is the most appropriate when modeling the 

elastic moduli of a given real multiphase material with different volume fractions of 

phases and wide distributions of inclusions sizes and shapes. For two different pore 

shapes Le Ravalet and Gueguen (1996) have proposed a method for achieving the 
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incremental addition. This method consists of constructing the material by adding the 

pore and crack component in a random order using Monte Carlo method. For two 

different pore scales, Markov et al. (2005) have used a two-step homogenization scheme, 

which consists of starting the adding with the smaller-scale inclusions. A similar method 

was used by Chinh (2000) for modeling the electrical properties of sedimentary rocks. A 

step-by-step homogenization approach using the DEM was proposed by Sheng (1991) 

and Hornby et al. (1994) for modeling the properties of rocks composed of phases at 

different scales.  

In this subsection we compare the results produced by DEM with the CPA estimation 

and HS bounds. For three-phase hypothetical rock matrix, we compare the DEM 

estimates using the step-by-step homogenization approach with the CPA estimation and 

HS bounds. 

Figure 2.22 shows the CPA and DEM theoretical estimates for mixtures of different 

volume fractions of resin and iron. For the DEM calculations, resin is first assumed as 

host (soft phase) and iron as inclusions (hard phase), and then iron is assumed as host 

(hard phase) and resin as inclusions (soft phase), simulating hypothetical CPSF and SPSF 

composites, respectively. DEM produces two different estimates, for the two possible 

arrangements of the two constituents, whereas CPA produces only one estimate. Since 

the real material microstructure is consistent with the lower DEM estimate, it predicts the 

measured data better than upper DEM and CPA, for both, spherical and flake like 

inclusions (Piche and Hammel, 1986 and 1987).  
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Figure 2.22. Comparison of theoretical and measured ultrasonic  and  
velocities versus volume fraction of iron. The experimental data is for a 
resin/iron system with flaked iron inclusions. Upper frame: DEM and CPA  

and  velocity predictions assuming oblate spheroidal inclusions with fixed 
aspect ratio 0.5. DEM is computed first by assuming resin as the host and iron as 
the inclusions (DEM-CPSF) and second iron as the host and resin as the 
inclusions (DEM-SPSF). Lower frame: the same as the upper frame, but the 
inclusions are assumed to be spheroids with lower aspect ratio with a fixed value 
0.22 (Data from: Piche and Hammel, 1986 and 1987). 
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The iron-inclusion aspect ratio used in DEM and CPA for the resin/iron composite 

was 1 for spherical inclusions and 0.22 for the flake-like inclusions (Figure 2.22). The 

difference between the lower and upper DEM estimates, for the respective CPSF and 

SPSF materials, decreases with decreasing aspect ratio of the inclusions. When spherical 

inclusions are considered, the CPA predictions are between the upper and lower DEM 

estimates at all concentrations. When flake-like inclusions are considered, CPA estimates 

 



CHAPTER 2: ACURACY OF DEM AND SC ESTIMATIONS 50 

are between the upper and lower DEM estimates, at low concentration, and greater than 

the upper DEM estimates at high concentration.  

The numerical experiment described above (Figure 2.22) is repeated for mixtures of 

different concentrations of resin and aluminum (Figure 2.23). The theoretical velocity 

predictions are compared with experimental resin/aluminum data (Zhang et al., 1996). 

The aluminum-inclusions aspect ratio used in DEM and CPA was 0.4, which is very 

close to the measured value. 
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Figure 2.23. Comparison of theoretical and measured ultrasonic  and  
velocities versus volume fraction of aluminum. The experimental data is for a 
resin/aluminum system. Left:  velocities according to DEM and CPA and HS 
bounds. The inclusions are assumed to be spheroidal with fixed aspect ratio of 
0.40. DEM is computed assuming resin as the host and aluminum as the 
inclusions (DEM-CPSF) and then aluminum as the host and resin as the 
inclusions (DEM-SPSF). (Data from: Zhang et al., 1996). 
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Figures 2.24 shows the theoretical and measured Young’s modulus for mixtures of 

different volume fractions of aluminum as host and mullite/Al O2 3 composite as 

inclusions. The composite mullite/Al2O3 particles are approximately spherical and consist 

of mullite as host and short rods of alumina (Al2O3) as inclusions. The average aspect 

ratio of the Al O  rods is about 4.  The volume fraction of Al2 3 2O3 is constant and equal to 

20% of the volume fraction of the composite inclusion. The composite samples contain 

three average mullite/Al O  inclusion diameters, 30, 45 and 100 μm.  2 3

The CPA Young’s modulus was computed specifying only the volume fractions and 
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Oaspect ratios for the aluminum, mullite and aluminum oxide (Al2 3) were 1, 1 and 4, 

respectively. The DEM estimates were computed in three different ways: a) assuming 

aluminum as host to which the spherical mullite inclusions are added first, followed by 

the short rod particles of alumina; b) assuming aluminum as host to which the short rod 

alumina particles are added first, followed by the spherical mullite inclusions; and c) the 

elastic properties of the composite mullite/Al O2 3 inclusion was computed first, and then 

aluminum was kept as host and to which the composite particles were added as inclusions. 
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Figure 2.24. Static (filled circles) and dynamic (open circles) experimental elastic 
moduli compared with the DEM and CPA predictions, as function of volume 
fraction of mullite/Al O2 3 composite inclusion (Data from: Dunn and Ledbetter, 
1995).  

Figure 2.25 shows the bulk and shear moduli of hypothetical rock matrices with high 

mineral moduli contrast. These rock matrices are composed of different volume fractions 

of hematite and kaolinite and constant volume fraction of quartz (0.6). The elastic 

properties of these minerals are shown in Table 4. The volume fraction of kaolinite is 

increased from 0.0 to 0.4, while the volume fraction of hematite is simultaneously 

decreased from 0.4 to 0, but the sum of these two volume fractions is kept constant and 

equal to 0.4. Thus, the total inclusion volume fraction is always 0.4. It is assumed that 

both mineral inclusions are spherical (AR = 1). Although the mineral phase of highest 

concentration is not always the host, in this hypothetical rock matrix, we identify quartz 

as the host, and hematite and clay as inclusions. If we do this, it is possible to compute 

two possible DEM estimates, depending on which mineral is added first: clay or hematite.  
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The same numerical experiment discussed above is repeated, but using dolomite and 

calcite as inclusions instead of hematite and kaolinite. In this case all methods, including 

the bound average method produce practically the same result.  

The same behavior observed above for the bulk modulus was also observed for shear 

modulus. 
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Figure 2.25. Bulk modulus versus volume fraction of kaolinite (left) and calcite as 
measured and predicted by DEM and CPA for a fixed aspect ratio 1.Left: 
hypothetical three-phase composite, assuming quartz (Qz) as host and hematite 
(Hem) and kaolinite (Kao) as spherical inclusions. The bulk and shear moduli are 
predicted by CPA, HSA and DEM. The DEM estimates are determined in two 
forms: a) adding the hematite first and then the kaolinite inclusions (Qz-Hem-
Kao) and b) adding the kaolinite first and the hematite inclusions (Qz-kao-Hem).  
Right: the as upper frame but for a hypothetical rock matrix composed of Quartz 
(Qz), dolomite (Dol) and calcite (cal).  

 

Figure 2.26 shows the bulk modulus of two hypothetical CPSF and SPSF rock 

matrices. The CPSF composite consists of 0.95 volume fraction of quartz (host) and 0.05 

of kaolinite (inclusions). The volume fractions of both minerals are kept constant, but the 

kaolinite fraction may have inclusions with two different aspect ratios: 0.01 and 1. The 

volume fraction of kaolinite with one of the aspect ratios is increased from 0.0 to 0.05, 

while the volume fraction with the other aspect ratio is simultaneously decreased from 

0.05 to 0, thus keeping the sum of these two volume fractions constant and equal to 0.05. 
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Two different DEM estimates were computed: one was obtained by adding first the 

smaller aspect ratio kaolinite inclusions (Qz + Kao(0.01) + Kao (1)) and then the 

inclusions with aspect ratio 1 ((Qz + Kao(1) + Kao (0.01))); and the other by adding first 

the inclusions with aspect ratio 1. The two DEM estimates produced significantly 

different results when the volume fraction of low aspect ratio kaolinite inclusions was 

high. CPA produced results lower than the DEM estimates for all volume fractions of 

kaolinite. The CPA and DEM bulk moduli decrease as the volume fraction of low-aspect-

ratio kaolinite inclusions increases.    
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Figure 2.26. Bulk modulus of the three-phase hypothetical rock matrix, according to 

DEM and CPA and HS bounds. The inclusions aspect ratios used in DEM and 
CPA are 1 for quartz (Qz), 1 for the first kaolinite (Kao(1)), and 0.01 for the 
second kaolinite (Kao(0.01)). The rock matrix is composed of 0.95 quartz and 
0.05 kaolinite. DEM(Qz + Kao + Hem) is the DEM estimation adding first the 
kaolinite with aspect ratio 1 and second the kaolinite with aspect ratio 0.01. 
DEM(Qz + Hem+ Kao) is the DEM estimation adding first the kaolinite with 
aspect ratio 0.01 and second the kaolinite with aspect ratio 1. 

 

The same numerical experiment described above is repeated, but using hematite (stiff 

phase) as inclusions instead of kaolinite (soft phase). In this case, the two DEM estimates 

produce practically the same result, and CPA produces values higher than DEM. The 

DEM bulk modulus decreases as the volume fraction of low-aspect-ratio hematite 

inclusion increases, whereas the CPA bulk modulus slightly increases.  

The same behavior observed above for the bulk modulus was also observed for shear 

modulus. 
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The numerical experiments discussed above (Figures 2.25 and 2.26) show that when 

the elastic-modulus contrasts of the composite constituents minerals are small, the 

resulting effective elastic moduli do not depend significantly on the manner in which the 

volume fractions of host and inclusions of different shapes are added (microstructure). 

On the other hand, when the modulus contrasts are high, the resulting elastic moduli 

indeed depend on the rock matrix microstructure. 

2.4.4 Effect of interface adhesion 

This subsection examines the effect of interface adhesion on the effective elastic 

moduli of composites. This effect on the elastic moduli may be very large. We will not 

model the effect of different degrees of adhesion. Adhesion is the propensity of different 

molecules to stick together due to attractive forces. The strength of the adhesion between 

the host and inclusion depends on the mechanism of interaction between them, and the 

surface area over which the host and inclusion contact. The area of contact depends on 

the inclusion surface asperities (Fuller and Tabor, 1975). The area of contact between 

materials that wet each other tends to be larger than those do not (Comyn, 1997; Kinloch, 

1987). 

Interfaces have a large effect on the elastic moduli of materials (Wang et al., 2009). 

Composites with incomplete or poor adhesion between the inclusions and host are 

common. In contrast to composites with completely welded inclusions, the elastic moduli 

of composites containing incompletely welded inclusions depend on the size of the 

inclusion (Wang et al., 2009; Vollenberg and Heikens, 1990).  

In order to examine the effect of adhesion we use published data on 

polypropylene/chalk composites (Table 2.1) which consist of mixtures of polypropylene 

(pp) and chalk. The chalk particles are very irregularly shaped, but their average AR is 

close to unity. For the construction of these composites, three different sizes of chalk 

particles were used: 3.5 μm, 30 μm, and 130 μm. The adhesion between the chalk 

inclusions and the polymer host was observed to be poor. To achieve complete adhesion, 

the chalk particles were chemically treated to create a very thin adhesive interphase that 

couples the inclusion and matrix (Vollenberg and Heikens, 1990).   

 

http://en.wikipedia.org/w/index.php?title=Attractive_forces&action=edit&redlink=1
http://en.wikipedia.org/wiki/Wetting
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The composite samples were subjected to stress-strain tests by. The magnitude of the 

applied stress was between 0 and 20 MPa, producing strains of about 0-0.02. The tests 

conducted on the samples with different chalk inclusion sizes, show that for the three 

sample sizes, the deviation from linear elasticity takes place at about the same stress level 

for the completely welded chalk inclusions and at a different levels for the poorly adhered 

chalk inclusions (pure chalk). 

Both the DEM and CPA predictions are in good agreement with the measured static 

Young’s modulus of the samples with excellent adhesion, whereas the measured Young’s 

modulus of the samples with poor adhesion is smaller or greater than the theoretical 

predictions depending on the inclusion size. The measured data that agree best with the 

CPA predictions are those for the 30 μm particles.  
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Figure 2.27. Comparison of DEM, CPA and HS-bounds predictions with measured 
Young’s modulus as a function of volume fraction of chalk in completely (left) 
and incompletely (right) welded pp/chalk composite samples. Different symbols 
represent pp/chalk composites with different average chalk inclusion sizes : 3.5 
μm (open squares), 30 μm (filled circles), and 130 μm (open circles). (Data from: 
Dunn and Ledbetter, 1995). 

The variation of Young’s modulus with inclusion size is not yet well explained 

(Vollenberg and Heikens, 1990). It has been observed that the morphology and the 

crystallinity of the pp-host are unaffected by the presence of the chalk particles with 

different shapes at all chalk volume fractions (Vollenberg and Heikens, 1990); and that 

the spherulite size is much larger than the inclusion size. Thus, the changes in the 
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Young’s modulus with inclusion size are not due to interphase effects or changes in 

morphology or crystallinity of the host polymer.  

2.4.5 Effect of multimineral matrices on the effective properties of liquid saturated 

rocks 

In this subsection, we consider hypothetical porous rocks with three mineral 

constituents- quartz, kaolinite, and hematite-, and with fixed volume fractions- 0.50, 0.25 

and 0.25, respectively. The porosity of the rock samples ranges from 0 to 0.5. We 

considered the dry and fluid-saturated cases. The effective elastic moduli of the dry and 

fluid-saturated rocks are estimated using DEM and CPA. These two models treat the 

fluid-saturated multimineral rock as a multiphase composite and assume that the fluid 

inclusions are isolated with respect to flow, thus simulating the high-frequency saturated 

rock behavior that may be appropriate at ultrasonic frequencies (Mavko, et al., 1996).  

The effective properties of the bulk rock were computed using two different 

methodologies: a) the effective properties of the rock matrix were computed using the HS 

bound-average method and then effective-medium models (CPA and DEM) were used to 

compute the effective properties of the saturated rock, as a two-phase composite, and b) 

using only effective-medium models for the whole rock, treating the fluid inclusions as 

an additional phase in the rock.   

For the dry-rock case, there is air in the pores. The elastic properties of the air are 

assumed to be very small, practically zero. For the saturated-rock case, water is used as 

saturator. The elastic properties of water are shown in Table 4. 

As discussed in the introduction, DEM may produce different estimations depending 

on how the incremental addition is achieved. For this exercise, two different DEM 

estimations of the rock matrix moduli are computed: one by adding first the kaolinite 

inclusions and then the hematite inclusions, and the other by adding first the hematite 

inclusions. In both cases, the quartz phase is assumed the host material. 

The effective bulk and shear moduli of these hypothetic rocks according to DEM, 

CPA, and HS bounds are shown in Figure 2.28. The aspect ratios used in DEM and CPA 

is 1 for all constituents. Different results are produced depending on the methodology 
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chosen. This implies that, if the minerals elastic contrast is high, the bound average 

method may introduce an important error into the calculation of the effective properties 

of the whole rock. However, using an inappropriate effective-medium model may be 

even worse. CPA alone produces considerably smaller elastic moduli than DEM.  

Figure 2.29 shows the same numerical experiment described above, but the aspect 

ratio for the kaolinite was 0.1, instead of 1. In this case the kaolinite inclusions are flakes 

dispersed in a quartz host.  Notice that this change in aspect ratio of the soft inclusions 

(kaolinite) causes significant changes in the elastic behavior as a function of porosity and 

reduction of the effective elastic moduli. 

Figure 2.30 shows the same exercise described above but for quartz, calcite and 

dolomite, which are minerals with less contrasting elastic properties. For the DEM 

calculations, quartz continues to be the host, with dolomite and calcite being the 

inclusions. Notice that despite the elastic contrast among quartz, calcite and dolomite, the 

elastic bounds are very close to each other. This implies that the error possibly introduced 

into the calculation of the effective properties by using the bound average method may 

not be critical. In this case, DEM produces basically only one estimate, independently of 

the order of addition, under both dry and wet conditions. 

In sedimentary rocks, except for the light and soft clay and coal minerals, and some 

heavy minerals, such as pyrite and hematite, the minerals typically found in greatest 

amounts are quartz, feldspar, mica, calcite, dolomite, anhydrite, and gypsum. Fortunately, 

the elastic contrasts among these minerals are not high enough to be critical in the 

calculation of the elastic properties of the matrix using the bound average methods.  

However, when clays or heavy minerals are present in considerable volume fractions in 

the rock matrix, the selection of the appropriate effective-medium model to determine the 

elastic moduli of the multimineralic rock matrix is important.  
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Figure 2.28. High frequency estimation of bulk and shear moduli of hypothetical 

porous rocks according to DEM and CPA. The aspect ratio used in both models 
for all constituents is 1. The rock matrix is composed of 0.50 quartz (Qz), 0.25 
kaolinite (Kao) and 0.25 hematite (Hem). DEM1 is the DEM estimation adding 
first the kaolinite and second the hematite inclusions. DEM2 is the DEM 
estimations adding first the hematite and second the kaolinite inclusions. DEM3 
is the DEM estimation using the HS bounds average method for the properties of 
the rock matrix. CPA1 and CPA2 are the estimations using only CPA and using 
the HS bound average for the matrix.  Upper frame: bulk and shear moduli for 
the dry rock. Lower frame: bulk and shear moduli of the full water saturated 
rock. 
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Figure 2.29. High frequency estimation of bulk and shear moduli of hypothetical 

porous rocks according to DEM and CPA. Here instead of having all aspect 
ratios 1 (Figure 2.28) we use aspect ratio 0.1 for kaolinite (Kao).  
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Figure 2.30. The same as Figure 2.28, but using dolomite (Dol) and calcite (Cal), 

instead of hematite (Hem) and kaolinite (Kao), respectively. High frequency 
estimation of bulk and shear moduli of hypothetical porous rocks according to 
DEM and CPA. Here instead of having all aspect ratios 1 (Figure 2.28) we use 
aspect ratio 0.1 for kaolinite (Kao).  

2.5 Conclusions  

We find DEM provides consistently accurate predictions for all analyzed composites 

in a wide range of volumetric concentration and with a narrow range of aspect ratios.  

At low concentrations (~0.10), if the rock’s microstructure is comparable with CPSF- 

or SPSF-materials, Hashin-Shtrikman bounds can be used as good predictors of elastic 

properties.  

If a sedimentary rock’s microstructure is comparable with CPSF- or SPSF-materials 

and some information about the grain (inclusion) spectrum is known, it is better to use 

effective-medium models to estimate the elastic properties of the rock matrix at all 

inclusion concentrations, instead of averaging the upper and lower Hashin-Shtrikman 
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bound. If grain aspect ratios are greater than 0.5, spherical inclusions are good 

approximations for the purpose of effective elastic properties. 

DEM or CPA can be used as reliable model to invert for aspect ratios in rocks with 

known mineralogy. 

For sedimentary rock with microstructure comparable to TF-materials, DEM gives 

good predictions, however, for polycrystalline rocks, a model that considers all the 

elements of the elastic tensor and the degree of anisotropy of each single crystal of the 

rock constituents would be a better approximation.  

The results of calculating the effective elastic moduli of a composite appear to be 

remarkably stable for a wide range of inclusion concentrations and for predicting both P- 

and S-wave elastic constants. These results are intended to be used as a rigorous 

foundation for further effective-medium modeling of sedimentary rock matrices with 

complex mineralogy.   
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Chapter 3  

Equivalent elastic approach: using 
DEM as a tool to make rock physics 
predictions 

 

 

 

3.1 Abstract 

We pose a question:  can a theoretical inclusion model, specifically, the differential 

effective-medium model, be used to match experimental velocity data in rocks that are 

not necessarily made of inclusions such as clastics?  It is indeed possible in some cases 

by using an almost constant inclusion aspect ratio within wide ranges of porosity and 

mineralogy.  We first approach this question by using empirical velocity-porosity 

equations as proxies for data.  By finding a DEM inclusion aspect ratio (AR) to match 

these equations, we find that the required range of AR is narrow.  Moreover, a constant 

AR of about 0.13 can be used to accurately match empirical relations in competent sand, 

shale, and quartz/calcite mixtures.  We show that this finding can be practically utilized 

to (a) predict  from ; (b) describe velocity-frequency dispersion between low-

frequency and ultrasonic experiments; (c) predict the dry-frame elastic properties from 

ultrasonic data on liquid-saturated samples, where Gassmann’s fluid substitution is not 

sV pV
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applicable; (d) predict the attenuation of P-wave velocity; and (e) establish tight 

constraints for the ranges of possible variation of  and  at a given porosity in some 

mineralogies.  We also apply this approach to laboratory data rather than empirical 

equations and confirm a positive answer to the main question with all applications of this 

result still valid.  

sV pV

3.2 Introduction 

Inclusion theories often represent porosity, pore geometry and connectivity as 

distributions of ellipsoidal inclusions (Ament, 1953, Eshelby, 1957; Walsh, 1965; Wu, 

1966; O’Connell and Budiansky, 1974; Kuster and Toksöz, 1974; Cheng, 1993; 

Berryman, 1980; Zimmerman, 1984, 1986, 1991a,b; Gurevich et al., 1998; Jakobsen et al. 

2003b). These inclusion theories are based on extreme idealizations of the pore geometry 

and heuristic assumptions about the way in which high concentrations of pores elastically 

interact. These models offer useful analogs of the elastic behavior of some rocks, with 

specific microstructures, but their limitation to idealized inclusion shapes makes complex 

comparing the models to real rock microstructure. It is important to be aware that the 

shapes of rock pores are almost never ellipsoidal, and the methods for treating high 

concentration of pores (inclusions) are idealized and heuristic. It is not realistic to relate 

inclusions aspect ratios models to variations of rock texture resultant from different 

depositional or diagenetic processes.  

Inclusion models, such as DEM (Norris, 1985) and the self-consistent approximation 

(Berryman, 1980), relate the elastic properties of rock to porosity (e.g., Xu and White, 

1995), in spite of the fact that some rocks are composed of grains rather than inclusions 

(Figure 1).  The mathematical flexibility of inclusion theories enables such exercises 

because by varying the inclusion aspect ratio (AR), it is possible to match almost any data 

point. 

Therefore, we revisit this approach to use inclusion models, calibrated to 

measurements, as a single and flexible tool for implementing rock physics transforms. 

While many different formulations (O’Connell and Budiansky, 1974; Kuster and Toksöz, 

1974; Berryman, 1980; Xu and White, 1995; Jakobsen et al. 2003a) can be used, we 
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focus on the DEM approach as formulated by Norris (1985), which assumes randomly 

oriented spheroidal inclusions (Appendix A). Therefore, we deal with isotropic rock. 

DEM can be used to model different rocks with few adjustable parameters. Our approach 

consists on matching experimental data in reasonably wide ranges of porosity and 

mineralogy with DEM and finding range of AR required to achieve this match.  In other 

words, although the actual rock may not be like a physical realization of this 

mathematical model, we will find the elastic equivalency between DEM and data.  The 

hypothesis is that if such elastic equivalency can be established with a narrow AR range 

for a wide range of real samples, we can find an idealized physical analogue to real rock 

and then use this analogue to interrelate different properties of real samples.  

If we establish that a single AR can be used to estimate the elastic behavior of rock in 

a reasonably wide range of porosity and mineralogy, we can further exploit DEM to 

interrelate other properties of rock. 

We proceed with this task and find that for pure quartz, quartz/clay, and quartz/calcite 

mineralogies, both  and  can be accurately matched by DEM with AR ≈ 0.13 in a 

porosity range from zero to 0.4.  This finding enables us to predict  from ; quantify 

the effect of pore fluid on the velocity-frequency dispersion and assess attenuation; and 

derive constraints for the elastic properties narrower than the existing bounds. 

sVpV

sV pV

We start by using the Raymer et al. (1980) empirical velocity-mineralogy-porosity 

model as a proxy for experimental data.  We proceed with applying this concept to a 

number of laboratory data sets, which include ultrasonic velocity measurements from 

Coyner (1984), Rafavich et al. (1984), Han (1986), Kenter et al. (1997), Woodside et al. 

(1998), Asefa et al. (2003), Verwer et al. (2008) and Fabricius et al. (2008).  The samples 

examined by these authors include siliciclastic, carbonate, and mixed carbonate-

siliciclastic mineralogies.   Finally, we demonstrate the utility of our findings on well logs 

from the Ocean Drilling Program (ODP) and a Venezuelan well (Graterol at al., 2004). 
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?

Elastic Equivalency

?

Elastic Equivalency  
Figure 3.1.  Top:  Thin section of a  sandstone with intergranular porosity. Bottom: 

granular rock and its equivalent elastic model, made of a continuous matrix and 
embedded elliptical inclusions with fixed aspect ratio. 

3.3 DEM and empirical transforms  

The Raymer et al. (1980) relation links  to porosity pV φ  as  

where  is the velocity in the solid phase of the rock, and  is the velocity in the 

fluid.  In this equation, the mineralogy affects  through .  For example,  = 6.04 

km/s in pure quartz, 4.51 km/s in a 50% quartz and 50% clay mixture, 6.22 km/s in a 

50% quartz and 50% calcite mixture, and 6.64 in pure calcite.  Raymer’s equation was 

derived as an empirical fit to a large number of log data.  Therefore, for our purposes, we 

can use it as experimental data.  This equation was originally recommended for the 

porosity range between zero and 0.37.  Here we slightly extend this range to 0.40. 

pfpsp VVV φφ +−= 2)1( ,

psV pfV

pV psV psV

To extend this experimental data set into the  domain, we apply the Krief et al. 

(1990)  predictor to  derived from Raymer et al. (1980): 

, where  is the shear-wave velocity in the solid 

phase. 

sV

sV pV
222222 /)(/)( sspfpsspfp VVVVVV −=− ssV

In this example, we assumed that rock was saturated with pure water with density of 
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1.00 g/cm3 density and velocity of 1.50 km/s.  In Figure 2 we display the AR required to 

fit the data from the said relations by DEM.  When applying DEM, we first assume that 

the rock is dry, find the dry-frame elastic moduli, and then use Gassmann’s (1951) fluid 

substitution to arrive at the results for water-saturated rock (DEM/Gassmann).  We 

observe that for pure quartz, 50% quartz and 50% clay, and 50% quartz and 50% calcite 

mineralogies, the AR required to match these data is stable versus porosity, almost the 

same whether we find AR by matching DEM results to  or , and, moreover, is 

almost unchanged between these three mineralogies.  For two other mineralogies (pure 

clay and pure calcite) examined in Figure 2, we find that AR varies versus porosity and 

also depends on whether it was determined from  or .  Still, even in these two cases, 

AR is confined within a narrow range between 0.1 and 0.2 

sVpV

sVpV

Let us next select a single aspect ratio (e.g., AR = 0.13) and use it with 

DEM/Gassmann to predict  and  for all the five mineralogies.  We find (Figure 3) 

that for the three mineralogies where the DEM-derived AR remain almost constant, these 

predictions are very accurate.  Even for the two mineralogies where AR varied versus 

porosity, this single AR = 0.13 can still be used to predict the velocity with reasonable 

accuracy.  

sVpV

In order to use Gassmann’s equations, we need to input the bulk moduli of the dry 

frame and pore fluid,  and , respectively. For a multimineral rock matrix whose 

minerals have small elastic contrasts, the accuracy of Gassmann fluid substitution is 

adequate if the bulk modulus of the solid phase ( ) is computed using a mixing law, 

such as Hill’s average (Hill, 1952). This stem from the fact that for many rocks, 

especially those with high porosity,  and . Therefore,  may 

have a minor influence on the bulk modulus of the fluid saturated rock ( ), which 

allows application of Gassmann’s equation to multimineral rocks. For the DEM modeling 

 is computed the same approach.   

dryK fK

sK

sKdrys KK >> fs KK >>

satK

sK
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Figure 3.2.  Top:  the P-wave velocity versus porosity according to Raymer et al. 

(1980) for five mineralogies as marked on top of the frames.  Middle:  the S-
wave velocity according to Krief et al. (1990) as derived from the P-wave 
velocity in the top row.  Bottom:  AR derived by matching DEM/Gassmann to 
the P-wave velocity (solid curve) and S-wave velocity (open circles). 

 

Comparable results are obtained when using other empirical relations as proxies for 

experimental data. For instance, to extend the experimental data set into the  domain, 

we can apply Castagna et al. (1993), instead of Krief et al. (1990). Castagna et al. (1993), 

for wet limestone is , and for wet sandstone is 

, where the velocity is in km/s. We can also use the 

combination of the P-wave velocity ( ) by Wyllie et al. (1956), which is 

, where  and  refer to the velocity in the pore fluid and 

mineral matrix, respectively, combined with the empirical S-wave velocity ( ) by Krief 
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et al. (1990) or by Castagna et al. (1993).  

In Appendix B, we discuss the prediction of  from  using a self consistent 

theory (Berryman, 1980) and compare the results to the DEM predictions. In Appendix C, 

we give another of the elastic equivalence approach, using the soft-sand model (Dvorkin 

and Nur, 1996) and DEM. 
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Figure 3.3. Velocity versus porosity for the five mineralogies examined in Figure 3.2. 

Solid curves are the same velocities as displayed in the first two rows of Figure 
3.2. Symbols are the DEM/Gassmann predictions for a constant AR = 0.13. In 
the frames where the solid curves are not apparent, they are overshadowed by the 
symbols. 

