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Abstract 

 
 

This dissertation addresses recurrent questions in hydrocarbon reservoir characteri-

zation.  What properties of rock stand behind recorded seismic reflections?  How and to 

what extent can these rock properties be quantified from these reflections. To answer 

these questions, I link reservoir thickness, lithology, porosity, and saturation to seismic 

data by coupling deterministic rock-physics relationships and Bayesian statistics.  The 

key innovation is a seismic-inversion method that functions on the principles of 

deterministic physics and probabilistically accounts for possible variations of rock 

properties within a potential reservoir unit.  This is intended for use in practical reservoir 

characterization. Within it, I engage into the fundamental issue of reconciling spatial 

scale differences between seismic imaging, geology and stratigraphy, and rock physics.  

Seismic-based reservoir characterization is an inherently non-unique problem. This 

ambiguity necessitates the use of statistical method to constrain the problem and quantify 

an associated uncertainty. This dissertation contributes to both deterministic and statis-

tical seismic-based reservoir characterization. Complementary, I examined empirical 

velocity-porosity transforms to determine their consistencies with fluid-substitution 

equations. Results indicated that some transforms do not require an intermediate fluid-

substitution step to provide accurate porosity values when brine is not the in situ fluid. 

Work done on deterministic reservoir characterization combined multiple elastic prop-
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erties to simultaneously predict lithology and porosity with a constant fluid-saturation 

value. If a relationship between lithology and porosity was established, then the problem 

reduced to allow lithology and porosity to be estimated from a combination of P-

impedance and Poisson’s ratio. 

The probabilistic reservoir-characterization technique simultaneously predicts up to 

four reservoir properties and associated uncertainty corresponding to a reflection from a 

potential reservoir unit. This involves exhaustive forward modeling of the prior model 

and a full-grid search in the inverse problem. A seismic- and well-data set from offshore 

Africa provided the basis to develop and perform the inversion. Inversion results included 

predictions of combinations of reservoir thickness, porosity, and saturation that matched 

well data within the limits of the associated uncertainty. Lithology predictions for the 

data set, however, were too uncertain to provide a full solution. An additional application 

to North Sea data demonstrated that if seismic resolution was high enough, then the 

inversion provided independent predictions of thickness and porosity. Given these results, 

the inversion technique lays the foundation for the decomposition of a measured seismic 

reflection into combinations of probabilistic reservoir properties. In the future, this 

method could readily be extended to incorporate other types of geophysical data to refine 

the predictions of reservoir properties in hydrocarbon exploration settings. 
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Chapter 1 

Introduction 
 
 

"It would be an unsound fancy and self-contradictory to 

expect that things which have never yet been done can be 

done except by means which have never yet been tried." 

--Francis Bacon 

 

1.1  Motivation and objectives 
Characterizing the subsurface of the Earth using geophysical remote-sensing 

technology is inherently an ambiguous problem. Many geophysical methods have been 

applied to solve this dilemma, but none provide the means or resolution to characterize 

the subsurface exhaustively or at a scale fine enough for estimating petroleum reserves. 

The hydrocarbon industry commonly and predominantly uses one such method: 

reflection seismology. Arguably, only this technique can characterize large volumes of 

the earth using responses to seismic waves. 

Seismic-based descriptions of a subsurface volume, however, lack uniqueness and 

resolution. One reason is that the heterogeneous and complex earth distorts and attenuates 

seismic waves, which makes image focusing challenging. Even if these focusing issues 

are adequately addressed, seismic reflections can constrain only one or two elastic 
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properties at a point in space, although the traveling wave actually samples a large sub-

volume in the earth. Furthermore, the seismic reflections depend on contrasts of the 

elastic properties, and each elastic property depends on several rock parameters (e.g., 

porosity, mineralogy, pore fluid, differential pressure). Nevertheless, the hydrocarbon 

industry must try to extract multiple petroleum-reservoir properties from these inherently 

limited inputs. 

A typical reservoir characterization problem consists of quantitatively mapping a 

single seismic reflection into reservoir properties, namely thickness, lithology, porosity, 

and saturation. This task requires that all the wave-propagation effects, sampling, as well 

as noise issues, must be accounted for properly to provide an accurate translation of the 

elastic properties (velocity and/or impedance) into reservoir properties. Even with 

appropriate corrections for these problems, ambiguity still exists in relating elastic rock 

properties to reservoir properties. Rock-physics relationships allow point-by-point 

translations of elastic properties to reservoir properties. They do not, however, provide 

unique one-to-one mappings of elastic properties to reservoir properties. Most 

importantly, laboratory-scale rock-physics relations are not valid at the seismic scale, 

because seismic data represent some average of the rock properties. Seismic reservoir 

characterization, therefore, requires simultaneously linking point-based rock-physics 

relationships to band-limited seismic data and statistical methods to account for the 

ambiguous relationships between elastic and reservoir properties. Statistical inversion 

methods afford this linkage through the implementation of appropriate, physically based 

assumptions and prior information where necessary. The assumptions constrain the 

problem, and the prior information introduces controlled uncertainty into a potentially 

incomplete deterministic solution.  

This dissertation presents contributions to both deterministic and probabilistic seismic 

reservoir characterization. In addition, rock-physics work analyzes the consistency of the 

Gassmann (1951) equation with two porosity-velocity relationships. This latter piece can 

be viewed as separate from the reservoir-characterization work. The deterministic tool 

serves as a prelude to the more sophisticated probabilistic reservoir-characterization tool. 
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The main contribution of this thesis is a Bayesian seismic-inversion method that 

accounts for possible variations of rock properties within a potential reservoir unit. It is a 

trace-based algorithm that requires a prior interpretation of the seismic data to identify 

the potential reservoir interval. Within that potential reservoir unit, the inversion 

algorithm combines prior information with a likelihood function based on correlations of 

real and synthetic seismic data. Outputs are trace-to-trace posterior distributions of 

continuous variables. These distributions account for uncertainty in the seismic data to 

provide probabilistic estimates of thickness, clay content, porosity, and saturation. Most 

importantly, this method combines point-based rock-physics relationships and band-

limited seismic data, and it treats each properly at its own respective scale. As a result, 

this method requires neither downscaling of the seismic data nor upscaling of the rock-

physics relationships.  

The forward problem consists of an exhaustive simulation of the reservoir properties 

within the potential reservoir unit. A complete set of three-layer earth models results. By 

operating on a single unit instead of an entire seismic volume, the problem is reduced to 

allow this exhaustive simulation. An appropriate rock-physics transform translates the 

earth models to elastic models. A convolutional P-P ray-tracing algorithm generates the 

corresponding complete set of seismic models. 

At the core of the statistical algorithm is the likelihood function calculation, 

encompassing an acceptance/rejection criterion within a full-grid search. Correlations 

between real and synthetic seismic traces and the number of accepted synthetic traces 

control the width and shape of the non-parametric likelihood function. Accordingly, 

sampling of the prior or posterior distributions is not necessary. Although it requires no 

formal objective function, the goal of the inversion is to maximize the correlation 

between synthetic and real data while minimizing the number of synthetic traces that are 

accepted in the full-grid search.  

This work has a clear impact on practical reservoir characterization. Within it, I have 

progressed towards a synthesis of several still-disparate pieces of earth science—seismic 

imaging; geology and stratigraphy; statistics; and last but not least, rock physics—to 
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reveal the rock properties behind the seismic amplitude. At the same time, I have 

addressed the fundamental question of scale and interconnection of various properties of 

the subsurface. Specifically, how might we derive rock properties relevant to reserve and 

production forecasts from coarse-scale remote sensing? One result from this inversion 

technique indicates that although it may not be possible to predict porosity and geometric 

quantities separately, the product of the two provides a fairly robust and reliable output.  

The two primary foundations of this methodology are statistics and rock physics. For 

the former, Tarantola (1987); Malinverno and Parker (2006); Scales and Tenorio (2001); 

and Takahashi (2000) provide the primary references. The rock physics is described by 

Mavko et al. (1998), Avseth et al. (2005), Avseth (2000), and Gutierrez (2001). Although 

the method does not include a geostatistical basis or account for spatial uncertainty, work 

by Gonzalez (2006) and Bosch (2004) could be extended to characterize the uncertainty 

in the inversion. 

1.2  Chapter description 
Chapter 2 examines the consistency between the Gassmann (1951) equation and the 

Raymer et al. (1980) and Wyllie et al. (1956) time-average equations. The conclusions 

state that the Gassmann (1951) fluid-substitution equation can be omitted when fluids 

other than brine are used in the Raymer et al. (1980) equation. Conversely, changing 

from brine to a different fluid in the time-average equation requires an intermediate fluid-

substitution step to calculate accurate velocity values as a function of porosity. This work 

appeared in The Leading Edge (Spikes and Dvorkin, 2004). 

Chapter 3 presents the deterministic reservoir characterization method that provides a 

basis for the probabilistic work. It shows how a combination of elastic properties 

(impedance and Poisson’s ratio) can be used to predict values of clay content and 

porosity for a given saturation. This is done at the well-log scale and at the seismic scale 

by using Backus-averaged elastic-property well curves. Publication of this technique was 

in Exploration Geophysics (Spikes and Dvorkin, 2005). 
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Chapter 4 introduces a new Bayesian inversion technique to predict probabilistic 

values of clay content, porosity, and saturation given seismic amplitudes on a trace-by-

trace basis. Exhaustive forward modeling of the prior model provides a complete set of 

earth, elastic, and accompanying seismic models. A full grid search, utilizing an 

acceptance/rejection criterion, identifies the synthetic traces that match a real trace within 

a predefined threshold. The modeled reservoir properties corresponding to the matching 

traces constitute the likelihood function, allowing the calculation of the conditional 

posterior distribution. A test on well and seismic data from offshore Africa reveals an 

overprediction of porosity and uncertain predictions of clay content and saturation. 

Secondary results, however, indicated a tight negative correlation between porosity and 

thickness. This work appeared in Geophysics (Spikes et al., 2007) with contributions 

from Tapan Mukerji, Jack Dvorkin, and Gary Mavko. 

Chapter 5, the most important contribution to this dissertation, extends the inversion 

technique to include a full parameterization of thickness. Results from applying the 

method to the same offshore Africa dataset showed how the predicted relationship 

between porosity and thickness varies by including the less certain clay content and 

saturation parameters in the inversion. This work demonstrates both the benefits and 

limitations of the inversion technique. For a given reservoir interval below seismic 

resolution, this example illustrated the trade-off between porosity and thickness. At the 

same time, including the reservoir parameters that minimally affect the seismic response 

in this specific case (clay content and gas saturation) introduces statistical noise that can 

be mistaken for reservoir heterogeneity. Interestingly, joint inversion of thickness, 

porosity, and saturation can provide probabilistic conditional estimates of saturation even 

in stiff reservoir rocks. Tapan Mukerji and Jack Dvorkin provided suggestions and 

critiques of this work. 

Chapter 6 includes two applications of the inversion method to predict thickness, clay 

content, porosity, and saturation. The first is to use a full stack of the amplitude data, 

rather than near- and far-angle stacks, from the offshore Africa dataset. Using the full 

stack produced results very similar to those using the angle stacks. In the second 
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example, a North Sea dataset included a well with a stack of gas sands. Given the 

thickness of this package, top, bottom, and internal reflections were present. This tested a 

different aspect of the inversion; because the reservoir could be resolved, the inversion 

provided independent estimates of porosity and thickness. Clay content and saturation 

predictions were still uncertain. Jack Dvorkin and Marie Schneider contributed to this 

paper during its preparation for publication in The Leading Edge.  

Chapter 7 is a sensitivity analysis of the inversion on synthetic data. Three user-

defined parameters, the cross-correlation window length, the correlation threshold, and 

the number of accepted synthetic traces were varied systematically and tested as a 

function of noise in the synthetic seismic data. Results showed that seismic data 

containing less than 1% noise provided reliable predictions of the rock properties. At or 

above this noise level, the seismic signatures deviated too much relative to the noise-free 

synthetic realizations to provide accurate results. Therefore, this analysis indicated that 

the inversion may falter if noise in the seismic data exceeds this level.  

The appendix serves as a guide to potential users and developers to reproduce the 

workflow. It details with graphics and supporting text the main points of the workflow. 

Those points include the prior seismic interpretation and rock physics model, the forward 

problem, the inverse problem, and the analysis of the results. 
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Chapter 2 

Gassmann-consistency of velocity-
porosity transforms 
 
 

“Everything should be made as simple as possible, but not simpler.” 

--Albert Einstein  

 

2.1 Abstract 
Two commonly used empirical rock-physics models, the Wyllie time average and 

the Raymer-Hunt-Gardner model, include terms to account for lithology, porosity, and 

fluid.  More specifically, the corresponding equations contain an explicit fluid P-wave 

velocity term.  The derivations for both transforms were based on experimental data 

mostly for brine-saturated consolidated rocks.  The purpose of this work is to determine 

whether these two transforms can be used directly to accurately predict the velocity in 

rock with hydrocarbon, or instead rigorous fluid substitution from the wet-rock moduli is 

required for accurate velocity prediction.  First, we calculate the bulk and compressional 

moduli of brine-saturated rock using the two models over wide ranges of total porosity 

and clay content.  Next, we calculate these moduli in gas-saturated rock  (a) using 

theoretical fluid-substitution equations; and (b) directly from the models using the P-

wave velocity of gas.  We find that for the Raymer-Hunt-Gardner model very little 
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difference exists between the elastic moduli calculated using these two approaches.  

However, for the Wyllie time average, the two methods yield substantially different 

elastic moduli.  The conclusion is that the Wyllie time average should not be used to 

calculate the velocity in rock with gas or light oil.  Conversely, the Raymer-Hunt-

Gardner model can be used directly to assess the velocity in rock with any type of pore 

fluid.  The latter result is both theoretically and practically significant because (a) an 

empirical equation appears to implicitly and rigorously account for a theoretically 

predicted effect of the pore fluid; and (b) a single rock-physics transform can be applied 

with confidence to reservoirs with a variety of fluid types as long as the model is 

appropriate for the rocks under examination.   

2.2 Introduction 
Rock-physics results have shown that the effective elastic moduli, and thus the 

seismic velocity of rock, depend on the porosity, lithology, and pore fluid.  Laboratory 

experimentation combined with empirical statistical regression has resulted in several 

porosity-velocity transforms or models for siliciclastic rocks (e.g., Wyllie et al., 1956, 

1958; Raymer et al, 1980; Tosaya and Nur, 1982; Kowallis et al., 1984; and Han, 1986).  

The development of these models led to deterministic interpretation of petrophysical 

properties, porosity in particular, from seismic velocity data. 

Effective moduli and velocity depend not only on porosity, lithology, and pore fluid, 

but also on geometric variations of minerals and pores, textural positions of minerals, 

compaction trends, and diagenetic history.  Empirical rock-physics transforms do not 

explicitly consider these latter factors and, thus, do not directly model the intricacies of 

the actual physical systems.  However, these transforms are easy to use, and if they 

quantitatively explain field data, users favor them over more complex theoretical 

models.  Two such ermpirical models used frequently in the petroleum industry are the 

Wyllie et al. (1956) time average (WTA) and Raymer-Hunt-Gardner (1980) (RHG) 

models. 

 



CHAPTER 2: GASSMANN-CONSISTENT TRANSFORMS 9

We focus on these two models because each contains an explicit term for the P-wave 

velocity of the fluid.  Both models were derived based on experimental data mostly for 

brine-saturated consolidated rocks.  The question we ask is can these models be used 

with any fluid to obtain the appropriate corresponding velocity and effective elastic 

moduli, or is a theoretically rigorous fluid-substitution step (Gassmann, 1951; or Mavko 

et al., 1995) necessary? 

The goal of this work is to determine whether the velocity and effective elastic 

moduli obtained from these models when using any pore fluid are consistent with the 

effective moduli obtained when translating from one fluid to another, drastically 

different pore fluid (such as from brine to gas) through theoretical fluid substitution.  To 

assess that question, we model the effective elastic moduli for a gas-saturated scenario 

using the two transforms under examination.  The modeling of moduli for gas-saturated 

rock is performed in two ways.  The first way is to calculate the moduli using gas as the 

saturating fluid directly in the transforms.  The second way is to use brine as the 

saturating fluid and then apply brine-to-gas fluid substitution (Gassmann, 1951; and 

Mavko et al., 1995) to translate the wet-rock elastic moduli into those at 100% gas 

saturation.  The modeled results from the two gas-saturated-rock scenarios are then 

compared. 

In the original publications, Wyllie et al. (1956) and Raymer et al. (1980) stated that 

the proposed transforms can be used regardless of the nature of the saturating fluid.  

Here we assess the validity of this statement and the consistency of these empirical 

transforms with rigorous theoretical fluid substitution. 

2.3 Modeling methodology 
Both the WTA and RHG models link the P-wave velocity V  to the total porosity p φ , 

the velocity in the solid phase V , and the velocity in the fluid V : ps pf

 
1

Vp

=
1− φ
Vps

+
φ

Vpf

                                                 (2.1) 
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for WTA and 
 

Vp = (1− φ)2Vps + φVpf                                             (2.2) 

for RHG.  The bulk density ρb  can be calculated from the density of the mineral phase 

ρs and that of the pore fluid ρ f  as 
 

ρb = (1− φ)ρs + φρ f .                                             (2.3) 
 
Both original publications provide ranges for V  in various lithologies.  A more 

universal way to calculate V  is to mix the elastic moduli and densities of the 

constituent minerals using the Voigt-Reuss-Hill (1952) average for the moduli and the 

arithmetic average for the density: 

ps

ps

 

Vps = (Ks +
4
3
μs ) / ρs ;

Ks =
1
2

(1− C)Kq + CKc +
1

(1− C) / Kq + C / Kc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;

μs =
1
2

(1− C)μq + Cμc +
1

(1− C) / μq + C / μc

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;

ρs = (1− C)ρq + Cρc ,

                     (2.4) 

 
where the equations are given for a quartz/clay mixture; Ks  and μs are bulk and shear 

moduli of the solid phase, respectively; ρs is the density of the solid phase;  is the 

volume fraction of clay in the solid phase; and the subscripts “q” and “c” refer to quartz 

and clay, respectively.  The bulk moduli of quartz and clay are 36.6 and 21 GPa, 

respectively, and their shear moduli are 45 and 7 GPa, respectively.  The density of 

quartz is 2.65 g/cc, and that of clay is 2.58 g/cc. 

C

The velocity and density of the pore fluid can be calculated from the Batzle-Wang 

(1992) equations.  In this example we use a brine with a salinity of 35000 ppm at 75˚ C 

and 30 MPa pore pressure.  The gas gravity is 0.65.  The resulting bulk moduli are 2.73 

GPa for brine and 0.07 GPa for gas.  The densities are 1.01 g/cc for brine and 0.21 g/cc 
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for gas.  The corresponding velocities are 1.64 km/s in brine and 0.59 km/s in gas. 

We examine a model rock where the only two minerals present are quartz and clay.  

First we calculate the P-wave velocity and density from Equations (2.1) to (2.3) for 

brine- and gas-saturated rock.  We also calculate the compressional modulus M = ρbVp
2  

as well as the bulk modulus K = M − (4 /3)μ , where the shear modulus μ = ρbVs
2 .  The 

S-wave velocity Vs  is calculated from V  using the Greenberg-Castagna (1992) model, 

which, for water-saturated sand-shale sediment, can be approximated by the Castagna et 

al. (1985) mudrock equation, V

p

s = 0.862Vp −1.172, where the velocity is in km/s. 

Next, the elastic moduli in rock with brine are used again, but this time to calculate 

the moduli in rock with gas through fluid substitution.  The bulk modulus in rock with 

gas ( ) is calculated from that in rock with brine (K ) using Gassmann’s (1951) 

equation 

K2 1

 
K1

Ks −K1

−
KBrine

φ(Ks −KBrine )
=

K2

Ks −K2

−
KGas

φ(Ks −KGas)
,                      (2.5) 

 
where KBrine  and KGas  are the bulk moduli of brine and gas, respectively.  The 

compressional modulus in rock with gas ( M2 ) is calculated directly from that in rock 

with brine ( M1) using the Mavko et al. (1995) Vp -only fluid substitution equation: 
 

M1

Ms − M1

−
KBrine

φ(Ms −KBrine )
=

M2

Ms − M2

−
KGas

φ(Ms −KGas)
,                    (2.6) 

 
where Ms  is the compressional modulus of the mineral phase. 

Although any two fluids or fluid mixtures can be used for this study, we choose to 

use brine and gas because they are significantly different from each other, and as such, 

they represent the two end members of a large spectrum of natural pore fluids.  The high 

bulk modulus and density of brine and the low bulk modulus and density of gas provide 

two extrema in the effective elastic moduli.  Therefore, we compare effective moduli 

only for 100% gas-saturated rock. 
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2.4 Modeling results: Wyllie’s time average 
The bulk modulus for gas-saturated rock with C  between zero and 100% and φ  up 

to 40% is plotted versus φ  and C  in Figure 2.1.  The upper-surface values are predicted 

by Gassmann’s (1951) fluid substitution applied to the brine-saturated-rock bulk 

modulus, whereas the lower-surface values are directly predicted by WTA.  The 

difference between the two estimates can be very significant, reaching 15 GPa (about 

50% relative error) at low C  and low φ . 

 
Figure 2.1. Left:  Bulk modulus in gas-saturated rock as predicted directly by WTA (lower surface) 

and using fluid substitution from brine-saturated rock (upper surface).  The colorbar represents 
bulk modulus values Right:  The difference between the upper- and lower-surface values, where 
color represents this value in GPa.  

The compressional-modulus values calculated in the same fashion using WTA are 

shown in Figure 2.2.  The difference in this case reaches 25 GPa (about 30% relative 

error).  This largest difference is at low C  and low-to-medium φ .  The difference 

becomes small only at very large C  and small φ .  

 
Figure 2.2. Same as Figure 2.1 but for the compressional modulus. 
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2.5 Modeling results: Raymer, Hunt, and Gardner 
The same procedures were used to calculate the elastic moduli in gas-saturated rock 

using RHG.  The modeled values presented in Figures 2.3 and 2.4 indicate that the 

difference between the two results is very small and can be neglected for all practical 

purposes.  Remarkably, this empirical model appears to be fully consistent with rigorous 

theoretical fluid-substitution equations. 

 
Figure 2.3. Same as Figure 2.1 but for RHG. 

 
Figure 2.4. Same as Figure 2.2 but for RHG. 

2.6 Discussion and conclusions 
The K  surfaces (Figure 2.1) and M  surfaces (Figure 2.2) indicate clearly that if one 

uses gas directly in the WTA equation, the modeled values are significantly different 

than those obtained when using fluid-substitution methods to transform the effective 

moduli from brine-saturated to gas-saturated rock.  For either the K  or M surfaces, the 

question remains as to which surface is correct.  Due to the heuristic nature of the 
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equation, neither method of calculating the moduli can be claimed as absolutely correct, 

nor can one method be called more correct than the other.  Because substantially 

different moduli, and thus velocity values, possibly can be obtained when using WTA 

with or without fluid substitution, care should be taken when using this model with any 

fluid.  Most likely, fluid substitution should be performed from brine- to gas-saturated 

conditions because the original model was derived primarily from data from wet rocks.   

