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Abstract 

The quantitative evaluation of time-lapse seismic data remains a challenge.  In most 

cases of time-lapse seismic analysis, fluid displacement and pressure changes are 

detected by changes in amplitude strength, travel time, and/or Poisson’s ratio.  However, 

the result is still qualitative, due to poor match between the model predictions and the 

actual seismic data. 

Velocity anisotropy is one important reason for the mismatch.  Especially for 

deviated wells in offshore fields, we must correct for velocity-anisotropy effects to obtain 

realistic sonic-log responses that are equivalent to seismic data.  I compile experimental 

velocity-anisotropy data from cores in the literature to explore the empirical relationships 

between anisotropy parameters and general well-log information.  Then, I develop a 

method to estimate Thomsen’s anisotropy parameters ε and γ using a regression of the 

data in the crossplot domain between velocity and porosity.  I present the result of an 

application of the method to demonstrate the significance of the correction.   

Next, using the corrected velocity information, I present a method of impedance 

decomposition using three elastic impedance data derived from the seismic inversion of 

angle stacks.  By applying seismic inversion, we can derive rock impedance from seismic 

data.  However, if it is possible to decompose the impedance into two fundamental 

properties, namely velocity and density, we can determine the rock trend in the Vp-ρ 

plane, and to derive quantitative rock properties, such as shale volume.  I discuss the 

effect of noise on the analysis as the most important reason that decomposition is difficult.  

Then, I show an innovative method incorporating rock-physics bounds as constraints for 

the analysis.  The method is applied to an actual dataset from an offshore oil field; I 

demonstrate the result of analysis for sand-body detection. 

Based on the estimated Vp, Vs, ρ and shale volume from the elastic impedances, I 

develop a workflow to determine the saturation of formation-water, oil and gas from 

seismic data through a sequence of analyses and calculations.  I present the subsequent 

steps, considering the pressure effect and the saturation scale of fluids for time-lapse 

seismic analysis.  Then, I demonstrate a deterministic approach to computing the fluid 
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saturation to evaluate time-lapse seismic data.  In this approach, I derive the physical 

properties of the water-saturated sandstone reservoir, based on the inputs.  Next, by 

comparing the in-situ-fluid-saturated properties with the 100% formation-water-saturated 

reservoir properties, I determine the bulk modulus and the density of the fluid phase in 

the reservoir.  Solving three equations simultaneously (relating the saturations of water, 

oil and gas in terms of the bulk modulus, density and the total saturation), I compute the 

saturation of each fluid.  I use a real time-lapse seismic dataset to demonstrate the process 

and the result.  In the result, I emphasize the validity of the workflow for quantitatively 

detecting the fluid displacement and for delineating a remaining oil accumulation. 

In addition, I present a theoretical approach for understanding rock Vp-Vs relations 

using the Hashin-Shtrikman bounds and several effective-medium theories.   I discuss the 

upper Hashin-Shtrikman bound as the lowest Vp/Vs bound and the lower Hashin-

Shtrikman bound as the highest Vp/Vs bound.  I explore Vp-Vs relations by effective-

medium theories in the crossplot domain among Vp, Vs and porosity.  Then, I show that 

the location in the crossplots is an indicator of the pore shape.  The stiffest pore shape, a 

sphere, gives us the upper Hashin-Shtrikman bound, and the softest pore shape, a flat film, 

gives us the lower Hashin-Shtrikman bound, or the Reuss bound.  Based on this 

observation, I explain why a linear Vp-Vs relation, which I use in the workflow to derive 

fluid saturation, represents the general trend of sandstone very well.  
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Figure 4.12:  The analysis of sensitivity of the velocity and bulk density to the result of 
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higher Vp and Vs.  The right three columns show the sensitivity analysis of 
density.  The circles correspond to the base case; the triangles present the 
saturation calculated using the workflow with 1% lower density; the 
crosses represent the calculation result from the workflow with 1% higher 
density.              100 
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Chapter 1 
 
 
 

Introduction 
 
 
 
 
 
 
 
 
 
1.1 Chapter description 

 

As expected by Nur (1997), time-lapse seismic has begun to play an important role in 

improving oil recovery, since seismic monitoring provides us the information relating to 

the changes in reservoir fluid and pressure during production.  The Norwegian North Sea 

is an area where time-lapse seismic is commonly used to evaluate producing oil fields.   

