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Abstract 

 

 

This dissertation focuses on the link between seismic attributes and reservoir 

properties like lithology, porosity, and pore-fluid saturation.  The key contribution of 

this dissertation is a novel inversion technique, which combines rock physics and 

multiple-point geostatistics.  The inversion of seismic data is only one particular 

application of the technique. 

In general, seismic attributes are all the information that can be obtained from 

seismic data.  Using statistical rock-physics, the type of seismic attributes that are 

direct functions (analytically defined) of the elastic properties, can be 

probabilistically transformed sample-by-sample, independently one of each other, 

into reservoir properties.  For these wavelet-independent seismic attributes, the 

wavelet or scale effects are removed during calculation; hence, they can be 

interpreted as the response from a well-localized reservoir zone. 

In contrast, wavelet-dependent seismic attributes directly describe some 

characteristic of the seismic trace (e.g. amplitude, shape); thus, the wave-propagation 

effects must be included in any quantitative interpretation attempt.  Elastic 

properties and their spatial arrangement (geometric distribution) must be considered.  

Fundamentally, the interpretation of wavelet-dependent attributes is an inverse 

problem with non-unique solution. 

This dissertation presents contributions to the understating and interpretation of 

both types of seismic attributes.  Converted P-to-S elastic impedance (PSEI) as a 
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wavelet-independent attribute is introduced.  The benefits of using PSEI are 

discussed, particularly in situations that the key elastic properties, needed for 

discriminating lithology and/or pore-fluids, are not captured with enough accuracy 

by attributes derived from P-to-P seismic data. 

A novel inversion technique for wavelet-dependent attributes, which combines 

rock physics and multiple-point geostatistics, is presented.  The rock-physics 

component makes it possible to predict situations not sampled by log data.  The 

multiple-point geostatistics component uses geological knowledge to guide the 

search for solutions.  The method can be extended to satisfy multiple physical 

constraints simultaneously.  Therefore, the solutions can be conditioned with 

different types of geophysical data.  This inversion technique, which is the primary 

contribution of this dissertation, lays the foundation for innovative, multi-physics, 

multipoint inversions of geophysical data. 
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Chapter 1  

Introduction 
 

“The important thing is not to stop questioning.  Curiosity has its own 

reason for existing.  One cannot help but be in awe when he 

contemplates the mysteries of eternity, of life, of the marvelous structure 

of reality.  It is enough if one tries merely to comprehend a little of this 

mystery every day.  Never lose a holy curiosity” (Albert Einstein) 

 

1.1 Motivation and objectives 

The final goal of seismic attribute interpretation is to predict reservoir properties 

such as lithology, porosity, and fluid saturation from seismic data.  Rock physics has 

been successful establishing point-by-point links between reservoir properties and 

their elastic responses.  However, in real applications it is nearly impossible to find a 

unique relationship between seismic response and reservoir properties.  One could 

argue that conventional rock physics does not apply at the seismic scale.  Among the 

causes of that non-uniqueness, the earth’s heterogeneity and complexity, and the 

limited resolution of the seismic waves are indubitably among the most important. 

Attempting to list all the seismic attributes that have been used, or even just the 

ones that most of the commercial seismic-interpretation software can compute, is a 

difficult task because of the large number and non-standardized names given to them.  
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Various ways to group or classify seismic attributes have been presented (e.g. Brown, 

1996; Taner, 2001) based on different criteria, including the way attributes are 

computed or the seismic-data domain in which they are calculated.  I propose to 

classify the seismic attributes in two groups: wavelet-independent and wavelet-

dependent.  The motivation of this form of grouping is that, in my opinion, the 

methods to interpret each one must be different. 

The wavelet-independent seismic attributes are those seismic attributes that can 

be interpreted as the response of a well-defined reservoir range of times or depths.  A 

distinctive characteristic of this category of attributes is that wavelet or scale effects 

have been removed during the attributes’ calculation.  Acoustic impedance inverted 

from a seismic trace is an example of this type of attribute, given that an impedance 

value is obtained for each sample of the input seismic traces.  The uncertainty in the 

elastic-to-reservoir-properties transformations has to be considered when wavelet-

independent seismic attributes are interpreted; that is, the elastic-reservoir-properties 

equivalence must be established not with single values, but with distributions of 

values.  One of the common pitfalls in seismic-attribute interpretation is to 

oversimplify the problem, disregarding the variability of the elastic response of 

“similar” reservoir rocks and fluids observed in nature.  Statistical rock-physics 

methods (Mukerji et al., 2001) have been developed as a way to account for the 

uncertainty due to the multi-valued point-by-point relations between elastic (in the 

seismic case) and reservoir properties. 

The wavelet-dependent seismic attributes are the seismic attributes that directly 

describe some characteristic of the seismic trace as its amplitudes or shape in an 

interval; hence, the wave-propagation effects must be included in any quantitative 

interpretation attempt.  This means that not only the elastic properties of rocks, but 

also how they are spatially organized (geometric distribution) must be considered.  

Fundamentally, the interpretation of the wavelet-dependent attributes is an inverse 

problem, the solutions of which are reservoir property models with seismic responses 

that match the seismic data within a tolerance range.  To compute the seismic 

response of the reservoir models we must first transform it into elastic properties; 
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thus, defining a reservoir-elastic-properties transformation is a step implicitly 

included in the inversion process. 

This dissertation presents contributions to the understating and interpretation of 

both types of seismic attributes.  The converted P-to-S elastic impedance (PSEI) as a 

wavelet-independent attribute is introduced.  I discuss the benefits of using PSEI 

when the intrinsic, key elastic rock properties, needed for discriminating lithology 

and/or pore-fluids, are not captured with enough accuracy by attributes derived from 

reflection P-to-P seismic data. 

The key innovation of this dissertation is a novel inversion technique related to 

wavelet-dependent attributes, which combines rock physics and multiple-point 

geostatistics.  Understanding and including rock physics at the beginning of the 

process makes it possible to predict situations not sampled by log data, and to 

attempt to answer “What if?” questions.  Through the multiple-point geostatistics 

component, the geological knowledge is incorporated in the search for solutions.  

Moreover, the method can be extended to satisfy multiple physical constraints 

simultaneously; in other words, the solutions can be conditioned with different types 

of geophysical data.  My principal references for developing the proposed inversion 

technique included the statistical rock-physics principles and methods introduced by 

Mukerji et al. (2001), the value of rock physics for establishing links between elastic 

and reservoir properties concisely presented in Mavko et al. (1998), Tarantola’s 

ideas about the stochastic formulation of the geophysical inverse problem (Tarantola, 

2005), the links between depositional environments and rock physics explored by 

Avseth (2000), Gutierrez (2001), and Florez (2005), Takahashi’s (2000) results about 

scale effects in rock property estimation, the proposal by Bortoli et al. (1993) and 

Haas and Dubrule (1994) for using geostatistics for seismic inversion, and the 

multiple-point geostatistics concepts and algorithms presented by Strebelle (2000), 

Arpat (2005) and Zhang (2006). 
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1.2 Chapter Description 

Chapter 2 introduces a formulation of the “elastic impedance” of incidence-

angle-dependent P-to-S converted waves (P-to-S Elastic Impedance, or PSEI), and 

illustrates how changes in fluid saturation and lithology are translated into well-

defined trajectories when the PSEI for two incident angles are plotted versus each 

other. 

Chapter 3 presents two practical, statistical rock-physics applications of PSEI 

using well-log data.  First, it shows how PSEI better discriminates lithology in clastic 

sequences with small acoustic impedance (Ip) contrasts.  Second, it shows how, 

through PSEI, it is possible to distinguish fizz water from commercial gas 

concentrations. 

Chapter 4 provides a method for obtaining PSEI from P-to-S seismic data using 

PP stratigraphic inversion software, and discusses the validity of some of the 

approximations assumed.  Three examples with synthetic are presented, to show the 

feasibility of obtaining PSEI values using the same principles as those of PP data 

inversion.  In the first example, PS synthetic traces from a set of three-layer models 

are inverted to obtain PSEI using a probabilistic approach.  The second and third 

synthetic examples illustrate the proposed methodology to derive PSEI from PS data 

using commercial PP stratigraphic-inversion software.  The method is based on 

generating a pseudo-velocity and a pseudo-density log, sampled at pseudo-depth 

units.  The technique exploits the similar functional expression of acoustic 

impedance and PSEI.  Rather than developing new inversion algorithms, the 

objective of this chapter is to show the viability of a practical procedure to compute 

PSEI from PS seismic data. 

Chapter 5, which I consider the most important of this dissertation, introduces a 

new inversion technique that combines rock physics and multiple-point geostatistics 

in a Bayesian framework.  I present the proposed method for inverting seismic data 

in reservoir characterization situations, but in general, it can be applied to any 

inverse problem that can be approximated as a series of unidimensional forward-

modeling operators.  The solutions given by the inversion technique proposed are 
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multiple realizations of spatial distributions of groups consistent with the available 

well data, seismic data, and the geological interpretation.  The method can be 

extended to satisfy multiple physical constraints simultaneously; in other words, the 

solutions can be conditioned with different types of geophysical data. 

Chapter 6 shows and analyzes the results of a set of tests applied to the proposed 

inversion techniques.  Synthetic, normal-incidence seismic (acoustic) data is inverted 

to predict the spatial arrangement of groups in a reservoir.  For all tests, the model 

itself is clearly depicted by the zones with high values in the computed probability 

maps.  The models used are 2D cross-sections extracted from a modified version of 

the Stanford VI synthetic reservoir, created by the geostatistics group (Petroleum 

Engineering department, Stanford University). 

Finally, Chapter 7 presents the first inversion of real seismic data using the 

proposed technique, demonstrating its applicability to real situations.  The data used 

was provided by Chevron.  The rocks in the studied reservoir were deposited in a 

clastic marine environment located on the continental slope, where turbidites are the 

main type of reservoir rock.  The way in which the implemented algorithms handle 

the common situation of data with different sampling intervals is also described in 

the last chapter. 

 



 

 
 
 
Chapter 2  

Converted P-to-S waves “elastic 
impedance” 

 

“All truths are easy to understand once they are discovered; the 

point is to discover them.”  (Galileo Galilei) 

 

2.1 Abstract 

In this chapter, a formulation of the “elastic impedance” of incidence-angle-

dependent P-to-S (PS) converted waves (P-to-S Elastic Impedance, or PSEI) is 

presented.  The main assumptions for PSEI derivation are the validity of the 

convolutional model for PS converted waves and weak contrast between layers.  As 

is shown, for an analytically defined angle, PSEI gives a direct density estimator.  

However, as is demonstrated, obtaining in practice a single density value using 

seismically derived PSEI is a very difficult task, principally because of the precision 

required in the incidence or reflected angle.  Moreover, the validity of the density 

derivation from PSEI can be compromised by inexact knowledge of the ratio 

between shear and compressional velocities (Vs/Vp), noise in seismic data, 

processing artifacts, and imperfections of PS seismic inversion to obtain PSEI.  

Nevertheless, these facts only limit the possibility of deriving absolute values of 

density.  They do not preclude the potential use of PSEI for discriminating between 
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reservoir conditions where density is the key elastic property.  In other words, though 

it will be difficult to estimate directly absolute densities through PSEI, it will still be 

possible to classify based on relative density variations.  Finally, how changes in 

fluid saturation and lithology are translated into well-defined trajectories when the 

PSEI for two incident angles are plotted versus each other is illustrated. 

2.2 Introduction 

In some hydrocarbon exploration and production situations, attributes derived 

from P-to-P reflection seismic data (PP) do not capture with enough accuracy the key 

elastic rock properties for identifying the reservoir lithology, pore fluids, and/or 

pressure-temperature conditions.  Converted P-to-S (PS) waves have been proposed 

and used as a source of valuable information in those instances.  Stewart et al. (2003) 

summarize a broad spectrum of successful applications of PS converted waves, from 

imaging improvements to lithology estimation, fluid description, and reservoir 

monitoring. 

Different approaches have been presented for using PS waves to obtain 

information about reservoir properties.  Some techniques aim to take advantage of 

PS reflectivity (Rps) variations as a function of the incidence angle, either through 

weighted stacking methods (Larsen et al., 1999; Kelly et al., 2000; Margrave et al., 

2001; Veire et al., 2001), or using Rps approximations for applying the well-

established PP amplitude versus offset (AVO) type of analysis (Engelmark, 2000; 

González, et al., 2000; Jin, et al., 2000; Wu, 2000; Zhu, et al., 2000; Ramos and 

Castagna, 2001).  All those reflectivity-based methods are particularly useful for 

qualitative analysis or for analyzing a specific seismic reflection. 

Another group of techniques aims to compute elastic properties at every depth or 

time sampling interval.  Mallick (2001) describes a procedure for prestack waveform 

inversion of multi-component seismic data (vertical and in-line components) to 

obtain compressional-wave velocity (Vp), density (ρ), and Poisson’s ratio, using 

genetic algorithms.  This may be one of the most complete approaches, but it is also 

computationally very expensive.  Moreover, obtaining the values of the elastic 
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properties is not the primary goal in most real cases.  On the contrary, the main 

objective is commonly limited to discriminating between variations of a-priori 

defined groups of reservoir properties.  Valenciano and Michelena (2000) present a 

methodology to invert poststack PS-converted-wave data, linearizing Rps.  The 

linearization is done in a way that the derived expression is functionally similar to 

the PP reflectivity (Rpp); therefore, pseudo-S-wave impedance can be obtained 

through conventional stratigraphic inversion of PS data.  They combine PP and the 

proposed pseudo-S-wave impedance to obtain an estimation of reservoir-rock density.  

Landro et al. (1999) derive an expression for a quantity that they name “shear-wave 

elastic impedance” (SEI), assuming the validity of the convolutional model for non-

normal incidence angle, weak elastic contrast, and small incidence angles.  Duffant 

et al. (2000) extract SEI from North Sea data and show how instantaneous Vp/Vs 

can be obtained by combining SEI and PP elastic impedance.  As can be noticed, the 

PS data-inversion methods referenced are based on linear approximations of Rps, 

and their authors propose to use the results combined with some type of PP data 

inversion. 

In this chapter, the derivation of PS elastic impedance (PSEI) is presented and 

some properties of this seismic attribute are analyzed.  PSEI can be a decisive 

attribute for solving reservoir-property discrimination problems where density 

contains most of the information.  Unlike SEI, PSEI does not have the small-angle 

restriction, a fact that opens a series of new possibilities for identifying reservoir 

characteristics with partial PS stack data (with a limited range of incidence angles).  

Although the work of Duffant et al. (2000) suggests the possible use of a nonlinear 

approximation of Rps for SEI derivation, this chapter shows additionally that it is 

theoretically possible to obtain a direct estimation of reservoir-rock densities from 

PSEI, though this is a very difficult task in practice.  Finally, how changes in fluid 

saturations and lithology are reflected as consistent trajectories when PSEI for two 

incident angles are plotted versus each other is illustrated. 
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2.3 P-to-S “elastic impedance” derivation 

In a way similar to how Mukerji et al. (1998) and Connolly (1999) derived the P-

to-P (PP) “elastic impedance” (EI), an analytical expression for the P-to-S “elastic 

impedance” (PSEI) was obtained.  The term elastic is used not in the sense of full 

waveform inversion, but to mean inversion for different offsets. 

The normal-incidence reflectivity of P waves, Rpp(0), for relative small changes 

of elastic properties across the interface between two isotropic and homogenous half-

spaces, can be written as follows (e.g. Aki and Richards, 1980): 
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Subindices 1 and 2 reference the upper and lower media properties respectively.  

Then the normal-incidence P impedance, or acoustic impedance, can be written as 

follows: 
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In a similar way, assuming the validity of the convolutional model for non-zero 

and small incidence angles, and weak contrast between layers, the “elastic 

impedance” is defined as follows (Connolly, 1999): 
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and θp is the incidence angle as defined in Figure 2.1. 
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Figure 2.1: Ray representation of incident P and resulting reflected P and S waves. 

 

Equivalently, the reflectivity for PS waves as a function of the reflected (S-wave) 

angle, assuming weak contrast and following the notation illustrated in Figure 1 

(positive offsets), can be written as follows (Aki and Richards, 1980): 
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  (2.6) 

Rigorously, the angle used in equation 2.6 is the average between the S-wave 

reflected and transmitted angles.  However, it can be taken as the reflected S-wave 

angle because of the assumed weak contrast between the elastic properties of the 

layers. 

Solving an integral similar to equation 2.3, the elastic impedance for P-to-S 

converted waves is given by 
baVs)s(PSEI)s(Ips ρ=θ=θ ,     (2.7) 

with 
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K

stana 222 θ−θ−−θθ= ,   (2.8) 
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K

stan4b 222 θ−θ−θθ= .    (2.9) 

K is the average Vs/Vp (constant).  It must be assumed constant in order to take 
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it outside the reflectivity integration.  In practice, K is commonly calculated using 

the averages (between layers) of Vs and Vp. 

Figure 2.2 displays the values of the exponents a and b as functions of reflected 

angle, corresponding to negative offsets (or angles) for two different values of K (0.4 

and 0.5).  Figure 2.2 illustrates that for a certain reflected angle (θsd), the exponent of 

Vs (b) is zero, while the ρ exponent (a) is one; hence PSEI precisely gives the 

density values.  The algebra to derive the analytical expression for θsd is presented 

below.  The idea is to find the non-zero angle at which the exponent b is equal to 

zero; from equation 2.9, that is, 

0sinKcossin sd
22

sdsd
2 =θ−θ−θ ,    (2.10) 

sdtanK θ= .     (2.11) 

Then, the angle θsd is given by 

( )Karctansd =θ .    (2.12) 

Using this analytically derived value of θsd in equation 2.8, for negative offsets, 

yields a equal to one.  Therefore, 

ρ=ρ=θ 01
sd Vs)(PSEI .    (2.13) 
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Figure 2.2:  Values of Vs (a) and ρ (b) exponents in the PSEI definition as a 

function of reflection angle (θs in Figure 2.1) for K=0.4 (left) and K=0.5 (right).  
In both plots, the magenta star indicates the reflection angle at which PSEI gives 
the density. 
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PSEI can also be defined as a function of the incidence (P-wave) angle.  Simple 

algebraic calculations using Snell’s law, i.e. Vp sinθp = Vs sinθs, lead to the result 

that equations 2.6 to 2.13 can be rewritten as follows: 

.
sV

Vspsin
sV
pVpcos2psin2

psin
sV
pVpcospsin

sV
pV

2
1

psin
sV
pV

sV
pV

psin)p(Rps

2
2

2

2
2

2
2

2
2

⎥
⎥

⎦

⎤Δ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
θ−⎟

⎠

⎞
⎜
⎝

⎛θ−θ−

⎢
⎢

⎣

⎡
−

ρ
ρΔ

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
θ−⎟

⎠

⎞
⎜
⎝

⎛θ+θ−⎟
⎠

⎞
⎜
⎝

⎛

θ−⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛

θ−≈θ

(2.14) 

Then, 
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with 
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Finally, the incidence angle at which PSEI gives a direct estimation of density is 

given by: 

( )K
1arctanpd =θ ,    (2.18) 

ρ=θ )(PSEI pd .    (2.19) 

Figure 2.3 shows the behavior of exponents c and d as a function of incidence 

angle, indicating the angle (θpd) at which the PSEI exponent of the Vs term is zero, 

and the exponent of density is one.  It can be noticed that at near offsets or small 

angles, Vs and ρ values have a similar contribution to PSEI.  On the other hand, for 

mid-to-large offsets, there is a decoupling between Vs and ρ, a fact that can utilized 

for discriminating different reservoir properties.  Note that only the constant K 
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determines the angle at which the effect is maximized.  An analogous observation 

was discussed by Wu (2000), concerning the reflectivity of converted waves for a 

particular AVO case (type III). 
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Figure 2.3:  Values of the Values of Vs (a) and ρ (b) of the PSEI definition as a 

function of incidence angle (θp in Figure 2.1) for K=0.4 (left) and K=0.5 (right).  
In both plots, the magenta star indicates the incidence angle at which PSEI gives 
the density. 

 

Even though PSEI for the angle θpd defined in equation 2.18 gives a density 

estimation, it is very difficult to accomplish this task in practice, as is illustrated in 

the following example.  Figure 2.4 compares a real density log with densities derived 

from PSEI at different angles.  In this particular case, the angle at which PSEI(θpd) 

equals ρ is 68.2 degrees.  As Figure 2.4 reveals, for θpd the density is exactly 

reproduced.  However, small variations in the angle used for the calculation 

introduce a significant error in the estimated density.  This result can be explained by 

the behavior of the PSEI Vs and ρ exponents illustrated in Figure 2.3.  The slopes of 

the c and d exponents are high near the θpd value; hence, in the vicinity of θpd, small 

variations in the angle significantly change the c and d values.  In addition to the 

precision required in the incidence angle, the validity of density derivation from 

PSEI can be compromised due to the approximate knowledge of Vs/Vp, noise in the 

seismic data, possible processing artifacts, and imperfections of PS seismic inversion 

to obtain PSEI.  Nevertheless, these facts limit only the derivation of absolute density 
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values.  They do not preclude the potential use of PSEI to discriminate between 

reservoir situations where density is the key elastic property. 
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Figure 2.4:  Density values from well logs (red lines) and calculated with the PSEI 

formula at different incidence angles: (from left to right) -68.2 (θpd), -69, and -66 
degrees. 

