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Abstract 
 

The elastic and electric parameters of rocks that can be obtained from seismic and 

electromagnetic data depend on porosity, texture, mineralogy, and fluid. However, 

seismic data seldom allow us to accurately quantify hydrocarbon saturation.  On the other 

hand, in the case of common reservoir rocks (i.e., sandstones and carbonates), resistivity 

strongly depends on porosity and saturation. Therefore, the recent progress of controlled-

source-electromagnetic (CSEM) methods opens new possibilities in identifying and 

quantifying potential hydrocarbon reservoirs, although its resolution is much lower than 

that of seismic data. Hence, a combination of seismic and CSEM data arguably offers a 

powerful means of finally resolving the problem of remote sensing of saturation.  The 

question is how to combine the two data sources (elastic data and electrical resistivity 

data) to better characterize a reservoir.  

To address this question, we introduce the concept of P-wave impedance and 

resistivity templates as a tool to estimate porosity and saturation from well log data. 

Adequate elastic and resistivity models, according to the lithology, cementation, fluid 

properties must be chosen to construct these templates. These templates can be upscaled 

to seismic and CSEM scale using Backus average for seismic data, and total resistance 

for CSEM data.  
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We also measured velocity and resistivity in Fontainebleau samples in the laboratory. 

Fontainebleau formation corresponds to clean sandstones (i.e., low clay content). We 

derived an empirical relation between these P-wave velocity and resistivity at 40MPa 

effective pressure, which is around 3 km depth at normal pressure gradients. We were not 

able to test if this relation could be used at well or field data scales (once appropriate 

upscaling was applied), since we did not have a field dataset over a stiff sandstone 

reservoir. 

A relationship between velocity and resistivity laboratory data was also found for a 

set of carbonates. This expression was quadratic, and not linear as in the case of 

Fontainebleau sandstones. There are other factors that influence this relationship in the 

case of these carbonates, which include pore geometry, and amount of micritic cement. 

We observed that the expression is almost linear, but it deviates as we approach lower 

resistivities. This deviation can be explained by the presence of stiff pores such as moldic 

or intra-granular pores, which causes high velocity but low resistivity values when water-

saturated. In the same way, the effect of micrite cement on velocity is stronger than its 

effect on resistivity, and that also is responsible for some of the scatter that we observe. 

We also modeled both velocity and resistivity using self-consistent approximation 

with the same pore or inclusion geometries in both carbonate and sandstone laboratory 

datasets. In the case of carbonates, we found that we had to include needle-like pores to 

explain the low resistivity but high velocities. Needle is one of the geometries that allow 

us to have connected stiff pores. However, we also found that a fraction of compliant 

pores also had to be included in order to explain the velocity measurements on the 

carbonate dataset. The self-consistent model also approximated well the velocity and 

resistivity laboratory measurements on the Fontainebleau sandstones, using similar aspect 

ratios for both the velocity and the resistivity. 

As far as semi-empirical and empirical models, we observed how the stiff-sand model 

fit well the Fontainebleau data at 40MPa, including S-wave velocities. The Raymer-

Hunt-Gardner relation also did a good job at predicting P-wave velocity.  Archie’s 

equation with cementation exponent between 1.6 and 2.1 fits the resistivity measurements 
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on the Fontainebleau sandstones. These two relationships can be combined to create a 

resistivity – P-wave velocity transform for this dataset. 

When we attempted to use CSEM data to limit the shallow and low-frequency 

acoustic impedance trend for seismic inversion, we found that appropriate elastic and 

resistivity models must be chosen in order to have a good prediction of acoustic 

impedance, given resistivity.  These expressions can be calibrated using well data with 

particular emphasis to the overburden. If no well log data are available in the shallow 

section, using the CSEM-derived resistivity data and an adequate cross-property relation 

(for example, one based on soft-sand model and Archie’s equation) can be a good 

approach to predict the initial low frequency shallow acoustic impedance model. 

Validation tests showed that using the background trend from CSEM data as a constraint 

in impedance inversion can give a better fit to the acoustic impedance. 

As part of our analysis of gas hydrate bearing sandstones, we found that normalized 

resistivity versus P-wave impedance templates can also be useful to predict reservoir 

properties, such as porosity and saturation for a gas-hydrate reservoir at well log scale. 

Porosity and saturation prediction of the hydrate-bearing layer from seismic data alone is 

highly dependent on its thickness and the properties of the overburden, and requires well-

control data that can point to appropriate models and properties to use for the overburden. 

However, it would be interesting to test, using a resistivity model obtained from seismic 

data as the initial input, a CSEM inversion on a gas-hydrate-bearing sandstone. 
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Chapter 1 

Introduction 
 

1.1  Motivation and objectives 

The elastic and electric parameters of rocks that can be obtained from seismic and 

electromagnetic data depend on porosity, texture, mineralogy, and fluid. However, 

seismic data seldom allow us to accurately quantify hydrocarbon saturation.  On the 

other hand, in the case of common reservoir rocks (i.e., sandstones and carbonates), 

resistivity strongly depends on porosity and saturation. Therefore, the recent progress 

of controlled-source-electromagnetic (CSEM) methods opens new possibilities in 

identifying and quantifying potential hydrocarbon reservoirs, although its resolution is 

much lower than that of seismic data. Hence, a combination of seismic and CSEM 

data arguably offers a powerful means of finally resolving the problem of remote 

sensing of saturation.  The question is how to rigorously combine the two data sources 

(elastic data and electrical resistivity data) to arrive at the desired product of porosity 

and hydrocarbon saturation (i.e., hydrocarbon volume).  
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The objective of this research study is to develop a methodology for reservoir 

characterization that incorporates both seismic and resistivity measurements. 

Analyzing electric and elastic data jointly could help us improve estimates of fluid 

saturation, and to better describe the pore structure of a rock. 

Rock properties such as mineralogical composition, porosity, fluid saturation, pore 

geometry, as well as their dependence on pressure and temperature affect both the 

elastic and the electrical properties of rocks. The existence of such relationships 

provides the foundation for predicting rock properties, and their changes under 

reservoir conditions, from in situ measured physical data.  

Rock physics has played a fundamental role in the last decades to understand the 

relationships between rock properties and their effects on seismic (see Nur and Wang, 

1989; Wang and Nur, 1992; Wang and Nur, 2000, for a comprehensive review) and 

electrical data (e.g., Mavko et al., 1998; and Knight and Endres, 2005, for a 

comprehensive review). The general objective of rock physics aims at understanding 

how to translate basic rock properties to geophysical observables (and vice versa) for 

an enhanced exploration and characterization of the Earth’s subsurface.  

Our ability to predict rock properties depends on the reliability of such 

relationships as well as on the limitations of each method. Both seismic and electrical 

methods, in fact, show inherent limitations that are mostly related to the sensitivity of 

the velocity and resistivity to a given rock property. Moreover, due to the complexity 

of the rock system, the inversion of its properties from in-situ measured physical 

observables is inherently an underdetermined problem. There is, thus, the need to 
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improve our ability to describe the physical behavior of porous rocks in order to 

enhance the characterization of rock formations. A way to improve the 

characterization of rock formations is by increasing the number of in-situ physical 

observables so that their joint inversion in terms of rock properties becomes less non-

unique. This calls for the development of physics-based relationships between the 

acoustic and electric properties to be used for the inversion procedures. One goal of 

this work is to develop, explore, and verify such relationships by controlled laboratory 

experiments and theoretical modeling.  

Applying laboratory observations and theory at well logging or at surface seismic 

reflection or CSEM scales is not straightforward. The scales of these datasets are very 

different; and seismic and resistivity anisotropy and dispersion may play an important 

role when upscaling. Therefore, one interesting question to address would be: Can we 

use the same models of elastic and electrical properties, at these very different scales, 

to estimate reservoir properties? At the well log scale, many available models have 

already been tested, and prove their effectiveness in certain situations, and their 

weakness in others. But, it is also interesting to attempt predictions of porosity and 

saturation at the seismic and CSEM scales using these models. 

1.2  Chapter description 

Chapter 2 introduces the concept of P-wave impedance – resistivity templates, as a 

useful tool to combine the analysis of elastic and resistivity data at the well log scale, 

and also shows the effect of upscaling to seismic and CSEM scales by forward 

modeling assuming a sand wedge in a shaly background. Different common 



CHAPTER 1: INTRODUCTION 
 

4

geological scenarios are assumed to perform this modeling and observe the effect that 

the thickness of the reservoir has on our ability to predict its properties using seismic 

and CSEM data. This work was published in The Leading Edge with contributions 

from Jack Dvorkin and Gary Mavko (Gomez et al., 2008). 

Chapter 3 is a study of resistivity, P- and S-wave velocities and their relationships 

to porosity and permeability in Fontainebleau sandstones. We review relations 

between porosity and permeability. We measure resistivity as a function of the salinity 

of the saturating fluid to identify the main mechanism of electrical conduction in these 

rocks. We then model resistivity as a function of porosity and permeability, and 

analyze the relationship between these properties. P- and S-wave velocities are also 

measured as a function of confining pressure, and their relationship with porosity is 

also modeled. Finally, we also study the relation between velocity and resistivity. 

Tiziana Vanorio provided suggestions and assistance in the laboratory for this work. 

Jack Dvorkin contributed in the modeling and analysis. 

Chapter 4 describes how velocity and resistivity relate in the case of a carbonate 

dataset, using controlled laboratory measurements of these properties. We observe 

how effective medium modeling can help us identify general characteristics of the 

pore space that will be consistent with the velocity and resistivity measurements. It 

also shows that since velocity and resistivity are related through porosity, there is a 

relation between these two properties, but it is actually a very complex one, and also 

involves permeability, pore shape, and grain size. This work was performed in the 

Stanford Rock Physics Laboratory with assistance of Tiziana Vanorio and Cinzia 
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Scotellaro. Jack Dvorkin and Gary Mavko gave suggestions in the analysis of the data. 

Some of this work has been accepted as a presentation and abstract in the 2009 Society 

of Exploration Geophysicists (SEG) Annual Meeting. 

Chapter 5 is a review and modeling chapter where we describe the controlled-

source electromagnetic (CSEM) technique, which is currently used to measure 

resistivity remotely offshore. We do not process field EM data, but we work with 

these data, therefore it is important to understand the principles behind it. To 

accomplish this, we perform forward EM modeling, and also forward seismic 

modeling and compare the resolution of these two techniques. 

Chapter 6 is an application to field data of the rock physics P-wave impedance – 

resistivity templates. We also show how templates can be upscaled and used with field 

data to predict porosity and saturation.  We demonstrate how to integrate the 

interpretation of seismic and EM data to predict reservoir properties, using seismic 

impedance and CSEM resistivity sections. This work was published in The Leading 

Edge with contributions from Jack Dvorkin and Gary Mavko (Gomez et al., 2008). 

Chapter 7 presents a different way of integrating seismic and CSEM data, by using 

the CSEM-derived resistivity to estimate a low frequency P-wave impedance trend to 

use as initial input for seismic inversion. It can be difficult to define an initial model 

for acoustic impedance for seismic inversion, in particular in the shallow section 

where no well log data may be present. CSEM data can help define an initial acoustic 

impedance model, in particular in the shallow interval, using a rock physics resistivity 

– P-wave impedance transform. The initial idea for this work was published in The 
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Leading Edge together with Tapan Mukerji, and Gary Mavko (Mukerji et al., 2009). 

Later progress will be published in the 2009 SEG Annual Meeting Abstract Volume.  

Chapter 8 is a forward modeling catalogue of gas hydrate reservoirs. When 

inverting EM data in an area where gas hydrates are present, any prior information we 

can obtain from seismic data can be very useful. We model P-wave impedance as a 

function of porosity and gas hydrate saturation, in order to predict resistivity. We 

study the role of seismic resolution and the properties of the overburden in our ability 

to predict resistivity from seismic attributes. Jack Dvorkin contributed in the modeling 

and analysis included in this chapter as well. 

Chapter 9 presents conclusions, and summarizes our results, and discusses them in 

an integrated framework, particularly how to use different approaches to combine 

elastic and resistivity data to help in understanding and estimation of reservoir 

properties. 
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Chapter 2 

Hydrocarbon Volume Estimate 
from Elastic and Resistivity Data 
 

2.1 Abstract 

The volume of hydrocarbon in place, which is the product of porosity and 

saturation, is the ultimate target of exploration and development.  Seismic reflections 

depend on the contrasts of the elastic properties (impedance and velocity), which, in 

turn, are predominantly affected by porosity and mineralogy. On the other hand, 

resistivity, which is one of the quantities provided by electromagnetic methods, 

strongly reacts to a combination of porosity and saturation.  The latter is impossible to 

estimate without making an assumption about the former. Neither seismic nor 

resistivity data, if analyzed separately, can provide the desired estimate of 

hydrocarbon in place.  The question is how to use these two data sources together. We 

offer a solution by combining two theoretical models, one that relates the elastic-wave 

velocity to porosity, mineralogy, and pore fluid, and another that relates resistivity to 

porosity, saturation, cementation and tortuosity. These two models allow us to produce 
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rock-physics templates of the normalized resistivity versus acoustic impedance that 

serve to solve for porosity and saturation from these two inputs.  We show examples 

of such templates for a sandstone reservoir with methane hydrate as well as with oil 

and gas.  This concept is based on rock-physics models and, therefore, is amenable to 

upscaling, which is required to interpret field measurements. We show how the 

thickness of the reservoir plays an important role in the effectiveness of this technique 

at the field scale.  

2.2 Introduction 

The volume of hydrocarbon in place, which is the product of porosity and 

saturation, is the ultimate target of exploration and development.  Currently, 

reflection-seismic profiling is the most widely used method of exploring the 

subsurface.  Recently electromagnetic remote sensing, such as CSEM (controlled-

source electromagnetic profiling), is gaining acceptance in the industry. 

Seismic reflections depend on the contrasts of the elastic properties (impedance 

and velocity) which, in turn, are predominantly affected by porosity and mineralogy.  

The elastic properties of rock may also strongly depend on the saturation and the type 

of saturating fluid.  However, their dependence on partial hydrocarbon saturation (if 

the latter is larger than zero and smaller than one) is weak (Figure 2.1).  As a result, it 

is often difficult to extract saturation from seismic data. One of the few successful 

attempts to extract saturation from seismic data use P-to-S (PS) converted waves, in 
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particular an attribute called PS elastic impedance (PSEI) at near and far offsets 

(Gonzalez et al., 2003). 

 

 

Figure 2.1: P-wave velocity (Km/s) versus gas saturation. Blue and red lines are for sands with 
porosities (PHI): 0.27 and 0.10 and properties as given in Gomez and Tatham (2007). Pink, 
green and black lines are sands with porosities (PHI): 0.39, 0.33 and 0.26, and properties as 
given in Domenico (1974). 

 

On the other hand, resistivity, which is one of the quantities provided by 

electromagnetic methods, strongly depends on a combination of porosity and 

saturation, but the latter is impossible to estimate without making an assumption about 

the former. Therefore, neither seismic nor resistivity data, if analyzed separately, can 

provide the desired estimate of hydrocarbon in place.  The question that we address in 

this chapter, and through this thesis, is how to integrate these two data sources. 

Here we discuss a physics-driven solution which combines two theoretical models, 

one that relates the elastic-wave velocity to porosity, mineralogy, and pore fluid and 
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the other that relates resistivity to porosity and saturation.  This approach allows us to 

produce templates of the normalized resistivity versus the acoustic impedance that we 

use to solve for porosity and saturation from these two inputs.  We show examples of 

such templates for a sandstone reservoir with methane hydrate as well as with oil and 

gas.  Our model-driven templates are flexible:  they can be constructed to honor the 

site-specific rock properties to account for a variety of variables, such as diagenetic 

cementation and depositional sorting, as well as the presence of shale. 

2.3 Rock Physics Impedance – Resistivity Templates 

Consider a clean, unconsolidated gas sand in which porosity (φ  ) varies from 0.1 

to 0.4 and water saturation ( Sw) is between 0.2 and 1.0.  In Figure 2.2 we display the 

elastic properties as computed from the soft-sand model (Dvorkin and Nur, 1996), 

which is appropriate to describe the elastic properties of unconsolidated sand and 

shale.  We observe that the P-wave impedance ( ) strongly reacts to PI φ   but only 

weakly depends on Sw , unless Sw =1.0 .  Poisson’s ratio (ν ) also helps discriminate 

between wet and gas-filled sediment but fails to quantify . Sw

Figure 2.3 (left), where the same sand is used, reaffirms the fact that Sw  cannot be 

quantified from Ip .  Indeed, the Sw  contour lines are essentially vertical for Sw <1.  In 

the same figure (right) we display the normalized resistivity Rt /Rw  ( Rt  is the 

measured resistivity and Rw  is that of water) as calculated from Archie’s resistivity 

equation. Sw  strongly reacts to Rt /Rw ; however, it cannot be quantified without 
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knowing φ .  Indeed, at Rt /Rw =100, Sw  can be 0.25 for φ = 0.4 or about 0.70 for 

φ = 0.2. 

 

 
Figure 2.2: Poisson’s ratio (PR) versus the acoustic or P-wave impedance for unconsolidated clean 

gas sand, color-coded by the total porosity (left) and water saturation (right), assuming pore 
pressure 30 MPa, temperature of 80oC, and gas gravity 0.65. 

 
 
Using the same transforms, one among φ , Sw , and Ip  and the other among φ , Sw , 

and R ≡ Rt /Rw , we create a P-wave impedance-resistivity mesh (Figure 2.4).  The 

intersection of the two measurements is projected upon the saturation and porosity 

contours to yield (in this example) 20.0=φ  and Sw = 0.50.  Having both 

measurements helps constrain porosity and saturation, whereas each of the two 

measurements taken separately can yield only wide ranges of these variables. 

In subsequent sections and chapters of this thesis, we will refer to this P-wave 

impedance-resistivity mesh as: a rock physics impedance-resistivity template. The 

term rock physics template (RPT) was first introduced by Ødegaard and Avseth 
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(2003). Avseth et al. (2005) define an RPT as a chart of locally constrained rock 

physics models for prediction of lithology and hydrocarbons. In general, these charts 

are acoustic impedance versus Vp/Vs ratio crossplots, which can be used for rock 

physics analysis.  Avseth et al. (2005) also extends them to other seismic attributes, 

such as acoustic impedance versus shear impedance, or Lamé’s parameter (λ) versus 

shear modulus (μ). The charts or templates, which we have created of P-wave 

impedance and resistivity, are also made of locally constrained models, and allow the 

prediction of porosity and saturation. Previous knowledge of lithology and pore fluid 

properties are required to create them; therefore, they can be used as a complement to 

Ødegaard and Avseth (2003)’s RPT. 

 
 
 

 
 

 
Figure 2.3: Water saturation versus the P-wave impedance (left) and versus the normalized 

resistivity (right), color-coded by the total porosity for the same unconsolidated clean gas sand 
as in Figure 2.2. 
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The power of this simple approach is its flexibility:  there are many available rock-

physics models of velocity-porosity and resistivity-porosity-saturation relations that 

can be used to produce site-specific templates that honor texture (e.g., cemented 

versus uncemented rock) as well as lithology.  For example, in Figure 2.5 we display a 

template of Ip  versus R, where the soft-sand model is replaced by the stiff-sand model 

(Gal et al., 1998), a case that is relevant for contact-cemented rock.  As expected, the 

same impedance and resistivity inputs produce larger porosity and gas saturation than 

in Figure 2.4, simply because at the same porosity, cemented rock has a higher 

velocity than its uncemented counterpart.  This result illuminates the importance of 

using the right model for the right rock.  This model can be found using “rock-physics 

diagnostics” as discussed in, for example, Dvorkin et al. (2002 and 2004). 

 
 

 
 
Figure 2.4: Normalized resistivity versus the P-wave impedance template for the same 

unconsolidated clean gas sand as in Figure 2.2.  The large red circle is the intersection of the 
hypothetical resistivity and impedance data with small red circles showing its projections on 
the porosity and saturation contours. 
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Figure 2.5: Same as Figure 2.4 but for cemented sandstone (using the stiff-sand model). 
 
 
 
 
This flexibility accommodates not only the rock type but also the fluid, or more 

generally, the pore-filling material. To build a relevant Ip  versus R template (Figure 

2.6), we select the elastic and resistivity models describing a hydrate reservoir as 

established for the Mallik 2L-38 hydrate well (Canada) by Cordon et al. (2006).  The 

log data superimposed upon this rock-physics mesh indicate that the porosity of the 

reservoir is about 0.3 with a hydrate saturation up to 0.8, which is consistent with the 

values directly observed in the well.  A detailed treatment of this case is described in 

Chapter 8 of this thesis. 
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Figure 2.6: Same as Figure 2.4 but for a methane-hydrate reservoir.  The well data (symbols) are 

color-coded by water saturation (one minus hydrate saturation).  Dark blue indicates high 
amounts of hydrate.  The red and brown symbols are for shale and thus fall outside of the mesh 
which is built for clean sand. 

 
 

2.4 Effect of Reservoir Thickness: Wedge Modeling 

As the thickness of the reservoir decreases, both the seismic and resistivity 

responses are affected. To study how these changes in the seismic and electric 

responses can affect our ability to predict porosity and saturation, we model four 

different scenarios. 

In the following example we consider a blocky gas sandstone sandwiched between 

two shale half-spaces with identical properties.  First, we assume that a soft sandstone 

wedge is surrounded by a soft shale, where elastic properties depend on porosity, 

which varies mainly as a function of sorting (Dvorkin and Nur, 1996). Second, we 

assume both sand and shale are contact-cemented rocks, using the stiff sand model 

(Gal et al., 1998). Third, we assume that a soft sandstone is embedded in a stiff shale, 
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and finally (fourth) a stiff sandstone embedded in a soft shale.  All of these settings are 

geologically plausible. 

For each scenario, we vary the shale porosity, )(SHφ , from 0.5 down to 0.1 and 

the sand porosity, )(SSφ , from 0.35 down to 0.2.   The coordination number used to 

model both sand and shale is 6, the formation water resistivity is 0.1 ohm·m, and the 

critical porosity is 0.4. We also assume a clay content of 0.05 for the sand, and 0.8 for 

the shale. Archie’s equation (Archie, 1942), assuming a=0.89, and m=n=2, is used for 

all models in this example, although in general, these empirical constants will depend 

on the particular reservoir. 

We model a gas sandstone reservoir with thickness changing from 25 m down to 

2 m. Upscaling is performed using a Backus average with a running window of 12.5 m 

for the P-wave impedance, and an arithmetic average (equivalent to combining layers 

as resistors in series) with a running window of 150 m for resistivity.  The window for 

P-wave impedance corresponds to a quarter of the seismic wavelength assuming a 

frequency of 50 Hz and an average seismic velocity of 2500 m/s. While the window 

for the resistivity is around 10% of the burial depth, which is a rough estimate of the 

resolution expected for these data (Strack, 1992). 
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Figure 2.7: 90% gas-saturated sandstone of 35 % porosity and 5 % clay content embedded in a 

shale of 50 % porosity and 80% clay content.  Left: P-wave impedance from soft sand model, 
upscaled using the Backus average. Right: Resistivity modeled using Archie’s equation 
(a=0.89 and m=n=2), upscaled using the arithmetic average. Thickness of the gas sand from 
left to right in each panel is 25, 12, 8, 6, 4 and 2 meters. 