WTA is used for two primary purposes.  The first is to estimate seismic velocities 

with a given mineralogy and pore fluid, and the second is to estimate porosity from 

seismic velocity with knowledge of rock type and pore-fluid content.  Therefore, this 

model can be used for both reservoir and non-reservoir rocks.  The most significant 

differences in the calculated moduli occur for C  less than 0.2 and φ  between 5% and 

15%.  The smallest difference occurs for very high C  for all φ .  Therefore, depending 

on the lithology, the accuracy of the porosity estimate from seismic velocity may vary 

substantially, particularly between reservoir and non-reservoir rock. 

The most important conclusion is that WTA is not consistent with the fluid-

substitution equations. 

In contrast to the results of modeling with the WTA, the results of RHG modeling 

indicate that any pore fluid may be used within this model without using fluid- 

substitution methods.  Calculated K and M values result in only a few GPa difference 

when using gas directly in the RHG as opposed to using brine-to-gas fluid substitution.  

This model was derived based mostly on brine-saturated sandstones, and technically it 

should be used only to estimate seismic velocity in brine-saturated sandstones.  

However, because of the similarity in the modeled effective elastic moduli, the RHG can 

be used with any pore fluid. 

The most important conclusion is that RHG is consistent with the fluid-substitution 

equations. 

The examples shown here are for two extreme fluid cases, brine and gas, so that 

differences in the calculated moduli are greater than those between any other two fluids.  

Therefore, if the fluid of interest is gas, fluid substitution from brine to gas should be 
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used with WTA to calculate the elastic moduli for gas-saturated rock.  Conversely, 

based on the models shown here, any pore fluid can be used with confidence directly in 

the RHG model without an intermediate fluid-substitution step. 
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Chapter 3 

Simultaneous model-based inversion 
for lithology, porosity, and fluid 
 
 

“In questions of science, the authority of a thousand is 

not worth the humble reasoning of a single individual.”  

--Galileo Galilei 

 

3.1  Abstract 
The three main variables that determine the elastic response of sediment within a 

clastic environment are porosity, mineralogy, and pore fluid. The number of the elastic 

variables offered by seismic data does not exceed two (e.g., the impedance and Poisson’s 

ratio). Therefore, resolving seismic data for reservoir properties is formally unattainable, 

even if a perfect elastic rock physics model exists. We solve this problem by utilizing an 

additional petrophysical link, the one between the clay content and total porosity, which 

is often observed in a dispersed-shale environment. First, we establish a rock physics 

model. Next, we identify the reservoir through a combination of impedance and Poisson’s 

ratio. Then, within the reservoir, we invert the P-wave impedance for both the total 

porosity and clay content by using two relations: (a) the rock physics model that links the 

P-wave impedance to the total porosity and clay content; and (b) the petrophysical model 
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that links the clay content to total porosity. The results are accurate when the method is 

applied directly to well-log data. Most importantly, we obtain accurate reservoir property 

estimates by using the method with upscaled well-log curves, which demonstrates its 

relevance to real seismic data.  

3.2  Introduction 
Recent advances in seismic inversion may help to map elastic properties, such as the 

P-wave impedance ( PI ), Poisson’s ratio (ν ), and density ( ρ ), in the subsurface. The 

ultimate goal, however, is to map the porosity (φ ), clay content (C ), and pore fluid or 

water saturation ( wS ). Such transformation of the elastic properties into reservoir 

properties requires a rock physics model that links PI  and ν  to φ , C , and wS . However, 

even if a perfect rock physics model is available, we cannot resolve two equations for 

three unknowns — an underdetermined system.  The problem is that no more than two 

elastic properties can be obtained from seismic data. 

This problem can be solved by taking advantage of findings of Thomas and Stieber 

(1975), Marion (1990), and Yin (1992). These authors showed that in certain depositional 

environments, φ  and C  are related. This relation can serve as an additional constraint 

and help complete an underdetermined system of rock-physics equations. As a result, an 

inversion of PI  and ν  for φ , C , and wS  becomes possible. Such an inversion procedure 

is developed in this paper. 

An example that we use here comes from a geologically mature fluvial environment 

where the elastic properties are linked to sediment properties by the rock-physics models 

of Raymer et al. (1980) and Greenberg and Castagna (1992). We also find that φ  and C  

are linked by an approximately linear petrophysical transform that reflects the dispersed-

shale depositional mode. In this mode, the reduction of φ  is due to small shale particles 

filling the pore space of the sand-grain frame. Rock physics and petrophysics are used 

together to identify the reservoir and then to resolve PI  from the log data within the 

reservoir for φ  and C . As expected, we arrive at the correct φ  and C  values. 

 



CHAPTER 3: SIMULTANEOUS INVERSION 18

Our main task, however, is to show that this method can be used with seismic-

impedance inversion data, whose scale is much larger than that of well-log data. To 

address this issue, we upscale the original elastic-property logs using the Backus (1962) 

average and then apply the same procedure to calculate the clay content and porosity 

within the reservoir. The results appear to be accurate. 

The approach we take has been utilized by Goldberg and Gurevich (1998) who 

proposed to invert the P- and S-wave velocity data for the clay content and total porosity. 

We build upon this approach to explicitly include a textural petrophysical relation in the 

inversion scheme and also show that it is valid at the seismic scale. 

3.3 Original data and upscaling 
The well-log data used in this study are from a fluvial environment characterized by a 

thick shale layer located above oil sand. Beneath the sand are several coarsening-up 

sand/shale sequences (Figure 3.1). The PI  contrast between the sand and surrounding 

shale is small. Therefore, no noticeable normal-incidence or small-angle seismic 

reflections are expected at these interfaces. Compared to the surrounding shale, however, 

the small-ν  interval of the hydrocarbon-filled sand may result in a pronounced AVO 

effect. 

In order to understand how the log-scale features present in these data appear at the 

seismic scale, we apply the Backus (1962) average to upscale the elastic moduli, and the 

running arithmetic mean to upscale the bulk density (see also Mavko et al., 1998, for this 

upscaling method). The upscaling window is approximately 1/4 of the seismic 

wavelength, about 18.5 m for 50 Hz. The PI  and ν  at the seismic scale (Figure 3.1) are 

calculated from the upscaled moduli and density. 

3.4  Methodology 
In this inversion method we assume that the two known quantities are PI  and ν , 

whereas the three unknowns are φ , C , and wS . The main steps are to (1) establish a 

rock-physics model using well-log data; (2) identify the reservoir through a combination 

of PI  and ν ; (3) find a petrophysical link between φ  and C ; and (4) combine the IP –φ  
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and φ –C  equations to calculate φ  and C  from PI  in the reservoir. 

3.4.1 Rock-physics model 

To select a rock-physics model, we assume that the elastic properties of the sediment 

depend on the total porosity, mineralogy, and pore fluid. We also assume that the only 

minerals present in the interval are clay and quartz. Consider the Raymer et al. (1980) 

model (RHG) that relates the P-wave velocity (Vp ) of the rock to φ , the mineral-phase 

velocity (Vps ), and the pore-fluid velocity (Vpf ): 
 

Vp = (1− φ)2Vps + φVpf  ,                                              (3.1) 
 
where Vpf  is calculated from the bulk modulus and density of the pore fluid (Table 1) and 

Vps  is the velocity in the pure-mineral (zero-porosity) phase. For a mixture of clay and 

quartz, Vps  is calculated according to Hill’s average (Mavko et al., 1998). The bulk 

density ( bρ ) is a function of φ , the density of the mineral phase (ρs ), and that of the 

pore fluid (ρ f ): 
 

ρb = (1− φ)ρs + φρ f .                                                  (3.2) 
 
Table 1. Fluid and mineral properties. 
 

 Bulk Modulus 
(GPa) 

Shear Modulus 
(GPa) 

Density 
(g/cm3) 

Brine 2.721 0 1.024 
Oil 0.597 0 0.685 

Quartz 36.6 45 2.65 
Clay 21 7 2.58 

 

To calculate the S-wave velocity, we use the Greenberg-Castagna (1992) P-to-S-wave 

velocity transform (GC), which, in water-saturated siliciclastic rocks, is close to the 

mudrock equation of Castagna et al. (1985): 

 
Vs = 0.862Vp −1.172 .                                                (3.3) 
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Equations 3.1 to 3.3 are also used for conditions where wS <1. IP  and ν  are calculated 

from VP, VS, and ρb as 
 

I p = ρbVp , ν = 1
2

Vp
2 / Vs

2 − 2
Vp

2 / Vs
2 −1

 .                                      (3.4) 

 
IP , ν , Vp , Vs , and ρb  are, therefore, functions of φ , C , and fluid properties. 

Out next task is to validate the applicability of the RHG-GC model to the well-log 

data under examination. For this purpose we use the measured velocity and density as 

well as the total porosity calculated from the bulk density according to the mass-balance 

equation: 
 

φ =
2.65 − ρb

2.65 − ρw

 ,                                              (3.5) 

 
where ρw  (the density of brine) is given in Table 1. Equation (3.5) assumes that the 

density of the mineral phase is fixed as 2.65 g/cm3, and the measured bulk density 

corresponds to fully brine-saturated conditions resulting from mud-filtrate invasion. 

The next task is to calculate C  from the well data. Two principal ways are used to 

determine C  from well data. One is from lithology-indicator measurements, such as the 

gamma-ray ( GR ) or spontaneous-potential ( SP ) logs. The simplest approach is to 

linearly scale GR  so that the maximum and minimum clay content in the section 

correspond to the maximum and minimum GR . 

Another approach is model-based and uses the Vp  and Vs  data. If we know how these 

two variables depend on φ  and C , then it is possible to obtain C  from the measured Vp , 

Vs , and φ  log curves. Various rock-physics models can be used for this purpose, such as 

the empirical relations by Han et al. (1986) and Tosaya (1982). In this specific case we 

evaluate the applicability of the RHG model and thus determine C  in the entire interval, 

by requiring that IP  be calculated from Equations (3.1), (3.2), and (3.4), and that the φ  

curve corresponds to the measured IP. 
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The resulting C  curve is plotted in Figure 3.1, in red. Compare this C  to the curve 

obtained from linear scaling of GR  where we assume that the clay content is 0.07 in 

“pure sand” (i.e., at the minimum GR ) and 0.93 in “pure shale” (i.e., at the maximum 

GR ). The resulting curve is plotted in black in Figure 3.1. The model-based C  is 

reasonably close to the GR -based C , and the RHG-GC-based C  is used below 

throughout the paper. 
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Figure 3.1. Well-log curves used in this study. From left to right: gamma ray, clay content, water 

saturation, total porosity, P-wave velocity, S-wave velocity, P-wave impedance, and Poisson’s 
ratio. The depth is fictitious. In the clay-content frame, the black curve comes from linearly 
scaling the gamma-ray curve, whereas the red curve is calculated as to match the Raymer et 
al. (1980) model predictions. In the last four frames, the black curves are for the original log 
data while the red curves are calculated from porosity and clay content using the Raymer et al. 
(1980) and Greenberg and Castagna (1992) models, using the measured saturation log. The 
gray curves (frames seven and eight) are for the upscaled values. 

 

The RHG-GC model curves for IP  and ν  calculated for different C  and 100% brine 

saturation accurately match the data in Figure 3.2, which further illustrates the utility of 

the model selected here. 
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Figure 3.2. P-wave impedance (left) and Poisson’s ratio (right) versus the total porosity. The 

elastic properties are calculated for 100% water saturation. The data are color-coded by the 
clay content. The blue curves are from the RHG-GC model, each drawn for a fixed clay 
content starting at 0.0 and ending at 1.0 with 0.2 step (clay content is shown on the curves). 
The bold gray curves are from the uncemented sand/shale model drawn for zero clay content. 
This curve is drawn to show that the Raymer et al. (1980) model is appropriate. 

 

The most important result of this model-to-data-matching exercise is the consistency 

between the selected rock-physics model and the data under examination. Let us 

emphasize that our selection of the model is not random. It is instructive to mention that 

RHG was derived from empirical data for brine-saturated consolidated sediments. The 

fact that this model matches the data is consistent with the geological nature of the 

interval, which is located within a relatively geologically mature and consolidated 

sand/shale sequence. This fact makes the model predictive beyond the data set used for 

matching. To emphasize the importance of choosing a geologically consistent rock-

physics model, we also compute model curves for pure-quartz sand using the soft 

sand/shale model of Dvorkin and Nur (1996). These curves (plotted gray in Figure 3.2) 

significantly underestimate IP  and overestimate ν  in the sand.  

RHG-GC is robust, yet one of the simplest transforms between porosity, lithology, 

and fluid and the elastic-wave velocity. The RHG-GC equations were derived from large 

sets of well-log and core data, which provides assurance that these transforms are 

predictive and can be applied outside of the original datasets to rock whose geological 

history is analogous. We have further confirmed the generality of RHG-GC equations by 

finding that the curves produced using these equations for quartz/clay mixtures are very 
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close to those produced by the modified upper Hashin-Shtrikman bound (similar to the 

modified lower Hashin-Shtrikman bound of Dvorkin and Nur, 1996, although not shown 

here). We choose to use RHG-GC here instead of a more mathematically involved rock-

physics model simply because these equations are simpler and are easier to use in 

inversion. 

Other simple empirical equations appropriate to use for mature sediment, such as 

those of Wyllie et al. (1956) and Krief (1990), are available in the literature and possibly 

could be tested here. However, because RHG-GC accurately describes and explains the 

data, we elect to use it in our inversion procedure. 

It is apparent in Figure 3.2 that both φ  and C  strongly affect IP . At a constant C , a 

small φ  corresponds to a large IP , whereas at a fixed φ , a large C  corresponds to a 

small IP . This dependence of Vp  and IP  on both φ  and C  was documented implicitly 

by Wyllie et al. as early as 1956. Raymer et al. (1980) further confirmed such dependence 

in 1980. Laboratory experiments verified this effect in clean and shaley sandstone (Han et 

al., 1986) and shale samples (Tosaya, 1982). 

Let us point out once again that in Figure 3.2, right, we present ν  calculated at full 

water saturation, which serves the purpose of understanding the dependence of ν  on 

porosity and lithology. The dependence of ν  on φ  is pronounced in shaley sand and 

shale. It is apparent that this dependence is also strongly linked to lithology because φ  

and lithology (as manifested by the clay content) vary together. The strong lithology 

dependence of ν  is also manifested by the fact that its range in the shale is approximately 

from 0.30 to 0.35, whereas the ν  range in water-saturated sand is from 0.27 to 0.29. 

3.4.2 Reservoir delineation 

Figure 3.3 (left) shows the IP –ν  plane, where we map three domains using RHG-

GC: brine-saturated shale with φ  from 0.05 to 0.25 and C  from 0.20 to 0.95; sand with 

60% oil saturation, φ  from 0.15 to 0.25 and C  from 0.0 to 0.2; and the same sand with 

80% oil saturation. The two sand domains overlap one another, which means that the 

model domains are not very sensitive to variations in fluid saturation. The well data 
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displayed in the same figure fall within these model-based domains. The pay-sand 

domains and shale domain do not overlap, which means, in principle, that the oil sand can 

be identified from seismic data by using a combination of IP  and ν . To make this 

identification, we draw a cut-off line just below the shale domain. The corresponding 

equation is 
 

I p =18.6 − 39.2ν  .                                                (3.6) 
 
If I p <18.6 − 39.2ν , then the domain is oil-saturated sand. If I p ≥18.6 − 39.2ν , then the 

rock is water-saturated shale. This cut-off criterion is apparently valid with the log data. 

Will it be valid at the seismic scale? To address this question, we cross-plot the upscaled 

IP  and ν  (Figure 3.3, right). We find that although the upscaled pay-sand data shift 

toward higher ν , the above cut-off criterion is still valid for reservoir delineation. 
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Figure 3.3. The P-wave impedance versus Poisson’s ratio with sand and shale domains mapped 

according to the RHG-GC model. The color code is the total porosity. In the two sand 
domains, the oil saturation is 60% and 80%. The joint fluid- and lithology-discrimination cut-
off line is shown in bold gray. The data points are shown for the log scale (left) and for the 
seismic scale (right). The pay-sand data points with water saturation below 50% are 
highlighted in both plots in green. 

3.4.3 Relation between porosity and clay content 

Let us assume now that pay sand can be detected from seismic data using a 

combination of seismically derived IP  and ν , and concern ourselves with quantifying φ  

and C  in the sand. Because the RHG equation requires both φ  and C  to calculate IP , an 
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additional relation is required to derive φ  and C  from IP . Such a relation may be a link 

between φ  and C , which is not uncommon in shaley sands (Thomas and Stieber, 1975). 

Figure 3.4 is a cross-plot of φ  versus C . Arguably, a relationship exists between φ  

and C  in the sand. In clean sand, φ  is relatively large, but decreases as C  is added to the 

rock. The turning point in this trend is at C  ≈ 0.4. At larger C  the total φ  tends to 

increase. This V-shaped pattern is characteristic of bimodal sand/clay mixtures (Marion, 

1990; Yin, 1992) where the transition from sand to shale occurs by the small shale grains 

filling the pore space between the large sand grains that form the frame. This mode of 

deposition can be called the dispersed shale pattern and is common in a fluvial 

environment. Dvorkin and Gutierrez (2002) use two linear equations to describe this type 

of relation between C  and φ . We follow that example and find two equations relevant to 

these data: 
 

C < 0.40 ⇒ φ = 0.219 − 0.247C ,
C ≥ 0.40 ⇒ φ = −0.130 + 0.400C .

                                   (3.7) 
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Figure 3.4. Porosity as a function of clay content. Gray lines are according to equation (3.7). The 

data in the reservoir and below are encircled. 
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These equations are plotted as gray lines in Figure 3.4. Clearly, this choice of linear 

φ –C  trends is somewhat arbitrary, especially in the shale part of the plot. However, the 

only important part of this selection is in the reservoir sand, where the trend is clearly 

pronounced. We have tested a range of linear equations, similar to the first equation (3.7), 

to cover the spread of the data in Figure 3.4. The final results show only a weak 

dependence on this selection as long as the line complies with the trend present in the 

encircled data in Figure 3.4. 

By using only two linear equations to describe the relation between C  and φ , we 

effectively ignore the multiple coarsening-up sequences present in the interval. We 

describe the data by only two statistical trends, which does not account for all the data 

variability present in the cross-plot in Figure 3.4. At the log scale, these trends may be 

significant. However, as we show below, at the seismic scale, these trends are assumed to 

be too small to contribute significant error. The first linear trend in equations (3.7) can 

now be used together with the RHG equation to resolve IP  in terms of φ  and C  within 

the reservoir. 

3.4.4 Inversion 

The inversion procedure consists of five steps: 

(1) Invert pre-stack or partial stack seismic data to obtain IP  and ν  

(2) find a rock-physics model that relates φ  to IP , in this case RHG; 

(3) delineate the reservoir by using equation (3.6); 

(4) establish the φ - C  link as in equation (3.7); 

(5) use RHG and the φ - C  link to resolve IP  in the reservoir for φ  and C . 

During this procedure we still have to assign a value to the water saturation ( Sw ) in 

the pay, which is needed to calculate the velocity in the pore-fluid phase (Vpf ) in equation 

(3.1). For high-compressibility hydrocarbons, such as oil in this reservoir, and within a 

commercial saturation range, Vpf  is not very sensitive to water saturation. Therefore, it is 

expected (as confirmed below) that the inversion for C  and φ  in a reservoir does not 

strongly depend on the assumed Sw  even though ρ  and IP  depend linearly on Sw . 
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3.5 Inversion results 

3.5.1 Well-log scale 

The inversion results using the originally sampled log-scale IP  and ν  accurately 

match the measurement in the reservoir (Figure 3.5). We conducted the inversion while 

varying Sw  between 0.2 and 0.4 and discovered that the resulting C  and φ  are 

essentially insensitive to Sw  variation. This conclusion is positive in the sense that the 

inverted C  and φ  are reasonably tolerant to the uncertainty in Sw , but it is negative in 

the sense that the volume of oil cannot be accurately estimated from the elastic 

properties. 
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Figure 3.5. The original log-based clay content and total porosity and the predicted clay content 

and total porosity at the log scale. From left to right: (1) Gamma ray; (2) Water saturation; (3) 
The RGH-GC-based (black) and predicted (gray) clay content; and (4) The original (black) 
and predicted (gray) total porosity. 

3.5.2 Seismic scale 

We test the applicability of the proposed method at the seismic scale by using as 

inputs the Backus-upscaled IP  and ν , which we consider as proxies for the elastic 



CHAPTER 3: SIMULTANEOUS INVERSION 28

properties estimated from seismic data. This procedure uses exactly the same equations 

as used in the log-scale inversion. 

First, equation (3.6) allows us to delineate the reservoir at the seismic scale (Figure 

3.6, second frame). Next, C  and φ  from this inversion appear to be close to the log-scale 

values as well as to the arithmetically upscaled C  and φ  curves (Figure 3.6, third and 

fourth frames). In the reservoir,  is slightly overestimated whereas C φ  is simultaneously 

underestimated. This is likely to be a result of using a deterministic, single-function -

to-

C

φ  transform as expressed by equation (3.7). The difference between the porosity 

predicted at the seismic scale and the measured porosity in the pay zone is ±0.03 porosity 

units, which amounts to ±14% relative error. We deem this error acceptable given that 

detecting this difference in seismic data is unlikely. The results presented in this section 

assure that the proposed inversion methodology is applicable at the seismic scale. 
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Figure 3.6. The measured clay content and total porosity and the predicted clay content and total 

porosity at the seismic scale. From left to right: (1) Gamma ray; (2) Water saturation; (3) The 
log-scale (thin black), arithmetically upscaled (bold black) and predicted (gray) clay content; 
and (4) The log-scale (thin black), arithmetically upscaled (bold black) and predicted (gray) 
total porosity. The vertical extent of the reservoir is indicated by the gray line in frame 2. 
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3.6 Discussion 
Obtaining the porosity and mineralogy of reservoir sand from the elastic rock 

properties is relevant to several applications: (a) reconstructing missing log curves, such 

as the bulk density, from sonic and dipole data; (b) estimating formation properties from 

VSP data; (c) mapping formation properties from cross-well velocity data; and (d) 

mapping formation properties from seismic-impedance inversion data. In all these 

applications, the formation properties can be estimated correctly only if the relevant, site-

specific petrophysical and rock-physics transforms are selected. We show how to select 

and calibrate a rock-physics model and petrophysical model based on well-log data and 

also how to establish whether this model can be used at the seismic scale. 