Several time-lapse seismic studies were published on the North Sea during the last 

decade.  These include studies of the Oseberg field (Johnstad et al., 1995, Rutledal et al., 

2003), the Magnus field (Watts et al., 1996), the Gullfaks field (Sonneland et al., 1997, 

Veire et al., 1998), the Draugen field (Gabriels et al., 1999), the Statfjord field (Al-Najjar 

et al., 1999) and the Snorre field (Smith et al., 2001).   
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An impressive example of quantitative analysis of time-lapse seismic was recently 

demonstrated by Lumley et al. (2003).  They determined the axes representing the 

changes in pressure and water saturation in the crossplot between the P-wave information 

content (Ap) and the S-wave information content (As) to derive the quantitative indicators 

of the changing properties.   

Johnston et al. (2003) discussed the integration of time-lapse seismic with production 

logging data for the quantitative analysis of the seismic.  A case study of the method is 

summarized in Gouveia et al. (2004) for the Jotun field in the North Sea.  According to 

their discussions, a key to reducing the artifacts induced during analysis is the coupling of 

seismic-inversion analysis of different vintages using a common initial model.   

Despite the efforts described above, the quantitative analysis of time-lapse seismic to 

detect the change in fluid saturation remains a challenge, because the match between the 

model predictions and the actual seismic data is typically poor.   

In Chapter 2, I discuss velocity anisotropy, one of the issues for improving the 

agreement between the model and the actual seismic data.  Rowbotham et al. (2003) 

showed that the correction of velocity anisotropy significantly improves the result of 

seismic inversion, when deviated wells are used as the control data.  Indeed, it is common 

to use deviated wells as the control data for analyzing offshore seismic data.  However, 

the anisotropy correction of sonic logs for deviation angles is not a standard process.  In 

this chapter, I develop a new method to estimate velocity anisotropy parameters from the 

well-log information of a single well.  To obtain the relationships among velocity, 

porosity, and anisotropy parameters, I use a regression method in the velocity-porosity 

domain for the compiled database of laboratory measurements.  I present the result of an 
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application of the method to demonstrate the significance of the correction.  In the 

following chapters, the seismic data analyses are performed based on the anisotropy-

corrected velocities. 

In Chapter 3, I explore the effect of random and consistent noise as the source of 

miscalculation in deriving Vp, Vs and ρ from the elastic-impedance (EI) analysis of 

seismic data. EI is the apparent seismic impedance at specific incident angles, which was 

derived by Connolly (1998, 1999) and Mukerji (1998).  Just as the contrast in acoustic 

impedance across a boundary determines normal incidence reflectivity, the contrast in EI 

determines the reflectivity at the corresponding angle of incidence.  When we have EIs 

for three different stack angles of the same seismic data, it is possible in principle to 

back-calculate Vp, Vs, and ρ.  However, in general, the maximum stack angle of seismic 

data is limited to be less than 30°, which is not wide enough to obtain stable calculation 

results.  In this chapter, I develop a method to minimize the calculation error by applying 

constraints based on rock-physics bounds.  I validate the method by analyzing 3-D 

seismic data of an actual oil field; I demonstrate the result of delineating sand-body 

distribution by implementing the method.      

In Chapter 4, based on the Vp, Vs, ρ, and shale volume calculated in Chapter 3, I 

develop a deterministic workflow to derive fluid saturation from seismic and well-log 

data; velocities, density and fluids saturation are calibrated to the time of seismic 

acquisition.   The workflow is a tower of the carefully stacked building blocks of rock-

physics knowledge: the Voigt-Reuss-Hill average (Hill, 1952) for solid properties; the 

Batzle-Wang method (Batzle and Wang, 1992) to determine fluid properties; a method to 

consider fluid-saturation scale for seismic analysis (Sengupta et al., 2003); the Gassmann 
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equation of fluid substitution (Gassmann, 1951); the Vp-Vs relations for brine-saturated 

sandstone (Castagna et al., 1993 and Han, 1986); and coupling time-lapse seismic 

analysis using common rock-frame properties (Johnston et al., 2003).  Then, I apply the 

workflow to the time-lapse seismic data of an offshore oil field.  In the results, finally, I 

show a clear image of the fluid displacement in the reservoir after 4 years of oil 

production and delineate a remaining oil body. 