3.4 DEM and laboratory data 

Consider next a laboratory dry-velocity data set that includes over 60 siliciclastic 

samples with a wide range of porosity and clay content (Han, 1986).  By using the same 

technique as in the previous section for the Raymer/Krief velocity equations, we find the 

AR that makes DEM/Gassmann match the data.  In this case, we use the room-dry data 

and then apply Gassmann’s equation to obtain the velocity corresponding to water-

saturated samples (low frequency velocities).  Once again, we observe that the AR fall 

within a narrow range with an average value of 0.13 approximately (Figure 3.4). 

 Figure 3.4 shows data for chalk samples from Fabricius’ et al. (2008) from four 

formations in the Danish central North Sea sector.  As in the previous examples, we use  

data with subsequent water substitution.  In this case, the DEM/Gassmann AR are 

approximately in the same interval as for Han’s (1986) data, although the mineralogy and 

porosity ranges are different.   
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Figure 3.4.  P- (left), S-wave (middle) velocity and AR (right) for both P- (open 
symbols) and S-wave (filled symbols) versus porosity. The AR are obtained by 
matching these data by DEM/Gassmann. From top to bottom. First row: 
velocities at 40 MPa confining pressure, after Han (1986).  Second row: 
velocities at 7.5 MPa confining pressure, after Fabricius et al. (2008). Third row: 
velocities at 50 MPa confining pressure, after Assefa et al. (2003). Fourth and 
fifth rows: velocities at 40 MPa confining pressure, after Rafavich et al. (1984).  
These velocities are calculated from the room-dry experimental data using 
Gassmann’s (1951) fluid substitution.  The fluid is pure water with density 1.0 
g/cm3 and velocity 1.5 km/s.   

 

This fact suggests an approximate AR universality of about 0.13 for varying 

mineralogy and porosity.  This universality is likely to be related to the texture of the 

rocks under examination.  However, because we have simply fit real data with an 

idealized mathematical model, we should not over-interpret the meaning of this 

universality.  Rather, we concentrate on its practical use. 

Figure 3.4 also displays data from Assefa et al. (2003) for pure carbonates.  As in the 

previous examples, we use room-dry data with subsequent water substitution.  In this 

case, the DEM/Gassmann AR are smaller than in the previous examples.  Still, they are 

contained within a narrow interval.  

Consider next two laboratory data sets from Rafavich et al. (1984).  These data sets 

are based on cores extracted from two different wells.  The room-dry measurements were 

conducted at in situ pressure conditions (about 40 MPa). The data displayed in Figure 3.5 

are essentially carbonate (dolomite and calcite).  We use these room-dry data with 

subsequent water substitution.  Once again, we observe that the DEM/Gassmann AR fall 

within a narrow interval with 0.13 approximately in the middle (Figure 3.5). 

As a second exercise, we use the same methodology but for experimental wet velocity 

data on full saturated rock samples. In this case, we find the AR that makes DEM match 

the velocity data at full saturation condition (high frequency velocities).  In this case we 

consider two laboratory data sets. The first data set is from Kenter et al. (1997).  These 

samples are of mixed carbonate/siliciclastic mineralogy.  Because of the presence of 

carbonate (see Figure 3.2 for the pure calcite case), the DEM/Gassmann AR span a wider 

range than in the previous example (Figure 3.5). 
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Figure 3.5.  P- (left), S-wave (middle) wet-velocity and AR (right) for both P- (open 
symbols) and S-wave (filled symbols) versus porosity. The AR are obtained by 
matching these wet velocity data by DEM. Top: velocities at 40 MPa confining 
pressure, after Kenter et al. (1997).  Bottom: velocities at 7.5 MPa confining 
pressure, after Woodside et al. (1998).  

 

The second data set is for wet carbonates, according to Woodside et al. (1998).  They 

measured ultrasonic velocities, densities, and porosities at in situ pressures in 68 plugs 

taken from the cores recovered at Ocean Drilling Project Sites 966 and 967. The AR 

results (Figure 3.5) are similar to those obtained for data from Kenter et al. (1997). 

Both Rafavich (1984) and Assefa et al. (2003) visually measured the average pore 

size (longest and shortest pore diameter) on resin-impregnated polished thin sections. The 

aspect ratios were measured only on pores that were large enough (> 20μm) to be seen 

through an optical microscope.  This analysis was performed mainly for the grainstone 

and packstone subsets of these data.  The aspect ratios of the small pores, which 

constituted up to 10% of the total pore volume, were not measured (Assefa et al., 2003).  

The AR reported by Rafavich (1984) span an interval of  0.4-1.0.  The aspect ratios 

reported by Assefa et al. (2003) are all about 0.25.  These AR are much larger than those 

predicted by our DEM/Gassmann method. 

This disparity emphasizes the fact that AR obtained from a mathematical model will 
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often differ from those in real rock (even if we assume that pores in real rock can be 

treated as ideal shapes).  Indeed, no mathematical model can perfectly mimic real rock.  

Therefore, it can be erroneous to derive real pore-space geometry from idealized models.  

Nevertheless, a model can be useful and predictive, as we will show in the following 

sections. 

3.5 Applications 

In this section, we show the power of prediction of the approach presented in the 

above section. The methodology can be used to predict  from , high and low 

frequency estimations of elastic moduli; wet elastic properties from dry properties; 

estimation of attenuation; and empirical constrains on elastic properties. 

sV pV

3.5.1 Vs Prediction 

The methodology, when dry velocity data is available (Figure 3.4), is to (a) obtain the 

aspect ratio for each  data point by matching it with DEM/Gassmann and (b) use 

DEM/Gassmann with the same aspect ratio to calculate  for the same data point. These 

aspect ratios are then used to determine the dry bulk and shear moduli,  and , 

respectively. The methodology, when wet velocity data is available (Figure 3.5), is to (a) 

obtain the aspect ratio for each  data point by matching it with DEM alone and (b) use 

DEM with the same aspect ratio to calculate  for the same data point. These aspect 

ratios are then used to determine the wet-bulk and shear moduli,  and , 

respectively. 

pV

sV

GdryK

pV

sV
GsatK

The results for Han’s (1986) data are displayed in Figure 3.6.  Here the dry elastic 

moduli and  are predicted with a high degree of accuracy.  Similar accuracy is 

achieved for data from Fabricius et al. (2008) and Rafavich et al. (1984) (Figures 3.7). 

For the data from Assefa et al. (2003), we over-predict the measured  if we directly 

use the AR derived from the  (Figures 3.7).  We have found an ad hoc correction for 

pure carbonate cases:  when predicting , use the AR derived from  and multiply it 

by 0.85. 
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Figure 3.6. Dry bulk (left) and shear (middle) moduli and  prediction (right). From 
top to bottom. First row: for Han’s (1986) data.  Second row: for Fabricius’ et al. 
(2008) data. Third row: for Assefa’s et al. (2003) data. Fourth and fifth rows: for 
Rafavich’s et al. (1984) data.  These velocities are calculated from the room-dry 
experimental data using Gassmann’s (1951) fluid substitution.   

sV

 

For the data from Kenter et al. (1997) the wet elastic moduli and the resulting  

appears accurate (Figures 3.7).  
sV

Figure 3.8 shows the single aspect ratio distribution from all porosities for Han’s 

(1986) data and for all carbonate data sets from Figures 3.4 and 3.5. 

The next two examples are from well log data from a Venezuelan oil field and the 

ODP. Our  prediction methodology works well for the Venezuelan well, which is 

mostly siliciclastic (Figure 3.9-3.10).  However,  is over-predicted in the ODP well 

(Figure 3.11-3.12) when we directly used the AR derived from . Our ad hoc correction 

(the multiplication of the -derived AR by 0.85) produces an accurate  prediction in 

this carbonate well. 
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Figure 3.7.  Wet bulk (left) and shear (middle) moduli and Vs prediction (right), for 

Kenter’s et al. (1997) data.   

Figure 3.10 shows the decimal logarithm of aspect ratios derived from  and the 

log-normal distribution of aspect ratios. The mean of the log-aspect ratio is -1.8742 and 

the standard deviation 0.6789. The mean and standard deviation of the original aspect 

ratio data are: 0.1925 and 0.1367, respectively. Figure 3.12 shows the distribution of 

aspect ratios for all porosities for the ODP well displayed in Figure 3.11. The mean of the 

aspect ratios is 0.1262 and the standard deviation is  0.0449. 
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Figure 3.8. Aspect ratio distribution from all porosities for Han’s (1986) data (left) 

and for all carbonate data sets from Figures 3.4 and 3.5 (right). 
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Figure 3.9. prediction for the Venezuelan well.  From left to right:  mineralogy 
and porosity; measured (black) and predicted (red) ; AR derived from  
using DEM/Gassmann. 
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Figure 3.10. Left: Decimal logarithm of aspect ratios derived from . Middle: Log-

normal distribution of aspect ratios. Right: Normal probability plot of Log-aspect 
ratios.  

pV

3.5.2 Velocity-frequency dispersion and attenuation 

Velocity-frequency dispersion was discovered decades ago when it manifested itself 

as a disparity between the velocity measured on wet samples at a very high 

frequency, (on the order of 1 MHz) and at low frequency, , calculated from dry-

rock data using Gassmann’s (1951) fluid substitution (e.g., Mavko and Jizba, 1991).  The 

velocity measured at low frequency is usually smaller than that measured at high 

frequency because at high frequency (Winkler, 1986; O’Connell and Budiansky, 1977), 

the liquid in the pores is unrelaxed and resists the wave-induced deformation essentially 

as an elastic body. 

Hf Lf

DEM offers a simple recipe to calculate this difference in velocity.  For example, to 

predict the velocity at high frequency from that measured at low frequency, we (a) obtain 

an AR for each  and  data point (separately for  and ) by matching it with 

DEM/Gassmann and (b) use DEM with these AR and with the liquid in the pores treated 

as an elastic body to calculate the high-frequency  and  for the same data point.  

Conversely, to predict the low-frequency velocity from high-frequency data, we (a) 

obtain the AR for each  and  data point (separately for  and ) by matching it 

with DEM which treats the liquid in the inclusions as an elastic body and (b) use 

DEM/Gassmann with the same AR to obtain the low-frequency  and .  

sV sVpV pV

sVpV

sV sVpV pV

sVpV

Here we show just one example of this transformation.  In Figure 3.13 we display 

data from Coyner (1984), with the velocity measured on both room-dry and water-
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saturated samples of Navajo sandstone. We predict the high-frequency velocity using the 

room-dry data. 

In Figure 3.14 we show how low-frequency velocity can be obtained from ultrasonic 

wet velocity for the same data.  In both cases (Figures 3.13 and 3.14) our predictions are 

close to the measurements.  
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Figure 3.11.  prediction for the ODP (site 1172) well.  The blue  curve is the 

prediction using directly the AR derived from .  The red curve is 

prediction using the -derived AR multiplied by 0.85.  
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Figure 3.12. Distribution of aspect ratios for all porosities for the ODP well displayed 
in Figure 3.11.  
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Figure 3.13. Left:   versus confining pressure; open circles are for room-dry 
ultrasonic data; filled circles are for wet ultrasonic data; the continuous curve is 
for low-frequency wet sample obtained by Gassmann’s (1951) fluid substitution 
on the room-dry data; and triangles are for high-frequency velocity predicted 
from room-dry data using the DEM methodology as described in the text.  
Middle:  same for Vs.  Right:  AR predicted using DEM on the room-dry data for 

 (filled circles) and  (open circles).  The triangles displayed in the left 

frame are obtained using the  AR. 
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In Figure 3.15 we compare our predictions with the high-frequency predictions of 

Biot (1956a, b), the low frequency predictions of Gassmann (1951), and the high-

frequency predictions of Mavko and Jizba (1991). Figure 3.15 also shows the porosity 
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and soft-porosity (the part of porosity with low aspect ratios) as a function of differential 

pressure. At low stress, Biot and Gassmann underestimate the data. Mavko-Jizba 

prediction is in mostly good agreement except for stresses lower than 20 MPa where it 

overestimates the saturated data by 3 percent (Mavko and Jizba, 1991). Similarly, our 

model predictions for  are in better agreement with the saturated data than the Biot and 

Gassmann predictions. Our methodology is complementary to the Mavko-Jizba method 

which is relatively independent of assumptions about idealized pore geometries and pore 

aspect ratios. 

sV

It is important to emphasize that our goal here is not to predict the pressure-

dependency of  and at low and high frequencies, but to predict velocities at fixed 

pressure. To achieve this goal, we adjust the AR so that the theory fits the velocity 

measurements at fixed pressure.  The computed AR increase with the increasing pressure 

simply because the rock becomes stiffer (Figure 3.13).  

sVpV
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Figure 3.14. Left:   versus confining pressure; open circles are for room-dry 

ultrasonic data; filled circles are for wet ultrasonic data; the continuous line is for 
dry-rock velocity obtained from the ultrasonic data using Gassmann’s (1951) 
fluid substitution from wet to dry (which is erroneous in this context because the 
wet-rock data come from ultrasonic measurements); and triangles are prediction 
for room-dry velocity using our methodology.  Middle:  same for .  Right:  
AR predicted using DEM on the ultrasonic data for  (filled circles) and Vs 
(open circles).  The triangles and crosses displayed in the left frame are obtained 
using the AR. 
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In a viscoelastic body, causality requires a very specific relation (e.g., Mavko et al., 

2009; Dvorkin et al., 2003; Dvorkin and Uden, 2004) between attenuation (the inverse 

quality factor ) and velocity-frequency (and modulus-frequency) dispersion. It is the 

Kramers-Kronig equation, which, for a standard linear solid, gives the maximum  as 

1−Q
1−

MaxQ

 

,
2
11

pLpH

pLpH
Max VV

VV
Q

−
=−                                                                                            (3.1) 

where  is the P-wave velocity at very high frequency; and  is the P-wave 

velocity at very low frequency. 
pHV pLV
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Figure 3.15. Comparison of our velocity predictions using DEM with the high-

frequency predictions of Biot (1956a, b), the low frequency predictions of 
Gassmann (1951), and the high-frequency predictions of Mavko and Jizba 
(1991). 
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The technique discussed earlier in this section allows us to find  from , the 

latter typically available from well data,  if it is assumed to represent the low-frequency 

range of measurement. Dvorkin and Mavko (2006) show examples of this application. 

The measured  and predicted  and the resulting  according to equation 1 are 

shown in Figure 3.16.  The estimated inverse quality factor is about 0.1, which appears to 

be reasonable for this soft wet formation (Bowles, 1997; Goldberg et al., 1991).  
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Figure 3.16. Left:  measured and predicted high-frequency  for the ODP Site 

1172.  Right:  resulting inverse P-wave quality factor. 
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Notice that for the determination of , using the standard linear solid model 

(Equation 3.1), we do not need to predict velocities at all frequencies, only at high and 

low-frequency limits. DEM assumes that saturated inclusions are isolated with respect to 

flow; thus, it simulates high-frequency saturated-rock behavior that may be appropriate to 
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ultrasonic frequency ~1 MHz. Here, high-frequency refers to fluid-related effects, yet, 

because DEM is an effective-medium model, the wavelengths are still much longer than 

any scale of grains or pores (Budiansky, 1965; Wu, 1966; O’Connell and Budiansky, 

1974; Berryman, 1980; Ruiz and Dvorkin, 2009). At low-frequency when there is time 

for wave-induced pore pressure increments to flow and equilibrate (Mavko et al., 2009; 

Boutéca and Guéguen, 1999), we find the effective moduli for rock with dry inclusions 

and then theoretically saturate the rock by using Gassmann’s fluid substitution. In the 

application of this theory to well-log data, we assume that (arguably) these data fall into 

the low-frequency range.  

Finally, for velocity and attenuation predictions at all frequencies (Dvorkin et al., 

1995), a model with a spectrum of aspect ratios, instead of a single aspect ratio, is a better 

analog of rock porosity and pore shapes (Hudson et al., 1996; Chapman et al., 2002, 

Jakobsen et al., 2003b; Jakobsen and Johansen, 2005); however this calculation is beyond 

the scope of this study. 

3.5.3 Empirical Constraints for Velocity 

Rigorous elastic bounds for velocity, such as are provided by Hashin and Shtrikman 

(1963), are typically far apart for a porous rock.  This fact limits the practical use of these 

bounds to estimate velocity from porosity and mineralogy. 

Our recipe for constraining the velocity is as follows:  (a) find the elastic moduli and 

density of the solid (mineral) phase by using, e.g., Hill’s (1952) average; (b) compute the 

lower constraints for  and  from DEM/Gassmann using AR = 0.03; and (c) compute 

the upper constraints using AR = 0.30. 
sVpV

If we deal with ultrasonic data obtained on wet samples, DEM/Gassmann may be 

replaced by pure DEM where the pore fluid is treated as an elastic inclusion. Figure 3.17 

shows an example of these constraints for the Kenter et al. (1997) ultrasonic wet-rock 

data.  The DEM-derived constraints are much tighter than Hashin-Shtrikman (1963) 

bounds, especially for .  Of course, AR = 0.03 and AR = 0.30 have been selected ad-

hoc.  These values may be different for different data sets.  Our recommendation is to 

establish the optimal range of AR on a typical test subset and then use it for the same type 

sV
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of rock on a wider basis. 

An example of such approach is given in Figure 3.18, where we used AR = 0.1 and 

0.3 to constrain the velocity in a tight-sand well.  As we see, the DEM-based constraints 

are much tighter than the Hashin-Shtrikman (1963) bounds. 
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Figure 3.17.  The Hashin-Shtrikman (1963) bounds (dotted curves) and DEM-based 

constraints (solid curves) for the Kenter et al. (1997) data (open symbols).  Left:  
; right:  . sVpV

3.6 Discussion 

We show here that if treated and interpreted properly, an idealized elastic model, such 

as DEM, can be practically predictive in real rock, without over-generalizing its meaning 

and utility.  The latter is critical in such applications.  Indeed, we are attempting to match 

the overwhelming complexity of rock behavior with a single AR (or a single range of 

AR).  When doing so, we need to stress that any generalization has to be based on 

meaningful examples, such as shown above.  Overextending these results may be 

erroneous. 

Consider, for example a data set by Verwer et al. (2008), consisting of 

dolomite/calcite samples.  As we see, DEM, applied to ultrasonic wet-rock data, predicts 

AR as high as 0.4 and even approaching 1.0 in these samples (Figure 3.19).  These values 

are much higher than 0.13 which is the value almost universally used in our analysis.  

This simply means that we always have to tread cautiously when applying mathematical 

models to real data.  Such models may be relevant and useful for a certain type of rock 
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but completely invalid for another type of sediment. Figure 3.19 shows that although the 

AR range in the Verwer et al. (2008) data is quite different from that used in most 

examples here, it can still be successfully used to predict  from . sV pV
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Figure 3.18.  The Hashin-Shrikman (1963) and DEM-based constraints for  (left) 

and  (right) in a Venezuelan well (the same well as displayed in Figure 3.9).  
The AR range used in the DEM constraints was between 0.10 and 0.30.  The 
white curve is the measured velocity. 
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Figure 3.19.  Top:  and versus porosity (Data from: Verwer et al., 2008).  

Bottom-left:  AR DEM-predicted from  and .  Bottom-right:   predicted 

from  using these AR.  
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Figure 3.20 shows that rock is not made of ideally shaped inclusions.  The main point 

of this work is that certain effective-medium inclusion models can mimic the elastic 

properties of real rock if an appropriate aspect ratio is assigned to this model.  Our goal is 

to make the use of a selected model reasonably general, rather than insist that the 

geometry of the model is the same as of real rock.  Moreover, the aspect ratio is nothing 

more than a fitting parameter within the realm of a selected model.   

For rocks with the same solid and fluid constituents, different effective medium 

models produce different results (Appendix B). Thus, the interpretation of rock pore 

aspect ratios may not be unique. The rock microstructure has a strong effect on its elastic 

properties. Thus, it is not appropriate to select which effective-medium model is the 

“best” for determining the elastic properties of all rock types. If our goal is to model a 
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specific rock type, it is preferable to pick the theory whose assumptions about 

microstructure match those of the rock modeled (Berge et al., 1995).  

In general, rocks have cracks, cemented and non-cemented grains, cavities, different 

pore shapes, and different degrees of connectivity. In consequence, their effective elastic 

properties are the result of the combined effect of all these possible microstructural 

elements. The idea of the equivalent elastic model is not to choose a single model that 

best fits the microstructure; it is to use only one inclusion model with a single AR as a 

fitting parameter for all rock types. It can be argued that the principle advocated here can 

be used with any effective-medium model. The main point is that certain effective-

medium inclusion models can mimic the elastic properties of real rock, if an appropriate 

aspect ratio is assigned to the model. Our goal is to make the use of a selected model 

reasonably general, rather than insist that the geometry of the model is the same as of real 

rock.  Moreover, the aspect ratio is nothing more than a fitting parameter within the realm 

of a selected model.  

 

 
Figures 3.20. 2D slices of a 3D CT scan of Fontainebleau sandstone.  As we can see, 

there are no ideal inclusions here.  Speculating that we do see AR = 0.13 does not 
make sense.  These pictures, once again, emphasize our main point:  rock is not 
made of idealized inclusions; such inclusions can be assumed in a selected model 
to match elastic data.  If a more-or-less constant AR can be used for a wide range 
of rock types, this model becomes predictive. 

An additional comment is that our method does provide the maximum attenuation 

value rather than attenuation at all frequencies.  This means that discretion has to be used 

when directly comparing our theoretical prediction with measured attenuation from well 

and/or seismic data.  Nevertheless, given the very questionable accuracy of the latter, we 
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recommend using our theoretical estimate (as an estimate rather than definite answer). 
 

3.7 Conclusions 

We show that given a rock with known porosity and mineralogy and a complex 

microstructure, an idealized effective-medium model can represent the elastic properties 

with a narrow range of the aspect ratios.  This inclusion aspect ratio range required for 

the differential effective-medium model to match measured velocity is narrow for many 

data sets, including laboratory and well data.  We show a number of practical applications 

of this finding and caution against overextending the range of its applications without 

verifying and calibrating the model against a representative data set. 
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Chapter 4  

Sediment with porous grains: Rock 
physics model and application to 
marine carbonate and opal 

 

 

 

4.1 Abstract 

We offer an effective-medium model for estimating the elastic properties of high-

porosity marine calcareous sediment and diatomite.  This model treats sediment as a pack 

of porous elastic grains. The effective elastic moduli of the porous grains are calculated 

using the differential effective-medium model (DEM), where the intragranular ellipsoidal 

inclusions have a fixed aspect ratio and are filled with seawater. Then the elastic moduli 

of a pack of these spherical grains are calculated using different granular medium models 

and a modified (scaled to the critical porosity) upper Hashin-Shtrikman bound above the 

critical porosity and modified lower and upper (opal) Hashin-Shtrikman bounds below 

the critical porosity.  In this study, the modified lower and upper bounds were found to be 

appropriate for carbonate marine sediment and diatomaceous sediment, respectively.  We 

find that the best match between the model-predicted compressional- and shear-wave 

velocities and Ocean Drilling Program (ODP) data from three wells is achieved when the 
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aspect ratio of intragranular pores is 0.5. This model assigns finite, non-zero values to the 

shear modulus of high-porosity marine sediment, unlike the suspension model commonly 

used in such depositional settings. This approach also allows us to obtain a satisfactory 

match with laboratory diatomite velocity data. 

4.2 Introduction 

A host of empirical and theoretical rock physics relations and models deals with 

siliciclastic sediment composed of solid grains or carbonates with inclusions.  However, 

such modles do not applied well to the large areas on earth covered with deposits of 

microscopic hollow fossil skeletons, either calcareous or siliceous.  The motivation for 

this study is to concentrate on velocity-porosity-mineralogy relations for such sediment 

texture. 

Calcareous sediments cover about 68% of the area in the Atlantic; 36% in the Pacific;  

and 54% in the Indian Ocean.  The total coverage is about 48% of the world’s seafloor 

(Sverdrup et al., 1942).  In most cases, calcium carbonate is transferred to the sea floor by 

biological activities.  Organisms utilize dissolved calcium carbonate to construct their 

skeletons (Figure 4.1). The remains of the microorganisms settle to the seafloor and form 

a bed of calcareous sediment (Mohamedelhassan and Shang, 2003).  In deep water, 

shallow buried calcareous marine sediment is composed largely of minute skeletons 

(porous grains). When this sediment is deposited its porosity may be as high as 0.7 to 0.8 

(Fabricius, 2003).  Burial and the resulting compaction causes porosity reduction to 

approximately 0.5 to 0.6 within the first few hundred meters below the seafloor.  The 

elastic properties of this overburden and their relation to porosity, mineralogy, and stress 

are important for proper seismic imaging of targets located underneath this calcareous 

sediment. 

Another widely distributed deposit with porous grains is diatomite (Figure 4.2) which 

can be part of the overburden (e.g., in the North Sea) or hydrocarbon reservoirs 

(California, USA, Monterey formation). Diatomite is composed of the fossilized skeletal 

remains of microscopic plants called diatoms. Diatoms are made of siliceous skeleton and 

are found in almost every aquatic environment. Because their cell wall is composed of 
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hydrated silica (Si(H2O)n), they are well preserved in the sediments (Mohan, et al., 2006). 

Diatoms have the unique ability to absorb water-soluble silica present in their natural 

environment to form a rigid highly porous skeletal framework of amorphous silica. 

Atomic force microscopy (AFM) analysis of live diatoms has revealed the nanostructure 

of the valve silica to be composed of a conglomerate of packed silica spheres (Crawford 

et al., 2001; Losic et al., 2007). Hamm et al. (2003) performed real and virtual loading 

tests on diatom cells, using calibrated glass microneedles and finite element analysis. 

They show that the frustules are remarkably strong by virtue of their architecture and the 

material properties of the diatom silica. 

Diatomite is structurally close to calcareous sediment because both have a biogenic 

origin and thus are composed of the skeletal parts of organisms. Both calcareous and 

diatomite materials have intergranular and intragranular porosity.  Diatoms precipitate 

silica from seawater as amorphous opal (opal-A). After deposition, silica progresses from 

opal-A towards quartz, the stable phase, through an intermediate phase, opal-CT. Each 

transition occurs through dissolution and re-precipitation (Chaika, 1998; Chaika and 

Dvorkin, 2000).  

Empirical relations combined with the theoretical Gassmann’s (1951) approach 

between porosity, mineralogy, and the P- and S-wave velocity (  and , respectively) 

have been developed for shallow buried marine calcareous sediment by, e.g., Hamilton 

(1971 and 1976); Hamilton, et al. (1982); and Richardson and Briggs (1993).  A 

theoretical model by Wood (1955) simply assumes that shallow sediment is a suspension 

of solid particles in water and estimates the bulk modulus of this suspension as the 

harmonic average of the solid and fluid components. 

sVpV

However, Hamilton (1971), Hamilton et al. (1982), and Wilkens et al. (1992) have 

shown that shallow buried marine deposits do transmit shear waves.  An implication of 

this is that there are contacts between the grains, which means that the suspension model 

is not adequate for such sediments.  Hamilton (1971) points out that the suspension 

model is not valid for marine sediments, which have some rigidity, but still can be used to 

obtain a maximum estimate of the shear velocity, . Wilkens et al. (1992) observe that 

Wood's estimation of the bulk modulus of the most porous sediments is close to the 
sV
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dynamic bulk modulus. 

To address this situation and estimate the shear modulus and, eventually, , 

Hamilton (1971) and Wilkens et al. (1992) assume that the effective bulk modulus (
sV

K ) is 

still given by the suspension model while the compressional modulus ( M ) is calculated 

from the measured  and bulk density (pV bρ ) as .  Then the shear modulus (G ) is 

 and 

2
pbVρ

bs GV ρ/=))(4/3( KM − .  A slightly different approach is proposed again in 

Hamilton (1971) and in Hamilton et al. (1982) where the decimal logarithm of the dry-

frame bulk modulus ( ) relates to porosity (DryK φ ) as φ41062.387355.1 − , where the 

modulus is in GPa and porosity is in fractions of unity.  Then, the saturated-rock bulk 

modulus K  is computed from  using Gassmann’s (1951) fluid substitution.  Finally, 

the measured  is used to calculate
DryK

, and G  is obtained from M  and M KpV  as shown 

above. 

The rock physics of diatomites has been addressed by Chaika (1998) who performed 

laboratory velocity measurements on samples from the Monterey formation (California).  

However, at that time no theoretical model was available to explain the observed 

relations between velocity and porosity (Chaika and Dvorkin, 2000). 

Dvorkin and Prasad (1999) and Prasad and Dvorkin (2001) introduced a theoretical 

model for siliciclastic high-porosity marine sediment.  This model extends the “soft-

sand” model of Dvorkin and Nur (1996) into the high-porosity range between the critical 

porosity and 1.  It connects the two end points, one given by the “soft-sand” model at the 

critical porosity and the other for pure pore fluid at porosity 1, by using the modified 

upper Hashin-Shtrikman bound (Hashin and Shtrikman, 1963).  In this model, the critical 

porosity is used as an intermediate elastic endpoint so that the sediment frame can have 

non-zero elastic moduli above the critical porosity. 