The errors in the formation property estimates according to the methodology 

presented here may come from several sources. Among these are: (a) uncertainty in 

mineralogical composition; (b) uncertainty in the elastic moduli of the pure minerals, 

such as quartz and clay; (c) uncertainty in water saturation; (d) uncertainty in the link 

between porosity and clay content; and (e) uncertainty in the model itself. All these 

uncertainties can be handled within the selected rock-physics model by assigning a range 

to an input parameter and then calculating the output range according to the model. 

The pay zone delineated at the seismic scale is slightly smaller than the actual pay 

zone (the second frame of Figure 3.6). The reason is that the upscaled Poisson’s ratio 

curve has larger low-end values when compared to the original log-scale curve (Figure 

3.3). Therefore, fewer data points in the IP –ν  domain satisfy the criterion. This artifact 

of seismic upscaling is likely to be present in real seismic data, and the interpreter must 

be aware of its existence. A different cut-off line based on the upscaled values could be 

implemented for seismic data, as long as it could be verified within the workflow. 

3.7 Conclusions 
The main intention of this work is to emphasize the importance of using deterministic 

rock-physics and petrophysical models for reservoir characterization from elastic data 

obtained at various scales. Such a model-based methodology enables us to (a) perturb the 
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geological inputs and consistently derive the sensitivity of seismic signatures to these 

inputs, and (b) understand sometimes complicated relationships present in the data, such 

as shown in Figures 3.2 and 3.4. 

We show that once the underlying rock physics and petrophysics are understood and 

quantitatively described, it is possible to use them to derive the desired reservoir 

properties from the elastic input. Such inversion appears to be plausible at the log scale as 

well as the seismic scale. By no means are the equations used in this work universally 

applicable in every depositional environment. They are specific to the fluvial system 

examined. This rock-physics and petrophysics workflow should be considered only as an 

example. 
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Chapter 4 

Probabilistic seismic inversion based 
on rock-physics models 
 
 

“When you see something that is technically sweet, you go ahead and 

do it and you argue about what to do about it only after you have had 

your technical success. That is the way it was with the atomic bomb.”  

--J. Robert Oppenheimer 

 

4.1  Abstract 
A site-specific rock-physics transform between porosity, mineralogy, fluid, and the 

elastic-wave velocity is used to invert seismic amplitude data for clay content, total 

porosity, and saturation. The implementation is Bayesian and yields probabilistic values 

of the reservoir properties, given seismic measurements and well data. This method 

focuses on an exploration setting where minimal data exist. Two key assumptions reduce 

the problem and keep the prior assumptions as non-influential as possible. First, a prior 

interpretation of the seismic data is required that provides a geobody on which to perform 

the inversion. Second, the reservoir thickness is assumed to be constant, as are the rock 

properties within the reservoir. The prior distributions of the reservoir properties are 

uncorrelated and independent of each other, although this not an essential assumption. 
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Central to the inversion is the generation of a complete set of a priori earth models. A 

site-specific rock-physics model translates these properties (clay content, porosity, and 

saturation) into the elastic domain. A complete set of forward seismic models 

accompanies the earth models, and these seismic models are compared to the real data on 

a trace-by-trace basis. The reservoir properties corresponding to the seismic models that 

match the real data within predefined error bars are used to construct the full posterior 

distribution. This method was tested on well and seismic data from offshore western 

South Africa. Initial results at a calibration and test well indicate an over-prediction of 

porosity and uncertain predictions of clay content and saturation. This is a result of the 

constant-thickness assumption. However, a strong negative correlation between porosity 

and thickness is predicted, making this method useful.  

4.2 Introduction 
Quantitative interpretation of geophysical data for hydrocarbon reservoir 

characterization is a nonunique problem. A solution is to cast the inversion of seismic 

reflection data for rock properties in terms of probabilities (Tarantola, 1987). The 

philosophy adopted here is to combine a probabilistic approach with site-specific rock- 

physics relations between the rock properties and the elastic properties. In other words, 

uncertainty is draped on a deterministic model. 

The approach taken here is empirical Bayesian, in which the goal is to obtain 

posterior distributions of reservoir properties from seismic measurements. Specifically, 

the joint conditional probability distribution function is estimated for clay content C , 

total porosity φ , and water saturation  from measured seismic responses and well-log 

information. This distribution is proportional to the product of prior distributions of these 

properties and a likelihood function. The prior distribution can be written as a product of 

prior marginal distributions, assuming independence between the variables. 

Sw

Development of this method was based on exploration seismic data with limited well 

information, from which only the reservoir properties and their configurations are known 

at a single well. Defining the prior distributions as uniform distributions of independent 
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and uncorrelated reservoir properties insures the use of least-committal prior models 

(sometimes termed non-informative or “vague” priors). Assuming independent prior 

variables is not an essential assumption for the method. If existing data indicate any 

correlation, that correlation can be incorporated easily in the prior distribution. Results of 

interest are posterior joint and marginal distributions of the reservoir properties, which 

are subsequently calculated from the posterior conditional distribution. The most-likely 

values from the full joint distribution are selected and then mapped onto seismically 

identified geobodies. A geobody is defined as a geologic feature obtained from a prior 

interpretation of seismic data. The parameterization of the method in this chapter is for 

clastic environments; however, the method can be used in other environments, including 

carbonate reservoirs, if an appropriate rock-physics model is used.  

The first of two main assumptions made in this inversion is that a prior interpretation 

must provide a geobody on which to perform the inversion. The second assumption is 

that reservoir thickness is constant at all locations. This assumption may limit the 

applicability of the inversion. To examine the effect of thickness variation in the 

inversion results, sensitivity analyses were performed, which indicate that a porosity-

thickness relationship controls the seismic response. Full parameterization of incremental 

thickness modeling (i.e., Neff, 1990, 1993; Gastaldi et al., 1998) is included in the 

following chapters. 

A critical component of the inversion is a complete set of earth models with synthetic 

seismic data for each model. Each earth model is effectively a three-layer model 

(overburden, reservoir, underlying shale), but the overburden and underlying shale are 

multilayered and heterogeneous. All of the earth models contain the same overburden and 

underlying shale. All properties for these two units are from calibration-well data. The 

reservoir layer is populated with all combinations of reservoir properties as defined by 

the prior distribution; this constitutes a regularized grid sampling of the reservoir 

properties within the reservoir unit. A site-specific rock-physics model translates the rock 

properties in the reservoir into elastic properties. Last, synthetic seismic data are 

calculated for each earth model. 
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Many examples exist of Bayesian inversion applied to geophysics problems. Recent 

studies have implemented Bayesian inversion to estimate distributions of elastic 

properties or reservoir properties. One example of estimating distributions of elastic 

properties is Buland and Omre (2003), who present a linearized AVO inversion to obtain 

distributions of elastic properties. A second example is by Riedel et al. (2003), who use 

Bayesian methods for AVO inversion to estimate viscoelastic parameters and associated 

uncertainties.  

Loures and Moraes (2006) provide an example of estimating distributions of reservoir 

properties to obtain distributions of porosity and clay content from multiple data sets and 

rock-physics models. Joint estimates of porosity and saturation have been performed 

using stochastic rock-physics modeling (Bachrach, 2006) and Bayesian statistics 

(Sengupta and Bachrach, 2007). Gallop (2006) defines lithofacies probabilities from 

mixtures of Gaussian distributions. Larsen et al. (2006) predict lithology and fluid from 

prestack seismic data in a Bayesian framework as an extension of the AVO inversion of 

Buland and Omre (2003). 

A study similar to ours is that of Bosch (2004), who solves an optimization problem 

to jointly estimate elastic properties and lithology, combined with a rock-physics model 

to obtain porosity. Another similar study is that of Gunning and Glinsky (2004), who use 

Bayesian inversion in a layer-based technique to obtain distributions of reservoir 

properties. They include Gaussian prior distributions to describe all of the model 

parameters and then implement Markov-chain Monte-Carlo sampling of the posterior 

distributions. Chen et al. (2007) offer a layer-based Bayesian approach combining 

amplitude-variation-with-angle (AVA) seismic data and controlled-source 

electromagnetic data to obtain estimates of gas saturation. 

This study differs from previous work in that it relies on a prior interpretation to 

obtain a seismically identified geobody that defines a potential reservoir unit. Within that 

potential reservoir unit, a regularized grid sampling of the rock-model parameters is 

performed. The posterior distributions of best-fitting models are obtained through 

acceptance or rejection in a full-grid search. Note that while some of the works 



CHAPTER 4: PROBABILISTIC ROCK-PHYSICS INVERSION 35

mentioned above operate on an entire data volume, the parameterization here reduces the 

dimensionality of the problem and allows the posterior distribution to be computed from 

the Bayesian formula.  

The requirement for a previous seismic interpretation on which to perform the 

inversion reduces the problem, which allows the posterior distribution to be computed. 

This requirement could limit the applicability of the inversion method. However, a 

suitable interpretation can usually be obtained from conventional methods. For 

exploration seismic data, stratigraphic or structural interpretation is standard procedure. 

Similarly, AVO analysis or seismic-attribute analysis could provide horizons or surfaces 

on which to apply the inversion. In addition, more advanced geostatistical techniques 

(e.g., Bosch et al., 2005; González, 2006) could provide the needed interpretation. 

Regardless of the method of interpretation, it will always include some associated 

uncertainty. There are at least three ways in which this uncertainty could be quantified 

and included in the inversion. The first is to include a metric of the phase of the seismic 

data in an envelope around the reservoir. A benchmark could be set based on the trace at 

the well location. If the data were processed to zero phase, then the metric would be the 

deviation of zero phase along the horizon of interest. Uncertainty would be lower for a 

window that was closer to zero phase. Second, without using a well, a single seismic 

attribute could be used to map the horizon of interest. Then, the parameters of the search 

algorithm could be varied and the attribute could be used again to map the horizon. 

Superposition of the multiple interpretations would provide the estimate of uncertainty. 

Third, multiple independent attributes could be used to map the horizon. Uncertainty 

would again be quantified through superposition of the multiple interpretations. 

For all three cases, a spatial probability would be obtained that could be combined 

with the posterior distributions obtained from the inversion method presented here. The 

two geostatistical techniques mentioned (Bosch et al., 2005; González, 2006) inherently 

provide ways to quantify this uncertainty. 
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4.3  Bayesian formulation 
The Bayesian formulation states that the posterior conditional distribution is 

proportional to the product of the prior distributions and the likelihood function (e.g. 

Carlin and Louis, 2000). In the case here, the posterior distribution is the conditional 

probability of modeled reservoir parameters m = [C,φ,Sw ]  given the data  d = [AN , AF ] :
 

P(C,φ,Sw | AN , AF ) = P(C,φ,Sw )P(AN , AF | C,φ,Sw )
P(AN , AF )

                    (4.1) 

 
where 
 

P(AN , AF ) = P(C,φ,Sw )∫∫∫ P(AN , AF | C,φ,Sw )dCdφdSw                (4.2) 
 

The data are the observed seismic amplitudes from a near-angle  and a far-angle 

stacked trace . Within this formulation, the posterior conditional distribution and any 

marginalized posterior distributions are distributions of continuous variables. 

AN

AF

4.3.1 Prior distributions 

As in any Bayesian formulation of a problem, the a priori assumptions are very 

important. Although formal rules exist for selecting prior distributions (see Kass and 

Wasserman, 1996), priors can be based on preconceived knowledge, which is assumed to 

be minimal. Accordingly, the assumptions are made to be as non-committal as possible. 

Non-informative priors (Carlin and Louis, 2000) are chosen, in this case uniform 

distributions, to represent C , φ , and . Furthermore, the prior distributions are 

assumed to be independent and uncorrelated, which allows the following assumption:  

Sw

 
P(C,φ,Sw ) = P(C)P(φ)P(Sw ).                                      (4.3) 

 
In this method, band-limited seismic data are used to predict broadband reservoir 

properties. The band-limited nature of the seismic data is reconciled by using the 

statistical formulation to obtain the reservoir properties. In addition, the independent 

treatment of the reservoir properties may not be valid. However, away from the well the 
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correlation structure is unknown. In an exploration setting, this correlation will remain 

unknown. If the geologic environment is known, then a correlation structure could be 

included. If this method were applied in a production setting, then any correlation 

observed between reservoir properties in multiple wells certainly should be included. 

Development of this method focused on an exploration setting, so independent priors 

were chosen. Therefore, if any correlation structure does exist away form the well, the 

inversion of the data should identify and capture that correlation. 

Even though these distributions are selected to be as non-informative as possible, they 

are limited by physically realizable situations, not by computational demands or 

challenges of high dimensionality (Malinverno and Parker, 2006; Scales and Tenorio, 

2001). For example, because this inversion is performed on a seismically identified 

geobody, the seismic reflection occurs because of impedance contrast between shale and 

underlying sand. If C  within the reservoir becomes too large, the impedance contrast 

changes, and then the waveform of the modeled reflection will be substantially different 

than the measured waveform. This provides a straightforward physical limitation to the 

C  prior distribution. Similarly, rarely is < 20%, in reservoir rock, which is a 

physically based and observational lower bound for this reservoir. Other sources of prior 

information include the rock-physics model, the parameters in that model, the reservoir-

unit thickness, and the elastic values of the overlying and underlying shales. This 

additional prior knowledge further constrains the problem, although it is not explicitly 

included in the prior probability functions. Finally, some combinations of the reservoir 

properties may result in unrealistic seismic traces. However, the algorithm is designed to 

reject those traces, along with the unrealistic combinations of reservoir properties.  

Sw

4.3.2 Likelihood function 

Evaluating the likelihood function, P(AN , AF | C,φ,Sw ) , requires two steps: forward 

modeling and data comparison. Forward modeling consists of regularized grid sampling 

of the modeled parameters. Computational power allows for this type of simulation to be 

used within a likelihood function (Carlin and Louis, 2000). To perform this exhaustive 
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simulation, each combination of reservoir properties is input into an appropriate rock-

physics model; the model translates each combination into elastic properties within the 

reservoir unit. Using elastic-property values from the overlying and underlying shales, 

synthetic seismic data are calculated using a ray-tracing algorithm where the wavelet was 

derived from the seismic data. The shale elastic properties used in the forward modeling 

are those in the calibration well; only the properties within the reservoir unit. The fixed 

thickness of the reservoir unit is below seismic resolution. The forward-modeling 

operation to generate the complete set of earth and seismic models is performed one time. 

The second part of the likelihood function involves a full grid search, comparing all 

synthetic traces to each real seismic trace. The goal is to accept a user-defined minimum 

number of matching traces while maximizing the correlation between the matching 

synthetic traces and the real trace. Windows from all synthetic traces are cross-correlated 

with a window from each applicable real trace, where “applicable” indicates that a 

geobody exists at that trace. Cross-correlation is used in the search algorithm to obtain 

the proper polarity of the seismic traces. The window length, found experimentally, is 

approximately one wavelength, with the center of the window corresponding to the 

mapped time of the geobody for each relevant trace. Because the seismic data have a 

vertical resolution of approximately one-fourth of a wavelength, a window length of one 

wavelength was chosen to allow the full waveform around the reservoir to be included in 

the real and synthetic traces. This is important because the waveform in some modeled 

traces may be substantially longer than the waveform in the real data, particularly in the 

far-offset synthetic traces. 

After all cross correlations are computed for both the near- and far-angle traces at a 

given location, the global maximum near-angle and far-angle cross-correlation 

coefficients are found. Then the acceptance/rejection criterion is defined to find a specific 

proportion of the total forward-modeled traces that have a local maximum (both near- 

and far-angle) correlation coefficient that is a specified fraction of the global maximum 

cross-correlation coefficient. If both near- and far-angle synthetic traces have local 

maxima greater than or equal to the specified fraction (correlation threshold) of the global 
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maximum, those synthetic traces are accepted. All others are rejected. If less than the 

specified proportion is accepted, the correlation threshold is iteratively decreased until the 

proportion is accepted. Conversely, if more than the specified proportion is accepted, the 

correlation threshold is increased iteratively until the desired proportion is accepted. This 

acceptance/rejection step produces a pool of realizations representing samples from the 

best-fitting part of the complete posterior distribution. If the global maximum correlation 

is too small, then all traces fall below the threshold and none are accepted. 

Each accepted synthetic near- and far-angle trace combination corresponds to a 

particular earth model. However, there is still ambiguity in the seismic response, because 

different combinations of the rock properties may result in single values of the elastic 

properties. The likelihood function determines which seismic signatures are the most 

likely to occur, along with the corresponding rock properties. By using a full grid search, 

no uncertainty from sampling the prior remains. The remaining uncertainty in the 

likelihood function comes from the rock-physics model, the seismic modeling, the real 

seismic data, and fixed parameters such as thickness and shale elastic properties. 

The probability of the seismic data (equation 4.2) also can be estimated after the 

likelihood function is calculated. This probability can be expressed as a combination of 

observed and theoretical (  seismic amplitudes: AN
th ,AF

th )
 

P(AN , AF ) = P(AN , AF | AN
th ,AF

th )P(AN
th ,AF

th | C,φ,Sw ).                      (4.4) 
 
Calculating this probability requires an assumption that the misfit between the observed 

and theoretical seismic amplitudes is Gaussian. Both amplitude values are obtained by 

calculating the -norm amplitude over the cross-correlation window. This amplitude is 

chosen to be consistent with the Gaussian assumption. These probabilities are then 

defined as functions of , 

L2

s r , and the real data traces: 
 

P(AN , AF ) = 1
2π det(B−1)

e−[r−s ]T B−1 [r−s].                               (4.5) 
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The matrix B  is the covariance matrix of the real near- and far-data traces, r  is the two-

element vector of real near and far -norm amplitudes, and  is the two-element vector 

of -norm amplitudes of matching synthetic traces. This joint probability of seismic 

amplitudes attempts to account for imperfect data, as well as correlation between the 

near- and far-angle responses and natural variation corresponding to the prior model. 

L2 s

L2

4.3.3 Posterior distributions 

Once the posterior distribution (equation 4.1) has been calculated, it can be used to 

calculate other distributions. Marginalization of equation 4.1 is achieved by integrating 

the conditional posterior distribution over the other model variables: 
 

Ppost (mi | AN , AF ) = P(m | AN , AF )dm−i
m− i

∫                             (4.6) 

Here,  represents any of the three reservoir properties, and  is  with element m  

excluded. 
mi m−i m i

4.4  Data application 
The method was applied as a probabilistic reservoir characterization tool using a 

single well and angle-stack seismic data from the Ibhubesi field offshore western South 

Africa. Two angle stacks were used jointly as the seismic input, with angle ranges of 0°–

10° for the near stack and 11°–20° for the far stack (Figures 4.1a and b). The geobodies, 

constructed using attribute analysis to map potential gas sands, indicate traces on which 

the inversion was performed (Figure 4.1c).  

 
Figure 4.1. a) Near-angle and b) far-angle stacked volumes, showing the class III AVO reflections 

that delineate the reservoirs in red, and c) reflections mapped as geobodies in magenta and 
blue. The color scales for a) and b) indicate amplitude of the seismic data. Locations of the 
calibration and test wells are also shown. 
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Data from the calibration well are displayed in Figure 4.2. The rock-physics model 

selected to convert the reservoir properties to elastic properties was the stiff-sand model 

(Gal et al., 1998). This model was selected based on its visible fit to the data and because 

the depth and age (Jurassic) of the reservoirs suggest the rocks should be well 

consolidated. This model includes parameters for pressure, critical porosity, coordination 

number, and shear-stiffness reduction. The values used for these parameters were 30 

MPa, 0.4, 7, and 1, respectively. Similar models intended for use with soft or cemented 

sands could have been used if the well data suggested their implementation. Furthermore, 

simpler models could also have been used here, such as the Raymer et al. (1980) or 

Wyllie et al. (1956) equations, combined with a shear-wave velocity prediction.  
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Figure 4.2. (a) Clay content C , total porosity φ , water saturation S , and P-impedance  

around the reservoir interval (3195–3225 m) of the calibration well. (b) The calibration-well 
data fluid-substituted to 100% brine saturation, overlain with model lines calculated using the 
rock-physics model for clay contents of 0%, 50%, and 100%. The color scale for data points 
indicates clay content. (c) Reservoir properties within the reservoir zone. 

w IP

The prior distributions were defined as uniform distributions with rangesC  = [0, 0.2], 

φ  = [0.18, 0.32], and  = [0.2, 1.0]. For the numerical algorithm to operate, the uniform Sw
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distributions were discretized at increments of 0.01 for C  and φ , and 0.10 for . 

Reservoir thickness was determined from well data and held constant at 30 m. For every 

realization, each reservoir property was constant vertically within the reservoir unit. After 

defining the prior distributions, regularized grid sampling was performed to generate the 

complete set of earth models. 

Sw

Figure 4.3 displays crossplots of the reservoir properties and the correlation 

coefficients for each pair. The correlation coefficient is –0.659 for C −φ , –0.847 for 

φ − Sw , and 0.524 for . Although the second correlation value is quite high, the 

other two justify the independent treatment of the priors.  
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Figure 4.3. Crossplots and correlation coefficients of reservoir properties within the reservoir zone 

of the calibration well. 
 

Seismic modeling was performed using an isotropic P–P ray tracer. The wavelet used 

was extracted from the real data at the calibration well location. The entire depth range of 

the well data was used in the ray tracing, where the shale elastic properties were taken 

from the calibration-well data, and only the properties in the reservoir unit were varied. 

Angle gathers were calculated from 0° to 20°, and stacked traces were calculated over the 

same angle ranges as the angle stacks.  

Use of constant reservoir properties vertically may represent simplistic reservoir 

configurations. Two factors predicate this assumption. First, seismic resolution and the 

depth of the reservoir are sufficient to illuminate the reservoir but not to define any 

internal structure. Second, the internal configuration is unknown away from the well. To 



CHAPTER 4: PROBABILISTIC ROCK-PHYSICS INVERSION 43

invoke some constraints on this structure would introduce significant uncertainty, 

particularly in an exploration setting. Thus, to be as noncommittal as possible, the 

constant properties are used.  

The trace-based data comparison of the likelihood function calculation was then 

performed. Three parameters were determined experimentally by testing the algorithm 

using the real data trace at the calibration well: the length of the cross-correlation 

window, the proportion of matching traces to accept, and the correlation threshold. The 

values obtained for these three parameters were 120 ms (about one period), 20%, and 

70%, respectively.  

4.5  Results 
Calibration of the inversion parameters was performed first at the calibration well 

using the real seismic data. Results shown (Figure 4.4) are posterior marginal and 

bivariate joint distributions and an isosurface for the 90th percentile value from the 

posterior joint distribution determined at one point on the geobody. Each marginal 

distribution is superimposed on its prior uniform distribution. The marginal distributions 

for C  and S  are broad, whereas the w φ  marginal distribution is relatively narrow. This 

indicates that C  and S weakly affect the seismic response. Conversely, the narrow range 

of 
w

φ  means that φ  has a dominant influence on the seismic response. The bivariate 

posterior distributions reiterate what is observed in the marginal distributions; for a given 

value of φ , broad ranges of C  and  are possible. Sw
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Figure 4.4. Posterior marginal (top panels) and bivariate (middle panels) joint distributions 

calculated at the calibration well using real seismic data at the well location. Each marginal 
distribution is superimposed on its prior uniform distribution. The bottom panel is an 
isosurface for the 90th percentile value from the posterior joint distribution. 