 

As was mentioned before, knowing the precise values of an elastic property is 

not necessarily the main goal for using seismic data.  It is usually more important to 

be able to understand and predict the behavior of elastic properties, or ultimately a 

seismic attribute, resulting from changes in reservoir properties.  Rock-physics 

models have been developed to establish that link between elastic and reservoir 

properties.  Consequently, observing the behavior of rock-physics models in the 

PSEI domain gives the opportunity to predict how PSEI will respond to some 

reservoir changes, such as lithology and saturations. 

Figure 2.5 presents plots of real log values color coded by the volume of shale in 

density-Vp and PSEI(-10)-PSEI(-50) planes.  Moreover, contours of values 

calculated with Gassmann’s equations are included, simulating the substitution of the 

original water in the sands by three different homogeneous water-gas mixtures.  

Modified (critical porosity) Hashin-Shtrikman curves (mHSU) for mixtures of 
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quartz-gas (Qz-gas) and quartz-brine (Qz-Bri) are also plotted in each graph, with an 

arrow indicating the diagenesis or depth trend (Avseth, 2000).  As can be seen in 

Figure 2.5, mHSU for Qz-Bri fits the points corresponding to clean, fully water-

saturated sands.  Likewise, mHSU for Qz-Gas passes over the contours calculated 

with Gassmann for the fully gas-saturated sands.  It also can be noticed how the 

cloud of points is distributed as an inverted V, from clean sandstones to pure shale 

going through the mixture; hence, data points seem to behave as predicted by the 

bimodal-mixture model (e.g. Dvorkin and Gutierrez, 2001). 

Besides the mentioned expected data-model fits, Figure 2.5 illustrates two 

important new results.  In the PSEI(-10)-PSEI(-50) plane, changes in water-gas 

saturations are translated in clear trajectories; i.e. the points move monotonically in 

well-defined directions.  Furthermore, the values of PSEI increase almost linearly as 

diagenesis effects increase.  These new observations indubitably show the potential 

of PSEI for predicting lithology and identifying partial gas saturation, which are two 

important problems in the hydrocarbon exploration context. 
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Figure 2.5:  Rho-Vp and PSEI(-10)-PSEI(-50) plots.  Points are well log values, 

color-coded with the volume of shale.  Contours correspond to the sands with 
Sw=0.8 (black), 0.5 (green), 0 (red) simulated with Gassmann.  mUHS: modified 
Hashin-Shtrikman upper curve for Quartz-Gas (magenta) and Quartz-Brine 
(cyan).  Black lines indicate the apparent lithology change trend (similar to the 
bimodal-mixture model). 
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2.4 Conclusions 

In this chapter a formulation of P-to-S “elastic impedance” (PSEI) was presented.  

The theoretical derivation assumes the validity of the convolutional model for PS 

converted waves and weak contrast between the elastic properties across the 

reflecting interface.  The asymmetric contribution of Vs and ρ on PSEI can be 

exploited in discriminating different reservoir properties.  This decoupling between 

the roles of Vs and ρ gives rise to clear trajectories in the PSEI(θ1)-PSEI(θ2) plane 

for changes in lithology and water-gas saturations; i.e. the points move 

monotonically in well-defined directions.  Using PSEI for two different angles (e.g., 

corresponding to near and far offsets) can contain enough information for identifying 

the reservoir property of interest.  Consequently, the difficulty of matching PP and 

PS reflections is avoided. 

Although the theoretical value of the angle at which PSEI translates to a direct 

density value was derived, in practice it will be difficult to estimate densities directly 

from PSEI.  However, this fact limits only the possibility of obtaining absolute 

density values.  It does not prevent the potential use of PSEI for discriminating 

between reservoir situations where density is the key elastic property. 

 



 

 
 
 
Chapter 3  

PSEI for identifying lithology and 
partial gas saturation 

 

“The ideal reasoner, he remarked, would, when he had once been shown a 

single fact in all its bearings, deduce from it not only all the chain of events 

which led up to it but also all the results which would follow from it” 

(Sherlock Holmes, in "The Five Orange Pips," by Sir Arthur Conan Doyle) 

 

3.1 Abstract 

The use of P-to-S (PS) converted waves has been proposed as a possible solution 

for the problems of seismically discriminating lithologies with similar acoustic 

impedances and identifying partial gas saturations.  For example, Engelmark (2000) 

shows how in many Tertiary clastic reservoirs, PS seismic data can be used to 

differentiate between shale and sand.  Wu (2000) and Zhu et al. (2000) show the 

feasibility of using PS reflectivity for distinguishing fizz water from commercial gas.  

In both mentioned situations, the elastic property that carries the information for 

distinguishing lithology or partial gas saturation is the density; hence the difficulty 

when using only PP seismic data.  Attempting to extract information about rock 

density from amplitude-versus-offset (AVO) analysis or conventional seismic 

inversion has not always been a successful approach, because of limitations in the 
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data quality and the type of processing required.  The effect of density on P-wave 

data is small compared with the compressional and shear wave velocities (Vp and 

Vs) contributions. 

In this chapter, two practical applications of the PS elastic impedance (PSEI) 

using well-log data are presented.  First, how PSEI better discriminates lithology in 

clastic sequences with small acoustic impedance (Ip) contrast is shown.  Second, 

how through PSEI it is possible to distinguish fizz water from commercial gas 

concentrations is shown.  Statistical rock-physics methods were applied to reach 

these conclusions and to compare PSEI with a group of PP attributes: λ, μ, ρλ, ρμ, 

and EI (where λ and μ are the Lamé constants, and EI is the PP elastic impedance).  

Although the absolute values of the results are valid only for the analyzed wells, the 

idea of using PSEI for discriminating lithology and partial gas saturations can be 

extrapolated to situations where density is the key elastic property.  The 

methodology presented in this chapter is completely general, and it is a way to do 

feasibility studies.  Using only well-log data and rock physics before working with 

seismic information makes it possible to predict, in a relatively fast way, whether the 

elastic properties in the study area respond to changes in the reservoir properties of 

interest. 

3.2 Introduction 

Identifying lithology and distinguishing between fizz water and commercial gas 

are two specific problems that in many cases cannot be solved with only P-to-P (PP) 

seismic information.  The phenomenon of sand-shale crossover with depth can give 

rise to significant overlap in acoustic impedance (Ip), making it difficult to 

discriminate sand from shale using PP data alone.  Attempting to differentiate the 

seismic response of sands with low gas saturation (fizz water) from higher gas 

concentrations is difficult.  The abrupt reduction in P-wave velocity (Vp) with the 

first few percent of gas controls the seismic response.  Therefore, usually only the 

presence of gas, but not the saturation, can be detected with PP seismic.  This well 

known physical phenomena can be modeled by Gassmann’s equations, and was 
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documented by Domenico in 1976.  In contrast, density (ρ) varies more gradually 

and linearly with gas saturation, while S-wave velocity (Vs) does not change much.  

As noted by Berryman et al. (2002), the linear behavior of ρ with saturation makes 

seismic attributes that are closely related to density useful proxies for estimating gas 

saturation.  Attempting to extract and use information about rock density from AVO 

analysis or inversion has not been a successfully robust approach in many cases 

because of limitations in data quality and the type of processing required. 

The use of P-to-S (PS) converted waves has been suggested as a source of 

additional information for discriminating lithology with low impedance contrast (e.g. 

Engelmark, 2000), and for distinguishing high versus low gas saturation (Wu, 2000 

and Zhu et al., 2000).  Those works propose using PP and/or PS reflectivity (Rpp, 

Rps), which are interface properties. 

This chapter, using well-log data, shows how exploiting the PS AVO behavior, 

by combining near-offset and mid-to-far offset PSEI, it is possible to discriminate 

between lithologies with low Ip contrast and to distinguish fizz water from 

commercial gas concentrations.  Using statistical rock-physics methods, the 

classification success ratio of PSEI with the classification success ratio of a group of 

intervallic PP attributes is compared.  As is shown, using PSEI for near and mid-to-

far offsets simultaneously dramatically increases the probabilities of seismically 

differentiating between sand and shale with similar Ip and of discriminating between 

areas with high and low gas saturations.  Obviously, the computed success ratio 

values are valid only for the analyzed wells.  However, the idea of using PSEI for 

discriminating lithology and partial gas saturations can be extrapolated to situations 

where density is the key elastic property. 

3.3 Lithology discrimination 

Lithology identification using PP seismic data is a common problem in shallow 

and not-well consolidated sequences of clastic sediments.  The main reasons for the 

difficulty of identifying sand and shale are the overlap in acoustic impedance, small 

Poison’s ratio differences, and acquisition constraints, such as limited angles 
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(Engelmark, 2000).  Therefore, not only is it hard to identify lithology with Ip, but 

also attempting to use the changes of amplitudes with offsets (AVO) is not 

necessarily a solution.  On the other hand, in those types of reservoirs, the densities 

of sand and shale are commonly different; hence, PS seismic data, and PSEI in 

particular, is a source of information to be considered.  As was showed in the 

previous chapter, PSEI is closely linked to density. 

To compare PSEI with other PP seismic attributes for discriminating lithology in 

reservoirs with low Ip contrast, the statistical rock physics methods of Mukerji et al. 

(2001) and Avseth et al. (2005) were adapted and applied to a set of real well-log 

data.  Three lithologic groups were defined a-priori: sand, shale, and lignite.  The 

lignite group was included because of its very distinctive characteristics of thin 

layers with very low densities.  Below, the main steps of the applied statistical rock-

physics method, obtaining estimates of the uncertainty for discriminating between 

the three a-priori defined groups in a reference well are described.  Then, for 

validation purposes, lithology is predicted in a second well, located 40 kilometers 

from the reference well, using the PSEI-computed well logs.  The Bayesian 

classification success rate is analyzed and discussed. 

3.3.1 Feasibility analysis: Statistical rock physics 

The applied methodology, based on the statistical rock-physics methods of 

Mukerji et al. (2001) and Avseth et al. (2005), is summarized in Figure 3.1.  It 

basically consists of the following steps:  First, a well with good-quality sonic and 

density logs is selected as the reference well.  The logs are classified into the groups 

of interest (e.g. common lithology, pore fluids, etc.).  This can be done by defining 

threshold values for some logs, or by using well-test data.  Rock-physics models can 

be used to extend the well-log observations, i.e. extending the training data, when an 

expected group in the study area was not sampled by the logs.  From each group 

independently, correlated Monte-Carlo (CMC) simulations are drawn for Vp, Vs, 

and ρ.  These values are used to calculate the seismic attributes, i.e. any observable 

signature that can be extracted from the seismic data.  Then, kernel-based, non-
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parametric, probability-density estimation is used to obtain the class-conditioned 

probability-density functions (pdfs), that is, the conditional pdfs for each group.  

Based on the estimated pdfs, the best attribute or combination of attributes for 

discriminating between the defined groups can be selected, either by simple visual 

inspection or by classification success ratio analysis (e.g. Bayesian confusion 

matrices, discriminant analysis, etc.). 

 

Number of data points augmentation: 
correlated Monte Carlo (Vp, Vs, Rho)

Well logs (editing, validation): Vp, Vs, RhoWell logs (editing, validation): Vp, Vs, Rho

Classification success analysis
(prob. Plots, Bayesian confusion matrix)

Attributes calculation:
λ−μ, ρλ−ρμ, Ip-EI(30), PSEI(10)-PSEI(50)

Attributes calculation:
λ−μ, ρλ−ρμ, Ip-EI(30), PSEI(10)-PSEI(50)

A-priori groups definition (petrophysical information)
shale, sand, lignite

A-priori groups definition (petrophysical information)
shale, sand, lignite

 
Figure 3.1:  Flowchart of the methodology applied to compare the capability of 

discriminating lithologies between a set of pairs of attributes. 

 

Only pairs of intervallic seismic attributes with well-established physical 

meaning were analyzed: λρ - μρ (Goodway et al., 1997), λ - μ (Gray, 2002), Ip - 

EI(30), and PSEI(10) - PSEI(50).  λ and μ are Lame's parameters, Ip is the acoustic 

impedance, EI(30) is the PP elastic impedance for 30 degrees (Connolly, 1998, 1999; 

Mukerji et al., 1998) and PSEI(10) and PSEI(50) are PS elastic impedances 

(presented in the previous chapter) for incidence angles of 10o and 50o respectively.  

The first three pairs of attributes can be obtained from PP seismic data, and with 

them, PP AVO variations are included in the analysis.  All these attributes are 

analytically defined; hence, they can be calculated with Vp, Vs, and ρ log values, as 

well as extracted from the seismic data. 
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Well-log editing 

Before attempting to assign a group indicator to every sampled depth, the 

consistency of information between logs needs to be checked, to clean the data and 

remove bad measurements.  The consistency review was based on two logs: neutron 

porosity (NPHI) and density porosity (DPHI).  For the studied well, shale (mainly 

clays) is expected to show high gamma-ray (GR) log values and greater NPHI than 

DPHI, due to the trapped water in clay minerals.  On the other hand, in the clean 

sands NPHI and DPHI logs must be similar.  The third a-priori group, lignite, is a 

low-density hydrogenous medium with high carbon content; therefore, NPHI 

response must be high even in formations containing little water (Hearst et al., 2000).  

Points that did not satisfy any of those criteria or corresponded to depths with high 

variations in the caliper log were discarded.  Figure 3.2 shows logs of the reference 

well before and after editing. 
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Figure 3.2:  Log data of the reference well before (gray) and after (blue) editing. 

 

Group definition 

The criteria for assigning a group indicator (categorical variable) to each depth 

point was defined in terms of cutoff values of gamma-ray (GR) and density (ρ) logs, 

as indicated in Table 3.1.  Figure 3.3 shows some of the edited logs of the reference 

well indicating the a-priori assigned lithologic group, viz. sand, shale, or lignite.  
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Figure 3.4 presents histograms of Vp, Vs, ρ, and Ip calculated for each defined group.  

Although the Vp, Vs, and ρ distributions of sand and shale show certain separations, 

the overlap in Ip is remarkable.  This is not a peculiarity of the studied area; in fact, it 

is a common situation in relatively shallow clastic reservoirs.  At shallow depths, 

sands usually have smaller Ip than shale.  With increasing depth, there is a crossover, 

and Ip for sands becomes greater than that for shale.  Consequently, for some range 

of depths, there is little or no Ip contrast between sand and shale.  On the other hand, 

amongst the three variables selected to describe the elastic response (Vp, Vs, ρ), 

density appears to be the key property for discriminating between the a-priori 

lithologic groups. 

 
Table 3.1: Cutoff log values used to identify the a-priori defined lithologic 

groups. 

Group Gamma Ray log (GR) Density log (ρ) 

Sand < = 50 = > 2 

Shale > = 80 = > 2 

Lignite - < = 1.9 
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Figure 3.3:  Log data of the reference well after editing, indicating with color dots 

the assigned lithologic group. 
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Figure 3.4:  Histograms of P-wave velocity (Vp), S-wave velocity (Vs), density 

(rho), and acoustic impedance (Ip) for reference well, color-coded by the a-
priori groups. 

 

Augmenting the number of data points  

Assuming that Vp, Vs, and ρ well-log values were a good representation of the 

sand, shale, and lignite properties in the study area, the number of data points was 

augmented by drawing correlated Monte Carlo (CMC) simulations.  The performed 

CMC simulations can be described as follows: First, linear regressions of Vp-Vs and 

Vp-ρ were calculated from well-log data for each group.  Then, values from the Vp 

cdf (probability cumulative density function) were drawn, and using the derived 

regressions, the corresponding Vs and ρ values were obtained.  Gaussian noise was 

added to each Vs and ρ simulated value to introduce the variability observed in the 

original data.  The lignite group was treated differently.  Because of the few 

available log samples and their dispersion, it was more reasonable to simulate each 
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elastic variable independently, instead of imposing an unknown correlation.  Ten 

thousand points of Vp, Vs, and ρ were CMC simulated for each group.  Figure 3.5 

presents the plots Vp-Vs, and ρ-Vp of the log data and the CMC simulated points.  

For reference, Castagna et al. (1993) and Castagna’s Mudrock (Castagna et al., 

1985) are included in Vp-Vs plots.  Similarly, Gardner’s relations for sandstone and 

shale, and the modified Hashin-Shtrikman upper curve are shown in ρ-Vp plots.  The 

histograms of the elastic properties computed with the log data were compared with 

the equivalent histograms calculated with the CMC data values.  Figure 3.6 reveals 

that initial the logs’ Vp, Vs, and ρ distributions were preserved after CMC 

simulation. 

 

 
Figure 3.5:  Vp-Vs and ρ-Vp plots of log data (up) and drawn correlated Monte-

Carlo simulations (down), color-coded by the a-priori group.  For reference, 
Castagna et al. (1993) and Castagna’s Mudrock (Castagna et al., 1985) are 
included in Vp-Vs plots.  Similarly, Gardner’s relations for sandstone and shale, 
and the modified Hashin-Shtrikman upper curve are shown in ρ-Vp plots. 

 



CHAPTER 3: PSEI FOR IDENTIFYING LITHOLOGY AND PARTIAL GAS SATURATION 26 

 

0.4 0.2   0 0.2 0.4
2000

2200

2400

2600

V
p
 (

m
/s

)

SHALE          logs   -    MC

0.4 0.2   0 0.2 0.4
400

600

800

1000

1200

1400

V
s 

(m
/s

)

SHALE          logs   -    MC

0.4 0.2   0 0.2 0.4
2

2.1

2.2

2.3

2.4

2.5

rh
o
 (

g
r/

cc
)

SHALE          logs   -    MC

0.4 0.2   0 0.2 0.4

2   

2.1 

2.2 

rh
o
 (

g
r/

cc
)

SAND          logs   -    MC

0.4 0.2   0 0.2 0.4
700 

900 

1100

1300

V
s 

(m
/s

)

SAND          logs   -    MC

0.4 0.2   0 0.2 0.4
2100

2300

2500

2700

V
p
 (

m
/s

)

SAND          logs   -    MC

0.4 0.2   0 0.2 0.4
400 

600 

800 

1000

V
s 

(m
/s

)

LIGNITE       logs  -    MC

0.4 0.2   0 0.2 0.4
1.5 

1.6 

1.7 

1.8 

1.9 

rh
o
 (

g
r/

cc
)

LIGNITE       logs  -    MC

0.2 0.1   0 0.1 0.2
2000

2100

2200

2300

2400

V
p
 (

m
/s

)

LIGNITE       logs  -    MC

 
Figure 3.6:  Normalized histograms of Vp (left column), Vs (center column), and ρ 

(right column), from log data (left histogram of each subplot) and drawn 
correlated Monte Carlo simulations (right histogram of each subplot), for each 
a-priori group (rows from top to bottom: sand, shale, lignite). 

 

Attributes comparison 

A set of intervallic seismic attributes was calculated for each a-priori defined 

group using the CMC-simulated Vp, Vs, and ρ data points.  Then, non-parametric 

pdfs of sand, shale, and lignite were estimated in the four attribute planes considered, 

i.e. ρλ−ρμ, λ−μ, Ip-IE(30), and PSEI(10)-PSEI(50).  Finally, with the derived pdfs, 

the conditional probabilities of the true group given the predicted group were 

calculated.  Figure 3.7 presents the plots of the analyzed pairs of attributes, computed 

with the CMC-simulated Vp, Vs, and ρ.  As can be seen, there is a clear overlap 

between sand and shale points in all the PP seismic-attribute-analyzed planes.  Per 

contra, in the PSEI(10)-PSEI(50) plane, the groups are almost completely separated.  
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Bayesian classification analysis was used to quantify the observed overlap-separation 

between a-priori defined groups. 

 

 
Figure 3.7:  Analyzed pairs of attributes computed using CMC Vp, Vs, and ρ data 

points.  A zoomed window (right) is presented for the PSEI(10)-PSEI(50) plot 
showing the separation between sand and shale points. 

 

The elements of a Bayesian confusion matrix give the conditional probability of 

being the true group given a predicted group.  In particular, the diagonal elements 

correspond to the probability of correctly predicting each group, i.e. Prob(true group 

= X | predicted group = X), with X equal to sand, shale, or lignite.  Figure 3.8 shows 

the diagonal elements of the Bayesian confusion matrix computed for the four pairs 

of considered attributes.  It is clear that PSEI(10)-PSEI(50) is indeed the best 

attribute combination among those analyzed for discriminating between the three a-

priori lithologic groups. 
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Figure 3.8:  Conditional probability of the true lithologic group given the correct 

prediction of lithology (diagonal elements of the Bayesian confusion matrix) for 
the four pairs of analyzed attributes. 

3.3.2 Classification test using PSEI 

In the Bayesian classification approach, once the group-conditioned probabilities, 

P(attributes | group), are estimated with the training data, Bayes rule is used to get 

P(group | attributes).  Then, based on these attribute-conditioned probabilities, the 

data can be classified, and the probability of predicting any group given some 

attribute values can be estimated.  Figure 3.9 presents the results of applying 

Bayesian classification to the reference well.  In this case, the values from the 

reference well were also used as training data.  Simple visual inspection of Figure 

3.9 reveals a high similarity between the a-priori classification based on cutoff 

values of GR and ρ logs, and the Bayesian classification with PSEI(10) and 

PSEI(50).  To obtain a quantitative estimate of this observation, the Bayesian 

confusion matrix was calculated.  Values of 0.97 and greater were obtained for the 

diagonal elements, as it shown in Figure 3.9. 
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Figure 3.9:  Reference well.  Left: a-priori classification of each depth level based 
on GR and ρ thresholds, and the resulting Bayesian classification using 
PSEI(10) and PSEI(50) logs.  Right: corresponding Bayesian confusion matrix. 