The principal modification to this model introduced here is to treat high-porosity 

sediment as a pack of porous elastic grains which represent minute calcareous or 

siliceous skeletons.  The effective elastic moduli of the grains are calculated using the 

differential effective medium model (Appendix A), where the ellipsoidal inclusions have 

a fixed aspect ratio and are filled with seawater. The elastic moduli of a pack of these 

grains are calculated using a modified (scaled to the intergranular critical porosity) upper 
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Hashin-Shtrikman bound above the critical porosity and a modified lower Hashin-

Shtrikman bound below the critical porosity.  We apply this new model to three Ocean 

Drilling Program (ODP) well datasets and show that it matches the data, especially , 

better than previous models. 
sV

This principle of theoretically replacing the actual mineral with a porous material can 

be applied, as appropriate, to various mineralogies and used with any of the existing rock 

physics models, including such traditional relations as by Wyllie et al. (1956), Raymer et 

al. (1980), and Krief et al. (1990).  We use this approach to mimic Chaika’s (1998) 

diatomite data by including porous solids into the modified upper Hashin-Shtrikman 

bound (Gal et al., 1998). 

The main result of this work is the introduction of the porous-grain concept into the 

existing rock physics models.  By using well log and laboratory data, we show that this 

approach helps match relevant data where other relations fail. 

 

Acarinina coalingensis
(Cushman & Hanna, 1927)

Planktonic Foraminifera Benthonic Foraminifera

200 μm

Acarinina coalingensis
(Cushman & Hanna, 1927)

Planktonic Foraminifera

Acarinina coalingensis
(Cushman & Hanna, 1927)

Planktonic Foraminifera Benthonic Foraminifera

200 μm  
Figure 4.1.  Left:  Three planktonic foraminifera grains with different shapes. Right: 

Benthonic foraminifera grain. 

4.3 Pack of porous grains 

To model carbonate sediment, we propose a porous-grain-soft-sand (PGSO) model, 

which treats the sediment as a pack of porous elastic grains (Figure 4.3a). In this model, 

the intergranular porosity, , is defined as iφ

 

),1/()( ggti φφφφ −−=     (4.1) 
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Foraminifera: Calcareous

Diatom:  Siliceous

~ 20 μm

Model

Model

Foraminifera: Calcareous

Diatom:  Siliceous

~ 20 μm~ 20 μm

Model

Model

 

Figure 4.2. Upper frame: Calcareous foraminifera grain and its idealized 
mathematical model. Lower frame: Diatom with siliceous (spal) skeleton and and 
its idealized mathematical model. 

 

where  is the internal porosity of the grains defined as the ratio of the intragranular gφ

pore-volume to the total grain volume and  is the total porosity. When 0=iφ , tφ gt φφ =  

whereas when 0=gφ ,  (Figure 4.3c).  tφ  can be calculated from the bulk density it φφ =
bρ  as 

),/()( wsbst ρρρρφ −−=      (4.2) 

where  is the density of the mineral and  is the density of water.  In clean sρ wρ
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. calcareous sediment, the neutron porosity also provides an accurate estimate for tφ

The effective bulk ( ) and shear ( ) moduli of the grain material are calculated 

using DEM (Norris, 1985) where the ellipsoidal inclusions of the volumetric 

concentration

gK gG

gφ  (which is the intragranular porosity) have a fixed aspect ratio (AR) and 

are filled with seawater (Appendix A).   

Once the elastic properties of a grain are determined, we assume that the granular 

sediment is a pack of such grains.  The critical porosity cφ  of such packs is about 0.40 

(Nur et al., 1998).  Notice that at this critical porosity , the total porosity is cφ

)1( gcgtc φφφφ −+= .  To calculate the elastic moduli of the pack we examine two 

porosity domains:  one where  and the other where . ci φφ ≤ ci φφ >

In the former domain, the elastic model connects two end-points in the elastic-

modulus-porosity plane:  the effective moduli at 0=iφ  (which are simply the moduli of 

the porous grain) and the moduli of a dense random pack of identical elastic porous 

spheres (with water-filled inclusions) at ci φφ = .  In order to interpolate between these 

two end points, we use the lower Hashin-Shtrikman bound, rescaled from the 0 to 1 

porosity range to 0 to cφ  (as in the “soft-sand” model of Dvorkin and Nur, 1996).  

Specifically, the effective bulk ( ) and shear ( ) moduli of the dry granular frame 

comprised of water-saturated porous grains are 
DryK DryG
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where  and  are the Hertz-Mindlin (Mindlin, 1949) moduli at the critical 

porosity. 
HMK HMG

HMK  and  for a dense random pack of identical elastic spheres with the Hertz-

Mindlin (Mindlin, 1949) contacts are (e.g., Mavko et al., 1998) 
HMG
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where gν  is the Poisson’s ratio of the porous grains,  is the differential pressure acting 

upon the pack, and C  is the average number of contacts that each grain has with its 

neighboring grains (the coordination number).  

P

 domain we also consider two end-points, one at  and the other at In the ci φφ > ci φφ =

1=iφ .  At the former, the effective elastic moduli  and  are given by equation 

4.4 as  and , while at the latter, they are simply zero.  In-between these end-

points we use (Dvorkin and Prasad, 1999) 
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Following Gassmann’s (1951) fluid substitution equations, we assume that the shear 

modulus of the fully-water-saturated sediment is that of the dry frame ( DrySat GG = ), 

while its bulk modulus is 

,
/)1(

/)1(

gDryfgifi

fgDryfiDryi
gSat KKKKK

KKKKK
KK

−+−

++−
=

φφ
φφ

              (4.6) 

where  is the bulk modulus of seawater. fK

Finally, the elastic P- and S-wave velocities are 

./,/)
3
4( bSatsbSatSatp GVGKV ρρ =+=              (4.7) 

A counterpart to PGSO is the porous-grain-stiff-sand (PGST) model.  The only 

difference between the two is for ci φφ <  (Figure 4.3b).  In this porosity range, the same 

two end-points, one at zero porosity and the other at the critical porosity, are connected 

by the modified upper Hashin-Shtrikman bound (Gal, et al., 1998).  As a result, we obtain 
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In the above models, the total porosity should be always larger or equal to the 

intragranular porosity.  That is why the schematic velocity-porosity curves in Figure 4.3b 

are within the  interval. 1≤≤ tg φφ

 

 
Figure 4.3.  (a) Schematic representation of a rock with porous grains. (b) Velocity-

porosity curves for PGSO and PGST (as labeled).  These two models are the 
same in the porosity range between the critical porosity tcφ  and 1. (c) The total 
porosity versus intergranular porosity according to Equation 4.1. Each line is 
computed for a fixed intragranular porosity ( gφ ), starting with zero (the lowest 
diagonal line) and ending at one (the upper horizontal line) with 0.2 step 

 

The same approach, where we treat the solid phase as made of porous grains, is, in 

principle, applicable to any of the existing rock physics models.  An example of this 

approach is the Wood-porous grain model (WPG), which is a modification of the Wood-

Hamilton (Hamilton, 1971) method to obtain a maximum estimate of the shear velocity 

(Wilkens, et al., 1992), presented in Appendix D. 

To apply the staged upscaling scheme explained above, where we first applied DEM 

to upscale porous grains and then the modified HS bounds to account for pores between 

the grains, we assumed that the intragranular ellipsoidal micropores are much smaller 

than those pores among grains. 
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4.3.1 Influence of aspect ratio and intragranular porosity on elastic properties 

Figure 4.4 illustrates the effects of varying AR and gφ  on the P- and S-wave 

impedance (  and , respectively) of pure-calcite material, as predicted by PGSO for 

dry and water-saturated sediment.  The solid-phase bulk and shear moduli and density 

used in this example are  = 76.8 GPa,  = 32 GPa, and 

sIpI

sK sG sρ  = 2.71 g/cm3, 

respectively.  The fluid’s bulk modulus and density are 2.391 GPa and 1.034 g/cm3, 

respectively.  The differential pressure is 1.61 MPa. Clearly, if 0=gφ , there is no effect 

of the aspect ratio of the intragranular inclusions on the impedance.  However, as we 

increase , the effect of AR becomes more and more pronounced, so that for gφ 3.0≥gφ  

and AR = 0.01, both  and  in the dry sediment are essentially zero.  This is not so 

for  in water-saturated sediment.  Here, the effect of the pore fluid on the P-wave 

propagation appears to be especially significant in low-AR, very compliant intragranular 

pores. Figure 4.5 displays similar plots for PGST and the same modeling parameters. The 

effects of 

sIpI

pI

gφ  and AR on the impedance are essentially the same as for PGSO.  The 

difference between the two models is manifested in the abrupt change in the impedance-

porosity behavior at tcφ .  Other input parameters, such as the differential pressure and 

pore-fluid-compressibility, may also significantly influence  and  (Dvorkin and 

Prasad, 1999).  In water-saturated sediment, the latter exhibits larger sensitivity to 

pressure than the former.  Also, large fluctuations in the salinity of the seawater, such as 

those that can occur due to proximity to a salt dome, may affect the compressibility of 

seawater and, as a result, the velocity and impedance in the soft sediment.  

sIpI
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Figure 4.4. Sensitivity of the P- and S-wave impedance to intragranular AR and 

porosity at dry (upper two rows) and wet (lower two rows) conditions, using 
PGSO model. In this example, the intragranular porosity varies from 0.0 to 0.5, 
from left to right, with 0.1 step. The arrows in the third column frames indicate 
the direction of increasing AR. The AR used are 0.01, 0.03, 0.1, 0.2 and 1.0. The 
differential pressure, critical porosity, and coordination number are 1.61 MPa, 
0.38, and 9, respectively.   
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Figure 4.5.  Same as Figure 4.4 but using the PGST model. 

 

Figure 4.6 illustrates the effects of varying AR and gφ  on the P- and S-wave 

velocities (  and , respectively) of pure-calcite material, as predicted by PGSO and 

PGST for water-saturated sediment.  Different curves correspond to different 

intragranular porosity, 

sVpV

. In this example,  varies from 0.0 to 0.5 with 0.1 step. gφ gφ
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Figure 4.6. Sensitivity of the P- and S-wave velocities to intragranular porosity at wet 

condition, using PGSO (upper two rows) and PGST (lower two rows) models. In 
this example, the intragranular porosity varies from 0.0 to 0.5 with 0.1 step.  The 
arrows indicate the direction of increasing gφ . The differential pressure, critical 
porosity, intragranular aspect ratio and coordination number are 1.61 MPa, 0.38, 
0.5, and 9, respectively.   

4.4 ODP data sets 

We studied deep marine carbonate sediment from three ODP well sites:  1172, 998 

and 1007.  The porosity of this sediment is between 0.25 and 0.80.  For this study, we 

selected the depth intervals with essentially pure calcium carbonate content. 

Site 998 (ODP, 1996) is located on the Cayman Rise (the Caribbean), between the 

Yucatan Basin to the north and Cayman Ridge and Cayman Trough to the south, at water 

depth 3190 m.  We concentrated on the depth interval between 210 and 470 mbsf (meters 

below seafloor) which consists of nannofossil chalks. 

Site 1172 (ODP, 2000a) is located at about 150 km southeast of Tasmania at water 
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depth 2622 m. The interval under examination (150 to 350 mbsf) consists of (a) white 

and light greenish gray nannofossil ooze and (b) pale yellow and light gray foraminifer-

bearing nannofossil chalk with increased foraminifer content and minor components of 

clay and volcanic glass. 

Site 1007 (ODP, 2000b) is located on the toe of the western Great Bahamas Bank 

slope in 669 m of water.  In this site, the studied depth interval is divided into four units.  

Unit I, between zero and 203 mbsf, consists of a succession of nannofossil ooze and 

variable lithified wackestones that transit to packstones with increasing depth.  Unit II, 

between 203 and 302 mbsf, is of early Pliocene age and consists entirely of bioturbated 

light gray to pale yellow foraminifer nannofossil chalk.  Unit III, between 302 and 363 

mbsf, displays variable degrees of lithification of foraminifer wackestone, nannofossil 

chalk, and nannofossil limestone. Unit IV, between 363 and 696 mbsf, is made of 5 to 10 

cm thick layers of fine-grained packstone and also exhibits alternations between densely 

cemented and weakly cemented sediment (0.1 to 1.0 m thick) that shows evidence of 

compaction (ODP, 2000b). Petrographic studies and Scanning Electron Microscopy 

(SEM) images show different degrees of foraminifer cementation in this well (Kenter et 

al., 2002).  

For all these sites measurements of , bρpV , neutron porosity, GR, as well as 

carbonate (CaCO3) and organic/inorganic carbon content are available.  Site 1172 has, in 

addition,  data.  Simple mineralogy (the CaCO3 content above 0.85) and absence of 

clay determined our choice of these data sources. Wireline logging was conducted with 

successful runs of the Schlumberger-GHMT-sonic tool string (ODP, 2000a). 

sV

4.5 Matching ODP data with models 

In Figure 4.7, we compared the measured  and  with curves produced by DEM 

(not applied just to the grains but to the entire sediment treating it all as a solid with 

inclusions), Raymer et al. (1980), Wyllie (1956), and Castagna et al. (1993) models as 

well as PGSO and PGST, assuming pure calcite porous grains with isolated inclusions 

and fully brine saturated.  The matrix in all models is pure calcite and the pore fluid is 

brine. The bulk modulus and density of the brine in each well were calculated according 

sVpV
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to Batzle and Wang (1992) using salinity 36,000 ppm and site-specific temperature and 

pressure. In this study we assumed the same salinity for the calculation of the density and 

bulk modulus of the intragranular water, intergranular water and bottom sea floor water. 

The total porosity ( ) in each well was calculated from the bulk density (tφ bρ ) by 

assuming that the density of the mineral ( sρ ) is that of calcite (2.71 g/cm3).  The density 

of water ( wρ ) slightly varies with depth and location but remains very close to the value 

used above (1.034 g/cm3). 

The model curves in Figure 4.7 were produced for fixed brine properties which are 

2.391 GPa for the bulk modulus and 1.034 g/cm3 for density, averaged among the data 

sets.  The differential pressure at sites 1007, 998 and 1172, ranges from approximately 1 

to 8 MPa, from approximately 1 to 4.5 MPa, and from approximately 0.8 to 2.3 MPa 

respectively. For the purpose of Figure 4.7, the differential pressures at different sites 

were kept constant at 1.61 MPa for Site 1172, 4.18 MPa for Site 1007 and 2.68 MPa for 

Site 998, which are the averaged pressure values in each site depth interval.  The DEM 

model employed here to calculate the elastic moduli of the porous grains used a single 

aspect ratio for all datasets.  The best fit to the data is for AR = 0.1.  The parameters used 

in PGSO and PGST in the entire interval are:  intragranular porosity 0.26; critical 

porosity 0.38; coordination number 9; and aspect ratio of the intragranular inclusions 0.5.  

Among all these models, PGSO provides the best match to the velocity data; while DEM 

applied to the entire sediment with AR = 0.1 matches , it overestimates  data for 

Site 1172. 
sVpV
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Figure 4.7.  P-wave velocity versus total porosity for the three ODP data sets under 

examination: (a) Site-1172, (b) Site-998, (c) Site-1007, and (d) S-wave velocity 
Site-1172, all plots are color-coded by depth (in mbsf).  Data from Rafavich 
(1984) that are essentially pure calcite low-porosity rock are displayed for 
reference (black crosses).  The model curves displayed are:  PGSO and PGST 
with the intragranular AR 0.5, coordination number 9, critical porosity 0.38, and 
intragranular porosity 0.26; DEM with aspect ratio 0.1 applied to the entire 
sediment by treating it as a solid with inclusions; Raymer et al. (1980) combined 
with Castagna et al. (1993), the latter to obtain the S-wave velocity; Wyllie et al. 
(1956) combined with Castagna et al. (1993); and the suspension model where 
the grains are modeled as a porous solid (WPG), with the same parameters as in 
PGSO and PGST 

 

In Figures 4.8 to 4.10, we plot the predicted and measured  versus depth in each of 

the selected wells.  In Figure 4.11, we plot the predicted and measured  versus depth in 

Site 1172. The input for the models used here are:  (1) the bulk modulus and density of 

water which vary with depth according to the increasing pore pressure (hydrostatic) and 

temperature and (2) the differential pressure which is the integral of the bulk density 

pV

sV
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minus the density of water with respect to depth.  The bulk density data were missing 

between the sea bottom and the shallowest depth datum.  For the purpose of pressure 

estimation, these missing curves were approximated by a linear interpolation between the 

shallowest density data and the density at the sea bottom.  The latter was 1.537 g/cm3, as 

calculated for a calcite sediment with (assumed) 0.70 porosity. 

The original log curves contained many (apparently artificial) spikes.  To remove 

them, we smoothed the curves by using the arithmetic average for porosity and density 

and the Backus (1962) average for the velocity.  The running window contained between 

10 and 15 original depth increments. 

In all three wells, PGSO with intragranular inclusion aspect ratio 0.5 accurately 

matched the measured , except for the lower-porosity intervals in Site 1007 (Figure 

4.9).  In these intervals, the soft-sand model is not suitable for the rock which is, 

apparently, more consolidated and harder than in the other parts of the wells. The 

Miocene section at Site 1007 has been affected by diagenesis; as a result, the sediments 

appear to be fully lithified below ~300 mbsf (ODP, 2000b).  The DEM model used with a 

constant aspect ratio 0.1 also provides a good match to the data, except in the high-

porosity intervals in Sites 1007 and 1172, where it is apparently not suitable.  The 

suspension (Wood, 1955) model (not displayed here) strongly underestimates the data 

whereas both the Raymer et al. (1980) and Wyllie et al. (1956) equations (the former not 

displayed here) overestimate the velocity. Wood porous grain model (WPG), with 

intragranular inclusion aspect ratio 0.5, underestimates the  data in all three wells, 

however, the reduction decreases at shallow depth where the sediment is more in 

suspension condition.   

pV

pV
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Figure 4.8.  ODP-well site 998. From left to right:  total porosity and CaCO3 content; 

P-wave velocity as measured and predicted by Wood’s suspension model with 
porous grains (WPG), Wyllie et al. (1956), DEM, and PGSO models. The aspect 
ratios used in this modeling are listed in the legend. The data are shown in thin 
solid line while the model predictions are shown in bold solid line. 

 
 

 

 



CHAPTER 4: SEDIMENT WITH POROUS GRAINS: ROCK PHYSICS MODEL 114 

0.2 0.4 0.6 0.8 1

150

200

250

300

350

400

Porosity and Calcite

D
ep

th
 (m

bs
f)

1.5 2 2.5 3
Vp (km/s)

WPG (AR=0.5)

1.5 2 2.5 3
Vp (km/s)

Wyllie

1.5 2 2.5 3
Vp (km/s)

DEM (AR=0.1)

1.5 2 2.5 3
Vp (km/s)

PGSO (AR=0.5)

Porosity

Calcite

 
Figure 4.9.  ODP-well site 1007.  The display is the same as in Figure 4.5. 

 

The Castagna et al. (1993)  predictor applied to the Wyllie et al. (1956) equation 

overestimates the measured  in the entire interval (Figure 4.11).  So does the DEM 

model.  The Hamilton-Gassmann (Hamilton, 1976) model provides a good  prediction 

only for very shallow depths where the porosity exceeds 0.45. The WPG (AR=0.5) model 

provides a good  prediction in the entire interval. However, PGSO was the only model 

that provided an accurate and consistent match to the measured  in Site 1172.  PGSO 

used with the intragranular aspect ratio 0.5, coordination number 9, critical porosity 0.38, 

and intragranular porosity 0.26 accurately matched these data in the upper interval of the 

well, above 271 mbsf (Figure 4.11).   

sV
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Figure 4.10.  ODP-well site 1172. From left to right:  total porosity and XRD-Calcite 

content; P-wave velocity as measured and predicted by Wood’s suspension 
model with porous grains (WPG), Wyllie et al. (1956), DEM, and PGSO models.  
The aspect ratios used in this modeling are listed in the legend. PGSO model, for 
coordination number 15 and grain porosity 0.20, provides a satisfactory match to 
the data below 271 mbsf. 

 

To achieve a good match in the lower part of the well, below 271 mbsf, where the 

sediment is more consolidated, we changed these parameters by increasing the 

coordination number C  from 9 to 15 and simultaneously reducing the intragranular 

porosity from 0.26 to 0.20 which is consistent with the onset of compaction. These 

changes act to increase  but leave  essentially the same (Figures 4.10 and 4.11). The 

reason is that both the intragranular porosity 

V pVs

gφ  and coordination number C  affect the 

 ratio and, as a result, Poisson’s ratioνsp VV / .  However, these two ratios are more 

sensitive to changes in C  than in  (Figure 4.12):  as C  increases, the dry frame gφ
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becomes stiffer and, as a result, the wet-rock ν  decreases.  As a consequence, different 

variations of C  and gφ  produce different effects on  and   , such as (a) 

simultaneously increasing or reducing  and ; (b) keeping both velocities constant; or 

(c) keeping  constant and increasing , as in our case. 

sVpV
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Figure 4.11.  ODP-well site 1172. From left to right:  S-wave velocity as measured 

and predicted by Wyllie et al. (1956)-Castagna et al. (1993), DEM, Wood’s 
suspension model with porous grains (WPG), Hamilton (1971, 1982), and PGSO 
models.  The parameters used in this modeling are the same as in Figure 4.7. 
PGSO provides a satisfactory match to the data below 271 mbsf. 
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Figure 4.12. Wet-rock Poisson’s ratio versus intragranular porosity according to 

PGSO. The coordination number is varied from 4 to 16 with a step of 2 and the 
total porosity varied from 0.20 to 0.70.  All other PGSO model parameters are 
kept constant.  The arrow in the top-middle frame indicates the direction of 
increasing coordination number C. 

 

Figure 4.13 shows a cross-plot of  versus  as measured in Site 1172; the model 

predictions of Pickett (1963), DEM, Krief et al. (1990), Castagna et al. (1993) and PGSO 

are plotted.  The first two predictors overestimate  at any given . The Krief et al. 

(1990) method correctly predicts  in the high-porosity part of the interval while the 

Castagna et al. (1993) method overestimates it. Conversely, the latter provides a 

satisfactory  prediction in the lower-porosity part of the interval while the former 

underestimates .  PGSO, if used with consistently adjusted inputs, correctly predicts  

in the entire interval. 

sVpV

sV pV

sV

sV

sV sV

 

 



CHAPTER 4: SEDIMENT WITH POROUS GRAINS: ROCK PHYSICS MODEL 118 

1.5 2 2.50

0.5

1

1.5

Vp (km/s)

Vs
 (k

m
/s

)

1.5 2 2.50

0.5

1

1.5

Vp (km/s)

Vs
 (k

m
/s

)

 

 

180

200

220

240

260

280

300

320

340

 

Pickett (1963)

DEM (0.08)

Data-Site-1172
Colorcoded by Depth (mbsf)

Castagna (1993)

Data-Site-1172
Colorcoded by Depth (mbsf)

Krief (1990)
PGSO

 
Figure 4.13.  S- versus P-wave velocity.  Comparison of Site-1172 data (color-coded 

by depth in mbsf) and predictions according to PGSO, DEM, and Pickett (1963) 
on the left, and Castagna (1993) and Krief et al. (1990).  The two PGSO branches 
in the left- and right-hand frame correspond to the upper and lower depth 
intervals in this well. 

 

Finally, in Figure 4.14, we compared the predicted to measured velocity according to 

selected models: DEM with AR = 0.1, Hamilton (1971), and PGSO.  We observed that 

the latter model accurately mimics the data while the former two fail. 

4.6 Diatomites 

Consider the laboratory measurements by Chaika (1998) performed on room-dry 

diatomites from three Monterey formation reservoirs in California. The mineralogy of 

these samples includes opal-A, opal-CT, quartz, clay, analcima, and feldspar, as well as 

organic components (Figure 4.15).  The elastic moduli and densities of these components 

are from Chaika (1998) and Mavko et al. (1998) and are shown in Table 4.1.  
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Figure 4.14. ODP well site 1172.  Predicted versus measured P- and S-wave velocity, 
color-coded by depth in mbsf.  In the upper two frames we use the DEM (AR = 
0.1) and Hamilton-Gassmann (Hamilton,  1971) models while in the lower frame 
we use the PGSO model 

 

Chaika (1998), identifies two distinct patterns of porosity reduction in reservoir rocks 

of the Monterey Formation as they undergo silica diagenesis from opal-A through opal-

CT to quartz. In Pattern 1, the porosity reduction appears to be due to increased amounts 
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of non-silica minerals (and quartz, if present) and the grain density increases with 

decreasing porosity.  In Pattern 2, the amount of opal-CT (and quartz, if present) 

increases while the fraction of non-silica minerals is relatively constant and the grain 

density decreases with decreasing porosity. Since the samples from Cymric are the only 

ones containing opal-A, they are the only rocks which could be called diatomite. 

We modeled these data using PGSO and PGST models as described above, assuming 

siliceous porous grains with isolated inclusions. The model parameters, the same for all 

samples, are: intragranular AR = 0.6; coordination number 10; critical porosity 0.42; and 

intragranular porosity 0.15. 

 
Table 4.1  Mineralogy of diatomite samples (Chaika, 1998, Mavko et al., 1998). 

Mineral Bulk Modulus (GPa) Shear Modulus (GPa) Density (g/cm3) 
Opal-A/CT 14.219 12.580 2.0 
Quartz 37.88 44.31 2.649 
Clay 21.83 7.0 2.56 
Analcime 55.629 26.231 2.712 
Pyrite 87.91 137.9 5.1 
Calcite 76.8 32.0 2.71 
Feldspar 53.36 27.04 2.56 
Organic 2.937 2.733 1.3 

 

We observed that PGSO only matches the high-porosity data (not displayed here) 

while PGST (Figure 4.15) provides a satisfactory match in the entire porosity range 

(because above the critical porosity both these models are the same).  To further illustrate 

the quality of this match, we cross-plot the PGST-predicted velocity versus the measured 

data in Figure 4.15.  In spite of a few outlying data points (mostly for ), we deem this 

match satisfactory and practically usable.  This example illustrates the utility of the 

porous-grain approach not only with the soft-sand model but also with other existing 

models, the stiff-sand model in particular. 

sV
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Figure 4.15. Top-left:  P- and S-wave dry-rock velocity versus porosity as measured 
and predicted by PGST. The fill circles are measured P- and S-wave velocities on 
a zero porosity opal-CT sample. The measurements are room-dry at 10 MPa 
confining pressure. Top-right: Predicted (PGST) versus measured velocity. 
Bottom-left:  X-ray mineralogical composition of opaline rock samples.  The data 
are from Chaika (1998).  

4.7 Discussion  

The porous-grain concept appears to be generally applicable to medium-to-high 

porosity sediments. Consider for example Figure 4.16, which shows versus tφpV  for the 

marine chalk dataset used in Nur et al. (1998).  The trend apparent in these data can be 

matched with a PGSO curve with a constant differential pressure 4 MPa; C  = 9; cφ  = 

0.42; and gφ  = 0.22.  Fabricius (2003) uses a similar marine carbonate dataset.  Figure 

4.16 implies that the porous-grain model is appropriate for the Fabricius (2003) data as 

well. In the original paper, Fabricius (2003), in order to explain the velocity behavior of 
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chalk data with different degree of burial diagenesis, uses an additional (free) parameter 

(IF) to fill the space between the lower and upper modified Hashin-Shtrikman bounds 

with model curves.  Here we can explain the data using a model with physics- and 

geology-driven parameters. 
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Figure 4.16. P-wave velocity versus total porosity cross-plots for the Nur et al. 

(1998) chalk data set. The model curve displayed is PGSO with the intragranular 
AR 0.5, coordination number 9, critical porosity 0.42, and intragranular porosity 
0.22. 

In the case of opal data sets, Chaika (1998) points out that the process of transiting 

from opal-A to opal-CT begins with grains in an unlithified rock of small hollow (porous) 

particles of opal-A where the particle contacts have small cross-sectional areas.  Instead 

of forming overgrowth cements like clastic rocks, these opaline porous particles dissolve 

and reprecipitate as opal-CT (Williams et al., 1985); some new particles will form and 

some particles will grow. Both of these processes result in particle contacts with larger 

cross-sectional areas (equivalent to cementation), since both the “grains” and “cement” in 

this model are both composed of opal-CT.  To predict the velocities of rocks coming 

from these three fields, Chaika (1998) uses two different rock physics models. The first 

model is the upper Hashin-Shtrikman bound scaled to the critical porosity, to describe the 
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samples from Asphalto and McKittrick.  The second model is a combination of the Hertz-

Mindlin theory with the upper Hashin-Shtrikman bound, for samples from Cymric.  In 

both models, the total porosity was replaced with intergranular porosity.  In this study, we 

observed that all three data sets (Asphalto,  McKittrick and Cymric), can be modeled as a 

pack of porous cemented grains and that PGST provided a satisfactory match in the entire 

porosity range. 

As with any rock-physics model, the PGSO and PGST models introduced here have 

advantages and disadvantages.  Among the advantages are (1) the physically and 

texturally consistent treatment of calcareous sediment and opalines as comprised of 

porous grains, and (2) the consistency of the model predictions with selected offshore 

calcareous and on-shore opaline data.  The disadvantages are intimately linked to the 

structure of the model which requires inputs, such as the intragranular porosity, 

intragranular inclusion aspect ratio, critical porosity, and coordination number, that (1) 

are somewhat idealized and (2) are not immediately available from experimental 

measurements.   

However, this is a common feature of any micromechanical model. One way of 

resolving the resulting ambiguity is to (1) select inputs that are reasonable, such as the 

critical porosity varying within the 0.35 to 0.45 range and a coordination number varying 

between 5 and 15, and (2) calibrate these inputs to existing data and then link them to 

specific geographic locations and depth intervals.  Once such a calibration is 

accomplished, the model can be used in a predictive mode away from well control. 

The above-mentioned disadvantage of PGSO and PGST turns into an advantage if we 

utilize these models in an exploratory mode.  By varying the inputs in reasonable and 

site-consistent ranges, we can explore the plausible ranges of the elastic properties as well 

as their interrelation. 