In Chapter 5, I discuss Vp-Vs relations of reservoir rocks.  The most widely used 

empirical Vp-Vs relations have been published by Castagna et al. (1993), for rock types 

including sandstone, mudrock, limestone and dolomite.  Xu and White (1995) 

demonstrated a method to determine the Vp-Vs relation of shaly sandstone by mixing two 

inclusion models with different aspect ratios, which represent the sandstone and shale 

portions.  However, there is no systematic explanation of why a linear regression works 

well in most cases.  I adopt the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963) 

to explore Vp-Vs relations for rock-fluid mixtures.  Then, I compare the Vp-Vs relations 

calculated by the stiff-sand and soft-sand sand models by Dvorkin and Nur (1996), a 

model with tubular pores by Mavko (1980) and a self-consistent inclusion model of 

skewed-spheroid pores by Berryman (1995).  This chapter explains why I use a simple 

Vp-Vs relation in the workflow discussed in Chapter 4. 

 

1.2 Geologic outline of the field for a case study 

 

The target field is situated in a major late Jurassic to early Cretaceous structural high 

at the western margin of a north Viking Graben Permo-Triassic rift in the North Sea.  

There is a series of large westward- to northwestward-tilted fault blocks.   The field has 
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reservoirs in the Triassic “L” Formation and Triassic to Early-Jurassic “S” Formation. 

The structure contains a series of major faults, which follow a NNE-SSW structural 

trend. Most of these faults exhibit dip slip to the east.  

The reservoir section was deposited as post-rift fill sediments.  The main depositional 

environment of the target horizon, the “S” Formation, is a braided-river fluvial system 

with some interactions of a meandering-river system.  The top of the “S” Formation is 

overlain by marine shale.  The “S” Formation is divided into 5 zones: “S1” to “S5”, 

numbered from the top.  The upper zones show coarser grains in sandstone and have 

significantly better reservoir properties than the lower parts.  The “S” Formation 

demonstrates the repeated cycles of upward-fining and blocky sandstone sequences in the 

well logs.  Especially for the upper part, the sequences are interpreted as the sheet sands 

of low-sinuosity braided-stream complexes. 

Therefore, to understand the fluid behavior in the subsurface, it is important to map 

the distribution of the sand bodies with good reservoir properties and to detect fluid 

saturation using the seismic data.   

The production of this field is undertaken by applying water-alternating-gas injection 

scheme to enhance oil production and maintain the reservoir pressure.   

The database for the case study includes the following:  

1. Time-lapse seismic: 3-D coverage, vintages 1997 and 2001, with 3 angle stacks 

(9°, 15°, 23.5°) for each vintage, matching filter applied; 

2. Well logs of 4 wells (1 vertical well and 3 deviated wells (deviation around 60° in 

the reservoir) ): gamma ray, density, neutron, resistivity, dipole sonic, caliper, 

deviation angle; 
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3. Well-log interpretation: CPI log including porosity, fluid saturation, shale volume, 

and permeability in some wells; 

4. Well-completion report: geologic description, horizon tops, and well trajectory; 

5. Core data: lithology description, microscope image, and core-velocity 

measurements; 

6. Geologic model: classification of reservoir units and fault distribution; 

7. Reservoir-simulator output: reservoir-flow units and time-lapse outputs of the 

history-matched data (porosity, permeability, pressure, fluid saturation) at well 

locations. 

Figure 1.1 shows an image of the case-study field.  The three wells in red are deviated 

wells with maximum deviation angles exceeding 70°; Well A is a vertical well located 

very close to Well H.  The surface is the seismic horizon near the top “S” Formation, 

which dips to the northwest—to the left in Figure 1.1—with interrupting normal faults.  

The color code is the interpreted two-way travel time in milliseconds from sea level. 
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Figure 1.1:  The oil field for a case study.  The three red lines illustrate deviated wells in 
the study area; the green line represents a vertical well in the area.  The surface is the 
seismic horizon corresponding to a near top target reservoir.  The color code is the 
two-way travel time from the sea level to the horizon.  The horizon dips northwest, 
to the left in this figure, with interruption of normal faults. 
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Chapter 2 
 
 
 

Velocity anisotropy estimation for 
brine-saturated sandstone and shale 
 
 
 
 
 
 
 
 
2.1 Abstract 

 

Velocity anisotropy is one of the important parameters to consider in seismic 

analyses.  Especially for deviated-wells in offshore fields, we must correct for velocity 

anisotropy effects to obtain realistic sonic-log responses that are equivalent to seismic 

data for small incident angles.  However, there is no appropriate method for anisotropy 

correction using well-log information from a single well, which is often the only 

information available.  I compiled experimental velocity anisotropy data from cores in 

the literatures to explore the empirical relationships between anisotropy parameters and 

general well-log information.  Eventually, I found that there is a clear trend of velocity 

anisotropy in the crossplot domain between velocity and porosity.  Consequently, I 
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developed a method to estimate Thomsen’s (1986) anisotropy parameters ε and γ using a 

regression in that domain.  The advantage of this method is that one can estimate ε and γ 

from well-log curves of Vp and total porosity.  In this chapter, I first present the result of 

an application of the method to demonstrate the significance of the correction.  Then, I 

show how I developed the method. In addition, I discuss an alternative approach 

incorporating a neural network, and compare my method with the method proposed by Li 

(2002).   