The isosurface of the 90th percentile value (Figure 4.4) shows the values of the 

reservoir properties that, taken together, are likely to occur. The isosurface passes 

through a relatively limited number of combinations of the reservoir properties compared 

to the prior distribution. Selecting a most-likely combination of the reservoir properties 

from this isosurface would result in a predicted φ  value with relatively low uncertainty. 

Predicted values of C  and  from the joint distribution would be more uncertain. 

However, for all three parameters, the predicted values fall within the histograms of the 

reservoir properties in the reservoir (Figure 4.2). The overprediction of 

Sw

φ  is evident in all 

posterior distributions, with more uncertain predictions of C  and .  Sw
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Figure 4.5 allows comparison of real seismograms at the calibration well and the test 

well with synthetic traces for different combinations of modeled reservoir properties. The 

synthetic traces were accepted in the inversion routine when it was applied to the real 

data at the calibration. Figure 4.5 demonstrates the differences between the real and 

accepted synthetic traces from the inversion. Most noticeably, the traces with higher 

modeled φ  (28%–32%) have apparent frequency content more similar to the real data 

than do the synthetic traces with lower modeled φ  (18%–22%). The inversion rejected all 

traces with 18%–22% φ . 
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Figure 4.5. Comparison of real and synthetic traces for the calibration well and a subset of 

synthetic traces from the complete set of modeled traces. The subset of modeled traces 
includes some of those that best matched the real data. The real data from the test well 
location are also shown and match the synthetic traces well. 

 

Next, a synthetic seismogram was computed that was derived from the real well data. 

This seismogram was used as a proxy for the real data when performing the inversion. 

This was done to test how the noise in the real data affected the probabilities of the 

reservoir properties. The posterior distributions obtained in this test (Figure 4.6) are very 

similar to those obtained using real seismic data at the well location (Figure 4.4), showing 

that noise in the real data did not affect the inversion results. These data also show that 

porosity is the dominant factor in the elastic response of the reservoir unit in this case. 
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This is explained by the rock-physics model (see Figure 4.2): for the range of relatively 

high φ , the elastic properties are weakly dependent on C  and , as illustrated by their 

broad distributions. The isosurface through the 90th percentile for the synthetic data 

(Figure 4.6) differs from that of the real seismic data (Figure 4.4) for predicted values of 

, but similar ranges of 

Sw

Sw φ  and C  are predicted. Overall, the overprediction of φ  is the 

most evident result. 
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Figure 4.6. The noise test. Posterior marginal (top panels) and bivariate (middle panels) joint 

distributions for a synthetic seismogram generated at the calibration well. Each marginal 
distribution is superimposed on its prior uniform distribution. The bottom panel is an 
isosurface for the 90th percentile value from the full posterior joint distribution. 

The inversion was then applied to the real data trace at the test well; this provides a 

blind test of the method. Data for this well are displayed in Figure 4.7, along with 
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histograms of the three reservoir properties within the reservoir unit. The well-data 

impedance is plotted versus porosity for a brine-substituted scenario to demonstrate that 

the same rock-physics model describes this well data. The gas reservoir in this well is 

approximately half the thickness of the reservoir in the calibration well. In addition, the 

φ  range in this well differs from the range in the calibration well. The prior interpreted 

geobody is mapped in the near- and far-angle stacked sections corresponding to this 

reservoir unit (Figure 4.1). Real seismic data at this location are shown in Figure 4.5. 
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Figure 4.7. The blind test. (a) Clay content C , total porosity φ , water saturation , and P-

impedance  from real data at the reservoir interval of the test well. The reservoir unit in the 
test well is approximately half the thickness of that of the calibration well. (b) The test well 
data fluid-substituted to 100% brine saturation, overlain with model lines calculated using the 
rock-physics model for clay contents of 0%, 50%, and 100%. The color scale for data points 
indicates clay content. (c) Reservoir properties within the reservoir zone. 

Sw

IP

Inversion results at the test well location are shown in Figure 4.8. Most notably, φ  is 

overpredicted. As in the result at the calibration well, φ  exerts the most control, whereas 

C  and S  do not affect the elastic response as much. The posterior distributions most 

resemble those from the inversion of real data from the calibration well (Figure 4.4). As 

shown in Figure 4.8, the probability distributions of 

w

C  and  are again broad, whereas Sw
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that for φ  is localized around 0.3. The isosurfaces for the inversion of the real data at the 

calibration well (Figure 4.4) and for the test-well data (Figure 4.8) are similar. Predicted 

values of the reservoir properties and their probabilities from the joint posterior 

distribution at the test-well location are very similar to those obtained at the calibration 

well (Figure 4.4). 
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Figure 4.8. The blind test. Posterior marginal (top panels) and bivariate (middle panels) joint 

distributions for real data at the test well. Each marginal distribution is superimposed on its 
prior uniform distribution. The bottom panel is an isosurface for the 90th percentile value 
from the full posterior joint distribution. 

Figure 4.9 illustrates the results of the inversion when applied to the 3D seismic data. 

At each applicable trace location where the inversion operated, posterior distributions 

were calculated as in Figures 4.4, 4.6, 4.8. The most likely values of the reservoir 
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properties were selected from the joint posterior distributions. Figure 4.9 displays the 

most likely values of C , φ , and , mapped onto the geobodies. By-products of the 

reservoir-property inversion are most likely values of elastic properties. The values of the 

reservoir properties displayed in Figure 4.9 are combined into the rock-physics model, 

and the elastic properties are output. Figure 4.9 also shows maps of P-impedance, S-

impedance, and Poisson's ratio. 

Sw

 
Figure 4.9. Images in three dimensions of the geobodies shown in Figure 4.1 with (a) clay content, 

(b) porosity, and (c) water saturation mapped onto them. The values displayed are the most 
likely values present in the posterior distribution at each trace location. By-products of the 
inversion are values of the elastic properties: (d) P-impedance, (e) S-impedance, and (f) 
Poisson's ratio correspond to the most likely reservoir properties (a-c). 

4.6  Discussion 
The results of the inversion indicated that φ  was primarily responsible for the seismic 

response. For this particular well-consolidated reservoir rock, C  and  weakly affected 

the response, so their posterior distributions were relatively broad. In addition, the claim 

was made that a combination of porosity and thickness dominates the seismic response. A 

sensitivity analysis of thickness and porosity supports this claim. This analysis was 

performed by varying the thickness from half (15 m) to twice (60 m) the thickness in the 

calibration well for different values of 

Sw

φ , while keeping C  and  constant at 0.05 and 

0.3, respectively. The values of 

Sw

φ  ranged from 0.18 to 0.39 at a 0.01 increment. Using 
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the real data at the calibration well, the inversion was performed for each individual value 

of φ . 

Figure 4.10 displays the combination of all the posterior thickness-porosity bivariate 

distributions obtained from each inversion. This distribution indicates that for lower 

modeled φ  values, a larger thickness is needed to match the seismic response. 

Conversely, higher φ  values correspond to smaller thicknesses. These relationships 

support the claim that the controlling factor of the seismic response for these data is a 

highly negative correlation between thickness and φ . Such a combination is, in essence, 

the goal of reservoir characterization during exploration because it provides the needed 

volumetrics. 
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Figure 4.10. Results of sensitivity analyses carried out by inverting real data from the calibration 

well for variable thickness and porosity, while keeping clay content and water saturation 
constant. The z-axis and color represent probability; warmer colors indicate higher 
probability. 
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An additional cause of the overprediction of φ  in both wells may be the values of the 

elastic properties of the overlying and underlying shale. The values used in the modeling 

came directly from the calibration well; only the elastic properties inside the reservoir 

were varied. If the elastic properties of the shale in the calibration well were significantly 

different from those in the test well, then this might help to explain the overprediction of 

φ . However, Figures 4.2, 4.7 show that the impedance values in the two wells are 

similar, so the effect of the shale properties is not the likely cause. 

The display of real seismic traces and a selection of synthetic seismic traces (Figure 

4.5) indicates a likely reason for this overprediction that acts in conjunction with the 

porosity-thickness effect. Synthetic traces generated directly from the well data (Figure 

4.5) are slightly higher in frequency content than the real traces. This might be explained 

by the frequency of the wavelet, which was extracted from the seismic data. The other 

displayed synthetic traces correspond to φ  greater than that in the well; their apparent 

frequency content is similar to the real data. Higher modeled φ  values in the reservoir 

translate to slower velocity, which results in an apparent frequency drop. As a result, the 

traces that correspond to higher modeled φ  more closely match the real data, and this is 

the primary cause for the overprediction of φ  from the inversion. 

Although the forward-modeling parameters were chosen carefully to match the real 

data as well as possible, the modeling was not perfect. This imperfection caused the 

overprediction of φ  in conjunction with the porosity-thickness relationship. To avoid this 

situation, the frequency of the wavelet could be reduced. Alternatively, a calibration of 

the wavelet at the well using the observed φ  might help to improve the method. 

The posterior distributions that contain information about C  and  in general show 

broad ranges of these parameters. This is expected, given their weak influence on the 

seismic response. One constraint the data imposed on the inversion result was its limited 

angular range, so the full capability of the inversion using far-offset information 

unfortunately was not demonstrated. However, if data from wider angles had been 

included, the expected results would likely have narrowed the posterior distributions, 

particularly those that included the 

Sw

C  parameter. 
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A related aspect deals with the stiffness of the reservoir rock. The elastic properties of 

the reservoir rock, described by the stiff-sand model, are not changed greatly by 

variations in fluid. Therefore, data from wider angles would provide improved lithology 

prediction, but the saturation prediction would likely remain broad for this data set. 

The ranges and discretization increments of the prior distributions define the size of 

the model space and thus control the overall speed of both the forward and inverse 

problems. However, how can the ranges and increments be determined? First, the 

parameters that most affect the seismic response must be determined. These parameters 

should be discretized finely over a suitable range for the data at hand. The other 

parameters that do not significantly affect the seismic data can be discretized on a much 

coarser grid. For example, in the data set used in this study, the φ  increment needed to be 

fine. However, the  increment likely did not need to be 0.10; rather, two values, a low 

and high fraction, may have been sufficient. The increment for 

Sw

C  was also possibly 

unnecessarily fine, given its weak effect on the seismic response. Lastly, if the real 

seismic data are significantly noisy, then the prior parameters need not be discretized as 

finely, because the variations in the synthetic data will be too small relative to the noise-

induced variations in the real data. 

Although these guidelines may provide constraints for the ranges and increments, no 

black-box method will provide satisfactory results for all data sets. The user will have to 

determine these parameters through numerical experiments to determine the sensitivity of 

each of the parameters and the noise level of the real data. 

4.7  Conclusions 
This study demonstrated a rock-physics motivated Bayesian formulation to invert 

seismic amplitude and well data for reservoir properties. Several key assumptions were 

made, because development of the methodology was focused on use in an exploration 

setting. Those assumptions included a prior interpretation of the seismic data and 

constant reservoir thickness. Independence of the prior reservoir-property distributions 

was also assumed, although this is not essential for all implementations. The prior 



CHAPTER 4: PROBABILISTIC ROCK-PHYSICS INVERSION 53

distributions were sampled regularly to form a complete set of earth models. Then, a full 

grid search of the corresponding complete set of seismic models was performed. This 

parameterization, including the prior seismic interpretation, allowed optimal realizations 

from the posterior distribution to be obtained. 

Inversion results included trace-by-trace marginal and joint posterior distributions of 

the simulated reservoir properties for the reservoir unit under examination. In general, the 

stiff character of the rock prevented a low-uncertainty prediction of . Furthermore, the 

posterior distributions containing the 

Sw

C  parameter were broad. This was likely because 

the narrow angle of incidence (maximum 20°) of the seismic data did not provide the 

angle-dependent information necessary to provide robust predictions of C  from the 

posterior distribution. Porosity was overpredicted in most cases, but those results, 

coupled with additional sensitivity analyses of variable thickness, showed that a porosity-

thickness relationship could be predicted reasonably well for this data set. Therefore, the 

inversion was successful in characterizing these reservoir properties. The strong negative 

porosity-thickness correlation revealed here arises because the reservoir becomes stiffer 

with reduced porosity and has a smaller negative contrast with the surrounding shale. 

This result is site specific. It may change as the impedance-porosity relationship varies. 

Overall, the inversion method provided the potential to map probabilistic geologic 

heterogeneity within a potential reservoir unit from seismic data. Although the potential 

of the technique was demonstrated when the variable thickness parameter was not 

included, this geometric parameter should be included as a full prior parameter. The 

remaining chapters include a full prior parameterization of thickness. There are other 

limitations, including the use of homogeneous internal reservoir architecture. Assessment 

of these effects can also be included within the framework presented. Further, the 

uncertainty in the prior seismic interpretation can also be included, possibly through one 

or more of the suggested methods discussed in the Introduction. 

The utility of this method is that probabilistic reservoir properties and associated 

uncertainties can be obtained directly from seismic data, even if well data are not 

available. The method is applicable for any geologic setting if an appropriate rock-
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physics model is used. Selection of a geologically relevant rock-physics transform is the 

key to solving the problem. The uncertainty of a prediction will naturally be higher in the 

absence of well data. The probabilistic reservoir-property maps produced using the 

method described here can provide useful information for geologists and engineers to use 

in producing geologic maps and developing fluid-flow models. 
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Chapter 5 

Uncertainty analysis of seismic-
inversion scenarios  
 
 

“In science the credit goes to the man who convinces the 

world, not the man to whom the idea first occurs.” 

--Sir Francis Darwin  

 

5.1  Abstract 
We examine the change in accuracy and uncertainty of model-based seismic 

inversion results when inverting for different combinations of thickness, clay content, 

porosity, and saturation. The Bayesian-based algorithm operates on a seismically 

identified geobody and utilizes a full-grid search to obtain the posterior conditional 

probability distribution function. The reservoir rocks under examinations are stiff and 

consolidated, which makes fluid detection difficult. Furthermore, the dataset excludes 

far-angle amplitude data, which inhibits accurate lithology predictions.  First we invert 

the seismic data for thickness and porosity, the two properties that most influence the 

seismic response. Next, clay content is combined with the two dominant properties. 

Third, we invert for thickness, porosity, and saturation. Last, we invert for all four 

properties simultaneously. Results for the thickness-porosity inversion substantiate a 
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trade off between thickness and porosity that controls the seismic response. This result 

occurs at three gas wells, but an opposite trend appears at a wet well. Including clay 

content in the inversion substantially increases the uncertainty in all predictions. In 

conclusion, the inversion is able to assign probabilities to potential gas sands and to 

higher-porosity brine sands, despite the stiffness of the reservoir rocks.  Inversion 

scenarios that included clay content showed that mineralogy is the most uncertain 

parameter, primarily because of the narrow angle ranges present in the seismic data.  

5.2 Introduction 
Seismic data often provide the only information to characterize large areas of the 

subsurface for hydrocarbon exploration. Well data may be present near the area where 

seismic data are available, but they augment the seismic data at limited locations. 

Therefore, characterizing potential reservoir units from seismic data involves reducing an 

under-determined problem by including assumptions or other known or estimated 

geologic information. Even with physically based assumptions, the seismic data may not 

easily lend itself to the detection of reservoir properties. Nonetheless, a priority in an 

exploration setting is to translate this data into meaningful maps or volumes describing 

the in situ geologic conditions. This must be done despite the inherent deficiencies of the 

seismic data.  

One of these deficiencies is the non-uniqueness of the seismograms, which prevents 

one-to-one mappings of the seismic amplitudes to reservoir properties. This non-

uniqueness requires the use of statistical techniques to reduce the set of solutions to a 

manageable and describable form. Many authors have chosen the Bayesian method 

because of its ability to integrate different types of data. This method can be used to 

invert seismic data directly for rock properties as described in Buland and Omre (2003), 

Gunning and Glinsky (2007), Acevedo and Pennington (2003), Coleu et al. (2005). In all 

these instances, a rock-physics model converts rock properties to elastic properties or 

vice versa (see Avseth et al., 2005 for a current synopsis). However, rock-physics models 

are valid at the well-log scale, not the seismic scale. Model-based inversion approaches 
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provide the opportunity to model reservoir properties directly at the scale appropriate for 

rock-physics models. Then the rock-physics model converts these properties to the elastic 

domain, from which a synthetic seismic data set is generated. These seismic data, along 

with prior information, can then be used to generate posterior distributions of modeled 

reservoir properties. Uncertainty in these posterior distributions arises from various 

sources, including noise in the seismic data and errors in rock-physics and seismic 

modeling. It also results from uncertainty in the prior distributions and the combinations 

of the parameters in the prior model. This source of uncertainty is the focus of this paper. 

Specifically, we examine how different combinations of the reservoir properties in the 

prior model affect the posterior results. 

To examine these effects, we use a Bayesian model-based inversion algorithm 

capable of inverting seismic data directly for reservoir properties (chapter 4). The version 

presented in that paper inverted seismic data for clay content (C ) (e.g. lithology), 

porosity (φ ), and saturation ( ). We extend it here to include thickness (wS H ). This 

inversion method operates on a seismically identified geobody, or potential reservoir 

interval, and it requires an appropriate rock-physics model calibrated to input well data. 

The algorithm implements a full grid search to accept a specified number of synthetic 

traces that correlate with a real trace within a specified threshold. Although it is not 

required by the method, we define the prior distributions as uniform. 

Examining uncertainty is important for several reasons. It reveals which properties 

can be predicted from seismic data along with the associated uncertainty. Second, the 

reservoir properties combine in different ways to produce a variety of seismic responses. 

This testing shows which properties combine and how they combine to produce a given 

seismic response. In addition, it helps to identify which, if any, parameters can be omitted 

to reduce uncertainty and computational demands. Lastly, this uncertainty analysis 

indicates to what extent the seismic data can be used to provide reliable solutions to the 

inherently under-determined problem. 

We know that in many instances, a trade-off exists between H  and φ   on the seismic 

signature of a reservoir.  When the reservoir thickness lies below seismic resolution, the 
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corresponding seismic reflection may arise from the product of H  and φ . In this 

situation, high φ  and small H  may be seismically equivalent to a lower φ  with a larger 

H . Furthermore, these two properties, or the combination of them, may dominate the 

seismic response relative to the contributions of other reservoir properties such as 

lithology and saturation.  

We use P-P reflection seismic data with limited offset information. Even in the case 

of inverting for only two parameters, H  and φ , we are dealing with a non-unique 

problem in which the available seismic data does not measure enough parameters. In 

addition, the thicknesses of the potential reservoir units fall below the resolution limit, 

and the stiffness of the consolidated reservoir rocks inhibits fluid discrimination. We 

begin the uncertainty analysis by first inverting the seismic data for only H  and φ . Then 

we include C  simultaneously with H  and φ . Third,  is included with wS H  and φ .  

Last, we invert the seismic data for all four parameters simultaneously. 

Results indicate that H  and φ  dominate the seismic response, meaning that 

predicting them or the combination of them is the most certain outcome from the 

inversion. Additional results also indicate that in some cases, H , φ , and  combine in 

ways to allow for a prediction of . However, the limited offset information in the 

seismic data prevents an accurate prediction of . These results as a whole demonstrate 

how including additional parameters increases uncertainty in the joint prediction of the 

reservoir properties. They also imply that inverting for lithology may not be necessary for 

the dataset used here. Excluding this parameter may reduce the computational 

requirements by an order of magnitude.  

wS

wS

C

5.3 Method 
The Bayesian inversion equation provides a platform on which to link any known 

information (the prior model) with a calculated probability of the data occurring given the 

model parameters (the likelihood function), yielding the probability of the model 

parameters given the data (the posterior distribution). More specifically, the posterior 

distribution is the conditional probability distribution function (PDF) of the modeled 
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reservoir parameters  given the data  (Equation 5.1).  Model reservoir parameters are 

any combination of 

m d

H , , C φ , and ; data include near-angle ( ) and far-angle ( ) 

stacked amplitude seismic data.  
wS AN AF

 

P(m | d) = P(m)P(d | m)
P(d)

                                                 (5.1) 

 
where 
 

P(d) = P(m∫ )P(d | m)dm .                                            (5.2) 
 

We examine how the posterior distributions of the modeled reservoir properties 

change when   m = [H ,φ] ;   m = [H ,C,φ] ; m = [H ,φ,Sw] ; and m = [H ,C,φ,Sw] . Thickness 

and porosity are used for the two-parameter inversion and for all subsequent scenarios, 

because previous results indicate that these two properties have the most significant effect 

on the elastic and seismic responses (Spikes et al., 2007). In each case, an undetermined 

problem exists, and we examine how the uncertainty in the posterior PDF changes with 

the addition of more reservoir properties.  

For each inversion scenario, three user-specified parameters must be defined. First, 

the number of synthetic traces to accept must be specified. Accompanying that is an 

initial correlation threshold, below which poor matches exist between real and synthetic 

data. Third of these is the length of a window in the real and synthetic seismic data over 

which the cross-correlation operation is performed. We empirically determine these 

parameters at the calibration-well location. 

Prior information consists of uniform distributions of the model reservoir parameters 

with specific numerical ranges and increments. The reservoir interval is defined in the 

input well and in the form of a geobody in seismic data. An appropriate rock-physics 

model is calibrated to the input well data. The forward problem involves exhaustive 

modeling of all combinations of reservoir properties within the reservoir interval, which 

results in a complete set of three-layer earth models. Shale properties above and below 
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the reservoir interval are copied from the input well data. The chosen rock-physics model 

converts each earth model to an elastic-property model. Synthetic seismic data are 

calculated from each elastic-property model.  

The inverse problem consists of cross-correlating windows of all modeled traces with 

a window from a real trace. Then the user-specified percentage of the synthetic traces, 

within the correlation threshold, is accepted, and all others are rejected. The modeled 

reservoir parameters corresponding to the accepted traces form the likelihood function. 

The number of accepted synthetic traces in a correlation threshold defines the width and 

shape of the likelihood function in the absence of a formal objective function. When the 

likelihood function is multiplied by the prior distribution and normalized by the 

probability of the data, then the full conditional posterior distribution is obtained 

(Equation 5.1). We estimate the probability of the data using a normal distribution 

(Equation 5.3). The matrix B  is the covariance matrix of the real near- and far-data 

traces,  is the two-element vector of real near and far trace energies, and  is the two-

element vector of energies of matching synthetic traces. 

r s

 

P(d) = 1
2π det(B−1)

e−[r−s]T B−1 [r−s]                                       (5.3) 

 
This model-based inversion algorithm operates on a trace-by-trace basis using a 

geobody defined by an interpretation of seismic data. That interpretation guides the 

location of the cross-correlation window of a real trace. This can be considered a 

drawback, but it speeds the inversion algorithm by removing the window-based searching 

of an individual real trace for a reflection. Although the uncertainties of these surfaces are 

not included in the probabilistic calculations, an estimate of the uncertainty of the data 

itself is included in the Bayesian formulation (Equation 5.3). An additional assumption is 

that the model reservoir parameters in each earth model are homogeneous. Although this 

does not represent all reservoirs, it is necessary to limit the number of forward models.  