The examples provided here emphasize that the existing  predictors may be 

accurate within certain depth ranges but do not provide correct predictions within the 

entire depth range.  On the contrary, PGSO provides an accurate prediction in the entire 

depth interval at the expense of varying the model parameters within a reasonable and 

depositionally-consistent range. 

sV

 



CHAPTER 4: SEDIMENT WITH POROUS GRAINS: ROCK PHYSICS MODEL 124 

4.8 Conclusions 

The approach introduced here and the models following from this approach appear to 

be applicable to sediment with porous grains, such as calcareous and diatomatious ooze.  

The parameters of these models, specifically the intragranular porosity and coordination 

number, can be linked to compaction and diagenesis.  To make such a link predictive, 

robust, and repeatable, one needs to systematically explore the applicability of this model 

to various high-quality data sets with established geologic records and mineralogies, an 

analysis that is beyond the scope of this paper.  Finally, the approach introduced here, 

where we treat the solid phase as a porous material, can be used to modify any of the 

existing rock-physics models. These models can become part of the arsenal of rock-

physics relations used in synthetic seismic generation as well as in real seismic data 

interpretation for rock properties. 
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Chapter 5  
Aggregate of porous grains: Models 
and scenarios 

 

 

5.1 Abstract 

We propose an effective-medium model for estimating the elastic properties of a 

random aggregate of identical, spherical, poroelastic grains. These estimates are achieved 

using a two-stage approach where the elastic properties of the porous grains are 

calculated first, followed by the elastic properties of an aggregate of the homogenized 

spherical grains. In the first stage, the effective elastic moduli of the poroelastic grains are 

calculated using a differential effective-medium (DEM) model or the combination of 

DEM with Gassmann’s equation, depending on the connectivity of the intragranular 

porosity. The intragranular pore space may be either air- or fluid-filled.  In the second 

stage, we proceed to calculate the elastic properties of a dry aggregate of such grains 

using different grain-contact-stiffness theories. This calculation is done in two different 

porosity domains: below and above critical porosity. Below critical porosity, the elastic 

model connects two end points in the elastic-modulus porosity plane: the effective moduli 

at zero intergranular porosity (the effective moduli of the porous grains) and the moduli 

of a dense random aggregate of identical elastic porous spheres at the critical porosity. To 

interpolate between these two end points, we use the lower Hashin-Shtrikman bound 



CHAPTER 5: AGGREGATE OF POROUS GRAINS: MODELS AND SCENARIOS 129 

(HS–), rescaled from a porosity range of 0–1 to a range of 0 to critical porosity. Above 

critical porosity, we also consider two end points: one at the critical porosity (dense-

aggregate moduli) and the other at porosity equal 1 (the moduli of air). At critical 

porosity, different grain-contact theories are used to determine the properties of the dry 

dense aggregate of porous grains. Below critical porosity, the upper Hashin-Shtrikman 

bound (HS+) is also used to produce a second estimate of the effective elastic properties, 

which may be consistent with a different aggregate texture. To apply this staged 

upscaling scheme, where we first upscale porous grains and then account for pores 

between the grains, we assume that the intragranular micropores are much smaller than 

the intergranular pores among grains. A similar staged approach is used to determine the 

elastic moduli of cemented porous grain aggregates at low cement concentration. The 

combination of the cementation theory for porous grain material with the self-consistent 

approximation allows us to estimate the elastic properties of a cemented porous grain 

aggregate at all cement concentrations.  

Our approach and models for non-cemented aggregates may be applied to sediment, 

such as calcareous and diatomaceous ooze, opal, and chalks. Our approach for cemented 

aggregates may be applied to carbonates. The microstructural parameters of our models 

can be associated to diagenesis and may be varied to mimic diagenetic processes of 

carbonates. 

5.2 Introduction 

In this study we develop a methodology to determine the effective elastic moduli of 

porous grain aggregate with different textures. This work is an extension of the porous-

grain model proposed by Ruiz and Dvorkin (2009). This extension enables us to: a) use 

Walton’s model (Walton, 1985) in addition to the Hertz-Mindlin model (Mindlin, 1949), 

as it was formulated originally (Ruiz and Dvorkin, 2009); b) vary the grain contact 

friction coefficient γ  in the whole range from 0 to 1, for smooth to infinitely rough grains, 

respectively; c) combine the self-consistent approximation (Berryman, 1980) with the 

cementation theory (Dvorkin et al., 1994) to account for intergranular cement volume 

fractions from 0 to 1; and d) considering the effect of frequency. 
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We treat a saturated porous-grain as an elastic solid with ellipsoidal inclusions filled 

with air or compressible fluid (Figure 5.1a). The porous-grains model can be applied to 

approximate three different porous grain-aggregate textural scenarios, depending on the 

effective fluid connectivity of the intragranular porosity in the grain (Figure 5.2). Each 

scenario is an idealized representation of the material’s pore-space morphology and is 

less idealized for existing synthetic materials. The realizations of each of these scenarios 

in artificial composites or natural rocks are achieved either by creating or eliminating 

pore-to-pore connections, or by changing the period of the externally applied stresses to 

be faster or slower than the pore-to-pore diffusion times. To determine the effective 

elastic properties of the saturated porous-grain material in the three different porous-

grain-aggregate scenarios, we use two models: DEM (Norris, 1985) and the combination 

DEM-Gassmann, depending on whether we want the high frequency or the low 

frequency effective elastic moduli, respectively. DEM assumes that saturated 

intragranular inclusions are isolated with respect to flow; thus, it simulates high-

frequency (HF) saturated-grain behavior. At low frequency (LF < 100 Hz) when there is 

time for wave-induced pore-pressure increments to flow and equilibrate (Mavko, et al., 

1998; Boutéca and Guéguen, 1999), it is better to find the effective moduli for dry 

intragranular inclusions and then saturate them with the Gassmann low-frequency 

relations (Mavko, et al., 1998).  The combination DEM-Gassmann may be appropriate at 

well-log frequencies (~1 to 20 kHz). Any model which gives the low-frequency response 

or equalized pore pressure is called Gassmann-consistent (Thomsen, 1985). 

In all three of these scenarios, to account for the effects of intergranular porosity on 

the undrained elastic properties, we use the combination of the modified Hashin-

Shtrikman bounds, which are the bounds rescaled from a porosity range of 0–1 to a range 

of 0 to critical intergranular porosity ( icφ ), and Gassmann’s equations if we want a low-

frequency velocity approximation (well logs) or the combination of the modified Hashin-

Shtrikman and DEM if we want a very high frequency (VHF) velocity approximation 

(ultrasonic measurements). In this case, DEM assumes that the intergranular pore space is 

made of fluid inclusions which are isolated with respect to flow; simulating the (VHF) 

saturated-aggregate behavior that may be appropriate to ultrasonic frequency (~1 MHz). 
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Here, HF and VHF refer to fluid-related effects; but the wavelengths are still much longer 

than any scale of grains or intergranular pores (Budiansky, 1965; Wu, 1966; O’Connell 

and Budiansky, 1974; Berryman, 1980). 

A similar staged approach is used to determine the elastic moduli of a cemented 

porous grain aggregate at low cement concentration. This is achieved by introducing the 

porous grain concept into the cementation theory (Dvorkin et al., 1994). Then, by 

combining the cementation theory (Dvorkin et al., 1994) for porous grain material with a 

self-consistent approximation, specifically, the coherent potential approximation (CPA) 

(Berryman, 1980), we are allowed to estimate the elastic properties of cemented porous 

grain aggregates at all cement concentrations (Dvorkin et al. 1999). 

Our approach and models for non-cemented aggregates may be applied to sediment, 

such as calcareous and diatomaceous ooze, opal, and chalks. Our approach for cemented 

aggregates may be applied to carbonate rocks. The microstructural parameters of these 

models can be related to diagenesis and may be varied to mimic diagenetic processes of 

calcareous and diatomaceous ooze, and cemented and non-cemented carbonate rocks.  

5.3 Porous-grain scenarios 

We treat a saturated porous grain as a linearly elastic solid with ellipsoidal inclusions 

filled with compressible fluid (Figure 5.1).  

Three different porous-grain scenarios were considered, depending on the effective 

fluid connectivity of the intragranular porosity in the grain. Depending on the material’s 

microstructure, one of the following different descriptions might be more appropriate 

than the others. Three porous-grain scenarios are considered (Ruiz and Dvorkin, 2009):  

1) The intragranular pores are isolated, and the intragranular pores are not connected 

with the intergranular pores (Figure 5.2a).   

2) The intragranular pores are connected, and the intragranular pores are not 

connected with the intergranular pores (Figure 5.2b).  

3) The intragranular pores are connected, and the intragranular pores are connected 

with intergranular pores (Figure 5.2c).  
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Figure 5.1. a)  Schematic representation of a rock with porous grains. b) Velocity-

porosity curves for PGSO and PGST (as labeled). These models are the same in 
the porosity range between the total critical porosity φtc and one. c) The total 
porosity versus intergranular porosity according to equation 1. Each line is 
computed for a fixed intragranular porosity φg, starting with zero (the lowest 
diagonal line) and ending at one (the upper horizontal line) in increments of 0.2. 
(figure from Ruiz and Dvorkin, 2009). 

 

We suggest that realizations of each of these scenarios in artificial composites or 

natural rocks are through creating or eliminating pore-to-pore connections or changing 

the period of the externally applied stresses to be faster or slower than the pore-to-pore 

diffusion times.  When we speak of high-frequency versus low-frequency response, the 

implication is that the connectivity is effectively controlled by the diffusion time versus 

frequency (Mavko and Jizba, 1991; Mukerji and Mavko, 1994; Dvorkin et al., 1995; 

Mukerji et al., 1995).  

The elastic moduli of materials corresponding to each of these scenarios are different. 

These differences may be small or relatively large depending on the value of , iφgφ , 

aspect ratios of the intragranular inclusions ( gα ), orientation of the inclusions with 

respect to the direction of applied stress field (σ) and the magnitude and frequency of σ. 

All three of these scenarios are undrained states, in the sense that the total fluid mass in 

the porous grain aggregate is constant. No bulk flow takes place through the aggregate 

because it is considered jacketed, so fluid flows only inside the sample. We assume that 

materials corresponding to these porous grain scenarios have the same dry elastic 

properties. The dry elastic properties are computed in two steps: a) the elastic properties 

of the grains using DEM, and b) the elastic properties of the dry aggregate of 
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homogenized grains. 
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Figure 5.2. Three porous-grains scenarios.  a) The intragranular inclusions are 

isolated.  b) The intragranular inclusions are connected.  c) The intragranular 
inclusions are connected and the intragranular porosity is connected with the 
intergranular porosity.  (Figure from Ruiz and Dvorkin, 2009). 

 

For the fluid saturated aggregate, we can define different degrees of fluid relaxation 

that depend on the degree of effective pore connectivity. Scenario 1 is the least relaxed 

because there is no pore-to-pore equilibration of pore pressure. Scenario 2 is slightly 

more relaxed, because intragranular pores are equilibrated with respect to pore pressures, 

but there is no effective fluid communication between the intragranular and the 

intergranular porosities. Scenario 3 is the most relaxed scenario. At low frequency, 

pressure can equilibrate in the material in scenario 3; in this relaxed scenario, all pores 

have the same pore pressure. The combination of poroelasticity and effective-medium 

theory allows us to derive high- and low-frequency moduli and to predict elastic-wave 

dispersion (Le Ravalec et al., 1996; Boutéca and Guéguen, 1999). The elastic moduli for 

materials of any of the scenario types are calculated in four steps: a) determination of the 

effective elastic moduli of the porous grain material, b) determination of the effective 

elastic moduli of the dry aggregate at critical porosity ( ici φφ = ), c) determination of the 

effective elastic moduli of the dry aggregate in the entire porosity domain, and d) 

determination of the effective elastic moduli of the saturated aggregate. 

Combinations of these scenarios can also give rise to different scenarios with 

different degrees of fluid relaxation, for instance, some grains having isolated pores and 

some having connected intergranular porosity.   
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For a porous grain material of type (a), the fluid inside the pores will remain isolated 

at ultrasonic frequency, and the elastic properties of the porous grains can be estimated 

using DEM, which corresponds to a model with isolated pores or the high-frequency 

approximation. 

5.4 Effective elastic moduli of the porous grain material 

The effective bulk ( ) and shear ( ) moduli of the liquid saturated porous grain 

material, in the three porous grain scenarios, are calculated using DEM (Appendix A) and 

the combination DEM/Gassmann, for the low- and high-frequency estimations, 

respectively. For the low-frequency elastic moduli with DEM/Gassmann, we first assume 

that the porous grain is dry, use DEM to find the grain-dry-frame elastic moduli,  

and shear , and then use Gassmann’s (1951) fluid substitution to determine the 

bulk, , and shear, , moduli of the fluid-saturated grain. The input parameters 

in DEM (Norris, 1985) are the intragranular porosity (

gK gG

drygK −

drygG −

satgK − satgG −

) and aspect ratios (gφ gα ) of the 

ellipsoidal intragranular inclusions.  

For a saturated porous grain material of type mentioned in scenario 1, the fluid inside 

the pores will remain isolated at ultrasonic frequency, and the elastic moduli of the 

porous grains can be estimated using the DEM method. This corresponds to a model with 

isolated pores or the high-frequency range of acoustic waves (Mavko, at al., 1998). If an 

external hydrostatic pressure (isotropic) is applied in this jacketed aggregate of porous 

grains, generally the pore pressure  in each intragranular inclusion and the pressure in 

the intergranular pore space  will all be different. 
gP

iP

For a scenario 2 porous-grain material, the elastic properties of the grains can be 

estimated using the DEM method for the high-frequency approximation (such as 

ultrasonic measurements). The DEM/Gassmann method can be used for the low-

frequency approximation (e.g., well logs), because the fluid inside the pores can 

communicate, and fluid may flow from one pore to another, but no bulk flow takes place 

through the porous grain (O’Connell and Budiansky, 1977). If an external hydrostatic 

pressure is applied to the aggregate, the pressures in all intragranular inclusions are 

equal , but will differ from  (Figure 5.2b). To compute the iP== 1gg PP gng PP == .....3
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effective elastic properties of the saturated porous grain using DEM/Gassmann, we first 

use DEM to find the dry-frame elastic moduli of a single grain with specific inclusion 

aspect ratios (Appendix A), and then use Gassmann’s (1951) fluid substitution to arrive at 

the results for the water-saturated porous grain (DEM/Gassmann). Gassmann’s fluid 

substitution assumes that the shear modulus of the fully fluid-saturated porous grain is 

that of the dry frame ( ), while its bulk modulus is drysat GG =

 

,
/)1(

/)1(

sdrygfsifg

fsdrygfgdrygg
ssatg KKKKK

KKKKK
KK

−

−−
− −+−

++−
=

φφ
φφ

    (5.1) 

where  is the bulk modulus of the intragranular fluid.  fK

The difference between scenario 3 and scenario 2 is that if an external hydrostatic 

pressure is applied to the aggregate and the system is allowed to equilibrate,  will 

equal . If a high-frequency external pressure is applied, depending on how high the 

frequency is with respect to flow, the material of scenario 3 either may or may not allow 

fluid diffusion inside each porous grain or between grains, and its elasic behaviour may 

be different or similar to materials for scenarios 1 and 2. For a porous-grain material of 

scenario 3, the elastic properties of the saturated grains can be estimated using the DEM 

method for the high-frequency approximation, and the DEM-Gassmann method for the 

low-frequency approximation, as in scenario 2. 

gP

iP

We compute the elastic properties of the dry grain and then the dry aggregate using 

the DEM method and a granular medium model, respectively, and then to account for the 

intragranular and intergranular porosities for the saturated sample we use Gassman’s 

equation. In this case the porosity to be input into Gassmann is the total porosity, instead 

of the intergranular porosity, and the properties of the solid phase are the properties of the 

grain skeleton material.  

The elastic properties of fluid-saturated aggregates corresponding to each of these 

scenarios will depend on how fluids are distributed in the pore space. For instance, 

regardless of the saturation state of the intergranular pore space (dry, partially or fully 

fluid saturated), the intragranular pore space may be dry or partially or fully fluid 

saturated.  
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5.5 Effective elastic moduli of the dry porous grain aggregate close to 
critical porosity 

Once the density ( gρ ), and bulk ( ) and shear ( ) moduli of the porous grain 

material are determined, we consider the properties of an aggregate of such homogenized 

grains in the high intergranular porosity range, close to and below the critical porosity 

(Figure 5.1b). 

gK gG

To determine the effective dry bulk ( ) and shear ( ) moduli for a dense 

random aggregate of identical elastic spheres at high intergranular porosities, several 

granular-medium approximations are available (Mindlin, 1949; Walton, 1985; Digby, 

1981; Jenkins et al., 2005). 

dryK dryG

The dry bulk ( ) and shear ( ) moduli with the Walton’s model (Walton, 1987; 

Digby, 1981) are (Jenkins, 2005) 
dryK dryG
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where gν  is the Poisson’s ratio of the porous grains;  is the differential pressure (i.e., 

the difference between the overburden or confining pressure and the pore pressure) acting 

upon the aggregate; C  is the average number of contacts per grain, or the coordination 

number;  and 

dP

γ  is the coefficient of friction, a number which represents the friction 

between two grain contact and describes the strength of the transverse stiffness of the 

grain-to-grain contact. When 0=γ  the surface is considered smooth, which means that it 

does not exert any frictional force (perfect slip), whereas when 1=γ  the surface is 

considered infinitely rough, offering infinite frictional resistance (perfect stick). Walton’s 

model (W) assumes that the relative displacement of the center of the contacting particles 

is given by the average strain. A consequence of this assumption is that does not 

depend on

)(W
dryK

0=γ , because the transverse forces do not enter at all into this average strain 

approximation (Jenkins et al., 2005). 

In rocks, the grain surface has asperities that make it rough, it is never infinitely 

smooth. The surfaces of two grain in contact are infinitely rough if they are welded. 

When the grain surfaces in contact are dry, motions of the two bodies in a direction 
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parallel to the touching surfaces is obstructed due to molecular adhesion and/or 

irregularities on the grain surfaces (Figure 5.3). When a thin film of fluid is present 

between the grains, the two grain surfaces are not in direct contact and friction will try to 

impede the motion between the two grain surfaces as well. The presence of the fluid on 

the grain surface reduces the friction coefficient (Persson et al., 2005). Mixed friction, 

which is in between these two extreme cases of perfect slip and perfect stick grain 

surfaces, occurs during the start-up of motion when the separating lubricant fluid film is 

not fully developed.   

 

 
Figure 5.3.  Left: dry grain surfaces in contact (dry friction). Right: wet grain surfaces 

in contact (lubricated friction). 

5.6 Effective elastic moduli of the dry aggregate in the entire porosity 
domain 

The assumptions made in Walton’s model are appropriate only for high-porosity 

aggregates, close to and below the intergranular critical porosity ( icφ ), so they should not 

be used to estimate the effective moduli of the aggregate at low intergranular porosities. 

To estimate the elastic properties far from the critical porosity we will use a heuristic 

approach proposed by Dvorkin and Nur (1996) and Gal et al. (1998), which is basically 

an estimation of lower or upper bounds of the effective elastic moduli of the aggregate in 

the entire porosity domain.  

To calculate the bulk and shear moduli of the aggregate two porosity domains are 

examined: one where , and the other whereici φφ ≤ ici φφ > , the consolidated-aggregate 

domain (grain-supported aggregate) and the suspension domain (fluid-supported 

suspension) (Nur et al., 1998), respectively. icφ  is about 0.36 for a random aggregate of 

identical spherical (Nur et al., 1998). At this porosity a transition in the elastic property 

behavior occurs. When = 0.36 and  = 0.30, the total critical porosity (icφ icφ tcφ ), using 

Equation 4.1, is = 0.552. )1( gicgtc φφφφ −+=
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In the consolidated-aggregate domain where ici φφ ≤ , the elastic model connects two 

end-points in the elastic-modulus-porosity plane:  the effective moduli at 0=iφ  (which 

are simply the moduli of the porous grain) and the moduli of a dense random aggregate of 

identical elastic porous spheres (with fluid-filled inclusions) at ici φφ = .  In order to 

interpolate between these two end points, we use the lower Hashin-Shtrikman bound, 

rescaled from the 0 to 1 porosity range to 0 to icφ . Specifically, the effective bulk ( ) 

and shear ( ) moduli of the dry granular frame comprised of fluid-saturated porous 

grains are 

dryK

dryG
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ici

WK
φφ =

)(

ici

WG
φφ =

)(where  and  are the moduli of the dry aggregate at icφ , estimated 

using Equation 5.2. 

, the two end-points are In the fluid supported suspensions domain where ici φφ >

 and at 1=iφ .  At ici φφ = ici φφ =  the effective elastic moduli  and  are equal 

to
dryK dryG

ici

WK
φφ =

)(

ici

WG
φφ =

)( and , while at 1=iφ  they are simply zero.  To interpolate between 

these end-points we use (Dvorkin and Nur, 1996; Dvorkin and Prasad, 1999) 
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We call this model, which is appropriate for soft sediment with porous grains, the 

dry-PGSO model. A counterpart to the dry-PGSO model is the dry-PGST model, which 
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is more appropriate for stiff sediment with porous grains.  The only difference between 

the two is for ici φφ <  (Figure 5.1).  In this porosity range, the same two end-points, one 

at zero porosity and the other at the critical porosity, are connected by the modified upper 

Hashin-Shtrikman bound (Gal, et al., 1998).  As a result, we obtain 
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In the above models, the total porosity ( tφ ) should always be greater than or equal to 

the intragranular porosity ( gφ ).  That is why the schematic velocity-porosity curves in 

Figure 5.1b are within the  interval.  1≤≤ tg φφ

Notice that  and refer to the elastic moduli of the porous-grain material after 

homogenization. Thus, they may correspond to the effective elastic moduli of a dry or 

saturated grain. On the other hand,  and  refer to the properties of the aggregate 

in the entire porosity domain when there is no fluid in the intergranular pore space, but 

there can be fluid in the intragranular space. 

gK gG

dryK dryG

5.7 Effective elastic moduli of the saturated aggregate  

In all three of the above scenarios, once the elastic properties of the dry aggregate are 

determined by the dry-PGSO or dry-PGST models for ici φφ ≤≤0 , we can account for 

the effects of the intergranular porosity on the undrained elastic properties. For the low-

frequency approximation, we input the effective properties of the dry aggregate into 

Gassmann’s equations; for the high-frequency velocity approximation, we use DEM. 

Gassmann’s fluid substitution assumes that the shear modulus of the fully fluid-

saturated aggregate is that of the dry frame ( ), while its bulk modulus drysat GG =

,
/)1(

/)1(

gdryfgifi

fgdryfidryi
gsat KKKKK

KKKKK
KK

−+−
++−

=
φφ
φφ

            (5.8) 

where  is the bulk modulus of the fluid. Notice that  and refer to the elastic 

moduli of the aggregate, when the intergranular pore space is fully fluid saturated, but 
satK satGfK
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there may or may not be fluid in the intragranular space. If the elastic properties of the 

fluid-saturated grains are computed using DEM/Gassmann or DEM alone,  and  

correspond to the low-frequency (LF) and high-frequency (HF) effective bulk and shear 

elastic moduli, respectively. If both the elastic properties of the porous grains,  and 

, and the properties of the aggregate,  and , are computed using DEM instead 

of Gassmann, then  and correspond to an even higher-frequency (VHF) 

approximation.  

satK satG

gK

satK satGgG

satK satG

Finally, the P- and S-wave velocities and bulk density for the dry or saturated 

aggregate are given by, 

 

,/,/)
3
4(,)1( drydrydrysdrydrydrydrypgidry GVGKV ρρρφρ =+=−= −−          (5.9) 

and 

./,/)
3
4( satsatsatssatsatsatsatp GVGKV ρρ =+= −−      (5.10) ,fidrysat ρφρρ +=

is the density of the grain skeleton mineral and . where sρ fgsgg ρφρφρ +−= )1(

To compute the very-high-frequency elastic properties of the saturated aggregate 

using DEM, we first look for the hypothetical aspect ratios ( iα ) required to fit the 

effective  velocities of the dry aggregate by DEM. Then, the DEM method is 

applied again, assuming that the hypothetical inclusions with aspect ratio 
drypV −

iα are filled 

with fluid, to arrive at the results for water-saturated aggregate (Ruiz et al., 2009). We 

attempt to match the overwhelming complexity of the homogenized grain aggregate 

behavior with a single effective iα  (Figure 5.4). When doing so, we need to stress that 

this method is based on significant examples with real siliciclastic and carbonate rock 

data (Ruiz and Dvorkin, 2009), i.e. Chapter 3. 

We need to highlight that here we simply use DEM to find the aspect ratio of an 

equivalent material that will provide exactly the same elastic properties at the same 

porosity as given by the granular-medium theories (Figure 5.4). Of course, there are not 

single-aspect-ratio cracks in granular aggregates.  The analytical transform used here is 

purely analytical and does not refer to the true geometry of the pore space. The main 
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point is that DEM can mimic the elastic properties of the aggregate if an appropriate 

single aspect ratio is assigned to this model.  Moreover, the hypothetical aspect ratio is 

nothing more than a fitting parameter.   

 

 
Figure 5.4.  Two idealized equivalent physical models, analogues to real soft sands. 

One is a random dense aggregate of spherical grains and the other is a continuous 
matrix with isolated random distributed spheroidal pores of a specific aspect 
ratio, iα . The elastic equivalency is achieved by finding the iα  needed to match 
the DEM predictions with those according to the porous-grain aggregate model.  

5.8 Elastic moduli of the fluid 

The porous grain models allow us to have a fluid type in the intragranular pore space 

different from that in the intergranular space. It also allows us to have mixtures of fluids. 

When there is more than one pore fluid type with different fluid bulk moduli (e.g., gas, 

oil and water), in one of the pore spaces, each fluid phase tends to have a different 

induced pore pressure (Mavko et al., 2009) and in consequence different bulk moduli. 

The effective bulk modulus of this fluid mixture, , can be determined in several ways, 

depending on the assumption made about how fluids are spatially mixed. When the fluid 

phases are thoroughly mixed at the finest scales, these pore pressure variations can 

equilibrate with each other to a an average value. This is an isostress state, and as a result 

 is described well by the Reuss average as  

fK

fK

∑
=

=
n

i fi

fi

f K
S

K 1

1 ,                                                                                                             (5.11) 

This  is the bulk modulus that must be inserted into Gassmann’s relation 

(Domenico, 1976; Murphy, 1984; Mavko and Nolen-Hoeksema, 1994, Cadoret, 1993; 

Mavko et al., 2009) when computing the wet moduli from the dry moduli.  

fK

If there are dissolved minerals in the fluids, e.g., salts, they need to be considered in 

the calculation of , before inserting it into Gassmann’s or DEM equations. At in situ fK
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conditions, e.g., as burial depth increases, the properties of the fluid phases vary with the 

amount and type of dissolved salts, pressure and temperature, so they need to be 

determined for specific conditions (Batzle and Wang, 1992).  

5.9 Numerical examples  

Figure 5.5 shows the effects of friction, , intragranular aspect ratio and porosity, γ

gα and gφ , respectively, on the and  effective velocities of a hypothetical water 

saturated porous grain aggregate. This aggregate is assumed to be packed to a spatial-

average coordination number C = 9. Figures 5.5 and 5.6 show the high frequency PGSO 

and PGST effective P- and S- wave velocities, and , respectively. The elastic 

properties of water are constant and equal to = 2.25 GPa, = 0 GPa and 

sVpV

sVpV

fK fG fρ =1 

g/cm3. The solid phase is assumed to be pure calcite with elastic properties: = 76.8 

GPa, = 32 GPa, and 
sK

sρ
sG =2.71 g/cm3. The differential pressure and coordination are 

constant and equal to 5 MPa and 9, respectively. The parameters ,  and gα gφγ  are 

varied from  0 to 1, from 0.05 to 1 and from 0.1 to 0.3, respectively (Figure 5.5). The 

and  velocities were determined assuming a material described by scenario 2, where  sVpV

the intragranular pores are connected, and the intragranular pores are not connected with 

the intergranular pores (Figure 5.2b). 

For all the selected values of intragranular aspect ratios ( gα ) and intragranular 

porosities ( gφ ), the effect of gα and gφ  on and  is greater than or comparable to the 

effect of friction coefficient (
sVpV

γ ). 

Figure 5.6 and 5.7 show the PGSO and PGST effective P- and S- wave velocities, 

and , respectively, for the three porous grain scenarios. Figure 5.5 shows the 

velocities for 
sVpV

,  and 5.0=gα 2.0=gφ5.0=γ . Figure 5.6 shows the velocity for the same 

parameters but using a smaller intragranular aspect ratio, 1.0=gα . The HF and LF 

velocities are basically the same for the two intragranular aspect rations. The VHF-

velocities are significantly higher than the LF- and HF-velocities. We observed the same 

behavior for the PGST model.   
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Figure 5.5. and  velocities estimated using the PGSO (two upper frames) and 

PGST (two lower frames) models, assuming a material of scenario-2. Left 
column frame: effect of friction coefficient (

sVpV

γ ). Middle column frame: effect of 
the intragranular aspect ratio ( gα ). Right column frame: effect of the 

intragranular porosity ( gφ ).   
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Figures 5.6 and 5.7 also display the aspect ratios required to fit the dry-aggregate 

velocity data by DEM. We find that the aspect ratio,  and sαpα , required for DEM to 

match the PGSO and PGST - and -dry velocities are remarkably narrow, between 

0.05 and 0.2. We find that it is not possible to match the velocities, using a single 

effective aspect ratio. We need an aspect ratio that increases nearly linear as porosity 

increases. The aspect ratios to match  and those to match  are almost the same for 

both, the PGSO and PGST models. 

sVpV

sVpV
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Figure 5.6. Top frames: Comparison of three possible scenarios for the porous grain 

model: The low frequency PGSO model (PGSO-LF), the high frequency PGSO 
model (PGSO-HF) and the very high frequency PGSO model PGSO-VHF. The 
parameters used are 5.0=γ5.0=gα 2.0=gφ,  and . Bottom frames: 
Comparison of three possible scenarios for PGST model. 