 

 

One such realization is shown in Figure 2.7, for a shale with porosity 0.5 and 

sandstone with porosity 0.35 and gas saturation 0.9, using the soft-sand model to 

compute the elastic properties of both sand and shale. Resistivity and P-wave 

impedance are plotted versus depth for a variety of sand thicknesses. The top, leftmost 

panel of  Figure 2.8 shows the normalized resistivity versus P-wave impedance in the 

middle of the gas interval for each of the thicknesses show in Figure 2.7. In this 

particular case, we observe that the upscaled P-wave impedance of the gas sand 

increases as its thickness drops, although not as dramatically as the normalized 

resistivity drops. The normalized upscaled resistivity changes from 100 to 20, while 

the upscaled P-wave impedance changes from 3.1 km/s g/cc to 3.2 km/s g/cc as the 

thickness decreases from 25 to 2 m. 
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Figure 2.8: Varying porosity of the sand, from 0.35 to 0.20, along the columns and porosity of the 

surrounding shale, from 0.50 to 0.10, along the rows. The three different trends in each case 
are for gas saturation (Sg) 0.3, 0.6 and 0.9. Colors are the thickness of the sand in meters (see 
colorbar on top). P-wave impedance is modeled using the soft sand model for sand and shale 
with a coordination number 6 and a critical porosity 0.4. Resistivity is modeled using Archie’s 
equation (a=0.89 and m=n=2). The data points shown are those of impedance and resistivity in 
the middle of the gas interval after upscaling using Backus average (12.5 m running window) 
and arithmetic average (150 m running window) for P-wave impedance and resistivity, 
respectively. 
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For high-porosity soft sand embedded in high-porosity soft shale (see the four 

upper panels of Figure 2.8 for sand porosity of 0.35 and 0.30 and shale porosity of 

0.50 and 0.40, and also the case of a 0.25 porosity sand embedded in a 0.40, 0.30 or 

0.20 porosity shale), the upscaled P-wave impedance has similar values for all 

thicknesses. Resistivity, on the other hand does reduce significantly as the thickness 

decreases, particularly for gas saturation 0.90, and there is poor separation between the 

resistivity values for saturations 0.60 and 0.30.  This poor separation is mainly because 

EM data has lower resolution than seismic field data. As the background shale and 

sand resistivities become more similar, as in the case when the gas saturation is low, it 

becomes harder to discern the embedded sand. The same observation can be made 

when the porosity of the sand and shale are equal. 

Another observation from this first model, using soft-sand equations, is that if the 

porosity contrast between the shale and the sand is strong, and as we decrease the 

thickness of the reservoir from 12 down to 2 meters, the upscaled P-wave impedance 

increases if the porosity of the shale is smaller than the porosity of the sand (up to 2 

km/s g/cc in the case of shale porosity 0.1 and sand porosity 0.35), and decreases if the 

porosity of the shale is larger (up to 1.5 km/s g/cc in the case of shale porosity of 0.50 

and sand porosity of 0.2). Also, if we have high-porosity sand (e.g., 0.35) surrounded 

by low-porosity shale (e.g., 0.1), it is harder to distinguish the gas sand, since after 

upscaling it will have the normalized resistivity closer to that of the background shale.  

If we now keep the same sandstone modeled using the soft-sand model, but use the 

stiff-sand model to estimate the shale P-wave impedance (Figure 2.9), our results are 
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very similar to those obtained using the soft sand model for both sand and shale, 

except that there is a large contrast in the upscaled P-wave impedance (more than 2 

km/s g/cc) as the thickness decreases when the contrast in porosity between sand and 

shale is the largest. (See the two extreme cases in the upper right corner and in the 

lower left corner of Figure 2.9, respectively.) 

Next, we use the stiff-sand model for both sandstone and shale intervals (Figure 

2.10). In this case, when the porosity of the shale is large compared to that of the sand, 

the upscaled P-wave impedance decreases as the thickness of the sand decreases 

(about 3 km/s g/cc for a  shale with porosity 0.5 and a sand with porosity 0.2). 

However; when the shale has low porosity (which is more appropriate for the model 

used) with respect to the sand, as the thickness decreases, the upscaled P-wave 

impedance increases. This increase is around 2 km/s g/cc or less. Again, when the 

shale has low porosity, it is harder to discriminate between high and low gas saturation 

(e.g., 0.90 versus 0.30  gas saturation). 

Figure 2.11 shows modeling assuming the same stiff-sand model for the reservoir, 

but replacing the stiff shale with soft shale. The resulting model is quite similar to 

using the stiff-sand model for both sand and shale, which confirms that the model 

choice for the shale is much less important than either the model choice for the 

sandstone or the porosity choice for the shale.  
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Figure 2.9: Same as Figure 2.8, but using the soft-sand model for the sandstone interval and the 

stiff-sand model for the surrounding shale.  
 

 
We also used the Raymer-Hunt-Gardner relation (Raymer et al., 1980) to model 

the elastic properties of the sand and shale (Figure 2.12).  In this case, our results were 

very similar to those we obtained using the stiff-sand model. In both cases, we observe 
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that discriminating gas saturation is highly dependent on the properties of both the 

sandstone and the surrounding shale. 

 

 
 

Figure 2.10: Same as Figure 2.8, but using the stiff-sand model to obtain the elastic 
properties of sand and shale. 
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Figure 2.11: Same as Figure 2.8, but using the soft sand model to obtain the elastic 
properties of the surrounding  shale, and the stiff sand model in the case of the 
sandstone interval. 
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Figure 2.12: Same as Figure 2.8, but using the Raymer-Hunt-Gardner relation 
(Raymer et al., 1980) to model the elastic properties of both sandstone and shale. 

 
 

Stiff sand may have a cementation exponent ( ) larger than 2 in Archie’s 

equation, since as sand becomes more cemented (stiff), the value of  tends to 

increase (Knight and Endres, 2005). Hence, we reproduce the same stiff-sand model 

for both sand and shale as before, but increasing the  exponent to 2.6 to observe 

m

m

m
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how this changes our modeling results (Figure 2.13). As we increase , the 

normalized resistivity values are overall larger, but the shape of the curve, and the 

effect of the reservoir thickness is basically the same as with a lower m value. 

m

 

 
 

Figure 2.13: Same as Figure 2.10, but using cementation exponent (m) 2.6. 
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2.5 Discussion and conclusions 

By combining two theoretical models, one that relates the elastic properties of rock 

to porosity, mineralogy and saturation, and the other that relates resistivity to porosity 

and saturation, we create templates of the normalized resistivity versus P-wave 

impedance.  We can generate these templates at the well-log scale to obtain 

simultaneous estimates of porosity and saturation. 

The answer is not unique.  Many parameters can vary away from well control, 

including the geometry of the reservoir as well as the shale and reservoir properties.  

For an exhaustive interpretation, all parameters must be varied within reasonable 

ranges and probability distributions.  This will eventually yield not a single answer but 

probabilistic distributions of porosity and saturation.  We envision that the approach 

discussed here may produce useful invariants, such as porosity times saturation times 

thickness (or net-to-gross), which should be relied upon in reserve estimates.  This is a 

subject of future work where the existing arsenal of stochastic modeling can be used 

within the framework presented here. 

Finally, we must reiterate that the rock-physics models for the impedance-

resistivity templates should be selected to reflect the geologic nature of rock in terms 

of both elastic behavior and resistivity (the latter, for example, by using the Waxman-

Smits-Juhasz equation instead of Archie’s law).  In the same way as we upscale to 

analyze the effect of reservoir thickness, we can upscale the rock-physics templates. 

Upscaling the rock-physics templates will allow us to apply this quantitative 

interpretation approach to field data, as we will discuss in Chapter 6. 
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Chapter 3 

Porosity, Permeability, Resistivity 
and Velocity Relations for 
Fontainebleau Sandstones 
 

3.1  Abstract 

The objective of this chapter is to experimentally revisit the relations among the 

resistivity, elastic-wave velocity, porosity, and permeability in Oligocene 

Fontainebleau sandstone samples from the Ile de France region, around Paris, France. 

We find that these samples follow a permeability-porosity relation given by Kozeny-

Carman’s equation with tortuosity 2.5 and percolation porosity 2%, for a mean grain 

size 250 microns.  

In our resistivity measurements, we saturated the samples with brine (40,000 ppm 

NaCl salinity). All results reported below relate to 100% water saturation resistivity 

estimates, assuming a saturation exponent, n=2. In our subsequent effective-medium 

modeling we assigned very high resistivity to the mineral phase (1015 ohm m).  We 

modeled resistivity as a function of porosity using the differential effective medium 
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(DEM) and self-consistent approximations (SC), as well as a semi-empirical model by 

Archie. Results show that when brine is modeled as the background and quartz grains 

as the inclusions, DEM underpredicts the measurements; therefore, it can be used as a 

lower bound. Using SC modeling with grain aspect ratio 1, and pore aspect ratio 

between 0.02 and 0.10, the experimental data fall into this theoretical range.  The SC 

curve with the pore aspect ratio 0.05 appears to be close to the values measured in the 

entire porosity range. Archie’s relation with the cementation exponent between 1.6 

and 1.8 matches the data.  We observe that as the porosity decreases, the cementation 

exponent required to match the data increases as well. 

We also measured elastic-wave velocity on these dry samples for confining 

pressure between 0 and 40 MPa.  We used a loading and unloading cycle and did not 

find any significant hysteresis in the velocity-pressure behavior. For the velocity data, 

using the self-consistent model with a grain aspect ratio 1 and pore aspect ratios 0.2, 

0.1, and 0.05 fit our data at 40 MPa, while pores aspect ratios ranging between 0.1, 

0.05, and 0.02 are a better fit for the data at 0 MPa. As expected, the stiff sand model 

and Raymer-Hunt-Gardner equation provide good predictions for the measured 

velocity at 40 MPa.  

Our data exhibit an approximate linear trend between the P-wave velocity and the 

decimal logarithm of the normalized resistivity, with a large scatter at low porosity.  

This scatter correlates with the differences in measured permeability.  The Faust 

(1953) equation appears to be an upper bound for our data (resistivity versus velocity) 

while a combination of the stiff sand model and the modified lower Hashin-Shtrikman 
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bound for resistivity serves as the lower bound. Also, a combination of the stiff sand 

model and Archie’s resistivity equation with the cementation exponent between 1.6 

and 2.1 covers the range of our data. 

3.2  Introduction 

Velocity and resistivity of rocks depend on porosity, texture, mineralogy, and pore 

fluid. Some of the earliest laboratory measurements showing the variation of the 

acoustic properties of rocks as functions of porosity, saturation, and pressure were by 

Wyllie et al. (1956, 1958). These studies showed that porosity undoubtedly is the 

primary factor affecting P- and S- wave velocities. Later studies (Nur and Simmons, 

1969; Domenico, 1976; Mavko, 1980; Murphy, 1984) have refined our understanding 

of rock properties showing how pore type and pore fluid distribution (i.e., saturation 

heterogeneity) may contribute to variations in the P- and S- wave velocities. Pore 

geometry, in particular, affects pore stiffness which, in turn, influences the velocity 

sensitivity to pressure (Mavko, 1980; Mavko and Nur, 1978; O’Connell and 

Budiansky, 1974) as well as to saturation (Mavko and Mukerji, 1995).  

Similarly, Archie (1942) was the first to show that the ratio of the conductivity of 

the pore fluid to the bulk conductivity of fully-saturated and clean sandstones 

corresponds to the formation factor, F, which is related to porosity through the 

following relation: 

 

m
aF
φ

=          (3.1) 
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The m and a coefficients, known as the cementation exponent and tortuosity 

factor, are usually determined empirically. In Equation 3.1, a is close to 1, and was 

first introduced by Wyllie and Gregory (1953). The a coefficient may be considered a 

reservoir constant according to Worthington (1993), although originally Wyllie and 

Gregory (1953) considered it a function of porosity and formation factor of the 

original unconsolidated aggregate before cementation. When the dominant electrical 

conduction mechanism is ionic diffusion in the pore fluid, as in the case of clean well-

sorted sands, a has to be one, because as porosity tends to one, the conductivity of the 

rock is equal to the conductivity of the fluid (Mavko et al., 1998). The coefficient m is 

also called the porosity exponent and different studies have related it to grain and pore 

shape (Jackson et al., 1978; Ransom, 1984). According to Knight and Endres (2005), 

m depends on the geometry of the system or the connectedness of the pore space, and 

it is called the cementation factor because of the importance of cementation in 

determining microgeometry. The m coefficient is close to 2 in sandstones, but it can be 

as high as 5 in carbonate rocks (Mavko et al., 1998).  The dependency of the a and m 

coefficients on rock properties has been the subject of multiple studies (see 

Worthington, 1993 for a review). Such studies report a large number of factors 

affecting those constants, including porosity, type of porosity, tortuosity, pore 

geometry, degree of cementation, sorting, grain shape, packing of grains, pressure and 

wettability. Schön (1996) reports that both parameters, a and m, are controlled by pore 

channel geometry, including pore shape and connectivity.   
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In this study, we measure porosity, permeability, resistivity and velocity in 

Fontainebleau sandstones. We first examine the permeability – porosity relation, and 

compare it to the Kozeny-Carman (Carman, 1961) relation, and a previous study by 

Bourbie and Zinszner (1985). We then analyze how porosity and permeability relate to 

resistivity using effective medium models, such as differential effective medium 

(DEM) (Bruggeman, 1935; Berryman, 1995) and self consistent (SC) (Landauer, 

1952; Berryman, 1995), and a semi-empirical model by Archie (1942). We follow a 

similar procedure for P-wave and S-wave velocities as a function of porosity, using 

effective medium models, including also DEM and SC, and semi-empirical models, 

including the stiff sand model (Gal et al., 1998), the Raymer-Hunt-Gardner relation 

(Raymer et al., 1980), and Wyllie’s time-average equation (Wyllie et al., 1958).  

Elastic and electrical methods can contribute in different ways to characterizing 

rock. Each of them has limitations that can be overcome by integration with the other. 

The literature shows that laboratory studies performing joint measurements and 

analysis of velocities and resistivity of sedimentary rocks are quite scarce (i.e., Polack 

and Rapoport, 1956, 1961; Parkhomenko, 1967; Knight, 1991; Carrara et al., 1999. 

All these studies only use P-wave velocity and resistivity). In particular, there are no 

laboratory studies that use P-, S-wave velocities and resistivity together to better 

estimate porosity and permeability of reservoir rocks.  Therefore, we examine the 

relation between resistivity and velocity, and how these two properties relate to 

porosity and permeability.  
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3.3  Method 

The set of core plugs in this study comprises 23 Oligocene Fontainebleau 

sandstones, collected at outcrops in the Ile de France region, around Paris, France. The 

core plugs have a diameter around 2.5 cm, and a length ranging between 2.3 and 3.9 

cm. Resistivity was measured at 1 kHz at benchtop conditions using the 4-electrode 

method, with the benchtop set-up that is part of the Core Lab’s Advanced Resistivity 

System Model 300. The instrumental error for the measured resistivities is +/- 10 %.   

Core plugs were saturated with a 40,000 ppm NaCl solution. Their water 

resistivity was monitored for a 48-hour period before the saturated rock resistivity 

measurements were performed, in order to reach a chemical equilibrium between the 

rock and the fluid. The resistivity of water was monitored before performing each 

measurement. The temperature of the water was 21±1 degrees Celsius, and its 

resistivity 0.17 ± 0.01 ohm m. One-hundred percent water saturation was not reached 

for these samples, particularly the low porosity ones, with an average saturation of 

80%, latter determined by weighting the samples. Archie’s equation was used to 

estimate the resistivities at full saturation ( ) from the measured resistivity ( ) at 

saturation  assuming a saturation exponent (n) of 2, as it follows: 

0R tR

WS

n
WtSRR =0         (3.2) 

 
For 9 of the 23 core plugs, measurements of P- and S-wave velocity were also 

performed under variable confining pressure, at one atmosphere pore pressure. 

Confining pressure was increased to 40 MPa, with 5 MPa increments. The plugs were 

jacketed with rubber tubing to isolate them from the confining pressure medium. The 
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pulse transmission technique was used to measure P-wave velocity at 1 MHz 

frequency and S-wave velocity at 0.7 MHz. The error for the velocity measurements is 

around +/- 1%.  Three linear potentiometers were used to measure length changes of 

the samples as a function of stress. These length changes were related to changes in 

porosity by assuming that pore contraction was the main cause of strain (i.e., we 

assume that the mineral was incompressible). 

Helium porosity, Klinkenberg-corrected nitrogen permeability, length, diameter and 

weight of all these plugs were also measured. Helium porosity and total porosity estimated 

from volume and weight are essentially the same, as we can observe from Figure 3.1.  

Mineralogy of these samples is 100% quartz, with an average grain size of 250 

micrometers (Bourbie and Zinszner, 1985) (see also CT scan sections in Figure 3.2). 

All the measurements are included at the end of this chapter in Tables 3.2 through 3.5.  

 

 

 
 

Figure 3.1: Total porosity estimated from volume and mass versus porosity measured using Helium 
porosimeter. 

 
 
 



CHAPTER 3: LABORATORY MEASUREMENTS ON SANDSTONES 
 

34

3.4  Permeability versus Porosity Measurements and Modeling 

The core plugs measured for this analysis were compared to core plugs from the 

same region studied by Bourbie and Zinszner (1985), and Doyen (1988).  We find that 

they follow a similar permeability versus porosity trend (Figure 3.3). If we compare 

this permeability-porosity trend with that given by Kozeny-Carman’s relation, we 

observe that with tortuosity 2.5, percolation porosity 2%, and grain size 250 μm, the 

fit is satisfactory (Figure 3.4). The grain size that we use in this fit agrees with 

observations by Bourbie and Zinszner (1985), who found that these samples were 

composed of sub-spherical quartz grains (more than 99.8% quartz) with diameter 

around 250 microns.  

 

 
 

Figure 3.2: CT scans for Fontainebleau samples: A33, F510, GT3 and H27. The scale given as a 
green line in the bottom left corner is 500 μm. These plugs have the following porosity and 
permeability: 7% and 12.5mD for A33, 15% and 592mD for F510, 16.7% and 704mD for 
GT3, and 25% and 3630mD for H27. 
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The Kozeny-Carman’s relation that we are applying here was published by Mavko 

and Nur (1997) and introduced the percolation porosity ( Pφ ): 

,
)](1[
)(

72
1

22

3

2 τφφ
φφ

P

P

d
k

−−
−

=       (3.3) 

 
where  is permeability, is the grain diameter, k d τ  is tortuosity and φ is porosity. 

Percolation porosity corresponds to that below which the remaining porosity is 

disconnected and does not contribute to flow, and generally it is of the order of 1 to 3 

% (Mavko et al., 2009). 

 

 

 
 

Figure 3.3: Permeability versus porosity for samples from Bourbie and Zinszner (1985) in blue, 
Doyen (1988) in cyan, and this study in magenta.   
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Figure 3.4: Permeability versus porosity for samples of this study as circles, and those from Doyen 
(1988) as squares with circles inside, colorcoded by log10(Rt/Rw). Kozeny-Carman modeling 
curves for tortuosity 2.5 and percolation porosity 2% are plotted for grain sizes 350, 250, and 
150 μm (from black to blue).  

 
 
 

As Bourbie and Zinszner (1985) pointed out, two different permeability-

porosity linear trends in the log-log scale can be defined, one for the high porosity, and 

one for the low porosity samples (Figure 3.5). For the high porosity samples, the 

porosity exponent is around 3, as expected from the Kozeny-Carman’s relation. 

However, as porosity decreases, the exponent is larger, in our case close to 5. This is 

due to the fact that at lower porosities, some of the pore fraction is not contributing to 

the permeability, which is the amount of porosity lower than the percolation porosity. 

If the logarithm of permeability is plotted versus that of the difference between total 

porosity and percolation porosity, a single linear trend can be identified which is given 

by  (Figure 3.5). In this equation, the porosity is not input as a 

fraction but as a percentage. 

792.3)(0241.0 Pk φφ −=
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Figure 3.5: Permeability versus porosity on the left, and porosity minus percolation porosity in log-
log scale for samples of this study as circles, and those from Doyen (1988) as squares, 
colorcoded by log10(Rt/Rw). Two linear trends can be identified on the left, one for the low 
porosity samples in blue (slope~5), and one for the high-porosity samples in black (slope~3). 
On the right a single trend can be identified.  

 
 

3.5  Resistivity relation with salinity of the saturating fluid, porosity 

and permeability 

To test our set-up, we measure the resistivity on 4 of the samples with brine of 

salinities 11,000; 40,000; and 100,000 NaCl ppm. We applied Equation (3.2) to 

compute the conductivities at full water saturation. Plotting this rock conductivity at 

=1 versus the conductivity of the saturating water (Figure 3.6), we can fit lines that 

cross the origin for each of the four samples. This behavior is what we expect in clean 

sandstones where no clay is present (Waxman and Smits, 1968; Waxman and Thomas, 

1974; Thomas, 2007). In general, at around 20,000 NaCl ppm water salinity, we 

would expect that the data would deviate from this line, but our measurement at 

11,000 ppm still fits lines that cross the origin for the four samples, which is the 

WS
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behavior that is expected in clean sandstones (Waxman and Smits, 1968; Waxman and 

Thomas, 1974; Thomas, 2007).  

 

y = 0.0813x
R2 = 0.9903

y = 0.0449x
R2 = 0.9985

y = 0.011x
R2 = 0.9987

y = 0.0043x
R2 = 0.9959

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

Cw (S/m) 

Co
(S

/m
)

A16
B31
GW28
H74
Linear (H74)
Linear (GW28)
Linear (B31)
Linear (A16)

 
 

Figure 3.6: Conductivity measured for the core at 100% saturation versus water conductivity for 4 
different samples measured at 3 different salinities:10,000; 40,000 and 100,000 NaCl ppm. 
Linear fits crossing the origin are also shown. 

 

 
It is important to point out that the absence of clay minerals does not prevent 

surface conduction from occurring. Surface conduction can occur even in the case of 

the presence of only quartz, and no clay minerals. Revil and Glover (1997) show that 

surface conduction can be significant in a quartz matrix if water conductivity is below 

0.01 S/m. However, this measurement condition does not apply to our case.  

In our experiments measuring resistivity of 23 core plugs, we used 40,000 NaCl 

ppm salinity brine at 21 °C.  Therefore under this salinity and temperature conditions, 

the effects due to surface conduction are negligible compared to ionic conduction 

(Waxman and Smits, 1968; Waxman and Thomas, 1974). The resistivity at =1 was WS
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estimated from measured resistivity using Equation (3.2). All results reported below 

relate to these 100% water saturation resistivity estimates. 

Plotting resistivity versus porosity, we find that the measurements fall between the 

lower and the modified upper Hashin-Shtrikman bounds (Wempe, 2000), assuming a 

quartz matrix with resistivity of ohm m, critical porosity 0.4, and percolation 

porosity 0.02 (blue and red curves in Figure 3.7). If we compare our measurements to 

the differential effective medium model for grains of quartz suspended in water, we 

find that this model underpredicts the measurements (magenta curve in Figure 3.7). At 

the same time, the self-consistent effective medium modeling does fit the data (Figure 

3.8), in particular if we use ellipsoidal inclusions with aspect ratios between 0.02 and 

0.1. 

1510

 

 

 
 

Figure 3.7: Lower and modified upper HS bounds (blue and red curves), and DEM modeling for 
inclusions with aspect ratio of 1 in a background of water (magenta curve). Circles are data 
from this study, and squares are data from Doyen (1988). The data are colorcoded by the 
decimal logarithm of the permeability in mD.  
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Figure 3.8: Self-consistent modeling for grain aspect ratio of 1, and pore aspect ratio of 0.1 in blue, 
0.05 in red, and 0.02 in black. Circles are data from this study, and squares are data from 
Doyen (1988). The data are colorcoded by the decimal logarithm of the permeability in mD. 