One purpose of using a Bayesian formulation is to include any known information in 

the calculation of the posterior PDF. By including this information, uncertainty in the 
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posterior PDF should decrease. In the case here, the prior information is anything known 

about the reservoir properties and any relationships among them. At a well, the values for 

these four properties are known with minimal uncertainty. Those values can be used to 

guide the definition of the prior distributions, as well as uncertainty about those values.  

However, how does one determine this uncertainty away from a well? In each scenario, 

uniform distributions are used in the prior model. This assigns equal probabilities to all 

values in the defined range of the parameter in question. This may be suitable for H  

when the reservoir interval in question is below seismic resolution, so many values of H  

have a chance of occurring. In terms of φ , this means that φ =0.10 will have the same 

chance as φ =0.25 or φ =0.33. Although equal probabilities are assigned to disparate 

reservoir-property values, the use of uniform prior PDFs allows us to be as noncommittal 

as possible. This is advantageous, because potentially incorrect correlation structures are 

not imposed away from well control. The disadvantage is that the known information at 

the calibration-well location is not included. 

5.4 Data 
Seismic and well data used are from offshore Africa. Seismic data include near- and 

far-angle stacked data with angle ranges of 0°–10° and 11°–20°, respectively (Figure 

5.1). Attribute analysis provided the interpretation of the geobodies that guide the 

window-based selection of the real traces. Data from a gas-producing well are used to 

calibrate the rock-physics model and the inversion parameters used to calculate the 

likelihood function (e.g., the percentage of traces to accept and the correlation threshold). 

Two other gas wells and a wet well provide test cases for each inversion scenario. Red 

markers indicate the well locations (Figure 5.1, bottom). 
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Figure 5.1. Seismic amplitude maps for near-angle (top) and far-angle (middle) data. The near-

angle data represents incidence angles of 0 to 10 degrees and the bottom from 11 to 20 
degrees. Red corresponds to negative amplitude and blue to positive. A class III amplitude 
variation with offset (AVO) effect enhances the far-angle negative amplitude reflections 
relative to the near-angle amplitude. An interpretation of the seismic data provides the 
geobodies necessary for the inversion (bottom). A well intersects each geobody, as indicated 
by the red markers. The AY1 well, a gas producer, is the calibration well. The AK2, AV1, and 
AW1 wells serve as test wells, of which the first two are gas producers and AW1 is wet. 

 

Data from the calibration well (the AY1 well) are displayed in Figure 5.2. The rock- 

physics model selected to convert the reservoir properties to elastic properties was the 

stiff-sand model (Gal et al., 1998). This model was selected based on its visible fit to the 

data and because the depth and Jurassic age of the reservoirs imply the rocks are well 

consolidated. This model includes parameters for pressure, critical porosity, coordination 

number, and shear-stiffness reduction. The values used for these parameters were 30 

MPa, 0.4, 7, and 1, respectively.  
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Figure 5.2. Clay content , total porosity, C φ , water saturation, w , and P-impedance S PI  from the 

reservoir interval (3195–2335 m) of the calibration well (four-left hand panels). The right 
panel shows the calibration-well data fluid-substituted to 100% brine saturation, overlain with 
model lines calculated using the stiff sand rock-physics model for clay contents 0%, 50%, and 
100%. The color scale for data points indicates well-log values of clay content.  

5.5 Results 
Results for each inversion scenario are the conditional posterior distribution and any 

marginalized versions of it for the potential reservoir unit. For the two-parameter 

inversion, a bivariate distribution exists between H  and φ  along with their individual 

marginal distributions. In the inversion scenarios with three parameters, one trivariate, 

three bivariates, and three marginal PDFs are output. The four-parameter inversion 

produces a 4-D posterior conditional, three trivariate, six bivariate, and four marginal 

PDFs. For each inversion scenario, the respective set of PDFs exists at each real seismic 

trace where a geobody exists.  

We display the inversion results at all four well locations. More specifically, at the 

reservoir interval, most likely values of the individual reservoir properties and most likely 

seismic traces are superimposed on the measured well and seismic data. The PDFs from 

which the most likely values are drawn are the highest-dimensional posterior PDF 

available for that particular inversion operation. Where possible, those PDFs and the 

lower-dimensional ones are displayed. In addition, maps and histograms of most likely 
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values of the reservoir properties are constructed and presented to illustrate how the 

inversion results change away from the well locations. 

5.5.1 Thickness-porosity joint inversion 

Input parameters for the Bayesian equation in this sense are m = [H ,φ]  given the data 

 and constant values of C  and . The model parameters can be viewed also 

as . These values of C  and  are used because they 

approximate the values observed in the calibration well. The prior range of 

d = [AN , AF ] wS

  m = [H ,φ | C = 0.10,Sw = 0.3] wS

H  is 15 to 60 

m with a 5-m increment. Porosity ranges from 0.15 to 0.35 with an increment of 0.01. 

Inversion parameters include an initial correlation of 90% with an acceptance of 6.5% of 

the total number of synthetic traces. Duration of the cross-correlation window is 160 ms, 

which is approximately two seismic periods. 

The first set of results corresponds to the calibration well (Figure 5.3). In the leftmost 

panel are the measured (gray) and predicted (black) porosity logs. Next to it are the real 

seismic traces and those that correspond to the most likely combination of H and φ . On 

the right are the posterior bivariate and posterior marginal PDFs. The predicted log 

contains the most likely combination of H  (30 m) and φ  (0.22) values taken from the 

bivariate PDF. Measured and predicted thicknesses match, and the mean φ  in the well is 

0.24, with a predicted value of 0.22. The bivariate PDF predicted the expected 

relationship between H  and φ , with small H  and large φ  trending to large H  and 

small φ  along with the associated uncertainty. Each marginal PDF displays an integrated 

version of he bivariate PDF along constant values of the given parameter.  
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Figure 5.3. Real and predicted well data, real and predicted seismic data, and the posterior 

bivariate and marginal PDFs for the calibration well. Measured curves are gray, and predicted 
ones are black. The measured and predicted values of thickness and porosity match quite well, 
as do the real and best-match synthetic seismic traces. Log curves are plotted versus two-way 
traveltime to coincide with the seismic traces. On the right is the posterior bivariate PDF 
between thickness and porosity and the marginal PDFs for each property. The bivariate PDF 
demonstrates a trend between thickness and porosity, with high porosity and low thickness 
trending to low porosity and larger thickness. 

 

The next results are the measured and predicted porosity curves and seismic traces for 

the three test wells and the corresponding PDFs, again taking fixed  = 0.1 and  = 0.3 

(Figure 5.4). The color of the curves is the equivalent to that in Figure 5.3, in which the 

predicted curves are superimposed on the measured ones. The most likely values within 

the reservoir intervals are drawn from the respective posterior bivariate distributions. In 

each of the three wells, the inversion predicts 

C wS

φ  quite accurately. However, it 

substantially over predicts H  in the AK2 well. The real thickness of the reservoir is 18 

m, but the predicted value is 40 m. The relationship between H  and φ  in this well shows 

the expected trend but larger-than-expected thicknesses. The corresponding best-match 

synthetic seismograms noticeably stray from the measured response at this well, and 

follow the predicted thickness curve. In the AV1 well, the inversion predicts H  within 8 

m, with measured and predicted values of 18 and 25 m, respectively. Mean φ  in the 

reservoir is 0.21 and the predicted value is 0.24. Lastly, predicted H  in the AW1 well is 

quite accurate, with a prediction (20 m) quite close to the measured thickness (21.5 m). 

Porosity, however, is under predicted at 0.16 with a mean measured value of 0.21. 
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Although the fluid in the well is brine, the inversion parameters do not include it (  = 

0.3). Nonetheless, accurate predictions result in the wet well. This suggests that either 

fluid saturation does not significantly affect the seismic response or fluid predictions 

depend on joint inversions with the other properties. 

wS
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Figure 5.4.  Real and predicted well data and seismic for the AK2, AV1, and AW1 wells (top, left 

to right). Thickness is overpredicted at the AK2 well location, but porosity is accurately 
estimated. The inversion predicts both properties very accurately in the AV1 well. For the 
AW1 well, thickness is estimated very well with a slight underprediction of porosity. On the 
bottom row are posterior PDFs for the three wells. The AK2 and AW1 wells (left and right, 
respectively) display bimodal distributions. The AV1 well (center) shows a very localized 
population of thickness and porosity values.  

 

The posterior joint PDFs at the three well locations show noticeably different results. 

The AK2 location (left) shows a bimodal distribution  of φ  along with a slightly skewed 

H  distribution. The AV1 posterior bivariate (center) displays a very limited relationship 

between thickness and porosity. Conversely, the AW1 posterior bivariate (right) displays 

a bimodal distribution as a result of the H  contribution.  
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The inversion produced posterior PDFs as seen in Figure 5.4 at every trace included 

in the geobody (see Figure 5.1). Accordingly, the most likely values can be drawn from 

any PDF at any trace location to produce maps for a given reservoir property. Figure 5.5 

contains maps for (top row to bottom row) H , φ , and their product for the four 

geobodies. At each location, the most likely combination of H  and φ  were drawn from 

the local posterior bivariate PDF. Therefore, H  and φ  values are not independent as they 

were in the prior model. The product of H  and φ  varies little from geobody to geobody.  

 
Figure 5.5. Maps of the most likely values of thickness (top), porosity (middle), and the product of 

the two (bottom), plotted onto the geobodies shown in Figure 5.1.  
 

Accompanying the maps are the histograms for each geobody for each property 

(Figure 5.6). In all four geobodies, the H  values between 15 and 35 m dominate the 

maps, although values greater that 50 m appear. In terms of φ , 0.15 is the dominant value 

in each geobody, with varying counts of greater values. Finally, the histograms of the 

product of H  and φ  indicate that the dominant value of 4.4 porosity-m is clearly the 
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most common value. This suggests that the inversion estimates a nearly constant 

volumetric quantity for each geobody, the same value predicted in the wells. 
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Figure 5.6. Histograms of each individual property for each geobody. The thickness values 

predominantly range from 15 to 30 m. Porosity is primarily skewed to the lower end. A value 
of 4.5 porosity-m is the most common in the thickness-porosity histograms. 

5.5.2 Thickness-clay content-porosity inversion 

The next set of results comes from the simultaneous inversion of H , , and C φ  for a 

constant .  For this scenario, the modeled parameters are  with 

data d . The 
wS m = [H ,C,φ | Sw = 0.3]

= [AN , AF ] H  prior distribution is assigned a range of 15 to 60 m with a 50m 

increment. Clay content ranges from 0 to 0.2, and φ  ranges from 0.15 to 0.35, both in 

0.01 increments. The percentage of traces to accept and the correlation threshold were 

reestablished for this scenario. The inversion parameters used were to accept 15% of the 

total traces with an initial 80% threshold.  

Figure 5.7 displays the inversion results at the calibration well. Log curves include 

the  and C φ  logs, along with the seismic traces at the well. Predicted values of H , , 

and 

C

φ   (black curves) correspond to the selected most likely combination of the three 

properties from the trivariate PDF (right). An iso-probability surface traces the 

combinations of H , , and C φ  mapped at the 90th  percentile of the posterior trivariate 

PDF. Multiple combinations of these three properties lie on this surface. A single 

combination is chosen randomly from the set. In this instance, the selected combination 
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consisted of values of H  =15 m, C  = 0.18, and φ  = 0.15. If this selection process were 

repeated, a different combination would likely result each time. Although this 

combination was selected randomly, the iso-probability surface indicates that the 

inversion included the measured values in the results. Because of the many combinations 

of the reservoir properties occurring on the surface, the uncertainty of any one prediction 

increases.  

The posterior bivariate and marginal PDFs are displayed in Figure 5.7 (bottom).  On 

the left are H -  PDFs; the middle contains the C H -φ  PDFs; and the C -φ  PDFs are on 

right. The bivariate PDFs that include a C  term appear quite broad, meaning that for any 

value of H  or φ , all possible values of  have a non-zero probability. The H -C φ  

bivariate shows a trend similar to that seen in the inversion for just H  and φ , but with 

more uncertainty, because the C  component adds uncertainty. In addition, including the 

C parameter does not appear to improve the fit to the data. 
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Figure 5.7. Measured and predicted log curves and posterior PDFs for thickness, clay content, and 

porosity at the AY1 well location. Even though the most likely values in the reservoir interval 
are inaccurate, the posterior PDFs show the relationship between thickness and porosity; 
however, the clay-content component does not provide any refinement of this relationship. It 
increases the uncertainty of the trend. 

 

Next we show the measured and predicted values (top) at the three test-well locations 

and their respective trivariate PDFs (Figure 5.8). As in the predicted logs in Figure 5.7, 

the most likely H - C -φ  combinations come from their individual trivariate PDFs. At the 

AK2 well, the inversion-based thickness was 35 m, approximately double the measured 

value of 18 m. In terms of rock properties, the inversion predicted C  relatively well at 

0%, with an underprediction of φ  = 0.15. Similar results are visible for the other two test 

wells. Iso-probability surfaces through 90th percentile of the trivariate PDFs for each case 

are noticeably different from one another. For the AK2 well, a trend is visible that shows 

a relationship for the three parameters similar to the one observed in Figure 5.7. For the 

AV1 well, a trend is also visible but for different ranges of H  and φ . Lastly, the surface 
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for the AW1 well shows a broad range of H  for low , with a narrow range of C H  for 

high C .  
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Figure 5.8. Log curves and posterior trivariate PDFs for the three test wells. In the AK2 well, the 

combination of most likely values lies close to the measured values. For the other two wells, 
the predictions are not as accurate.  

 

Bivariate and marginal PDFs for three test wells are displayed in Figure 5.9. The top 

row shows the PDFs for H  and C  for each of the wells. The bivariates for all three 

wells indicate a relatively narrow range of H  occurring for all values of . In the 

middle row are the 

C

H  and φ  PDFs. The expected trend is visible for the AK2 and AV1 

wells, although it is less distinct in the AV1 well. For the AV1 well (middle), the H  

marginal PDF is skewed to low values of H , indicating the prior range could be 

extended to smaller values. As in the previous inversion scenario, the H -φ  trend is 

opposite in the AW1 well relative to the expected relationships. Last, on the bottom row 

are the  and C φ  PDFs. For the AK2 well, a distinct peak is present at low C  and low φ , 

but many other values of the two properties could also occur. High φ  values dominate 

the AV1 bivariate for all values of C . In the AW1 well, a nearly linear trend between C  

and φ  is present. The trend shows that as porosity decreases, C  gradually increases.  The 

net result is a lowering of the impedance. 
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Figure 5.9. Posterior bivariate and marginal PDFs for the test wells. On the top row are the 

thickness and clay content PDFs; in the middle row are the thickness and porosity PDFs; clay 
content and porosity PDFs are in the bottom row. The expected thickness-porosity trend 
appears in the AK2 well, but it is not prevalent in the other two. The broad nature of the clay 
parameter indicates its weak influence on the seismic response.  

 

The results at the four well locations demonstrated that the posterior PDFs were more 

uncertain when  was included with C H  and φ . To see how different the results can be 

throughout the data volume, maps of most likely values were generated. Figure 5.10 

contains those maps for H , , C φ , and H φ . The maps of H  and φ  differ noticeably 

from the maps generated in the two-parameter inversion. However, the H φ  product map 

does not change much. This indicates that although including  increases uncertainty, 

the relationship between 

C

H  and φ  remains nearly constant.  
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Figure 5.10. Maps of most likely reservoir properties. Combinations of the reservoir properties are 

drawn from the posterior trivariate PDFs at each trace location. The maps of thickness are 
noticeably different from those in Figure 5.5, but the porosity and thickness-porosity product 
maps are only slightly different.  

The histograms of the reservoir properties for each geobody indicate more clearly the 

differences in results between the two- and three-parameter inversions (Figure 5.11). In 

all four geobodies, a thickness of 30 m is by far the most common. In Figure 5.6, this was 

the case for the AY1 and AK2 geobodies, but not for AV1 and AW1. In each geobody, 

the predominant C  value is 0, whereas the most frequent φ  value is 0.15. Thus, the 

prediction of φ  and H  times φ  did not change significantly. This nearly constant value 

of the product of H  and φ  controls the seismic response because the reservoir thickness 

is below seismic resolution. However, this result will not occur in all instances. 
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Figure 5.11. Histograms of the reservoir properties from the maps in Figure 5.10. These 

histograms illustrate the difference between the two- and three-parameter inversion scenarios. 

5.5.3 Thickness-porosity-saturation inversion 

This inversion scenario involves the simultaneous predictions of H , φ , and  with 

a constant , written formally as , again with data d . 

For these inversion results, 

wS

C m = [H ,φ,Sw | C = 0.1] = [AN , AF ]

H  was parameterized as 15 to 60 m with 5-m increment, φ  

from 0.15 to 0.35 with 0.01 increment, and  from 0.2 to 1.0 with 0.4 increment. The 

relatively large increment of 0.4 for  tests the inversion’s ability to distinguish 

significantly different fluid conditions. The correlation threshold was set initially at 90% 

with an acceptance of 10% of the synthetic traces.  

wS

wS

Figure 5.12 shows the predicted well-log results and posterior PDFs from the 

inversion at the calibration well. The mostly-likely H  and φ  values lie very close to the 

measured values, but predicted  equals 1. Despite the inaccurate saturation prediction, 

the measured and predicted seismic traces have a high correlation. The iso-probability 

surface of the trivariate PDF indicates that just a few values of 

wS

H  and φ  are likely to 

occur, but any value of  is possible. Thus, drawing the most likely combination of 

these three properties includes accurate values of 
wS

H  and φ , with significant uncertainty 

for . wS
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The bivariate and marginal PDFs display more clearly the relationships in the 

trivariate PDF. The H  and φ  parameters have noticeable most likely values in nearly 

normally distributed forms. All values of , however, occur with nearly equal 

probability in the 
wS

H -  and wS φ -  bivariate PDFs, as well as in the  marginal PDF. 

Examining in more detail the 
wS wS

H -φ  bivariate, the expected trend is present. In addition, a 

second domain of non-zero probability exists at φ >0.30 for H =20 m. This domain 

corresponds to the accepted synthetic traces with a high enough φ  that when the pore 

fluid is brine, the corresponding seismic response is equivalent to that with lower φ  in a 

gas-filled situation. Therefore, the inversion was able to discriminate between these two 

scenarios.  
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Figure 5.12. Predicted and measured well and seismic data and the posterior PDFs from the joint 

inversion of thickness, porosity, and saturation at the AY1 well. Predicted values of thickness 
and porosity are relatively accurate, but the saturation prediction is uncertain. However, the 
inversion separated high-porosity and high-saturation from slightly lower values of the two 
parameters. 
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Next we show the measured and predicted values at the three test-well locations and 

the trivariate PDFs from which the most likely combinations of H -φ -  were drawn 

(Figure 5.13). At the AK2 well location, 
wS

H  is significantly over-predicted, but both φ  

and  are quite accurate. The mismatch in the seismic is an indication of the poor match 

of thickness. The inversion predicts 
wS

H  and φ  very accurately in the AV1 well, but like 

in the calibration well, it does not provide an accurate prediction of . Regarding the 

AW1 well, both 
wS

H  and φ  are accurately predicted by the inversion, but  is incorrect.  

Iso-probability surfaces through the 90th percentile of the trivariate PDFs for each well 

indicate relatively few values of 

wS

H  and φ  have a high probability of occurring. 

However, in all three cases, the vertical orientation of the surfaces indicates that all 

values of  have a nearly equal probability of occurring. Therefore, the uncertainty for  

a particular  value is relatively high.  
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Figure 5.13. Results at the three test-well locations from the joint inversion of thickness, porosity, 

and saturation. Although porosity predictions are relatively accurate in each case, thickness is 
incorrect in the AK2 well, and saturation is incorrect in the AW1 well. The iso-probability 
surfaces are all oriented vertically, which indicates a weak dependence on saturation. 

 

All the bivariate and marginal posterior PDFs for these three wells illustrate that 

narrow ranges of H  occur for all values of . (Figure 5.14, top row). However, for all wS
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three wells, H  predicted with φ  results in a narrow range of combinations, although the 

form of the distributions varies from one well to another (middle row). Because results in 

all three wells show narrow ranges of H  and φ  occurring with high probability, this 

reaffirms that the combination of these two parameters is the dominant factor determining 

the seismic response. Varying saturation does not significantly change the seismic 

response. However, this inversion scenario includes the first variation of . Without 

including this, we should not anticipate an accurate prediction of the data in the AW1 

well. Furthermore, the 

wS

φ -  bivariate PDFs for the AK2 and AV1 wells are multi-modal, 

where the higher-porosity regions correspond to  =1 conditions. This multi-modality 

does not occur in the 

wS

wS

φ -  bivariate for the AW1 well.  wS
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Figure 5.14. Bivariate and marginal PDFs for the test wells. The left column corresponds to the 

AK2 well; the middle to the AV1; and the right to the AW1 well. The saturation components 
force the bivariate PDFs that contain this component to be broad and uncertain. In all three 
cases, narrow ranges of thickness and porosity are compounded by the saturation term.  
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By including  in the inversion, we introduce more synthetic traces into the 

comparison step that are quite similar to each other, given that  does not significantly 

alter the seismic response. Accordingly, the maps of 

wS

wS

H  and φ  should change because of 

increased uncertainty (Figure 5.15). The predictions of H  and φ  indeed change relative 

to the set of maps from H - -C φ the inversion (Figure 5.10), but the product of them does 

not change significantly. In comparison to the maps from the H -φ  inversion, all sets of 

maps are quite similar. Histograms of the reservoir-property maps display this 

information more clearly than do the maps (Figure 5.16). 

 
Figure 5.15. Maps of most likely values of thickness (top), porosity (second row), saturation 

(third), and the product of thickness and porosity (bottom). The relationship between 
thickness and porosity becomes quite evident, particularly in the AK2 and AV1 geobodies. 
Saturation appears to be predicted incorrectly in the three geobodies on the left, which 
suggests that the inversion is insensitive to fluid saturations. 
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Figure 5.16. Histograms for the geobodies in Figure 5.15. The thickness is predicted to be 30 m in 

the AY1 and AK2 wells, with some smaller values. In the AV1 and AW1 wells, the dominant 
thickness is 1 m. In each case, the most common value of porosity is 0.15. Saturation, clearly 
seen in the map view, is mostly at full-brine saturation. In all four geobodies, at value of 4.4 
porosity-m is the most common value. 