 

A second well (well 2) was used to test the lithology identification results 

predicted with the reference well.  Well 2 is located 40 km from the reference well.  

It was edited, and a group indicator value (sand, shale, or lignite) was assigned to 

every sampled depth with the same cutoff values of GR and ρ logs used in the 

reference well.  Figure 3.10 presents the well 2 logs after editing and color-coding 

with the a-priori assigned lithologic group.  Bayesian classification, using the pdfs 

estimated with training data from only the reference well, was applied to the 

PSEI(10)-PSEI(50) log derived values.  As can be seen in Figure 3.11, for well 2 

shale and lignite are completely discriminated, but there is a 0.22 probability of 

erroneously predicting shale when the true lithology is sand.  In terms of reserves 

estimation, this result indicates that sand volumes derived using PSEI will be a 

conservative prediction. 
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Figure 3.10:  Well 2 log data (40 km from the reference well).  Colors indicate the 

assigned lithology based on same threshold log values of GR and ρ used for the 
reference well. 
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Figure 3.11:  Lithologic group classification for well 2. Left: classification based on 

GR and ρ logs thresholds (a-priori), and the obtained Bayesian classification 
using PSEI(10) and PSEI(50) logs (Pdfs were estimated with training data from 
only the reference well).  Right: corresponding Bayesian confusion matrix. 

3.4 Partial gas saturation: fizz water versus commercial gas 

Using well-log data, the statistical classification success rate was analyzed for 

discriminating fizz water using PSEI.  The term fizz water was used to indicate low 
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gas saturations.  Statistical rock physics was applied in a way similar to that 

described in the previous section (lithologic discrimination).  Although sandstones 

with commercial gas and fizz water have been found in the area where the utilized 

well is located (showing similar PP attributes signatures), the available logs sample 

only fully water-saturated zones.  Gassmann’s equations were used to substitute in-

place water with homogeneous mixtures of gas and water, covering a range of gas 

saturations (Sg).  Elastic properties of each fluid component at reservoir conditions 

were calculated using the equations of Batzle and Wang (1992).  Effective fluid 

modulus and density were calculated with Reuss and arithmetic average respectively, 

for water saturations (Sw= 1-Sg) of 0.7, 0.5, 0.3, and 0. 

The original logs and the logs resulting from fluid substitution are presented in 

Figure 3.12.  Notice the abrupt reduction of Vp with the initial presence of a small 

amount of gas.  This is a well-known physical phenomenon documented by 

Domenico in 1976, and it is the main physical limitation for identifying partial gas 

saturation with PP seismic data.  In contrast, the density varies linearly with gas 

saturation.  Vs does not vary much with gas saturation. 
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Figure 3.12:  Logs from the utilized well (blue lines), and the resulting logs after 
fluid substitution (Gassmann) with different homogeneous mixtures of brine and 
gas. 
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PSEI values for incidence angles of (-15) and (-50) degrees were calculated with 

the log data from shale, original sand (Sw=1), and Gassmann-simulated, water-gas-

saturated sands.  The negative values of the angles indicate negative offsets, 

following the sign convention of the incidence angle and reflectivity used by Aki and 

Richards (1980).  The constant K (average Vs/Vp) used in PSEI calculation was 0.6.  

In the PSEI(-15)-PSEI(-50) plane, shale points are well separated from sand for all 

Sw.  Hence, PSEI for lithology identification is also feasible in this area.  However, 

the important result to be emphasized here is the real possibility of discriminating 

between different homogeneous water or gas saturations.  Values of PSEI at (-15) 

and (-50) degrees monotonically increase with reduction of gas concentration, 

responding to changes in density.  Consequently, this combination of seismic 

attributes has the potential to differentiate between different water-gas proportions, 

homogeneously mixed. 

 

70 75 80 85

70

80

90

100

PSEI(-15)

PS
E
I(

-5
0
)

Sw=0.7Sw=0.7Sw=1Sw=1ShaleShale Sand: Sw=0.5Sw=0.5 Sw=0.3Sw=0.3 Sw=0Sw=0

70 72 74 76 78
71

73

79

83

87

90

PSEI(-15)

PS
E
I(

-5
0
) sh

ale
sh

ale
Sw=1

Sw=0
Sw=0.3

Sw=0.5

Sw=0.7

 
Figure 3.13:  PSEI for incidence angles of (-15) and (-50) degrees computed with the 

well log values from shale and sand with Sw = 0, 0.3, 0.5, 0.7, and 1. 

 

The number of log data points was augmented by applying correlated Monte 

Carlo (CMC) simulation, and the corresponding pdfs for all modeled Sw situations 

were computed.  The Bayesian confusion matrix was calculated to quantify the 

observed separation of sands with different Sw in the PSEI(-15)-PSEI(-50) plane.  

Figure 3.14 presents the complete Bayesian confusion matrix obtained.  The plotted 
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bars indicate the probability of predicting any group for a given true group, i.e. each 

bar corresponds to one row of the confusion matrix.  In this case, analyzing only the 

diagonal elements can lead to incorrect conclusions.  Off-diagonal elements are also 

very important, as they describe the probability of different types of misclassification 

errors, and hence are valuable inputs for risk analyses.  Ideally, the off-diagonal 

elements should be small and need not be symmetric.  As can be seen in Figure 3.14, 

the significant probabilities of misclassification in all Sw cases studied only extend 

to the immediate smaller or larger Sw group considered.  This means that the 

uncertainty associated with estimating a specific single value of Sg from PSEI is 

high.  However, PSEI can discriminate with errors smaller than 5% between sands 

with low Sg and with med-high Sg.   
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Figure 3.14:  Bayesian confusion matrix values (top) and their representation in 

vertical bars (bottom).  Each bar corresponds to a row of the confusion matrix, 
i.e. the probability of predicting any of the groups (colors) when the true group 
is the one indicated in the abscissa. 

 

To compare the utility of a group of seismic attributes for discriminating between 

“fizz water” (0.1 < Sg < 0.2), and “commercial gas concentrations” (Sg > 0.5), 

statistical rock physics was applied.  In this case, two groups were defined a-priori 
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(fizz water and gas).  Figure 3.15 shows the diagonal elements of the Bayesian 

confusion matrix for each pair of attributes analyzed.  It reveals that in this case, 

amid the pairs of attributes compared, PSEI(-15)-PSEI(-50) is the best for 

distinguishing fizz water from commercial gas.  Using only PS elastic impedances, 

errors smaller than 10% are predicted when attempting to distinguish between the 

two defined groups. 
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Figure 3.15:  Conditional probability of the true group (fizz water, commercial gas) 

given the prediction (diagonal elements of the Bayesian confusion matrix) for 
the four pairs of attributes studied. 

3.5 Conclusions 

Applying statistical rock-physics methods to real well-log data, it was shown that, 

combining PSEI for two angles, it is possible to discriminate between lithologies 

with similar acoustic impedance and to identify different gas concentrations.  The 

methodology used made it possible to determine not only the best attribute in the two 

analyzed cases, but also estimate the uncertainty associated with the predictions. 

PSEI(10)-PSEI(50) is the best pair of attributes for discriminating lithology, 

compared with: ρλ−ρμ, λ−μ, Ip-EI(30).  This result, obtained with log data for 

particular wells, can be extended to lithologies in clastic reservoirs with small 

acoustic impedance contrasts, but differences in densities.  The feasibility of 

discriminating between sand, shale, and lignite in the study area was validated using 

a second well, 40 km from the reference well.  For predicting lithology in the second 

well with PSEI, the classification system (pdfs) was generated using only the training 
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data from the reference well.  Shale and lignite were completely discriminated, and 

there was only a 0.22 probability of erroneously predicting shale when the true 

lithology was sand.  In terms of reserves estimation, this result indicates that sand 

volumes derived using PSEI would be a conservative estimate. 

It was shown that PSEI values monotonically decrease with incremental 

increases of gas saturation in a homogenous gas-water mix, for negative offsets.  

Consequently, it is possible to discriminate between fizz water and commercial gas 

concentration using PSEI.  In the studied case, combined use of PSEI for (-15) and (-

50) degree incidence angles improves by about 20% the probability of successfully 

distinguishing commercial gas concentrations from fizz water, compared with the 

other PP seismic attributes analyzed. 

One remarkable advantage of using two PSEI attributes (e.g. near and far offsets), 

instead of a combination of PP and PSEI is that the time and amplitude matching of 

PP and PS data is avoided for the interpretation.  An important question that arises 

after this work is how the “noise” in the seismic data (either processing artifacts or 

random noise) affects the PSEI values or distributions.  The answer is the key to 

anticipate the areas where the discriminator potential of PSEI can be exploited. 

 



 

 
 
 
Chapter 4  

Practical procedure for P-to-S 
seismic data inversion 

 

“Simplicity is the ultimate sophistication”  

 (Leonardo da Vinci) 

 

4.1 Abstract 

This chapter presents a method for obtaining P-to-S elastic impedance (PSEI) 

from P-to-S (PS) seismic data using PP stratigraphic inversion software.  

Additionally, the validity of some of the approximations assumed in the proposed 

method is addressed.  PSEI can be a good lithologic discriminator as well as a good 

indicator of partial gas saturation because of its monotonic relationship with density.  

Three examples with synthetic traces are presented to show the feasibility of 

obtaining PSEI values using the same principles as those of PP data inversion.  In the 

first example, PS synthetic traces from a set of three-layer models are inverted to 

obtain PSEI using a probabilistic approach.  Having total control of the inversion 

process allowed me to verify that the convolutional model approximation is a valid 

approach when inverting PS data.  Then, a methodology to derive PSEI from PS data 

using commercial PP stratigraphic inversion software is proposed and applied in two 

synthetic examples, based on real well-log data.  The method is based on generating 
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a pseudo-velocity and a pseudo-density log, sampled at pseudo-depth units.  The 

technique exploits the similar functional expression of acoustic impedance and PSEI.  

Rather than developing new inversion algorithms, the objective of this chapter is to 

show the viability of a practical procedure to compute PSEI from PS seismic data. 

4.2 Introduction 

The previous chapter showed that P-to-S elastic impedance (PSEI) can 

discriminate lithologies with small acoustic and Poisson contrast, and differentiate 

between fizz water and commercial gas concentrations.  In the previous chapter’s 

feasibility analyses, PSEI values computed with P-velocity (Vp), S-velocity (Vs), 

and density (ρ) logs were used.  However, the final goal is to be able to extrapolate 

the results to the seismic data.  The value of a well-log-based feasibility study is 

based on its capability to extrapolate the results obtained at the wells to the area 

covered by seismic information.  Consequently, it is important to analyze quantities 

or attributes that can be computed with Vp, Vs, and ρ logs as well as extracted from 

the seismic.  In the context of this chapter, a well-log-based feasibility study, 

showing that PSEI responds to changes in the reservoir property of interest, suggests 

a consequent computation of PSEI from PS processed data.  In practice, the inversion 

of PS data for PSEI can be done using the same algorithms and programs developed 

for P-to-P (PP) inversion. 

PSEI is an attribute that depends on the incidence angle; therefore, the inversion 

has to be target-oriented.  Variations of both the wavelet and the angle-to-offset 

transformation constrain the range of validity of the inversion.  In principle, a single 

PS trace is needed to obtain PSEI at a given angle.  However, in practice the input 

for the inversion could be a stack of traces in a limited range of offsets, to increase 

the signal-to-noise ratio. 

A seismic trace can be modeled as the convolution of the reflectivity series with 

a wavelet.  The reflectivity series is defined as the ratio between the difference and 

the sum of the impedances between consecutive depths.  Most of the available PP 

stratigraphic inversion software relies on convolution to perform the forward 
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modeling, because it is a relatively fast operation.  For PS traces at a given incidence 

angle (θ), the reflectivity can be defined in terms of PSEI(θ).  As when inverting PP 

data, the wavelet has to be extracted from the data itself.  These assumptions—i.e. 

validity of the convolutional model with the reflectivity defined from PSEI(θ), and 

the extraction of the correct wavelet—open the possibility of using already available 

stratigraphic inversion software to derive PSEI(θ) from PS seismic traces. 

In this chapter, three examples with synthetic PS traces are used to show the 

feasibility of obtaining PSEI values using the same principles as for PP inversion.  

The first example consists of a set of three-layer models in which the thickness and 

water saturation (Sw) of the reservoir vary.  The inversion is done using a 

probabilistic Monte-Carlo approach, relying on convolution for the required forward 

modeling.  For the second and third example, synthetic PS data generated from real 

well-log data is used.  Additionally, a methodology to obtain PSEI from PS data 

using commercial PP stratigraphic inversion software is presented.  The proposed 

method is applied in the second and the third example.  The objective of this chapter 

is to show the viability of inverting PS data to obtain PSEI, and to describe a 

practical method to accomplish it. 

4.3 Example 1: Three layers models 

A set of three-layer models were built using realistic values of Vp, Vs, and ρ.  

Thicknesses of the top layer and the complete model, as well as the elastic properties 

of top and bottom layers, are kept unchanged for all models.  A total of 55 models 

were created, changing the thickness and elastic properties of the reservoir (middle 

layer).  Thickness varies from zero to 100 meters, by ten-meter increments, yielding 

eleven variations.  Five values of elastic properties are used corresponding to 

different fractions of brine and gas, homogeneously mixed.  The water proportions 

selected are 0, 0.3, 0.5, 0.7, and 1.  Figure 4.1 shows the set of models (variations of 

reservoir Sw) with reservoir thickness of 100 meters and the five Sw variations. 

The synthetic PS traces (horizontal component) were computed for each model 

independently.  Each trace was generated using the available implementation of 
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Kennett’s method (Kennett 1980, 1985) in the “AVO modeling” (version 5.5) 

software of Hampson and Russell.  Kennett’s method gives the full elastic response 

of a stack of homogenous layers.  The traces were calculated for an offset such that 

the incidence angle at the top of the reservoir layer was approximately (-50) degrees.  

The minus sign of the angle indicates negative offsets, following the sign convention 

of Aki and Richards (1980).  A Ricker wavelet with central frequency of 40 Hertz 

was used as input for the modeling.  Figure 4.2 presents the synthetic traces (data 

traces) generated for the models with reservoir Sw equal to one and equal to zero.  

The first trough and last peak of each trace were picked to obtain the approximate 

times of the top and bottom interfaces. 
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Figure 4.1:  Elastic properties and derived PSEI(-50º) for the variations of Sw in the 

reservoir with thickness of 100 meters. 
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Figure 4.2:  Synthetic traces (θ=-50º) for the models with reservoir Sw=0 (left) and 

Sw=1 (right), and the picked horizons used as input information for the 
inversion. 
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For this example, a probabilistic approach was used to invert the synthetic PS 

traces for PSEI(-50º).  Any inversion problem can be expressed as follows (e.g. 

Tarantola, 2005): 

))(()(const )( mgmm ϕϕ=γ ,    (4.1) 

where ϕ(m) and γ(m) are the prior and the posterior probability densities (pdf) in the 

model space, ϕ(g(m)) is the likelihood which includes the observed data and the 

uncertainty or error associated with each value, and g(m) is a function that solves the 

forward problem, i.e. the forward model operator that links the model space with the 

data space. 

The inversion was done trace-by-trace in the time domain.  The parameters to 

invert for, i.e. the elements of the model space, were the times of the top and the 

bottom interfaces, and PSEI(-50) of the three homogenous layers.  One of the models 

was assumed to be known before the inversion.  That is, a single “well” was 

available, sampling the model in which the reservoir is 100 meters thick and fully 

water saturated.  The prior knowledge about the parameters, i.e. ϕ(m), was basically 

derived from the “well”.  As Tarantola (2005) points out, the prior pdf not need be 

defined in a closed form; it can be specified by giving a set of rules.  For the case of 

study, the prior pdf was defined with the following conditions for the elements of the 

model space: 

1) Prior knowledge of the interface times: 

a) If the number of samples between the picked horizons is greater than 

or equal to 20, then the interface times are drawn from uniform pdfs centered at 

the picked times and ranges of 10 samples. 

b) Otherwise, the prior pdfs for the times of the horizons are truncated 

double exponential pdfs with means of five samples and maximum variation of 

20 samples. 

2) Prior knowledge of PSEI values of top and bottom layer: truncated Gaussian 

pdfs with means equal to the PSEI values observed at the “well”, and standard and 

maximum variations of one percent and five percent of the means. 
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3) Prior knowledge of reservoir PSEI: uniform pdfs within ±15% of the value 

observed at the “well”. 

The likelihood ϕ(g(m)) was an L1-norm type of function, defined by a constant 

multiplied by exp(-∑|dobs-dcal|/ω), where the summation (∑) is over all the samples 

of the trace.  In the likelihood function, dobs corresponds to the observed data, i.e. the 

PS input trace, dcal is the PS trace computed with convolution, and ω is a weighting 

factor that controls the severity of the comparison.  ω was chosen as half of the 

difference between the samples of data trace at the “well” location and trace 

generated with convolution at the same position.  The selection of ω was based on a 

measure of the ability to reproduce the observed data at a location (well) where the 

solution was known. 

As was mentioned before, the data (dobs) was generated using a full waveform 

modeling for horizontally homogeneous layers.  On the other hand, convolutional 

modeling was the forward operator for the inversion.  The motivation for using 

convolution for computing dcal was to show the applicability of the standard 

convolution-based inversion approach.  Figure 4.3 shows one of the data traces (full-

wave modeling), and the equivalent trace computed by convolving the PSEI-derived 

reflectivity with two different wavelets.  In one case, the wavelet was a Ricker of 40 

Hertz, which is the same used as input for generating dobs.  The other wavelet used in 

Figure 4.3 was extracted from the data traces.  As can be noticed, convolving the 

original wavelet (Ricker) with the reflectivity derived from PSEI does not reproduce 

the data trace.  Per contra, when using the extracted wavelet for the convolution, an 

excellent match between dobs and dcal is obtained.  As was expected, this shows the 

importance of selecting an appropriate wavelet for the inversion. 
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Figure 4.3:  Traces computed using full wave modeling (blue) and convolution (red) 

of the reflectivity derived from PSEI, and the two wavelets: 40 Hz Ricker 
wavelet (center-left), and wavelet extracted from the full wave modeled trace 
(center-right). 

 

The Metropolis algorithm was applied to the sample from the posterior γ(m).  

Figure 4.4 shows one set of particular solutions, specifically the ones where γ(m) 

was maximum.  As can be seen, the times of both horizons and the constant values of 

PSEI for top and bottom layers were well estimated.  The obtained values of PSEI 

for the reservoir clearly reproduce the trend with Sw of the input models.  This is 

only one possible solution that, because of the simplicity of the problem, reasonably 

gives the expected answer.  In general, the complete solution must be explored by 

drawing and visualizing many models from γ(m), analyzing some of marginal 

probabilities (parameters of interest), or computing different statistics for some of the 

parameters (Tarantola, 2005).  Results of Figure 4.4 reveal that it is feasible to obtain 

PSEI from PS data, and hence estimate Sw, based on the same principles commonly 

used to invert PP data. 
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Figure 4.4:  One possible solution (maximum a-posteriori) or model for each trace 

selected from the posterior pdf. 

4.4 Example 2:  PSEI from PS data using PP stratigraphic-
inversion software for discriminating lithology. 

Specific well-log manipulation is required for obtaining PSEI from PS seismic 

data using commercial PP stratigraphic-inversion software.  Commonly, inversion 

programs build the initial model based on the acoustic impedance calculated with Vp 

and ρ logs.  I propose to generate pseudo-velocity (pseudo_V) and pseudo-density 

(pseudo_ρ) logs for constructing the initial model.  That is basically the same 

principle used to invert non-zero offset PP data for computing elastic impedance (e.g. 

Connolly, 1999).  The new pseudo-logs need to be sampled in pseudo-depth 

(pseudo_z) units, such that the inversion software attains consistency in the time-to-

depth conversion and between log PSEI values and PS data.  The goal is to exploit 

the similar functional relation between acoustic impedance and PSEI, with the 

corresponding velocities and densities.  The pseudo-logs should satisfy the following 

two conditions: 

( )( ) dcVspseudo_ρpseudo_V ρ= ,    (4.2) 

( ) ( )( )PStimepseudo_V
2
1pseudo_z = ,    (4.3) 

To fulfill equations 4.2 and 4.3, pseudo_V, pseudo_ρ, and pseudo_z can be 

defined as follows: 
cpseudo_ρ ρ= ,     (4.4) 

dVspseudo_V = ,     (4.5) 
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For the second example, the well-logs from one of the wells (reference well) 

presented in the previous chapter were used.  Before generating the synthetic PS 

traces for the inversion, a (fast) ray-tracing algorithm was used to determine the 

source-receiver offsets corresponding to approximately 10 and 50 degrees of 

incidence angle.  Although a single offset does not strictly correspond to a single 

incidence angle, based on the ray tracing modeling (Figure 4.5), it was established 

that for the interest zone, offsets of 150 and 900 meters approximately correspond to 

incidence angles of 10 and 50 degrees, respectively.  Using a Kennett’s method, the 

PS synthetic traces for the inversion were generated.  The wavelet used was a Ricker 

with a 60 Hertz central frequency. 