 
 
 
Archie’s equation with cementation exponents (m) between 1.6 and 2.1 matches 

these data well (Figure 3.9). These m values are the typical values used for clean 

sandstones, and agree with previous studies in Fontainebleau sandstones, such as that 

by Durand (2003) that gives values between 1.54 and 1.75. Knackstedt et al. (2007) 

estimate m from numerical experiments and also compute it for measurements by 

Jacquin (1964) and Doyen (1988) and obtain values between 1.5 and 2.25. Hausenblas 

(1995) also obtains cementation exponent between 1.7 and 1.8 for four Fontainebleau 

samples with porosities between 6.2 and 7.5%.   

We observed that the cementation exponent changes as porosity changes; 

therefore, we can summarize our results in a table (Table 3.1) where we report the 

cementation exponents that best fit the data for each porosity range. 
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Figure 3.9: Archie’s  modeling for a=1, and cementation exponent of 1.6 in red, 1.8 in blue and 2.1 
in green. The data are colorcoded by the decimal logarithm of permeability in mD. 

 

 
Porosity (%) m

5 to 7 1.8 - 2.1
9 to 22 1.8
23 to 25 1.6  

 
Table 3.1: Porosity or cementation exponent that best match the data for given ranges of porosity. 

 

 
Raiga-Clemenceau (1977) gave a relation between permeability and the 

cementation exponent: 

2log
228.1
+

+=
k

m ,       (3.4) 

 
where is permeability in mD. If we use this relation, we find cementation exponents 

between 1.64 and 2.21 (Figure 3.10), which are similar to the values discussed above. 

k

The cementation exponent seems to show some dependence on porosity, 

tending to be higher as porosity decreases. Olsen et al. (2008) give an empirical 

relation to derive the cementation exponent from porosity, permeability and specific 
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surface area. This relation is between cementation exponent (m) and specific surface 

area (S) laboratory data: 

98.1ln09.0 += Sm .       (3.5) 

 

 
 

Figure 3.10: Archie’s  modeling for a=1, and cementation exponent of 1.6 in red, 1.8 in blue and 
2.1 in green. Data points are colorcoded by the cementation exponent (m) estimated from 
Equation (3.4). 

 
 

 The cementation exponent in Equation (3.5) was derived from Archie’s 

equation assuming a = 1, and resistivity and porosity measurements at fixed water 

resistivity. Specific surface area was measured using the nitrogen adsorption method 

(Brunauer et al., 1938). It is then expressed in terms of porosity (φ ), permeability ( ) 

and a constant , using Kozeny’s equation: 

k

c

,2

3

S
ck φ

=         (3.6) 

 
Using Equations (3.6) and (3.5), we obtain the final relation that Olsen et al. 

(2008) use to estimate the cementation exponent from porosity and permeability: 
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98.1ln09.0
3

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

k
cm φ .      (3.7) 

 
The constant c  is, according to Olsen et al. (2008), close to 0.25, but depends 

on porosity. From Equation (3.6) and one of the common forms of Kozeny-Carman, 

this constant can be expressed in terms of tortuosity as: 

.
2
1

2τ
=c         (3.8) 

 
If the tortuosity is 1.41,  is 0.25, but if the tortuosity is 2.5, as we assumed for 

our previous Kozeny-Carman modeling, the constant c  is 0.08. If we estimate the 

cementation exponent assuming  = 0.25 and c  = 0.08, we obtain  1.6 and 1.8, 

respectively, which is close to the values we had found match the data (Figure 3.11). 

Hence, we have observed that changing c  does not greatly affect the estimate of , 

and this semi-empirical formula (Equation 3.7) gives a good estimate for cementation 

exponent to be used in Archie’s equation. 

c

c m

m

 

       
 

Figure 3.11: Archie’s  modeling for a = 1, and cementation exponent 1.6 in red, 1.8 in blue, and 2.1 
in green. Circles are data from this study, and squares are data from Doyen (1988). The data 
are colorcoded by the cementation exponent estimated from Equation 3.7 with c = 0.25 on the 
left and c = 0.08 on the right. 
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Estimating permeability from resistivity has been a problem examined by 

different authors, including Archie (1942), who shows an average trend of formation 

factor versus permeability for sandstones, but recognizes that the scatter is too large to 

establish a definite relation between the two properties. Worthington (1997) revisits 

this study by Archie and shows how formation factor (normalized resistivity) F 

decreases as permeability increases according to the following relation: 

.
/1 c

F
bk ⎟
⎠
⎞

⎜
⎝
⎛=         (3.9) 

 
where b and c are positive empirical constants. 

Worthington (1997) argues that as water salinity decreases, or grain size 

decreases, or the clay content increases, the relation between resistivity and 

permeability changes and resistivity actually increases as permeability increases in the 

following form: 

.hgFk =         (3.10) 
 

where g and h are positive empirical constants. 

Some other relations derived between formation factor and permeability 

incorporate other parameters, such as the characteristic length of the pore space (Katz 

and Thompson, 1986; Johnson et al., 1986), the porosity, the specific surface area and 

the cementation exponent (Schwartz et al., 1989) 

If we plot our measured formation factor versus permeability, we find 

significant scatter, particularly at high resistivity.  Still, a trend between these two 

variables in the form of Equation 3.9 can be defined as follows: 
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.01.702 54.0/1

⎟
⎠
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⎜
⎝
⎛=

F
k        (3.11) 

 
The R2 for this trend is 0.92, but the norm of the residuals is 132 mD (due to 

large data scatter at low porosity), hence, it is not very precise and has to be used with 

caution (Figure 3.12). 

 
 

Figure 3.12: Permeability versus normalized resistivity colorcoded by porosity for same samples as 
those in Figure 3.10. The solid black line corresponds to Equation 3.11. 

 
3.6  Velocity, confining pressure, porosity, and permeability 

P- and S-wave velocities were measured as functions of confining pressure for 9 

samples as shown in Figure 3.13 (P wave in blue and S wave in red).  Porosities of the 

plugs ranged from 0.06 to 0.25.  Filled circles in Figure 3.13 represent measurements 

as we were increasing confining pressure, and open circles are the measurements taken 

as pressure was decreasing.  

These samples do not show velocity hysteresis as we load and unload them, except 

for sample A11. In the case of A11, the velocities have almost the same values at zero 
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pressure for loading and unloading, which means that we possibly did not wait long 

enough when we took the measurement at 5 MPa for equilibrium to be reached. 

Poisson’s ratio for these sandstones is between 0.02 and 0.16 (Figure 3.14), which 

is close to the values expected for dry sandstones, according to Mavko et al. (1998). 

 

 
 

Figure 3.13: P-wave (in blue) and S-wave (in red) velocity (km/s) as a function of confining 
pressure for 8 different coreplugs of Fontainebleau sandstone. 

 
 
Samples A11, A33 and A82 have similar porosity, close to 7%, but their 

permeabilities are 9.98, 12.45 and 7.08 mD, and formation factors 113, 95, and 216, 

respectively. We observe here a correlation between resistivity and permeability for 

these three samples, the smaller the permeability the larger the resistivity. 
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Core plugs A11 and A33 show larger dependence of the velocities on pressure 

than core plug A82, which has the lowest permeability and largest formation factor of 

the three. This conforms with the fact that A82 is the least compliant of the three 

samples. 

 
 

Figure 3.14: Poisson’s ratio (PR) versus P-wave impedance measured at 40 MPa confining pressure 
colorcoded by porosity for the same 9 Fontainebleau core plugs shown in Figure 3.13. 

 
 
 
CT scans for these three samples (Figure 3.15) show that A82 have relatively 

small macropores, on the order of 100 microns or less, while A11 and A33 have larger 

macropores, up to 200 microns. This difference in macroporosity may be responsible 

for the measured larger permeability and lower resistivity in A11 and A33.  

We performed mercury intrusion porosimetry in small drilling fragments (mass 

=1-1.5 g) of samples A11, A33 and A82, in order to study the distribution of pore 

access diameters.  This technique measures the volume of mercury that penetrates a 

sample as a function of pressure (Aligizaki, 2006).  Results are generally reported 

using cumulative intrusion curves and differential pore size distribution plots. 

Cumulative intrusion curves are plots of the cumulative volume of mercury intruded in 

the sample versus the pore throat or pore access diameter. The differential pore size 
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distribution is the differential of the volume of mercury intruded in the sample versus 

the pore access diameter. A contact angle between sandstone and mercury of 140 

degrees was used for our calculations (Metz and Knofel, 1992; Spearing and 

Matthews, 1991;  Milsch et al., 2008).  

 
 

 
  

Figure 3.15: CT scans for three Fontainebleau core plugs: A11, A33 and A82, all with similar 
porosity, around 7%. The scale, given as a green line in the bottom left corner, is 500 μm. 

 
 
 
Porosity estimates obtained from mercury porosimetry are 8.68% for A11, 7.18% 

for A33, and 8.77% for A82. Helium porosity measured for the corresponding core 

plugs were: 7.33% for A11, 7.18% for A33, and 7.61% for A82. The cumulative 

intrusion curves (shown in red in Figure 3.16) reveal that samples with the largest 

porosity, A82 and A11, also have the largest number of pore throats with diameter 

larger than 10 μm. The average pore diameters are 7.0 μm for A11, 3.8 μm for A33 

and 3.2 μm for A82. The median pore diameters are 13.0 μm for A11, 8.8 μm for A33 

and 9.4 μm for A82. These pore throat distributions are similar as far their mean and 

median, but they are multimodal (see differential pore size distributions in blue in 

Figure 3.16). Comparing the differential pore size distributions, samples A11 and A33 
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show narrower distributions of pore throat sizes than sample A82. Sample A82 has a 

large amount of pore throats with diameters less than 0.1 μm, shown as several peaks 

in the differential pore size distribution, while A11 and A33 only show pore throats 

with diameters larger than 0.1 μm, correlating with the fact that A82 is the least 

permeable of the three samples.  

We also obtained estimates of total pore area for these samples, which were very 

similar for A11 and A33: 0.025 , and 0.031 , respectively. Sample A82, 

had 0.046 total pore area. If we compute the specific surface area multiplying 

by the grain density 2.65 g/cc, we obtain 0.066 , 0.122  and 0.082 1/m 

for A11, A33 and A82. A specific surface area can be computed from the median pore 

radius (r) as 2/r (Milsch et al., 2008), and we obtain: , and 

1/m for A11, A33 and A82. The difference between the two estimates may 

be due to the fact that the first estimate uses all the cumulative mercury porosimetry 

information (pressure, volume, surface tension), while the second methodology uses 

only the median pore radius as input. From these specific surface areas, we can 

estimate cementation exponents using Equation (3.5).  For the first specific surface 

area estimate, we obtain: m=1.74, 1.79 and 1.75, and for the second: m=1.87, 1.91 and 

1.90 for A11, A33 and A82. We can compare these values with the actual values 

obtained from the porosity and resistivity measurements:  m=1.78, 1.71 and 2.13 for 

A11, A33 and A82. We approach the actual m with our first estimate in the case of 

A11 and A33; however, even in that case, we fail to predict m for sample A82, which 

have the most heterogeneous pore size distribution, as we had observed in Figure 3.16. 

gm /2 gm /2

gm /2

610× 610× 610×

6100.31× 6100.46×

6100.43×
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Figure 3.16: Cumulative intrusion curve in red, and differential pore size distribution in blue for 
core plugs A11, A33 and A82.  

 
 

Velocities were measured under dry conditions while resistivity was measured 

under water saturated conditions. We applied Gassmann’s equations to estimate the P-

wave and S-wave velocities for 100% water-saturated conditions. The rest of the 

analysis that we show is on the velocity data after performing Gassmann’s fluid 

substitution to 100% water saturation.  

Plotting the fully water saturated velocities as a function of porosity (Figure 3.17), 

we observe that those measured at 40 MPa confining pressure fall very close to the 

modified upper Hashin-Shtrikman bound shown in blue (MH+ curve in Figure 3.17). 

In this example, this bound is obtained assuming a critical porosity 0.45.  

The differential effective medium (DEM) model fits the laboratory data when we 

assume a quartz matrix and water-filled ellipsoidal inclusions with aspect ratios 

between 0.02 and 0.1 for 0 MPa confining pressure, and between 0.05 and 0.2 for 40 

MPa confining pressure. Using the self-consistent approximation to model P-wave and 
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S-wave velocity (Figure 3.18), we observe good fit using the same aspect ratios as for 

DEM.  

 

 

            

           
 

Figure 3.17: P-wave velocity (on the left) and S-wave velocity (on the right) measured at 0 MPa 
(on top) and 40 MPa (below) confining pressure versus porosity colorcoded by permeability. 
Velocities were measured at dry conditions, and then Gassmann’s fluid substitution was 
applied. HS- is the lower Hashin-Shtrikman bound. MHS+ is the modified Hashin-Shtrikman 
bound with a critical porosity of 45%. The black lines are DEM models for different pore 
aspect ratios. 
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Figure 3.18: Same as Figure 3.17. Black line is the self-consistent model for quartz grains of aspect 

ratio 1 and different pore aspect ratios. 
 
 
 
We also used semi-empirical equations, such as the stiff sand model (Gal et al., 

1998), Wyllie’s time average (Wyllie et al., 1963), and Raymer-Hunt-Gardner 

(Raymer et al., 1980) to model the velocity data. In Figure 3.19 we observe that 

assuming a 100% quartz matrix (solid line) in the stiff sand model, a coordination 

number 9 and a critical porosity 40%, we obtain a satisfactory fit to most data points 

for both P- and S-wave velocities at 40 MPa confining pressure, but, as expected, the 

fit is not satisfactory at 0 MPa confining pressure. We also show the stiff-sand model 
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estimate assuming 90% quartz and 10% clay as part of the matrix (dashed line in 

Figure 3.19). 

 

 
            

 
 

Figure 3.19: Same as Figure 3.18. Solid black line is for the stiff sand model, assuming 100% 
quartz. Dashed black line is the stiff sand model assuming 90% quartz and 10 % clay. P-wave 
velocity using Wyllie time average equation is in blue, and using Raymer-Hunt-Gardner’s 
equation is in red. S-wave velocities were estimated from Wyllie’s and Raymer-Hunt-
Gardner’s P-wave velocity using Greenberg-Castagna.  

 
 
 
S-wave velocity was computed from P-wave velocity for Wyllie’s time average 

and Raymer-Hunt-Gardner estimates using Greenberg and Castagna (1992) empirical 



CHAPTER 3: LABORATORY MEASUREMENTS ON SANDSTONES 
 

54

relations. At 0 MPa confining pressure, these models do not match our data. At 40 

MPa confining pressure, Wyllie’s time average underpredicts both P- and S-wave 

velocities, while Raymer-Hunt-Gardner works well for P-wave velocity, but the 

Greenberg-Castagna equations underpredict the S-wave velocity. 

S-wave velocity versus P-wave velocity plots are commonly used to estimate 

lithology and pore fluid (Mavko et al., 1998). We show these plots (Figure 3.20) for 

the velocities measured at 40 MPa confining pressure. The best-fit linear relation we 

have found for these samples (Gassmann-substituted wet samples) is:  

14.0)/(68.0)/( −⋅= skmVskmV PS      (3.12) 

 
 
 
 

         
Figure 3.20: S-wave velocity versus P-wave velocity colorcoded by permeability at 0 MPa on the 

left and at 40 MPa on the right. The blue line is using Castagna et al. (1993) relation (Equation 
3.13), and red line is using Han et al. (1986) relation (Equation 3.14). The black line on the 
right is the best linear fit to the plotted data, as given by Equation 3.12 (the norm of the 
residuals is 0.223). 
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Our measurements at 0 MPa confining pressure follow published trends for S- 

versus P-wave velocity, such as those by Castagna et al. (1993) and Han et al. (1986), 

given by the following linear trends: 

 
856.0)/(804.0)/( −⋅= skmVskmV PS     (3.13) 

 
787.0)/(794.0)/( −⋅= skmVskmV PS  ,   (3.14) 

 
respectively. 

 
At 40 MPa confining pressure, our S-wave velocity values are larger than those 

predicted by these models from the measured Vp. Fontainebleau sandstones are very 

clean sandstones, therefore, it is expected that their Vs/Vp ratio is high (Castagna et 

al., 1993). 

3.7  Relation between Velocity and Resistivity 

P-wave velocity is highly dependent on pressure, while the dependence of 

resistivity on confining pressure is reportedly not as strong, in particular for clean 

sandstones (Lewis et al., 1988; Sharma et al., 1991; Milsch et al., 2008). Formation 

factor of sandstones can be estimated as a function of pressure (P) using a power law 

(Schön, 1996): 

gPFPF 0)( = ,        (3.15) 
 

where  is the formation factor or normalized resistivity at zero pressure, and 0F g is an 

empirical constant. For North Sea and Alaskan sandstones measured by Palmer and 

Pallat (1991), Schön (1996) estimates  to be 0.055. g
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Plotting the P-wave velocity versus the decimal logarithm of formation factor at 0 

MPa confining pressure, we observe a large scatter of the data and a poor linear fit 

( 2R = 0.33) (Figure 3.21). If we estimate formation factor at 40 MPa using Equation 

(3.15), and g of 0.055, and plot it versus the P-wave velocity measured at 40 MPa 

confining pressure, the data scatter is smaller, and we obtain a better linear fit to the 

data ( 2R = 0.84). In clean sandstones, it is expected that both resistivity and P-wave 

velocity are mainly a function of porosity, and therefore a relation between these two 

properties can be derived.  

 

 
 

Figure 3.21: Normalized resistivity or formation factor versus P-wave velocity measured at 0 MPa 
confining pressure on the left and at 40 MPa on the right. Gassmann fluid substituted velocity 
is plotted, colorcoded by porosity. A linear fit is also plotted.  

 
 
The empirical equation that we obtain between normalized resistivity and P-wave 

velocity in km/s at 40 MPa is the following: 
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( ) 1.954-)/(782.0/log10 skmVRwRt P⋅= .     (3.16) 
 

The data points corresponding to samples A117 and B102 fall above and below the 

linear trend in Figure 3.21, respectively (see Figure 3.22 for labeled data points). We 

observe the same for samples A82, A11 and A33. Core plugs A117 and B102 have 

porosity around 10%, and permeabilities 103 and 157 mD, correspondingly. Samples 

A82, A11 and A33 have porosity around 7%, and permeabilities 7.08, 9.98 and 12.45 

mD, respectively. Therefore, the scatter in resistivity versus velocity for these samples 

correlates with permeability.  

We also applied P-wave velocity – resistivity transforms to compute resistivity as 

a function of P-wave velocity. First, we used Faust (1953) relation between velocity 

and resistivity: 

6
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 ,       (3.17) 

 
where γ  is 2.888, if velocity is in km/s. Z is the depth of the sandstone in kilometers. 

Assuming a confining pressure of 23 MPa/km, and since the measurement was taken 

at 40 MPa, we can estimate that corresponds to Z =1.74 km. As Hacikoylu et al. 

(2006) showed, we observe that Equation (3.17) overestimates the resistivity (blue 

curve in Figure 3.22).  

Hacikoylu et al. (2006) derived a velocity – resistivity transform for friable 

shaley sandstones, whose velocities followed the soft sand model (Dvorkin and Nur, 

1996). The sandstones in this study are stiffer, and their velocities are better modeled 

using the stiff sand model by Gal et al. (1998) (see Figure 3.19). A P-wave velocity – 
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resistivity transform can be obtained by combining the stiff sand model and the lower 

Hashin-Shtrikman bound for resistivity as a function of porosity, as derived by 

Berryman (1995), and modified by Hacikoylu et al. (2006): 
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Figure 3.22: Same as Figure 3.21, but colorcoded by the decimal logarithm of permeability in mD. 
Resistivity curves computed using P-wave velocity – resistivity transform derived from stiff 
sand model and a modified lower Hashin-Shtrikman (Hacikoylu et al., 2006) in magenta, and 
from Faust (1953) in blue. 
 
 
 
The transform we obtain by combining it with the stiff sand model is:  
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These two models, Faust (1953) and stiff sand combined with the resistivity 

low bound, work as lower and upper bounds for the resistivity versus P-wave velocity 

data, respectively (Figure 3.22).  
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If instead of using the low bound for resistivity, we use Archie’s equation, we 

find a transform that can predict resistivity from the velocity data (Figure 3.23): 

m
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This transform depends on the cementation exponent (m). We used  m =1.6, 

1.8 and 2.1 (obtained earlier in this chapter from our resistivity – porosity modeling) 

to compare them with our data (Figure 3.9).  

 

 
 

Figure 3.23: Same as Figure 3.22, but colorcoded by S-wave velocity. Resistivity curves computed 
using P-wave velocity – resistivity transform derived from stiff sand model and Archie is 
displayed. Red is for a cementation exponent in Archie of 1.6, blue is for 1.8 and black 2.1.  

 
 

3.8  Conclusions 

After examining the permeability - porosity relation of 23 Fontainebleau 

sandstones, we found that they follow Kozeny-Carman’s relation with tortuosity 2.5 

and percolation porosity 2%, for a mean grain size, as observed from CT scan, 250 

microns. Two different linear trends, one for low porosities and one for high 
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porosities, in the logarithm of permeability versus logarithm of porosity domain can be 

defined too, which are similar to those found by Bourbie and Zinszner (1985). A 

single trend can be defined if we plot the logarithm of permeability versus the 

logarithm of porosity minus the percolation porosity.  

As we saturate four samples with water with three different salinities: 10,000, 

40,000 and 100,000 NaCl ppm, we find these samples follow a linear trend with 

intercept at the origin, which means they are clean sandstones, with no significant 

presence of clay minerals that contribute to the resistivity. 

Plotting the normalized resistivity measurements as a function of porosity, we find 

they fall between the lower and modified upper Hashin-Shtrikman bounds for 

sandstones. Differential effective medium model assuming water as the background 

and quartz grains as the inclusions underpredicts the measurements, but it could be 

used as narrower lower bound.  

Self-consistent approximation using a grain aspect ratio of 1, and pore aspect ratios 

of 0.02, 0.05 and 0.1 are very close to the resistivity values measured in the laboratory; 

therefore it can be a good model to use to predict resistivity in clean sandstones given 

fluid and mineral properties.  

Archie’s relation predicts the normalized resistivity measurements given the 

porosity. An average cementation exponent between 1.6 and 1.8 works for most of our 

samples, although as porosity decreases, the cementation exponent seems to increase.  

We derive a permeability versus formation factor relation from the laboratory data, 

which has a high R2, but the norm of the residuals is also high. We conclude that 
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overall formation factor is not a good predictor of permeability, even in the case of 

clean sandstones. 

After measuring P-wave and S-wave velocity as a function of confining pressure, 

we do not observe hysteresis, as we load and unload the sample. We can model the 

velocity data using self-consistent approximation with a grain aspect ratio of 1, and 

pore aspect ratios of 0.2, 0.1 and 0.05 at 40 MPa confining pressure, and pore aspect 

ratios of 0.1, 0.05 and 0.02 at 0 MPa confining pressure. The stiff sand model and 

Raymer-Hunt-Gardner equation are also good models for the P- and S-wave velocity 

of these clean sandstones at 40 MPa confining pressure.  

Finally, we found a linear fit between the P-wave velocity and the decimal 

logarithm of the normalized resistivity, with deviations that correlate with differences 

in permeability. Faust’s relation and a combination of stiff sand model and the 

modified lower Hashin-Shtrikman bound for resistivity can be used as upper and 

lower bounds for the resistivity as a function of velocity, respectively. Combining the 

stiff sand model and Archie for cementation exponents between 1.6 and 2.1, we can 

model resistivity as a function of P-wave velocity. 
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Table 3.2: Porosity is the Helium porosity,  permeability is in mD, Sw is the water 
saturation reached for resistivity measurements, R is measured resistivity in ohm 
m,  R/Rw is the normalized resistivity or formation factor computed using a 
saturation exponent (n) of 2, and Rw=0.17 ohm.m.  
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Table 3.3: P- and S-wave velocity in km/s measured in one loading and unloading 
cycle for samples A11, A33 and A82.  