 

2.2 Introduction 

 

Rowbotham et al. (2003) showed that the correction of velocity anisotropy 

significantly improves the result of seismic inversion, when deviated wells are used as the 

control data.  Indeed, it is common to use deviated wells as the control data for analyzing 

offshore seismic data.  However, the anisotropy correction of sonic-logs for deviation 

angles is not a standard process.  Therefore, in the real world, well control is often 

distorted when the correction for sonic-logs is not applied, especially for geologic 

sequences with many interbedded shaly layers, where we expect larger anisotropy effects.  

Hornby et al. (2003) proposed a method to estimate anisotropy parameters from the sonic 

logs of differently deviated-wells, including a vertical well.  This method, as well as the 

simplified version of this method in Rowbotham et al. (2003), is based on the assumption 

that the shale layer is perfectly homogeneous in the area where the wells are deviated, so 

the velocity variation depends only on the deviation angles of the wells.  Then, the 

optimum anisotropy parameters are determined to obtain a sonic-log velocity consistent 
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with a nearby vertical well.  Obviously, this method is not applicable for laterally 

heterogeneous lithofacies sequences, such as fluvial deposits.  Furthermore, we may not 

have a nearby vertical well in some cases.  Therefore, an alternative method for 

estimating anisotropy parameters is necessary to correct the sonic log in heterogeneous 

geologic sequences and/or to perform anisotropy correction with single-well information.  

I developed a new method to estimate velocity anisotropy parameters from the well-log 

information of a single well.   

 

2.3 Application result  

 

Before explaining the analysis procedure, I preview the results.  Figure 2.1 shows the 

result of my correction for an example well.  In the top left chart, the circle markers are 

sample points from a deviated well (deviation angles in a reservoir are 57°-62°) before an 

anisotropy correction, color-coded by shale volume.  The bottom left chart shows the 

sample points from the same deviated well, but after the anisotropy correction using my 

method. The chart on the top right exhibits data points from a nearby vertical well, which 

show the ideal data distribution that would be expected after an anisotropy correction.  

The arrows in the charts indicate lithology trends of increasing shaliness, which are 

obtained from the chart of the nearby vertical well, then overlaid on the charts for the 

deviated well.  I emphasize that the shale trend (data points along the blue arrow in the 

figure) becomes concordant between the deviated well and the vertical well after the new 

correction method is applied.  Figure 2.2 shows well logs from the deviated well, 

including estimated Thomsen’s (1986) epsilon and sonic logs both before and after the 
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anisotropy correction.  This correction magnifies the velocity contrast between the shale 

and sand; as a result, the seismic modeling of the data is modified as well after the 

correction.  I calculated the AVO responses at an interface between shale and reservoir 

sand, as presented in Figure 2.3.  In this figure, two significant effects of the anisotropy 

correction are clear.  First, the magnitude of zero offset reflectivity after the correction is 

less than half of that before the correction.   

Figure 2.1:  An application result of my anisotropy correction method.  The top left chart 
exhibits data from a deviated-well before the anisotropy correction, whereas the 
bottom left chart exhibits the deviated-well data after the correction.  The top right 
chart shows data from a nearby vertical well, an ideal distribution after the 
correction.  Note that the shale trend, along the fixed blue arrow in this figure, 
becomes concordant between the deviated-well and the vertical well after the 
correction.  The well trajectories of the two wells are shown in the bottom right 
panel. 

 15



Second, the AVO response before the correction is almost flat, but after the correction the 

response shows decreasing reflectivity with increasing incident angle in this light oil 

reservoir case.  This example shows that using velocity data without an anisotropy 

Figure 2.2:   Well logs of a deviated-well.  The fifth column fr
estimated epsilon by my method.  The blue dashed trace in the Vp col

correction may induce significant errors in seismic analyses. 

om the left shows the 
umn is a sonic 

log before the correction; the red trace in the same column is the sonic log after the 
anisotropy correction. 
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Figure 2.3:  The AVO modeling result of an interface between shale and oil sandstone.  