 

0 200 400 600 800 1000 1200 1400 1600

1

1.05

1.1

1.15

1.2

ti
m

e 
(s

)

offset (m)

10

20

30

40

50

60

in
ci

d
en

ce
 a

n
g
le

 
Figure 4.5:  Synthetic PS traces (ray tracing algorithm) for offsets between 0 and 

2000 m.  Color lines are contours for constant incidence angle (P-wave 
incidence angle). 
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Figure 4.6 shows the reference well PSEI logs for incidence angles of 10 and 50 

degrees respectively, calculated with the original Vs and ρ logs.  Additionally, 

derived with equations 4.4, 4.5, and 4.6, pseudo-Vs and pseudo-ρ logs sampled in 

pseudo-depth units are presented. 
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Figure 4.6:  PSEI calculated logs, and pseudo-velocity and pseudo-density, sampled 

in pseudo-depths, for incidence angles of 10 and 50 degrees. 

 

The standard procedure for inverting PP seismic traces was applied; with the 

variation that the initial model was built using the well-logs computed with equations 

4.4, 4.5, and 4.6.  The model based inversion option of the commercial software 

“Strata” (version 5.5) by Hampson and Russell was used.  Figure 4.7 presents 10 and 

50 degrees PSEI values calculated from the logs and inverted from the synthetic 

traces.  As was expected, there is a clear similarity between PSEI from logs and 

synthetic seismic.  However, the inversion was not able to reproduce the high values 

associated with lignite, principally due to their small thickness.  Additionally, it can 

be seen how inverted PSEI presents a blocky aspect with average thickness of three 

samples.  The blocky appearance of the result is a characteristic of the model-based 

inversion algorithm.  The average size of the layers or blocks is parameter defined by 

the user.  It is important to remark that the objective of this test is neither to compare 

inversion algorithms nor to optimize their input parameters.  The goal is to show the 

viability of the process and the steps to complete it. 
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Figure 4.7:  PSEI for incidence angles of 10 (left) and 50 (right) degrees calculated 

using log data (blue) and obtained from the inversion of the PS synthetic traces. 

 

Following the methodology presented in the previous chapter, the PSEI profiles 

obtained from the inversion of the synthetic traces were classified using a Bayesian 

scheme.  The conditional probabilities for the classification were computed using 

only the well-log data from the reference well.  In a real case with enough logs and 

seismic data, the pdfs calculated from logs must be scaled using surrounding inverted 

traces.  The probability distributions required for the Bayesian classification, or in 

general for any classification system, must be similar in scale to the values to be 

classified. 

Figure 4.8 illustrates the results of the Bayesian classification.  The problem with 

the lignite layers is their small thickness.  Nevertheless, the Bayesian confusion 

matrix indicates that the lignite group is principally confused with shale, which for 

practical purposes does not affect the main goal of identifying the sand bodies.  

Elements of the sand group have a 0.24 probability of being identified as shale, i.e. 

missing sand bodies.  On the other hand, there is only a 0.09 probability of predicting 

sand when the true layer is shale, that is, of erroneously drilling shale. 
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Figure 4.8:  Bayesian classification results for reference well inverted synthetic 

seismic, using the conditional pdfs obtained from the logs.  Left: a-priori and the 
result from the Bayesian classification lithologic indicator for each time level.  
Right:  Resulting Bayesian confusion matrix. 

4.5 Example 3:  PSEI from PS data using PP stratigraphic-
inversion software for identifying partial gas saturation. 

The same real well logs analyzed in the previous chapter to show the PSEI 

capabilities for identifying partial gas saturation were used in the third example.  As 

was mentioned before, the well only sampled sandy bodies that were fully water 

saturated.  Gassmann fluid substitution was done in a portion of the sandstones, 

which have shown gas in other wells in the area.  Four different homogeneous 

mixtures of gas and brine were used as the replacing fluid, with the following brine 

proportions (Sw=1-Sg): 0.7, 0.5, 0.3, 0.  Figure 4.9 shows the original logs, the 

Gassmann computed logs, and PSEI logs calculated for incidence angles of (-25) and 

(-50) degrees.  Negative angles indicate negative offsets, following the Aki and 

Richards (1980) sign convention.  As can be seen, PSEI monotonically decreases 

with increasing gas concentration, i.e. reduction of brine. 
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Figure 4.9:  Original logs (blue lines) and computed logs (Gassmann) simulating 

fluid substitution with four different water (Sw) and gas (1-Sw) saturations. 

 

Synthetic PS traces were generated using Kennett’s full-waveform method.  Each 

laterally homogenous elastic model was constructed with Vp, Vs, and ρ logs 

corresponding to a particular Sw in the reservoir.  The input wavelet was a 40 Hertz 

Ricker.  Figure 4.10 presents the pseudo-logs computed with equations 4.4, 4.5, and 

4.6, for incidence angles of (-25) and (-50) degrees, and Sw of 1, 0.7, 0.5, 0.3 and 0. 
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Figure 4.10:  Computed pseudo-logs sampled at pseudo-depths for θ=(-25) deg. 

(left) and θ=(-50) deg. (right).  Colors indicate Sw. 

 

Based on ray tracing, it was established that for the zone of interest, offsets of 

1200 and 2800 meters correspond approximately to angles of 25 and 50 degrees, 

respectively.  The same standard procedure for inverting PP seismic traces 

mentioned in the second example was applied to the synthetic PS traces with offsets 
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of 1200 and 2800 m.  Figure 4.11 shows the results of the inversion at the reservoir 

level (in time).  One can notice the trend of decreasing PSEI values as the gas 

saturation increases.  The goal of this example, as the previous one, was to show the 

viability of the process and a practical way to accomplish PSEI inversion using 

existing, off-the-shelf PP software. 
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Figure 4.11:  Inverted PSEI (reservoir level) for θp=(-25) degrees (left) and (-50) 

degrees (right), color-coded by Sw (as Sg increases, i.e. Sw decreases, PSEI 
values tend to decrease). 

4.6 Conclusions 

The viability of inverting PS data for PSEI values using the same principles as 

used in PP data inversion was shown using three examples with synthetic traces.  A 

procedure for inverting PS data using commercial PP stratigraphic inversion 

software was presented.  The main step is to build the initial model with generated 

pseudo-velocity and pseudo-density logs, sampled in pseudo-depth units.  The 

obtained results, in terms of the residuals, were as good as the inversion of PP data 

for acoustic impedance.  The results were more sensitive to which algorithm was 

used for the inversion than whether PS data was used to obtain PSEI.  It is 

recommended performing synthetic tests like the ones presented in this chapter, but 

tailored to the specific case study, to analyze the impact of the algorithm and the 

wavelet selected on the inversion results for both PP and PS data. 

 



 

 
 
 
Chapter 5  

Inversion method combining rock 
physics and multiple-point 
geostatistics 

 

“The mere formulation of a problem is far more essential than its 

solution, which may be merely a matter of mathematical or 

experimental skills.  To raise new questions, new possibilities, to 

regard old problems from a new angle require creative imagination 

and marks real advances in science.”  (Albert Einstein) 

 

5.1 Abstract 

In this chapter, a new inversion technique that combines rock physics and 

multiple-point (MP) geostatistics in a Bayesian framework is presented.  Although 

the proposed method is presented here in terms of reservoir characterization, it can 

be applied in its current implementation to any inverse problem that can be 

approximated as a series of unidimensional forward-modeling operators. 

Rock-physics principles are incorporated at the beginning of the process, 

defining the links between reservoir properties (e.g., lithology or saturation) and 

physical properties (e.g., compressibility or electrical conductivity).  Specifically, for 
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inverting normal-incidence seismic data (the acoustic case), which is the 

implementation presented in this chapter, a group is a reservoir property or 

combination of properties, such as lithology and/or fluids, with an associated 

distribution of velocities and densities.  Multiple-point simulation (MPS) or multiple-

point geostatistics is used to define and explore the space of solutions.  In spite of the 

fact that the inversion method is not restricted to any particular multiple-point 

statistical technique, a variation of the stochastic simulation with patterns, or 

SIMPAT (Arpat, 2005) was used. 

The solutions given by the inversion technique proposed in this chapter are 

multiple realizations of spatial distributions of groups consistent with the available 

well data, seismic data, and the geological concept imposed by the multiple-point 

geostatistical algorithm through the training image.  The method can be extended to 

satisfy multiple physical constraints simultaneously; in other words, the solutions can 

be conditioned with different types of geophysical data. 

5.2 Introduction 

The transformation of any geophysical data into physical properties of the Earth 

(like elastic parameters) can be posed as an inverse problem.  In seismic methods, 

elastic properties are inferred by inverting travel times and amplitudes of the elastic 

waves propagated through the subsurface.  However, the goal of using geophysical 

methods usually goes beyond estimating the physical quantity to which the technique 

responds.  Rather, the final goal usually is to infer characteristics of the rocks 

(lithology, fluid, porosity, etc.) or the regime of physical conditions (pressure, 

temperature, etc.) to which they are subjected. 

Seismic reflection data is used in reservoir characterization not only for obtaining 

a geometrical description of the main subsurface structures, but also for making 

predictions of properties such as lithologies and fluids.  Transforming seismic data to 

reservoir properties is an inverse problem with a non-unique solution.  Even in the 

utopian situation of data without noise, the limited frequency of recorded seismic 

waves makes the solution non-unique.  The inversion of seismic data for reservoir 
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properties gets more complicated in practice, because of the always-present noise in 

the data and the forward modeling simplifications needed to obtain solutions in a 

reasonable time. 

The first techniques for predicting reservoir properties from seismic data were 

exclusively based on the interpreter’s ability to identify patterns (Balch, 1971; Taner 

et al., 1979; Possato et al., 1983).  After those initial qualitative methods, several 

quantitative approaches were developed to transform seismic data into reservoir 

properties.  Some of the methods are based on defining linear relations between an 

average of a reservoir property observed in well logs and a characteristic or attribute 

of a piece of the seismic signal (Tonn, 1992; Matteucci, 1996).  As an important 

extension of the simple linear regression, geostatistical techniques, such as cokriging, 

have been integrated in the analysis to account for spatial correlations (Doyen, 1988; 

Russell et al., 2001).  In addition, neural networks have been used as a way to 

include non-linear correlations between seismic attributes and reservoir properties 

(Ronen et al., 1994; Banchs and Michelena, 2000).  The reservoir properties 

predicted with direct relations between attributes of the seismic signal and reservoir 

properties usually correspond to a range of depths on the order of a seismic 

wavelength; however, the type of average and the type of homogeneity assumed are 

commonly not well-defined parameters. 

Removing wave propagation, or more precisely, removing the wavelet from the 

seismic data, makes it possible to define better the zone of the subsurface to which a 

particular section of the seismic trace is responding.  Removing the wavelet from the 

seismic signal is equivalent to transforming the seismic data into elastic-property 

values; this is the process generally known as seismic inversion.  The values of the 

elastic properties derived are associated to a specific depth or time; therefore, the 

transformation from elastic to reservoir properties can be done point-by-point.  

Variations of the linear-regression, geostatistical and neural-network techniques 

previously mentioned can be used for the one-to-one conversions without 

understanding the physical bases of the transformations.  However, accepting any 

statistical correlation regardless of the physics underlying the calibration can easily 
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yield erroneous results (Kalkomey, 1997; Hirsche et al., 1998).  Furthermore, it is 

very difficult to support any attempt to predict reservoir properties not sampled by 

well logs or training data, a common situation in frontier areas without enough well 

control.  Rigorously, the interpretation is limited to the training data. 

Rock physics has been included in seismic interpretation as a post-process of the 

so-called seismic inversion, establishing the link between the extracted impedances 

(or other attribute) and reservoir properties.  Including rock physics not only 

validates the transformation to reservoir properties, but also makes it possible to 

enhance well-log or training data based on geological processes (Avseth, 2000; 

Gutierrez, 2001; Florez, 2005).  In particular, Mukerji et al. (2001) formally 

introduced statistical rock-physics methods as a way to combine rock physics, 

information theory, and geostatistics to reduce uncertainty in reservoir 

characterization.  One of the key steps in that methodology is to extrapolate from the 

well data using a correlated Monte Carlo simulation.  This procedure and the post-

inversion analytical calculation of the attributes using the log data, depend on the 

validity of the point-to-point rock-physics relations.  In statistical rock-physics 

techniques, wave propagation effects are included only in a very simplified way (e.g., 

in a single homogenous interface). 

Different types of algorithms have been published for inverting the seismic data 

to elastic properties (mainly acoustic impedances or reflectivities).  Russell (1988) 

presents in a condensed way the common traditional methods: Sparse-spike and 

model-based.  Sparse-spike techniques are based on deconvolving the seismic trace 

under some sparseness assumptions of the reflectivity series, an idea initially 

proposed by Oldenburg et al. (1983).  First, reflectivities are obtained; then, 

impedances are computed, including the missing low frequencies, usually from well 

data or seismic-velocity analysis.  On the other hand, in model-based methods, 

starting from a given initial model, the inversion algorithm perturbs the model until 

some minimization criteria are satisfied.  The objective function, or the function to 

be minimized, is usually some type of difference between the observed and modeled 

data.  However, additional terms are usually included in the objective to restrict 
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possible solutions to those that satisfy additional criteria, such as a fixed mean layer 

thickness, or a condition of lateral continuity.  Solutions obtained with model-based 

techniques strongly depend on the initial model, which is usually constructed using 

the well-log information.  Sparse-spike methods and model-based techniques both 

provide a single solution no estimate of uncertainty. 

The seismic inversion problem can also be formulated in a Bayesian framework.  

Following Tarantola’s (2005) work, any inversion problem can be set up as follows: 

))(( )( (constant))( DMM mgmm ρρ=σ .   (5.1) 

In equation 5.1, sub-indices M and D indicate the space in which the quantities 

are defined: M for model space, and D for data space; m is the vector of parameters 

that defines the model, σM(m) is the posterior probability density, ρM(m) is the prior 

probability density, g(m) is the forward modeling operator, and ρD(g(m)) is the 

likelihood.  The prior probability density ρM(m) describes the state of knowledge 

about the solution before the data is incorporated to the problem, thereby defining 

the space of possible solutions.  The likelihood ρD(g(m)) measures the similarity 

between the available data and the synthetic data obtained by solving the forward 

problem, i.e. applying the operator g(m) to a proposed model.  Equation 5.1 is a 

general expression valid for any inverse problem.  Under adequate assumptions, 

equation 5.1 leads to particular types of problems with well-established methods for 

finding the solutions.  For example, as Tarantola (2005) shows that, assuming 

Gaussian distributions both for the prior probability density and for the errors in the 

data, and using a linear forward model operator, equation 5.1 yields a posterior 

probability density that is also Gaussian.  In this situation, the mean and covariance 

of the posterior probability density are given by the solution of a least squares 

problem; that is, means and covariances are analytically defined.  Without strong 

assumptions like the one just mentioned, equation 5.1 can be very difficult to solve, 

or even to pose in a closed analytical form.  In such cases, the solution to the inverse 

problem consists of samples from the posterior probability density that can be 

obtained using Monte Carlo methods (Tarantola, 2005). 

The prior probability density that defines the space of possible solutions does not 
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need to be analytically defined; it can be specified by a set of rules (Tarantola, 2005).  

Accordingly, the seismic inversion technique presented by Bortoli et al. (1993) and 

Haas and Dubrule (1994) proposes the use of geostatistical methods for defining and 

exploring the space of solutions.  Specifically, Bortoli et al. and Haas and Dubrule 

incorporate the sequential Gaussian simulation algorithm (Deutsch and Journel, 

1998) for solving the seismic-inversion problem.  As with all geostatistical 

simulation techniques, this type of seismic inversion provides multiple, equally 

probable solutions.  Generating many realizations can yield any desired statistics 

about the solutions and is thus the way to assess uncertainty.  The objective of 

including geostatistical information in Monte-Carlo-based inversion algorithms is to 

give priority to solutions or configurations of the model parameters consistent with 

particular spatial correlations.  Bosch (1999), Bosch et al. (2001), and Bosch et al. 

(2005) present algorithms and examples of inversions based on Monte Carlo 

methods, combining geostatistical information and data from multiple geophysical 

methods. 

Traditionally, geostatistical methods relied on the two-point statistics (variogram) 

to capture the geologic continuity.  However, the variogram does not incorporate 

enough information to model complex structures or curvilinear features.  To 

overcome these limitations, Guardiano and Srivastava (1993) present the ideas of 

training images and multiple-point (MP) geostatistics.  The training image can be 

defined as a representation of the expected type of geologic variability in the area of 

study.  It reflects the prior geological knowledge, including the type of features or 

patterns expected, but it does not need to be conditioned to any hard data.  The 

central idea of the MP-geostatistics paradigm is to capture multiple-point statistics or 

patterns from the training image using a predefined arrangement of pixels, or a 

template, and to use those patterns as the building blocks for the stochastic 

realizations.  Single-normal equation simulation (SNESIM) (Strebelle, 2000) was the 

first practical MP-geostatistical algorithm published; it solved CPU and memory 

limitations of the Guardiano and Srivastava algorithm.  In SNESIM, the conditional 

probability for assigning a value to a particular node is obtained from the training 
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image by counting occurrences of the same pattern. 

An alternative multiple-point geostatistics algorithm, developed using ideas of 

image reconstruction, has been proposed (Arpat et al., 2002; Arpat and Caers, 2004).  

SIMPAT (sequential simulation with patterns) (Arpat, 2005), as its name suggests, is 

a pattern-based geostatistical algorithm inspired by the problem of image 

reconstruction.  In SIMPAT, the training image is used to obtain the possible 

geologic patterns in the study area.  The patterns are used as the building blocks for 

the reservoir realizations.  A pattern corresponds to the arrangement of pixels in a 

pre-defined basic shape or template.  Arpat (2005) summarizes SIMPAT as follows: 

“The technique builds images (reservoir models) by assembling puzzle pieces 

(training image patterns) that interlock with each other in a certain way while 

honoring the local data”.  Furthermore, Arpat (2005) proposes a way of including 

seismic data in SIMPAT simulations.  In that approach, seismic data is used as an 

image.  Seismic patterns are extracted from a seismic training image and are used 

jointly with the geologic (or facies) patterns.  However, in some real situations, it is 

very difficult to make correlate a vertical section of the seismic data to a particular 

region of the subsurface.  Wave propagation in the Earth is not a well-localized 

phenomenon; that is, there is not a simple correspondence between a single seismic 

sample and a particular depth position.  A time-to-depth conversion is needed for 

correlating geologic and seismic patterns, a difficult task, given the always-present 

uncertainty in seismic velocities. 

In this chapter, a novel inversion technique, which combines rock physics with 

MP-geostatistics simulation, is presented.  The method as described, works for any 

inverse problem that can be approximated as a series of unidimensional forward-

modeling operators.  In addition, the technique can be easily extended to invert data 

from different geophysical methods simultaneously.  This ability to account 

simultaneously for several types of geophysical data can considerably improve the 

prediction of reservoir properties.  Sometimes, combining elastic and electric 

properties can be the key to identifying lithology and fluids.  The solutions to the 

inversion problem provided by the technique are realizations of predefined groups in 
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the subsurface.  A group is defined as a set of rocks with common lithology, fluids or 

any other reservoir property of interest.  Each group has an associated distribution of 

physical properties to which the geophysical data respond.  The method is presented 

for the acoustic case, i.e. normal-incidence seismic data.  Hence, the physical 

properties associated to each group are P-wave velocity (Vp) and density (ρ).  

Although the method has been developed for two-dimensional (surface-versus-

depth) acoustic problems, it can be extended to a more general, 3D, multi-physics 

case. 

A modified version of the SIMPAT algorithm presented by Arpat (2005) was 

selected as the MP-geostatistical component of the presented inversion method.  

However, any MP-geostatistical technique, such as SNESIM (Strebelle, 2000) or 

FILTERSIM (Zhang, 2006), can be adapted without changing the core structure of 

the entire inversion algorithm.  In the next two chapters, applications of the inversion 

technique proposed using synthetic and real wells and seismic data are presented. 

5.3 Proposed algorithm for seismic inversion 

The seismic inversion algorithm presented in this chapter is based on the 

formulation of an inverse problem as an inference problem (e.g. Tarantola, 2005).  

Rock physics and MP-geostatistical principles are used to constrain and explore the 

space of possible solutions.  In addition to the innovative way of combining rock 

physics and MP-geostatistics, a fundamental difference between this method and any 

other seismic inversion technique is that the solutions given by the proposed method 

are equally probable realizations of spatial arrangements of groups in the subsurface.  

A group is defined as a discrete variable or index for naming rocks with similar 

characteristics, such as lithology and/or fluid.  Every group has an associated 

distribution of values of the physical properties needed to perform the forward 

modeling, i.e. the physical quantities to which the geophysical method used responds. 