 
 
 
 

 
 
Table 3.4: P- and S-wave velocity in km/s measured in one loading and unloading 

cycle for samples A117, B102 and F510.  
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Table 3.5: P- and S-wave velocity in km/s measured in one loading and unloading 

cycle for samples GT3,  H27 and F410.  
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Chapter 4 

Effective Medium Modeling of 
Laboratory Velocity and Resistivity 
Data on Carbonates from the 
Apulia Platform, Italy 
 

4.1  Abstract 

This chapter describes joint effective-medium modeling of elastic and resistivity 

laboratory data obtained on a set of outcrop carbonate samples from the Apulia 

Platform in Italy.  The challenge is to model both the elastic-wave velocity and 

resistivity using a single theoretical approach.   The candidate models are (a) the 

differential effective-medium (DEM) theory and (b) the self-consistent approximation 

(SC). DEM predicts resistivity, but underpredicts P-wave velocity, when we assume 

that the mineral phase corresponds to the inclusions and the pore fluid is the 

background. However, DEM does accurately describe the elastic properties when 

pores are assumed as inclusions; but it fails to describe resistivity, because it lacks 

adequate pore connectivity. SC treats both rock components, the pores and the matrix, 
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as conceptually symmetric, thus implicitly providing the connectivity needed to match 

the measured resistivity.  Therefore, SC makes it possible to match both the elastic 

data and the measured resistivity using one set of model parameters. 

We show that SC is a robust approach to modeling both velocity and resistivity in 

our carbonate rock samples, particularly when using needle-like pores, which tend to 

be stiff but well connected.  

Carbonate rocks in general have inter- and intra-granular porosity, both of which 

affect their elastic and electrical properties. We model P-wave velocity and resistivity 

laboratory measurements taking into account these two types of porosity separately, 

using the self-consistent approximation for each. We use needle-like inter-granular 

pores in the model, since they are stiff and well-connected as is observed in these 

carbonate samples. We consider two models of intra-granular pores: stiff pores with an 

aspect ratio 0.5, and needles.  The small resistivity values observed at low porosities 

could not be explained here, since for this model almost no conduction seems to occur 

through the intra-granular pores. One way to address this problem is to model the 

intra-granular porosity using Archie’s equation for resistivity, in which case, as intra-

granular porosity increases, resistivity decreases, and the laboratory measurements are 

better modeled. The inter-granular porosity in this case is still modeled using the self-

consistent approximation.  

4.2  Introduction 

Carbonate rocks have a complex pore network, composed of inter- and intra-

granular porosity. Here, we model velocity and resistivity laboratory measurements in 
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a consistent manner for a set of carbonate rocks from the Apulia Platform in Italy that 

includes the Mt. Acuto (Late Cretaceous), Peschici (Paleocene – Eocene) and Gravina 

formations (Late Pliocene – Late Pleistocene) (for a more detailed description, see 

Vanorio et al., 2008). The depositional settings range from platform to basin. The 

Apulia Platform is part of the Apennine thrust belt, and is bounded by basinal 

deposits. This platform was a relatively small isolated carbonate bank out of the reach 

of terrigenous sediments throughout the Jurassic and the Cretaceous (Bosellini et al., 

1999). During the Oligocene through the Pliocene, thrusted sheets were emplaced due 

to convergence from the southwest, which then formed the Apennines Mountains and 

also a foreland basin. This basin was filled by Pliocene-Quaternary terrigenous 

deposits (Borgomano, 2000).  

The samples in this study cover a wide range of porosity (5 to 52 %), and their 

lithologic composition is mostly calcite, with some samples having significant 

dolomite fractions. The resistivity and velocity measurements for this case will be 

modeled using both theoretical and empirical models. The purpose is to better 

understand the porous network (porosity and permeability) of these carbonate samples, 

and how these characteristics reflect on their elastic and electrical properties. 

4.3  Method 

Resistivity measurements were conducted on 125 core plugs: 31 from the Mt. 

Acuto formation (MA), 51 from the Peschici formation (FP), and 43 from the Gravina 

formation (GR and MAT). The core plugs have a diameter of approximately 2.5 cm, 

and vary in length between 2.4 and 3 cm. Resistivity was measured at 1 kHz at 
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benchtop conditions using the 4-electrode method, with the benchtop set-up that is part 

of the Core Lab’s Advanced Resistivity System Model 300. The instrumental error for 

the measured resistivities is 10%.   

Core plugs were saturated with a calcium carbonate solution, and their water 

resistivity was monitored for a 48-hour period before the saturated rock resistivity 

measurements were performed. A calcium carbonate solution was used to ensure that 

the solution was in chemical equilibrium with the sample, and to minimize dissolution. 

The resistivity of water was recorded before performing each measurement. At the 

time of the measurements, the resistivity of the water was 28 ± 5 ohm m. One-hundred 

percent water saturation was not reached in these samples, particularly in those with 

low porosity; The average saturation was 90%. Archie’s equation was used to estimate 

the resistivities at full saturation ( ) from the measured resistivity ( ) at saturation 

, assuming a saturation exponent (n) of 2, as follows: 

0R tR

WS

n
WtSRR =0 . (4.1) 

 
The P-wave (1 MHz frequency) and S-wave (700 kHz frequency) ultrasonic 

velocities were measured at dry bench-top conditions by Cinzia Scotellaro (Vanorio et 

al., 2008). The error for the velocity measurements is around +/- 1%. We used 

Gassmann’s (1951) fluid substitution to predict the velocities at full water saturation. 

This was to avoid velocity dispersion effects that would be associated with fluid-

saturated ultrasonic measurements. Another reason to use Gassmann’s equation is that 

the systems to measure velocity and resistivity are not integrated, so two separate 
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saturation processes are required, and it is not trivial to repeat saturations in carbonate 

samples with complex microstructure. Figure 4.1 compares velocity measurements 

performed under saturated conditions (Vanorio et al., 2008) to the corresponding 

Gassmann’s modeled velocities for the samples under study. We observe that 

Gassmann’s equation, as expected, underpredicts the ultrasonic velocity, in particular 

for the high porosity (low-velocity) samples. 

 

 
Figure 4.1: Gassmann-computed velocity versus measured ultrasonic velocity for the carbonate 

samples under study, colorcoded by porosity.  
 
 

The mineralogical composition of the samples was estimated by X-ray diffraction 

(XRD) analysis, and porosity was computed from the composition, the dry weight, and 

the volume of the samples (see Tables 4.1 through 4.3 at the end of this chapter). This 

porosity was compared to porosity measured using Helium porosimetry, showing 

close agreement (Figure 4.2). Therefore, we assumed the computed porosity to be the 

total porosity of the samples. All these porosity, permeability and XRD measurements 

were performed by Cinzia Scotellaro (Vanorio et al., 2008). Some of the XRD 
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measurements were performed by Marco Voltolini at the University of California, 

Berkeley. 

Klinkenberg-corrected nitrogen permeability measurements are available for some 

of the samples (Vanorio et al., 2008). All the data measured for this set of samples is 

displayed in Tables 4.4 through 4.6 at the end of this chapter. 

Measurements performed by Carrara et al. (1999) on samples from the Gravina 

formation are also included in this study. For these measurements, the resistivity of the 

saturating water was 78 ohm·m. The data available for these samples included weight, 

length, diameter, dry-rock P-wave velocity, saturation and resistivity. The porosity of 

the samples was recomputed using the mineralogy identified for Gravina Formation 

samples by Vanorio et al. (2008).  

 

  

 
Figure 4.2: Porosity obtained from Helium porosimeter versus that estimated from dry weight, 

volume and X-ray diffraction mineralogy. The data are color-coded by formation.  
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4.4  Differential Effective Medium versus Self-Consistent Effective 

Medium Modeling 

Previous work that has attempted joint effective-medium modeling of elastic 

velocities and electrical resistivity includes that by Sheng and Callegari (1984). They 

implemented differential effective-media (DEM) modeling for sandstones with a range 

of P-wave velocities between 4.5 and 6 km/s, and normalized resistivities – measured 

resistivity normalized by the resistivity of the saturating water – between 102 and 

105 ohm·m. In contrast, previous velocity and resistivity measurements by Carrara et 

al. (1999) for Gravina limestone samples showed normalized resistivity values on the 

order of 1 to 5 ohm·m, and velocities around 2 km/s. They modeled both their velocity 

and resistivity measurements using the harmonic average of the solid and fluid elastic 

moduli and density for the effective elastic properties, and the harmonic average of 

their resistivities for the effective resistivity; this assumes very compliant and 

conductive rocks. 

For electrical conduction to occur, pore connectivity is very important. If pores 

saturated with a conductive fluid are added as inclusions in an isolating calcite matrix, 

DEM theory predicts that resistivity will be very high for almost all porosities, as 

shown in blue in Figure 4.3b. Therefore, even though DEM modeling assuming pores 

as inclusions tends to work well for elastic data (see blue line in Figure 4.3a), it does 

not adequately explain the electrical behavior observed in our carbonate samples. 
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Figure 4.3: DEM modeling of velocity and normalized resistivity. Open squares are measurements 

from Carrara et al. (1999).  The red curves are the DEM model assuming the water-saturated 
pore space as the background and the mineral grains (calcite) as the inclusions. The blue 
curves are the DEM model assuming calcite as the background and the water-saturated pores 
as the inclusions. For the velocity, we used modified DEM (Mukerji et al., 1995), assuming 
critical porosity 0.65 (solid line) and 0.45 (dashed line). Spherical inclusions are used. 

 
 
On the other hand, if we add calcite grains in a conductive background, using 

DEM theory, we find that the predicted electrical behavior is closer to that observed 

for our water-saturated carbonate rocks even at low porosity, as shown in red in Figure 

4.3b; however, the velocities predicted by DEM in this case will be too low and cannot 

explain the measurements (see red curve in Figure 4.3a).   

The self consistent (SC) effective-medium estimate is symmetric for all the 

constituents. This is in contrast with DEM modeling, where one of the components has 

to be chosen as the host to the others (Berryman, 1995). This is an important 

difference, particularly when jointly modeling elastic and electrical properties. 
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Hence, we applied SC effective medium modeling, assuming solid spherical 

calcite grains. We tested pores shaped as spheres, oblate ellipsoids with aspect ratio 

0.10, needles, and different combinations of all three. We found that a combination of 

needle-like and ellipsoidal pores of aspect ratio between 1 and 0.10, provides 

reasonably accurate approximations simultaneously for the measured velocity and 

normalized resistivity versus porosity (Figure 4.4).  

The SC estimates for normalized resistivity are still below some of the measured 

values and above some others, but are generally consistent with the behavior exhibited 

in the data (Figure 4.4b). The results still show scatter, especially at low porosities. 

Some of the low-resistivity values can be better modeled by including pores of aspect 

ratios lower than 0.1, but these data would underestimate the P-wave velocity values, 

because lowering the aspect ratio makes the pores more compliant (Mavko et al., 

1998).  S-wave velocity can also be adequately modeled using the same combination 

of ellipsoidal and needle-like pores as we use for P-wave velocity (Figure 4.5). 
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Figure 4.4: SC modeling of velocity and normalized resistivity for same plugs as those in Figure 

4.2. We assume grains with aspect ratio 1. The blue line is for pores with aspect ratio 1, the red 
line is for pores of 0.10 aspect ratio, the green line is for needle-like pores, and the purple line 
is for a combination of 50% needle-like pores and 50% ellipsoidal pores of aspect ratio 0.10.    

 
 
 

 
Figure 4.5: Same as Figure 4.4a but for S-wave velocity. 
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4.5  Modeling Resistivity using Archie’s Equation and Velocity using 

the Stiff-Sand Model 

One of the most common models for resistivity in sedimentary rocks, including 

carbonates, is Archie’s equation. In the case of carbonates, the cementation exponent 

m is interpreted as an indicator of the type of porosity. Assuming a=1, typical values 

of m given by Schön (1996) include: 

• m = 1.7 to 1.8 for chalky limestones, 

• m = 1.8 to 2.0 for crystalline and granular carbonates, and 

• m = 2.1 to 2.6 for carbonates with vugs. 

For our dataset, we observed that the high-porosity carbonates tend to be granular 

carbonates; however they seem to be better modeled with a high m, characteristic of 

carbonates with vugs. Some of the carbonates, particularly at low porosities, appear to 

be better fit by the m exponent corresponding to chalky carbonates or even lower 

(between 1.5 and 1.8). 

The elastic properties of carbonates can also be modeled using semi-empirical 

models, such as the stiff-sand model. At zero porosity, the elastic properties are those 

of the mineral phase, and at critical porosity are those given by the Hertz-Mindlin 

theory (Mindlin, 1949). For the stiff-sand model, these two end-points are connected 

by the modified upper Hashin-Shtrikman bound (Gal, et al., 1998).   

The stiff-sand model fits the data if we use a calcite mineral frame with a critical 

porosity 0.55, for both P-wave and S-wave velocity (Figure 4.7).  Some of the samples 

have dolomite; therefore, they are better fit when calcite is replaced by dolomite in the 
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modeling. Another possible explanation for the underprediction of the model for some 

of the samples is that the critical porosity could be larger than 0.55, which can happen 

in the case of chalks (Nur et al., 1998). The Mt. Acuto (MA) samples (in blue) are 

better modeled using a smaller critical porosity, such as 0.4, which is the typical value 

used for sandstones (Nur et al., 1998).  

 

 
Figure 4.6: Modeling of normalized resistivity, for same plugs as those in Figure 4.4, using Archie 

(1942)’s equation with m= [1.5, 1.8, 2.1, 2.6], from top to bottom curve, and a =1. 
 

 

4.6  Modeling Velocity and Resistivity including Inter- and Intra-

Granular Porosity Effects 

The samples used in this study have not only inter-granular porosity, but also 

moldic porosity, with numerous fossils that enhance intra-granular porosity (Vanorio 

et al., 2008).  The combination of the two has important effects on the elastic and 

electrical properties of these rocks. 
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Figure 4.7: Modeling of P-wave velocity on the left, and S-wave velocity on the right, for the same 

plugs as those in Figure 4.6, using 100% dolomite matrix and 55% critical porosity in black, 
100% calcite matrix and 55% critical porosity in blue, and 100% calcite and 40% critical 
porosity in red. 

 
 

One way to include both the inter- and the intra-granular porosity effects in our 

analysis is to model these rocks as packs of porous grains, where one of the pore 

networks (e.g., within the grains or intra-granular) is modeled using an effective 

medium model, and the other pore network (e.g., inter-granular) is modeled using 

semi-empirical relations or other effective-medium approximation. Previous studies 

that have taken this approach include Ruiz and Dvorkin (2007), and Sen (1997). 

Ruiz and Dvorkin (2007) introduced the porous-grain–stiff-sand (PGST) model. In 

their work, each grain’s elastic modulus is computed using differential effective-

medium theory.  Then, the stiff-sand model (Gal et al., 1998) is used to model the 

elastic moduli of the pack of porous grains. Sen (1997) implemented a similar model 

for resistivity of carbonate rocks with micro-porosity. An effective-medium model 

(either Maxwell-Garnett, self-consistent, or differential effective medium) was used to 
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model the rock as a whole, and each component of the rock was modeled, obeying 

Archie’s relation (Archie, 1942).  

Our approach is to model the velocity and resistivity of a pack of porous grains 

using the SC effective-medium approximation, assuming that the aspect ratio of the 

solid inclusions is 1.0, and that the rock includes a combination of needle-like  and 

ellipsoidal pores of aspect ratio 0.1 (60% and 40% of the pores by volume, 

respectively) for the inter-granular porosity. Four different intra-granular porosities are 

modeled: 1, 5, 10 and 20%. To obtain the elastic moduli, the intra-granular porosity is 

modeled using the SC approximation for pores with an aspect ratio 0.5. Assuming the 

intra-granular pores with this high aspect ratio results in high resistivity for all total 

porosity values below the intra-granular porosity, as we can see in Figure 4.8. This is 

because of the low connectivity of round inclusions.  Also, since the intra-granular 

pores are very stiff, the P-wave velocity for the rocks with higher intra-granular 

porosity is larger. This model works for most of our samples, particularly those with 

porosity above 20%.  A very similar result can be obtained using Sen’s (1997) 

approach by modeling the pack of porous grains using SC, and the intra-granular pores 

using Archie’s relation and a cementation exponent of 2.6 (Figure 4.9). 

Our next approach is to model the pores within the porous grains as needles, which 

resulted in the collapse of all the normalized resistivity lines to the model curve 

obtained for zero intra-granular porosity (compare curves in Figure 4.10b and the 

green curve in Figure 4.4b).  Notice that the models with larger intra-granular porosity 

predicted slightly smaller resistivity as the intra-granular porosity increased, at the 
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expense of inter-granular porosity (the shorter dashed line corresponding to 5% 

intragranular porosity in Figure 4.10b is below the longest dashed line corresponding 

to 1% intragranular porosity).  

We next model the intra-granular porosity using Archie’s equation (Archie, 1942) 

as first proposed by Sen (1997), instead of SC theory (Figure 4.11). Modeling the 

intra-granular porosity using Archie’s equation means that this type of porosity has an 

important contribution to the electrical conductivity of the rock, and the larger the 

intra-granular porosity, the lower the rock resistivity.  This is similar to what was 

observed when intra-granular pores were modeled as needles. Resistivity 

measurements for plugs with 10% porosity show a large scatter. 

Let us examine the results for four of these plugs with 10% porosity; two with P-

wave velocities close to 6 km/s (let us call them the A1 and A2 plugs) and two with P-

wave velocities close to 5.5 km/s (let us call them the B1 and B2 plugs). The 

normalized resistivity (measured resistivity normalized by the pore water resistivity) 

for the A1 and A2 plugs is 14.45 and 17.46, compared to 21.52 and 22.70 for the B1 

and B2 plugs. These observations show that for the same porosity, plugs with high 

velocity (A1 and A2) have lower resistivity. This would validate the hypothesis that 

the stiff intra-granular pores are still contributing to the electrical conductivity of the 

rock, and that modeling them as needles or using Archie’s equation may be 

reasonable. 

If we observe thin sections for A2 and B2 plugs (Figure 4.12), we see that one of 

the plugs with larger velocity (A2) seems to have more pores which appear close to 
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circular in cross-section (high aspect ratio ellipsoids). However, these pores may be 

inter- or intra-granular, it is not possible to distinguish this from these thin-sections. 

 

 
Figure 4.8: Modeling of velocity and normalized resistivity, assuming porous grains with pores of 

aspect ratio 0.5, using SC approximation. The pack of grains is modeled using SC assuming 
spherical grains, 60% needle-like pores and 40% ellipsoidal pores with aspect ratio 0.1. 
Squares are measurements from Carrara et al. (1999). The solid line is computed assuming an 
intra-granular porosity 0.2, and the dashed lines successively below it are for intra-granular 
porosities 0.1, 0.05 and 0.01, respectively. Porosity refers to the total porosity, including both 
intra- and inter-granular porosity.    

 
 

 
Figure 4.9: Same as Figure 4.8b, but using Archie’s equation with m=2.6 to model the intragranular 

pores, instead of self-consistent model, based on Sen’s (1997) approach. 
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Figure 4.10: Same as Figure 4.8, but assuming intra-granular pores as needles. 
 
 
Baechle et al. (2007) modeled velocity in a set of carbonate rocks with DEM using 

an aspect ratio 0.5 for the inter-granular pores (estimated from thin sections) and 

assuming intra-granular pores with 0.1 aspect ratio. Hence, Baechle et al. (2007) 

assume that these intra-granular pores are actually more compliant that the inter-

granular pores, and are the pores which are responsible for lowering the velocity for 

rocks with the same total porosity. If we assume the intra-granular pores as ellipsoids 

with aspect ratio 0.1, and the inter-granular pores as 60% needles and 40% ellipsoids 

of aspect ratio 0.5 (Figure 4.13); then, as we increase intra-granular porosity, both P-

wave velocity and normalized resistivity decrease, which is inconsistent with our 

previous observations. In our previous modeling, we included a fraction of low-aspect-

ratio ellipsoidal inter-granular pores, which accounts for the lower velocity values 
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observed, due to the presence of compliant pores; but we assumed that the intra-

granular pores are actually stiff or close to having circular cross-sections. 

 

 
Figure 4.11: Same as Figure 4.8 but using Archie’s equation (a=1, m=1.5) to model resistivity of 

intra-granular pores. 
 
 

 

 
Figure 4.12: Both samples have 10% porosity. The sample on the left (B2) has P-wave velocity 

5.55 km/s and normalized resistivity of 22.70; while the one on the right (A2) has P-wave 
velocity 6.21 km/s and normalized resistivity 17.46. 
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Figure 4.13: Same as Figure 4.11, but assuming porous grains with pores of aspect ratio 0.1 for the 

velocity. The pack of grains is modeled using SC assuming spherical grains, 60% needle-like 
pores and 40% ellipsoidal pores with aspect ratio 0.5. 

 

 
Most of the samples under examination were composed of calcite; however, not all 

calcite grains have the same size. Some of the calcite was present in very fine grains, 

in the form of micritic cement. The resistivity measurements are not as strongly 

affected by this grain-size effect as the velocity measurements are (see blue data points 

corresponding to MA formation in Figure 4.11).  

4.7  Permeability versus Porosity Relation 

The permeability versus porosity relation for these samples is a very complex one, 

with a lot of scatter at low porosities (Figure 4.14). Resistivity is believed to be 

interrelated with permeability; however, it depends not only on porosity and 

permeability, but also on grain size, and pore geometry.  
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Permeability was modeled as a function of porosity using Kozeny-Carman’s 

relation with tortuosity 1.5, a percolation porosity of 2%, and different grain sizes (500 

to 10 micrometers), which were similar to those observed from the thin sections.  As a 

result, we obtained a reasonable match for the high-porosity carbonates, but at lower 

porosities, there is still a lot of scatter, similar to what was observed for the resistivity 

measurements. 

 
Figure 4.14: Permeability versus porosity, colorcoded by normalized resistivity. The curves 

correspond to Kozeny-Carman’s equation for different grain sizes of 500, 100, 50, 25, and 10 
μm, from the top line (magenta) to the bottom line (blue) line. The percolation porosity used in 
Kozeny-Carman’s relation is 2%, and the tortuosity is 1.5. 

 
 

4.8  Normalized Resistivity – P-wave Velocity Transform 

Both P-wave velocity and resistivity depend strongly on porosity, and different 

relations to estimate P-wave velocity from normalized resistivity have been derived, 

such as those by Faust (1953) and Hacikoylu et al. (2006). If we plot P-wave velocity 

versus the logarithm of normalized resistivity for this dataset, and color-code the data 

points by porosity (Figure 4.15), we can observe a quadratic trend approximated by:  
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VP (km/s)= 0.99 (log10(Rt/Rw))2 +0.013 log10(Rt/Rw)+2.1.   (4.2) 
 

 
 The velocity and resistivity values used to derive this relationship are those 

computed for a 100% water saturation, using Gassmann’s and Archie’s (Equation 4.1) 

expressions, respectively. As velocity increases, normalized resistivity also increases. 

Deviations towards lower velocities from the trend are due to different fractions of 

micrite present in the pore space. The micritic cement tends to affect the velocity but 

not the resistivity. Deviations towards lower resistivities from the trend correspond to 

the presence of water-saturated but stiff pores such as moldic or intra-granular pores, 

which causes high velocity but low resistivity values, as we discussed in the previous 

section. 