 

Figure 5.8 illustrates the effects of frequency on the and  effective velocities. 

We show the PGSO and PGST effective velocities, computing the effective properties of 

the porous grains in three ways: using the DEM (PGSO-high frequency) method, using 

the combination DEM-Gassmann (PGSO-low frequency) method, and VHF. The 

sVpV
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intragranular aspect ratios and porosity are 0.05 and 0.30, respectively. The difference 

between the low- and high-frequency velocities is greater at low porosities, so we can 

infer that the fluid flow in the intragranular pores has a significant influence only for 

small aspect ratios. Both PGSO and PGST show similar behavior.  
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Figure 5.7. The same as Figure 5.4 but for intergranular aspect ratio . 1.0=gα

 

When 0=gφ , the grains are solid, and the low-frequency version (LF or HF) of 

PGSO gives the same results as the soft-sand model (Dvorkin and Nur, 1996), but with 

the flexibility of having γ  as a variable. When  and 1=γ0=gφ , PGSO gives exactly the 

same result as soft-sand model. The very high-frequency version (VHF) of PGSO gives a 

high-frequency version of the soft-sand model.  

When 0=gφ , the grains are solid, and the low frequency version (LF or HF) of PGST 

gives the same results as the stiff-sand model (Gal et al., 1998), but with the flexibility of 

having a variable friction coefficient (γ ). When  and 1=γ0=gφ  PGST gives exactly 

the same results as stiff-sand model. The very high-frequency version (VHF) of PGST 

gives a high frequency version of the stiff-sand model, with a variable  friction 

coefficient as well.  
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Figure 5.8. Top frames: and  PGSO-velocities using DEM (high-frequency) 

and DEM-Gassmann (low-frequency) for the calculation of the effective 
properties of the porous grains. The calculation is done for three intragranular 
inclusions aspect ratios:  0.05, 0.1, and 0.25, and friction coefficient 

sVpV

1=γ . The 
arrow indicates the direction of increasing aspect ratios. Bottom frames: Same as 
top frames, but using the PGST model. We observed the same behavior for the 
PGST model. LF = low frequency;  HF = high frequency. 

 

The VHF-effective  and velocities are considerably higher than the HF- and LF-

 and velocities (Figures 5.6 and 5.7). This is because DEM treats the intragranular 

and intergranular pore space as isolated inclusions, so all pores are stiff. Part of the 

intergranular pore space may be in a relaxed or unrelaxed state. However, this is not the 

situation for ultrasonic frequencies typically used in rock physics (~1MHz), where the 

propagating wave sees both soft and stiff pores (squirt and global flow). However, DEM 

is an effective-medium model, so we are also assuming that the dominant wavelength of 

sVpV

sVpV
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the traveling wave is still greater than the local heterogeneities (pores or grains). If the 

wavelength of the propagating wave were higher than pores and grains, we would have 

reflections among grains.  

The input parameters , gφ gα , and C  used in the porous grain aggregate models can 

be varied as a function of physical conditions, such as differential pressure ( ) and 

temperature. Differential pressure can be estimated by integrating the bulk density log as 

a function of depth (z), 

dP

 

[∫ −= dzzzgzP fbd )()()( ρρ ] ,                                                                            (5.12) 

where g is the gravity constant. As  increases with depthdP iφ  decreases and as a result C  

increases.  is not easily to be measured. C  has been determined by counting the 

contacts in experimental samples (Wadsworth, 1960; Smith et al., 1929; Mavko et al., 

2009). C  is not directly measurable from a single planar digital image cross section, 

since it needs a 3-dimensional model. Zhang et al. (1994) investigated the properties of 

isostatically compacted aggregates calcite aggregates. The calcite specimens were 

isostatically compacted below to porosity 0.1. They found that at porosity 0.04, the 

permeability of the calcite aggregate vanished, implying a complete loss of connectivity 

in the pore space. These experiments provide insights into the evolution of pore-space 

topology of sedimentary rocks at depth in the Earth’s crust. Several porosity-coordination 

number (

C

φ - ) relations have been proposed (Dutta et al., 2009; Garcia and Medina, 

2006; Makse et al., 2004; Zhang et al., 1994; Dullien, 1992; Smith and Olague, 1987; 

Murphy, 1982; Wade, 1964). Murphy (1982) gives an empirical 

C

φ -  relation, as 

follows, . Garcia and Medina derived a 

C
2143420 φφ +−=C φ -  power-law relation 

based on fitting data from numerical simulations of granular media, 

, where  

C

46.4=oC48.0)(7.9 φφ −+= ooCC  and = 0.384, for oφ oφφ ≤ . Makse et al. 

(2004) derived a similar relation using numerical simulation of frictionless spheres: 

, where  = 6 and oC48.0)(1.96 φφ −+= oC = 0.37, for . oφ oφφ ≤

The φ -C  relationship of ordered aggregates (i.e., hexagonal, cubic, orthorhombic) is 

well-known (Mavko et al., 2009), but for random aggregates, C  has to be determined 

experimentally (Zhang et al., 1994; Smith and Olague, 1987; Wade, 1964). Dutta et al. 
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(2009) investigated the variation of C with pressure and porosity using the elastic 

properties measured during the first confining pressure loading cycle of a sand sample 

from Pomponio Beach measured by Zimmer (2003). They obtain empirical φ -  

relations by matching granular medium models with experimental data. The increase of 

pressure during the first loading cycle experiment is analogous to the increase of 

overburden pressure during burial. During burial, the rock is under an increasing 

mechanical compaction, and in consequence, the porosity is reduced (Dutta et al., 2009).  

C

The application of one of the specific scenarios described above depends not only on 

the frequency we are interested in and the description of the medium, but also on physical 

conditions. If the applied stress field σ on the porous grains is not isotropic, the fluid 

pressure induced by σ depends on the shape and orientation of the inclusions (Kachanov 

et al., 1995; Shafiro and Kachanov, 1997) as well as on the frequency of σ.  If we assume 

that the applied external stress field is isotropic and that all inclusions have identical 

aspect ratios, then P is the same in all intragranular inclusions. Thus, under these 

assumptions any fluid experiences the same pressure in all pores. This satisfies the 

Gassmann assumption of the pore-pressure equilibrium. The distributing of randomly 

oriented identical inclusions gives the correct Gassmann response for bulk modulus, but 

will not give the correct Gassmann shear modulus, which is the same as the dry-frame 

shear modulus.  

If the intragranular inclusions are distributed randomly, but the applied external stress 

is not isotropic, then the pressures in individual ellipsoidal pores depend on the 

orientation of the applied stress, and the DEM method is inconsistent with the Gassmann 

theory.  

If the intragranular inclusions have a preferred orientation, the elastic properties of 

the porous grain material can be computed applying the anisotropic version of DEM. In 

this case, the aggregate either may or may not become anisotropic, depending on the 

orientation of the axis of symmetry of each grain. Under uniaxial stress, 1σ , the aggregate 

of identical spherical grains is transversely isotropic, and if the grains are infinitely rough, 

the elastic properties are described by Walton’s anisotropic model (Walton, 1987) 

(Appendix E). 
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The accuracy of inclusion-based models, e.g., DEM, is in question at high 

intragranular porosity (Kachanov, 2007; Grechka, 2007). Different inclusion models 

produce different estimations of elastic moduli (Appendix F). At low frequency, 

Gassmann predicts the change in the effective elastic moduli caused by a variation in the 

bulk modulus of fluid filling a fully interconnected pore space at any intragranular 

porosity, because porosity connectivity ensures pressure equilibrium in the pore fluid 

without any detailed information about the microstructure. Thus, in contrast to the 

inclusion models, Gassmann remains correct at arbitrary porosity (Mavko et al., 2009; 

Grechka, 2007). 

To apply the two-staged upscaling scheme explained above, where we first applied 

DEM to upscaled porous grains and second the modified HS bounds to account for pores 

between the grains (intergranular pores), we assumed that the pores inside the grains 

(intragranular micropores) are much smaller than the intergranular pores. 

5.10 Aggregate of cemented porous grains  

5.10.1 Slightly cemented aggregate of porous grains  

In Walton’s model (Walton, 1987), it is assumed that the starting framework of 

uncemented grains is a dense random aggregate of identical spherical grains. 

Cementation theory (Dvorkin et al., 1994) predicts that even a small amount of contact 

cement reinforces the grains contact, causing a large increase of the elastic moduli of the 

aggregate. The initial volume of cement added in the opening between grains is the most 

important. The effect on the elastic properties of additional cement placed around this 

initial cement is relatively small. This theoretical prediction has been supported by 

several experiments (Ying, 1993; Tutuncu et al., 1997). Even by adding cement in the 

entire intergranular pore space, it is not possible to achieve the high relative stiffness 

increase produced by small volumes of cement at the grain contacts (Dvorkin et al., 1994; 

Dvorkin et al., 1999; Ying, 1993; Tutuncu et al., 1997).  

If we now assume that the porosity reduction in the porous-grain aggregate is due to 

cementation exclusively, the porosity  of an uncemented sample is decreased to icφ iφ  by 

the addition of a cement material gradually. Once a given volume of cement is added, the 
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effective bulk and shear elastic moduli of the aggregate of cemented porous grains are 

calculated as a function of the added cement. For the cemented porous grain model 

(CPG) the dry effective bulk ( ) and shear ( ) elastic moduli are given by )(cpg
dryK )(cpg

dryG

,ˆ))3/4()(1(
6
1)(

NCemCemic
cpg

dry SGKCK +−= φ        and               

Γ−+= SGCKG Cemic
cpg

dry
cpg

dry
ˆ)1(

20
3

5
3 )()( φ                                                                         (5.13) 

The parameters  and  are proportional to the normal and shear stiffness, 

respectively, of a cemented two-grain combination (Mavko et al. 2009). They depend on 

the amount of contact cement and on the elastic moduli of the cement, and , and 

the homogenized porous-grain, and  (Appendix G).  

NŜ ΓŜ

CemK CemG

gK gG

Part of the cement may be deposited at the grain contact and part away from it, so the 

radius “ a ” of the contact cement layer is not directly correlated to the amount of cement 

(Figure 5.9). The amount of contact cement, β , can be expressed as follows, 
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 is reduced to , If by adding cement gradually iφ ioφ ioic φφ −  is the pore space of the 

uncemented aggregate occupied by cement in the cemented aggregate.  

To account for the effects of intergranular porosity on the undrained elastic 

moduli,  and , we input the elastic moduli of the dry cemented porous-grains 

aggregate,  and , into Gassmann’s equations or DEM, for the low- or high-

frequency approximation, respectively.  

)(cpg
satK )(cpg

satG
)(cpg

dryK )(cpg
dryG

In order to use Gassmann’s equation we also need to input the elastic properties of the 

solid phase. The solid phase is a mixture of cement and homogenized grain materials. At 

ici φφ = , the solid phase has the elastic properties of the properties of the homogenized 

porous grain material. For porosities between  and ioφ icφ , the elastic moduli of the 

porous-grain/cement mixture is determined using the coherent potential approximation 
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(Berryman, 1980) and  density is given by  

,                                                  (5.15) cemttcgttch ρφφρφφρ )()1( −++−=

where   is the density of the cement material . cemρ
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Figure 5.9. Cement schemes. a) cement at the gaps between grains (Scheme 1). b) 

Coat cement (Scheme 2).  c)  Contact and noncontact cement (Scheme 3). 

 

For porosities between iciio φφφ << , the velocities and density of the dry porous grain 

aggregate are 

,/)
3
4( )()()(
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dry
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dryp GKV ρ+=−,                     and   htdry ρφρ )1( −=
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The velocities and density of the saturated porous grain aggregate for porosities 

between  and  are ioφ icφ
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[ ] ftcemttcgttct ρφρφφρφφφρ +−++−−= )()1()1( .                                                    (5.18) 

If cement is present in enough abundance, it may be assumed that the intragranular 

pores are not hydraulically connected to the intergranular porosity.  

The cement model is appropriate for a low volume fraction of cement. At high 

cement concentrations, an inclusion model may be more appropriate. 

Figures 5.10 and 5.11 show the effect of frequency and cement scheme on the 

effective and  of a hypothetical water saturated cemented porous grain aggregate. In sVpV
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this example, the elastic properties of water are constant and equal to = 2.25 GPa, 

= 0 GPa, and 
fK

fG fρ = 1 g/cm3. The solid phase is assumed to be pure calcite with elastic 

properties = 76.8 GPa, = 32 GPa, and sK sG sρ =2.71 g/cm3 and the cement is also 

calcite with the same elastic properties. C  is constant and equal 9. The intergranular 

porosity = 0.18, which corresponds to a total porosity ioφ toφ = 0.426. The critical 

intergranular porosity = 0.4, which correspond to a total porosity = 0.58.  icφ tφ

Figure 5.10 shows the velocities for cement scheme 2, when γ = 0.5 and gφ  = 0.3, 

and when = 0.5 and gα gα = 0.15. Figure 5.11 shows the HF velocities (scenario 2) for 

the same parameters as Figure 5.10, but for the two different cement schemes 1 and 2.  

Figure 5.12 shows the and  effective velocities predicted by CPG, PGSO, PGST, 

and Walton’s model of a hypothetical water saturated aggregate. The cement and solid 

matrix materials are assumed to be pure calcite. The initial porosity for the PGSO, PGST, 

and Walton’s models is 

sVpV

and for the CPG model is icφ ico φφ < . The friction coefficient 

and intergranular critical porosity used in the PGSO and Walton’s model  are γ  = 0 and 

= 0.4, respectively. The friction coefficient for the PGST model is icφ γ  = 1. All other 

parameters are the same as those used in Figure 5.10. PGSO (γ  = 0) and PGST (γ  = 1) 

act as upper and lower elastic constraints. The predictions of Walton’s and cement 

models are close to the lower and upper bound, respectively. 
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Figure 5.10. CPG  and  velocities for the cemented aggregate using cement 

scheme 2. Top frame: intragranular aspect ratio 
sVpV

gα = 0.50. Bottom frame: 

intragranular aspect ratio gα  = 0.15. The cement and solid matrix materials are 
assumed to be pure calcite. 

5.10.2 Highly cemented aggregate of porous grains  

The assumptions made in cementation theory (Dvorkin et al., 1994) are appropriate 

for high-porosity cemented aggregates, where only a small amount of cement is placed in 

the area close to the contact between grains. When the volume of cement in the 

intergranular pore space is high, the intergranular porosity and the connectivity among 

pores are reduced. For the determination of the elastic moduli of greatly cemented 

aggregate, an inclusion model is more appropriate because it is more consistent with the 

material microstructure than a granular-medium model. Thus, to determine the elastic 

properties of the aggregate in the entire porosity domain, it is necessary to combine 
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inclusion model with granular-medium model. None of these theories alone provide 

control over the detailed microstructure of the cemented aggregate at all cement 

concentrations (Dvorkin et al. 1999).  
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Figure 5.11. CPG and  velocities for the cemented aggregate using cement 

squeme -1 and -2. Top frame: for intragranular aspect ratio 
sVpV

gα = 0.5. Botton 

frame: for intragranular aspect ratio gα = 0.15. The cement and solid matrix 
materials are assumed to be pure calcite. 
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Figure 5.12. Comparison of and  velocities for the cemented aggregate using 

CPG, PGSO, PGST, and Walton’s model smooth (left) and rough (right) 
sVpV

 

The elastic properties of a well cemented aggregate can be determined following the 

same method proposed by Dvorkin et al. (1999). To calculate the bulk and shear moduli 

of the aggregate we examine two porosity domains: one where iciio φφφ ≤≤  and the other 

where ioi φφ <<0 ; the granular medium domain, where the porous grain cementation 

theory (CPG) is applied; and the inclusion-porosity domain, where the CPA model is 

applied. The elastic moduli  and , at ctK ctG ioi φφ = are given by the CPG theory. In the 

inclusion porosity domain we use the coherent potential approximation (CPA) to connect 

the end points: the first at ioi φφ =  (Figure 5.13a), which corresponds to a small cement 

concentration ioic φφ − , where the effective moduli of the aggregate are accurately given 

by the CPG model; and the second at 100% cement concentration (Figure 5.13c), where 

the intergranular porosity is zero and the effective moduli of the aggregate are given by 

the coherent potential approximation (CPA). 

 

Case A 

The cemented aggregate is a three-phase system composed of a hypothetical 

homogenized porous grain, cement, and pores. At ioi φφ =  the CPA model treats the 

cemented aggregate as an elastically equivalent two-phase system of pores in a 

homogeneous hypothetical matrix (Figure 5.13a). The shear and bulk moduli of this 

hypothetical matrix,  and , are found by solving the coherent potential hK hG
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approximation (CPA) equations for spherical inclusions, as follows, 
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Figure 5.13. Cemented porous grain aggregate using cement scheme 1. Top frame: 

Cemented aggregate for different cement concentrations. Bottom frame: 
equivalent elastic media (of the granular media on the top frame) composed of a 
hypothetical homogeneous matrix with different concentrations of air- and 
cement-filled pores.  
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Figure 5.14. The same as Figure 5.13 but the cement and grain are the same minerals. 

 

Case B 

To find the moduli of the aggregate with 100% cement,  and , we assume that 

they are identical to those of the homogeneous matrix (from previous step) whose voids 

are completely filled with cement (Figure 5.13c). The elastic moduli,  and , of the 

matrix when all inclusions are filled with the cement are found by iteratively solving the 

CPA equations for spherical inclusions, as follows: 
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Case C 

If the concentration of the fluid filled inclusion is fφ , the concentration of the 

cemented inclusions is , and the volumetric fraction of the matrix with respect to fio φφ −
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the whole rock is 1- ioφ  (Figure 5.13b). The elastic moduli of the cemented porous grain 

aggregate,  and ,  when only some of the intergranular inclusions are filled with 

cement and some are air or liquid filled are found by solving iteratively the CPA 

equations for spherical inclusions, as follows: 

cpaK cpaG
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Finally, the P- and S-wave velocities and density of the dry or saturated aggregate at 

any cement concentration greater than or for porosities in the interval )( ioic φφ −

 are given by       iof φφ ≤≤0

,/)
3
4( ρcpacpap GKV += ,/ ρcpas GV =    and ffcemfiogio ρφρφφρφρ +−+−= )()1(

Figure 5.15 shows the effective and  velocities predictions for a dry aggregate 

of cemented porous grains. The velocities are predicted by the combined CPG and CPA 

models in the entire porosity range. The matrix material is assumed to be pure calcite and 

the cement material is assumed to be pure calcite and pure clay.  The elastic properties 

used for the clay are  = 21 GPa and = 7 GPa, and 

sVpV

= 2.55 g/cm3. fcK fcG fcρ
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Figure 5.15. Comparison of and  for a dry, cemented, porous-grain aggregate 

for two cement materials: calcite and clay. The velocities were predicted by using 
the combination of CPG and CPA models.   

sVpV

 

Figure 5.15 shows the effective and  velocities predictions for a dry aggregate 

of cemented porous grains. The velocities are predicted by the combined CPG and CPA 

models in the entire porosity range. The matrix and cement materials are assumed to be 

pure calcite.   

sVpV

5.11 Conclusions 

Our approach and models may be applied to sediment and rocks made of porous 

grains, such as calcareous and diatomaceous ooze, opal, and chalk and carbonate rocks. 

The microstructural parameters of these models can be associated with diagenesis. For 

instance, different degrees of compaction and cementation can be modeled by varying the 

coordination number, differential pressure, friction coefficient between grains, 

intragranular aspect ratios, intergranular and intragranular porosity, intergranular and 

intragranular fluid type, and the elastic properties of the cement and grains. The 

combination of the porous grain cementation (CPG) theory with the coherent potential 

approximation (CPA) allows us to estimate the elastic properties of siliciclastic and 

carbonate rocks at all cement concentrations. 

 
 

 



CHAPTER 5: AGGREGATE OF POROUS GRAINS: MODELS AND SCENARIOS 160 

0.15 0.35 0.55
1

3

5

Total porosity

Vp
 a

nd
 V

s 
(k

m
/s

)

 

 

φg φtcφto

Vp (ARg = 0.5)
Vs (ARg = 0.5)
Vp (ARg = 0.2)
Vs (ARg = 0.2)

 
Figure 5.16. Comparison of and  for a dry, cemented, porous-grain aggregate 

for two intragranular aspect ratios: 
sVpV

gα = 0.5 and gα = 0.2.  The matrix and 
cement materials are assumed to be pure calcite.   The intergranular porosity 
( gφ ) was fixed and equal to 0.20.  

These porous grain models are heuristic and based on several assumptions about the 

rock or material microstructure, so they are just approximations and simplifications of the 

reality. The purpose of this approach is to capture the trend of the material elastic moduli 

as a function of different microstructural parameters.  
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Appendix A:  
Differential effective medium model (DEM) 

Differential effective medium theory assumes that a composite material may be 

constructed by making infinitesimal changes in an already existing composite. If the 

effective bulk and shear constants of the composite are  and  where the 

volume fraction of the inclusion phase is , the equations governing the changes in these 

constants are (Mavko et al., 2009) 
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with initial conditions     and   , where  and  are the bulk 
and shear moduli of the initial host material, respectively, and  and  are the bulk 

and shear moduli of the incrementally added inclusions, respectively. 

1
* )0( KK = 1

* )0( GG = 1K 1G

2K 2G

In porous rock, y  is simply the total porosity φ .  The coefficients P  and  are 

geometric factors dependent upon the shape of the inclusion (Mavko et al., 2009).  Here 

we used the ellipsoidal inclusions. 

Q

The superscript “*2” for P  and  indicates that the factors are for the inclusions 

while the subscript “*” is for the background medium whose bulk modulus is 

Q

*K  and 

the shear modulus is .  Fluid-saturated cavities are simulated by setting the inclusion *G
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shear modulus to zero. 

The coefficients P  and Q  for ellipsoidal inclusions of arbitrary aspect ratio are given 

by 
 

),
3
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2
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where the tensor T relates the uniform far-field strain to the strain within the ellipsoidal 
inclusion (Wu, 1966).  In this study the elastic properties of the inclusions are set as those 
of seawater at in situ conditions while the matrix properties are for pure calcite. 

 

 

 

 

 



 
 
 
Appendix B 
Elastic equivalency using a self consistent 
model 

 

In this appendix we compare the prediction of  based on  using a self-consistent 

theory (SC), known as the coherent potential approximation (Berryman, 1980), with a 

differential effective-medium (DEM) theory prediction (Norris, 1985) discussed in the 

main paper. These models represent porosity and pore shape as ellipsoidal inclusions 

with different aspect ratios (AR). DEM assumes isolated pores embedded in a host 

material that remains continuous at all porosities, while SC treats grains and pores 

symmetrically, an approach which instead of requiring a single background material, 

allows grains and pores to be connected or disconnected depending on the porosity range. 

Both models are physically realizable and offer useful analogs of the elastic behavior of 

some rocks with specific microstructures. For instance, rocks composed of grains look 

more like a physical realization of SC than DEM (Berge et al., 1995) and rocks with vugs, 

such as some carbonates, look more like a physical realization of the DEM.  For rocks 

with the same solid and fluid constituents, these two models produce different results; i.e. 

it is necessary to use self-consistent aspect ratios (SC-AR) significantly greater than the 

DEM aspect ratios (DEM-AR) to match the same velocity. In consequence, the 

interpretation of rock pore aspect ratios may not be unique. The rock microstructure has a 

strong effect on its elastic properties. Thus, it is not appropriate to select which effective-

sV pV
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medium model is the “best” for determining the elastic properties of all rock types. If our 

goal is to model a specific rock type, it is preferable to pick the theory whose 

assumptions about microstructure match those of the rock modeled (Berge et al., 1995). 

In general, rocks have cracks, cemented and non-cemented grains, cavities, different pore 

shapes, and different degrees of connectivity. In consequence, their effective elastic 

properties are the result of the combined effect of all these possible microstructural 

elements. The idea of the equivalent elastic model is not to choose a single model that 

best fits the microstructure; it is to use only one inclusion model with a single AR as a 

fitting parameter for all rock types. It can be argued that the principle advocated here can 

be used with any effective-medium model. The main point is that certain effective-

medium inclusion models can mimic the elastic properties of real rock, if an appropriate 

aspect ratio is assigned to the model. Our goal is to make the use of a selected model 

reasonably general, rather than insist that the geometry of the model is the same as of real 

rock.  Moreover, the aspect ratio is nothing more than a fitting parameter within the realm 

of a selected model.   

Figure B-1 shows the  and  velocities versus porosity according to SC model 

for wet calcite. The SC-velocities were modeled using aspect ratios (SC-AR) equal to 1.0 

and 0.25, for the mineral and the pores, respectively, and were kept constant in the entire 

porosity range. We computed the DEM aspect ratios (DEM-AR) by matching DEM to 

the SC-  and - . The computed DEM-AR are lower than the SC-AR in the entire 

porosity range, and the differences increase with porosity. The aspect ratios to match  

(DEM-ARp) and those to match Vs (DEM-ARs) are almost equal. Similar results are 

obtained when: a) modeling self-consistent velocities using lower aspect ratios for the 

solid constituents and b) modeling self-consistent velocities using different minerals. 

sVpV

sVpV

pV

As a second exercise, we repeat the same example shown in Figure 3.1, but using the 

self-consistent model instead of DEM. Figure B-2 shows the AR required to fit the 

velocity data from SC by DEM. The velocities from SC are computed assuming a 

constant AR = 1.0 for the solid mineral and a constant AR = 0.25 for the pores. 
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Figure B-1. Left: P- and S-wave velocity versus porosity according to SC for five wet 

calcite. The aspect ratios used to model the self consistent velocities are constant 
and equal to 1.0 and 0.25, for the mineral and the pores, respectively.  Right:  AR 
derived by matching DEM to the SC-P-wave velocity (filled circles) and S-wave 
velocity (filled circles). The same is observed for different minerals.  

 

We observe that for all mineralogies, the self-consistent AR required to match 

Raymer’s data show a greater variation with porosity compared to those ones computed 

using DEM (Figure B-2).  For pure quartz, 50% quartz and 50% clay, and 50% quartz 

and 50% calcite, the calculated SC-AR depends only slightly on whether it was 

determined from  or . For pure clay and calcite, the SC-AR depends more strongly 

on whether it was determined from  or .    
sVpV

sVpV

Figure B-3 shows the P- and S-wave velocity versus porosity for the five 

mineralogies examined in Figure B-2. Symbols are the SC/Gassmann S-wave velocities 

prediction for the AR derived from SC by matching SC/Gassmann to the P-wave velocity 

according to Raymer et al. (1980).  

If the SC-AR required to match the Raymer’s et al. (1980)  data are used to predict 

 using SC/Gassmann again, we observe that the prediction is also accurate and 

computationaly faster than DEM, however the SC-AR vary considerably with porosity 

(Figure B-3). 

pV
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Figure B-2. Top: the P-wave velocity versus porosity according to Raymer et al. 

(1980) for five mineralogies as indicated at the top of the frames.  Middle:  the S-
wave velocity according to Krief et al. (1990) as derived from the P-wave 
velocity in the top raw. Bottom: AR derived by matching SC/Gassmann to the P-
wave velocity (solid curve) and S-wave velocity (symbols). 
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Figure B-3. Velocity versus porosity for the five mineralogies examined in Figure B-

2. Solid curves are the same velocities as displayed in the first two rows of Figure 
B-2. Symbols are the SC/Gassmann S-wave velocities prediction for the AR 
derived from SC by matching SC/Gassmann to the P-wave velocity according to 
Raymer et al. (1980).  
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The next example is from well log data from the Venezuelan oil field. Our  

prediction methodology using self-consistent approximation works well for the 

Venezuelan well (Figure B-4). Notice that the SC-aspect ratios are different than those 

shown in Figure 3.7. 
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Figure B-4. prediction for the Venezuelan well.  From left to right:  mineralogy 
and porosity; measured (black) and predicted (red) ; AR derived from  
using Self consistent approximation/Gassmann. Compare this figure with Figure 
3.7 in the main Chapter 3.  
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Appendix C 
Elastic equivalency using granular medium 
models 

 

In this appendix, the equivalent elastic model concept is applied to granular-medium, 

models. The velocities determined using-granular medium models are matched with the 

velocities determined directly using DEM in wet rock, treating the fluid in the pores as an 

elastic inclusion (high-frequency estimate) as well as a combination of DEM for dry rock 

with subsequent Gassmann’s fluid substitution (low frequency estimate). For this 

exercise, two heuristic, granular-medium models were used, the soft-sand model 

(Dvorkin and Nur, 1996) and the stiff-sand model (Gal et al., 1998). We explore the 

elastic equivalency between DEM and these models, even though the actual rocks may 

not be like a physical realization of the soft- and stiff-sand model.  