As shown in Figure 5.1, the proposed inversion technique consists of two main 

steps: pre-processing and the inversion itself.  In the pre-processing stage, the groups 

are defined and the pattern database is constructed.  In the inversion step, which is 
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repeated several times using the result of the previous iteration as the starting point, 

multiple realizations of spatial distributions of groups are generated using MP-

geostatistical techniques, in this case a modification of the SIMPAT algorithm 

(Arpat, 2005).  Each realization is consistent with the geological model and the rock-

physics transformations used, and attempts to minimize the difference between the 

seismic data and the synthetic seismic computed from the realization. 

An important characteristic of the presented inversion technique is that it can 

easily account for different types of geophysical data simultaneously.  Essentially, 

the main limitation for inverting different types of geophysical data simultaneously is 

that the inversion must use unidimensional forward operators or the full forward-

modeling operator can be approximately factored into a series of unidimensional 

forward operators.  Constraining the solutions with multiple physical properties can 

significantly reduce the uncertainty in predicting reservoir properties. 

 
GROUPS definition (Rock Physics)
Pattern database constructionPre-processing

Inversion SIMPAT*: pseudo-wells of groups’ indexes
Index-to-physical property (draw)

Accept/Reject  
Figure 5.1:  The two main steps of the seismic inversion method proposed –pre-

processing and inversion itself– specifying the principal processes in each one. 

 

Next, detailed descriptions of the pre-processing and inversion steps are 

presented.  Two variations of the inversion step are proposed: a compact approach 

and an extended approach.  Using the extended approach may give a better match 

between synthetic and data, but may forfeit some sharpness in the borders of the 

geological features.  On the other hand, the compact approach favors well-defined 

and continuous borders, but requires that the training image contains large variety of 

patterns.  To obtain reasonably good solutions with the compact approach, the 

training image has to be a more precise representation of the real geology, in terms 

of pattern contents, than when using the extended approach. 
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5.3.1 Pre-processing step 

The pre-processing step is formed by two well-differentiated and independent 

procedures: definition of groups, and pattern database construction.  The order of 

these two components of the pre-processing step is not important; both must be 

completed before starting the inversion step, since their results are required inputs for 

the inversion.  Additionally, the group indices forming the training image must be 

defined in the same way as the building blocks of the inversion solutions. 

5.3.1.a Group definition and rock physics 

In the context of the proposed inversion method, the term groups defines the 

building blocks to construct the solutions, gathering rocks with similar reservoir 

characteristics as lithology, fluids, etc.  Each group is represented by an index 

variable and has an associated distribution of physical properties needed to perform 

the forward modeling.  In particular, for the acoustic case each group has an 

associated distribution of P-wave velocities (Vp) and densities (ρ).  The groups are 

specifically defined for the reservoir to be analyzed, according to the goals of the 

study.  The values of the groups’ elastic properties are derived principally from well 

data.  Given the importance of the elastic parameters associated with each group, 

rock physics should be used to validate and understand the well-log observations.  

Moreover, and more importantly for many real applications, rock physics can be 

used to extend the well data for predicting the elastic behavior of no-sampled groups 

expected to appear in the study area.  As was mentioned before, the results of the 

inversion method are multiple realizations of spatial arrangements of groups.  Hence, 

the definition of the groups is a fundamental step in the presented technique. 

Figure 5.2 shows the groups that could be defined for the simplest case of 

lithologic identification in a clastic reservoir, inverting seismic data under the 

acoustic assumption.  Only two groups with well-differentiated elastic properties are 

proposed: channel sand and background shale.  The Vp-ρ distributions of each group 

could be defined from well-log observations; then, rock physics makes it possible to 

validate and edit the well-log data with quantitative criteria.  Comparing the data 



CHAPTER 5: INVERSION COMBINING ROCK PHYSICS AND MP-GEOSTATISTICS 60 

 

with an appropriate rock-physics model can be a way of identifying noise or bad data.  

In exploration areas, where the well-log data is usually scarce; the crucial advantage 

of using rock-physics is the ability to extend the training data, or equivalently, to 

predict the physical properties of groups not sampled by the wells but expected in the 

study area.  Figure 5.3 illustrates that ability to generate elastic-property distributions 

for new groups not sampled by the wells.  In this example, given the initial groups 

presented in Figure 5.2, rock-physics models are used to assign the elastic properties 

of the new groups. 
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Figure 5.2:  Typical groups defined for the simplest case of lithology identification 

in a clastic reservoir, inverting seismic (acoustic) data.  For inverting acoustic 
data, each defined group has an associated distribution of P-wave velocity and 
density. 
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Figure 5.3:  A rock-physics-based extension of the groups presented in Figure 5.2.  

The arrows indicate the rock-physics model used in each case: Gassmann fluid 
substitution (yellow arrow), Dvorkin’s cementation model (green arrow), 
Marion-Yin-Nur “V” model (red arrows).  Details of all the mentioned rock-
physics models can be found in Mavko et al. (1998). 
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5.3.1.b Pattern database construction 

The MP-geostatistics algorithm incorporated in the proposed inversion technique 

is a modification of SIMPAT (Arpat, 2005).  SIMPAT builds realizations based on 

patterns obtained from the training image; hence, a pattern database is needed.  The 

method for building the pattern database is essentially the same as that proposed by 

Arpat (2005).  I describe the database generation for the two-dimensional case; 

consequently, the training image and the template are defined in a plane.  For the 3D 

case, cubes or rectangular boxes replace squares or rectangles, but the general 

procedure remains the same. 

The training image must be representative of the expected geology, built with the 

same groups defined in the other component of the pre-processing step.  It has to be 

rich enough to contain all (or most) possible geologic patterns expected in the study 

area.  As suggested by Strebelle (2000), a training image can be a realization of an 

object-based geostatistical technique.  Once the training image is produced, it is 

scanned using a predefined template, or arrangement of cells.  The scanning consists 

of moving the template over the entire training image.  At each position, the cells 

covered by the template form a pattern.  Each unique pattern is kept in the database.  

Although Arpat (2005) gives some indications about the selection of the template 

size, the optimal size is still an open question.  The size of the template drastically 

affects SIMPAT’s time of execution; therefore, it must be as small as possible, while 

still being at least as large as the main geologic features to be reproduced (e.g. 

wideness of a channel). 

The process of building the pattern database using a simple training image and 

small template is illustrated.  Figure 5.4 shows a 3-by-3 template and a training 

image of size 20-by-11 (x-by-z), formed by two types of group indices (channel and 

background).  The training image proposed resembles a vertical section of the 

subsurface, cutting a set of channels perpendicularly to the original stream direction.  

Figure 5.5 illustrates three positions of the 3-by-3 template during the training image 

scanning.  Note that each position of the template in the training image gives a 

candidate element for the pattern database.  The pattern is retained for the database if 
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its configuration of group indices has not yet been encountered in the training image; 

therefore, each pattern in the database will be unique.  The template is moved one 

cell at each step, until all training-image positions have been scanned, i.e. all possible 

center pattern positions have been visited.  Figure 5.6 shows the patterns database 

constructed from the training image and template presented in Figure 5.4 
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Figure 5.4:  Two-dimensional training image resembling a vertical section of a set of 

channels (gray cells) encased in a homogeneous background (white cells), and a 
3-by-3 reference template. 
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Figure 5.5:  Three positions of a 3-by-3 template (orange cells) scanning the training 

image, and the corresponding extracted patterns. 
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Patterns database

 
Figure 5.6:  Pattern database for the first grid level generated using the template and 

training image of Figure 5.4. 

 

To account for large-scale structures or correlations, without increasing the 

number of cells in the template, Tran (1994) introduced the multiple-grid idea.  In 

the context of the presented inversion technique, using a multiple grid means that for 

each grid level “g+1”, only the (2g)th grid position on the training image is used to 

generate the pattern database.  The values of “g” start with zero, where all 

(consecutive) grid cells are considered, as in the example of Figure 5.5.  Figure 5.7 

presents two positions of the template during the training image scanning for the 

second grid level of the multiple (g = 1), i.e. selecting every two grid cells.  For each 

grid level considered, a pattern database is generated. 
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Figure 5.7:  Two positions in the second level grid (g=1) of a 3-by-3 template 

(orange cells) scanning the training image and the corresponding extracted 
patterns. 



CHAPTER 5: INVERSION COMBINING ROCK PHYSICS AND MP-GEOSTATISTICS 64 

 

To increase the interaction between the grid levels, not only the selected pattern 

is pasted in the solution grid, but also some of the continuous cells skipped when 

defining the grid level.  This idea of pasting more cells than the template size is a 

small modification of the dual-template concept proposed by Arpat (2005).  

Although the patterns always have the size of the template, the associated pattern 

size changes with the grid level.  To illustrate the associated-patterns concept, Figure 

5.8 shows two positions of the 3-by-3 template when scanning the example training-

image in the second grid level, the patterns from those locations, and their associated 

patterns.  The associated pattern and the template always have the same length in the 

horizontal direction (xtsiz).  On the other hand, in the vertical direction, the 

associated pattern length for a grid level “g+1” is given by: 

( ) 11xtsiz2nzasp +−= g     (5.2) 

The use of the associated patterns guarantees that for any grid level, all depths or 

cells in the vertical direction will be filled.  For seismic forward modeling, all z 

positions of the visited x must be assigned velocity and density values, a condition 

that, in the inversion technique presented, can be fulfilled only if all those cells have 

been assigned a group index. 
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Figure 5.8:  Two positions of a second grid level (3-by-3 template), showing the 

extracted patterns and the corresponding associated patterns. 
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5.3.2 Inversion step: Seismic (acoustic) inversion 

The second step, the inversion itself, is an iterative process.  In the current 

implementation, the number of iterations is a user-defined parameter that can be 

determined by running tests with a subset of the data.  If desired, a criterion for 

stopping the inversion can be easily incorporated.  The decision to finish the 

inversion can be based on a function of the global residual between the synthetic 

seismic and seismic data.  For clearness, the presented description of the inversion 

step is restricted to the two-dimensional case, i.e. surface (x) and depth (z). 

A synthetic example created from the cross-section presented in Figure 5.4 is 

used to illustrate all processes in the inversion step.  Figure 5.9 shows the input data 

used in the example: the initial state of the solution grid with all cells empty except 

the ones corresponding to the well-log data, the distributions of elastic properties (Vp, 

ρ) for the two defined groups, and the seismic data.  The pattern database used was 

constructed by scanning the training image of Figure 5.4.  The input seismic data 

was generated using Kennett’s algorithm, which gives the full normal-incidence 

elastic response of a layered medium.  For a description of Kennett’s algorithm, see 

for example Mavko et al., 1998.  A Ricker wavelet with a central frequency of 60 Hz 

was used for generating the data as well as for the forward modeling in the inversion. 

As was mentioned before, two alternative approaches of the inversion step are 

proposed: the compact approach and the extended approach.  In the following, 

detailed descriptions of both ways to complete the inversion step are presented. 
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Figure 5.9:  Input data used in the example for describing the inversion step: defined 

grid (cyan cells = empty) with the given well log of group indices, the elastic 
property distributions of the two defined groups (channel, background shale), 
and the seismic data. 
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5.3.2.a Inversion step: Compact approach 

Figure 5.10 shows a schematic representation of the procedures that form a single 

iteration of the inversion step in the proposed compact approach.  First, the order for 

visiting all desired x positions is defined by a pseudo-random path.  The path is 

pseudo-random because the distance from the visited x-coordinate to the well 

position increases or does not change for each consecutive surface location selected.  

The randomness is introduced when selecting locations with similar distance from 

the wells. 
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Figure 5.10:  Schematic representation of the inversion step in the compact approach 

version.  The components of the elastic loop are highlighted in red.  An iteration 
is completed when all x positions defined in the pseudo-random path are visited. 

 

At every surface position visited, multiple SIMPAT-modified simulations 

(SIMPAT*) are completed.  Each SIMPAT* realization generates pseudo-logs of 

group indices at the visited x-coordinate and its surrounding locations, inside a radius 

of half the template’s horizontal length.  The principal differences between 

SIMPAT* and the original SIMPAT algorithm presented by Arpat (2005) are the 

way of defining the random path and the selection of cells that are written or filled 

when visiting any particular position of the grid.  For every visited x and for every 
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grid level, SIMPAT* simultaneously creates pseudo-logs of group indices populating 

all z within a surface distance smaller or equal to half of the template’s horizontal 

size. 

To populate all z at the visited x location, SIMPAT* first defines a random path 

for all the z cells of the grid level in turn (starting with the coarser grid).  At each z, 

the pattern from the database is selected that best matches the arrangement of group 

indices in the cells covered by the template.  The non-empty cells covered by the 

template, which forms the pattern to be matched, are either hard data (usually from 

well logs) or previously simulated cells.  When the compared cells are hard data, the 

patterns that match exclusively those cells are selected first.  Then, the remaining 

cells covered by the template are considered for narrowing the choices that equally 

match the hard data.  In the entire inversion process, the hard data is never changed. 

As was initially proposed by Arpat (2005) for SIMPAT, the criterion selected for 

measuring degree of similarity between two patterns was the Manhattan distance.  

Let, A={a1, a2, …, an} and B={b1, b2, …, bn}, be the patterns to be compared, with ai 

and bi (i=1,..,n) being group indices.  Then, the Manhattan distance between them is 

given by: 
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Once the best pattern is selected by minimizing d, the associated pattern is pasted, 

centered at the visited cell.  As was described in the previous section (pre-processing 

step), the associated pattern fills or overwrites the grid cells in an area centered at the 

visited cell, with length x equal to the size of the template in the horizontal direction, 

and height z determined by the grid level defined in equation 5.2. 

Figure 5.11 illustrates the main SIMPAT* steps used to populate the surrounding 

cells of a visited location: selecting cells to be compared, searching in the pattern 

database for the best match, and pasting the selected associated pattern.  Particularly, 

Figure 5.11 shows the procedure corresponding to the first step, or the first visited 

cell, in the analyzed example (3-by-3 template, second level of grid).  Figure 5.12 
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shows four SIMPAT* realizations of pseudo-logs of group indices for the first x 

visited (the well location) in the analyzed example.  Because the template used has a 

length of three in the x-direction, three pseudo-logs of group indices are generated 

simultaneously by each SIMPAT* realization. 
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Figure 5.11:  Main components of a single SIMPAT* step (step one in this case): 

selecting cells to be compared (g = 1, i.e. second grid level), searching in the 
pattern database for the best match, and pasting the selected associated pattern. 
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Figure 5.12:  The result of four SIMPAT* realizations, completing the first visited x 

location (well position), i.e. simulating all z for all grid levels (two in this case). 

 

The next step in the proposed compact approach is the elastic loop.  A multiple, 

equally probable set pseudo-logs of elastic properties are created from each 

SIMPAT* realization, and a corresponding synthetic trace is computed.  The goal of 

the elastic loop is to obtain the best pseudo-logs of elastic properties for the 

SIMPAT*-proposed group indices.  The pseudo-logs of group indices are 

transformed into elastic properties, drawing for each sampled depth Vp and ρ values 
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from the corresponding groups’ distributions.  In the current implementation of the 

method, the distributions of elastic properties are assumed Gaussian.  Therefore, for 

each defined group, mean and variance values of Vp and ρ, as well as the covariance 

between the two elastic variables, are the parameters required to describe completely 

the joint distributions of elastic properties.  P-wave velocity pseudo-logs are used to 

make the depth-to-time transformation before computing synthetic traces.  In this 

way, synthetic traces are generated in the time domain and can be directly compared 

with the seismic data.  In the acoustic case, the pseudo-logs of acoustic impedance 

(AI) are obtained by simply multiplying the generated Vp and ρ pseudo-logs, 

transforming from depth to time sampling.  Then, the reflectivity pseudo-logs, 

needed for the forward modeling are computed with the following relation: 

i1i
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+ .     (5.4) 

Figure 5.13 shows multiple realizations of elastic properties (pseudo-logs) for the 

first SIMPAT* realizations of Figure 5.12, the synthetic seismic traces computed for 

each one, and the collocated seismic data traces (red lines).  At the well location, the 

values of group indices and elastic properties are the observed in the well-logs.  The 

synthetic seismic traces are computed by convolving every generated reflectivity 

pseudo-log with the given (input-data) wavelet.  As Figure 5.13 illustrates the 

pseudo-logs of group indices and elastic properties corresponding to the traces that 

better reproduces the collocated seismic data are retained.  The degree of similarity 

between a synthetic trace and a data trace, with ‘ns’ number of samples, is a function 

of the absolute values of the difference between samples (si), as the following 

expression specifies: 
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The greater the value trzsim is, the more similar the compared traces are. 
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Figure 5.13:  Multiple realizations of pseudo-logs of elastic properties for the first 

SIMPAT* realizations of Figure 5.12, the synthetic seismic traces computed for 
each one, and the collocated seismic data traces (red lines). 
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Figure 5.14:  Selection of the elastic properties (Vp, ρ) pseudo-logs that generates 

the synthetic trace which better reproduce the collocated seismic data trace. 
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The decision of using an exponential function of the absolute value of the 

differences between samples to measure similarity was based on assuming that the 

errors in the seismic data can be described by a Laplace distribution function, i.e. 

exp(-|x|).  As is well known, the results obtained minimizing in the l1-norm sense are 

robust (relatively insensitive to outliers).  However, the option of using different 

types of misfit functions, like l2-norm or a measure of the correlation between traces, 

is an open topic for research. 

The elastic loop is completed for all the SIMPAT* realizations providing the best 

set of elastic properties pseudo-logs sampled.  Figure 5.15 shows the results of the 

elastic loop for the four SIMPAT* realizations of Figure 5.12, and the collocated 

seismic data traces (red lines).  The SIMPAT* realization that produces the synthetic 

traces that match better the seismic data is selected.  As Figure 5.15 demonstrates, in 

the analyzed example the best reproduction of the input data was obtained with the 

SIMPAT*(3) realization.  The measure of similarity between a group of synthetic and 

data seismic traces is given by the following expression: 
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Finally, if enstrzsimnew (obtained by completing the described procedure) is 

greater than enstrzsimprev (calculated using previously accepted traces at the 

simulated x-locations), and greater than a user defined value (ensmav in equation 

5.7), then the pseudo-logs of group indices and elastic properties corresponding to 

the traces compared are pasted into the corresponding solution grids, as Figure 5.16 

illustrates.  In case the proposed set of pseudo-logs is not accepted, the solution grids 

are transformed back to their previous states.  The minimum value of enstrzsim for 

accepting the synthetic traces proposed is defined as a function of the seismic traces 

to which they are compared.  The idea is to let the user define the precision required 

for reproducing the input seismic data.  The user-input parameter α (usually smaller 

than one) defines the minimum acceptance value, ensmav, as follows: 
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Figure 5.15:  Results of the elastic loop for the four SIMPAT* realizations of Figure 

5.12, and the collocated seismic data traces (red lines). 

 

ρρVpz

xx  
Figure 5.16:  Result of the inversion step (compact approach) for the first x-position 

visited, i.e. the well location. 

 

The process just described, i.e. SIMPAT* realizations and the associated elastic 

loop, is repeated for the next surface location following the pseudo-random path 

defined at the beginning of the iteration.  The accepted pseudo-logs (group indices 

and elastic properties) affect or soft condition the subsequent simulations.  An 

iteration ends when the pseudo-random path is completed, i.e. all x positions selected 

are visited.  The obtained solution, input for the next iteration, is formed by the grids 

with accepted pseudo-logs of group indices, velocities and densities, and synthetic 

traces.  Figure 5.17 shows the results of the inversion after completing the first and 

second iterations for the example used to illustrate the inversion step.  Compared to 

the true model (Figure 5.4), the configuration and shape of the channels is very well 

recovered.  It is important to remember that this is not the definitive solution, but is 



CHAPTER 5: INVERSION COMBINING ROCK PHYSICS AND MP-GEOSTATISTICS 73 

 

one of many possible solutions, a single sample from the posterior probability 

density.  Many samples must be analyzed to get a real idea of the complete solution. 

 
Iteration 1 Iteration 2

z

x

z

x  
Figure 5.17:  A result of two iterations of the presented inversion method on the 

synthetic example used for describing the technique.  The blue rectangle 
indicated the well location. 

 

5.3.2.b Inversion step: Extended approach 

The components of the inversion step in its extended approach are shown in 

Figure 5.18.  As can be noticed, the general structure is similar to that of the compact 

approach (Figure 5.10).  However, in the extended approach every SIMPAT* 

simulation is repeated multiple times.  Each SIMPAT* iteration starts with the 

pseudo-logs accepted in the elastic loop.  Additionally, the final pseudo-logs of 

group indices and elastic properties that generate the best synthetic traces (better 

reproduce the collocated seismic data) at each x inside a radius of half of the 

template horizontal size are selected from all the SIMPAT* realizations 

independently.  In this section, the steps in the extended approach that are different 

from the previously presented compact approach are described. 

In the extended approach, at every surface position visited, multiple sets of two 

nested loops are performed, as illustrated in Figure 5.19.  The external loop 

corresponds to multiple iterations of SIMPAT*.  The SIMPAT* proposed pseudo-

logs of group indices are accepted or rejected based on the results of the elastic loop, 

which is similar to that presented for the compact approach. 
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Figure 5.18:  Flowchart of a single iteration of the inversion step (extended 

approach).  Two loops are completed for every SIMPAT* realization. 
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Figure 5.19:  The two main loops in the inversion step (extended approach).  First, a 
SIMPAT* realization is generated.  Then, the elastic loop is completed selecting 
the synthetic traces that best match the seismic data, within a tolerance range.  
The selected traces and the corresponding elastic and group indices pseudo-logs 
are retained and used as the initial state for a following SIMPAT* simulation. 