 

 
Figure 4.15: P-wave velocity versus the logarithm of normalized resistivity. Circles are 

measurements from this study. Open squares are measurements from Carrara et al. (1999).  A 
quadratic fit is shown as a solid line, and +/- two standard deviation lines are shown as dashed 
lines. Data are color-coded by porosity. 
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4.9  Conclusions 

We have shown that SC effective medium approximation is more appropriate than 

DEM for simultaneous modeling of both velocity and resistivity for carbonate rocks. 

To model both velocity and resistivity in a consistent manner for these carbonate 

rocks, stiff but well-connected pores (e.g., needle-like instead of ellipsoidal pores) are 

necessary. Also, the elastic response for this set of rocks can be modeled only if a 

fraction of compliant pores (e.g., ellipsoids with aspect ratio 0.1) is included in the 

modeling. 

For almost all porosities, SC approximation is an appropriate modeling approach 

for both velocity and resistivity, and for both inter- and intra-granular porosity 

(modeled separately). For the low-porosity samples, SC provides satisfactory results if 

used to model inter-granular porosity, while intra-granular porosity is better modeled 

using SC effective medium for velocity, and using Archie’s equation for resistivity.  

Semi-empirical models, such as Archie’s equation and the stiff-sand model, also work 

to predict the velocity and resistivity of these samples. 

Finally, a quadratic relationship between the logarithm of normalized resistivity 

and P-wave velocity is observed. Some deviations from this trend are due to calcitic 

micrite, and to pore stiffness effects on velocity that do not affect resistivity. 
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Table 4.1: Mineralogy from X-Ray diffraction analysis performed by Cinzia 
Scotellaro at Stanford University, and MarcoVoltolini at the University of 
California at Berkeley. Porosity computed from mass, volume and mineralogy. 
Porosity measured with Helium porosimetry by Cinzia Scotellaro at Stanford 
University. 
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Table 4.2: Mineralogy from X-Ray diffraction analysis performed by Cinzia 
Scotellaro at Stanford University, and MarcoVoltolini at the University of 
California at Berkeley. Porosity computed from mass, volume and mineralogy. 
Porosity measured with Helium porosimetry by Cinzia Scotellaro at Stanford 
University. 
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Table 4.3: Mineralogy from X-Ray diffraction analysis performed by Cinzia 
Scotellaro at Stanford University, and MarcoVoltolini at the University of 
California at Berkeley. Porosity computed from mass, volume and mineralogy. 
Porosity measured with Helium porosimetry by Cinzia Scotellaro at Stanford 
University. 
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Table 4.4: Permeability in millidarcies measured by Cinzia Scotellaro at Stanford 

University, water saturation reached for resistivity measurements, resistivity, 
normalized resistivity or formation factor computed using a saturation exponent 
(n) of 2, and Rw=28 ohm.m. P-wave and S-wave ultrasonic velocities measured 
at dry conditions by Cinzia Scotellaro at Stanford University. 
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Table 4.5: Permeability in millidarcies measured by Cinzia Scotellaro at Stanford 
University, water saturation reached for resistivity measurements, resistivity, 
normalized resistivity or formation factor computed using a saturation exponent 
(n) of 2, and Rw=28 ohm.m. P-wave and S-wave ultrasonic velocities measured 
at dry conditions by Cinzia Scotellaro at Stanford University. 
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Table 4.6: Permeability in millidarcies measured by Cinzia Scotellaro at Stanford 

University, water saturation reached for resistivity measurements, resistivity, 
normalized resistivity or formation factor computed using a saturation exponent 
(n) of 2, and Rw=28 ohm.m. P-wave and S-wave ultrasonic velocities measured 
at dry conditions by Cinzia Scotellaro at Stanford University. 
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Chapter 5 

CSEM Theoretical Background 
and Modeling 
 

5.1  Abstract 

Measuring resistivity using an electromagnetic field technology can be very useful 

to estimate saturation, which is hard to estimate from seismic data. In this Chapter, we 

review controlled source electromagnetic methods, and perform 3D finite element 

modeling, and compare this technique to seismic data. CSEM methods allow us to 

have an estimate of resistivity, and identify relatively thin resistors, although as we 

show from our modeling, their depth and lateral extent have an important impact on 

our ability to detect these reservoirs.  Seismic resolution is not nearly as sensitive to 

the lateral extent and depth to the reservoir as CSEM data resolution is, but CSEM 

data does have the potential to distinguish between high and low gas saturated 

sandstones. As we show from seismic modeling, identifying low versus commercial 

gas saturated sandstones is not easy, since adding a small amount of gas can change 

the seismic response to be very close to that of a high gas saturated sandstones. 
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5.2  Introduction 

Controlled source electromagnetic (CSEM) methods have become in the last five 

years a common tool to identify the depth and lateral location of resistive reservoirs 

(Chopra et al., 2007).  Generally, water-saturated shale and sandstone have similar 

resistivity (1-2 ohm m), while hydrocarbon saturated sandstones have high resistivity 

(10 to several hundred ohm m). Therefore, these methods are sensitive to hydrocarbon 

saturation. Low porosity rocks may also show high resistivity, for example, evaporites, 

most igneous rocks, and also some carbonates. Almost all CSEM surveys are marine, 

but this method can also be used in land (Chopra et al., 2007). We will focus in 

understanding only marine CSEM technology, which is generally done in the 

frequency domain.  

In general, if we compare the resistivity measurements from CSEM with those 

obtained from well logging, they can be very different. One of the main reasons is that 

we measure a total resistance or a weighted arithmetic average of resistivity (weighted 

by the thickness of the layer) when we use CSEM methods, and not each individual 

layer resistivity (Strack, 1992). Also, using conventional logging tools, we measure 

horizontal resistivity, similar to combining the layers as resistors in parallel, while 

CSEM technology gives us the vertical resistivity, equivalent to combining the layers 

as resistors in series. 

In this chapter, we will introduce the theory behind CSEM methods, and we will 

use some simple models to compare its capabilities to characterize gas sandstones to 
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those of seismic reflection data. In particular, we will focus on studying its resolution 

and its ability to distinguish commercial and non-commercial gas saturation. 

5.3  Theoretical Background 

The source used for CSEM data acquisition is a horizontal electric dipole (HED) 

towed in a neutrally buoyant streamer (around 50 m above the seafloor) above an 

array of receivers deployed on the seafloor (Figure 5.1). The source sends a time-

continuous periodic low-frequency (~0.01 – 10 Hz) electromagnetic signal (Chopra et 

al., 2007). Each individual frequency is transmitted one at a time (Anderson et al., 

2008) (Figure 5.2).  

 

 
 
Figure 5.1: Schematic showing common configuration during CSEM surveys. HED source towed 

in a streamer above array of receivers. 
 
 
A current is injected across the bipole electrodes of the source producing a primary 

electromagnetic field.  This primary field induces currents in the subsurface and 

creates a secondary electromagnetic field. The total field includes both the primary 

and the secondary fields. The primary field is present during the recording, so it 

records the total field. The receivers record both amplitude and phase of the electric 

field parallel and perpendicular (inline or radial and crossline or azimuthal) to the 
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source orientation. The inline or radial electric field is the most commonly used in 

CSEM analysis.  

 

 

 
Figure 5.2: Schematic showing amplitude and phase of the source signal function for CSEM in 

time, and its frequency spectrum, including amplitude and phase. 
 
 
Generally, a high-resistivity target is only detectable at offsets greater than about 

twice its depth (Anderson et al., 2008). At short offsets, the direct energy between 

source and receiver dominates over that diffusing through the subsurface. As the offset 

increases, we have a stronger signal from the energy that propagates through the 

subsurface. At larger offsets, the airwave effect (energy refracting along the sea-water 

interface) also becomes smaller. The airwave amplitude is larger as the water depth 

decreases (Johansen et al, 2007). This fact is what has limited CSEM technology to 

deep water (>~ 300 m).  
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CSEM data are commonly processed in the frequency domain (Chopra et al., 

2007). The most common interpretation approaches for CSEM include plots of the 

normalized amplitudes of the electric field (magnitude, both inline and crossline) 

versus offset (known as MVO) at individual frequencies, and of normalized phase of 

the electric field versus offset (PVO) at individual frequencies. The amplitude and 

phase are normalized with respect to a reference receiver from an area that represents 

the background resistivity response (without the reservoir). The electric field 

magnitude is also sometimes given as the electric field at the receivers divided by the 

dipole source strength (antenna length times zero-to-peak transmission current).  

The fundamental equations to describe the EM phenomenon are the Maxwell 

equations, which for linear media are: 

fQ
ε
1

=⋅∇ E ,        (5.1) 

 
0=⋅∇ B ,         (5.2) 

 

t∂
∂

−=×∇
BE ,        (5.3) 

 

t∂
∂

+=×∇
EjB εμμ 00 .       (5.4) 

 
 
E is the electric field, B  is the magnetic flux density, ε  is the electric 

permittivity,  is the charge density, t is time, and fQ j  is the current density (Andréis 

and MacGregor, 2008). Assuming no charge buildup, we have Qf =0, and then 

Equation (5.1) becomes: 0=⋅∇ .  Applying the curl to Equations (5.3) and (5.4), we 

obtain: 

E
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The current density, j, includes that caused by the source dipole, js, such that 

(Chave and Cox, 1982):  

sjEj += σ         (5.6) 
 
Replacing (5.6) into (5.5), we have: 
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If a single Fourier component proportional to  is considered (t is time, and tie ω− ω  

is angular frequency) (Chave and Cox, 1982), Equation (5.7) becomes: 

sjEE 00
2

0
2 )( ωμσωμεωμ ii −+−=∇ .     (5.8) 

 
After some algebra, we have (Andréis and MacGregor, 2008): 

sjEE 00
2 )( ωμσεωωμ iii −=+−+∇ .     (5.9) 

  
If σεω << , which it is true for low frequency, and in a high conductivity medium, 

Equation (5.9) simplifies to (Andréis and MacGregor, 2008): 

sjEE 00
2 ωμσωμ ii −=+∇ .       (5.10) 

 
Solutions for this equation in 1D can be decomposed into two parts corresponding 

to two different modes of the electromagnetic field – transverse magnetic (TM) and 

transverse electric (TE) modes. Any electromagnetic field in a homogeneous material 

can be separated into these two modes with respect to an arbitrary direction in space 

(e.g., the vertical or depth). Each mode will satisfy Maxwell’s equations independently 

(Chave and Cox, 1982). 
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The solution of equation (5.10) is an integral equation for each mode of each 

component of the resulting electric field and magnetic flux density (Andréis and 

MacGregor, 2008). Below, we show the radial electric field of an HED source at 

height z’ above the seafloor calculated at a receiver lying at height z above the seafloor 

(z’>z): 
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where r is the offset, θ  is the azimuth (angle between dipole axis and a line joining 

source and receiver), P is the source dipole moment, 0σ is the conductivity of 

seawater, k is the horizontal wavenumber, 0β  is the complex wavenumber in the sea, 

and  are first- and second-order Bessel functions respectively.  and 

are the reflection coefficients at the air-water interface for the TM and TE 

modes, respectively. Assuming air to be infinitely resistive, then =-1, and  
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so TE modes are the ones that primarily contribute to the airwave effect.  and 

are the reflection coefficients that actually contain information about the earth. 

They are computed applying the boundary conditions for the field components 

recursively at each material boundary in the structure starting from the deepest layer. 

TM
LR

TE
LR

See Andréis and MacGregor (2008) for the complete solutions. For the 1D case, 

the transverse electric (TE) mode consists of horizontal current loops (circling the 

vertical axis). Coupling between adjacent layers in this case is purely inductive, so 

there is no current flow across boundaries. The transverse magnetic (TM) consists of 

current loops in the plane of the vertical axis. Coupling between adjacent layers is both 

inductive and galvanic. TE modes disappear for the limit of zero frequency, while TM 

modes vanish for DC current (Chave and Cox, 1982; Andréis and MacGregor, 2008). 

In general when we have a wave equation as (Griffiths, 1989): 
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similar to Equation (5.5) but including in E not only the induced but the total electric 

field, one solution in 1D is a plane wave, given by: 

        (5.14) )( tkzie ω−
⋅= oEE

 
where is the initial electric field, z is the depth, and k is the complex wave number. 

Replacing (5.14) into (5.13), we have that: , so that 
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When σεω << , we have that (Griffiths, 1989):  

2
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The decline in current density versus depth which dictates the resolution of these 

methods is known as the skin effect. The skin depth is a measure of the distance over 

which the current falls to 1/e of its original value, and it is given by (Griffiths, 1989): 

 
−

=
k
1δ ,         (5.16) 

 
The skin depth is then from (5.15) and (5.16): 

σωμ
δ
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= ,         (5.17) 

 
Replacingω  by fπ2  (  is the frequency), the value of f 0μ , and the conductivity by 

ρ/1  ( ρ  is the resistivity): 
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Evaluating this, we get: 
f
ρδ meters503≈ .  

From (5.14) through (5.16): 
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hence, the electric field will decay exponentially in a conductive medium with depth. 

When σεω << , we are on a diffusion regime, and the notion of “wavelength” loses 

its geometrical significance, and the wave only penetrates about a sixth of a 

wavelength ( πλδ 2/≅ ), attenuating before it completes a single cycle. The decay rate 

of the electric field increases with frequency as we observe from Equation (5.19). 

Therefore, the smallest the frequency, the skin depth is larger, hence the decay of the 
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field is smaller with depth if the frequency is low. The resolution of these methods 

will definitely suffer as we increase the depth of the target, as we can see from 

Equation (5.19). The resolution of these techniques is roughly as a first estimate 10% 

of the depth of the target (Strack, 1992). 

5.4  CSEM versus Seismic Modeling as a function of Gas Saturation 

and Reservoir Thickness 

To have a better understanding of CSEM data, we model a gas-sandstone reservoir 

embedded in fully-water saturated sandstone. The overburden is assumed to be shale. 

We performed a 3D-finite-element modeling, using Comsol Multi-Physics software. 

We define a sphere of 5 km radius as the computational domain. Five regions are 

defined in this sphere, corresponding to air, then seawater, shaly overburden, fully-

water saturated sandstone, and sandstone reservoir. We defined the reservoir as a 

block of area 4 squared km (4km on the x-axis and 1 km on the y-axis), and 100 m 

thickness. We model the formation factor in the shale and sandstones using the 

relationships that we estimated at Nuggets-1 gas field, which is studied in more detail 

in Chapters 6 and 7. The formation factor assigned to shale is derived using Archie 

(1942) equation as: 

6.2

1
φ

=F ,         (5.20) 

 
assuming porosity, φ =0.35 (similar to what is observed in the overburden for 

Nuggets-1 well log data). While, the formation factor assigned to sandstone is derived 
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from Archie’ equation as well, but using Humble or Winsauer’s expression (Schön, 

1996): 

15.2

62.0
φ

=F  ,        (5.21) 

 
using porosity, φ =0.32  as that from Nuggets-1 gas-sandstone reservoir (see Chapter 

6). 

 Conductivities as observed in the model in Figure 5.3 were calculated as the 

inverse of the formation factor multiplied by water resistivity in this area. We assume 

35,000 ppm salinity, therefore a water resistivity of around 0.1 ohm m. Water 

saturation in Figure 5.3a is assumed to be 0.1, while in Figure 5.3b is modeled as 0.9. 

We also show in Figure 5.3 the amplitude of the radial electric field in decibels at a 

frequency of 1 Hz for two different water saturations 0.1 and 0.9. Transmitter is 

modeled as a 10kA amplitude AC line current segment, 150 m above the seafloor 

(where the highest radial electric field magnitude occurs as observed in Figure 5.3). 

An outward radiating boundary condition is used on the sphere surface. These 

conditions follow the sea bed logging example as given in the RF and Microwave 

models in Comsol Multi-Physics software.  
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(a) 
 

   
(b) 
 

Figure 5.3: Reservoir model, xz view, colorcoded by conductivity on the left and by the magnitude 
of the radial electric field (dB) on the right. Top figures are for 10% water saturation, and bottom 
figures are for 90% water saturation, and both are for 1Hz frequency. The seawater layer is that with the 
highest conductivity (~3 S/m). Model space is a sphere with 5 km radius.  
 
 

In the case of CSEM modeling, 1D versus 3D modeling can make a very big 

difference, due to the diffusion nature of the EM phenomenon at the frequencies of 

interest. For seismic modeling, 3D versus 1D modeling is important in the case of 

structural complex areas, but in the case of a simple model like the one we are 

working with, it does not make a big difference. We repeat the same modeling using 
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1D seismic modeling based on the convolutional model, but accounting for the effect 

of the Fresnel zone using horizontal averaging. Results are shown in Figure 5.4. The 

two seismic reflectors we observe are the top and bottom of the reservoir for two 

different water saturations, 0.1 and 0.9. The color scale for the amplitude was 

narrowed from -0.1 to 0.1 to be able to see any difference in the reflectors, but their 

amplitudes are actually very close in both cases. 

 
 

 

 
 

Figure 5.4: Stacked synthetic seismic sections for 50 Hz frequency colorcoded by seismic 
amplitude, reducing the color scale from -0.1 to 0.1 in order to observe the amplitude at the top of the 
reservoir. Top seismic section is for 10% water saturation, while bottom section is for 90% water 
saturation. 
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The difference in the magnitude of the radial electric field can be more easily 

observed in magnitude versus offset or MVO plots (Figure 5.5). In the same way, the 

difference in the seismic reflection amplitudes can be better distinguished in amplitude 

versus offset plots derived for the same model for the top of the reservoir (Figure 5.6).  

 

    
 

Figure 5.5: Radial electric field magnitude versus offset (MVO) curves on the left, and on the right 
the difference in radial electric field magnitude with respect to the 100% water saturated case. Blue 
curve is for 100% water saturation, red is for 10% water saturation, and three black curves in between 
are for 90, 70 and 40% water saturation.  
 
 

      
 

Figure 5.6: Seismic amplitude versus offset (AVO) curves on the left, and on the right the 
difference in seismic amplitude with respect to 100% water saturated case. Blue curve is for 100% 
water saturation, red is for 10% water saturation, and three black curves in between are for 90, 70 and 
40% water saturation.  

 
 

 
We observe that seismic amplitudes for 0.9 and 0.1 gas saturation are very 

similar, while the seismic amplitude for a fully water saturated sand is very different 



CHAPTER 5: CSEM THEORY AND MODELING 
 

107

from these two cases. On the other hand, the radial electric field amplitude versus 

offset is almost the same for 10 and 0% gas saturation, but it is very different in the 

case of 100% water saturation. Therefore, this explains the interest of the hydrocarbon 

industry in EM data, basically that CSEM data have more potential to identify a 90% 

gas saturated sand from a 10% gas saturated sand when compared to seismic data.  

Acoustic impedance was computed using the rocks physics resistivity – 

acoustic impedance transforms derived in Chapters 6 and 7 for Nuggets-1 data, and 

shown in Figure 5.7, 1.6)(log2.3g/cc) (km/s AI 10 +⋅= F , for shale (model used in 

Chapter 7), and 4.2)(log9.3g/cc) (km/s AI 10 +⋅= F , for fully water-saturated 

sandstone (derived from models used to create acoustic impedance – resistivity 

template in Chapter 6). The shear-wave velocity data used in the modeling was 

obtained using the soft-sand model entering the parameters used to derive the 

transforms. The models used for the sandstone transform are the soft-sand model 

assuming 10% clay content, coordination number 13, critical porosity 0.4, effective 

pressure 20MPa, and Archie’s equation with a=0.62 and m=2.15 (same parameters as 

in Chapter 6). For shales, we use soft-sand model for 60% clay content, coordination 

number 6, critical porosity 0.4 and effective pressure 20MPa, and Archie’s equation 

with a=1, and m=2.6 (same parameters as in Chapter 7).   
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Figure 5.7: Soft sand-Archie impedance-resistivity models in red for sandstones and in magenta for 
shales. Data are from well in Nuggetts-1 field, colorcoded by gamma ray on left and depth (m) on right. 
Dashed lines are linear fits to the soft-sand-Archie models given by: 

, for shale, and 1.6)(log2.3g/cc) (km/s AI 10 +⋅= F 4.2)(log9.3g/cc) (km/s AI 10 +⋅= F , for sandstone. 
 
 

Another important parameter is the thickness of the gas sandstone, since as 

described before, CSEM data responds to the total resistance. We changed the 

thickness of the sandstone from 100 m to 50 m and 25 m.  The MVO curves for these 

three cases, and the base case with no reservoir are all shown in Figure 5.8. We 

observe that even for 25 m thickness, there is a separation from the base case, so the 

gas sand could be identified. 

 Further sensitivity analysis must include changing some of the horizontal 

dimensions of the reservoir, or the depth to the reservoir, which will both have very 

important effects as well, since they will affect the total resistance, which as we 

discussed before is the main property that the CSEM method measures. An important 

observation is that CSEM data could help identify the presence of the gas sand even if 

it was only 25 m thick, but it would not be possible to distinguish between a 25 and a 

50 m thick sand. Hence, seismic data can help us better describe the geometry and 

thickness of the sandstone than the lower resolution EM data can.   
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Figure 5.8: Radial electric field magnitude versus offset (MVO) curves on the left, and on the right 
the difference in radial electric field magnitude with respect to the 100% water saturated case. Blue 
curve is for 100% water saturation. The rest of the curves are for 10% water saturation, including red 
for 100 m thick gas sand, black for 50 m thick, and green for 25 m thick gas sand.  

 
 

When we change the depth of the reservoir to 1 km, we notice that it is almost 

impossible to distinguish the reservoir from the background (compare blue and dashed 

red curved in Figure 5.9). This is expected since now one of the lateral dimensions of 

the reservoir is the same as its depth, and as Constable and Weiss (2006) show in their 

modeling, when the lateral dimensions of the reservoir become too small, CSEM data 

cannot identify it. We modify the dimensions to 4 by 2 km area, and 25 m thickness. 

In that case, at 1 km depth, as shown by the solid red line, we will have a better chance 

to identify the reservoir. 

Lateral seismic resolution is described by the Fresnel zone, which radius ( r ) is 

given as a function of seismic velocity ( v ), normal incidence two-way traveltime 

( , where  is depth) and frequency ( ) by (Yilmaz, 2001):  vzt /20 = z f

f
tvr 0

2
=          (5.22) 
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Evaluating this equation for =0t 1 s,  = 2000 m/s, = 50 Hz, the radius is 141 

m. Lateral seismic resolution decreases as depth increases (Yilmaz, 2001); however, it 

is not as dramatic as in the case of CSEM data, where the vertical currents generated 

by the source can only detect reservoirs that have a large lateral extent (large 

compared to their burial depth) (Constable and Weiss, 2006), although their thickness 

can be small, as we observed from our previous modeling. 

v f

 

        
 

Figure 5.9: Radial electric field magnitude versus offset (MVO) curves changing the depth to the 
sandstone to 1000 m on the left, and on the right the difference in radial electric field magnitude with 
respect to the 100% water saturated case. Blue curve is for 100% water saturation. Red curves are for a 
25 m thick gas sand, 10% water saturation. Solid red line is for 4x2 km² reservoir area, and dashed red 
is for 4x1 km² area. 

 
Also, the orientation of the reservoir will have an important effect on what we can 

detect using CSEM data. If now we rotate the reservoir to be 2x4 km² and 1x4 km², 

hence, the longest dimension is perpendicular to the receiver line, we find that it is 

harder to detect it (Figure 5.10). Therefore, the smaller the reservoir is on the inline 

direction, the harder is to detect it. 