5.5.4 Thickness-clay content-porosity-saturation 

The final set of results comes from the inversion of the seismic data for all four 

reservoir parameters. In this case, the modeled parameters are  with data 

. Ranges used for the parameters were 15-60 m for 

m = [H ,C,φ,Sw]

d = [AN , AF ] H , 0-0.20 for , 0.15-

0.35 for 

C

φ , and 0.2-1.0 for S . Increments used were 5 m for w H , 0.01 for C  and φ , and 

0.1 for . These prior distributions resulted in 39690 earth and seismic models. The 

inversion parameters, calibrated at the AY1 well, were to accept 10% of the total traces 

with an initial 70% threshold.  

Sw

Results at the AY1 well are displayed in Figure 5.17. Included are the measured logs 

and seismic data along with the best-match synthetic data. The reservoir property values 

were drawn from the full 4-D conditional posterior distribution, which is not displayed 

because of its dimensionality. On the right are the four 90th perecentile iso-probability 

surfaces from the respective posterior trivariate PDFs. The H - C -φ  trivariate resembles 
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that obtained in the inversion for just H , , and C φ  (Figure 5.7). The other trivariate 

PDF that contains useful statistical information is the H -φ -  trivariate PDF. Although 

all the surface contains all values of , at =1, the 

Sw

Sw Sw H -φ  combination is pushed to 

higher φ  relative to where <1. The Sw H - C -φ  surface traces out all values of C  and  

for a relatively narrow 

Sw

H  range. Similarly, all values of C  and  lie on the C -Sw φ -  

surface for a narrow range of 

Sw

φ . 
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Figure 5.17. Well and seismic and iso-probability surfaces from the four trivariate PDFs at the 

AY1 well location. The surfaces indicate that the combination of thickness, porosity, and 
saturation provides valuable information in terms of predicting reservoir properties. 

Although the isosurfaces through the trivariate PDFs do not explicitly show how the 

four reservoir parameters combine in the full 4-D conditional posterior distribution they 

do indicate some of the behavior of 4-D conditional PDF. In particular, H  and φ  have 

narrow ranges of high-probability values, whereas, C  and  have very wide ranges of 

likely values. When the most likely combination of the four parameters is selected, 

multiple combinations can be chosen as the most likely to occur. This is evident in the 

appearances of any of the posterior PDFs that contain a  or  term. The predicted 

values of the reservoir properties in Figure 5.17 were selected from the 4-D conditional 

posterior distribution. As such, the uncertainty of this prediction is greater than the 

uncertainty present if just 

Sw

C Sw

H  and φ  were considered, because the posterior values of C  

and  span their entire prior ranges.  Sw
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The six posterior bivariate and four marginal distributions are displayed in Figure 

5.18. The combinations of two properties taken two at a time are H - , C H -φ , H - , 

-

Sw

C φ , φ - , and C - S . The top row consists of the three bivariates that include Sw w H . 

The H - C  bivariate shows a relatively narrow range of H, also evident in its marginal 

PDF, but  varies across its whole prior range. C H  and φ  combine in a narrow range 

around the measured values. This demonstrates the expected relationship between them. 

The bivariate PDF with H  and  resembles that of Sw H  and . A nearly linear 

relationship exists between  and 

C

C φ  (bottom left), in which the highest probability 

occurs where higher C  makes the modeled reservoir less stiff. The bivariate between φ  

and  is interesting in that two different domains exist. The overall range of Sw φ  values in 

the marginal defines all possible φ  values. S  separates that range into two domains. The 

first occurs for  between 0.2 and 0.9 for a range of 
w

Sw φ  between 0.16 and 0.26. The other 

domain is for a = 1 with a corresponding Sw φ  range of 0.22 to 0.35.  The two domains, 

however, have a similar probability of occurring. Lastly, the bivariate between C  and  

indicates that all combinations have a non-zero probability, with the most likely 

occurring at  = 0.2 and  = 0.9. 
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Figure 5.18. Posterior bivariate and marginal PDFs at the AY1 well location. Thickness and 

porosity are accurately predicted. Porosity and saturation combine in a way that can 
distinguish brine sands from gas sands, depending on their porosities.  
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Figure 5.19 exhibits the inversion results at the AK2 well location. In this instance, 

the predicted H , C , and φ  values fall quite close to the measured values, but the Sw  

prediction is not accurate. The iso-probability surfaces from the posterior trivariate 

indicate relatively narrow ranges for H  and φ , but broad ranges of C  and Sw . Each 

surface resembles its counterpart from the AY1 well. Limited combinations of H  and φ  

are integrated over the C  and Sw  parameters. Moreover, the full 4-D conditional PDF 

inherently contains this uncertainty that the four trivariate PDFs illustrate. Although the 

predicted values taken from the 4-D posterior PDF are accurate, their uncertainty is quite 

high. Thus the random selection of a combination of reservoir properties was relatively 

fortuitous. 
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Figure 5.19. Predictions for the AK2 are quite accurate except for saturation. The clay content and 

saturation components increase the uncertainty of the predictions due to their posterior values 
spanning their respective prior ranges. 

 

The six bivariate PDFs at the AK2 well are displayed in Figure 5.20. As in the AY1 

well, the H - C  and H - Sw  bivariate PDFs show a relatively narrow range of H , but C  

and Sw  span their prior ranges. The joint PDF between H  and φ  demonstrates the 

commonly observed trend between these parameters. A nearly linear relationship exists 

between C  and φ  (bottom left), with the peak skewed to low C  and low φ . In the φ - Sw  

bivariate PDF, the distinction between high φ  and high Sw  and lower φ  with low Sw  is 

apparent. Last, the C  and Sw  parameters combine to give nearly uniform results.  
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Figure 5.20. The posterior bivariate and marginal PDFs at the AK2 well show results similar to 

those at the AY1 well. However, larger thicknesses and smaller porosities are predicted along 
with the wide ranges of clay content and saturation.  

Predicted and measured log curves for the AV1 well and the iso-probability surfaces 

from the posterior trivariate PDFs are displayed in Figure 5.21. The predicted log curves 

show an overprediction of H  by a factor of more than 2, a fairly accurate C  prediction, 

an underestimate of φ , and an incorrect S . The surfaces through the trivariate PDFs 

indicate the degree of uncertainty that accompanies these predictions. This degree is 

similar to that observed in the AY1 and AK2 wells. 

w
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Figure 5.21. Reservoir-property predictions at the AV1 well include an over-estimate of thickness 

by a factor of two, an under-estimate of porosity, and a prediction of full brine saturation. The 
iso-probability surfaces resemble those observed in the AY1 and AK2 wells. 

 

Posterior bivariate and marginal PDFs at the AV1 well location are displayed in 

Figure 5.22. In general these PDFs show that a small H  and relatively high φ  ranges are 

present and accompanied by broad ranges of C  and S . The commonly observed trend 

between 
w

H  and φ  is present, but the uncertainty around it is quite high.  
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Figure 5.22. Posterior bivariate and marginal PDFs at the AV1 well location. Narrow ranges of 

thickness and porosity occur with broad ranges of clay content and saturation.  
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The final set of results at an individual well location is for the AW1 well (Figure 

5.23). The display of the log curves and iso-probabilty surfaces is the same as those for 

the previous three wells. The predicted value of H  is greater than the measured value; C  

is predicted accurately; φ  is slightly under predicted; and S  is predicted correctly. In the w

H - -C φ  surface, the continuity of the H -φ  relationship along the C  axis is evident. In 

H - - S  space, this continuity occurs in both the C  and  directions. Two domains 

are present in the 

C w Sw

H -φ -  trivariate PDF, where for  to equal 1, Sw Sw H  and φ  must 

combine in a way that makes the reservoir sand look less stiff to the seismic wave. In the 

-C φ -  space, the C  term increases the range of highly probable combinations.  Sw
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Figure 5.23. Well and seismic data and iso-probability surfaces from the posterior trivariate PDFs 

at the AW1 well. The well curves show fairly accurate results for the reservoir properties. A 
distinction can be made between gas and brine sands depending thickness and porosity 
combinations. 

 

Examining the six posterior bivariate PDFs reveals similarities between them and 

those in the AY1 wells (Figure 5.24). The narrow ranges of H  and φ  are made uncertain 

by the wide ranges of  and . However, the C Sw H -φ  bivariate shows the limited number 

of combinations of these two parameters that have a non-zero probability. For C  and φ , 

a nearly linear trend exists, so a  value with high probability could be determined for a 

given 

C

φ  value. As in the AY1 well, two domains exist in the φ -  bivariate PDF, which 

was also the case in the 

Sw

H -φ -  trivariate isosurface. One is for S <1 for Sw w φ  between 
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0.18 and 0.22. The other is for  =1 and Sw φ  between 0.22 and 0.32. The - S  bivariate 

PDF appears nearly uniform except for the peak at  = 1.  
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Figure 5.24. Posterior bivariate and marginal PDFs at the AW1 well location. The most distinct 

relationships occur between thickness and porosity and porosity and saturation.  
 

In Figure 5.25, we show the map views of the four reservoir properties and product of 

H  and φ  mapped onto the geobodies. Maps of H , φ , and H -φ  resemble most closely 

those from the H -C-φ  inversion. This was expected because of the common C  

component. The histograms indicate that the prediction of C  is more evenly distributed 

in the four-parameter inversion than in the H - C -φ  inversion. 
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Figure 5.25. Maps of the most likely reservoir properties resulting from the simultaneous inversion 

of thickness, clay content, porosity, and saturation. The maps resemble those from the 
inversion of thickness, clay content, and porosity. 

 



CHAPTER 5: UNCERTAINTY ANALYSIS 88

15 30 45 60
0

4400

8800
H

C
ou

nt

AY1

0 0.1 0.2
0

4400

8800

C
C

ou
nt

0.15 0.25 0.35
0

4400

8800

φ
C

ou
nt

0.2 0.6 1
0

4400

8800

S
w

C
ou

nt

0 5 10 15 20 25
0

4400

8800

H
φ

C
ou

nt

15 30 45 60
0

9000

18000
AK2

0 0.1 0.2
0

9000

18000

0.15 0.25 0.35
0

9000

18000

0.2 0.6 1
0

9000

18000

0 5 10 15 20 25
0

9000

18000

15 30 45 60
0

4500

9000
AV1

0 0.1 0.2
0

4500

9000

0.15 0.25 0.35
0

4500

9000

0.2 0.6 1
0

4500

9000

0 5 10 15 20 25
0

4500

9000

15 30 45 60
0

9500

19000
AW1

0 0.1 0.2
0

9500

19000

0.15 0.25 0.35
0

9500

19000

0.2 0.6 1
0

9500

19000

0 5 10 15 20 25
0

9500

19000

 
Figure 5.26. Histograms of the reservoir properties show that a dominant thickness of 30 m exists 

in all the geobodies. Clay content is evenly distributed across its prior range. Porosity, 
saturation, and thickness-porosity values all resemble those obtained from the inversion of 
thickness, porosity, and saturation.  

5.6 Discussion 
The purpose of varying the model parameters from two to three to four was to 

examine how the accuracy and uncertainty of the inversion results change as the problem 

becomes increasingly under-determined. By inverting for only H  and φ  in the first 

scenario, we explored how the inversion operates when only the two most significant 

reservoir properties are included. The success of the predictions at the different well 

locations varied somewhat. As expected, the most likely values of H  and φ  in the AY1 

well matched the real data very well (Figure 5.3). In the other three wells, the most likely 

values of H  overestimated the measured value, whereas φ  was quite accurate or slightly 

underestimated (Figure 5.4).  

In reference to the posterior bivariate PDFs (Figures 5.3 and 5.4), the trade-off exists 

between H  and φ  in the AY1, AK2, and AV1 wells. Among these three wells, this 
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relationship was most correct at the AY1 well, given the inversion was calibrated using 

its data. At the AK2 well, the relationship holds, but it occurs at greater H  values and 

slightly lower φ  values than in the AY1 well. As for the AV1 well, the H  values are 

about the same as in the AY1 well, but the predicted φ  values are noticeably higher than 

in the calibration well. A somewhat different result occurs in AW1, in which a trend is 

present, but with the opposite orientation of those observed in the three other wells. This 

was the only wet well, so it is interesting that a difference between H  and φ  appears 

from the inversion. However, it should be noted that assigned saturation value was 0.3. 

Therefore, we did not include in the inversion the in-situ conditions at this well. Based on 

this, we cannot definitively say that this different relationship indicates saturation 

differences. In all the cases, the inversion is capable of predicting the combination of H  

and φ  but not of finding reliable independent predictions of the two properties.  

In terms of the maps and histograms of the most likely values, we surmise that the 

selection of the most likely combination of H  and φ  at every location on the AY1 

geobody contains approximately the same degree of uncertainty the bivariate PDF at the 

well location (Figures 5.5 and 5.6). We claim this, although we did not visually examine 

the posterior for each trace. These statements hold true for the other three geobodies, in 

which the degree of uncertainty at each trace is likely very similar to the uncertainty 

observed at the nearest well location. Overall, the degree of uncertainty did not vary 

significantly from well to well, but the accuracy of predictions may be in question, 

particularly for the geobodies corresponding to the AK2 well. 

When we include C  in the inversion parameters with H  and φ , the uncertainty in all 

predictions increases significantly. In the AY1 calibration well, where the inversion 

should produce accurate results, we see that none of the most likely values correspond to 

the measured values of H , , or C φ  (Figure 5.7). The continuity of the trivariate PDF in 

the direction of the C  component explains this. The bivariate PDF between H  and φ  

contains the expected relationship between them (Figure 5.8), but the C  parameter 

introduces a very significant amount of uncertainty into this trend. As a result, the most 

likely values are inaccurate and uncertain. However, if the inversion were performed 
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again, the most likely values would change due to the random selection of a different 

most likely combination.  

In the other wells, the C  parameter again forces the uncertainty upwards in terms of 

the predictions of any of the three properties.  Although predicted values in the AK2 well 

appear accurate, they are indeed uncertain (Figure 5.8). For the AV1 and AW1 wells, 

significant over-predictions of H  couple with low estimates of φ . The trend between the 

two properties, therefore, appears to work in the AV1 well, but the opposite trend in the 

AW1 well suggests that the result is highly uncertain. The bivariate posterior PDFs for 

three test wells resemble those obtained in the H -φ  inversion, albeit with the C  

parameter inducing uncertainty (Figure 5.9).  

Arguably the most interesting result that came from this study is the separation of the 

saturation values depending on H -φ  relationships. This was seen in both the H -φ -  

and 

Sw

H - C -φ -  inversion results. From a rock-physics standpoint, this result is 

expected. As porosity increases, even in a stiff rock, a stiffer pore fluid can enter the pore 

space to give the same same elastic and/or seismic response as a stiffer frame with a less-

stiff fluid. This concept is understood, predictable, and has been observed many times in 

previous studies, particularly at the well-log scale. However, the algorithm used in this 

study provided the ability to calculate probabilities corresponding to the two different 

saturations. Although the results showed that equal probabilities occurred for the two 

domains, obtaining this relationship was unexpected given the stiff nature of the reservoir 

rocks under examination. The separation of the domains does not appear clearly at all the 

well locations. Nonetheless, the ability to detect these two domains in some locations 

indicates that at least three parameters (

Sw

H , φ , and ) should be included in the 

inversion. 

Sw

The H - -C φ  inversion results demonstrated that  was the most uncertain 

parameter. However, we could still obtain the 

C

H -φ - S  effect from the four-parameter 

inversion.  This result is quite encouraging in that the extremely uncertain  component 

does not overwhelm this relationship. Although the 

w

C

H -φ  trend did not always predict the 
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values extremely accurately in the AK2 and AV1 well locations, the trend was still 

present, and the  component could be obtained from the posterior results.  Sw

5.7 Conclusions 
Several conclusions can be drawn from this study. First, lithology cannot be 

accurately predicted from this seismic dataset, largely because of the lack of wide-

incidence-angle seismic data. Additional information would have to be included to obtain 

a lithology estimate. The rock physics also helps to explain this. For high φ ,  has little 

effect on the impedance. Therefore, it could have been eliminated from the inversion to 

reduce computational demands.  

C

Second, a reliable H -φ  relationship can be detected at the gas-well locations. Even 

though the posterior PDFs were not visually examined at all trace locations, the results at 

the wet well suggest that if an oppositely oriented H -φ  relationship exists, then the 

corresponding potential reservoir unit may contain brine. All the results showed how 

uncertain an  prediction can be, even at a location where brine is known to exist. As a 

result, we may not be able to predict  accurately or separate commercial from non-

commercial gas pay, but we can examine the probabilities associated with 

Sw

Sw

H -φ -  

combinations that may contribute to the measured seismic response. Importantly, we 

could not have observed a saturation effect without including both 

Sw

H  and φ . A joint φ -

 inversion may have pointed out this relationship, but without the geometric 

parameter, it would have been incomplete. In addition, without 

Sw

φ , a H - S  inversion 

would not have been informative. Thus, we conclude that 
w

H  and φ  must be included in 

the inversion of this dataset. Only with those two parameters included in the inversion 

can  saturation effects be analyzed. Sw

From a commercial standpoint, it should be pointed out that all wells in the seismic 

volume were drilled based on the class III AVO anomalies. Although we cannot say that 

use of this inversion method for evaluation purposes would have successfully predicted 

water in the AW1 successfully, examining the posterior probabilities would certainly 

have quantified the possibility and presence of water in this well. 
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More generally, the goal of this work was to examine how the uncertainty changes as 

we attempt to calculate more unknown quantities from a limited number of inputs. This 

inversion algorithm provided the ability to do that. However, if uncertainty in the results 

becomes too significant, then discriminating between statistical noise and reservoir 

heterogeneity becomes quite difficult, if not impossible. Furthermore, no matter how 

good the data processing is for a given seismic dataset, uncertainty still remains in the 

translation from elastic to reservoir properties. Within the assumptions of the inversion 

algorithm, we can quantify the probabilities of combinations of reservoir properties that 

may underlie the measured seismic response 
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Chapter 6 

From seismic traces to reservoir 
properties: Physics-driven inversion 
 
 

“Always listen to experts. They'll tell you what can't be done, and why. Then do it.” 

--Robert A. Heinlein 

 

6.1 Introduction 
Forward modeling and inversion are commonly used tools to translate seismic traces 

into elastic earth properties. Comparisons of real and multiple iterations of synthetic 

seismic data, the latter computed from initial and perturbed models of elastic properties, 

provide this translation. The final earth model, the one corresponding to the best match 

between the real and synthetic seismic data, represents a possible spatial distribution of 

independent elastic constants such as P-wave impedance ( Ip ) and Poisson’s ratio (ν ). 

Although these maps of elastic properties are meaningful to geophysicists, they fail to 

supply necessary information to engineers who require lithology, fluid, and porosity, i.e., 

bulk property maps and in situ conditions. 

 Rock physics provides transforms that link the elastic properties to these bulk 

properties and conditions. However, scaling differences between the rock-physics domain 

and the seismic domain prevent accurate applications of these transforms. The reason is 
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that rock-physics transforms operate on a point-by-point basis at the centimeter scale, 

assuming spatial stationarity of rock properties. Seismic radiation, on the other hand, 

functions on a scale of tens or hundreds of meters. Therefore, applying these transforms 

at the seismic scale often violates the stationarity assumption. 

This multi-scale problem is not only difficult to solve but also difficult to pose. For 

example, what is the relationship between porosity and impedance? Is the correct 

porosity the spatially averaged porosity of sandy shale, the “smeared” porosity of the 

sand, or the integral of the sand porosity with respect to depth, inline, and cross-line 

distance (e.g., the product of porosity and thickness)? To avoid these questions, one may 

consider “model-driven” inversion, termed here “physics-driven” inversion. Instead of 

constructing an elastic earth model, we construct a multiple lithology/fluid/porosity 

model at the natural scale of a rock-physics transform (e.g., the well-log scale). This 

transform converts these lithology/fluid/porosity models at each point in space into 

elastic models. Then synthetic traces generated from the elastic models can be compared 

with real data until a match is found. The result is a map of the bulk properties and 

conditions. 

This type of physics-driven inversion naturally eliminates physically unrealistic 

elastic-constant combinations. However, its disadvantage is its inherent non-uniqueness, 

in which a function of more than one combination of rock properties produces the same 

seismic amplitude. This feature exists in any inversion because seismic reflections 

depend on the contrast of elastic properties rather than their absolute values. A 

probabilistic framework is a natural formal structure to address this non-uniqueness and 

account for the associated uncertainty (see Buland and Omre, 2003; Bosch, 2004; 

Gunning and Glinsky, 2004; Connolly and Kemper, 2007; and Sengupta and Bachrach, 

2007). 

To illustrate a practical implementation of this concept, we apply the physics-driven 

probabilistic seismic inversion developed in chapter 4 to two datasets to demonstrate how 

different combinations of reservoir properties can produce a given seismic response. The 

approach is Bayesian and implements geologic knowledge and an appropriate rock-
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physics model to link modeled reservoir properties (thickness, clay content, porosity, and 

saturation) to the elastic domain. A complete set of forward modeled, three-layer earth 

and seismic models, generated from a full-grid sampling of the prior distributions, 

provides the comparative synthetic data to use in the inversion. 

Two data sets are used in this chapter. The first data set from offshore Africa includes 

well and full-stack amplitude data.  In previous chapters, this data set was exhaustively 

explored. To contrast the first data set, well and angle-stack amplitude data from the 

North Sea comprise the second. The inversion was applied on the seismic data at the well 

locations. Results from the first data set included a distinct correlation between thickness 

and porosity with associated uncertainty. For the second data set, the inversion produced 

independent predictions of thickness and porosity. In both cases, predictions of clay 

content and saturation were uncertain. The results provided an insight into how 

accurately reservoir properties can be predicted given the seismic data. 

The probabilistic technique allows geologic knowledge to be included in the prior 

information. It confirms that even for a seismic reflection corresponding to a known 

reservoir interval, uncertainty surrounds the combination of reservoir properties that 

underlie the seismic signature. Finally, we show that this probabilistic technique is most 

successful when based on an appropriate deterministic rock-physics transform that 

translates the reservoir properties into the elastic domain. 

6.2 Methodology 
Inversion of seismic data for elastic or rock properties inherently includes non-

uniqueness. Consequently, what combinations of rock properties cause a reflection 

registered from a reservoir? Our physics-driven approach consists of a series of steps that 

allows us to invoke geologic understanding and rock-physics. Although the full 

description is presented in chapter 4, it is summarized here. The steps are to construct 

multiple three-layer models of rock properties; convert them to elastic properties; 

calculate synthetic seismograms for each model; and, through comparisons between 

synthetic and real data, invert the latter for rock properties with the associated 
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uncertainty. By incorporating geology and rock-physics within this method rather than 

using only elastic properties, we better constrain the ranges of rock properties and their 

elastic values. 

We use a Bayesian scheme to invert the seismic data for reservoir properties. 