 

Figure 5.20 illustrates the elastic loop of the proposed extended approach.  Four 

realizations of AI (computed by drawing values of Vp and ρ for each depth, 

conditioned to the SIMPAT* proposed group index) for the pseudo-logs of group 

indices created from a given SIMPAT* simulation are shown.  For each x-position 

simulated, only the synthetic traces that match the seismic data better than a user-

defined value (mav in equation 5.8) are retained.  The pseudo-logs of group indices 

and elastic properties corresponding to the retained traces are also kept.  In the 
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extended approach, the degree of similarity between a synthetic and data trace is the 

same as defined for the compact approach (equation 5.5). 
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Figure 5.20:  Illustration of the elastic loop, showing four realizations of pseudo-logs 

of acoustic impedance for a given SIMPAT* realization, the synthetic seismic 
traces computed from each one, and the selection of best traces. 

 

In the elastic loop of the extended approach, each single trace is accepted if the 

value resulting from the comparison (trzsim) is greater than the mav value defined in 

equation 5.8.  Similar to the compact approach, the comparison value is specified by 

the user defined parameter β, as the following equation shows: 
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The retained pseudo-logs of group indices are used as input (soft) data for the 

next iteration of the external loop; that is, the next SIMPAT* simulation starts with 

the pseudo-logs of group indices accepted in the elastic loop, after the comparison 

with the seismic data.  As shown in Figure 5.21, after independently completing 
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several SIMPAT*-elastic loop iterations, the synthetic traces that best match the 

seismic data at every location around the visited x are selected.  Finally, the chosen 

traces form an ensemble that is compared with the collocated seismic data traces as a 

single entity, and it is accepted or rejected with the same criteria defined for the 

compact approach (equations 5.6 and 5.7). 
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Figure 5.21:  Last components of the inversion step (extended approach) for each 

visited x location.  Best traces are selected from all the SIMPAT*-elastic loop 
realizations, forming an ensemble that is compared with the seismic data and 
previous accepted traces.  If a better match, greater than a used-defined value is 
obtained, the corresponding ensemble of pseudo-logs is pasted into the solution. 

 

In general, the compact approach favors continuity in the borders of the 

geological bodies proposed.  However, because the compact approach cannot break 

or combine sets of pseudo-logs of group indices like the extended approach can, the 

condition on the training image to provide a complete set of patterns is stronger.  The 

extended approach of the inversion step selects the best individual traces and pseudo-

logs of group indices after each SIMPAT* realization, and when creating the 

ensemble of traces, gives more flexibility to find a match to the seismic observation.  
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More research needs to be done before discarding any of the presented approaches. 

5.4 Future work 

The obvious extension of the presented algorithm is inverting 3D data.  The main 

modifications needed for a 3D version are the redefinition of the random path to visit 

all surface locations (x,y), and the comparison of cubes (or rectangular boxes) instead 

of squares for template and pattern selection.  For a 3D implementation, the code 

must be optimized as much as possible to compensate for increased CPU 

requirements, mainly caused by searching the pattern database. 

The proposed inversion technique is not conceptually limited to the acoustic case.  

The conventional approach used to invert partial-offset-stack seismic for elastic 

impedance (Connolly, 1999) can be used with the presented algorithm.  The single 

modification required is drawing three elastic properties instead of two during the 

elastic loop; hence, the values of “elastic reflectivities” can be computed and 

convolved with the given wavelet to generate the adequate synthetic traces. 

A way for reducing the number and the length of the geostatistical simulations 

could be based on a windowed seismic comparison.  Instead of revisiting all depths 

for each geostatistical simulation, this approach would refine the model in zones 

where the match between the synthetic and data traces is worst.  The fact that the 

models are built in depth but the traces are compared in time limits the width of the 

windows and determines the order in which the process must be done.  Alternatively, 

the splitting could be done in the frequency domain rather than the time domain.  

This approach would establish a correspondence between the multiple grid levels 

used for the geostatistical simulation and band frequencies of the seismic signal.  

Only low frequencies of the seismic data and a low frequency synthetic generated 

from higher levels of grids would be used, and only the best realizations would be 

kept for the next grid level.  At every grid step (lower grid level), the frequency band 

of the synthetic and data traces could be increased to include more detail. 

The criterion used to define the misfit or similarity between observed and 

modeled observations is another topic open for research.  Inspired on the assumption 
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of a double exponential function for describing the uncertainties in the seismic 

observations, a l1-norm similarity function was used.  However, criteria based on l2-

norm or the correlation value could be explored. 

In the current implementations of the algorithms, the elastic properties of each 

group are defined by bivariate Gaussian distributions, fixed for all the inversion.  The 

option to include some type of variations to those distributions is an interesting topic 

to be explored.  Gradual changes of depth, cementation, or even mineralogy that can 

be anticipated could be transformed in trends or smooth spatial variations of the 

distributions of the groups’ elastic properties.  

5.5 Conclusions  

A novel inversion technique was presented, which combines rock physics with 

MP-geostatistical simulation.  The method is based on the formulation of an inverse 

problem as an inference problem, with rock physics and MP-geostatistics as the 

elements for constraining and exploring the space of possible solutions.  Although 

the technique is not restricted to any particular MP-geostatistical algorithm, a small 

variation of the stochastic simulation with patterns, or SIMPAT (Arpat, 2005), was 

the algorithm included.  In the form that was presented, the inversion method works 

for any inverse problem that uses a one-dimensional forward modeling operator.  It 

can be easily extended to invert simultaneously data from different geophysical 

methods, with the condition of a unidimensional forward modeling operator or full 

forward-modeling operator that can be approximately factored into a series of 

unidimensional forward operators.  Electrical methods are strong candidates to be 

combined with seismic data in the simultaneous inversion proposed. 

The solutions provided by the method are equally probable realizations of spatial 

arrangements of groups in the subsurface.  A group was defined as a discrete variable 

or index for naming rocks with similar characteristics, such as lithology and/or fluid.  

Every group has an associated distribution of values of the physical properties 

needed to perform the forward modeling, the physical quantities that influence the 

geophysical methods used. 



 

 
 
 
Chapter 6  

Inversion method: Synthetic tests 
 

“When a distinguished but elderly scientist states that 

something is possible, he is almost certainly right.  

When he states that something is impossible, he is very 

probably wrong” (Sir Arthur C. Clark) 

 

6.1 Abstract 

This chapter presents the results of a set of tests applied to the inversion 

technique introduced in the previous chapter.  In each case, synthetic, normal-

incidence seismic (acoustic) data was inverted to predict the spatial arrangement of 

groups in a reservoir, using the two proposed approaches of the method.  For all tests, 

the model itself was clearly depicted by the zones with high values in the computed 

probability maps.  The models used were 2D cross-sections extracted from a 3D 

synthetic reservoir model. 

Five tests were performed.  The first test aimed to validate the concept of the 

proposed inversion technique and the implementation of the proposed approaches.  

This test used the model itself as the training image to guarantee the completeness of 

the pattern database.  For the second test, the training image was formed by 

combining twelve cross-sections with similar characteristics to the one used as the 
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model.  In the third test, the elastic properties of the sand group were modified to 

create a partial overlap with the shale, simulating the case of a deeper reservoir.  The 

fourth test simulated gas saturation in two of the channels.  Two different scenarios 

determined by the well locations were tested: drilling into the gas channels, and 

missing them.  In the case that the gas-saturated channels were missed by the wells, 

rock-physics models (Gassmann equations) were used to predict the elastic 

properties of the expected, but not sampled, group of gas-saturated sand.  The fifth 

test shows the possibility of starting with an initial guess, which does not require the 

solution grid to be filled.  It shows that a possible starting point for the inversion with 

the presented method can be based on the solution of a more conventional inversion 

technique.  Starting with some initial information in the solution grid can reduce the 

number of iterations needed to obtain solutions. 

6.2 Introduction 

The aim of using geophysical methods for reservoir characterization is to reduce 

uncertainty in predictions of rocks and fluids away from wells or control points.  The 

transformation of geophysical data, in particular the seismic data, into reservoir 

properties is an inverse problem.  However, in geophysical jargon, the definition of 

seismic inversion is commonly restricted to the process of obtaining elastic 

properties in the subsurface from seismic data.  Then, as a post-process using rock 

physics (in the best scenario), each elastic property in time or depth is transformed 

into reservoir properties point-by-point. 

In the previous chapter, a new inversion method was presented.  The technique 

combines rock-physics and multiple-point geostatistics methods in a Bayesian 

framework.  The concept of a group was introduced in the inversion method as the 

building block for constructing solutions.  A group is defined as a discrete variable or 

index for naming rocks with similar characteristics, such as lithology and/or fluid.  

Every group has an associated distribution of values for the physical properties 

needed to perform the forward modeling, i.e. the physical quantities to which the 

geophysical method used responds.  The solutions of the proposed inversion 
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technique are realizations of spatial arrangements of the defined groups.  A solution 

or realization is obtained after completing multiple iterations.  The number of 

iterations is a user-defined parameter that can be determined based on the behavior 

of the global residual, i.e. based on a quantity that measures the difference between 

all the input seismic data and the forward-modeled synthetic seismic.  Some of the 

key characteristics of the new inversion technique are the following: 

• The solutions are consistent with the well data and the geological 

description. 

• The solutions attempt to reproduce the expected continuity of the 

geologic bodies. 

• A physics-based guess can be used for predicting non-sampled properties. 

• Multiple solutions are provided for estimating uncertainties. 

• The method is practical: limited time and resources are needed. 

• Different data types (multi-physics) can be used simultaneously. 

In this chapter, a set of tests using synthetic 2D seismic data are presented to 

demonstrate the validity of the proposed inversion technique.  The two-dimensional 

models used were extracted from a modified version of the top layer of the Stanford 

VI synthetic reservoir.  The Stanford VI reservoir was created by the geostatistics 

group in the department of Petroleum Engineering at Stanford University (Castro, et 

al., 2005).  All the information about the model relevant to this work is summarized 

in Figure 6.1.  As can be seen, the basic model used to construct the tests was a 

cross-section of a simplified, two-lithology channel system with 80 cells in the 

vertical direction (z), corresponding to a total vertical thickness of 80 meters (one 

meter per cell).  In the horizontal direction (x or CDP location), the length of the 

model was 3750 meters, given by 150 cells with an individual width of 25 meters.  

Figure 6.1 also presents the spatial distribution of the P-wave velocities (Vp) and 

densities (ρ), as well as a cross-plot between the two elastic parameters color-coded 

by the groups (channel-sand, background-shale). 
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Figure 6.1:  Geological framework of the model used for the first and second tests 

(top left).  Cross-plot of all P-wave velocity (Vp) and density (ρ) values in the 
model, color-coded by the group (top right).  Spatial distribution of Vp and ρ in 
the model (bottom).  The wells (W1, W2) were located at CDP 40 and 120. 

 

A synthetic seismic profile was computed using Kennett’s algorithm 

implementation which models full, normal-incidence wave propagation, assuming a 

layered media at each CDP location (for a description of Kennett’s algorithm, see for 

example Mavko et al., 1998).  A Ricker wavelet with 15 Hz central frequency was 

the wavelet used; hence, the approximate mean wavelengths for the channel sand and 

background shale were 210 meters and 140 meters, respectively.  Figure 6.2 shows 

the computed seismic profile for the model given in Figure 6.1.  Comparing the 

seismic with the input geologic cross-section shows that although some of the 

channels could be depicted in the seismic section, it is very difficult (maybe 

impossible) to predict lithology everywhere by examining only the seismic 

amplitudes. 
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Figure 6.2:  Synthetic seismic computed with Kennett’s algorithm using a Ricker 

wavelet with 15 Hz of central frequency.  All seismic traces were included for 
the color image, but only every fourth trace is plotted with a wiggle trace.  W1 
and W2 indicate the locations of the two given wells. 
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A characteristic of seismic inversion techniques like model-based and sparse-

spike inversions is the tendency to generate layered solutions.  This is an expected 

result, because the methods are based on that assumption.  Though a layered 

assumption is valid in many situations, especially when stratigraphic sections of 

several hundreds of meters are studied, it is not always the appropriate hypothesis to 

describe the internal structure of a reservoir.  Figure 6.3 shows the results of 

inverting the seismic data presented in Figure 6.2 using the model-based and sparse-

spike algorithms of the commercial package STRATA (Hampson and Russell 

software, version 6.2).  P-wave velocity and density information at CDPs 40 and 120 

were given as input log data.  As was pointed out before, the solutions obtained with 

these types of inversion algorithms are impedance profiles at each input trace 

position; consequently, a post-process is required to generate lithologic profiles.  

Some of the channels can be roughly depicted (low impedance values) in the areas 

around the first and last CDPs on both inversions; however, the channels between the 

wells cannot be identified.  Although the solutions in Figure 6.3 are probably not the 

best that can be obtained with each algorithm, a drastic improvement cannot be 

expected, particularly in the central region of the model where most of the channels 

were present. 
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Figure 6.3:  Acoustic impedance sections (depth) obtained by inverting the synthetic 

seismic of Figure 6.2 with model-based (left) and sparse-spike (right) algorithms.  
Vp and ρ information at CDP 40 (W1) and 120 (W2) were used as input data. 

 

This chapter presents a set of 2D synthetic tests using both approaches (extended 

and compact) of the inversion technique presented in the previous chapter.  All the 

models used for the tests were variations of the data shown in Figure 6.1.  The 
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shapes and spatial arrangement of the channels, i.e. the geological framework, was 

similar for all the cases.  The differences between models were created by modifying 

the elastic properties or adding a new group (gas-saturated sand). 

For clarity and consistency in the presentation of the results, the same number of 

iterations (six) was selected for all tests to obtain a realization.  This decision was 

based on multiple trials (with all tests).  After six iterations, the sample-by-sample 

difference between the input seismic data and the synthetic data computed from the 

solution tend to remain constant. 

The model shown in Figure 6.1 and the seismic data of Figure 6.2 were used for 

the first two tests.  In the first test, the model itself was used as training image.  The 

goal of using the model as the training image was to check the inversion concept 

itself and the validity of the implementations.  For the second test, a training image 

was constructed from twelve cross-sections with the same size as the solution.  Even 

though the dimensions of channels were well represented in the training image, none 

of the selected cross-sections had the same arrangement of channels as the true 

model.  In the third test, the elastic properties of the sand group were modified to 

create some overlap with the shale Vp and ρ distributions. 

In the fourth test, gas saturation was simulated in some of the channels.  A 

strategy is presented to generate a training image that accounts for fluid variations 

without changing the initial geological concept.  Results from inverting the 

corresponding seismic data for two different locations of the given wells, drilling and 

missing the gas sands, are discussed.  The value of the inversion technique for 

extending the training data (samples from well-logs) using rock-physics is 

demonstrated with the fourth test. 

The last test shows how the presented inversion method allows the user to input 

an initial guess of a possible solution.  The initial model does not need to fill the 

solution grid.  The inversion can be started with a rough picture of a possible spatial 

distribution of the groups, maybe only in the areas were the user is more confident 

about what groups to expect.  The initial model is considered soft data for the 

inversion process.  As shown in the analyzed tests, the solution from other inversion 
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method (e.g. model-based) can be used to generate the initial state of the solution 

grid. 

For all tests, a probability map for each defined group is presented as the main 

result.  These probability maps are equivalent to the geostatistical quantity known as 

E-type (average from realizations for each cell), given that group indices can be 

interpreted as indicator variables.  In exploration situations, when well-log control is 

scarce, this type of result is probably the most important result expected.  On the 

other hand, for later stages of development of the area, each of the solutions 

(inversions after a defined number of iterations) needs to be considered, as in any 

stochastic method. 

6.3 Test 1: The model itself as the training image 

The goal of the first test was to validate the proposed inversion method and to 

check the implementation of the algorithms.  To accomplish that objective, the 

seismic data shown in Figure 6.2 was inverted using the model (Figure 6.1) as the 

training image.  This guaranteed the completeness of the pattern database. 

Figure 6.4 shows the logs of group indices and the ρ-Vp values from the two 

given wells (W1 and W2 at CDP 40 and 120, respectively).  The mean, variance and 

covariance of Vp and ρ  for each group (sand, shale) were computed from the logs.  

In this case, sand and shale elastic properties were well differentiated, with relatively 

low dispersion; hence, possible variations of arrangements of elastic properties inside 

the group zones gave similar seismic responses.  In general, when the elastic 

properties of the groups are well-separated distributions with small dispersion, as a 

first order approximation, the elastic loop is not needed, or only a few draws are 

necessary.  Even using only the mean values of the group’s elastic properties can 

provide good results. 

 



CHAPTER 6: INVERSION METHOD – SYNTHETIC EXAMPLES 86 

 

2 2.2 2.4
2

2.5

3

3.5

4

V
p
 (

km
/s

)

ρ (gr/cm3)

d
e
p
th

 (
m

)

W2

15

30

45

60

75

d
e
p
th

 (
m

)

W1

15

30

45

60

75
sand

shale

sand

shale

 
Figure 6.4:  Well-log data used for the first test, extracted from CDP 40 (W1) and 

120 (W2) of the model shown in Figure 6.1.  Group-index logs (left) and a plot 
of P-wave velocity (Vp) and density (ρ)values, color-coded by the group (right). 

 

The input parameters for the inversion’s compact approach were the following: 

four grid levels, a 7-by-7 template, every other CDP visited, single draw used for the 

elastic loop, a comparison factor (defined in equation 5.6) with alpha of 0.8, and 

twenty SIMPAT* realizations for every visited CDP.  The extended approach of the 

technique required an additional input value to define the number of times that 

SIMPAT* revisits the proposed pseudo-log of indices.  To provide a fair comparison 

between the two proposed inversion approaches, five SIMPAT* realizations with 

four revisits at every visited CDP were used as input parameters for the extended 

approach.  Table 6.1 summarizes the input parameters for the two inversion 

approaches used in the first test. 

 
Table 6.1: Values of the input parameter used in the first test. 

Parameter description Reference name Value 

Grid levels (g+1) grdlev [4 3 2 1] 

Template size (ztsiz, xtsiz) (7, 7) 

Skipped CDP jumpx 1 

Elastic properties draws (loop) elasloop 1 

α (for comparison factor) compval 0.8 

simxloc (compact approach) 20 SIMPAT* realizations per CDP 
simxloc (extended approach) 5 

Revisit SIMPAT* realizations per CDP 
(only for extended approach) simxloc2 4 
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To illustrate how the inversion method populates the simulation grid, Figure 6.5 

presents the initial state, four intermediates, and the final stage during a first iteration 

(for the compact approach).  In the first iteration, the CDPs are visited in such an 

order that the distance to the wells increases (or remains the same) for each 

consecutive visited location.  This is a way of propagating the information from the 

wells or control points.  A different result than that in Figure 6.5, but also valid, can 

be obtained by simply changing the random seed to construct the pseudo-random 

path for visiting the CDPs. 
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Figure 6.5:  (First test) Initial state of the solution grid with only the information 

from the wells, four intermediates, and the result of a first iteration obtained 
using the compact approach of the proposed inversion algorithm. 

 

Figure 6.6 presents the results of one set of six iterations.  As was expected, with 

each iteration the reproduction of true model was improved.  The first 10 CDP 

locations and the range between CDPs 133 and 137 were the regions that were more 

difficult to populate.  A single group (shale) was present in those zones of the model, 

causing a seismic response with small amplitudes, requiring additional draws of 

elastic properties to reproduce better the internal arrangement of Vp and ρ.  

Additionally, in the current implementation of the inversion algorithms, the number 

of times the first and last CDP locations (within half of the template size in the x 

direction) may be filled is fewer than for rest of the CDPs.  These locations are not 

included in the pseudo-random path. 
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Figure 6.6:  (First test) Results of one set of six iterations obtained using the 

compact approach of the proposed inversion technique. 