The soft-sand model has been used successfully to model deep-ocean shallow-buried 

sediments (Dvorkin and Prasad, 1999; Prasad and Dvorkin, 2001). This model is based 

on the Hertz-Mindlin theory (Mindlin, 1949) and the modified Hashin-Strikman lower 

bound. The contact Hertz-Mindlin theory (Mindlin, 1949) gives expressions for the 

effective bulk ( ) and shear ( ) moduli of a dry, dense, random pack of identical 

spherical grains subject to a hydrostatic pressure P. To find the effective bulk ( ) and 

shear ( )  moduli at a different porosity, Dvorkin and Nur (1996) proposed a heuristic 

modified Hashin-Strikman lower bound based on the original Hashin-Strikman lower 

HMK HMG

DryK

DryG
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bound (1963). The modified bounds are 
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where cφ is the critical porosity and  and  are the elastic moduli of the solid phase. GK

This model connects two end members, one with zero porosity and the moduli of the 

solid phase, and the other with critical porosity and pressure-dependent moduli as given 

by the Hertz-Mindlin theory 
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where ν  is the Poisson’s ratio of the porous grains,  is the differential pressure acting 

upon the pack, and C  is the average number of contacts that each grain has with its 

neighboring grains (the coordination number).  

P

To determine the effective velocities for low frequency water-saturated rock, 

Gassmann’s (1951) formula is used. Following Gassmann’s (1951) fluid substitution 

equations, and shear are given by: DryK DryG
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where  is the bulk modulus of water. fK

Finally, the elastic P- and S-wave velocities and the bulk density, , are  bρ

bSatsbSatSatp GVGKV ρρ /,/)
3
4( =+=

fsb φρρφρ +−= )1(,   and  . (C-4) 

The elastic equivalency between the soft-sand and DEM models is achieved by 

finding the AR required to match the dry or wet soft-sand elastic moduli with those 

provided by DEM, where the pore fluid is treated as an elastic inclusion (high-frequency 

 



APPENDIX C: ELASTIC EQUIVALENCY USING GRANULAR  MEDIUM MODELS  173 

estimate) and the combination DEM-Gassmann (low-frequency estimate), respectively 

(Figure C-1).  
 

Soft-sand

Model

Equivalent

Model

Soft-sand

Model

Equivalent

Model  
Figure C-1.  Two idealized equivalent physical models, analogues to real soft sands. 

One is a random dense pack of spherical grains and the other is a continuous 
matrix with isolated random distributed pores of a single aspect ratio, AR. The 
elastic equivalency is achieved by finding the AR needed to match the DEM 
predictions with those according to the soft-sand model.  

 

Figure C-2 shows the AR required for fitting the velocities from the soft-sand model 

by the DEM/Gassmann combination. We assume that the rock is saturated with pure 

water with 1.00 g/cm3 density and 1.50 km/s velocity. The input parameters for the soft-

sand model are  = 37 GPa,  = 44 GPa,  = 2.25 GPa, P = 10 MPa, C  = 9, and G cφK fK = 

0.44 (same as used in Prasad and Dvorkin, 1999). In the DEM modeling we use the same 

values for , G ,  and vary AR to fit the soft-sand model results. K fK

When modeling with DEM/Gassmann and the soft-sand model, we first assume that 

the rock is dry, find the dry-frame elastic moduli, and then use Gassmann’s (1951) fluid 

substitution to arrive at the results for water-saturated rock. Notice that for all 

mineralogies, the AR required to match these data increases linearly with increasing 

porosity (Figure C-2). For all mineralogies, the AR required are small and confined 

within a range approximately between 0.02 and 0.1, in the entire porosity range; the most 

important result is that the AR at all porosities are independent of whether they were 

determined from  or .  sVpV
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Figure C-2. Top and middle: the P- and S-wave velocities versus porosity according 

to soft-sand model (Dvorkin and Nur, 1996) for five mineralogies as indicated at 
the top of the frames. Bottom:  AR derived by matching DEM/soft-sand model to 
the P-wave velocity (solid curve) and S-wave velocity (symbols).  

 

In the soft-sand model, C  and P were kept constant. If any of these parameters 

increases, the AR needed to match the soft-sand model velocities will increase as well, 

simply because an increase in   and/or P will make rock stiffer. C
The technique discussed in the main text of this chapter allows us to find the 

velocities at high frequency from those at low frequency velocities. To achieve this, we 

use the aspect ratios obtained in the low-frequency range (as discussed earlier) and then 

compute the elastic moduli for these inclusions using DEM alone, rather than the 

DEM/Gassmann combination. The results are displayed in Figure C-3.  

Let us reiterate that the AR obtained using this fitting technique are not sensitive to 
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whether determined from  or . Based only on , these results allow as, based only 

on , to estimate: (a) , (b) high-frequency wet-rock velocity from dry-rock data (and 

vice-versa), and (c) maximum P- and S-wave attenuation.  
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Figure C-3. Upper frame: high and low frequency wet-rock DEM  and  

obtained from the AR required to match the dry-rock DEM elastic moduli with 
those provided by the soft-sand model. Left:   versus porosity; open circles 
are for wet DEM-Gassmann velocities (low frequency); filled circles are for wet-
DEM velocities (high frequency); the continuous curve is for soft-sand wet 
velocities (low frequency). Middle:  same for . Right: Fitting AR for  (open 

circles) and  (filled  circles). 
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Figure C-4 shows the estimated P- and S-wave maximum quality factors,  and , 

respectively. These were estimated from the predicted low and high frequency velocities. 
sQpQ

 

0 0.1 0.2 0.3 0.4 0.5
0

15

30

45

60

Porosity

Q

 

 

Qp
Qs

 
Figure C-4.  Estimated maximum  and  as a function of porosity. sQpQ
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A counterpart to the soft-sand model is the stiff-sand model. In this model, the two 

end-points, one at zero porosity and the other at the critical porosity, are connected by the 

modified upper Hashin-Shtrikman bound (Gal, et al., 1998).  This model gives 
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Figure C-5 shows the AR needed to match the stiff-sand wet-rock elastic moduli with 

those provided by the DEM-Gassmann combination. All input parameters are the same as 

used for the soft-sand model earlier in the text. 

As expected, the AR here differ from these obtained for the soft-sand model.  

However, the implications for predicting various rock properties are essentially the same. 
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Figure C-5.  Top and middle:  the P- and S-wave velocities versus porosity according 

to the stiff-sand model (Gal et al., 1998) for five mineralogies as marked in the 
frames. Bottom:  AR derived by matching DEM-Gassmann model to the stiff-
sand model using the P- (solid curve) and S-wave velocities (symbols).  

 

 

 

 



 
 
 
Appendix D 
Application of the porous grain concept to 
Wood’s model 

 

The Wood (1955) model assumes that in high-porosity unconsolidated sediment, the 

P-wave velocity can be estimated as in a suspension of solid particles in the load-bearing 

fluid: 

,
b

R
p

KV
ρ

=            (D-1) 

where  and RK bρ  are the Reuss average of the bulk moduli of the solid and fluid phases, 

and the bulk density of the suspension, respectively: 

,)1(

,)1( 111

gifib

gifiR KKK

ρφρφρ

φφ

−+=

−+= −−−

     (D-2) 

In the original model the subscript “ ” refers to the properties of the pure non-porous 

mineral. Here we modify this approach by assuming that the grains are porous and, 

therefore, 

g

 and  is determined from DEM. iφgKgfgsg φρφρρ +−= )1(  is the 

intergranular porosity according to equation 4.1.  

Hamilton (1971) and Wilkens et al. (1992), acknowledges the fact that such 

unconsolidated sediment still supports shear-wave propagation and, therefore, its shear 

modulus is not zero (as assumed by the suspension model). They point out that the 



APPENDIX D: WOOD-POROUS GRAIN MODEL 179 

suspension model is not valid for marine sediments, which have some rigidity, but still 

can be used to obtain a maximum estimate of the shear velocity, . To estimate , they 

calculate the effective shear modulus of sediment as 
sV sV

))(4/3( RKMG −= , where the 

compressional modulus M  is calculated from the measured P-wave velocity  and bulk 

density 
pV

bρ  as .  Then 2
pbVρ bs GV ρ/= .  Here we follow the same ad-hoc approach but 

using porous grains instead of a pure solid.  The corresponding model  curve is 

displayed in Figure 4.11. 
sV

An example of calculating  in a suspension of porous calcite grains in seawater for 

varying intragranular porosity with fixed aspect ratio as well as for varying aspect ratios 

with fixed intragranular porosity is displayed in Figure D-1. 

pV

Our results suggest that Wood's estimation of the bulk modulus of the most porous 

sediments is fairly closet o the dynamic bulk modulus, an observation which can be used 

to estimate shear wave velocity. 
 

0.4 0.6 0.8 1
1

2

3

4

Total Porosity

Vp
 (k

m
/s

)

Aspect Ratio = 0.5

0.4 0.6 0.8 1
1

2

3

4

Total Porosity

Vp
 (k

m
/s

)

Intragranular Porosity = 0.40

Intragranular Porosity Aspect Ratio

 
Figure D-1.  The P-wave velocity versus porosity in a suspension of porous grains.  

Left – the intragranular AR is fixed at 0.5.  The intragranular porosity is changing 
from zero (the bold baseline) to 0.4 with increment 0.1.  The velocity increases 
with increasing intragranular porosity.  Right – the intragranular porosity is fixed 
at 0.4.  The intragranular AR is decreasing from 0.5 (the upper curve) to 0.0 (the 
curve above the bold baseline).  The baseline curves in both frames are for 
suspension with non-porous mineral grains. 

 

 



 
 
 
Appendix E 
Anisotropic porous-grain aggregate 
model 

 

Under uniaxial stress 1σ , a dry aggregate of identical porous spheres is transversely 

isotropic (Walton, 1987). We assume that the intragranular inclusions are distributed 

randomly and that they are not affected by the applied stress, 1σ . If the porous spherical 

grains are infinitely rough, the elastic properties of the aggregate can be described by the 

following five constants: 

)2(3)1(
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If the porous spherical grains are smooth, the elastic properties of the aggregate can 

be described by the following five constants: 
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Measurements of shear modulus in unconsolidated sands have been often observed to 

be lower than those predicted by the Hertz-Mindlin effective medium models (Winkler, 

1983; Goddard; 1990; Zimmer et al. 2007). To overcome this situation, Bachrach and 

Avseth (2008) suggest that the effective media approximation based on contact 

mechanics can be calibrated by incorporating nonuniform contact models, which treat the 

contact stiffness as a spatial variable. This is achieved by expanding the effective medium 

theory of Norris and Johnson (1997) to account for variable contact models. The effective 

stiffness matrix for nonuniform contacts is given, as follows (Bachrach and Avseth, 

2008), 
)0()1( )1( ijijij CxxCC −+=                                                                                            (E-3) 

x  is the fraction of rough sphere contacts in the aggregate. where 

Equation E-3 suggests the Voigt average, which implies isostrain, is the one 

appropriate isostrain condition to the binary contact problem (Bachrach and Avseth, 

2008). 

To account for the effects of intergranular porosity on the undrained elastic properties, 

the anisotropic version of Gassmann’s relations needs to be used (Mavko et al., 2009). 

Brown and Korringa (1975) derived a theoretical formulas relating the effective elastic 

moduli of an anisotropic dry rock to the effective moduli of the same rock containing 

fluid:  

φββααββααββ
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where the elements of the dry compliance tensor are given by Walton’s equations. )(dry
ijklS

Once the  tensor is determined, the shear and Young’s moduli, G and )(sat
ijklC E , 

respectively, are computed for all directions. )(θG  in an arbitrary plane depends on the 

direction in which shear is applied.  For a hexagonal system it is given by, 
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The Young’s modulus for an arbitrary direction of tension is given by (Nye, 1957) 
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θwhere  is the angle between the arbitrary direction  and the material axes. The quasi-

compressional wave phase velocity  vertically polarized shear wave velocity  and 

horizontally polarized shear wave velocity   in a transversely isotropic medium, are 

given by (Musgrave, 1970) 
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θwhere . The parameter441344334411 ,, CCdandCChCCa +=−=−=  is the angle 

measured from the symmetry axis. 

Figure E-1 shows the low- and high-frequency shear ( ) and Young’s ()(θG )(θE )  

moduli for a water-saturated porous-grain aggregate for two different intragranular aspect 

ratios:  = 0.5 and =0.1. The matrix was assumed to be pure calcite.  gα gα
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Figure E-1. Low- and high-frequency shear and Young’s moduli predicted by 
Walton’s anisotropic model for two different aspect ratios. The porosity was 
fixed at 0.2. The vertical and horizontal scales in all plots is in GPa. 

 

 

 

 

 

 

 



 
 
 
Appendix F 
VHF effective elastic properties using DEM 
and CPA 

 

Figure F-1 shows a comparison of the VHF effective elastic properties of the 

aggregate estimated using DEM and SC. The friction coefficient and the intragranular 

porosity used are:  and , respectively.  5.0=gα5.0=γ
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Figure F-1. Comparison of the very high frequency (VHF) Vp and Vs predicted by 

DEM and CPA. Top Frame:  PGSO model. Bottom frame: PGST model.  
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Figure F-2.  DEM and CPA aspect ratios needed to match the PGSO (left) and PGST 

(right) Vp and Vs velocities.  

 

 

 



 
 
 
Appendix G 
Cemented sand model 

 

The cemented-sand model allows one to calculate the bulk and shear moduli of dry 

sand in which cement is deposited at the grain contacts. The cement is elastic, and its 

properties may differ from those of the sand grains. The effective dry-rock bulk and shear 

moduli according to this model (Dvorkin and Nur, 1996) are, 

Γ−+=+−= SGCKGSGKCK CemodrydryNCemCemodry
ˆ)1(

20
3

5
3,ˆ)3/4)(1(

6
1 φφ      (G-1) 

where the parameters  and  are proportional to the normal and shear stiffness, 

respectively, of a cemented two grain combination. They depend on the amount of the 

contact cement and on the properties of the cement and the grains as defined in the 

following relations: 

NŜ ΓŜ
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9864.1

89008.0

3646.1

00024649.0

,20405.0

,024153.0

−

−

−

Λ=

Λ=

Λ−=

NN

NN

NN

C

B

A
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This model considers three certain schemes of cement deposition (Figure 5.9, main 

paper). The three cases in which cement is located at the grains are a) the cement is 

deposited away from the grain contact (noncontact cement), b) the cement is deposited at 

grain contacts, and c) all cement is deposited at grain surfaces (Dvorkin et al., 1994; 

Dvorkin et al., 1999; Yin and Dvorkin, 1994). 

The parameter “ a ” in the model is the radius of the contact cement layer, and R  is 

the grain radius. The amount of cement can be expressed through the ratio β  of the 

radius of the cement layer  “ a ”  to the grain radius : R
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where  is the volume fraction of the pore space of the uncemented sand occupied by 

cement in the cemented sand. 
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Appendix H 
Composite data sets 
 

This appendix contains the composite data sets used in Chapter 2. All data sets were 

collected from the literature.  

 

Symbols used in the Tables: 

 
Vol             =   Volume fraction of inclusion 
Vp              =    P-wave velocity  
Vs               =   S-wave velocity  
Rhob           =  Bulk density 
K                =   Bulk modulus 
G                =   Shear modulus 
PR              =   Poisson ratio 
PZ              =   Particle size 
WF             =   Weight fraction of inclusion concentration 
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Table H-1: All artificial composite data sets. 

                                                   Measured properties
References Vol Vp Vs k G E PR Rhob PZ WF

(km/s) (km/s) (Gpa) (Gpa) (Gpa) (g/cc)
Lees and 0.0001 2.5177
Davidson (1977) 0.2119 2.4851

0.3192 2.6457
0.3405 2.7003
0.5403 2.7385

Lees and 0.0000 2.5225
Davidson (1977) 0.0978 2.4498

0.1973 2.4844
0.2960 2.5156
0.3982 2.5848

Zhang et al. (1996) 0.0000 2.4880 1.2070 1.250

0.0850 2.5310 1.2590 1.370

0.1230 2.5700 1.2820 1.420

0.1570 2.6090 1.3160 1.470

0.1890 2.6620 1.3530 1.520

0.2190 2.7110 1.3870 1.560

0.2460 2.7350 1.4090 1.610

0.2720 2.7830 1.4390 1.640

0.2960 2.8170 1.4640 1.670

0.3180 2.8630 1.4950 1.710

0.3390 2.9120 1.5310 1.750

0.3590 2.9350 1.5450 1.760

0.3780 2.9830 1.5700 1.790

0.3950 3.0320 1.5920 1.830

0.4120 3.0550 1.6170 1.850

0.4270 3.0960 1.6360 1.870

0.4420 3.1370 1.6750 1.900

0.4570 3.1640 1.6870 1.930

0.4700 3.1820 1.6980 1.930  
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Continuation: Table H-1: All artificial composite data sets. 

Bridge and 0.0000 2.6230 1.2700 0.905
 Cheng (1987) 0.0000 2.6180 1.2550 0.905

0.0000 2.6110 1.2540 0.905
0.0000 2.6180 1.2560 0.905
0.0000 2.6230 1.2660 0.905
0.0000 2.6200 1.2630 0.905
0.0180 2.5360 1.2160 0.938
0.0200 2.5450 1.2130 0.941
0.0210 2.5490 1.2170 0.942
0.0450 2.5190 1.2160 0.987
0.0440 2.5220 1.2070 0.984
0.0470 2.5050 1.2140 0.990
0.0520 2.5210 1.2170 0.998
0.0990 2.5040 1.2350 1.083
0.0960 2.5190 1.2380 1.077
0.1060 2.5140 1.2430 1.095
0.0890 2.5090 1.2220 1.065
0.0820 2.5270 1.2570 1.053
0.0760 2.5220 1.2600 1.041
0.0770 2.5240 1.2590 1.043
0.0820 2.5390 1.2500 1.053
0.1010 2.5450 1.2600 1.087
0.1200 2.5670 1.2720 1.121
0.1200 2.5660 1.2790 1.121
0.1210 2.5690 1.2710 1.123
0.1210 2.5580 1.2770 1.123
0.1660 2.5610 1.3060 1.207
0.1640 2.5550 1.3110 1.200
0.1620 2.5790 1.3050 1.196
0.2110 2.5970 1.3420 1.284
0.2150 2.6050 1.3370 1.290
0.2180 2.5970 1.3270 1.287
0.2110 2.6090 1.3460 1.284
0.2670 2.6360 1.3780 1.385
0.2720 2.6350 1.3740 1.394
0.2700 2.6480 1.3770 1.389
0.2550 2.6470 1.3760 1.363
0.3680 2.7090 1.3900 1.566
0.3670 2.7100 1.4040 1.564
0.3860 2.7310 1.4390 1.597
0.3760 2.7200 1.4370 1.580
0.3710 2.7430 1.4370 1.570
0.1930 2.5860 1.3000 1.251
0.1930 2.5890 1.3100 1.251
0.1930 2.5830 1.2950 1.252
0.2920 2.6470 1.3870 1.430
0.3010 2.6680 1.3740 1.445
0.2890 2.6400 1.3500 1.424
0.3440 2.7030 1.4330 1.522
0.3500 2.7090 1.4410 1.533  
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Continuation: Table H-1: All artificial composite data sets. 
Gomez et al. (2000) 0.4199 2.1370

0.4710 1.8630
0.4710 1.9178
0.4710 1.9863
0.4793 2.0616
0.5014 1.8973
0.5290 1.8699
0.5304 1.9178
0.5290 1.9863
0.5207 2.0616
0.5801 2.1370
0.6105 2.2055
0.6602 2.2123
0.6713 2.3630
0.7307 2.5274

Piche and 0.0000 2.6670 1.3050 1.182
Hammel (1986) 0.0340 2.4970 1.2460 1.392

0.0530 2.4350 1.2170 1.527
0.0720 2.3890 1.1940 1.667
0.0820 2.3580 1.1840 1.741
0.1220 2.2580 1.1550 1.996
0.1520 2.2270 1.1450 2.197
0.2210 2.1880 1.1440 2.641
0.3010 2.2170 1.1910 3.180
0.4000 2.3050 1.2690 3.838

Piche 0.0000 2.6670 1.3050 1.182
and Hammel (1987) 0.0336 2.5937 1.2716 1.348

0.0569 2.5323 1.2597 1.542
FLAKES 0.0997 2.4160 1.2325 1.781

0.1227 2.3779 1.2310 1.936
0.1542 2.3333 1.2265 2.166
0.2010 2.2598 1.2552 2.484
0.2993 2.2533 1.3234 3.117

Nguyen et al. (1996) 0.0200 2.2650 1.0510 0.5
0.0400 2.0650 0.9870 0.5
0.1700 1.8010 0.9320 0.5
0.1000 1.8700 0.9000 1.0
0.5000 2.0100 1.1170 1.0
0.1400 1.7320 0.8620 5.0
0.3700 1.6520 0.8670 5.0
0.4700 1.8740 1.0130 5.0
0.4300 1.7410 0.9370 10.0
0.5500 2.0230 1.2240 10.0
0.3600 1.6990 0.9070 14.0
0.5000 1.9420 1.0950 14.0  
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Continuation: Table H-1: All artificial composite data sets. 
Sugawara 2.5785 1.161 3.0 0.00
  et al. (2005) 2.5785 1.249 3.0 0.05

2.5575 1.315 3.0 0.10
2.4287 1.403 3.0 0.20
2.3179 1.601 3.0 0.30
2.2341 1.757 3.0 0.40
2.0874 2.001 3.0 0.50
1.9378 2.401 3.0 0.60
1.8151 3.070 3.0 0.70
1.6774 4.139 3.0 0.80
1.6474 6.080 3.0 0.90

Lees (1973) 2.0000 1.260 0.00
1.5000 3.090 0.10
1.3000 4.960 0.20
1.0000 6.750 0.30
0.8200 8.670 0.40
0.9800 10.200 0.50
1.2000 12.200 0.60
1.9000 14.000 0.70
2.7000 15.400 0.80
2.7000 16.300 0.90
5.3000 19.300 1.00

E/Em
Richard (1975)   0.0000 0.8998 0.45

0.0509 1.2215 0.46
0.1152 1.3824 0.43
0.1669 1.3491 0.43
0.2167 1.7152 0.42
0.3069 1.9148 0.40
0.3482 2.1589 0.38
0.3524 2.1866 0.39
0.4497 4.1113 0.33
0.4641 3.6842 0.35

E/Em
Smith (1976)          0.0000 0.9901 0.39

0.0241 1.0168 0.41
0.0497 1.0815 0.39
0.0702 1.1192 0.40
0.0991 1.2273 0.38
0.1490 1.3730 0.37
0.2245 1.6704 0.39
0.3020 1.9949 0.38
0.3955 2.6287 0.35
0.5000 4.0173 0.33

Doi et al. (1970) 0.0000 3.92 3.04 7.1400 0.19 0.00
0.0180 3.96 2.94 7.0700 0.20 1.00
0.0530 3.72 2.81 6.7320 0.20 3.10
0.1030 3.62 2.67 6.4190 0.20 6.10
0.1640 3.50 2.45 5.9530 0.22 10.00
0.2500 3.17 2.18 5.3270 0.22 16.00
0.3050 3.18 2.03 5.0130 0.24 20.00
0.3050 3.14 2.02 4.9950 0.24 20.00
0.3680 3.03 1.88 4.6770 0.24 24.80
0.4400 0.00 4.2900 30.80
0.4500 0.00 4.2700 32.20  
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Continuation: Table H-1: All artificial composite data sets. 
Biwa (2001) 0.0000 2.7389 1.3773 5.91 2.25 1.189

0.2160 2.4717 1.2101 4.87 1.70 1.172
0.3720 2.3143 1.1160 4.28 1.45 1.158
0.5240 2.1727 1.0114 3.89 1.16 1.159
1.0000 1.7523 0.7053 2.71 0.56 1.126

Ji and Wang (1999) 0.0000 8.0080 4.8350 104.60 74.20 3.174
0.2000 8.0400 4.8420 106.20 74.60 3.182
0.4000 8.0950 4.8380 109.50 74.70 3.191
0.5000 8.1700 4.8570 112.20 75.00 3.179
0.6000 8.2290 4.8900 114.10 76.10 3.183
0.8000 8.3720 4.9380 119.40 77.50 3.178
1.0000 8.5340 4.9980 126.30 79.80 3.195

Pernot 0.0000 68.0000 0.18
and Rogier (1993) 0.0350 72.0000 0.19

0.0600 72.0000 0.19
0.1000 74.0000 0.20
0.2000 79.0000 0.20
0.3000 88.0000 0.22
0.5000 102.0000 0.23

Hasselman 0.0000 80.5000
and Fulrath (1965a) 0.1000 92.4000

0.2000 107.1000
0.3000 122.8000
0.4000 144.7000
0.4500 158.5000
0.5000 167.8000
0.5500 137.2000
1.0000 411.0400

Hasselman 0.0000 80.5000
and Fulrath (1965b) 0.1000 90.9000

0.2000 105.5000
0.3000 118.0000
0.4000 137.5000
0.5000 159.9000
1.0000 355.5000

 Eper Epar

Hasselman 0.0000 68.8800 68.88

and Fulrath (1963) 0.1960 40.3900 35.21
0.2540 33.7200 29.56
0.3440 25.8300 21.72
0.4110 21.5400 17.78
1.0000 1.5000 1.50  
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Continuation: Table H-1: All artificial composite data sets. 

Nishimatsu 0.0000 0.9936
 and Gurland (1960) 0.0994 1.0987

0.3479 1.5669
0.4982 1.8153
0.6284 2.0541
0.7787 2.4172
0.8982 2.9236

Quesenberry 0.0000 2.4500 1.190

et al. (2003) 0.0500 3.1300 1.210
0.1500 3.9000 1.340
0.2500 4.9900 1.490
0.2900 5.7000 1.550
0.4500 10.1000 1.790
0.5000 12.9000 1.840

Dynamic/Static

Dunn and 0.1450 83.56 32.07 85.32/86.3
 Ledbetter (1995) 0.1520 83.94 32.27 85.77/86.75

0.1620 84.58 32.51 86.5/87.03
0.1860 86.79 34.08 90.37/91.42
0.2120 86.42 34.42 91.32/89.22
0.2400 88.77 35.71 94.63/96.14

E30/E130/E3.5

Vollenberg and 0.0500 1.7505/1.7414/1.6459
Heikens (1990) 0.1500 2.2768/2.232/2.2762

0.2500 3.0871/2.8074/2.9036

0.0500 1.6892/1.656/1.796
0.1000 2.0423/-/-
0.1500 2.3521/2.142/2.596
0.2000 2.6438/-1/2.994
0.2500 3.0835/2.605/3.5

Gaudig et al. (2003) 0.0918 117.4184
(Okamoto et al.,1983) 0.4003 141.9992

0.4550 146.6495
0.4944 156.8347
0.4396 170.1179
0.4352 176.9812
0.6847 169.2364
0.7416 167.2447
0.7875 174.3304
0.9145 174.3325

(Speich et al., 1960) 0.0329 83.3210
0.0373 97.0480
0.0614 127.6015
0.0548 133.8007

0.9956 169.6679
Edyn/Estat

Ledbetter 0.1450 83.56 32.07 85.32/86.3

 and Dunn (1995) 0.1520 83.94 32.27 85.77/86.75
0.1620 84.58 32.51 86.5/87.03
0.1860 86.79 34.08 90.37/91.42
0.2120 86.42 34.42 91.32/89.22
0.2400 88.77 35.71 94.63/96.14  

 



 
 
 
Appendix I 
Carbonate data sets 

 

This appendix contains the carbonate data sets used in Chapter 3. All data sets were 

collected from the literature.  

 

Symbols used in the Tables: 

 
AR-mean    =  mean aspect ratio 
Class           =  Petrophysical classification 
Cal              =   Calcite 
Dry-Rhob   =  Bulk density at dry condition 
k-feld          =   k-feldspar 
kaol             =   Kaolinite 
Minor Axis  = Minor axis of grain or pores 
Major Axis  = Major axis of grain or pores 
mbsf            =  Meters below sea floor 
Por or Phi   =  Porosity 
Pc               =  Confining pressure 
Perm = Permeability 
Vp-sat         =  P-wave velocity at full brine saturation condition 
Vp-dry        =  P-wave velocity at dry condition 
Vs-sat         =  S-wave velocity at full brine saturation condition 
Vs-dry        =  S-wave velocity at dry condition  
Vp-9           =  P-wave velocity at  9 MPa differential pressure 
Vp-30         =  P-wave velocity at  30 MPa differential pressure 
Vs-9           =  S-wave velocity at  9 MPa differential pressure 
Vs-30         =  S-wave velocity at  30 MPa differential pressure 
Rhog          =  Grain density 
Sat-Rhob    =  Bulk density at full brine saturation condition 

 
 
  



APPENDIX H: COMPOSITE DATA SETS                                                                                  196 

Table I-1: Carbonate data sets from Assefa et al. (2003). 