 



CHAPTER 5: CSEM THEORY AND MODELING 
 

111

         
 

Figure 5.10: Radial electric field magnitude versus offset (MVO) curves on the left, and on the 
right the difference in radial electric field magnitude with respect to the 100% water saturated case. 
Blue curve is for 100% water saturation. Red and black curves are for a 25 m thick gas sand, 10% water 
saturation. Solid red and black lines are for 4x2 and 2x4 km² reservoir area, respectively. Dashed red 
and black lines are for 4x1 and 1x4 km² area. 

 

5.5  Conclusions 

From our modeling, we observe that CSEM technology can allow to identify 

commercial from non-commercial gas saturation in sandstones, particularly in the case 

where it is harder using seismic data. However, seismic data can help to better 

describe the geometry and thickness of a reservoir. CSEM data are more sensitive to 

the lateral extent and depth of burial of the reservoir compared to seismic data.  

Another parameter that is extremely important for CSEM methods is the skin 

depth, which is a function of resistivity and frequency, as we learned in our theory 

review. We used a 1 Hz frequency in our modeling and an overburden resistivity of 

2.5 ohm m, therefore, the skin depth is 795 m. That is another reason why as we bury 

our reservoir deeper to 1km, it becomes harder to identify, since the electric field 

magnitude has already decayed by 1/e by the time it reaches this depth.  

Modeling CSEM data can help to identify in which cases using this technology 

will be useful. From the modeling, we found that if the reservoir is not laterally 
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extensive, in particular in the inline direction, it is harder to detect it. The reservoir 

thickness is important, but definitely its lateral dimensions in relation to its depth have 

a more important effect on our ability to detect the reservoir. As we observed from the 

analysis, seismic method will still be the most reliable method to delineate a reservoir, 

due to the lower resolution of CSEM data; however, we also show how CSEM can be 

very valuable to identify commercial versus non-commercial gas saturation. 
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Chapter 6 

Case Study using Rock Physics 
Impedance–Resistivity Templates: 
Nuggets-1, North Sea  
 

6.1 Abstract 

Combining electromagnetic and seismic field data can improve estimates of 

reservoir properties and conditions. In this chapter, we show a case study in the North 

Sea, where we describe and apply the methodology we are proposing to estimate 

porosity and saturation from acoustic impedance and resistivity field-scale 

measurements.  

We first use rock-physics diagnostics to predict which elastic and resistivity model 

is appropriate in a given area or reservoir. Using this model, we compute acoustic 

impedance and resistivity for a given porosity or saturation to generate the rock-

physics impedance – resistivity templates at the well-log scale. Once these templates 

have been created at the well scale, Backus and arithmetic averages can be used to 

upscale the acoustic impedance and the resistivity, respectively. In this way, we can 
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generate an upscaled template, which can be used with field data. This allows us to 

estimate saturation and porosity from field data. Other seismic attributes can be used 

to create these templates, such as elastic impedance or seismic velocity.   

6.2 Introduction 

Chapter 2 introduced the concept of templates at the well-log scale and the concept 

of upscaling to field seismic and EM data. In this chapter, we apply these concepts to a 

field data set, and we show how to upscale acoustic impedance–resistivity templates, 

which can then be used to estimate porosity and saturation from field data.  

As we discussed in Chapter 2, Ødegaard and Avseth (2003) introduced the term 

rock physics template (RPT). An RPT is a chart of locally constrained rock physics 

models for prediction of lithology and hydrocarbons (Avseth et al., 2005). In general, 

these charts are crossplots of acoustic impedance versus Vp/Vs ratio, or of other 

seismic attributes. The charts or templates, which we have created of P-wave 

impedance and resistivity, are also made of locally constrained models. As we 

discussed above, they can be upscaled, but previous knowledge of lithology and pore 

fluid properties are required to create them. We can obtain this information if we have 

some well control. 

The data set that we use is from the Nuggets-1 gas field. This field is located in the 

North Sea, offshore from the UK in 115 m of water. The sand reservoir belongs to the 

Eocene Frigg formation and is about 25 m thick (Harris and MacGregor, 2006).  

Figure 6.1 shows gamma ray, neutron porosity, resistivity, density and sonic well logs 

from a well located in this field. At about 1690 m depth, we can observe the reservoir 
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gas sand, where we will show the application of our combined interpretation 

technique.  

6.3 Rock Physics Diagnostics 

First, we use the well-log velocity and porosity data to diagnose this reservoir.  

This diagnosis includes three steps:  (1) bring the entire interval to the “common fluid 

denominator” by theoretically making it all wet (fluid substitution from gas to 

formation water); (2) plot the resulting acoustic impedance-porosity data for sand and 

shale; and (3) superimpose theoretical acoustic impedance-porosity curves upon this 

plot to find which model describes the trends best.  Here, we find that the constant-

cement–sand model (Avseth et al., 2000) is most appropriate for this specific example 

(Figure 6.2). This model is consistent with this formation’s age (Eocene, the earliest of 

the three divisions of the Tertiary period); therefore, we expected that it could be a 

cemented sand. 

The resistivity is modeled using a version of Archie’s formula (Archie, 1942) 

known as the Humble or Winsauer equation (Winsauer et al., 1952), which assumes 

the Archie’s constants  and a = 0.62 m = 2.15 (Figure 6.3).  The Winsauer equation 

was derived for approximately thirty brine-saturated sandstone samples, with ages 

ranging between Devonian and Pliocene, from different locations in North America. 

The area under study also corresponds to brine-saturated sandstones. The water 

salinity is 35,000 ppm, which gives Rw  about 0.1 ohm·m, using the Schlumberger 

Gen-6 chart.   

 



CHAPTER 6: CASE STUDY: NUGGETS-1, NORTH SEA 
 

116

 

 

Figure 6.1: Well logs at Nuggett-1, from left to right: gamma ray (GR), neutron porosity (NPHI), 
deep resistivity (RT), density and sonic velocity (VP).  

 

 
 

 

Figure 6.2: Rock physics diagnostics.  Acoustic impedance versus porosity for sand and shale in 
the Nuggets well.  The impedance is for 100% water-saturated rock obtained from the original 
log data by theoretically substituting formation water for gas in the reservoir.  The upper curve 
is the constant-cement model for 100% quartz, whereas the lower curve is for 100% clay. 
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Figure 6.3: Rock physics diagnostics.  Normalized resistivity (Rt/Rw) versus porosity for sand in 
the Nuggets well color-coded by gamma ray. The data points are for 100% water-saturated 
rock obtained from the original log data by theoretically substituting gas in the reservoir with 
the formation water, assuming a saturation exponent of 2.  The curve is the Humble or 
Winsauer equation (Schön, 1996), which assumes the Archie constants  and 

.  
a = 0.62

m = 2.15
 

6.4 Rock Physics Acoustic Impedance–Resistivity Templates 

Once we have performed rock-physics diagnostics using the well-log data, we can 

combine these models to create an acoustic impedance–resistivity template at the well-

log scale. As was explained in Chapter 2, both models are recreated in a porosity range 

from 0.15 to 0.4, and saturation is changed from zero to one at each porosity station to 

generate the vertical lines in the template. Then saturation is kept constant, while 

porosity is changed from 0.15 to 0.4, which gives rise to the horizontal lines shown in 

the template. In both cases, the models interpreted during the rock physics diagnostics 

are used to generate the template. 

The resulting Ip -versus- R template at the well-log scale (see Figure 6.4, left) 

gives the sand’s porosity at about 0.3 and gas saturation up to 0.9. This template 

should not be used directly with field seismic and CSEM data, whose scales of 
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measurement are vastly different from those in the well and also different from each 

other (Figure 6.5).  This template must be altered to honor the statistics of the data, 

which varies with the scale of measurement. 

 

 

Figure 6.4: Acoustic impedance-resistivity template for the Nuggets reservoir with log data 
superimposed.  Color bars are water saturation (left) and porosity (right). 

 
 
 
To conduct such upscaling, let us remember that seismic and CSEM profiling 

simultaneously provide us with two values for a single location in the subsurface.  

What reservoir properties may generate these two responses?  One approach to 

answering this question is forward modeling.  We assume that the thickness of the gas 

and wet sand layers as well as the properties of the shale surrounding this sand are the 

same everywhere as at the well.  Next, we create a pseudo-earth (or pseudo-well) 

model, as shown in Figure 6.6, where the acoustic impedance in the shale is about 4.5 

km/s g/cc, similar to the original well.  Then we vary the porosity in the entire sand 

from 0.15 to 0.40 with a 0.05 step, and for each porosity, we vary the water saturation 
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in the gas sand from zero to one with a 0.01 step.  This procedure produces a table of 

porosity and saturation at the scale of the pseudo-well.  

From this table, we calculate (a) the acoustic impedance using the constant-

cement–sand model and (b) the resistivity for each realization using the Winsauer 

equation (as described earlier in the text).  One such realization is shown in Figure 6.6. 

 

 

 

Figure 6.5: Nuggets gas field well log (blue) and seismic/CSEM (red) data at the well.  The full 
seismic stack was provided by TGS-NOPEC, from which we obtained the seismic acoustic 
impedance using the Hampson-Russell inversion package. The CSEM resistivity profile was 
provided by OHM.  The reservoir zone is highlighted in green. 

 
 

For upscaling, we use the Backus average with a 12.5 m running window (about a 

quarter wavelength) to transform the log-scale acoustic impedance to the seismic-scale 

acoustic impedance and the arithmetic average with a 150 m running window (about 

10% of depth to reservoir) to transform the log-scale resistivity to the CSEM-scale 

resistivity.  The latter window (150 m) was selected to honor the difference between 

the resistivity at the reservoir as recorded by logging and CSEM.  The upscaled 
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acoustic impedance and resistivity profiles are shown in Figure 6.5.  We select those 

upscaled values in the middle of the reservoir for each realization and create an 

Rt /Rw -versus- Ip  mesh that yields a template usable at the field scale (Figure 6.7). 

 

 

Figure 6.6: One realization of a pseudo-well.  From left to right:  log-scale acoustic impedance; 
seismic-scale acoustic impedance; a synthetic normal-incidence trace; log-scale resistivity; and 
CSEM-scale resistivity versus the two-way travel time.  Red vertical bars show the upscaling 
windows for the acoustic impedance (first frame) and resistivity (fourth frame). 

 
To interpret the Nuggets field data for porosity and saturation, we take the 

seismically-derived acoustic impedance and CSEM resistivity selected from the depth 

interval around the reservoir.  These values are placed upon the field-scale template in 

Figure 6.7.  The contour lines in this template indicate that the gas saturation is around 

0.85 and porosity is around 0.25, consistent with the actual values in Nuggets. 

For this particular case study, neither dipole log nor pre-stack data were available; 

however, we did generate a synthetic elastic impedance (also called far-offset 

impedance) log using the constant cement model and computed the range of the far-
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offset impedance, which then served to build the template of elastic impedance versus 

acoustic impedance.  This template was built in exactly the same fashion as the 

acoustic impedance–resistivity template, by varying only the porosity and saturation in 

the sand (Figure 6.8). The far-offset impedance in this case was calculated according 

to Connolly (1999), for an incidence angle of 30 degrees.  We observe that this 

template does help discriminate gas- from water-saturated sand (Figure 6.8, left), 

although quantifying saturation is not possible, and intervals with low gas saturation 

can be confused with highly gas-saturated sand.  Still, this template is useful for 

verifying that gas sands are being correctly identified.   Also, from Figure 6.8 (right), 

we see that this template helps discriminate the low-porosity from the high-porosity 

intervals.  

 

 

Figure 6.7: Left: a log-scale acoustic impedance-resistivity template, same as in Figure 6.4.  Right:  
seismic/CSEM-scale template.  The symbols are from the seismic acoustic impedance and 
CSEM resistivity profiles shown in Figure 6.5, selected at the reservoir. 
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Figure 6.8: Acoustic impedance versus far-offset (30 degrees) impedance template for the Nuggets 

reservoir with log data superimposed.  Color code is water saturation (left) and porosity (right). 
 
 
Another seismic attribute that could help discriminate gas saturation is P-to-S 

elastic impedance according to Gonzalez et al. (2003). We plot this P-to-S elastic 

impedance for a 50 degree incidence angle versus that for a 10 degree incidence angle 

(Figure 6.9), as initially suggested by Gonzalez et al. (2003), and we observe that this 

template can robustly discriminate gas-sandstones from water-saturated sandstones but 

fails to discriminate saturation variations. 

If we build templates for normalized resistivity versus far-offset impedance at 30 

degrees offset, as shown in Figure 6.10, we observe that the far-offset impedance 

helps predict porosity for the intervals with gas saturation lower than 0.5, but as gas 

saturation becomes higher, the template using resistivity versus the acoustic 

impedance is definitely more sensitive to porosity and therefore is the best approach to 

predict porosity and saturation. 
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Figure 6.9: P-S elastic impedance (50 degrees) – P-S elastic impedance (10 degrees) template for 
the Nuggets reservoir with log data superimposed.  Color code is water saturation (left) and 
porosity (right).  

 

 

 

 

Figure 6.10: Far-offset impedance-resistivity template for the Nuggets reservoir with log data 
superimposed.  Color code is water saturation (left) and porosity (right).  
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If we upscale the far-offset impedance template (Figure 6.11), we can still obtain 

similar estimates of porosity and gas saturation (around 0.25 and 0.85, respectively) as 

those found using the normalized resistivity – acoustic impedance templates.  Far-

offset impedance can help discriminate gas-saturated from water-saturated sand, but it 

is definitely not as sensitive to porosity as is acoustic impedance, particularly as gas 

saturation increases. At high gas saturations, the gas effect seems to dominate the 

response and cause a lot of scatter along the mean value of the sand porosity (around 

0.25). 

 
   

 

Figure 6.11: Left: a log-scale far-offset impedance-resistivity template, same as in Figure 6.10.  
Right:  seismic/CSEM-scale template.  The symbols are from the seismic far-ofsset impedance 
and CSEM resistivity profiles, selected at the reservoir.  

 
 

Another option is to use P- and S-wave velocities combined with normalized 

resistivity to produce similar templates to estimate porosity and saturation (Figures 

6.12 and 6.13). Upscaling the velocities with the Backus average as well, we realize 

that using seismic velocities together with normalized resistivity could also be a 



CHAPTER 6: CASE STUDY: NUGGETS-1, NORTH SEA 
 

125

reasonable choice (see Figures 6.14 and 6.15).  Still, using the seismically-derived 

acoustic impedance is preferable in practice, because it usually has better spatial 

resolution than the seismic velocity. 

 

 

Figure 6.12: P-wave velocity-resistivity template for the Nuggets reservoir with log data 
superimposed.  Color code is water saturation (left) and porosity (right).  

 

 

Figure 6.13: S-wave velocity-resistivity template for the Nuggets reservoir with log data 
superimposed.  Color code is water saturation (left) and porosity (right). 
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Figure 6.14: Left:  a log-scale P-wave velocity-resistivity template, same as in Figure 6.12.  Right:  
seismic/CSEM-scale template.  The symbols are from the P-wave velocity and CSEM 
resistivity profiles, selected at the reservoir. 

 
 
 
 
 

 

Figure 6.15:  Left:  a log-scale S-wave velocity-resistivity template, same as in Figure 6.13.  Right:  
seismic/CSEM-scale template.  The symbols are from the S-wave velocity and CSEM 
resistivity profiles, selected at the reservoir. 
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6.5 Porosity and Saturation predictions from Acoustic Impedance 

and Resistivity sections 

The sections of resistivity inverted from CSEM data and acoustic impedance 

inverted from stacked seismic data (Figure 6.16) can be employed to estimate porosity 

and saturation over the whole reservoir using the upscaled acoustic impedance versus 

resistivity template given in Figure 6.7. This inversion process requires comparing the 

acoustic impedance and resistivity values from the sections at each spatial position 

with those for each cell in the template, and then assigning the given porosity and 

saturation values to that location (Figure 6.17). 

 

 

Figure 6.16: Acoustic impedance (m/s g/cc) and natural logarithm of normalized resistivity 
sections, well used to derive templates is located in the middle of the section. 
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Figure 6.17: Porosity (PHI) and gas saturation (Sg) derived using upscaled acoustic impedance- 

resistivity templates in Figure 6.7.  Porosities are only given correctly in reservoir interval (i.e., 
limited to where resistivity is larger than 5 ohm m). Gas saturations shown in dark blue are all 
those values smaller than 0.55.  

 

 
It is important to remember that the porosity and saturation estimates will be 

correct only at the reservoir level for which the resistivity and acoustic impedance 

models were derived. Outside of the reservoir, these models are not valid; therefore, 

the estimates of porosity and saturation will not be correct. This is the reason why we 

obtain high saturation values in regions outside the reservoir, because we are not using 

appropriate models for these intervals, where clay content is larger than in the 

reservoir (see gamma ray log in Figure 6.1).  

Also, another important limitation to estimate porosity and saturation is the low 

resolution of the CSEM data, combined with the low sensitivity of the acoustic 
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impedance to gas saturation for this particular reservoir, which causes that the 

reservoir appears thicker than it actually is in the saturation section. We could use the 

low-porosity interval at around 1750 m to delineate the base of the reservoir (Figure 

6.17).  

The reservoir could be also delineated using a section of porosity times gas 

saturation, which is equivalent to hydrocarbon volume. We can observe from this 

section, shown in Figure 6.18, the top, bottom and lateral extent of the reservoir more 

clearly. 

 

 
Figure 6.18: Product of porosity (PHI) and gas saturation (Sg) sections shown in Figure 6.17.   

 

6.6 Conclusions 

Rock physics impedance - resistivity templates are useful interpretation tools, 

which can allow us to estimate porosity and saturation from well logs and from field 

data. Appropriate theoretical models must be chosen to construct these templates, 

honoring the regional geological trends. We can use the Backus average to upscale the 
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elastic properties, and the arithmetic average to upscale resistivity to the field scale.  

To construct the templates, we can use not only the acoustic impedance, but also 

other seismic attributes, such as the elastic impedance or seismic velocity. This can 

help to reduce uncertainty by integrating different attributes in the interpretation. A 

seismic data alone can help us identify gas sand versus water sand, but an 

electromagnetic dataset is definitely a more powerful tool for distinguishing 

commercial from non-commercial gas accumulations.  
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Chapter 7 

Seismic Inversion using Low-
Frequency Impedance Trend from 
CSEM Resistivity 
 

7.1  Abstract 

Seismic inversion is highly dependent on the initial P-wave impedance model. We 

generally use filtered well log data combined with moveout velocities to constraint 

this model, but generally at shallow depths no well log data are available. Also, 

conventional seismic reflection data has an information gap in the ~2-10 Hz frequency 

band, and, therefore, does not contain information about the background impedance 

trend. On the other hand, controlled-source electromagnetic (CSEM) data have low 

resolution and contain information in this gap about the earth’s resistivity structure. 

Rock-physics relations between resistivity and porosity, and acoustic impedance and 

porosity can be used to extract information from the CSEM data to provide constraints 

on the low-frequency and the shallow seismic impedance section. Porosity is the main 

link that allows us to develop and use these cross-property relations. We used Archie’s 
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equation and the soft-sand model to estimate the low-frequency seismic impedance 

trend from CSEM data. We combined this trend with well log data information to 

estimate an initial model for seismic inversion. Results show that appropriate cross-

property relations can capture the background low-frequency impedance trend, 

particularly at shallow depths where no well information is available, and can provide 

useful constraints on prior models for inversion. Validation tests showed that the 

residuals of acoustic impedance are lower, and the fit is better with the background 

model constrained by the impedance trend obtained from the CSEM data. 

7.2  Introduction 

Seismic impedance inversion can be very useful for reservoir characterization. 

Inversion schemes are highly dependent on the prior impedance model used as an 

input. This initial model is generally created from well log data, combined with 

moveout velocities. However logs in general are not recorded over all of the 

overburden. Conventional band-limited seismic reflection data do not contain 

information about the impedance in the low-frequency (~ 2-10Hz) band (Claerbout, 

1985; Jannane et al., 1989). Hence, it is important to constrain the low-frequency and 

shallow seismic impedance trend in the prior model used for the inversion, as 

highlighted my many authors (e.g. Dragoset and Gabitzsch, 2007).  

Mukerji et al., (2008, 2009) suggested that since controlled-source electromagnetic 

(CSEM) data contain information about the earth resistivity in the low-frequency band 

where the seismic data does not, it could be possible to use CSEM derived resistivity 

to constrain the background impedance trend.  In addition, CSEM data also contain 
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information in the shallow section, where no well log data are available to constraint 

the seismic inversion.  

We apply a simple approach where cross-property rock physics relations between 

elastic and electrical properties can be used to extract information from the CSEM 

data to provide constraints on seismic impedance. 

7.3  Cross-property relations 

Faust (1953) developed an empirical relation between velocity and resistivity, still 

commonly used. Other important theoretical work on cross-property relations includes 

Brito Dos Santos et al. (1988), Berryman and Milton (1988), Gibiansky and Torquato 

(1996), and Kachanov et al. (2001). More recently, Carcione et al. (2007) have 

compiled and derived cross-property relations and bounds relating electrical 

conductivity to elastic moduli and velocities of rocks. The cross-property relations are 

based on existing empirical and theoretical relations between electrical conductivity 

and porosity and between elastic moduli and porosity. The basic approach is as 

follows. If the relation between porosity,φ , and conductivity,σ , is described by 

σ = h(φ) , and the relation between elastic velocity v and porosity is given by 

)(φgv = , then the cross-property relation can be obtained by eliminating φ  to give 

σ = h(g−1(v)).  

When two relations for elastic and electric properties are combined to obtain a 

cross-property relation, the resulting equation will be a good description of the cross-

relation only if the original equations for elastic and electrical properties themselves 
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are good descriptors. While many cross-property relations have been derived using 

this approach, these cross-relations should be tested with controlled data. In the next 

section, we will apply some of these existing cross-property relations, and will 

calibrate a new relation using log data and rock physics models. 

7.4  Application to Field Data 

The data set that we use is from the Nuggets-1 gas field. This field is located in the 

North Sea, offshore from the UK in 115 m of water. The sand reservoir belongs to the 

Eocene Frigg formation and is about 25 m thick at a depth of 1690 m (Harris and 

MacGregor, 2006).  We first estimate P-wave velocity from resistivity using some 

previous cross-property relations, such as Faust (1953), and Hacikoylu et al. (2006). 

However, we find that both relations overestimate P-wave velocity, particularly in the 

shallow section (Figure 7.1).  

In order to have a new P-wave impedance – resistivity transform, we use the soft-

sand model (Dvorkin and Nur, 1996) to estimate impedance, and Archie’s equation 

(Archie, 1942) to estimate resistivity. Water salinity in this area is around 35,000 ppm, 

which corresponds to a water resistivity around 0.1 ohm m at the reservoir depth. The 

depths of interest where the log data starts is around 1500m, giving an effective 

pressure of around 20 MPa assuming normal pressure gradients in this area. If we 

assume a shaly column (60% shale and 40% sand), a coordination number of 6 and a 

critical porosity of 40%, we can estimate P-wave impedance using the soft-sand 

model. We compute resistivity using Archie’s equation with tortuosity factor a = 1 and 

cementation or porosity exponent m = 2.6. If we evaluate these models for porosities 
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between 0.1 and 0.6, which are the porosities we are most likely to encounter, and we 

plot acoustic impedance versus formation factor (for 100% water saturation), we 

obtain the blue curve in Figure 7.2. This plot is basically linear in the porosity range 

we are considering; therefore we can find a linear fit (R²=0.9985): 

1.6)(log2.3g/cc) (km/s AI 10 +⋅= F .     (7.1) 
 
This equation is not a fit to the well log data, but to the soft-sand and Archie 

models (black curve in Figure 7.2). We chose the parameters specified above for the 

models because we were trying to use typical theoretical parameters that we would 

have selected for shaly intervals. 