 

Figure 6.7 shows the input seismic data used for the first test (same as Figure 6.2), 

the synthetic seismic result after six iterations of the compact approach of the 

inversion, and the sample-by-sample difference between them (residual).  To allow 

comparisons, all seismic traces of Figure 6.7 were scaled to the same value.  Simple 

visual inspection reveals the high similarity between the input and output seismic 

data.  The low values of the residual verify that observation.  Although Figure 6.7 

shows only the synthetic output and residual of a single realization, it is a 

representative sample of all the obtained solutions for the first test. 
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Figure 6.7:  (First test) Input seismic data, synthetic seismic (output) after six 

iterations of the inversion compact approach, and the residual (difference 
sample-by-sample between input and synthetic).  All traces are colored and 
scaled to the same value, but for clarity, the wiggles are plotted only at every 
other CDP. 
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Figure 6.8 shows the probability maps for the sand and shale groups, computed 

from thirty realizations of both proposed inversion approaches.  This probability is a 

joint probability for all cells, so it cannot be used to draw group values individually 

at each cell or to generate solutions.  Each realization of the complete reservoir is by 

itself a valid solution, equivalent to a draw from the posterior probability.  Presenting 

the results as probability maps (in this case, equivalent to the geostatistical quantity 

known as E-type, given that the group indices can be seen as indicator variables) is 

particularly useful for the initial stages of development of a reservoir, where a 

primary goal is to depict the main geological bodies (groups).  The results presented 

in Figure 6.8 demonstrate the validity of the proposed inversion technique and verify 

the implementations of both proposed approaches, since the model is clearly very 

well reproduced.  As was expected, at the CDP locations where only shale was 

present, the probability maps values are zero for both groups.  That indicates the 

cells at those locations were never filled.  Additionally, although both E-types shown 

in Figure 6.8 are similar, some small differences can be identified.  The border of the 

channels in the solutions from the compact approach tend to be better defined (more 

continuous) than in the solutions of the extended approach.  This result illustrates the 

expected general differences between the two approaches of the inversion method 

presented. 
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Figure 6.8:  (First test) Probability map for sand (left) and shale (right) groups 

computed with 30 realizations of the proposed inversion’s compact (top) and 
extended (bottom) approaches.  Red vertical lines indicate the locations of the 
wells (CDP 40 and 120). 
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The probability maps shown in Figure 6.9 prove that in this case, all CDP 

locations (including the ones with only shale) can be correctly populated when 30 

draws in the elastic loop are included.  The input parameters for generating the 30 

realizations to compute those probability maps were the same as previously 

mentioned (Table 6.1), except for elasloop, which was increased to 30.  To illustrate 

the effect of adding multiple draws of elastic properties before the accept/reject 

decision in a particular realization, Figure 6.10 contains the input seismic data (for 

reference), the obtained synthetic data (from a realization) and their sample-by-

sample difference or residual.  Almost no difference can be detected between the two 

seismic sections, as the low amplitudes of the residual validate. 

 
P(sand)

CDP

d
e
p
th

 (
m

)

 

 

25 50 75 100 125 150

20

40

60

0

1
P(shale)

CDP

d
e
p
th

 (
m

)

 

 

25 50 75 100 125 150

20

40

60

0

1

Compact approach

 
Figure 6.9:  (First test) Probability map for sand (left) and shale (right) groups 

computed with 30 realizations of the proposed inversion’s compact (top) and 
extended (bottom) approaches, with 30 draws in the elastic loop.  Red vertical 
lines indicate the locations of the wells (CDP 40 and 120). 
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Figure 6.10:  (First test) Seismic data (input) and synthetic data (an output) resulting 

from six iterations of the inversion’s compact approach, and the residual 
(difference sample by sample between input and output data).  All traces are 
scaled to the same value and colored, but for clarity, the wiggles are plotted only 
at every other CDP. 
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6.4 Test 2: composed training image 

The model, well logs, and seismic data used for the second test were the same as 

previously described for the first test, but the training image was changed.  For the 

second test, as a step toward representing a real case, the training image was 

constructed by extracting twelve cross-sections from the modified Stanford VI 

synthetic reservoir.  The twelve cross-sections that formed the training image, shown 

in Figure 6.11, were parallel to the one used to create the input data.  Although in the 

selected cross-sections the channels were individually a good representation of the 

channels in the true model, their spatial arrangements were different. 
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Figure 6.11:  Training image used for the second test, formed by twelve cross-

sections with the same size as the solution grid.  None has the same spatial 
arrangement of channels as the model used to generate the input data. 

 

For reference, to show the value of inverting the seismic data, thirty realizations 

of the reservoir were generated using the modified SIMPAT (SIMPAT*), without 

including the seismic data.  The input data were logs of group indices at the two 

given well positions and the training image of Figure 6.11.  Each realization was the 

result of six SIMPAT* iterations.  Figure 6.13 shows the results of a set of six 

iterations completed to generate one solution or realization.  As can be seen, the 

simulated channels start to show the expected shape after two iterations.  Figure 6.14 

shows three of the thirty SIMPAT*-without-seismic realizations.  By construction, all 

SIMPAT* realizations are equiprobable results reflecting the geological concept 
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included through the training image, i.e. the shapes and general distribution of 

channels.  On the other hand, the probability map shown in Figure 6.14 demonstrates 

that without any constraint between the wells, like that provided by seismic data, it 

was not possible to fix the locations of the channels. 
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Figure 6.12:  Results from a set of SIMPAT* iterations completed without seismic 

data to obtain one solution or realization. 
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Figure 6.13:  Three realizations (six iterations for each one) generated using 

SIMPAT* (without seismic) and the well-log data. 
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Figure 6.14:  (Second test) Probability maps for sand (left) and shale (right) groups 

computed with thirty SIMPAT* realizations without conditioning to the seismic 
data.  Red vertical lines indicate the locations of the wells (CDP 40 and 120). 
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Using the same input data and parameters as in the first example, but the training 

image of Figure 6.11, the seismic section shown in Figure 6.2 was inverted.  Thirty 

realizations with each inversion approach were generated, then the probability maps 

shown in Figure 6.15 were computed.  As a comparison between Figure 6.4 and 

Figure 6.15 reveals, the zones with high values correctly coincide with the channel 

locations in the model used to generate the input data. 
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Figure 6.15:  (Second test) Probability map for sand (left) and shale (right) groups 

computed with 30 realizations of the proposed inversion’s compact (top) and 
extended (bottom) approaches.  Red vertical lines indicate the locations of the 
wells (CDP 40 and 120). 

6.5 Test 3: two groups with overlapping elastic properties 

The geologic framework and the training image used for the third test were the 

same as for the second test.  The elastic properties of the sand group were modified 

to create a partial overlap with Vp and ρ of the shale group.  New seismic data was 

generated from the model with the modified elastic properties, using Kennett’s 

algorithm with a Ricker wavelet of central frequency of 15 Hz.  Figure 6.16 presents 

all the components of the model used in the third test: the new Vp and ρ spatial 

distributions, the cross-plot between those elastic properties, and the computed 

seismic section to be inverted. 
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The group-index logs of the two given wells (CDPs 40 and 120) and the cross-

plot of their elastic properties, color-coded by group, are shown in Figure 6.17.  

Mean, variance and covariance were computed with the ρ and Vp well-log values to 

define the bivariate Gaussian distributions that describe the elastic properties of each 

group. 
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Figure 6.16:  Model used for the third test: spatial distributions of Vp (top left) and ρ 

(top right), plot of all of Vp and ρ values, color-coded by group (lower left), and 
the computed seismic data (lower right).  The third model was characterized by 
the overlap between the elastic properties of the two groups. 
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Figure 6.17:  Well-log data used for the third test, extracted from CDP 40 (W1) and 

CDP 120 (W2) of the model shown in Figure 6.16: group-index logs (left) and 
plot of ρ-Vp log values color-coded by the group index (right). 
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The input parameters used for the inversions were the same as shown in Table 

6.1, changing the value of elasloop to 30; that is, an elastic loop with 30 draws of 

elastic properties was completed for every pseudo-log of group indices simulated by 

SIMPAT*.  The sand and shale probability maps obtained from thirty realizations 

(six iterations for each one) using the compact and the extended approaches are 

shown in Figure 6.18.  Sand channels, which coincide with those in the true model, 

can be clearly identified in the probability maps.  As can be seen, in the deepest 

region of the probability maps (below 70 meters) between CDP 125 and 140, the 

shape of a small channel, which was not present in the input model, can be discerned.  

A zone of relatively small elastic-property values, coincident with the referred area, 

can be seen in the input model (Figure 6.16), which, for this example, could well be 

attributed to the presence of sand channels. 
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Figure 6.18:  (Third test) Probability map for sand (left) and shale (right) groups 

computed with 30 realizations of the proposed inversion’s compact (top) and 
extended (bottom) approaches.  Red vertical lines indicate the locations of the 
wells (CDP 40 and 120). 

6.6 Test 4: Gas sand 

The fourth test was designed to develop a strategy for including fluid predictions 

in the solutions of the new inversion technique.  A small variation in the geological 

framework was introduced into the model used for the previous tests.  The channel 
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located at a depth of 60 meters and CDPs 100 to 125 was disconnected from the 

others, changing some of its cells to shale.  That channel, and the one centered at 

CDP 25 between depths of 40 and 60 meters were simulated to be fully gas saturated.  

To account for the presence of gas, a new group was defined.  The groups used for 

the fourth test were the following: brine sand, gas sand, and shale.  Figure 6.19 

shows the spatial distribution of the groups, Vp and ρ, as well as the Vp-ρ cross-plot 

(for all the points in the model) and the generated seismic data to be inverted.  The 

amplitude values in the new seismic section corresponding to reflections from the 

gas channels were about twice the amplitudes from brine-saturated sands.  The 

elastic properties for the gas-saturated sands were computed from the brine-saturated 

sand of all previous tests, using the approximation to Gassmann’s equations 

presented by Mavko et al. (1995), with the input values shown in Table 6.2.  Using 

the approximate Gassmann’s equations, there was not need of shear waves 

information. 

The solutions provided by the inversion scheme proposed are realizations of 

spatial arrangements of groups; hence, to include the prediction of different fluids, a 

group for each possible fluid-lithology combination needs to be defined.  On the 

other hand, the geological concept or idea of the reservoir geology is usually fluid 

independent.  Therefore, the training image needs to be perturbed to include 

variations of fluids inside the geological bodies with the appropriate lithology. 

 
Table 6.2: Parameters used for the fluid substitution. 

Mineral Initial fluid (brine) Final fluid (gas) 

Parameter  Value  Parameter Value  Parameter Value 

P-wave  
modulus 

96.6 [GPa]  Bulk modulus 2.57 [GPa]  Bulk modulus 0.133 [GPa] 

   Density 0.99 [gr/cm3]  Density 0.33 [gr/cm3] 
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Figure 6.19:  Model used for the fourth test: spatial distributions of group indices 

(top left), Vp (top center) and ρ (top right), plot of all of Vp and ρ values color-
coded by the group (lower left), and the generated seismic data. 

 

The training image used for the fourth test was generated based on the 12 cross-

sections shown in Figure 6.11.  For each cross-section, 12 new images were 

generated by randomly assigning to the channels one of the fluid-lithology groups.  

The connectivity between channels was checked before giving the saturating fluid in 

order to guarantee that any body was composed of a single group.  Figure 6.20 shows 

the 12 variations of one of the cross-sections used as part of the training image in the 

fourth test. 
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Figure 6.20:  The twelve variations of one cross-section used as part of the training 

image in the fourth test.  Although the geologic framework remains constant, 
each image shows a unique distribution of fluids in the geological bodies 
(connected channels) given by a distinct assignment of groups. 
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Figure 6.21 shows the group indices and the Vp and the ρ values from CDPs 40 

and 120 of the model, given as well-log data for inverting the seismic profile in the 

fourth test.  In this case, both channels saturated with gas were sampled by the wells.  

As was done in the previously described tests, the mean, variance and covariance to 

characterize the elastic properties of each group were computed using the well-logs.  

The parameters used with the two inversion approaches are presented in Table 6.3. 
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Figure 6.21:  Well log data used for the fourth test, extracted from CDP 40 (W1) and 

120 (W2) of the model shown in Figure 6.19: group-index logs (left) and a plot 
of Vp and ρ log values, color-coded by the group index (right). 

 
Table 6.3: Values of the input parameter used in the fourth test. 

Parameter description Reference name Value 

Grid levels (g+1) grdlev [4 3 2 1] 

Template size (ztsiz, xtsiz) (7, 7) 

Skipped CDP jumpx 1 

Elastic properties draws (loop) elasloop 1 

α (for comparison factor) compval 0.5 

simxloc (compact approach) 40 SIMPAT* realizations per CDP 
simxloc (extended approach) 10 

Revisit SIMPAT* realizations per CDP 
(only for extended approach) simxloc2 4 

 

As Figure 6.22 shows, the two gas-saturated channels were correctly defined by 

the areas with high values in the gas-sand probability map.  Moreover, the zones 

with high values in all the group’s probability maps were precise predictions of the 
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spatial arrangement of the corresponding group.  Both approaches of the inversion 

methods gave the approximately the same results. 
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Figure 6.22:  (Fourth test) Probability map for gas sand (left), brine sand (center), 

and shale (right) groups computed with 10 realizations of the proposed 
inversion’s compact approach (top) and extended approach (bottom).  Red 
vertical lines indicate the locations of the wells (CDP 40 and 120). 

 

A variation of the fourth test, changing the well locations, was completed to 

show the value of including rock physics for the groups’ definitions.  The model, 

training image, seismic data and parameters for the inversion were the same as those 

used for the initial part of the fourth test.  The new wells, WA and WB, were 

extracted from the input model (Figure 6.19) at CDPs 50 and 75, respectively.  As is 

shown in Figure 6.23, wells WA and WB did not sample any of the gas-saturated 

channels.  In this situation, where a group expected to be found in the reservoir was 

not sampled by the well data, rock physics can be use to extend the training data.  

From the information provided by the wells (WA and WB) and the knowledge that 

there can be gas in the reservoir, the gas-sand group was defined.  Its elastic 

properties were computed with the Vp and ρ values from the wells, using the 

approximation to Gassmann’s equations that do not require shear-wave data (Mavko 

et at., 1995).  In a real situation, if S-wave velocities are available, the original 
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Gassmann’s equations must be used.  Figure 6.23 presents the original and extended 

(with gas sand) distributions of elastic properties for each group. 
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Figure 6.23:  Well-log data used for the variation of the fourth test (moved wells), 

extracted from CDP 50 (WA) and 75 (WB) of the model shown in Figure 6.19: 
group-index logs (left) and plot of Vp and ρ log values, color-coded by the 
group index (right). 

 

The probability maps for each group computed with 10 realizations of the 

compact and extended approaches are presented in Figure 6.24.  Even without 

sampling any of the gas-saturated channels, their correct locations were clearly 

defined by areas with high values in the gas-sand-group probability map.  Although 

the results obtained with both of the inversion approaches were similar, the gas-

channel located around CDP 110 was slightly better defined in the probability map 

resulting from the extended-approach inversions.  The brine-saturated channel 

centered on CDP 110, between 20 and 40 meters deep, was the object more difficult 

to identify in the probability maps.  It was located on top of one of the channels 

saturated with gas, which at the seismic wavelength used was controlling the seismic 

amplitudes.  In spite of being shadowed, the channel in discussion could be clearly 

discerned in the probability map computed with the extended approach. 

As was mentioned before, the probability maps are excellent results for the initial 
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stages of reservoir development.  They are a way to obtain an idea about the solution, 

but they are not the complete solution.  It is always convenient to inspect some of the 

realizations individually, as well as the behavior of the value selected for measuring 

the misfit between the input data and the synthetic output.  In the proposed inversion 

technique, the level of similarity between seismic traces (trzsim in equation 5.5) was 

obtained with a function of the absolute value of the difference between samples.  A 

variable named enstrzsim was introduced (equation 5.7) in the extended approach to 

obtain a single estimate of the degree of matching in an ensemble of seismic traces.  

Increasing the number of traces compared to the total inverted was the natural way to 

extend enstrzsim for defining a global estimate of the quality of fitting (in l1-norm 

sense).  The new quantity, gL, is given by 

,)j(dat)j(synexpgL
1trz

ns

1j
trztrz∑

= =
⎟
⎠
⎞

⎜
⎝
⎛ ∑ −−=

traces all

   (6.1) 

where, syntrz(j) and dattrz(j) are the values of the jth sample of the synthetic output and 

input trace trz, respectively. 
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Figure 6.24:  (Fourth test – variation of well locations) Probability map for gas-sand 

(left), brine-sand (center), and shale (right) groups computed with 10 
realizations of the proposed inversion’s compact approach (top) and extended 
approach (bottom).  Red vertical lines indicate the well locations (CDP 50, 75). 
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Figure 6.25 shows four realizations (six iterations using the compact approach) 

of the spatial distribution of the groups, the corresponding residuals, and gL for each 

iteration.  Figure 6.26 presents the same type of results obtained using the extended 

approach.  In all the realizations shown, the brine-saturated channels located in the 

central range of CDPs, were very similar to the true model.  Those channels were 

sampled by the wells.  Comparing the results from both approaches shows that, 

although with the extended approach the borders of the channels were less 

continuous, the obtained residuals were smaller, or equivalently, the final values of 

gL were greater.  This observation shows the ability of the extended approach to 

match the input data, creating some small irregularities in the geologic bodies. 
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Figure 6.25:  Results of the inversion (compact approach) of the seismic data 

generated from the fourth test model, with the given wells at CDP 50 and 75.  
Each column corresponds to a particular solution.  Rows top to bottom: 
realizations of group indices, residuals (scaled to the input data), and gL for each 
iteration of the solution. 
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Figure 6.26:  Results of the inversion (extended approach) of the seismic data 

generated from the fourth test model, with the given wells at CDP 50 and 75.  
Each column corresponds to a particular solution.  Rows top to bottom: 
realizations of group indices, residuals (scaled to the input data), and gL for each 
iteration of the solution. 

6.7 Test 5: Starting with an initial guess 

The fifth test was designed to show the capability of the proposed inversion 

technique to start the search of solutions with an initial guess (initial model).  In 

some situations, amplitudes or some other characteristics (attributes) of the seismic 

data clearly reveal a geological feature, such as a channel.  That information can be 

incorporated into the inversion process through an initial model.  Unlike other 

inversion methods, the initial model for the proposed technique neither is a 

requirement, nor needs to have all the cells filled.  The aim is to start the inversion 

with an idea about the spatial arrangement of the groups, only in the areas of the 

reservoir where the user has high confidence.  The main advantage of starting with 

an initial guess is to help the inversion to reach a stable value of gL, i.e. the point that 

the changes introduced for additional iterations are small. 

As an option, the initial model can be generated based on a result from another 

inversion technique.  To exemplify that idea, Figure 6.27 shows some of the states of 

the solution grid during the first iteration with the extended approach.  The input well 

data, training image, seismic data, and parameters for the inversion were the same as 

those used in the second test.  The initial model, shown with the wells added as the 
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first state in Figure 6.27, was built from the acoustic impedances obtained with the 

model-based inversion result (Figure 6.3).  The values of acoustic impedance below 

the 15th percentile of the complete distribution of values were changed by the group 

index of sand.  In this case, the well-log data revealed that low impedances were 

associated with the presence of sands.  Only the lower 15th percentile was selected to 

show the intention of retaining only the zones with high confidence in the results.  

However, the smaller uncertainty regions are not always associated with extreme 

values.  The initial model was considered soft data, i.e. the initial values can be 

changed during the inversion, as can be seen in the results of Figure 6.27.  Again, the 

motivation of the fifth test was more to show the capability of starting with an initial 

model than make any comparison with results previously obtained. 
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Figure 6.27:  (Fifth test) Initial stage of the solution grid with only the information 

from the wells, four intermediates, and the result of a first iteration obtained 
using the proposed inversion’s extended approach. 

6.8 Conclusions  

The results of the five tests presented validated both approaches of the inversion 

technique introduced in the previous chapter.  For all tests, a probability map or E-

type for each defined group was the main result shown.  Those maps can provide 

critical information for reservoir development, especially during the initial stages. 

The results of first test, in which the true model was used as training image to 

guarantee the completeness of the pattern database, validated the proposed inversion 

method as well as the implementation of the two approaches.  The second and third 

tests showed that excellent predictions of the groups in the reservoir could be 
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obtained in situations that are more complicated, i.e. using a training image different 

from the true model, but representative of its geological framework, and with partial 

overlap in the elastic properties of the groups.  Comparing these results to those of a 

type of pattern-based geostatistical simulation not constrained to seismic information 

demonstrated the value of including seismic data to reduce uncertainty when 

predicting the arrangement of groups in a reservoir. 

In the fourth test, a strategy for including fluid predictions in the solutions of the 

new inversion technique was introduced.  Additionally, a method was presented to 

generate a training image that accounts for fluid variations without altering the initial 

geological concept.  Seismic data were generated for a model that included gas-

saturated sands, and results were inverted with two different locations of the given 

wells, in one case drilling into the gas sands, and in the other, missing them.  The 

brine-saturated channels could easily be differentiated from the gas-saturated 

channels in the probability maps obtained from the inversion; in particular, slightly 

better-defined channels were obtained in the extended approach.  This demonstrated 

the value of the inversion technique for extending the well-log data using rock 

physics in the situation were none of the channels saturated with gas were sampled. 

The fifth test showed the capability of the proposed inversion technique to start 

the search of solutions with an initial guess or initial model, derived for example 

from the interpretation of a seismic attribute or the result of another inversion 

method.  The initial model for the proposed inversion technique is not a requirement, 

nor must all the cells be filled.  The goal is to make it possible to start the inversion 

process with some prior idea about the spatial arrangement of the groups, but only in 

the areas of the reservoir where the user is has high confidence, as an attempt to 

reduce the number of iterations needed to obtain a solution. 

Although some observations about the results provided by the two inversion 

approaches were made, more tests need to be completed before we can define 

properly the situations that favor the application of each one.  In general, the borders 

of the channels were better defined in the compact approach results.  On the other 

hand, the extended approach results showed a trend of obtaining smaller residuals. 



 

 

 
 
 
Chapter 7  

Inversion method: Real data 
application 

 

“I have been impressed with the urgency of doing.  Knowing is not 

enough; we must apply.  Being willing is not enough; we must do.”  