Por Dry‐Rhob Calcite Dolomite Quartz Vs‐dry Vp‐dry Vs‐Sat Vp‐Sat
(g/cc) (%) (%) (%) (km/s) (km/s) (km/s) (km/s)

3.20 2.54 62.8 3.9 33.3 2.934 5.370 2.880 5.370
5.50 2.49 50.4 39.8 9.8 2.680 4.526 2.466 4.577
5.80 2.40 98.6 0.0 1.4 2.631 4.516 2.492 4.702
6.20 2.52 78.4 13.6 4.4 2.661 4.518 2.370 4.560
6.60 2.37 100.0 0.0 0.0 2.499 4.262 0.000 5.169
6.61 2.48 92.4 3.7 3.9 2.758 4.834 2.624 4.934
7.60 2.42 95.0 0.0 5.0 2.696 4.602 2.575 4.835
8.00 2.41 96.1 3.9 0.0 2.651 4.604 2.554 4.772
8.01 2.32 100.0 0.0 0.0 2.463 4.220 2.236 4.214
8.10 2.45 43.4 55.4 1.2 2.642 4.621 2.459 4.559
8.20 2.33 81.4 14.0 4.6 2.483 4.233 2.276 4.303
8.90 2.41 96.4 2.9 0.7 2.729 4.681 2.461 4.855
9.20 2.40 100.0 0.0 0.0 2.385 3.956 2.258 4.230
9.21 2.28 99.3 0.0 0.7 2.370 4.041 2.115 4.005
9.20 2.37 97.1 2.9 0.0 2.442 4.176 2.251 4.282
9.40 2.37 97.4 0.0 2.6 2.473 4.268 2.264 4.354
9.50 2.35 95.0 0.0 5.0 2.511 4.338 2.326 4.461
9.51 2.35 95.6 3.3 1.1 2.414 4.178 2.191 4.160
9.50 2.41 97.3 0.0 2.7 2.460 3.770 2.028 4.291
9.60 2.33 100.0 0.0 0.0 2.651 4.639 2.500 4.631
9.61 2.38 68.3 31.7 0.0 2.670 4.658 2.476 4.628
9.90 2.40 98.5 1.5 0.0 2.466 4.293 2.414 4.377
10.40 2.35 78.0 0.0 22.0 2.516 4.499 2.374 4.350
10.60 2.35 97.3 0.0 2.7 2.553 4.420 2.401 4.498
10.90 2.38 81.6 17.3 1.1 2.478 4.366 2.287 4.306
11.20 2.34 97.3 0.0 2.7 2.352 4.068 2.215 4.277
11.30 2.27 100.0 0.0 0.0 2.263 3.303 2.088 3.457
11.50 2.32 100.0 0.0 0.0 2.474 4.227 2.318 4.261
12.40 2.34 99.3 0.0 0.7 2.489 4.281 2.339 4.397
12.90 2.27 100.0 0.0 0.0 2.628 4.551 2.393 4.581
13.00 2.29 98.6 0.0 1.4 2.413 4.114 0.000 4.112
13.40 2.24 97.3 0.0 2.7 2.388 4.101 2.739 0.000
13.80 2.25 97.3 0.0 2.7 2.751 5.004 2.578 5.035
14.20 2.31 100.0 0.0 0.0 2.166 3.693 1.805 3.738
15.80 2.20 98.6 0.0 1.4 2.252 3.559 1.920 3.887
16.10 2.20 97.1 2.9 0.0 2.387 4.042 2.174 4.049
16.60 2.15 98.3 0.0 1.7 2.178 3.296 0.000 3.734
16.70 2.20 90.8 9.2 0.0 2.234 3.789 1.989 3.863  
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Continuation:  Table I-1: Carbonate data sets from Assefa et al. (2003). 
Por Dry‐Rhob Calcite Dolomite Quartz Vs‐dry Vp‐dry Vs‐sat Vp‐sat AR‐Mean     Menor Major

(g/cc) (%) (%) (%) (km/s) (km/s) (km/s) (km/s) Axis Axis  
3.2 2.54 62.8 3.9 33.3 2.934 5.370 2.880 5.370 0.300 60 200
5.8 2.40 98.6 0.0 1.4 2.631 4.516 2.492 4.702 0.357 50 140
8.0 2.41 96.1 3.9 0.0 2.651 4.604 2.554 4.772 0.100 20 200
8.9 2.41 96.4 2.9 0.7 2.729 4.681 2.461 4.855 0.199 27 136
9.2 2.40 100.0 0.0 0.0 2.385 3.956 2.258 4.230 0.143 20 140
9.2 2.28 99.3 0.0 0.7 2.370 4.041 2.115 4.005 0.061 20 330
9.5 2.35 95.6 3.3 1.1 2.414 4.178 2.191 4.160 0.231 30 130
10.6 2.35 97.3 0.0 2.7 2.553 4.420 2.401 4.498 0.588 100 170
11.2 2.34 97.3 0.0 2.7 2.352 4.068 2.215 4.277 0.146 60 410
11.5 2.32 100.0 0.0 0.0 2.474 4.227 2.318 4.261 0.095 20 210
12.4 2.34 99.3 0.0 0.7 2.489 4.281 2.339 4.397 0.357 50 140
13.0 2.29 98.6 0.0 1.4 2.413 4.114 0.000 4.112 0.258 80 310
15.8 2.20 98.6 0.0 1.4 2.252 3.559 1.920 3.887 0.400 60 150
16.7 2.20 90.8 9.2 0.0 2.234 3.789 1.989 3.863 0.143 20 140  
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Table I-2: Carbonate data sets from Fabricius et al. (2008). 
Sample Por Vp‐dry Vs‐dry Vp‐sat Vs‐sat Rhog Calcite Quartz Clay

(Fraction) (km/s) (km/s) (km/s) (km/s) (g/cc) (%) (%) (%)
1 0.269 3.59 2.18 3.47 1.86 2.706 83.0 8.9 2.0
2 0.247 3.47 2.16 3.43 1.83 2.708 78.3 10.8 3.0
4 0.219 3.76 2.31 3.78 2.07 2.704 79.2 11.5 0.3
6 0.224 3.87 2.34 3.81 2.07 2.710 90.7 3.8 2.3
7 0.072 4.85 2.84 4.83 2.59 2.705 79.1 12.7 2.1
11 0.267 3.16 2.08 3.19 1.75 2.696 84.7 1.6 5.8
12 0.192 4.01 2.43 4.11 2.26 2.716 95.0 1.1 2.1
13 0.207 4.04 2.42 4.11 2.26 2.720 97.1 0.6 0.7
14 0.144 3.95 2.47 3.86 2.01 2.721 84.5 5.8 6.6
16 0.144 4.57 2.69 4.47 2.47 2.720 70.2 19.3 3.9
18 0.191 3.92 2.38 3.97 2.17 2.718 96.7 0.5 1.2
19 0.248 3.56 2.16 3.62 1.95 2.717 96.1 0.7 1.1
20 0.063 5.52 3.07 5.50 2.95 2.726 93.3 1.9 1.4
21 0.080 5.23 2.99 5.23 2.83 2.723 92.7 1.5 1.9
22 0.138 3.02 2.19 3.13 1.54 2.705 64.7 15.0 16.0
25 0.158 3.03 2.14 3.57 1.90 2.704 80.0 7.9 9.3
26 0.247 3.62 2.25 3.62 2.02 2.710 80.2 14.2 2.3
27 0.345 2.89 1.84 2.99 1.61 2.706 91.2 5.8 1.5
28 0.146 4.07 2.59 4.23 2.41 2.714 78.8 14.0 3.7
29 0.281 3.35 2.12 3.41 1.88 2.710 90.8 4.7 3.0
30 0.239 3.36 2.18 3.52 1.92 2.717 82.5 11.9 3.2
31 0.346 3.04 1.89 3.05 1.64 2.694 87.7 8.8 1.6
32 0.309 3.19 1.97 3.21 1.76 2.704 89.0 7.5 1.6
33 0.188 4.12 2.53 4.20 2.38 2.711 73.8 18.1 4.2
34 0.204 4.30 2.60 4.44 2.49 2.716 85.9 7.4 4.7
36 0.317 3.33 2.07 3.33 1.82 2.703 94.1 5.5 1.4
40 0.408 2.45 1.62 2.63 1.37 2.710 97.9 2.2 1.0
41 0.400 2.43 1.58 2.58 1.34 2.713 98.9 1.2 0.8
43 0.416 2.30 1.62 2.51 1.39 2.696 76.4 15.3 5.1
44 0.256 3.58 2.26 3.57 2.04 2.700 76.1 14.6 5.6
45 0.387 2.58 1.70 2.68 1.45 2.692 80.3 13.8 2.7
46 0.398 2.55 1.64 2.66 1.40 2.700 89.2 6.5 2.5
47 0.439 2.39 1.54 2.51 1.29 2.709 88.3 7.4 2.3
48 0.247 3.41 2.23 3.51 2.01 2.670 57.9 31.4 4.1
49 0.203 4.23 2.61 4.29 2.45 2.695 78.3 17.4 1.1
50 0.418 2.09 1.42 2.44 1.25 2.707 98.2 1.8 1.0
51 0.425 2.06 1.37 2.37 1.13 2.707 97.2 2.3 0.7
52 0.412 2.07 1.39 2.43 1.22 2.706 97.7 2.1 0.8
53 0.434 2.20 1.44 2.48 1.26 2.717 98.2 2.2 1.4
56 0.449 1.98 1.30 2.31 1.12 2.673 99.0 1.5 1.1
57 0.411 1.96 1.34 2.36 1.19 2.689 98.7 1.1 0.9
58 0.423 2.06 1.39 2.43 1.23 2.697 98.1 1.3 1.1
62 0.305 3.26 2.01 3.47 1.86 2.719 100.0 0.6 0.5  
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Table I-3: Carbonate data sets from Kenter et al. (1997). 
Class CaCO3 K2O Dol Cal Mica Kaol K‐Feld Quartz Sat‐Rhob Rhog Por Vp‐9 Vp‐30 Vs‐9 Vs‐30

(%) (%) (%) (%) (%) (%) (%) (%) (g/cc) (g/cc) (km/s) (km/s) (km/s) (km/s)
3 97.2 0.35 85.9 5.5 1.9 1.3 2.4 3.8 2.76 2.79 0.02 6.15 6.24 2.52 2.77
5 96.2 0.04 4.7 92.3 0.2 0.4 0.3 2.5 2.69 2.71 0.02 6.07 6.14 2.77 3.23
5 80.4 0.56 24.2 58.0 3.0 2.2 3.8 8.5 2.67 2.70 0.03 5.53 5.57 2.98 3.00
4 100.0 0.04 87.3 11.3 0.2 0.5 0.3 1.3 2.77 2.83 0.03 6.58 6.66 3.55 3.64
5 93.5 0.23 31.1 62.5 1.2 1.3 1.5 2.2 2.69 2.75 0.04 5.01 5.18 2.63 2.73
4 100.0 0.00 86.4 8.3 0.0 0.1 0.0 0.0 2.76 2.86 0.04 5.48 5.72 2.87 2.99
5 96.8 0.10 5.9 91.0 0.6 0.5 0.7 1.9 2.61 2.71 0.05 6.05 5.92 3.10 3.15
2 30.9 2.46 29.6 0.4 13.3 5.0 16.8 36.6 2.74 2.83 0.05 5.00 5.20 2.89 2.93
3 100.0 0.21 89.5 1.6 1.1 0.9 1.4 6.0 2.73 2.85 0.06 5.06 5.36 2.71 2.93
4 100.0 0.06 89.9 5.5 0.3 0.6 0.4 3.5 2.70 2.83 0.06 5.97 6.11 3.29 3.40
4 96.0 0.27 52.0 40.7 1.5 1.1 1.9 2.9 2.65 2.79 0.07 5.39 5.48 2.96 3.01
3 100.0 0.02 96.9 1.6 0.1 0.7 0.2 1.2 2.71 2.86 0.08 5.85 6.00 3.19 3.27
2 74.2 0.69 69.6 2.8 3.7 1.7 4.7 19.3 2.64 2.81 0.08 5.36 5.45 2.82 3.19
3 100.0 0.02 99.7 0.0 0.1 0.4 0.1 0.8 2.68 2.85 0.08 5.86 5.87 3.35 3.40
5 96.0 0.04 3.0 93.9 0.2 0.6 0.3 1.1 2.68 2.70 0.08 6.34 6.34 3.25 3.30
5 95.2 0.11 34.8 61.4 0.6 0.7 0.7 1.1 2.76 2.74 0.09 6.01 6.09 2.96 3.36
3 89.6 0.15 87.5 0.6 0.8 2.5 1.0 8.4 2.61 2.73 0.09 5.22 5.28 2.89 2.99
2 45.2 0.74 34.9 7.1 4.0 4.3 5.0 44.4 2.56 2.71 0.09 4.62 4.87 2.62 2.82
2 73.8 0.54 64.4 2.9 2.9 1.7 3.7 22.5 2.61 2.79 0.10 5.25 5.32 2.98 3.10
8 100.0 0.06 92.6 4.1 0.3 1.0 0.4 2.1 2.67 2.85 0.10 6.25 6.32 3.30 3.44
2 76.8 0.80 69.5 2.4 4.3 1.0 5.4 19.3 2.63 2.82 0.11 4.59 4.92 2.55 2.73
3 93.3 0.28 88.6 0.9 1.5 1.2 1.9 6.0 2.68 2.88 0.11 5.07 5.24 2.85 3.06
2 64.7 0.88 55.3 5.8 4.7 3.9 6.0 25.2 2.57 2.76 0.11 4.69 4.73 2.62 2.68
3 92.7 0.17 90.8 0.0 0.9 2.2 1.2 8.0 2.64 2.80 0.11 5.61 5.68 3.33 3.17
2 79.0 0.50 66.7 6.1 2.7 1.7 3.4 20.4 2.56 2.81 0.12 5.03 5.10 2.91 2.97
2 80.2 1.06 71.3 4.7 5.7 0.1 7.2 12.4 2.60 2.81 0.12 4.66 4.87 2.59 2.73
2 63.4 1.00 59.0 0.5 5.4 0.0 6.9 30.9 2.54 2.76 0.12 4.91 5.03 2.85 2.97
1 27.4 0.98 20.2 5.5 5.3 9.8 6.7 53.6 2.50 2.70 0.13 3.87 4.12 2.09 2.31
2 69.3 1.10 67.7 0.0 6.0 3.3 7.5 17.5 2.55 2.79 0.13 4.27 4.45 2.55 2.66
2 34.1 2.44 33.3 0.1 13.2 4.9 16.7 36.0 2.50 2.72 0.13 3.77 4.03 2.15 2.36
3 96.8 0.32 87.9 1.6 1.7 2.5 2.2 4.9 2.63 2.85 0.13 5.76 5.67 3.12 3.32
2 81.2 0.48 63.9 11.6 2.6 2.7 3.3 17.1 2.53 2.78 0.14 3.96 4.11 2.17 2.30
1 19.2 1.85 14.3 2.2 10.0 4.9 12.6 58.6 2.44 2.68 0.14 3.64 4.05 1.93 2.32
2 13.0 3.13 13.9 0.0 17.0 7.2 21.4 45.4 2.49 2.73 0.14 3.60 3.84 2.00 2.20
2 52.3 3.62 47.9 1.5 19.6 0.0 24.7 14.7 2.51 2.76 0.14 3.94 4.18 2.23 2.53
2 48.2 1.54 42.0 2.2 8.4 5.0 10.5 33.0 2.45 2.77 0.14 3.79 4.17 2.12 2.41
2 42.5 1.51 37.1 1.8 8.2 3.6 10.3 41.6 2.47 2.74 0.15 4.32 4.48 2.56 2.66
2 77.4 0.65 71.3 3.1 3.5 0.0 4.4 19.4 2.54 2.84 0.15 4.53 4.82 2.67 2.81
2 38.7 1.68 27.9 8.6 9.1 9.4 11.5 38.2 2.48 2.72 0.15 4.03 4.24 2.33 2.48
2 69.6 0.66 65.2 1.0 3.6 0.6 4.5 27.0 2.51 2.78 0.16 4.59 4.63 2.58 2.65
3 97.0 0.13 95.3 1.1 0.7 0.8 0.9 2.1 2.59 2.91 0.16 5.16 5.24 2.93 2.99
3 98.5 1.68 78.8 14.0 9.1 0.0 11.5 0.0 2.50 2.83 0.16 4.95 5.04 2.71 2.78
2 52.1 0.97 43.6 4.0 5.3 1.7 6.6 40.8 2.44 2.73 0.18 3.48 4.00 1.89 2.26
1 7.3 2.54 11.2 0.0 13.8 7.1 17.3 54.7 2.37 2.70 0.19 3.42 3.78 2.00 2.18
2 85.1 0.44 66.0 15.8 2.4 0.5 3.0 12.4 2.44 2.83 0.21 4.20 4.26 2.35 2.40
2 60.3 0.14 73.6 4.2 0.7 3.1 0.9 17.7 2.48 2.84 0.21 4.78 4.80 2.66 2.70
3 100.0 0.07 87.6 11.2 0.4 0.7 0.5 0.7 2.43 2.89 0.23 4.48 4.63 2.54 2.61  
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Table I-4: Carbonate data sets from Rafavich et al. (1984). 

Facies Depth Perm Phi Calcite Dolomite Anhydrite Celestite Quartz
(mbsf) (mD) (%) (%) (%) (%) (%) (%)

3 1218.1 0.0100 0.71 0 15 85 0 0
5 1218.3 0.0001 8.90 0 53 15 0 23
5 1221.9 0.0100 17.40 0 82 0 0 1
5 1222.4 0.0900 18.60 11 69 0 0 1
1 1222.7 0.0100 1.35 91 0 8 0 0
5 1223.3 1.1000 13.00 17 66 4 0 0
1 1223.9 0.0001 3.57 82 0 14 0 0
1 1224.1 0.0001 3.63 85 0 11 0 0
1 1224.5 0.0001 3.14 90 7 0 0 0
1 1225.3 0.0001 7.71 92 0 0 0 0
7 1226.5 0.0100 7.39 53 20 20 0 0
6 1227.4 0.0100 13.50 38 48 0 0 0
6 1228.0 0.0001 6.12 56 38 0 0 0
6 1229.3 0.0100 11.00 47 42 0 0 0
1 1229.9 6.3000 17.10 65 18 0 0 0
7 1230.1 0.0300 7.70 48 18 26 0 0
5 1230.2 0.0001 6.48 21 73 0 0 0
6 1230.5 0.0100 12.70 35 52 0 0 0
6 1231.7 0.0100 8.52 44 47 0 0 0
5 1232.0 0.0400 13.40 8 79 0 0 0
6 1232.2 0.7900 12.30 48 34 6 0 0
7 1232.5 2.4000 15.10 31 20 34 0 0
6 1232.6 6.9000 18.70 30 51 0 0 0
6 1232.9 7.2000 14.30 30 51 1 0 4
4 1233.5 0.4700 3.40 16 31 50 0 0
7 1234.1 0.0100 2.13 17 15 36 30 0
3 1234.4 0.0200 0.01 0 0 100 0 0
3 1235.2 0.0001 0.01 0 0 100 0 0  
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Continuation: Table I-4: Carbonate data sets from Rafavich et al. (1984). 

Facies Rhog Sat‐Rhob Dry‐Rhob Vp‐sat Vs‐sat Vp‐dry Vs‐dry Major  Menor Aspect
(g/cc) (g/cc) (g/cc) (km/s) (km/s) (km/s) (km/s) Axis   Axis Ratio

3 2.93 2.92 2.91 5.850 3.372 5.839 3.413 0.00 0.00 0.00
5 2.73 2.57 2.49 4.577 2.697 4.502 2.903 0.00 0.00 0.00
5 2.82 2.50 2.33 4.245 2.458 4.404 2.822 0.08 0.05 1.60
5 2.81 2.47 2.29 4.597 2.674 4.696 2.903 0.00 0.00 0.00
1 2.75 2.73 2.71 6.220 3.338 6.072 3.353 0.00 0.00 0.00
5 2.80 2.57 2.44 5.273 2.959 5.193 3.073 0.13 0.07 1.86
1 2.76 2.70 2.66 6.024 3.239 5.817 3.253 0.11 0.07 1.57
1 2.72 2.65 2.62 5.839 3.178 5.644 3.195 0.25 0.11 2.27
1 2.70 2.65 2.62 6.000 3.192 5.907 3.225 0.15 0.12 1.25
1 2.70 2.57 2.49 5.572 3.018 5.433 3.076 0.00 0.05 1.40
7 2.72 2.60 2.52 5.603 3.048 5.443 3.079 0.19 0.13 1.46
6 2.71 2.48 2.34 4.980 2.697 4.885 2.771 0.06 0.05 1.20
6 2.68 2.58 2.52 5.149 2.903 5.013 2.931 0.00 0.00 0.00
6 2.77 2.58 2.47 5.338 2.959 5.338 3.066 0.07 0.04 1.75
1 2.72 2.43 2.25 4.632 2.540 4.590 2.697 0.10 0.09 1.11
7 2.79 2.65 2.58 5.366 3.048 5.347 3.123 0.12 0.11 1.09
5 2.94 2.81 2.75 5.697 3.188 5.572 3.229 0.11 0.08 1.38
6 2.75 2.53 2.40 5.080 2.822 5.064 2.931 0.11 0.10 1.10
6 2.72 2.58 2.49 5.237 2.931 5.140 2.988 0.10 0.07 1.43
5 2.79 2.55 2.42 4.980 2.822 4.908 2.988 0.10 0.08 1.25
6 2.74 2.53 2.40 5.201 2.697 5.080 2.796 0.16 0.12 1.33
7 2.96 2.66 2.51 4.800 2.674 4.726 2.650 0.15 0.10 1.50
6 2.74 2.53 2.23 4.639 2.561 4.570 2.721 0.11 0.08 1.38
6 2.78 2.52 2.38 5.123 3.018 5.089 3.107 0.03 0.02 1.25
4 2.85 2.79 2.75 6.024 3.364 6.012 3.409 0.03 0.03 1.00
7 3.17 3.13 3.10 5.603 3.101 5.443 3.123 0.00 0.00 0.00
3 2.93 2.93 2.93 5.930 3.328 5.977 3.444 0.00 0.00 0.00
3 2.92 2.92 2.92 6.096 3.413 6.000 3.413 0.00 0.00 0.00  
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Table I-5: Carbonate data sets from Rafavich et al. (1984). 

Facies Depth Rhog Sat‐Rhob Dry‐Rhob Calcite Dolomite Anhydrite Celestite Quartz
(mbsf) (g/cc) (g/cc) (g/cc) (%) (%) (%) (%) (%)

1 2976.8 2.72 2.70 2.70 86 7 6 0 0
1 2981.1 2.74 2.67 2.63 68 27 1 0 0
1 2983.2 2.68 2.63 2.59 96 1 0 0 0
1 2985.4 2.70 2.67 2.65 98 0 0 0 0
6 2990.2 2.75 2.72 2.70 52 45 1 0 0
5 2997.6 2.76 2.64 2.57 7 83 3 0 0
6 3000.3 2.74 2.65 2.60 41 54 0 0 0
5 3002.1 2.79 2.63 2.54 13 75 0 0 0
5 3004.3 2.83 2.71 2.64 0 93 0 0 0
5 3007.0 2.78 2.69 2.53 32 63 0 0 0
5 3010.7 3.20 3.10 3.06 2 92 0 2 0
6 3014.3 2.70 2.66 2.64 60 36 2 0 0
3 3016.8 2.81 2.69 2.62 1 92 0 0 0
5 3027.1 2.82 2.58 2.45 7 80 0 0 0
6 3028.3 2.71 2.69 2.67 36 62 0 0 0
5 3029.6 2.80 2.67 2.60 7 85 1 0 0
6 3031.1 2.75 2.73 2.71 36 63 0 0 0
5 3057.9 2.71 2.56 2.48 0 87 1 4 0
1 3071.3 2.69 2.64 2.61 95 2 0 0 0
5 3078.3 2.83 2.60 2.47 25 62 0 0 0
6 3085.6 2.72 2.69 2.67 64 34 0 0 0
6 3089.0 2.71 2.69 2.67 64 35 0 0 0
1 3099.1 2.72 2.65 2.62 74 22 0 0 0
1 3102.4 2.71 2.70 2.70 77 19 0 3 0
5 3038.4 2.77 2.48 2.31 0 78 1 4 0
6 3043.0 2.70 2.49 2.37 28 46 0 14 0
1 3061.9 2.67 2.55 2.48 93 0 0 0 0
6 3073.8 2.72 2.58 2.50 58 34 0 0 0  
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Continuation: Table I-5: Carbonate data sets from Rafavich et al. (1984). 

Facies Perm Porosity Vp‐sat Vs‐sat Vp‐dry Vs‐dry
(mD) (km/s) (km/s) (km/s) (km/s)

1 0.0001 0.72 6.2845 3.3348 5.9300 3.3059
1 0.0001 4.04 5.8842 3.1750 5.6444 3.2357
1 0.0100 3.34 6.0118 3.2254 5.8391 3.2495
1 0.0100 2.07 6.1328 3.2599 6.0717 3.2739
6 0.0001 1.78 6.1700 3.2704 5.5927 3.2739
5 0.0100 6.87 5.5217 3.1455 4.9885 3.1294
6 0.0100 5.03 5.6030 3.0913 5.1837 3.1165
5 0.0001 9.04 5.4235 3.0788 5.3287 3.2323
5 0.0001 6.75 5.9415 3.4056 6.0356 3.5075
5 0.0001 5.24 5.6972 3.1488 5.3947 3.2186
5 0.0001 4.37 6.0118 3.3605 5.5927 3.4519
6 0.0001 2.25 5.6760 3.1070 5.3662 3.1326
3 0.0001 6.89 5.7837 3.2774 5.5118 3.3642
5 0.3100 13.14 5.3474 3.0603 5.4820 3.2084
6 0.0001 1.66 5.9070 3.1651 5.6030 3.2880
5 0.0001 7.08 5.4043 3.0913 4.8535 3.1294
6 0.0001 1.24 6.1576 3.3202 5.7837 3.3642
5 0.0100 8.45 5.4043 3.3829 5.3662 3.4597
1 0.0001 3.15 5.6866 3.0757 5.1749 3.0572
5 0.1500 12.75 5.3757 3.0480 5.2825 3.1586
6 0.0001 1.93 5.9531 3.2194 5.6654 3.2529
6 0.0001 1.30 6.0596 3.2460 5.7727 3.2495
1 0.0001 3.56 5.6654 3.0757 5.5018 3.1684
1 0.0001 0.60 6.2331 3.3717 6.0960 3.3829
5 5.0000 16.77 4.8000 2.8755 4.8228 3.0178
6 0.2500 12.38 4.5835 2.7459 4.5357 2.9029
1 0.3600 7.42 5.2733 2.9029 5.0547 2.9308
6 1.0000 8.26 5.3009 2.9308 5.1574 3.0178  
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Table I-6: Carbonate data sets from Rafavich et al. (1984) 

Facies Depth Rhog Sat‐Rhob Dry‐Rhob Calcite Dolomite Anhydrite Celestite Quartz
(mbsf) (g/cc) (g/cc) (g/cc) (%) (%) (%) (%) (%)

5 2954.3 2.79 2.61 2.50 0 88 0 0 2
4 2958.4 2.91 2.91 2.90 0 40 60 0 0
3 2966.5 2.94 2.94 2.94 0 19 81 0 0
2 2967.7 2.77 2.75 2.74 59 15 25 0 0
7 2974.8 2.83 2.82 2.82 31 19 50 0 0
1 2980.5 2.70 2.69 2.69 100 0 0 0 0
6 2985.2 2.72 2.56 2.71 55 32 4 0 0
5 2987.5 2.82 2.51 2.33 0 80 0 0 2
5 2991.8 2.73 2.58 2.49 0 91 0 0 0
5 2994.9 2.83 2.61 2.48 0 88 0 0 0
5 2998.3 2.81 2.72 2.67 0 95 0 0 0
5 3002.9 2.71 2.65 2.61 8 88 0 0 0
5 3004.7 2.72 2.62 2.56 4 90 0 0 0
5 3015.7 2.80 2.63 2.53 4 86 0 0 0
6 3019.3 2.72 2.70 2.69 40 53 2 0 4
5 3029.1 2.67 2.49 2.38 9 67 1 0 12
5 3033.1 2.81 2.66 2.57 17 75 0 0 0
5 3037.0 2.75 2.57 2.46 21 68 0 0 0
1 3038.6 2.69 2.67 2.65 96 0 3 0 0
1 3049.5 2.70 2.68 2.67 99 0 0 0 0
5 3059.5 2.83 2.60 2.47 0 87 0 0 0
1 3062.6 2.74 2.59 2.50 68 23 0 0 0
1 3067.1 2.71 2.62 2.57 81 14 0 0 0
1 3068.6 2.73 2.65 2.61 72 24 0 0 0
1 3076.7 2.70 2.64 2.60 70 26 0 0 0
1 3082.3 2.70 2.66 2.63 98 0 0 0 0  
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Continuation: Table I-6: Carbonate data sets from Rafavich et al. (1984) 

Facies Perm Porosity Vp‐sat Vs‐sat Vp‐dry Vs‐dry
(mD) (km/s) (km/s) (km/s) (km/s)

5 0.0001 10.27 4.8076 2.7214 4.6892 2.9308
4 0.0100 0.30 6.2459 3.4874 6.3368 3.5237
3 0.0100 0.20 6.0717 3.3239 6.0838 3.3131
2 0.0001 0.86 6.0838 3.2704 5.5824 3.2460
7 0.0100 0.39 6.2331 3.3202 5.6654 3.2774
1 0.0001 0.25 6.3500 3.3867 6.3632 3.3867
6 0.4300 9.35 4.9161 2.7214 4.8613 2.7459
5 0.4000 17.55 5.1400 3.0178 5.2014 3.1358
5 0.0100 8.87 5.1574 2.9308 5.2371 3.1390
5 1.0000 12.26 5.3194 3.0603 5.3194 3.1849
5 0.0001 5.07 6.0356 3.3867 6.0960 3.5156
5 3.9000 3.92 5.6236 3.1039 5.3662 3.1553
5 0.0100 6.04 5.4139 2.9882 5.2192 3.0480
5 0.0001 9.68 5.3380 3.0178 5.3474 3.2017
6 0.0001 1.07 6.0118 3.2357 5.5519 3.2669
5 0.0100 11.05 4.6463 2.7459 4.4824 2.8755
5 0.1000 8.43 5.6030 3.1455 5.6444 3.2774
5 0.4300 10.66 4.8846 2.7214 4.9400 2.9029
1 0.0001 1.29 5.9765 3.2152 5.6972 3.2152
1 0.0001 0.98 6.1082 3.2916 5.7293 3.2599
5 0.0100 12.53 5.3194 3.0480 5.3851 3.2017
1 1.1000 8.70 5.3009 2.9592 5.3662 3.0480
1 0.0100 4.99 5.3101 2.9308 5.1925 3.0178
1 0.0001 4.24 5.4139 2.9308 5.0464 2.9882
1 0.0001 3.96 5.4332 2.9308 5.0631 2.9882
1 0.0001 2.47 5.8956 3.1294 5.7401 3.1950  
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Table I-7: Carbonate data sets from Verwer et al. (2008). 