 

 
 

Figure 7.1: P-wave velocity log (km/s) in shown in black. The blue and green curves 
are estimates from Faust (1953) and Hacikoylu et al. (2006) respectively. 

 
 
 

Now, we use this transform to generate an initial acoustic impedance section from 

the resistivity section inverted from CSEM data, and replace it by the log data where 
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available (Figure 7.3). We used a fixed water resistivity (0.1 ohm m, value 

encountered at the depth of interest) for the entire interval where we use the transform, 

although there are important variations with depth (Figure 7.4). We are only creating 

an initial model for the seismic inversion; therefore, it does not have to be as precise. 

 
 

 
 

Figure 7.2: Acoustic impedance versus decimal logarithm of formation factor 
(Rt/Rw). First 500 data points of the well data are plotted, and colorcoded by 
depth (m). The black line is the soft-sand model versus Archie’s equation for 
porosities between 10 and 60%, and the red line is a linear fit to the blue line 
given by Equation 7.1. 

 
 
 
 

The resistivity inversion provided to us was done by a commercial vendor using a 

2.5 D inversion algorithm. We performed model-based seismic inversion in the 

Hampson and Russell commercial software. A soft constraint allowing 50% variation 

in acoustic impedance was applied. We used a multi-trace inversion, for every 5 traces 

(Figure 7.5). The difference between the seismic amplitude data and the resulting 

inverted seismic amplitudes are shown in Figure 7.6. 
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Figure 7.3: Initial model of acoustic impedance (m/s g/cc) section in depth, generated 

using the CSEM and well data. Well is at center of the section. 
 
 
 

 

Figure 7.4: Formation water resistivity (Rw) in ohm m, computed using 
Schlumberger Gen-6 chart, assuming a water salinity of 35,000 ppm, and a 
normal pressure gradient 30°C per km. 

 
 



CHAPTER 7: SEISMIC INVERSION USING CSEM DATA 
 

138

To analyze these results, we perform seismic inversion using the same parameters, 

but building the model using only the well log acoustic impedance as initial input 

(Figures 7.7 and 7.8). If we now compare the residuals in seismic amplitude for both 

inversions (Figures 7.6 and 7.9), they are very similar. Same observation can be made 

from the difference between the estimates at the well location and the well data, and 

by comparing the estimates at the well (Figure 7.10). Using as starting model only the 

well, or the well plus the CSEM data to generate an initial model gives similar results, 

with similar seismic amplitude and acoustic impedance residuals. 

 

 
 
Figure 7.5: Acoustic impedance (m/s g/cc) section in two-way travel time (ms) resulting 

from seismic inversion starting with model in Figure 7.3. Well is at center of the 
section. 
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Figure 7.6: Difference between the stacked seismic amplitude data and the modeled 

seismic amplitude starting with inversion result in Figure 7.5, given in two-way 
traveltime (ms).  

 
 

 

 
 
Figure 7.7: Initial model of acoustic impedance (m/s g/cc) section in depth, generated only 

from well information. Well is at center of the section. 
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Figure 7.8: Acoustic impedance (m/s g/cc) section in two-way travel time (ms) resulting 
from seismic inversion starting with model in Figure 7.7. Well is at center of the 
section. 

 
 
 
 
 

 
 

Figure 7.9: Difference between the stacked seismic amplitude data and the modeled 
seismic amplitude starting with inversion result in Figure 7.8, given in two-way 
traveltime (ms). 
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Figure 7.10: On the left, acoustic impedance in km/s g/cc at well location. On the right, 
difference between acoustic impedance from well data and inversion in km/s g/cc. 
The actual well data are in black, inversion result starting only with well is in blue, 
and inversion result starting with CSEM and well is in red. 

 
 
 
 
We see more layered structure in the overburden for the inversion using the 

CSEM+well as a prior model (Figure 7.5), compared to the inversion using only the 

well as a prior model (Figure 7.8). However, we do not know if we have improved the 

results of the inversion by including the CSEM data since we do not know the actual 

acoustic impedance in the overburden. Therefore, a validation exercise was carried out 

to test if adding the acoustic impedance estimates from CSEM data improves the 

seismic inversion result.  The validation was done by leaving out a portion of the log 

data, and then comparing the inversions from the two prior models. The log data 

above and in most of our reservoir, hence any depths shallower than 1700 m, is left 

out.  Acoustic impedance sections are created using only the partial log data from 

1700 m and deeper (Figure 7.11), and combining this limited log data with our model 

estimated from the CSEM data (Figure 7.14). We performed seismic inversions using 
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similar parameters as before (Figures 7.12 and 7.15), and compared the seismic 

amplitude residuals over the entire section. We also compared the well log data and 

the resulting acoustic impedance from the inversions at the well location. The overall 

residuals of the seismic data fit were about the same for both prior models (Figures 

7.13 and 7.16). However, when we compare the results at the well (Figures 7.17 and 

7.18), in particular in the section we had excluded as input, we observe that we fit 

better the well data when we start with the model that includes the trend derived from 

the CSEM data. Computing the root mean and median squared residuals of acoustic 

impedance in this section where we ignore the log data, we obtain 0.600 and 0.278 

km/s g/cc when we include well+CSEM, compared to 0.861 and 0.803 km/s g/cc 

when we only incorporate the well data.  Hence, there is a significant improvement 

when CSEM data are included. In the sections where well data were used as inputs, 

the root mean and median squared residuals are similar in both cases: 0.781 and 0.508 

km/s g/cc for well+CSEM, and 0.715 and 0.445 km/s g/cc for only well. Also, if we 

observe the results of the inversion, the one that started with the well+CSEM prior 

model shows smoother variations in the overburden between 4000 and 5000 m/s g/cc, 

while the one that includes only the well data shows larger and less smooth acoustic 

impedance values that alternate between 4500 and 5500 m/s g/cc, which would be too 

high for the some of the very shallow intervals. 
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Figure 7.11: Initial model of acoustic impedance (m/s g/cc) section in depth, generated 

only from the well information for depth larger than 1700 m. Well is at center of the 
section. 

 
 
 
 
 
 

 
 
Figure 7.12: Acoustic impedance (m/s g/cc) section in two-way travel time (ms)  resulting 

from seismic inversion starting with model in Figure 7.11.  
 
 
 



CHAPTER 7: SEISMIC INVERSION USING CSEM DATA 
 

144

 

 
 
Figure 7.13: Difference between the stacked seismic amplitude data and the modeled 

seismic amplitude starting with inversion result in Figure 7.12, given in two-way 
traveltime (ms). 

 
 
 
 
 
 

 
 

Figure 7.14: Initial model of acoustic impedance (m/s g/cc) section in depth, generated 
from the CSEM data and the well information for depth larger than 1700 m. Well is at 
center of the section. 
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Figure 7.15: Acoustic impedance (m/s g/cc) section in two-way travel time (ms)  resulting 

from seismic inversion starting with model in Figure 7.14.  
 
 
 
 
 
 
 

 
 
Figure 7.16: Difference between the stacked seismic amplitude data and the modeled 

seismic amplitude starting with inversion result in Figure 7.15, given in two-way 
traveltime (ms). 
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Figure 7.17: On the left, acoustic impedance in km/s g/cc at well location. On the right, 
difference between acoustic impedance well data and inversion in km/s g/cc. Well 
data are in black, inversion result starting only with well is in blue, and inversion 
result starting with CSEM and well is in red. 

 
 
 
 
 
 

 
 

Figure 7.18: Histograms of the acoustic impedance residuals after inversion at the 
well location: (1) blue is the result from using only the well as an input, and its 
median and mean are 0.298 and 0.211 km/s g/cc, and (2) red is the result from 
using CSEM and well data as inputs, and its median and mean are 0.0080 and -
0.047 km/s g/cc.  
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7.5  Sensitivity Analysis to input parameters in transform models 

Different parameter values could be used as inputs to generate the resistivity –

acoustic impedance transform. Tests are performed changing the cementation 

exponent in Archie’s relation, and the coordination number and clay content in the 

soft-sand model. 

First, keeping the elastic model parameters fixed and changing only the 

cementation exponent in Archie’s equation from 2.6 to 2.3 and 2.0 (Figure 7.19), we 

obtain the following two transforms, respectively: 

1.6+)(log2.6=g/cc) (km/s AI 10 F , and     (7.2) 
 

1.6+)(log3.0=g/cc) (km/s AI 10 F .     (7.3) 
 
 
 

 
 

Figure 7.19: Acoustic impedance versus decimal logarithm of formation factor 
(Rt/Rw). First 500 data points of the well data are plotted, and colorcoded by 
depth (m). The black line is Equation 7.1, which is a linear fit to the dashed blue 
line (m=2.6). The solid blue curve is for m=2, and the red curve is for m=2.3. 
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Second, we observe that increasing the clay content to 0.8 is equivalent to 

changing the coordination number to 4 (Figure 7.20), and we obtain similar transforms 

in both cases, which for m=2.6, 2.3 and 2.0 are: 

1.7+)(log1.2=g/cc) (km/s AI 10 F ,    (7.4) 
 

1.7+)(log3.2=g/cc) (km/s AI 10 F , and    (7.5) 
 

1.7+)(log7.2=g/cc) (km/s AI 10 F .    (7.6) 
 

 

 
 

Figure 7.20: Same as Figure 7.19. The black line is Equation 7.1. Using clay content 
0.8 and coordination number of 6 in the soft-sand model, we obtain the lower 
blue line for m=2.6, the red curve for m=2.3, and the upper blue line for m=2. 
Using clay content of 0.6, but coordination number of 4, we obtain the lower 
dashed magenta line for m=2.6, the green dashed curve for m=2.3, and the upper 
dashed magenta line for m=2. 

 
 
 

Finally, we find that decreasing clay content to 0.4 is equivalent to changing the 

coordination number to 9 (Figure 7.21), and the transforms in this case for the three 

different m values (m=2.6, 2.3 and 2.0) are: 

1.6+)(log4.2=g/cc) (km/s AI 10 F ,    (7.7) 
 

1.6+)(log7.2=g/cc) (km/s AI 10 F , and    (7.8) 
 



CHAPTER 7: SEISMIC INVERSION USING CSEM DATA 
 

149

1.6+)(log1.3=g/cc) (km/s AI 10 F .    (7.9) 
 
The intercept in the relationship between acoustic impedance and formation factor 

does not change that much as we change the cementation exponent, or the clay content 

and coordination number. The slope in this equation, however, does vary more 

strongly.  

 
 

 
 

Figure 7.21: Same as Figure 7.19. The black line is Equation 7.1. Using clay content 
0.4 and coordination number of 6 in the soft-sand model, we obtain the lower 
blue line for m=2.6, the red curve for m=2.3, and the upper blue line for m=2. 
Using clay content of 0.6, but coordination number of 9, we obtain the lower 
dashed magenta line for m=2.6, the green dashed curve for m=2.3, and the upper 
dashed magenta line for m=2. 

 
 
 
 

We can now use some of these transforms in the validation test, instead of the one 

we had used before. Below, we show the initial models derived from CSEM-resistivity 

and well log data at the well for three different transforms given by Equations 7.4 and 

7.9, which act like corridor bounds and also for Equation 7.2 which gives similar 

values as the log data (Figure 7.22).  
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Figure 7.22: Acoustic impedance in km/s g/cc from well log data in black. Corridor 
bounds in blue are given by Equation 7.4 (lower bound) and 7.9 (upper bound) 
applied to CSEM data. Magenta curve corresponds to values obtained from Equation 
7.2 applied to CSEM data for depths smaller than 1700 meters. Green curve is that 
derived from Equation 7.1 applied to CSEM data. For depths larger than 1700 m, all 
initial model curves correspond to the well log data. 

 

 

When we apply Equation 7.2 to generate the initial acoustic impedance model 

from CSEM data, we also obtain lower acoustic impedance residuals, and a better fit 

to the well data than when we only use the well data (Figures 7.23 and 7.24). The 

same observation can be made when using the transform in Equation 7.4, as we can 

conclude from Figures 7.25 and 7.26. Therefore, using a resistivity – impedance 

transform, to generate an initial model from EM and well data, works better than using 

the well log data alone as the initial model. 
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Figure 7.23: On the left, acoustic impedance in km/s g/cc at well location. On the right, 
difference between acoustic impedance well data and inversion in km/s g/cc. Well 
data are in black, inversion result starting only with well is in blue, and inversion 
result starting with CSEM and well is in red. Transform used is Equation 7.2. 

 
 
 
 

 
 

Figure 7.24: Histograms of the acoustic impedance residuals after inversion at the 
well location: (1) blue is the result from using only the well as an input, and its 
median and mean are 0.298 and 0.211 km/s g/cc, and (2) red is the result from 
using CSEM and well data as inputs, and its median and mean are 0.1475 and 
0.1025 km/s g/cc. Transform used is Equation 7.2. 
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Figure 7.25: On the left, acoustic impedance in km/s g/cc at well location. On the right, 

difference between acoustic impedance well data and inversion in km/s g/cc. Well 
data are in black, inversion result starting only with well is in blue, and inversion 
result starting with CSEM and well is in red. Transform used is Equation 7.4. 

 
 
 
 

 
 

Figure 7.26: Histograms of the acoustic impedance residuals after inversion at the 
well location: (1) blue is the result from using only the well as an input, and its 
median and mean are 0.298 and 0.211 km/s g/cc, and (2) red is the result from 
using CSEM and well data as inputs, and its median and mean are -0.0921 and -
0.0549 km/s g/cc. Transform used is Equation 7.4. 

 
 
 

The root median and mean squared residual of acoustic impedance in the section 

where we ignore the log data are 0.270 and 0.868 km/s g/cc when we include 

well+CSEM and use Equation 7.2. On the other hand, they are 0.325 and 0.812 km/s 

g/cc if we apply Equation 7.4. We can compare these values with 0.803 and 0.861 
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km/s g/cc, which are the median and mean when we only use the well data. Hence, the 

acoustic impedance inversion results improve when CSEM data are incorporated to 

generate the initial acoustic impedance model. 

 When we use Equation 7.9, the inversion result from well+EM overpredicts 

acoustic impedance when compared to the log data (Figure 7.27). We observe that 

using this transform, the result is only slightly better to that when the EM data are 

ignored (Figures 7.27 and 7.28). The root median squared residual obtained using only 

the well in the entire section is 0.535 km/s g/cc, compared to 0.503 km/s g/cc when we 

use well+EM. Therefore, we should calibrate the transform that we will use with well 

log data, or we should use a transform that is appropriate for the lithology expected 

(e.g., shale or shaly sandstone). 

        
         

Figure 7.27: On the left, acoustic impedance in km/s g/cc at well location. On the right, 
difference between acoustic impedance well data and inversion in km/s g/cc. Well 
data are in black, inversion result starting only with well is in blue, and inversion 
result starting with CSEM and well is in red. Transform used is Equation 7.9. 
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Figure 7.28: Histograms of the acoustic impedance residuals after inversion at the 
well location: (1) blue is the result from using only the well as an input, and its 
median and mean are 0.298 and 0.211 km/s g/cc, and (2) red is the result from 
using CSEM and well data as inputs, and its median and mean are 0.294 and 
0.293 km/s g/cc. Transform used is Equation 7.9. 

 
 

We observe that the choice of cementation or porosity exponent (m) in Archie’s 

equation is important (e.g., between 2.3 to 2.6 in this case). Different studies have 

related m to grain and pore shape (Jackson et al., 1978; Ransom, 1984). According to 

Knight and Endres (2005), m depends on the geometry of the system or the 

connectedness of the pore space. The lower the connectivity in the pore space, the 

larger m tends to be. We selected a high m (larger than 2), because we expected that 

pore connectivity in the overburden interval was probably low, and we observed that 

in fact these large m values fit better the well data from the overburden (Figure 7.19). 

However, we also observe that even if had selected m=2, the inversion result would 

still improve, although not as significantly (Figure 7.28). 

7.6  Conclusions 

CSEM data can be a useful tool to constrain the shallow and low frequency 

acoustic impedance trend to use as initial model for seismic inversion. Appropriate 

elastic and resistivity models must be chosen in order to have a good prediction of 
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acoustic impedance given resistivity.  These expressions can be calibrated using well 

data as shown, in particular taking into account the overburden.  

Conventional cross-property relations as Faust (1953) and Hacikoylu et al. (2006) 

can over predict the acoustic impedance in friable sediments at shallow depths. If no 

well log data are available in the shallow section, using the CSEM-derived resistivity 

data and an adequate cross-property relation (for example, one based on the soft-sand 

model and Archie’s equation) can be a good approach to predict the initial low 

frequency shallow acoustic impedance model. Validation tests showed that using the 

background trend from the CSEM data as a constraint in impedance inversion can give 

a better fit to the acoustic impedance. 
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Chapter 8 

Gas Hydrate-bearing Sandstones: 
Elastic and Resistivity Modeling 
 

8.1  Abstract 

Hydrates have strong elastic and resistivity responses. Using acoustic impedance 

and resistivity, we can improve our description of hydrate-bearing sandstones, 

including their porosity and saturation. We show two well examples, one from Mallik, 

which corresponds to hydrates below permafrost, and the other from the Nankai 

Trough, which contains hydrates below the sea floor. 

EM data are generally acquired in deep water where hydrates are common.  The 

hydrates are resistors and can mask other resistors buried below them in an EM data 

section.  This is an impediment to conventional hydrocarbon exploration but an 

advantage in exploration for gas hydrates.  

We show that our ability to predict porosity and saturation of the hydrate-bearing 

layer from seismic data alone is highly dependent on the thickness of the layer and the 

properties of the overburden. It is not an impossible task if we have well control data 
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that we can use to learn the appropriate models and properties to use for the 

overburden. Porosity and saturation estimates from the seismic data can then be used 

to constrain the resistivity of the hydrates in an initial subsurface resistivity model for 

an EM inversion.   

8.2  Introduction 

Natural gas hydrates are crystalline solids forming a hydrogen-bonded water 

lattice with entrapped guest molecules, mostly of methane (Helgerud et al., 1999). 

They occur at a limited range of high pressures and low temperatures, in marine 

sediments below the sea floor and in permafrost regions (Prensky, 1995).  Their 

density and P-wave and S-wave velocities are very close to those of ice (0.910 g/cc, 

3.60 km/s and 1.90 km/s for hydrates, compared to 0.917 g/cc, 3.89 km/s and 1.97 

km/s for ice, respectively, Helgerud, 2001). 

Gas hydrate-bearing sediments tend to have high acoustic impedance, as compared 

to the background sediment.  Often, free gas accumulates just below the hydrates, 

giving rise to a strong seismic reflection at the base of the hydrates. This reflection is 

generally known as a bottom-simulating reflector (BSR), because it is typically 

parallel to the sea floor. 

Hydrates are also electrically resistive, and constitute a challenge when any remote 

electromagnetic data are acquired, since their response makes it difficult to distinguish 

a hydrocarbon reservoir lying deeper. A BSR in a seismic section or volume is a sign 

of the presence of hydrates, and is a warning that these shallow resistors will have a 

very important effect on any remote resistivity (CSEM or transient EM) 
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measurements. The question is whether the seismic response can help predict and 

model these shallow resistors, so that we can distinguish them from possible deeper 

resistors that could correspond to hydrocarbon reservoirs. 

We attempt to address this question by making a gas-hydrate modeling catalogue. 

In this catalogue, given porosity and saturation, we model all possible P-wave 

impedances to determine whether the prediction of these reservoir properties from 

seismic data is possible. We then use these porosity and saturation values to compute 

the possible resistivity response, which, in turn, can be used as an initial model in the 

shallow section for an EM data inversion. 

8.3  Elastic Modeling 

Dvorkin and Uden (2004) and Cordon et al. (2006) showed that the soft-sand 

model (Dvorkin et al., 1999), which includes the hydrates as part of the load-bearing 

frame, is an accurate predictor of the elastic properties of gas-hydrate-bearing sands.  

Hydrates are assumed to be part of the dry frame, reducing the original porosity of the 

rock (φ) by the volumetric concentration of hydrate in the rock (Ch) to hC−= φφ . 

The volumetric concentration of hydrate in the pore space or gas hydrate saturation is 

given by Sh= Ch/φ. The fraction of hydrate in the rock when considered as an extra 

component of the solid phase is then: 

φ−
=

1
h

h
C

f .                                                                   (8.1) 

 
The fraction of the ith mineral constituent in the solid phase, after assuming the 
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hydrate is also an extra component of the solid phase, is 

φ
φ

−
−

=
1

)1(i
i

f
f ,                                                               (8.2) 

where fi is the original volumetric fraction of the ith mineral constituent of the rock.  

The elastic constants of the solid phase are then computed using the Hill (1952) 

average formula:  

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑ +=

−

==

1

11
//

2
1 m

i
hhii

m

i
hhii KfKfKfKfK ,   

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑ +=

−

==

1

11
//

2
1 m

i
hhii

m

i
hhii GfGfGfGfG ,   (8.3) 

 
where m is the number of mineral constituents, Ki and Gi are the bulk and shear moduli 

of the ith mineral constituent, respectively, and Kh and Gh are the bulk and shear 

moduli of the gas hydrate, respectively (see Table 8.1 for the values for quartz, clay, 

hydrate, methane gas and water). The density of the solid phase is calculated as 

follows: 

∑ +=
=

m

i
hhii ff

1
ρρρ ,                                                      (8.4)          

              
where iρ  is the bulk density of the ith mineral constituent and hρ  is the bulk density of 

the hydrate.  

After redefining the properties of the frame to include the gas hydrate as one more 

mineral component, Cordon et al. (2006) employed the Dvorkin et al. (1999) model 

for high-porosity, ocean-bottom sediments, also called “soft sand model.” This model 
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assumes that, at the critical porosity φC, the effective bulk KHM and shear GHM moduli 

of the dry rock frame are given by the Hertz-Mindlin contact theory (Mindlin, 1949):  
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            (8.5) 

 
In Equation 8.5, n is the average number of contacts per grain in the sphere pack 

(six to nine from Dvorkin and Nur, 1996). SN is the normal and ST is the tangential 

contact stiffness between two spherical elastic grains of radius R:  

 

ν−
=

1
4aGS N ,   

ν−
=

2
8aGST ,                                                   (8.6) 

 
where ν is the Poisson’s ratio of the solid phase. 

If P is the differential pressure, the radius of the contact circle between the two 

grains, a, is given by: 

 
3/1

)1(2
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Cφ
νπ .                                                 (8.7) 

 
The expression for tangential stiffness ST in equation (8.6) is valid only if there is 

perfect adhesion between the grains. To account for possible slippage at the grain 

interface, an ad hoc reduction factor λ was introduced, and ST is replaced by ST/λ in 

equation (8.5).  

The bulk and shear moduli of the dry frame for porosity below critical is computed 

using the modified lower Hashin-Shtrikman (H-S) bound: 
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If the rock is saturated with a fluid of bulk modulus Kf, the shear modulus GSat is 

equal to that of the dry frame, and the bulk modulus Ksat is obtained using Gassmann’s 

(1951) expression: 

KKKKK
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.                                          (8.9) 

 
 The bulk density of the rock saturated with a fluid of density ρf is: 

fb ρφρφρ +−= )1( .                                                       (8.10) 

The elastic-wave velocities are computed as follows: 
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Elastic moduli and density of components of hydrate-bearing sandstones 

Component Bulk Modulus (GPa) Shear Modulus (GPa) Density (g/cc) 

Quartz 36.60 45.00 2.650 

Clay 21.00  7.00 2.580 

Methane Hydrate   7.40  3.30 0.910 

Brine   2.37  0.00 1.027 

Methane Gas, G=0.55   0.02  0.00 0.080 

Table 8.1: Elastic moduli and density of components of hydrate-bearing 
sandstones. 