(Leonardo da Vinci) 

 

7.1 Abstract 

This chapter shows the applicability to real situations of the inversion technique 

presented in Chapter 5.  The data set used was provided by Chevron.  The rocks in 

the studied reservoir were deposited in a clastic marine environment located on the 

continental slope, where turbidites are the main type of reservoir rock.  Two wells, a 

near-offset 2D seismic section that intersects both well locations (extracted from a 

3D volume), and the training image were the data used in this work.  Three groups 

(sand, overbank, shale) were defined based on the geological information, training 

image and well-log data.  In terms of hydrocarbon production, the studied area was 

in its first stages of development; hence, the well-log control was scarce.  Defining 

the main facies distributions was a critical task at the time the work was completed.  

Based on that, the results of the seismic inversion are mainly presented as probability 

maps for each defined group.  The solutions obtained using the two proposed 
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inversion approaches, including all the available information, are presented.  

Additionally, the results of the inversion using only one well at a time are shown.  

The way in which the implemented algorithms handle the common situation of data 

with different sampling intervals or grids is also described in this chapter. 

7.2 Introduction 

A new inversion method was presented in Chapter 5, and the results of testing it 

using synthetic data were shown in Chapter 6.  This chapter presents the first 

application of both proposed inversion approaches to real data.  The data set used for 

this work was provided by Chevron.  The rocks in the stratigraphic sequence 

analyzed were deposited in a clastic marine environment located on the continental 

slope.  Well-logs from two wells, a near-offset 2D seismic section intersecting the 

well locations, and the training image, all provided by Chevron, were the input data 

for the inversion.  Figure 7.1 shows the gamma ray (GR), P-wave-velocity (Vp), and 

density (ρ) logs of the two wells.  In this work, all depths were referred to the top of 

the studied reservoir. 
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Figure 7.1:  Gamma ray (GR), P-wave velocity (Vp), and density (ρ) logs from the 

two wells used in the study. 

 

Figure 7.2 shows the 3D geological model from which the training image was 

constructed.  As can be noticed, it was composed of three facies: sand, overbank, and 

shale.  The geological model had 150 and 130 cells in the horizontal (x and y) 
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directions, and 20 cells in the vertical (z) direction.  The horizontal dimensions (x-y) 

of each cell were 100-by-100 meters.  Vertically, the twenty cells of the model 

covered the 112 meters of reservoir (5.6 meters for each cell).  The 2D training 

image needed for the inversion was generated by extracting all the cross-sections 

parallel to the direction of the seismic data.  Four of the cross-sections (x-z planes) 

that constitute the training image are shown in Figure 7.2. 
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Figure 7.2:  3D geologic model used to build the training image, and four cross-

sections, part of the training image, extracted parallel to the face of the model 
with a length of 13 km.  The complete training image was formed from the 
cross-sections (x-z planes) at all y values. 

7.3 Data preparation 

The 2D seismic section for the inversion was extracted from the provided 3D 

near-offset seismic volume such that it intersected the locations of the two wells used.  

The approximate distance between traces in the original seismic volume was 25 

meters.  To match the resolution of the available training image, only one of every 

four traces were retained.  Additionally, the main structural-geologic component was 

removed from the seismic data, flattening the reflection associated with the base of 

the studied reservoir.  Figure 7.3 presents the 2D seismic section used as input for the 

inversion, indicating the locations of the two wells.  The separation between traces 

(CDPs) was approximated as 100 meters, which coincides with the training image 

horizontal cell size. 
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Figure 7.3:  2D near-offset seismic data extracted from the Chevron’s seismic 

volume, showing the locations of the used well. 

 

Based on the available information about the type of depositional environment, 

the 3D geological model and the well-logs, each depth of each well was classified as 

one of the three possible groups: sand, overbank, shale.  Figure 7.4 shows the logs of 

the two wells included in the study, color-coded with the assigned group index.  The 

original sampling depth interval of the well-logs was 0.145 meters.  It was slightly 

changed to 0.2 meters by a linear regression between consecutive depth levels, to 

facilitate the link between the depth-sampling rate of the well-logs and the training 

image.  That small modification in depth sampling did not introduce noticeable 

changes in the well-logs. 
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Figure 7.4:  Well-logs of the two wells used in the study, color-coded by the group 

index assigned to each depth level. 
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7.4 Inversion 

Both proposed approaches of the inversion method were used.  Before 

proceeding with the inversion, some decisions were made about how to conciliate the 

different sampling rates of the input data.  The cell size of the simulation or solution 

grid was defined to be the same as the cell size in the training image, i.e. 100 meters 

in x and 5.6 meters in z.  Obviously, the training image and the solution grid need to 

have the same sampling interval and the same scale; otherwise, constructing a 

solution using the training image loses any meaning.  In the horizontal direction, the 

traces of the input 2D seismic section were spaced 100 meters apart; therefore, all 

data were sampled at the same rate in the x-axis.  In the vertical direction, the depth-

sampling interval of the input well-logs was 0.2 meters; that is, 28 times smaller than 

the cell size in z of the solution grid. 

The implementation of both inversion approaches uses three grids 

simultaneously: the simulation grid for the group indices (the solution itself), and one 

grid for each of the elastic properties (Vp, ρ).  The pseudo-wells of group indices to 

populate the simulation grid are proposed by the geostatistical technique included in 

the algorithm.  The elastic grids are randomly filled, conditioned to the proposed 

pseudo-wells of group indices; thus a proportionality factor must be computed to 

define the number of cells of the elastic grids correspond to a single cell of the 

simulation grid.  That factor gives the number of Vp and ρ values to be drawn for 

every cell in the solution grid.  By dividing the depth-sampling interval of the 

training image by that of the well-logs, a proportionality factor of 28 was obtained.  

For the case studied, the dimensions of the solution grid were 20 by 43 (z by x).  The 

elastic grids had 560 cells in the vertical direction and 43 cells in the horizontal 

direction (CPDs). 

7.4.1 Pre-processing 

The mean, variance and covariance to define the bivariate Gaussian distributions 

for representing the elastic properties of each group were computed from the well-

log data.  The obtained values are shown in Table 7.1.  Figure 7.5 shows the plot of 
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the well-log values of P-wave velocity as function of density, color-coded by the 

assigned group index.  For each group, an ellipse computed with mean, variance and 

covariance of the data points is included.  In addition, Figure 7.5 presents a 

realization of 300 pairs of Vp-ρ drawn from each group.  As can be seen, the 

distribution of points drawn from the defined distributions certainly resembled the 

original values from the logs.  Consequently, in this case, describing the elastic 

properties of each group with a bivariate Gaussian distribution was a good 

assumption. 

 
Table 7.1:  Parameters to specify the bivariate Gaussian distribution of each 

group’s elastic properties, computed using wells A and B. 

group Mean 
Vp (km/s) 

Variance 
Vp (km/s) 

Mean 
ρ (gr/cm3) 

Variance 
ρ (gr/cm3) Covariance 

Sand 2.275 8.038 2.129 1.369 0.727 

Overbank 2.153 7.335 2.177 1.058 1.615 

Shale 2.002 2.392 2.108 1.311 0.971 
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Figure 7.5:  Vp-ρ values, color-coded by group index from well logs (left) and 

drawn (300 points per group) (right) from the bivariate Gaussian with mean, 
variance, and covariance computed from the well logs and represented by the 
ellipses. 

 

To perform the forward modeling, a wavelet was needed.  In the inversion 

method, the reflectivity series for the convolution is obtained from the Vp and ρ 

(impedance) values drawn conditioned to the SIMPAT* simulated pseudo-wells of 

group indices.  The wavelet, which is the other element to convolve, is assumed to be 
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known (input data for the inversion).  Hampson and Russell software was used to 

extract the wavelet from the seismic data, accounting for the match with both 

available wells.  Figure 7.6 shows the used wavelet in the time and frequency 

domains.  With the dominant frequency of the extracted wavelet (40 Hz), the 

approximate mean wavelengths for the defined groups, sand, overbank, and shale, 

were 57, 54, 50 meters, respectively. 
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Figure 7.6:  Amplitude as function of time (left) and amplitude spectrum (right) of 

the wavelet extracted from the seismic data and used for the convolution in the 
inversion. 

 

As was mentioned before, the solution grid had 20 cells in the vertical direction 

(5.6 meters each cell), and the number of samples of each well-log was 560, with a 

depth sampling interval of 0.2 meters.  Although the elastic properties were 

simulated at the well-logs’ resolution, i.e. 560 samples for each pseudo-well, the 

group index needed to be at the resolution of the solution grid (20 cells vertically).  

Therefore, the group-index well logs were upscaled before starting the inversion.  

The 112 meters sampled by the logs were split in 28 intervals of 5.6 meters each.  

The group index assigned to each of those intervals was the most repeated in the 

corresponding range of depths.  Figure 7.7 shows the original well logs of group 

indices and their upscaled versions.  Additionally, Figure 7.7 presents the input 

seismic traces at the well locations, the synthetic seismic traces computed 

(convolution) with the original Vp and ρ logs, and a set of synthetic traces generated 

with 30 realizations of pseudo-well elastic properties.  Each Vp and ρ pseudo-well 

was created by drawing 28 values from the bivariate Gaussian distributions of the 

corresponding group.  The good match between the input seismic and the synthetic 



CHAPTER 7: INVERSION METHOD – REAL DATA APPLICATION 113 

 

traces computed with the well logs validated the wavelet used as well as the tie 

between the wells and the seismic (time-depth).  The good match between the input 

seismic data and the synthetics generated from the realizations of the Vp and ρ 

pseudo-wells provided evidence of reproducing the input traces, which was needed 

to proceed with the inversion. 

As part of the pre-processing step, the pattern database was built.  The training 

image was scanned with a 5-by-5 template, at three grid levels.  The resulting 

number of patterns for the first grid level was 11733, with 16044 for the second level, 

and 6816 for the third level.  For each pattern in the database, an associated pattern 

was also retained.  As was described when the inversion technique was presented, 

the solutions are constructed by pasting the associated pattern corresponding to the 

selected pattern.  By definition, all associated patterns had the same number of 

horizontal cells as the template, and at the first grid level, the patterns and the 

associated patterns are the same.  On the other hand, the numbers of cells in z of the 

associated patterns for the second and third grid levels were 9 and 17, respectively. 
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Figure 7.7:  For Well A (left) and Well B (right), group-index well logs with the 

original (0.2 meters) and upscaled (5.6 meters) sampling depth interval, 
synthetic seismic traces computed from 30 Vp and ρ pseudo-well realizations 
(green), synthetic trace from original logs (red), and real seismic data trace 
(blue). 
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7.4.2 Inversion 

The input seismic section was inverted using both approaches of the proposed 

technique.  Table 7.2 presents the values of the input parameters.  As can be seen, the 

number of iterations to be completed for obtaining a solution or realization was 

defined as seven.  That decision was made by analyzing the residuals, in particular 

the behavior of gL (defined in equation 6) in some tests.  The total number of 

SIMPAT* simulations at every CDP was the same for both approaches.  In the 

compact approach, 96 independent SIMPAT* realizations of pseudo-logs of group 

indices were generated at every visited CDP.  For the extended approach, the number 

of independent SIMPAT* realizations was 16, with each one updated six times, 

giving a total of 96. 

 
Table 7.2: Values of the input parameters used for the real seismic data 

inversion. 

Parameter description Reference name Value 

Grid levels (g+1) grdlev [3 2 1] 

Template size (ztsiz, xtsiz) (5, 5) 

Skipped CDP jumpx 1 

Elastic property draws (loop) elasloop 400 

α (for comparison factor) compval 0.7 

simxloc (compact approach) 96 SIMPAT* realizations per CDP 
simxloc (extended approach) 16 

Revisit SIMPAT* realizations per CDP 
(only for extended approach) simxloc2 6 

Iterations to obtain a solution itersol 7 

 

Ten solutions with each of the proposed inversion’s approaches were computed.  

To illustrate the quality of the input data reproduction, Figure 7.8 presents the input 

seismic profile, the synthetic seismic data computed with three solutions of the 

compact approach, and the corresponding residuals.  All seismic profiles shown were 

scaled to the same value to allow visual comparisons.  The overall characteristics 
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(main amplitudes and structure) of the input seismic data were approximately 

reproduced for the solutions.  However, the set of high-amplitude reflections in the 

last 10 traces (from CDP 38) was not completely recovered.  The positions of the 

reflections were reproduced, but the amplitudes in the solutions tended to be smaller. 
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Figure 7.8:  Input seismic data (top), output synthetic data (middle row) of three 

solutions obtained with compact approach, and the residual or difference 
sample-by-sample between input and output data (bottom row).  All plots are 
scaled to the same value. 

 

Figure 7.9 and Figure 7.10 show four solutions obtained after seven iterations of 

the proposed compact and extended approaches, respectively.  Figure 7.11 presents 

the probability maps for the three groups computed with 10 solutions of the compact 

and extended approaches of the proposed inversion technique.  In general, the 

probability maps obtained from both of the approaches were similar.  Few zones of 

the solution grid –basically the ones sampled by the wells– were consistently 

identified as sand.  A lateral extension of the overbank group seen in the wells, 

especially from Well A, can be identified in the probability map of that group. 

To make a quantitative comparison between the results obtained with the two 

inversion approaches, Figure 7.12 shows the values of the degree of fitting, gL, for 

all iterations of the 10 solutions.  In general, after seven iterations a stable value of 

gL seemed to be reached in all solutions.  As can be noticed, the solutions obtained 

with the extended approach better reproduced (globally and in l1-norm sense) the 
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input seismic data.  This result demonstrated that the implementation of the extended 

approach satisfies the objective of its creation, which was the search for solutions 

with small residuals even breaking or combining patterns horizontally, if needed. 
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Figure 7.9:  Four solutions (seven iterations each one) obtained using the compact 

approach.  Red vertical lines indicate the locations of the wells used as input 
data (CDP 12 and 35). 
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Figure 7.10:  Four solutions (seven iterations each one) obtained using the extended 

approach.  Red vertical lines indicate the locations of the wells used as input 
data (CDP 12 and 35). 
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Figure 7.11:  Probability map for sand (left), overbank (center), and shale (right) 

groups computed with 10 realizations of the proposed inversion’s compact (top) 
and extended (bottom) approaches.  Red vertical lines indicate the locations of 
the wells used as input data (CDP 12 and 35). 
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Figure 7.12:  Values of the degree-of-fitting parameter, gL, for the seven iterations 
of the 10 solutions obtained with the proposed inversion’s compact (red 
triangles) and extended (blue circles) approaches. 

7.4.3 Single well inversions 

Since only two wells are available, the results of any attempt of cross-validation 

or “blind” test certainly would not have strong support.  Figure 7.3 shows the results 

of the inversion of the seismic section in that case.  The training image and input 

parameters were the same as previously described.  In both cases, 10 solutions (seven 

iterations each one) of the inversion’s two approaches were computed. 

In the first test, Well B was used as the unique input well-log data; consequently, 

the parameters to define the Gaussian distribution of elastic properties for each group 
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were computed with Vp and ρ logs of Well B.  Figure 7.13 presents the probability 

maps obtained from the solutions of the two approaches.  Comparing with the 

probability maps using both wells as input data (Figure 7.11), their resemblance can 

be easily noticed.  The main difference was the thickness of the overbank body that 

crossed the Well A location.  The group indices at CDP 35 were extracted from the 

solutions to be compared with Well A.  As Figure 7.14 demonstrates, most of the 

realizations remarkably predicted the main sand body present in Well A around 

depths of 70 and 100 meters. 
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Figure 7.13:  Probability map for sand (left), overbank (center), and shale (right) 

groups computed with 10 realizations of the proposed inversion’s compact (top) 
and extended (bottom) approaches.  Red vertical line indicates the location of 
Well B (CDP 12), used as input data. 
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Figure 7.14:  Solutions at the Well A location (CDP 35) obtained with the 

inversion’s compact (left) and extended (right) approaches.  Only Well B was 
used as input data for the inversion. 



CHAPTER 7: INVERSION METHOD – REAL DATA APPLICATION 119 

 

 

The second test consisted of inverting the input seismic section, pretending that 

only the information from Well A was available.  Hence, the Gaussian distributions 

of elastic properties were defined using Vp and ρ logs from Well A.  The obtained 

probability maps are presented in Figure 7.15.  In this case, the sand-overbank body 

in the deepest part of Well A barely extends horizontally from the well location.  

Moreover, in most of the solutions, that was the only non-shale zone in the whole 

simulation grid. 

The group-indices of the solutions at CDP 12 were compared with Well B.  As 

Figure 7.16 reveals, in the best case the solutions from both inversion approaches 

predicted a thin (approximately six meters thick) overbank group at the range of 

depths where a sand-overbank sequence approximately 28 meters thick was present 

in Well B.  In an attempt to explain the causes of the obtained mismatch, the elastic 

properties of each well were analyzed separately. 
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Figure 7.15:  Probability map for sand (left), overbank (center), and shale (right) 

groups computed with 10 realizations of the proposed inversion’s compact (top) 
and extended (bottom) approaches.  Red vertical line indicates the location of 
Well A (CDP 35), used as input data. 
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Figure 7.16:  Solutions at the Well B location (CDP 12) obtained with the 

inversion’s compact (left) and extended (right) approaches.  Only Well A was 
used as input data for the inversion. 

 

Figure 7.17 presents the cross-plots between Vp and ρ well-log values, color-

coded by the group indices, for Well A and Well B separately.  The ellipses included 

in the plots were defined with the mean, variance and covariance of the Gaussian 

distributions computed for each group.  As can be seen, the sand and shale points in 

Well A had slightly more dispersion and smaller mean values than in Well B, but 

overall, they were similar.  In contrast, the complete distribution of points of the 

overbank group observed in Well A appeared to be shifted down (Vp,  ρ) in Well B. 
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Figure 7.17:  Vp-ρ values, color-coded by the group index from Well A (left) and 

Well B (right).  The ellipses were computed with each group mean, variance, 
and covariance. 

 

For testing the hypothesis that the non-satisfactory results from the inversion 

with only Well A as input data was mainly caused by the incorrect definition of the 

elastic property distributions (especially for the overbank group), a new test was 
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performed.  For the new inversion, Well A was used as the unique hard data during 

the inversion.  However, although Well B was not used for constraining the inversion, 

the mean, variance and covariance of its Vp and ρ logs were used to characterize the 

elastic properties of each group.  The probability maps for each group obtained from 

the inversion’s extended approach are presented in Figure 7.18.  As can be seen, in 

this case the high values in the probability map for the overbank group depicted a 

shape more consistent with the results obtained when both wells were used as input 

data. 

Figure 7.19 shows the group-indices of the 10 solutions computed with the 

extended approach at CDP 12, and the Well B group-indices log.  Even though the 

sand around depths of 90 meters was not predicted in any of the solutions, a zone 

with the overbank group was proposed in most of the realizations.  In fact, the 

solutions at the exact location of Well B must not be taken as the criterion for 

validating the inversion results.  What is more important is to analyze or compare the 

general trends of the shapes of the geological bodies, which in this case were 

reasonably consistent whether including both wells, only Well B, or only Well B 

defining the elastic properties distributions with Well A data. 
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Figure 7.18:  Probability map for sand (left), overbank (center), and shale (right) 

groups computed with 10 realizations of the proposed inversion’s extended 
approach.  Red vertical line indicates the location of Well A (CDP 35), used as 
input data.  Mean, variance and covariance to define the elastic properties of 
each group were computed using Well B information. 
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Figure 7.19:  Solutions at the Well B location (CDP 12) obtained using Well A as 

input data for the inversion.  Mean, variance and covariance to define the elastic 
properties of each group were computed using Well B information. 

7.5 Conclusions 

The applicability of the proposed inversion’s compact and extended approaches 

to real case studies was demonstrated.  Moreover, to tackle one common difficulty 

found when dealing with real data, a practical method to combine information with 

different sampling intervals in the proposed inversion technique was presented. 

Results for the specific real seismic data inverted were presented.  Based on the 

provided geologic information, the training image and the logs of the two wells used, 

three groups were defined: sand, overbank, and shale.  Ten solutions obtained with 

seven iterations of the proposed inversion’s approaches were generated.  The 

probability maps (E-type) for each group were computed with the solutions of the 

compact and extended approaches of the inversion.  The obtained probability from 

each approach showed similar characteristics.  Few sand zones were obtained in the 

realizations, restricted mainly to the regions sampled for the wells.  In the majority of 

the solutions, the two overbank bodies sampled by Well B were laterally extended 

about two CDPs from the well; still, the main overbank body shown in the 

probability maps was located around Well A. 

The inversion was also performed using only one well at a time as input data.  

When Well B was the unique well information given, the probability maps obtained 

notably resembled the probability maps computed from the solutions using both 

wells as input data.  In particular, the pseudo-logs extracted from the 10 generated 
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solutions at the CDP corresponding to the Well A location, remarkably reproduced 

the main sand body observed in Well A.  On the other hand, the solutions obtained 

using only Well A consistently showed basically only shale for the five CDP 

locations around the well.  Analyzing independently the information from each well, 

a displacement in the elastic properties of the overbank group between wells was 

detected.  This behavior in elastic properties may be due to changes in composition 

of the overbank sampled at each well.  An additional test using Well A for 

constraining the solutions (groups) but using the distributions of elastic properties 

defined with Vp and ρ logs of the Well B, was performed.  The solutions of that test, 

particularly in terms of the shape of the main overbank body, resembled the solutions 

obtained when both wells where used as input data.  This final result did not 

invalidate the solutions obtained using both wells; it only suggests that an additional 

group might be included. 
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