Sample Dry‐Rhob Sat‐Rhob Rhog Por Vp‐dry Vs‐dry Vp‐sat Vs‐sat Calcite Dolomite Perm

(g/cc) (g/cc) (g/cc) (km/s) (km/s) (km/s) (km/s) (fraction) (fraction) (mD)

1 2.121 2.387 2.855 0.26 4.797 2.854 4.826 2.786 0.23 0.77 0.00

2 2.294 2.459 2.729 0.16 5.209 2.909 5.163 2.843 0.92 0.08 0.00

3 1.743 2.147 2.860 0.39 4.028 2.438 3.953 2.314 0.00 1.00 0.00

5 1.805 2.187 2.859 0.37 4.070 2.507 4.018 2.314 0.01 0.99 0.00

7 1.596 2.036 2.774 0.42 4.009 2.188 3.959 1.976 0.03 0.97 0.00

11 1.517 2.003 2.860 0.47 3.368 2.002 3.236 1.852 0.00 1.00 0.00

15 1.326 1.881 2.860 0.54 2.992 1.876 2.900 1.629 0.00 1.00 0.00

17 1.352 1.895 2.846 0.53 3.060 1.954 2.977 1.761 0.08 0.92 0.00

23 2.452 2.600 2.860 0.14 6.663 3.663 6.690 3.604 0.00 1.00 0.00

25 2.505 2.633 2.859 0.12 6.630 3.670 6.559 3.615 0.01 0.99 0.01

27 2.117 2.386 2.860 0.26 5.376 3.177 5.388 3.091 0.00 1.00 0.00

28 2.261 2.478 2.860 0.21 5.596 3.142 5.720 3.161 0.00 1.00 0.00

29 1.957 2.265 2.789 0.30 4.701 2.782 4.756 2.624 0.50 0.50 0.00

30 1.862 2.221 2.850 0.35 4.263 2.279 4.220 2.199 0.07 0.93 0.02

31 2.198 2.437 2.857 0.23 5.147 3.251 5.036 2.974 0.02 0.98 0.00

32 2.112 2.383 2.860 0.26 5.177 2.915 5.024 2.754 0.00 1.00 0.00

33 2.276 2.474 2.815 0.19 5.681 3.213 5.694 3.243 0.32 0.68 0.00

34 2.316 2.513 2.860 0.19 5.634 3.231 5.549 3.156 0.00 1.00 0.00

36 2.208 2.442 2.852 0.23 5.593 3.127 5.784 3.079 0.05 0.95 0.00

37 2.412 2.574 2.860 0.16 5.879 3.406 5.912 3.272 0.00 1.00 0.00

39 2.531 2.641 2.833 0.11 6.492 3.508 6.467 3.517 0.19 0.81 0.00

40 2.349 2.523 2.825 0.17 5.705 3.171 5.849 3.152 0.25 0.75 0.00

41 2.513 2.664 2.942 0.15 6.312 3.669 6.253 3.419 0.03 0.97 0.00

42 1.355 1.884 2.774 0.51 2.450 1.196 2.459 1.382 0.03 0.97 0.00

44 2.406 2.560 2.826 0.15 4.959 2.921 5.020 2.901 0.24 0.76 0.00

48 1.898 2.210 2.718 0.30 3.355 2.368 3.273 2.330 1.00 0.00 0.00

49 1.964 2.251 2.718 0.28 4.486 2.596 4.455 2.526 1.00 0.00 0.00

53 2.232 2.417 2.718 0.18 4.901 2.808 4.957 2.745 1.00 0.00 0.00

54 2.412 2.528 2.718 0.11 5.800 3.173 5.813 3.135 1.00 0.00 0.00

56 1.722 2.132 2.851 0.40 4.180 2.468 4.061 2.289 0.06 0.94 0.00

57 1.789 2.172 2.840 0.37 3.874 2.373 3.882 2.263 0.14 0.86 0.00

58 1.468 1.970 2.853 0.49 2.773 1.665 2.493 1.533 0.05 0.95 0.00

59 1.401 1.928 2.854 0.51 2.953 1.730 2.935 1.566 0.04 0.96 0.00

61 1.977 2.288 2.826 0.30 4.456 2.531 4.383 2.432 0.24 0.76 0.00

62 1.474 1.974 2.854 0.48 3.066 1.850 2.904 1.659 0.04 0.96 0.00

63 1.571 2.037 2.857 0.45 2.924 1.533 2.960 1.529 0.02 0.98 0.00

65 1.516 2.002 2.856 0.47 3.847 2.098 3.757 1.909 0.03 0.97 0.00

66 1.901 2.245 2.845 0.33 4.088 2.473 4.067 2.341 0.10 0.90 0.00

67 1.902 2.247 2.850 0.33 4.066 2.374 4.107 2.249 0.07 0.93 0.00

70 2.010 2.316 2.854 0.30 2.468 1.354 2.477 1.352 0.05 0.95 0.00  
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Continuation: Table I-7: Carbonate data sets from Verwer et al. (2008). 

72 2.172 2.421 2.860 0.24 5.301 3.139 5.284 3.039 0.00 1.00 0.00

73 2.114 2.383 2.856 0.26 5.154 2.856 5.221 2.818 0.03 0.97 0.00

74 2.362 2.542 2.860 0.17 6.248 3.329 6.364 3.329 0.00 1.00 0.00

75 2.133 2.395 2.858 0.25 5.677 3.073 5.661 2.952 0.02 0.98 0.00

77 2.074 2.357 2.856 0.27 4.791 2.840 4.712 2.743 0.03 0.97 0.00

79 2.127 2.387 2.843 0.25 4.751 2.768 4.696 2.665 0.12 0.88 0.00

80 2.137 2.395 2.846 0.25 5.175 2.914 5.164 2.853 0.10 0.90 0.00

81 2.095 2.372 2.859 0.27 4.740 2.835 4.768 2.778 0.01 0.99 0.00

83 2.399 2.564 2.853 0.16 5.631 3.198 5.586 3.180 0.05 0.95 0.00

84 2.376 2.549 2.853 0.17 5.696 3.170 5.756 3.201 0.05 0.95 0.00

85 2.415 2.573 2.849 0.15 6.140 3.297 6.140 3.290 0.08 0.92 0.00

87 2.506 2.629 2.845 0.12 6.276 3.477 6.210 3.121 0.10 0.90 0.01

88 2.320 2.513 2.849 0.19 5.498 3.053 5.638 3.014 0.08 0.92 0.00

89 2.561 2.667 2.854 0.10 6.384 3.562 6.384 3.456 0.04 0.96 0.00

91 2.254 2.462 2.822 0.20 5.895 3.300 5.702 3.205 0.27 0.73 0.00

92 2.112 2.354 2.758 0.23 5.046 2.749 5.212 2.681 0.72 0.28 0.00

93 2.247 2.440 2.761 0.19 5.683 3.043 5.602 3.004 0.70 0.30 0.00

95 2.508 2.633 2.853 0.12 5.310 2.569 5.400 2.523 0.05 0.95 0.00

107 1.455 1.963 2.855 0.49 2.533 1.547 2.552 1.436 0.01 0.99 514.00

108 1.710 2.125 2.855 0.40 3.015 1.806 2.952 1.723 0.02 0.98 306.00

109 1.655 2.091 2.860 0.42 3.437 1.956 3.507 1.869 0.00 1.00 0.00

110 2.185 2.429 2.859 0.24 5.148 2.838 5.132 2.765 0.01 0.99 0.00

111 1.697 2.118 2.860 0.41 3.819 2.175 3.793 2.162 0.00 1.00 0.00

112 2.146 2.403 2.856 0.25 5.696 3.149 5.682 3.091 0.03 0.97 0.00

113 2.372 2.549 2.860 0.17 4.793 2.649 4.813 2.561 0.00 1.00 0.00

114 2.035 2.334 2.860 0.29 4.378 2.583 4.361 2.606 0.00 1.00 0.00

115 2.156 2.408 2.851 0.24 5.222 2.961 5.190 2.841 0.06 0.94 0.00

116 2.041 2.336 2.854 0.29 4.307 2.563 4.416 2.565 0.02 0.98 0.00

117 2.059 2.348 2.857 0.28 4.374 2.522 4.408 2.524 0.02 0.98 0.00

118 1.850 2.215 2.857 0.35 5.665 3.068 5.665 3.080 0.02 0.98 0.00

119 1.657 2.091 2.855 0.42 3.181 1.997 3.193 1.863 0.03 0.97 0.00

120 1.747 2.150 2.860 0.39 3.618 2.145 3.607 2.094 0.00 1.00 0.00

121 1.925 2.263 2.858 0.33 4.762 2.615 4.813 2.655 0.02 0.98 0.00

122 2.256 2.474 2.856 0.21 5.595 3.121 5.618 3.184 0.03 0.97 0.00

123 2.440 2.589 2.852 0.14 5.761 3.148 5.912 3.192 0.04 0.96 0.00

124 2.536 2.605 2.718 0.07 5.980 3.270 6.034 3.341 1.00 0.00 0.00

125 2.112 2.343 2.718 0.22 5.590 2.865 5.660 2.920 1.00 0.00 0.00

126 2.635 2.667 2.718 0.03 5.353 2.860 5.370 2.803 1.00 0.00 0.00

127 2.431 2.546 2.734 0.11 5.784 3.066 5.989 3.071 0.89 0.11 0.00

128 2.686 2.739 2.831 0.05 5.367 2.835 5.316 2.779 0.01 0.99 0.00

129 2.189 2.432 2.860 0.23 5.071 2.839 5.137 2.801 0.00 1.00 0.00

130 1.968 2.266 2.766 0.29 4.754 2.611 4.725 2.553 0.66 0.34 0.00

131 2.190 2.391 2.718 0.19 5.852 3.076 5.913 3.016 0.98 0.02 0.00

132 1.902 2.213 2.718 0.30 3.496 2.095 3.619 1.997 1.00 0.00 0.00  
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Continuation: Table I-7: Carbonate data sets from Verwer et al. (2008). 

133 2.337 2.526 2.860 0.18 4.200 2.494 4.291 2.325 0.00 1.00 0.00

134 2.280 2.472 2.800 0.19 4.800 2.725 5.105 2.832 0.42 0.58 0.00

136 2.258 2.473 2.853 0.21 4.955 2.826 5.017 2.748 0.05 0.95 0.00

137 2.381 2.509 2.718 0.12 5.408 2.875 5.522 3.060 1.00 0.00 0.00

138 2.112 2.382 2.860 0.26 4.654 2.685 4.673 2.721 0.00 1.00 0.00

139 1.953 2.282 2.863 0.32 4.153 2.455 4.239 2.349 0.02 0.98 518.00

140 2.211 2.417 2.762 0.20 4.888 2.757 4.963 2.704 0.69 0.31 0.00

141 2.377 2.544 2.835 0.16 5.533 3.084 5.520 3.045 0.17 0.83 0.00

142 2.187 2.406 2.775 0.21 5.116 2.853 5.170 2.920 0.58 0.42 0.00

143 2.039 2.329 2.833 0.28 5.091 2.823 5.153 2.850 0.17 0.83 0.00

145 1.367 1.907 2.860 0.52 3.023 1.841 2.996 1.644 0.00 1.00 0.00

146 1.376 1.913 2.860 0.52 3.060 1.827 2.994 1.691 0.00 1.00 0.00

147 1.523 2.007 2.860 0.47 3.197 1.765 3.210 1.728 0.00 1.00 0.00

148 1.515 2.002 2.860 0.47 3.645 2.156 3.610 2.007 0.00 1.00 0.00

150 1.423 1.943 2.860 0.50 3.499 1.930 3.478 1.904 0.00 1.00 0.00

151 1.275 1.849 2.860 0.55 2.868 1.727 2.950 1.618 0.00 1.00 0.00

152 1.283 1.853 2.859 0.55 3.180 1.717 3.193 1.688 0.01 0.99 0.00

154 1.481 1.980 2.860 0.48 3.264 2.047 3.407 1.909 0.00 1.00 0.00

155 1.425 1.945 2.860 0.50 3.130 1.599 3.228 1.589 0.00 1.00 0.00

157 1.276 1.849 2.860 0.55 3.129 1.799 3.174 1.823 0.00 1.00 0.00

158 1.621 2.069 2.860 0.43 3.475 2.051 3.444 1.888 0.00 1.00 0.00

159 1.571 2.038 2.860 0.45 3.255 1.997 3.324 1.893 0.00 1.00 0.00

161 1.939 2.272 2.859 0.32 4.882 2.686 4.866 2.703 0.01 0.99 0.00

162 1.558 2.029 2.860 0.46 3.669 2.108 3.693 1.991 0.00 1.00 0.00

163 1.665 2.097 2.860 0.42 3.758 2.217 3.814 2.128 0.00 1.00 0.00

164 1.918 2.259 2.860 0.33 4.485 2.449 4.396 2.405 0.00 1.00 0.00

165 2.164 2.416 2.859 0.24 4.667 2.724 4.725 2.679 0.01 0.99 0.00

166 1.572 2.038 2.860 0.45 3.708 2.036 3.885 2.000 0.00 1.00 0.00

167 1.823 2.198 2.860 0.36 4.430 2.564 4.328 2.420 0.00 1.00 0.00

168 1.625 2.072 2.860 0.43 3.832 2.219 3.854 1.933 0.00 1.00 0.00

169 1.541 2.018 2.860 0.46 3.513 2.103 3.625 1.998 0.00 1.00 0.00

170 2.515 2.640 2.859 0.12 5.702 3.037 5.674 3.095 0.01 0.99 0.00

171 1.780 2.171 2.859 0.38 4.812 2.426 4.733 2.413 0.01 0.99 0.00

173 2.197 2.437 2.860 0.23 4.646 2.636 4.885 2.664 0.00 1.00 0.00

175 2.058 2.348 2.860 0.28 4.518 2.643 4.611 2.590 0.00 1.00 0.00

176 2.005 2.314 2.860 0.30 4.780 2.716 4.770 2.621 0.00 1.00 0.00

178 2.054 2.346 2.860 0.28 4.963 2.816 4.885 2.746 0.00 1.00 0.00

179 1.834 2.206 2.860 0.36 5.306 2.712 5.469 2.719 0.00 1.00 0.00

182 2.307 2.507 2.860 0.19 5.923 3.138 5.923 3.245 0.00 1.00 0.00

184 1.996 2.309 2.859 0.30 5.046 2.852 5.136 2.888 0.01 0.99 0.00

185 2.041 2.337 2.860 0.29 5.028 2.818 5.165 2.839 0.00 1.00 0.00

187 1.531 2.002 2.810 0.46 4.402 2.307 4.318 2.318 0.35 0.65 0.00

188 1.553 2.026 2.860 0.46 3.158 1.833 3.164 1.758 0.00 1.00 0.00

191 1.727 2.137 2.860 0.40 3.559 2.151 3.698 2.107 0.00 1.00 0.00  
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Continuation: Table I-7: Carbonate data sets from Verwer et al. (2008). 

192 1.843 2.210 2.855 0.35 4.707 2.605 4.666 2.575 0.04 0.96 0.00

194 2.220 2.451 2.859 0.22 5.210 2.951 5.159 2.793 0.01 0.99 0.00

195 2.110 2.367 2.809 0.25 5.271 2.801 5.398 2.863 0.36 0.64 0.00

196 1.877 2.233 2.860 0.34 4.109 2.391 4.098 2.236 0.00 1.00 0.00

199 2.431 2.584 2.851 0.15 5.688 3.078 5.745 3.074 0.06 0.94 0.00

200 2.290 2.477 2.796 0.18 5.643 3.036 5.685 3.027 0.45 0.55 0.00

203 2.202 2.440 2.858 0.23 5.339 2.928 5.395 3.007 0.01 0.99 0.00

204 2.327 2.518 2.851 0.18 5.337 2.931 5.355 2.896 0.06 0.94 0.00

206 2.438 2.591 2.860 0.15 5.467 2.953 5.566 2.928 0.00 1.00 0.00

208 1.911 2.233 2.776 0.31 4.558 2.695 4.595 2.555 0.59 0.41 0.00

209 2.422 2.535 2.718 0.11 5.354 2.866 5.372 2.871 1.00 0.00 0.00

210 2.384 2.511 2.718 0.12 5.671 2.903 5.734 2.896 1.00 0.00 0.00

212 2.071 2.347 2.825 0.27 2.182 1.303 2.238 1.248 0.25 0.75 0.00

213 1.311 1.861 2.800 0.53 2.076 1.131 2.087 1.118 0.43 0.57 0.00

214 1.471 1.957 2.776 0.47 2.416 1.400 2.451 1.319 0.59 0.41 0.00

215 1.738 2.144 2.859 0.39 3.362 2.048 3.333 1.955 0.01 0.99 112.00

216 1.349 1.874 2.737 0.51 2.091 1.139 2.097 1.139 0.86 0.14 0.00

217 1.673 2.102 2.856 0.41 3.356 2.068 3.392 2.011 0.03 0.97 0.00

218 2.358 2.538 2.854 0.17 5.305 2.982 5.251 3.017 0.04 0.96 0.00

219 2.367 2.544 2.856 0.17 5.397 3.007 5.379 3.074 0.03 0.97 0.18

220 2.458 2.595 2.833 0.13 5.404 3.072 5.497 3.075 0.19 0.81 0.00

221 2.180 2.415 2.820 0.23 4.996 2.605 5.059 2.693 0.28 0.72 0.00

222 1.820 2.196 2.859 0.36 3.756 2.331 3.956 2.204 0.01 0.99 0.00

223 1.976 2.292 2.846 0.31 4.209 2.453 4.220 2.373 0.10 0.90 0.00

224 2.110 2.380 2.854 0.26 4.778 2.739 4.778 2.707 0.04 0.96 0.00

225 1.930 2.264 2.849 0.32 4.372 2.519 4.713 2.483 0.08 0.92 0.00

226 2.285 2.488 2.843 0.20 5.597 3.087 5.637 3.087 0.12 0.88 0.00

227 2.283 2.491 2.856 0.20 5.009 2.878 5.009 2.818 0.03 0.97 0.00

228 1.953 2.276 2.839 0.31 5.082 2.520 5.023 2.428 0.15 0.85 0.00

229 2.168 2.415 2.849 0.24 5.250 2.927 5.394 2.942 0.08 0.92 0.00

230 1.892 2.241 2.853 0.34 4.079 2.455 4.157 2.449 0.05 0.95 0.00

231 2.052 2.344 2.859 0.28 4.122 2.451 4.166 2.361 0.01 0.99 0.00

232 1.907 2.263 2.907 0.34 4.057 2.358 4.142 2.261 0.07 0.93 0.00

233 2.051 2.343 2.856 0.28 4.580 2.593 4.645 2.578 0.03 0.97 0.00

234 2.053 2.335 2.823 0.27 4.831 2.754 4.968 2.718 0.26 0.74 0.00

235 2.120 2.383 2.843 0.25 4.693 2.646 4.839 2.562 0.12 0.88 0.00

236 1.466 1.969 2.853 0.49 3.154 1.759 3.115 1.694 0.05 0.95 0.00

237 1.710 2.124 2.851 0.40 3.818 2.229 3.845 2.161 0.06 0.94 0.00

238 2.190 2.429 2.849 0.23 4.437 2.612 4.425 2.552 0.08 0.92 0.00

239 2.130 2.379 2.807 0.24 4.933 2.748 5.028 2.733 0.38 0.62 0.00

240 2.276 2.460 2.768 0.18 5.003 2.688 5.003 2.650 0.65 0.35 0.00

241 2.207 2.433 2.825 0.22 5.824 3.011 5.867 3.005 0.25 0.75 85.70

242 1.507 1.970 2.727 0.45 2.831 1.700 2.837 1.625 0.94 0.06 0.00

243 1.601 2.026 2.718 0.41 3.005 1.796 3.075 1.713 1.00 0.00 0.00  
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Continuation: Table I-7: Carbonate data sets from Verwer et al. (2008). 

244 2.221 2.411 2.722 0.18 5.100 2.764 5.084 2.742 0.97 0.03 0.00

245 2.061 2.328 2.776 0.26 5.789 2.887 5.854 2.879 0.59 0.41 0.00

246 2.083 2.352 2.815 0.26 4.811 2.585 4.886 2.489 0.32 0.68 0.00

247 1.672 2.083 2.774 0.40 3.826 2.200 3.911 2.056 0.60 0.40 125.00

248 1.965 2.286 2.849 0.31 4.992 2.702 5.139 2.752 0.08 0.92 0.00

249 2.022 2.312 2.810 0.28 5.216 2.925 5.182 2.908 0.36 0.64 0.00

250 1.483 1.981 2.856 0.48 3.301 2.033 3.287 1.967 0.03 0.97 0.00

251 2.049 2.327 2.802 0.27 4.928 2.750 5.007 2.867 0.41 0.59 0.00  
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Table I-8: Carbonate data sets from Woodside et al. (1998). 

Sample Depth Dry‐Rhob Sat‐Rhob Rhog Por Vp‐sat Vs‐sat CaCO3 Dolomite
 (mbsf)  (g/cc) (g/cc) (g/cc) (km/s) (km/s) (wt%)  (wt%)

1 125.58 2.19 2.37 2.72 0.20 4.797 2.402 0.97 0.05
2 145.25 2.33 2.45 2.75 0.15 5.646 2.938 1.00 0.22
3 146.07 2.56 2.60 2.76 0.07 5.722 3.022 1.00 0.26
4 154.99 2.07 2.30 2.76 0.25 4.349 2.371 1.00 0.27
5 164.64 2.39 2.53 2.81 0.15 5.550 3.031 1.00 0.64
6 164.67 2.41 2.54 2.87 0.16 5.430 3.035 1.00 1.05
7 173.97 1.97 2.22 2.72 0.27 4.078 2.230 0.99 0.00
8 183.95 2.37 2.52 2.83 0.16 5.580 3.082 1.00 0.74
9 192.44 2.54 2.60 2.84 0.10 6.151 3.117 1.00 0.81
10 193.79 2.32 2.49 2.85 0.19 5.359 2.967 1.00 0.89
11 202.60 2.26 2.44 2.83 0.20 5.287 2.803 1.00 0.79
12 203.93 2.31 2.48 2.85 0.19 5.556 3.060 1.00 0.91
13 215.33 2.03 2.30 2.85 0.29 4.623 2.528 1.00 0.86
14 222.74 2.13 2.37 2.81 0.24 4.486 2.497 1.00 0.65
15 233.63 1.98 2.25 2.76 0.28 3.712 1.857 1.00 0.30
16 301.11 1.77 2.04 2.68 0.34 3.066 1.668 0.63 0.00
17 307.99 1.60 1.98 2.70 0.41 2.948 1.536 0.77 0.00
18 318.68 1.73 2.09 2.71 0.36 3.053 1.578 0.89 0.00
19 318.74 1.73 2.08 2.71 0.36 3.252 1.682 0.92 0.00
20 323.81 1.83 2.14 2.71 0.32 3.242 1.688 0.88 0.00
21 337.58 1.72 2.08 2.71 0.36 3.299 1.682 0.89 0.00
22 337.61 1.72 2.07 2.71 0.37 3.103 1.623 0.92 0.00
23 346.42 1.95 2.21 2.71 0.28 3.350 1.727 0.92 0.00
24 349.65 1.95 2.22 2.71 0.28 3.404 1.786 0.91 0.00
26 130.00 1.72 2.06 2.70 0.36 2.522 1.230 0.79 0.00
27 140.89 1.78 2.11 2.71 0.34 2.665 1.304 0.89 0.00
29 149.35 1.79 2.12 2.71 0.34 2.963 1.500 0.91 0.00
30 149.45 1.80 2.12 2.71 0.34 2.969 1.496 0.91 0.03
31 150.91 1.70 2.04 2.71 0.37 2.728 1.458 0.89 0.00
32 153.14 1.76 2.09 2.71 0.35 2.847 1.438 0.88 0.00
33 158.28 1.81 2.14 2.71 0.33 3.012 1.568 0.90 0.00
34 159.51 1.73 2.07 2.71 0.36 2.861 1.555 0.91 0.00
35 160.78 1.68 2.04 2.70 0.38 2.709 1.356 0.85 0.00
36 167.60 1.66 2.04 2.72 0.39 2.881 1.429 0.88 0.11
38 178.60 1.66 2.01 2.70 0.39 2.624 1.429 0.83 0.01
40 188.06 1.71 2.03 2.73 0.37 2.919 1.520 0.91 0.15
41 189.31 1.67 2.02 2.77 0.40 3.083 1.640 0.94 0.41
42 197.40 1.64 2.03 2.76 0.41 2.922 1.501 0.95 0.31
43 198.00 1.65 2.04 2.74 0.40 2.917 1.510 0.93 0.19  
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Continuation: Table I-8: Carbonate data sets from Woodside et al. (1998). 

44 199.75 1.65 2.04 2.73 0.40 3.060 1.583 0.95 0.14
45 206.40 1.56 1.97 2.71 0.42 2.990 1.531 0.92 0.00
46 207.60 1.72 2.07 2.71 0.37 2.994 1.504 0.92 0.00
47 208.15 1.65 2.03 2.71 0.39 2.990 1.523 0.90 0.00
49 218.81 1.65 2.04 2.71 0.39 3.011 1.544 0.95 0.00
50 226.39 1.74 2.09 2.72 0.36 3.167 1.623 0.97 0.00
51 227.36 1.73 2.08 2.71 0.36 3.089 1.559 0.93 0.00
52 235.69 1.72 2.07 2.71 0.37 3.117 1.575 0.92 0.00
53 236.57 1.77 2.11 2.71 0.35 3.093 1.584 0.94 0.00
54 244.58 1.75 2.10 2.71 0.35 3.011 1.549 0.93 0.00
55 246.86 1.71 2.01 2.71 0.37 2.887 1.545 0.92 0.00
56 254.42 1.65 1.95 2.71 0.39 2.917 1.636 0.93 0.00
57 256.68 1.82 2.15 2.71 0.33 2.989 1.493 0.92 0.00
58 257.57 1.72 2.08 2.71 0.37 3.059 1.556 0.92 0.00
59 264.20 1.84 2.15 2.71 0.32 3.109 1.602 0.92 0.00
60 265.77 1.80 2.13 2.71 0.33 3.019 1.510 0.91 0.00
62 275.02 1.53 1.95 2.71 0.44 2.919 1.493 0.96 0.00
63 276.66 1.68 2.05 2.71 0.38 3.100 1.610 0.96 0.00
65 342.73 1.85 2.18 2.71 0.32 3.122 1.663 0.92 0.00
66 370.15 1.74 2.08 2.71 0.36 3.132 1.658 0.93 0.00
68 408.00 1.92 2.20 2.72 0.29 3.627 1.918 0.96 0.00  

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
Glossary 

 

Symbols used in this Thesis: 

 

AR                   Aspect ratio 

α                     Aspect ratio 

ARp                Aspect ratio  velocity pV

ARs                 Aspect ratio  from  velocity sV

DEM-ARp      Aspect ratio from DEM needed to match  data pV

DEM-         Aspect ratio from DEM needed to match  data pVpα

DEM-ARs      Aspect ratio from DEM needed to match  data sV

DEM-         Aspect ratio from DEM needed to match  data sVsα

AR-mean        Mean aspect ratio 

CPA- ARp      Aspect ratio from CPA needed to match  data pV

CPA-          Aspect ratio from CPA needed to match  data pVpα

CPA- ARs      Aspect ratio from DEM needed to match  data sV

CPA-          Aspect ratio from DEM needed to match  data sVsα

SC-AR           Aspect ratio from SC needed to match  data sV

Cal                 Calcite 

k-feld              k-feldspar 

kaol                 Kaolinite 

mbsf               Meters below sea floor 

Pc                  Confining pressure 
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Pp                 Pore pressure 

Perm             Permeability 

-sat          P-wave velocity at full saturation condition pV

-dry         P-wave velocity at dry condition pV

sV -sat           S-wave velocity at full saturation condition 

sV -dry          S-wave velocity at dry condition  

HS                Hashin-Shtrikman 

HSA    Hashin-Shtrikman upper and lower bounds average 

HS-               Hashin-Shtrikman lower bound 

HS+              Hashin-Shtrikman upper bounds 

DEM            Differential effective medium  

CPA             Coherent potential approximation 

MM              Mondescu and Muthukumar model 

DL                Devaney and Levine model 

CPSF            Compliant phase supported frame  

SPSF            Stiff phase supported frame  

TF                 Transitional frame 

TFC              Transitional frame continuous 

TFD              Transitional frame discontinuous 

MLHS     Modified lower Hashin-Shtrikman 

MUHS     Modified upper Hashin-Shtrikman 

MLHS-PG     Modified lower Hashin-Shtrikman bounds with porous grains 

MUHS-PG    Modified upper Hashin-Shtrikman bounds with porous grains 

CPG     Cementation theory with porous grains 

WPG             Wood’s model with porous grain 

                 P-wave velocity  pV

sV                  S-wave velocity  

SC-P-wave velocity  P-wave velocity from SC 

DEM-P-wave velocity      P-wave velocity from DEM 
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