Specifically, we find the probability of modeled values of thickness ( H ), clay content 

( C ), total porosity (φ ), and water saturation ( S ) given the measured seismic response 

(see details of the statistical formulation in Spikes et al., 2007, for the prior distribution, 

likelihood function, and posterior distributions). The two main assumptions are that (1) a 

prior interpretation of the seismic data provides a geobody on which to perform the 

inversion and (2) the shale properties above and below the reservoir are the same. This 

routine allows us to concentrate on inverting for the rock properties within a reservoir 

interval and the associated uncertainty within the framework of the assumptions made. 

Probabilities of the combinations of rock properties account for the uncertainty and 

natural variability in rock properties. 

w

An example that we use here comes from a geologically mature fluvial environment 

where the elastic properties are linked to sediment properties by the rock-physics models 

of Raymer et al. (1980) and Greenberg and Castagna (1992).  We also find that φ and C 

are linked by an approximately linear petrophysical transform that reflects the dispersed-

shale depositional mode.  In this mode, the reduction of φ is due to small shale particles 

filling the pore space of the sand-grain frame.  Rock physics and petrophysics are used 

together to identify the reservoir and then to resolve the values of IP extracted from the 

log data within the reservoir for φ and C.  As expected, we arrive at the correct φ and C 

values. 

This methodology consists of six steps. First, identification of the reservoir in both 

the well and seismic data allows for the construction of a geobody along the seismic 

event of interest. Second, the well data provides the information to establish a rock-

physics transform between porosity, lithology, and fluid and the elastic properties (rock-

physics diagnostics). Third, we set bounds and discrete increments for H , C , φ , and . 

Expected spatial variability of the reservoir properties, based on geologic reasoning, 

Sw
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guides the definition of the bounds. Sensitivity of the elastic properties to this variability 

controls the increments. In other words, if a small change in a rock property results in a 

significant change in the elastic and/or seismic response, then a small increment is 

assigned for that property; conversely, if very little change occurs in the elastic and/or 

seismic response due to a small change in a rock property, then a large increment is used. 

Fourth, we construct three-layer models for each combination of reservoir properties, 

while holding constant the properties of the over- and underlying shale, as determined 

from the input well data. Fifth, for each three-layer model, the rock-physics model 

translates the reservoir-layer properties into the elastic properties; synthetic seismic traces 

are calculated for each three-layer model using a P -to- P  ray-tracing algorithm. Sixth, an 

acceptance/rejection rule finds a specified number of synthetic traces that match the real 

data within a specified correlation threshold. The modeled reservoir properties 

corresponding to the accepted synthetic traces comprise the calculation of the likelihood 

function and thus the posterior probability distribution functions (PDFs). 

6.3 Two examples 
We demonstrate this technique in two different settings. One is a gas reservoir from 

offshore Africa, where only full-stack seismic data are available. The other is a North Sea 

gas reservoir with angle stacks available. Each case requires a different rock-physics 

model to describe the well-log data as well as case-specific ranges and increments of the 

prior distributions. Stacked synthetic data for each case correspond to the available 

stacked real data. 

6.3.1 Offshore Africa 

The Jurassic-aged gas reservoir sits at 3200-3230 m (Figure 6.1). Figure 6.2 displays 

a cross-plot of Ip  (calculated as the product of sonic velocity and bulk density as given 

by the log curves) versus φ , color-coded by C . Superimposed on the cross-plot are Ip  

versus φ  curves for varying C , according to the stiff-sand model (the modified upper 

Hashin-Shtrikman bound of Gal et al., 1998). These model lines establish the relevance 

of this rock-physics transform to the data under examination. This transform also 
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converts the rock-property combinations into the corresponding elastic properties for all 

three-layer variants generated for this application. 
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Figure 6.1. Well data from offshore Africa showing the 30-m thick gas reservoir between 3195 
and 3225 m. The volume of clay, total porosity, water saturation, P-wave impedance, 
synthetic seismic stack calculated from the well data, and the real stack at the well location. 
Log curves are displayed versus depth, and seismic traces versus time. 
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Figure 6.2. P-wave impedance versus porosity, color-coded by the clay content for the depth 

interval displayed in Figure 6.1. Model lines are from the stiff-sand model with clay content 
zero (blue), 0.5 (green), and 1.0 (red). 

 

We set the range for the  prior distribution from 15 to 60 m (from half to twice the 

thickness of the reservoir at the well). The range of C  was 0 to 0.2, whereas the 

H

φ  range 
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was from 0.18 to 0.32. Lastly, the  range was set from 0.2 (the assumed irreducible 

water saturation) to 1.0. The lower limit of 

Sw

φ  (0.18) was selected to limit the number of 

realizations although some clean sands show a lower φ . Sensitivity of synthetic seismic 

traces to small changes in each parameter guided the increment values. Specifically, these 

increments were 5 m for , 0.01 for C  and H φ , and 0.1 for . These ranges and 

increments within a full-grid sampling resulted in 28350 prior earth and corresponding 

seismic models. Construction of the three-layer models and synthetic full-stack traces 

followed the range and increment definitions. The synthetic seismic data were calculated 

from a P-to-P ray-tracing algorithm. Each of these synthetic traces was cross-correlated 

with the real trace at the well. Inversion parameters included acceptance of 15% of the 

total number of synthetic traces with an initial 90% correlation threshold. Results 

consisted of the full four-parameter conditional PDF and the marginalized PDFs. 

Sw

Figure 6.3 contains the bivariate PDFs where each PDF is the probability distribution 

of two reservoir properties taken at a time (shown in color). With four reservoir 

properties in the inversion, six bivariate distributions result. These surface plots indicate 

that predictions of C  and S  within the a priori set limits are uncertain. Evidence for this 

is present in all the PDFs that contain C , , or both, in that many of the values of these 

reservoir properties have a high probability of occurring. On the other hand, relatively 

narrow ranges of  and 

w

Sw

H φ  exist in the PDFs that include either of these two parameters. 

The bivariate PDF of and H φ  illustrates that these two parameters are quite well 

correlated. Specifically, the inversion predicts a high probability of small modeled  

occurring with a relatively high 

H

φ ; a large modeled  has a high probability of 

occurring with a lower 

H

φ . This distribution also indicates that the most likely values of 

 and H φ  correspond to the values observed in the well data. 
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Figure 6.3. Bivariate PDFs for each of the 2-parameter combinations. The PDFs that include clay 

content or water saturation indicate that the predictions of these two parameters are highly 
uncertain. The broad appearances of these PDFs manifest that all possible values of these two 
parameters are nearly equiprobable. On the other hand, the thickness and porosity PDFs 
indicate the narrow ranges of these parameters. Moreover, we observe a clear and almost 
linear relation between these two parameters. 

Posterior PDFs exist for each reservoir property taken by itself, also called marginal 

PDFs. However, these marginal PDFs do not directly illustrate how the reservoir 

properties combine to produce the same elastic response. Four trivariate posterior PDFs, 

(PDFs where three properties are taken at a time) exist, as well as the full four-parameter 

conditional PDF. However, displaying these multivariate PDFs is somewhat problematic. 

We feel that the bivariate posterior PDFs (Figure 6.3) suitably illustrate the relationships 

between the properties. 

The posterior PDFs provide the values of the reservoir properties and the 

combinations thereof that have a high probability of occurrence. Accordingly, the most 

likely values or most likely combinations can be selected from any of the posterior PDF. 

Figure 6.4 shows the well data at the reservoir. Superimposed on these log curves are 
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values of the reservoir properties from the most likely combination of properties taken 

from the full conditional four-parameter posterior PDF. Extracting this most likely 

combination provides a value for each reservoir property, in which the four properties are 

not independent of one another. In other words, the four reservoir properties occur 

together to provide the corresponding elastic response. The values of the reservoir 

properties from this combination are = 35 m, C = 0.15, H φ  = 0.22, and  = 0.6. These 

predicted, most likely values fall fairly close to the actual values at the well. 
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Figure 6.4. The full conditional posterior PDF of all four parameters from a 4-D histogram, which 
we elect not to display. Within the reservoir unit, the most likely values (black lines) are 
superimposed upon the actual well data. The gray lines indicate the minimum and maximum 
values of the 90th percentile ranges. The corresponding minimum and maximum values of 
thickness in the 90th percentile are 10 and 35 m, respectively, although not displayed. 

 

6.3.2 North Sea 

The North Sea gas reservoir is a 160-m succession of gas-filled intervals (Figure 6.5). 

Both the top and bottom of the reservoir can be delineated in the synthetic seismic data, 

as well as internal reflections. This is significantly different from the offshore Africa 

example, in which only the top of the reservoir could be seismically identified. Angle 

gathers from a location away from the well were available in the North Sea data set.  We 

used angle stacks from near- and far-angle ranges. 
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Figure 6.5. Well data from the North Sea gas reservoir from 3.21 to 3.32 s (160-m thick). From 
left to right are the clay content, porosity, water saturation, P-wave impedance, and synthetic 
seismic traces. 

Because seismic data were not available at the well location, we had the opportunity 

to apply this method in an exploration sense. The procedure was the same in that the well 

data provide the basis to establish the rock-physics model and estimates of the ranges and 

increments for the prior distributions. The rock-physics model applicable here is the 

constant cement model (Avseth et al., 2000). Figure 6.6 confirms this selection as 

indicated by the model curves superimposed on the cross-plot of Ip  versus φ , color-

coded by C . The ranges and increments for the prior distributions used here were 100 to 

200 m and 10 m, respectively, for H ; zero to 0.2 and 0.02 for C ; 0.1 to 0.3 and 0.01 for 

φ ; and 0.2 to 1.0 and 0.2 for . These choices resulted in 24255 earth models and 

synthetic seismic gathers. 

Sw
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Figure 6.6. The P-wave impedance versus porosity, color-coded by the clay content for the depth 

interval shown in Figure 6.5. The model lines are from the constant cement model for zero 
clay (blue), 0.5 clay (green), and 1.0 clay content (red). 

 

With these ranges and increments, the three-layer earth models were constructed for 

each combination of reservoir properties. The P -to- P  ray tracer provided the synthetic 

angle gathers, from which we calculated near- and far-angle stacks over the same angle 

ranges as in the real data. The synthetic-to-real match criterion was a 5% acceptance rate 

with an initial 80% correlation threshold. 

The resulting six bivariate PDFs are displayed in Figure 6.7. Three of them, H −C , 

C − Sw , and H − Sw  exhibit a broad appearance, which means that most combinations of 

in these three pairs have a high probability of occurring. The other three PDFs indicate 

high probabilities for a limited number of combinations. Specifically, similar to the 

offshore Africa example, the most dominant factors are  and H φ . However, the relation 

between these two parameters in this North Sea case differs from the first example. 
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Figure 6.7. Bivariate PDFs for six two-parameter combinations. PDFs with the clay content or 

saturation component exhibit high uncertainty. 
 

The calculation of the posterior PDFs yielded the most likely values and 

combinations of the four modeled reservoir properties. We selected the most likely 

combination from the full conditional four-parameter PDF: H  = 120 m; C  = 0.18;  

φ  = 0.20; and Sw  = 0.4 (Figure 6.8). We see that thickness, porosity, and saturation are 

slightly underestimated, whereas clay content is predicted relatively well. Based on the 

bivariate PDFs in Figure 6.7, the most accurate predictions are for  and H φ , with the 

predictions of C  and Sw  being the most uncertain. 
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Figure 6.8. The most likely combination of reservoir properties from the full conditional posterior 
distribution includes thickness of 120 m, clay content of 0.2, porosity of 0.2 and saturation at 
0.4. The corresponding most likely synthetic seismograms are displayed next to the real data. 
For the log curves, 90th percentile minimum and maximum bounds are plotted in gray. The 
corresponding bounds for thickness are 110 and 180 m, respectively.  

 

6.4 Discussion 
Both applications of the probabilistic seismic inversion reveal that  H  and φ  are the 

most certain parameters to be predicted. In the offshore Africa example, where a H − φ  

trend and the associated uncertainty were obtained from the posterior distributions, it is 

apparent that the resolution of the seismic data prevents these two parameters from being 

predicted separately. However, the obtained linear trend between H  and φ  allows us to 

calculate the total pore volume (the product of H  and φ ) with high certainty. Results 

from the North Sea example do not reveal a trend or relationship between  H  and φ . The 

reason is that the thickness of the reservoir in this example was greater than the seismic 

resolution. As a result,  H  and φ  can be predicted separately, without the need to 

establish a trend from the posterior PDFs. 

Uncertainty dominates the prediction of Sw  and C  in both examples. This result is 

expected. The two rock-physics transforms used, the stiff-sand and constant-cement 
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models, have stiff frames, on which Sw  has little effect. Regarding the uncertainty in C , 

lithology prediction often requires offset data, which were not available in the first 

example. This prevented an accurate prediction of , although the selected range, 0-0.2, 

was relatively narrow. In the second example, the angle-dependent response of the real 

and synthetic data was relatively small, which did not permit us to pinpoint   within the 

zero to 0.2 interval. 

C

C

6.5 Conclusions 
These two examples show how a group of final earth models can be determined, 

corresponding to a collection of synthetic seismic traces that best match the real data.  

Those earth models contain combinations of reservoir properties, namely thickness, clay 

content, porosity, and saturation, and each property may have a relatively broad range of 

variation.  Nevertheless, the results presented here are functional.  Indeed, in the first 

case, we observe a clear trend between the output porosity and thickness, which means 

that their product is essentially constant.  In the second case we fairly accurately isolate 

the porosity of the gas sand. 

These results will vary depending on the geologic and rock-physics specifics.  The 

two concrete examples demonstrate how to make this general methodology site-specific.  

Confidence in the answers will vary depending on the depositional setting and 

availability of seismic and control-well data.  We anticipate that in some cases the results 

will be too uncertain to be used in decision making.  On the other hand, with many a 

priori constraints, such as known porosity and saturation, our predictions will be quite 

definite. 
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Chapter 7 

Sensitivity of the seismic-inversion 
method to saturation and user-
defined parameters 
 
 

"With every new answer unfolded, science has 

consistently discovered at least three new questions." 

--Wernher Von Braun 

 

7.1 Abstract 
This work presents a two-part sensitivity analysis study based on synthetic data. The 

importance of this study is to demonstrate the ability of the seismic-inversion method 

presented in earlier chapters to detect fluid saturations and to examine how user-defined 

parameters affect the inversion results. A synthetic dataset provides the basis on which to 

test the different capabilities of the inversion. In the first test, all calibration work is done 

using a gas well, and the inversion is used to predict brine saturation in a second well 

using only seismic data. Two additional tests examine how changing three user-defined 

parameters affects the results. Those parameters are the fraction of matching synthetic 

traces to accept, the initial cross-correlation threshold, and the length of the cross-
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correlation window. In the second test, the fraction of synthetic traces to accept is varied 

along with the initial correlation threshold. Third, the cross-correlation window length is 

varied while keeping the other parameters fixed. Results of the saturation test indicate 

that if the seismic signatures of gas- and brine-saturated sands are markedly different, 

then the inversion predicts the appropriate fluid and associated uncertainty. Varying the 

fraction of accepted synthetic traces shows that as long as the noise level in the seismic 

data does not become overly large, then accepting ten percent of the synthetic traces 

provides accurate results. Along with this, however, the final correlation threshold must 

be considered an important part of the inversion result. Changing the length of the cross-

correlation window increases the influence of the normalization scheme, which tends to 

include low-energy synthetic traces corresponding to high porosity and high saturation 

values. In conclusion, the inversion can be used successfully for joint thickness, porosity, 

and saturation predictions, whereas precise mineralogic predictions remain difficult. The 

user-defined parameters must be calibrated properly at a well location to identify the 

optimal settings for them. If the seismic data is excessively noisy, the inversion results 

may be a function of random and unreliable matches between the real and synthetic 

seismic data. In all cases, the inversion may accept low-energy synthetic traces that do 

not represent the in-situ conditions, because of the normalization operation. 

7.2 Introduction 
A synthetic dataset provides the platform on which to test the sensitivity of the 

seismic-inversion algorithm presented in chapters 4−6. We test the sensitivity of the 

algorithm to variations in reservoir properties and conditions and variations in user-

defined parameters. In practice, most seismic-inversion algorithms must be calibrated to 

the input data by including user-defined parameters that must be determined 

experimentally or through an optimization routine. The values assigned to these 

parameters typically affect the inversion results. Exploring how the results change 

requires a sensitivity analysis. 
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This work serves two purposes. The first is to explore the ability of the algorithm to 

predict fluid saturation in a synthetic dataset. The second examines the sensitivity of the 

results to variable values of two user-defined parameters: the fraction of synthetic traces 

to accept and the length of the cross-correlation window. These tests are performed using 

seismic data that contain different amounts of noise. 

A synthetic reference dataset is constructed that incorporates often-observed 

problems and intricacies in real data. This dataset includes well-log and seismic data for 

different fluid scenarios (gas and brine). A rock-physics model links a vertical succession 

of rock properties and their associated elastic properties. The resultant seismic data serves 

as a proxy to recorded seismic data. To replicate better a realistic situation, Gaussian 

noise is added to the proxy seismic data. 

Results show that for this synthetic dataset fluid saturations can be discriminated 

successfully. Moreover, the sensitivity tests reveal that the best results are achieved when 

fewer than 10% of the synthetic traces are accepted, although this result becomes 

obscured when seismic noise increases. An optimal cross-correlation window length 

accompanies this fraction of accepted traces. In all three tests, however, the inversion 

sometimes accepts incorrect reservoir-property combinations. These combinations are 

accepted because of a normalization calculation in the trace-comparison procedure. 

7.3 Reference Data 
We generated two reference datasets to serve as proxies for real data, one 

corresponding to a gas reservoir and the other to a brine-saturated sand interval. To 

construct the datasets, we defined well-log curves; converted them to elastic curves using 

a rock-physics model; computed the proxy seismograms; and added different amounts of 

Gaussian noise to the proxy seismic data. To create well logs, we defined mineralogy 

(clay/quartz mixture), porosity, saturation, and effective pressure curves over a depth 

interval of 600–1500 m. The synthetic reservoir was 27 m thick with its top at 1475 m 

(Figure 7.1). For the section above the reservoir, the geometry and log-curve values were 

constructed using normally distributed indicator variables. After constructing the curves 
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for the gas-saturated scenario, the soft-sand rock-physics model (Dvorkin and Nur, 1996) 

translated the rock properties to elastic properties (Figure 7.2). Once we calculated the 

elastic properties from the rock-physics model, we used Gassmann (1951) fluid 

substitution to generate elastic curves for the brine-saturated case. 
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Figure 7.1. Reference well log data for the gas-reservoir and brine-sand scenarios. Elastic 

properties for the gas-saturated case are in black and cyan for the brine-saturated case. 
 

We wanted our model to be sensitive to changes in thickness, lithology, porosity, and 

saturation of the reservoir sand. Accordingly, we chose to use the soft-sand rock-physics 

transform (Dvorkin and Nur, 1996), which describes soft or unconsolidated sands in 

terms of their elastic properties. The unconsolidated nature of these reservoir rocks 

allows the pore fluid to exert measurable changes in the effective elastic properties, so 

that changes in fluid saturation should be detectable in the corresponding seismic data if 

the overlying or underlying shales are different enough in the elastic domain. If we used a 

model for stiff or consolidated sand, it would be more difficult to detect fluid changes, 

because the stiffness of the rock matrix would dominate the effective elastic properties. 
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Figure 7.2. Reference well-log data in the brine-saturated case, plotted in porosity-impedance 

space. Soft-sand model lines for 0%, 50%, and 100% clay content overlie the data points. 

After we generated elastic well-log curves, we used a P-P ray tracer to compute the 

corresponding reference seismic data. A 30 Hz, 100-sample Ricker wavelet was used at a 

4 ms sampling rate. Thickness of the reservoir and the frequency of seismic data were 

designed so that the top and bottom of the reservoir could be delineated. For both sets of 

well data (gas and wet), angle gathers were computed from 0 to 30 degrees. We stacked 

traces from 0 to 15 degrees to form the near-offset angle-stack trace and from 16 to 30 

degrees to form the far-angle stack. The inversion requires both these angle-stack traces. 

Because the well data are synthetic, they contain no noise and thus do not represent a 

realistic scenario. To introduce some variations in the seismic data, we added Gaussian 

random noise to the stacked traces in the amounts of 0.1%, 0.5%, and 1%. The 

percentage of noise was based on the energy of each trace. This was done for the 

reference seismic dataset corresponding to the gas reservoir. Figure 7.3 displays the 

proxy seismic data with 0%, 0.1%, 0.5%, and 1% noise, in which the diversion from the 

noise-free case is quite apparent.  
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Figure 7.3. Reference seismic data with 0%, 0.1%, 0.5%, and 1% noise added. Degradation of the 

signal is clearly seen as noise increases. The top of the reservoir is at 1460 ms and the bottom 
is at 1490 ms. In each frame, five near-angle stacked traces are displayed in the left half and 
five far-angle stacked traces in the right half. 

7.4 Inversion method and tests 
The inversion algorithm computes the conditional joint posterior probability 

distribution function (PDF) of the reservoir properties given the measured seismic data. 

The reservoir properties are thickness , clay content C , porosity H φ , and saturation . 

The measured seismic data in this case are the reference or proxy seismic data. The 

algorithm is designed to capture changes in the measured seismic response due to noise 

or natural variation. Additionally, it determines the ranges of underlying reservoir 

properties that can combine to produce a seismic response matching the measured 

response within some user-defined threshold. Cross-correlation is used to compare all the 

forward seismic models to each measured or proxy seismic response. The cross-

correlation function is calculated over windows around the reservoir unit in both the 

measured and modeled seismic traces. The goal is to accept a minimum number of the 

forward models with a maximum cross-correlation coefficient. Coefficients are 

normalized by the geometric mean of the energies of the two correlated traces. Three 

user-defined parameters must be determined: 1) the fraction or number of synthetics to 

wS
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accept; 2) an initial correlation threshold; and 3) the length of the cross-correlation 

window. 

We define the prior range of  as 3 to 57 m with a 6-m increment. Clay content 

ranges from 0.0 to 0.2 with an increment of 0.02. Porosity ranges from 0.10 to 0.40 with 

a 0.01 increment. Saturation varies from 0.2 to 1 with a 0.10 increment. Given this 

parameterization, the total number of forward models is 10

H

×11× 31×9 = 30690. The rock-

physics model used is the same one used to construct the reference data, the soft-sand 

model. All parameters for the rock-physics model were the same as those used for the 

reference data construction. As a result, no variability in the rock properties exists 

between the reference data and the forward models. To generate the seismic forward 

models, we computed the angle gathers and stacks over the same range as the reference 

data. The same wavelet and wavelet parameters were used. No noise was added to the 

seismic forward models. This full set of forward seismic models represents the possible 

seismic signatures given the variation in the underlying combinations of reservoir 

properties.  

 

7.4.1 Saturation test 

The first of our three sensitivity tests was a saturation-prediction trial. If this 

algorithm is to be used as a reservoir characterization tool in an exploration setting, then 

it should be able to detect fluid changes. To test this, we examine first how the inversion 

predicts the in situ conditions noiseless reference seismic data. Then we invert the data at 

the wet well to see whether different saturation conditions can be predicted. 