 

8.4  Resistivity Modeling 

Gas hydrates are almost perfect electrical insulators when compared to saline pore 

waters (Riedel et al., 2006).  Log-measured resistivity of massive gas hydrates is 

around 175 ohm m (Matthews, 1986). Hence, we may use Archie’s (1942) equation or 

other similar empirical formulas relating porosity, resistivity and saturation to compute 

the amount of pore water present in the rock. 

For clean sandstones, Archie’s (1942) empirical equation is the most commonly 

used to model the formation resistivity (Rt) as a function of the connate water 

resistivity (RW), water saturation (SW) and porosity (φ): 

 

n
W

mW

t

S
a

R
R

φ
= ,                                                           (8.12) 
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where a, m and n are empirical constants chosen depending on the lithology; 

alternatively, they can be determined for a particular dataset using the Pickett (1972) 

cross-plot technique (see Table 8.2).  

 
Typical values for parameters in Archie’s equation 

Lithology/Site a m 

consolidated sandstones 0.81 2.00 

unconsolidated sandstones 0.62 2.15 

Average sands 1.45 1.54 

shaly sands 1.65 1.33 

clean granular rock 1.00 2.05-φ 

Mallik 2L-38, Mackenzie Delta, Lee and Collett (2001), n=1.94 1.02 1.95 

Cascadia Margin, offshore Vancouver Island, Riedel et al. (2006), n=1.5-

2.2 
1.0-2.5 1.5-3.0

Blake Ridge, offshore South Carolina, Collett and Ladd (2000), n=1.94 1.05 2.56 

NW Eileen, offshore Alaska, Matthews (1986) 1.00 2.58 

 
Table 8.2: Typical values of parameters a and m in Archie’s equation for 

different lithologies (Hacikoylu et al., 2006), and from different previous studies in 
areas containing gas hydrate. 

 
 
 

Pickett’s (1972) method consists of plotting porosity versus deep resistivity in log-

log space, and finding a linear fit such that: ln(Rt/RW)=-m ln(φ)+[ln(a)-n ln(SW)]. 

Using a sample for which SW =1, we can find the values of a and m from the slope and 

intercept of a linear fit. The empirical constant n is generally assumed to be a value 

close to 2, but it actually depends on the grain size, sorting and gas-hydrate saturation 

itself (Spangenberg, 2001). Pearson et al. (1983), using laboratory data, determined n 

values for samples containing brine and ice; these values are 2.17 for sandstone, 1.83 
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for limestone, 1.72 for unconsolidated material, and 1.94 as a mean value. Lee and 

Collett (2001), and Collett and Ladd (2000) use this mean value of n = 1.94 to 

compute gas-hydrate saturation. 

Assuming there are only water and gas hydrate filling the pore space, gas-hydrate 

saturation is computed from the water saturation estimate as 1-SW. Gas can dissociate 

from the hydrate due to a drop in pressure during drilling. Previous studies in the 

Blake Ridge area, using sonic well logs and surface reflection seismic data (e.g., Lu 

and McMechan (2004) and Guerin et al. (1999)) have suggested that hydrates and free 

gas may coexist in reservoir conditions. If there were free gas in the hydrate-bearing 

interval corresponding to gas saturation, SG, the hydrate saturation would be 1-SW-SG.  

Salinities of pore water in gas-hydrate zones are highly variable, and they seem to 

decrease as gas-hydrate concentration increases. During the formation of gas hydrates, 

salt ions are excluded. When the gas hydrates dissociate while drilling, fresh water is 

released; therefore, water salinity from gas-hydrate–bearing intervals is lower than the 

water salinity from brine-saturated intervals (Prensky, 1995). The salinity of brine 

from cores drilled in intervals with high gas-hydrate saturation at Mackenzie Delta, 

Canada is between 4,000 and 10,000 ppm NaCl equivalent concentration, while the 

salinity of brine measured from cores with low gas-hydrate concentration from the 

same location is between 26,000 and 60,000 ppm NaCl equivalent concentration 

(Winters et al., 2000). 

As a result, we found that the resistivity of pore brines below permafrost areas at 

Mackenzie Delta, Canada may have large variations at borehole locations, ranging 
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from 0.15 to 2 ohm m.  These water resistivity values are obtained by assuming a 

hydrate reservoir temperature of 15 Celsius degrees as in Cordon et al. (2006), and 

using the water resistivity values from the Schlumberger Gen-6 chart for the extreme 

water salinity values, 60,000 and 4,000 ppm NaCl equivalent concentration.  

8.5  Application to well log data 

The first application shown here is on a data set recorded over gas-hydrate–bearing 

sediments deposited below permafrost at the Arctic Mallik reservoir, at the Mackenzie 

Delta, Canada. The two wells are called: Mallik 2L-38 and Mallik 5L-38. Using the 

gamma-ray log and mud logs available, estimates of lithologic volumetric 

concentrations are computed. Then, density and these lithology estimates are used to 

estimate porosity.  Water saturation (SW) was estimated using Archie’s (1942) 

equation, and gas-hydrate saturation was assumed to be 1-SW. Hydrate saturation 

values obtained were around 90%. The empirical parameters used in Archie’s (1942) 

equation are: a = 1, m = 2 and n = 2 (very similar to those from Lee and Collett (2001) 

given in Table 8.1). We determine a formation water resistivity RW = 0.25 ohm·m, 

using the Pickett (1972) cross-plot technique. This value means that water salinity is 

35,000 ppm. These hydrate saturation values of around 90% agree with previous 

studies, which derived saturation from elastic velocity and attenuation, electric 

resistivity, and water salinity data (Chand and Minshull, 2004; Collett and Lee, 2000).  

Figure 8.1 shows the normalized resistivity versus acoustic impedance well-log 

data for the two Mallik wells, color-coded by gas-hydrate saturation and by porosity. 

These data are plotted over a template showing the possible solutions for a clean 
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sandstone, using Archie’s equation (1942) to model resistivity and the Cordon et al. 

(2006) formulation to model the acoustic impedance, also color-coded by the porosity 

and saturation used in these models. We observe a very good match of this dataset 

with these models; therefore, given acoustic impedance and resistivity, we could 

predict porosity and saturation for a gas-hydrate–bearing clean sandstone. We made 

this prediction for one of the Mallik wells, 2L-38, and we found, as expected, a good 

estimate of the gas hydrate concentration using only acoustic impedance and 

resistivity as inputs (see Figure 8.2). The estimate of porosity using density and 

mineralogical content as inputs is in black. The estimate of gas hydrate saturation 

using only resistivity as input is in black. The estimates obtained inverting for porosity 

and saturation using both acoustic impedance and resistivity as inputs, and using 

Cordon et al. (2006) and Archie (1942) equations, are shown in red. The peaks where 

there is not good agreement of the inversion results with the estimates from density 

and resistivity are where coal layers are present. 

Sediments from the Nankai Trough are an example of more poorly sorted gas-

hydrate–bearing sandstones. Grain sorting is apparently related to the gas-hydrate 

saturation. The intervals with high gas-hydrate saturation are better sorted than those 

with low or zero gas-hydrate saturation.  This may be due to the fact that in better 

sorted sediments, which have relatively high permeability, there was more pore space 

and transport freedom for gas hydrate to form, whereas with increased clay content, 

porosity and permeability are lower, and less pore space and transport freedom are 

available for hydrates to deposit. 
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Mallik 2L-38 well  

           
  (a) (b) 

 

Mallik 5L-38 well  

          
  (c) (d) 

Figure 8.1: Normalized resistivity versus acoustic impedance color-coded by (a) and 
(c) gas hydrate saturation, and (b) and (d) porosity for Mallik  (a) and (b) 2L-38, 
and (c) and (d) 5L-38 wells. Template of modeled resistivity and acoustic 
impedance using Archie (1942) and Cordon et al. (2006) are in the background. 
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Figure 8.2: Mallik 2L-38 well. The logs shown from left to right are: (1) acoustic 
impedance (AI); (2) normalized deep resistivity (Rt/Rw); (3) porosity; (4) gas-
hydrate saturation; and (5) gas-hydrate concentration (porosity multiplied by gas 
hydrate saturation). The estimate of porosity using density and mineralogical 
content as inputs is in black. The estimate of gas-hydrate saturation using only 
resistivity as input is in black. The estimates obtained inverting for porosity and 
saturation using only acoustic impedance and resistivity as inputs, and using 
Cordon et al. (2006) and Archie (1942) for the modeling, are shown in red. The 
peaks where there is poor agreement of the estimates in red with those in black 
are where coal layers are present. 

 
Figure 8.3 shows acoustic impedance versus resistivity data from this well and 

another well from the Nankai Trough, plotted over the template of normalized 

resistivity versus P-wave impedance, color-coded by saturation on the left and by 

porosity on the right.  The clay content in this template varies from 0 at the top to 0.6 

at the bottom. We observe that the data points with the larger gas-hydrate saturation 

can be modeled assuming a clean sandstone reservoir (Figure 8.3a and 8.3b). 

However, decreasing gas-hydrate saturation corresponds to increasing clay content.  

To model the layers with lower gas-hydrate saturation, we must assume higher clay 
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content (Figure 8.3c and 8.3d).  This assumption favorably agrees with the gamma-ray 

measurements and a published lithologic column for this well by Hato et al. (2006).  

 

     
           (a) (b) 

           

      
 (c) (d) 

Figure 8.3: Normalized resistivity versus acoustic impedance color-coded by (a) and 
(c) gas hydrate saturation, and (b) and (d) porosity for two Nankai wells. 
Template of modeled resistivity and acoustic impedance using Archie (1942) and 
Cordon et al. (2006) are in the background assuming: (a) and (b) zero clay 
content; and (c) and (d) 60 % clay content. 

 

8.6  Modeling Catalogue 

Using well-log data, we showed that the elastic model by Cordon et al. (2006) and 

the resistivity model by Archie (1942), as described in the elastic and resistivity 
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modeling sections above, accurately describe hydrate-bearing sediments. In this 

section, we will use these models to create a catalogue of P-wave impedance and 

resistivity response for gas-hydrate–bearing sediments. Both the P-wave impedance 

and resistivity are highly sensitive to porosity and saturation. P-wave impedance 

depends on the hydrate saturation to a lesser degree than does resistivity (Figure 8.4). 

 

 

Figure 8.4: Normalized resistivity versus P-wave Impedance and gas hydrate 
saturation color-coded by porosity in a gas-hydrate sand, characterized using the 
Cordon et al. (2006) modeling approach. 

 
Different combinations of porosity and hydrate saturation will still give the same 

P-wave impedance response (Figure 8.5).  To discriminate saturation from porosity 

using elastic data, one may include Poisson’s ratio in the analysis. Having Poisson’s 

ratio for the hydrate-bearing sandstone will limit the possible porosity and saturation 

values of the hydrate layer and, therefore, its resistivity (Figure 8.6). 
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Figure 8.5: Same as 8.4, but a map view from above. The hydrate saturation versus P-
wave impedance crossplot is color-coded by porosity. 

 

 

Figure 8.6: Hydrate saturation versus P-wave impedance and Poisson’s ratio (PR) 
color-coded by porosity.  

 
 

After these observations, the next step was to take a closer look not at the hydrate 

layer alone, but at the interface of the hydrate and free-gas–saturated layers, where the 

BSR is found and the strongest seismic response is observed. Can we predict porosity 



CHAPTER 8: GAS HYDRATE MODELING CATALOGUE 
 

172

and saturation, and therefore resistivity in the hydrate layer from the seismic 

reflectivity in the hydrate–free-gas interface? 

We create a model having a 2m-thick 90% hydrate-saturated sand, sandwiched 

between a shale and a 15% gas-saturated sand. We assume the shale layer to have 40% 

porosity and 90% clay content, and the sand to have 40, 35, 30, and 20% porosity. The 

zero-offset seismic response to changing porosity at the base of the hydrates is weak 

but observable (Figure 8.7). However, if we keep porosity constant at 40%, and 

change only the saturation of hydrate from 90% to 60, 30, and 0%, the effect is 

observed in the seismic data only as we look at the AVO response at the hydrate–gas-

sand interface, and not at normal incidence, where all seismograms are very similar 

(Figure 8.8). 

Hence, seismic reflectivity plots at different incidence angles for the hydrate–gas-

sand interface can help to discriminate porosity and saturation in the hydrate sand, but 

only if we have excellent seismic resolution and can actually resolve the elastic 

properties of the hydrate and gas sand.  Figure 8.9 shows that using P-P reflectivity at 

normal incidence and at 30 degrees, we could discriminate the product of porosity and 

saturation. 

A simple way to obtain the resistivity of the hydrate layer would be to compute 

resistivity for these porosity times saturation values (Figure 8.10), assuming a 

resistivity model (e.g., a=1, m=2, and n=2). When we plot these normalized resistivity 

values on top of the normal incidence PP reflectivity versus the PP reflectivity at an 

incident angle of 30 degrees (Figure 8.11), we see that if the hydrate layer is 
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resolvable, we can predict from the seismic data an initial resistivity model to use in 

the hydrates for an EM data inversion.  We can also use a gradient-versus-intercept 

plot, color-coded by resistivity (Figure 8.12).  PP reflectivity at zero offset or the 

intercept at the hydrate–gas interface is negative, and becomes less negative as the 

offset increases (positive gradient).  Hence, AVO analysis can be used to obtain an 

initial estimate of the saturation and porosity (and therefore the resistivity) in the 

hydrate layer, if the hydrate-bearing layer is resolvable from seismic data.  

 

a)      b)  

    
c)         d) 

    
Figure 8.7: Two-meter-thick, 90% hydrate-saturated sand, sandwiched between a 

shale and a 15% gas-saturated sand. Shale has 40% porosity and 90% clay 
content. Sand has (a) 40%, (b) 35%, (c) 30% and (d) 20% porosity. From left to 
right: density, P-wave velocity, S-wave velocity, P-wave impedance, Poisson’s 
ratio, PP reflectivity at normal incidence, and CMP gather (maximum offset 
shown is 40 degrees). 
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From the seismograms computed for a time sampling interval of 2 ms (Figure 8.7 

and 8.8), considering a hydrate layer 2 m thick, we observe that we cannot resolve the 

top and bottom of the hydrate layer separately; both events are interfering, causing a 

response that will depend not only on the sand properties but also on the properties of 

the shale above. 

 
a)      b)  

    
c)         d) 

    
Figure 8.8: Two-meter-thick 40% porosity hydrate-saturated sand, sandwiched 

between a shale and a 15% gas-saturated sand. Shale has 40% porosity and 90% 
clay content. Sand has (a) 90%, (b) 60%, (c) 30% and (d) 0% hydrate saturation. 
From left to right: density, P-wave velocity, S-wave velocity, P-wave Impedance, 
Poisson’s ratio, PP reflectivity at normal incidence, CMP gather (maximum 
offset shown is 40 degrees). 

 

 
Therefore, if we invert the seismic data for reflectivity, we obtain a plot of PP 

reflectivity at normal incidence and at 30 degrees versus hydrate saturation, shown in 

Figure 8.13. This result is quite different from that in Figure 8.9, where we did not 
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account for seismic resolution but plotted the actual values of the model. As hydrate 

content increases, the normal-incidence reflection coefficient becomes less negative, 

while the separation for the 30-degree reflection coefficient values becomes larger, 

making it possible to predict the porosity of the hydrate layer in that case. This case 

assumes that the shale cap is a 40% porosity soft shale; however if the shale has 20% 

porosity, then it would be very difficult to distinguish between a water-saturated and a 

90% hydrate-saturated sandstone with 15% porosity. The same would be true for a 

15% hydrate-saturated versus a 90% hydrate- saturated sandstone with 40% porosity 

(Figure 8.14). Therefore, our ability to predict saturation in the hydrate-bearing sand 

will depend on its porosity.  

 

 

Figure 8.9: PP reflectivity at 30 degrees versus PP reflectivity at 0 degrees for the 
base of the hydrates, assuming a 15% gas-saturated sand underneath, color-coded 
by the product of porosity and hydrate saturation. 
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Figure 8.10: Hydrate saturation versus porosity, color-coded by the logarithm of 
normalized resistivity, using Archie’s model used before in Mallik Arctic wells 
(a=1, m=2). 

 
 
 

 

Figure 8.11: PP reflectivity at 30 degrees offset versus normal-incidence PP 
reflectivity at the interface of gas hydrate and gas sand, color-coded by the 
logarithm of normalized resistivity, using same Archie’s model as in Figure 8.10. 

 
 

From this modeling, we learned that our ability to predict the hydrate-bearing sand 

resistivity depends on its thickness; at thicknesses below seismic resolution, it will 

strongly depend on the overburden properties, particularly those of the shale acting as 

a cap for the hydrate sand.  
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Figure 8.12: Gradient versus intercept at the interface of gas hydrate and gas sand, 
color-coded by the logarithm of normalized resistivity, using same Archie’s 
model as in Figure 8.10. 

 
 

 
 

Figure 8.13: Hydrate saturation versus PP Reflectivity at zero degrees versus PP 
Reflectivity at 30 degrees for the base of the hydrates, assuming a 15% gas-
saturated sand underneath, color-coded by porosity. A shale of 40% porosity is 
assumed above, and the hydrate layer is assumed to be 2 m thick.  
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Figure 8.14: Hydrate saturation versus PP Reflectivity at zero degrees versus PP 
Reflectivity at 30 degrees for the base of the hydrates, assuming a 15% gas-
saturated sand underneath, color-coded by porosity. A shale of 20% porosity is 
assumed above, and the hydrate layer is assumed to be 2 m thick.  

 
 

8.7  Conclusions 

From our analysis, we find that the elastic properties of gas-hydrate–bearing 

sandstones can be modeled using the soft-sand model by Dvorkin et al. (1999), and 

assuming that gas hydrate acts as part of the load-bearing matrix as in Cordon et al. 

(2006). In the same manner, electrical resistivity for the gas-hydrate–bearing 

sandstones can be modeled using Archie’s equation (1942).  

Normalized resistivity versus P-wave impedance plots may be very useful to 

predict reservoir properties, such as porosity and saturation for a gas-hydrate reservoir. 

Since, in the normalized resistivity–P-wave impedance domain, there is a clear 

separation of intervals with high gas-hydrate saturation from intervals with low gas-

hydrate saturation, even for poorly sorted reservoirs. Therefore; acquiring surface 
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reflection seismic and controlled-source electromagnetic data over a gas-hydrate 

reservoir could prove to be very valuable for reservoir characterization. 

Our ability to predict porosity and saturation of the hydrate-bearing layer from 

seismic data alone is highly dependent on its thickness and the properties of the 

overburden, as we show in our modeling. It is not an impossible task if we have some 

well-control data that can indicate the appropriate models and properties to use for the 

overburden. Once we estimate porosity and saturation from the seismic data, we can 

use these estimates to generate an initial resistivity model for the hydrates to use as a 

constraint in an EM data inversion. Predicting the presence of a reservoir below 

hydrates is difficult, and it can be very useful to have an initial resistivity model to 

constrain the EM properties of the hydrate layer before attempting to invert for the 

conductivity below. 
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Chapter 9 

Conclusions 
 
The concept of P-wave impedance and resistivity templates is introduced as a tool 

to estimate porosity and saturation from well log data. Adequate elastic and resistivity 

models, according to the lithology, cementation, fluid properties must be chosen to 

construct these templates. These templates can be upscaled to seismic and CSEM scale 

using Backus average for seismic data, and total resistance for CSEM data.  

It is important to be aware of the limitations of lateral and vertical resolution of 

CSEM data. If the lateral dimensions of the reservoir are smaller or equal to the depth 

of burial, we may not be able to detect the reservoir, even if we use the appropriate 

template. This is because when we create the template and upscale it, we are only 

doing a 1D modeling. 

We measured velocity and resistivity in Fontainebleau sandstones in the 

laboratory, and derived an empirical relation between these two properties at 40MPa 

effective pressure, which is around 3 km depth at normal pressure gradients. We were 

not able to test if this relation could be used at well or field data scales (once 
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appropriate upscaling was applied), since we did not have a field dataset over a stiff 

sandstone reservoir.  

We also found that the resistivity versus P-wave velocity data at 40MPa falls 

between the Faust (1953) relationship, which works as an upper bound, and the 

Hacikoylu et al. (2006) expression, which acts as a lower bound. 

A relationship between velocity and resistivity laboratory data was also found for a 

set of carbonates. This expression was not linear, but quadratic, which reveals that 

velocity and resistivity in this case are not primarily a function of porosity, as in the 

case of Fontainebleau sandstones. There are other factors that influence this 

relationship, which include pore geometry, and amount of micritic cement. We 

observed that the expression is almost linear, but it deviates as we approach lower 

resistivities. This deviation can be explained by the presence of stiff pores such as 

moldic or intra-granular pores, which causes high velocity but low resistivity values 

when water-saturated. In the same way, the effect of micrite cement on velocity is 

stronger than its effect on resistivity, and that also is responsible for some of the 

scatter that we observe. 

We also modeled both velocity and resistivity using the self-consistent 

approximation with the same pore or inclusion geometries in both carbonate and 

sandstone laboratory datasets. In the case of carbonates, we found that we had to 

include needle-like pores to explain the low resistivity but high velocities. Needle is 

one of the geometries that allow us to have connected stiff pores. However, we also 

found that a fraction of compliant pores also had to be included in order to explain the 
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velocity measurements on the carbonate dataset. Self-consistent model also 

approximated well the velocity and resistivity laboratory measurements on the 

Fontainebleau sandstones, using similar aspect ratios for both the velocity and the 

resistivity. 

As far as semi-empirical and empirical models, we observed how the stiff-sand 

model fit well the Fontainebleau data at 40MPa, including S-wave velocities. Raymer-

Hunt-Gardner relation also did a good job at predicting P-wave velocity.  Archie’s 

equation with cementation exponent between 1.6 and 2.1 fits the resistivity 

measurements on the Fontainebleau sandstones. These two relationships can be 

combined to create a resistivity – P-wave velocity transform for this dataset. 

When we attempted to use CSEM data to limit the shallow and low-frequency 

acoustic impedance trend for seismic inversion, we found that an appropriate elastic 

and resistivity models must be chosen in order to have a good prediction of acoustic 

impedance given resistivity.  These expressions can be calibrated using well data 

given particular emphasis to the overburden. We also found at this North Sea reservoir 

that conventional cross-property relations such as Faust (1953) and Hacikoylu et al. 

(2006) can over predict the acoustic impedance in friable shaly sediments at shallow 

depths. In the stiffer deeper lithologies, we observe that Hacikoylu et al. (2006) 

underpredicts, as expected from our laboratory study in Fontainebleau sandstones.  If 

no well log data is available in the shallow section, using the CSEM-derived resistivity 

data and an adequate cross-property relation (for example, one based on soft-sand 

model and Archie’s equation) can be a good approach to predict the initial low 
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frequency shallow acoustic impedance model. Validation tests showed that using the 

background trend from CSEM data as a constraint in impedance inversion can give a 

better fit to the acoustic impedance. 

As part of our analysis of gas hydrate bearing sandstones, we found that 

normalized resistivity versus P-wave impedance templates can also be useful to 

predict reservoir properties, such as porosity and saturation for a gas-hydrate reservoir 

at well log scale. Porosity and saturation prediction of the hydrate-bearing layer from 

seismic data alone is highly dependent on its thickness and the properties of the 

overburden, and requires well-control data that can indicate the appropriate models 

and properties to use for the overburden. However, it would be interesting to test using 

a resistivity model obtained from seismic data as the initial input for a CSEM 

inversion on a gas-hydrate-bearing sandstone. 
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