Values of the proxy data in the well are  = 27 m, C  = 0.10, H φ  = 0.30, and  = 

0.3. We accepted 1% of the total number of synthetics at an initial correlation threshold 

of 0.6. The cross-correlation window length was 240 ms. The predicted values from the 

full conditional posterior were  = 27 m,  = 0.12, 

wS

H C φ  = 0.3, and  = 0.2. The final, 

iterated correlation threshold was 0.9963, which indicates the prediction of the input data 

is quite good.  

wS
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The 4-D full conditional PDF cannot be displayed in its entirety because of its 

dimensionality. To visualize this PDF, a conditional form of it can be displayed by 

holding one parameter constant. For this purpose,  is held constant at 0.12. The 90C th 

percentile values of ( , , | 0.12)wP H S Cφ =  are displayed in Figure 7.4. Although a 

discontinuous surface is displayed, noticeable characteristics are apparent. First, a φ  

value of 0.3 is predicted for  values ranging from 9 to 27 m, with  ranging from 0.2 

to 0.3. A small portion of the surface sits at 

H wS

φ  = 0.31 with  = 3 m and a slightly higher 

 at 0.5. The uppermost portion outlines 

H

wS φ  values of 0.33-0.34,  = 3 m, and  = 0.8 

to 0.9. Therefore, the seismic responses for  = 9 to 27 m are quite similar for small . 

As 

H wS

H wS

φ  increases,  decreases and  increases. Even though resolution of the proxy 

seismic data was high enough, this PDF shows a trade off between  and 

H wS

H φ . 

 

 
 
Figure 7.4. Iso-probability surface for the full conditional PDF with clay content equal to 0.12. 
 

For the brine-saturated case, the measured parameters were the same as in the gas 

well, except  = 1. Inversion parameters were the same, with an acceptance of 1% of 

the total traces at an initial 0.6 correlation, and a 240-ms cross-correlation window. The 

predicted values were  = 27 m,  = 0.0, 

wS

H C φ  = 0.3, and  = 1. The final correlation 

threshold was 0.879. In Figure 7.5 are the proxy seismic data for the brine-saturated 

scenario and the full conditional PDF conditional to C  = 0.12. The most noticeable 

feature of the seismic data is the polarity reversal at 1460 ms compared to the 0% noise 

seismic data in Figure 7.6. In terms of the synthetic seismic traces used in the 

wS
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comparison, only those with  = 1 have opposite polarity at the reservoir interval under 

examination. Therefore, in the comparison stage, depending on the number of synthetic 

traces accepted, only the traces with this polarity are accepted. This results in a narrow 

range of predicted reservoir-property values present on the iso-probability surface. 

wS
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Figure 7.5. Proxy seismic data at the wet well (left). Five near- and five far-angle stacked traces 

are displayed. The posterior PDF (right) shows that a limited number of possible 
combinations or reservoir properties are likely to occur. 

 

7.4.2 Variable accepted trace fractions 

This test examines how the inversion results change as the number of accepted 

synthetic traces is varied. We show the most likely values for each of the reservoir 

properties from the posterior marginal, bivariate, trivariate, and full conditional PDFs. 

Figure 7.6 shows the most likely values for the marginal PDFs as a function of the 

fraction of synthetic traces accepted for the four noise levels. Blue corresponds to 

accepting 0.01 of the total number of synthetics and red to 0.40. The most likely values 

from the marginal PDFs for the different reservoir properties are independent from one 

another, just as they are in prior. Accordingly, the uncertainty in these values is higher 

than the uncertainty in the most likely values from any of the posterior multi-variate 

PDFs. Nonetheless, it is clear that the accuracy of the predicted values of any of the 
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reservoir properties decreases as the trace fraction increases but not in a monotonic or 

regular fashion. In terms of noise in the proxy seismic data,  predictions are most 

accurate at the 0.5% level. For C , the scatter in the results makes them difficult to 

interpret. Most likely values of porosity are most accurate for all noise levels when 5% or 

fewer of the traces are accepted. The same is true for . 
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Figure 7.6. For each of the inversion scenarios with a different fraction of accepted traces, a 

posterior marginal distribution exists for each reservoir property. In each instance, the most 
likely value from that marginal PDF is selected and plotted here versus its corresponding 
accepted trace fraction. Cold colors correspond to lower trace fractions with blue indicating a 
minimum of 0.01 and red a maximum of 0.4. Horizontal black lines indicate the value of the 
reservoir property in the well data. 

 

In Figure 7.7 are the most likely values from the bivariate PDFs. Color is the same as 

in Figure 7.6. The labels on the horizontal axes indicate the bivariate PDF from which the 

most likely value was extracted. Each reservoir parameter occurs in three of the six 

posterior PDFs. Drawing from the posterior bivariate PDFs means selecting the most 
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likely combination of reservoir properties. Accordingly, the most likely values are not 

independent from each other as they were in the marginal case. 

Accuracy of the results should decrease with increasing noise, but quantifying that 

claim is not straightforward from these results. The relationship between  and H φ  

begins to emerge, especially in the 0.1% and 0.5% noise cases, where  is over-

predicted while 

H

φ  is under-predicted. In fact, even at 1% noise, a combination of  and H

φ  can still be observed. This is seen by looking at the  and H φ  values taken from the 

-H φ  bivariate PDF. In the cases with less noise,  is under-predicted and H φ  is over-

predicted. However, predictions of C  and  lack an obvious pattern. Furthermore, a 

relationship between  and  emerges, with under-predictions of  corresponding to 

over-predictions of . For very small  values,  increases, but this happens when the 

accepted trace fraction is less than 0.05 for noise levels of 0%, 0.1%, and 0.5%.  

wS
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Figure 7.7. Most likely values from the posterior bivariate PDFs. For each noise level, three most 

likely values of the reservoir properties are possible for each accepted trace fraction. Blue 
corresponds to 0.01 fraction and red to 0.4. These most likely values are no longer 
independent from one another. The most likely combination of each reservoir-property pair 
for a given bivariate PDF was selected. The most-likely value changes as the fraction 
increases because in most cases, multiple combinations of reservoir properties is the most 
likely to occur. When this occurs, one combination is chosen at random, and often the most-
likely value will change from one inversion to another. 

Similar to the sets of most likely values from the bivariate posterior PDFs are those 

from the trivariate PDFs (Figure 7.8). As seen in the most likely values from the marginal 

and bivariate PDFs, the C  parameter is the most uncertain, given the erratic appearances 

of the plots for all noise levels. We also see more clearly the relationship between  and H

φ , in which a larger  corresponds to a smaller H φ  and smaller  to higher H φ . 

However,  predictions are scattered. When the accepted trace fraction is about 0.10, 

the best prediction of , 
wS

H φ  and  occurs, but  predictions are not always accurate. 

For these results, Figure 7.4 provides additional insight into the selection of the most 

likely values, particularly with 0% noise. As noise increases to 0.1% and 0.5%, the 

wS C
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inversion does quite well for  and H φ . However, C  and  predictions begin to 

degrade. At 1% noise,  is over-predicted and 
wS

H φ  is under-predicted for scattered C  and 

 values.  wS
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Figure 7.8. Most likely values from the posterior trivariate PDFs, in which combinations of three 
parameters are taken at a time. A relationship between thickness and porosity emerges, 
whereas predictions of clay content and saturation appear uncertain. 

 

The final set of most likely values from this test come from the full conditional 

posterior PDF (Figure 7.9). In the zero-noise case, -H φ -  combinations are quite 

accurate for accepted trace fractions of 0.05 and less. Above this,  is under-predicted 

and 

wS

H

φ  is over-predicted, while C  and  values appear to be random. When the noise 

increases to 0.1%, the optimal solution occurs at a trace fraction of 0.10. At greater 

fractions, again  is under-predicted and 

wS

H φ  is over-predicted. At a smaller fraction, φ  is 

under-predicted while  is over-predicted. At 0.5% noise, fairly accurate predictions of 

 and 
wS

H φ  occur for accepted trace fractions of less than 10%, but  and  become C wS
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scattered. By the time the noise level reaches 1%, all predictions are relatively inaccurate, 

but  is consistently over-predicted with an under-prediction of H φ . 
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Figure 7.9. Most likely values from the full conditional posterior PDF. Accurate predictions of 

thickness-porosity-saturation combinations occur for noise levels less than 1% for certain 
accepted trace fractions. 

 

Complementary to Figures 7.4-7.9 is a plot of the final correlation threshold as a 

function of the accepted trace fraction and noise level (Figure 7.10, left). Red corresponds 

to a high final threshold and blue to a smaller value. As expected, the correlation 

threshold drops as (1) the accepted trace fraction increases and (2) as the noise level 

increases. Figure 7.10 (right) displays the actual number of accepted synthetic traces as a 

function of noise level and trace fraction. This indicates how many combinations of 

synthetic reservoir models, out of 30690, were used to construct the posterior PDFs. If all 

traces were used without the acceptance/rejection criterion, computational memory 

requirements are too great to allow the numerical calculation of the likelihood function. 



CHAPTER 7: INVERSION SENSITIVITY 121

 

Accepted traces fraction

N
oi

se
 le

ve
l (

%
)

Color: Final correlation threshold

 

 

0.1 0.2 0.3 0.4

0

0.1

0.5

1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Accepted traces fraction

N
oi

se
 le

ve
l (

%
)

Color: Number of accepted traces

 

 

0.1 0.2 0.3 0.4

0

0.1

0.5

1

2000

4000

6000

8000

10000

12000

 
Figure 7.10 Final correlation values and number of synthetics accepted as a function of accepted 

trace fraction and noise level. 
 

These two figures are important to display. The left figure, showing the final iterated 

correlation value, shows how low the threshold must become to accept the given number 

of traces. If it drops too low, to approximately 0.50, the correlation may become random, 

and the posterior PDFs would be constructed from this randomness. The plot on the right 

is important because enough traces must be accepted in order for the posterior PDFs to 

contain some scatter or uncertainty. If the number is too low, the solution approaches an 

incomplete deterministic state. If too many traces are accepted, the posterior PDFs are not 

substantially changed from their prior uniform states. Therefore, the inversion did not 

eliminate enough synthetic traces, and significant uncertainty lies in the posterior PDF. 

7.4.3 Variable cross-correlation window lengths 

This final test analyzes the inversion results when the length of the cross-correlation 

window varies from 40 to 320 ms (10 to 80 samples) with an increment of 16 ms. This is 

done for all four noise levels. First, the most likely values from the posterior PDFs are 

examined. Then a few selected posterior PDFs are analyzed along with some of the 

synthetic seismic traces. Looking at the reference seismic data (Figure 7.3), the travel-

time thickness of the reservoir is 30 ms. When the cross-correlation window is defined, 

its center is located at the minimum amplitude corresponding to the top of the reservoir. 

Therefore, window durations shorter than 60 ms do not sample the lower portions of the 

reservoir. 
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The first set of results comes from the marginal most likely values. In these plots, the 

most likely value of the individual reservoir properties is plotted as a function of the 

corresponding window length. All four parameters exhibit noticeable variability as a 

function of window length and as a function of increasing noise in the seismic data. Blue 

corresponds to a 40-ms window and red to 320-ms window. 
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Figure 7.11 Marginal most likely values as function of cross-correlation window duration. Blue 
corresponds to 40 ms and red to 320 ms. 

 

Next are the most likely values that come from the bivariate PDFs (Figure 7.12). 

Color is the same as in Figure 7.11, and the bivariate from which the value was drawn is 

indicated in the labels of the horizontal axes. As the noise increases, the changes in the 

predicted properties become more scattered. In addition, within a given noise level, the 

most likely values of , , and H C φ  all change significantly, whereas  remains nearly 

constant. In the 0% noise case, it appears that , , and 
wS

H C φ  are all inaccurate. This is 
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due to the random selection of one most-likely combination. Notably, a trend appears of 

φ  decreasing with increased window length. Some combinations of these values show 

very accurate results for some windows. Furthermore, the -H φ  trade-off appears again. 

When noise reaches 0.1% to 0.5%,  is generally over-predicted and H φ  is under-

predicted. For 1% noise, the relationship is difficult to discern. 
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Figure 7.12 Most likely values selected from the six bivariate PDFs. Blue corresponds to 40 ms 
and red to 320 ms. 

 

For the predictions from the trivariate PDFs, we expect , H φ , and  to be accurate 

(Figure 7.13). However, even for 0% noise,  is incorrect until the window duration is 

about 240 ms. Overall,  is over-predicted, and 

wS

wS

H φ  is under-predicted in all noise levels, 

for most windows. Significant scatter appears for both  and  for all four noise levels.   H C
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Figure 7.13 Most-likely values from the trivariate PDFs as a function of window length. 
 

Next are the most likely values from the 4-D conditional PDF. Fairly good  and H φ  

results occur for window lengths less than 60 ms and again greater than 232 ms, with 

noticeable scatter in  and . Saturation is steadily predicted to be 1 until the window 

is >300 ms long. When noise increases to 0.1%, 

C wS

φ  and  stabilize across the window-

length axis. For 0.5%, noise, the -

H

H φ  relation holds, although it flips polarity for some 

windows. At 1%, the noise appears to take over, preventing reliable predictions. 
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Figure 7.14. Most likely reservoir-property values as a function of window length, taken from the 

full conditional posterior PDF. 

7.5 Discussion and conclusions 
The first test regarding saturation predictions revealed that the inversion is capable of 

predicting saturation differences. This result has two implications. First, if the seismic 

signature of a gas sand is substantially different (i.e., opposite polarity) than that of brine 

sand, then the inversion reliably predicts the saturation differences. Second, the inversion 

may not be able to discriminate between small saturations, but it can predict the 

combinations of , H φ , and  that result in a similar seismic response. Clay content, 

however, remains a difficult parameter to quantify even in this synthetic scenario. 
wS

The sensitivity analysis of the inversion to the fraction of accpeted matching synthetic 

traces reveals some expected results. First, the informal objective function in the 

algorithm is to accept a minimum number of synthetic traces with a maximum correlation 
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value. The posterior conditional PDF is calculated from this minimum number of 

matches. If this number is too small, the posterior PDF does not represent the statistical 

solution. Conversely, if the number is too large, then the inversion does not reduce the 

prior uniform states enough for the posterior PDF to be informative. As expected, when 

substantial noise exists in the seismic data, the inversion struggles to find enough 

matching synthetic traces that have a high correlation coefficient. If a significant amount 

of noise is present and too few traces are accepted, it is difficult to determine whether the 

accepted traces match the real trace or the noise. The inversion may operate on noisy 

seismic data. However, to accept a suitable number of traces for a reliable posterior PDF, 

the correlation threshold may have to drop to a level at which random correlations 

provide the matching criteria. Therefore, properly applying the inversion to any dataset 

will require an estimate of the noise in the seismic data to aid in determining the fraction 

of synthetic traces to accept. This noise estimation and calibration step can be performed 

at the calibration well location, assuming the noise content away from the well does not 

change drastically. 

The results from the variable cross-correlation window lengths show scatter within 

individual noise levels for all the most likely values. The explanation for this has to do 

with the cross-correlation calculation. After computing the cross-correlation function, the 

algorithm normalizes it by the geometric mean of the two input traces. The geometric 

mean is the square root of the product of the energies of the two traces (Sheriff, 1991). 

This is necessary to ensure that all the coefficients to fall between −1 and 1. Therefore, if 

one trace has a small energy, then dividing by that small number increases the observed 

correlation coefficients.  

Figure 7.15 demonstrates this effect. On the left are traces for a =27 m, C  = 0.10, H

φ  from 0.1 to 0.4, and  = 0.3.  On the right are traces with  = 27 m , = 0.10, wS H C φ  

from 0.1 to 0.4, and  = 1.  What we observe here is that for wS φ > 0.35,  = 0.3 traces 

have a distinct trough that occurs at the reservoir level. However, for  = 1, it is quite 

apparent that the energies for traces with 

wS

wS

φ > 0.3 are much less than for  = 0.3. The 

inversion accepts traces with both saturation values.  
wS
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Figure 7.15. Synthetic seismic traces with 27-m thickness, clay content of 0.10, porosity from 10 

to 40%, and saturation 0.3 on the left and 1 on the right. These traces, which differ by only 
saturation, illustrate the loss in energy in the high-porosity traces for high saturations.  

 

The scatter observed in the plots of most likely values is a result of accepting traces 

with high probability of occurring with various combinations of the reservoir properties. 

Figure 7.16 shows a 90th percentile iso-probability surface through a PDF that illustrates 

this. The -H φ -  trivariate PDF comes from the 0% noise case with a cross-correlation 

window of 184 ms. It is clear that multiple areas of the PDF lie on this iso-probability 

surface. All 

wS

φ  values are contained on this surface, as are all  values. In addition, the 

smaller  values are present, as well as the largest  value. As can be seen, randomly 

selecting a -

wS

H H

H φ -  combination from this surface provides many possible solutions.  wS
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Figure 7.16. Iso-probability surface through the thickness-porosity-saturation trivariate PDF for 

0% noise and a cross-correlation window of 184 ms. It illustrates the many combinations of 
reservoir properties that are likely to occur, including some that do not represent the in-situ 
conditions. 

 

This effect of low energy was observed in previous chapters on real data. Varying the 

cross-correlation window exacerbated the sensitivity of the inversion to this energy 

factor. When this inversion is used, the results must be monitored and iterated to prevent 

this factor from coming into play. Alternatively, a different comparison scheme, such as 

the  norm, could be implemented to avoid this situation. If this scheme is used, scaling 

the synthetic data to the real data becomes a serious issue that is avoided in the 

correlation routine. 

2L

In conclusion, the inversion is quite sensitive to the cross-correlation window 

duration for a given percentage of accepted traces. Therefore, to determine the optimal 

values for these parameters, they should be identified in a joint optimization scheme. All 

work up to this point, using both real and synthetic data, was done by experimentally 

finding these values. However, an algorithm could be defined to do this. It would likely 

come in the form of an objective function to minimize the number of matching traces, 

maximize the correlation, and minimize the window duration to speed the cross-

correlation calculation. 
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Appendix 

Guide to practitioners 
A.1 Purpose 

The purpose of this guide is to provide potential users and/or developers with a 

succinct and straightforward description of the workflow. As such, this appendix 

provides a guide for reproducibility. The steps and methods are described graphically in 

addition to supporting text. The relevant equations with comments for each workflow 

step are provided in Chapter 4. 

A.2 Prior interpretation and rock physics model 
For the inversion to run, a prior interpretation of the seismic data must demarcate the 

potential reservoir unit. Figure A.1 contains an example of this type of interpretation. 

Attribute analysis, structural or stratigraphic interpretation, or amplitude analysis are 

potential methods, already in practical use, that could provide the necessary prior 

interpretation.  

A rock physics model is necessary to relate the elastic properties to the reservoir 

properties. It is established from calibration well data, from well data in an analogous 

setting, or is assumed if no well data are present. Although calibration well data could be 

used directly in the forward problem, use of the model regularizes the forward simulation 

and extends the data beyond the ranges present in the calibration well data (Figure A.1).  
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Figure A.1. Examples of the prior interpretation and rock-physics model established from 

calibration well data. Conventional interpretation methods could be used for the prior seismic 
interpretation. If well data are not available, a rock-physics can be assumed. 

A.3 Forward problem 
The first step of two in the forward problem is to define the ranges and increments of 

the model reservoir properties for prior uniform probability distribution functions (PDFs). 

These types of distributions are used to be as least-committal as possible. The ranges can 

be determined from geologic information and inferences based on well data. The 

increments can be defined by:  (1) Directly estimating of the tolerance of the output to 

rough increments. (2) Determining the relative importance of the reservoir properties and 

assigning small increments to the most important parameters and larger values to the less 

significant ones. In this case, importance relates to how significantly a change in a 

reservoir property affects the corresponding elastic and seismic response. (3) Through an 

optimization routine that minimizes the number of combinations and assigns minimum 

increments that can be detected in the seismic data. 
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The second step in the forward problem involves the construction of three-layer 

models, in which the middle layer is the reservoir unit. Within the modeled reservoir unit, 

an exhaustive simulation of the modeled reservoir properties performed. Each model is 

converted to elastic properties, and synthetic seismic data are calculated for each model 

(Figure A.2). A convolution-based P-P ray-tracing algorithm (courtesy, Gary Mavko) 

was used throughout the chapters (Figure A.3). However, any synthetic seismogram 

algorithm could be used that appropriately models the real data. If zero-offset stack data 

from a geologically simple area are used, vertical incidence synthetic data may be 

sufficient. On the other hand, for a geologically complex area, the modeling algorithm 

may need to incorporate full-waveform effects. 
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Figure A.2. In the forward problem, an exhaustive simulation of the model reservoir parameters is 

performed in the modeled reservoir unit. The rock physics model converts these values to the 
corresponding elastic properties. 
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Figure A.3. Synthetic seismic data are calculated for each elastic-property model. Any algorithm 

to generate the synthetic data could be used as long as it includes enough wave-propagation 
effects to appropriately model the real data. 

A.4 Inverse problem 
In the inverse problem, windows are defined in the real and synthetic data around the 

potential reservoir unit (Figure A.4, left). Cross-correlation functions are calculated 

between the real traces and all the synthetic traces. After normalizing these functions by 

the geometric mean of the energies over the respective windows, the elemental cross-

correlation coefficients (n and f) are found as the maximum value in the function. The 

full-grid search then finds the global maximum coefficients (N and F).  
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Figure A.4. Cross correlation provides the means of comparing the real and synthetic seismic 

traces. A full-grid search finds the global maximum coefficients (N and F) from the elemental 
coefficients (n and f).  

After the elemental and global maxima coefficients are found, the 

acceptance/rejection criterion is implemented. The percentage of traces to accept (P) and 

the initial correlation threshold (ε) are defined (Figure A.5). To accept a given synthetic 

trace, both the near and far synthetic traces must match the real data within the 

correlation threshold. In all other instances, the synthetic traces are rejected. The model 

reservoir properties corresponding to the matching synthetic traces are used to construct 

the likelihood function. This function is non-parametric, and its shape and form are 

determined by the values P and ε. 
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Figure A.5. The user defines the percentage (P) of synthetic traces to accept and the correlation 

threshold (ε). Both the near and far synthetic traces must meet or exceed the threshold in for 
them to be accepted.  

A.5 Results and analysis 
After the posterior distributions are calculated, the results at the calibration well 

should be analyzed to detect trends and patterns (Figure A.6). If no calibration well is 

present, then pseudo wells can be examined (see Chapter 7) to train the user to identify 

any trends. If the results do not match the calibration data, the prior ranges and 

increments can be modified. In addition P, ε, and the correlation-window length can be 

updated. Last, quality control can be performed by performing blind tests if additional 

well data are present. 
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Figure A.6. After performing the inversion, the posterior PDFs at the calibration well should be 

analyzed to identify any trends present. If trends appear, then the presence of them can be 
determined at locations away from the well data. 
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