The blue curve corresponds to the reflectivity response derived from a sonic-log 
before the anisotropy correction.  The red curve indicates the reflectivity response 
calculated from the sonic-log after the anisotropy correction.  Note (1) the difference 
between the zero incident angle reflectivities and (2) the different trends of 
reflectivities as the incident angle increases.  I used the anisotropic AVO equation in 
Thomsen (2002).  The symbol φ is fractional porosity.  Sw is fractional water 
saturation and  oil saturation is 1-Sw. 

 

2.4 Estimation method of velocity anisotropy
 

I compiled laboratory measurements by Lo et al. (1986), Vernik & Liu (1997), and 

Wang (2002).  Assuming that most subsurface rocks are transversely isotropic with 

vertical symmetry axis, I examined the compiled data to explore relationships between 

common well-log information (Vp, Vs, density, porosity, effective pressure) and 

Thomsen’s anisotropy parameters (ε, γ, δ).   

After generating a series of crossplots, I found a clear trend of ε in the domain of 

normal incident Vp (=Vp(0)) and bulk porosity as shown in Figure 2.4.  To eliminate 
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effects of saturation, I extracted only the measurements for brine-saturated sandstone and 

shale from the database.  I scrutinized the extracted dataset to obtain an appropriate 

regression method to estimate ε from Vp(0) and porosity φ.  In this investigation, 

modified Reuss average curves, as a function of arbitrary P-wave moduli and porosity, 

are found to yield a good functional form for iso-ε contours in the crossplot domain 

between Vp(0) and porosity φ.  The Reuss bound is the isostress average of two materials, 

so that the mental image of the Reuss scheme is alternating layers of two materials.  This 

fact suggests that as Vp(0) for the fixed porosity approaches  the minimum velocity on 

the Reuss bound, a rock tends to have more horizontally layered internal texture; for that 

reason, the rock demonstrates larger velocity anisotropy.   

 

Figure 2.4:  The crossplot of Vp(0) vs. porosity for the compiled database of laboratory 
experiments.  The database includes both dry samples and brine-saturated samples.  
Left: the data points are color-coded by Thomsen’s anisotropy parameter ε.   Right: 
the data points are color-coded by lithology.  The red curve is the upper Hashin-
Shtrikman bound of a quartz-water mixture with a critical porosity of 0.4.  The blue 
curve is the Reuss bound of a clay-water mixture. 

 

The equation for modified Reuss curves is given in Equation 2.1, where M1 and M2 

are two arbitrary P-wave moduli of the end points φ=0 and φ=1, respectively.  Taking φ 
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as the material fraction of M2, to simplify the calculation, I set densities 2.65 g/cm3 for 

M1; 1.00 g/cm3 for M2.  Choosing φ as the fraction of M2 might seem counterintuitive.  

However, this empirical exercise leads to a useful description of the anisotropic data.   

Here, P-wave modulus M is the product of the density and the square of the P-wave 

velocity for each material.  Then the P-wave velocity of the mixture is expressed as 

below: 

 

Vp(0) = [ ((1 – φ) / M1 + φ / M2 ) -1 / ( φ + 2.65(1 – φ ) )]1/2.  (2.1) 

 

To optimize the fitting of iso-ε contours to the data points for small ε values, where 

we have sufficient data coverage, I calculate iso-ε contours using least squares. Next, I 

extrapolate the resultant contours for larger ε values.  The obtained iso-ε contours are 

almost parallel to the Reuss bound, as shown in Figure 2.5.  For this process, I use only 

the laboratory data with effective pressure greater than 30MPa, since the data with lower 

effective pressure is highly scattered. 

In addition, we find the relationship between M1 and M2 based on their values derived 

during the generation of iso-ε contours.  Figure 2.6 shows the data points and the 

regression curve given by 

 

M1 = -2.3095 M2
2 + 35.525 M2 –37.403 .   (2.2) 
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Figure 2.5:  Iso-ε contours and the data points of brine-saturated sandstone and shale.  
The contours correspond to modified Reuss curves based on Equation 2.1 with two 
arbitrary P-wave moduli at the end points: M1 for zero porosity and M2 for fractional 
porosity 1. 

Figure 2.6:  An empirically derived regression curve between M1 and M2.  The red points 
are plotted according to the result of fitting iso-ε contours to the database.   

Figure 2.6:  An empirically derived regression curve between M1 and M2.  The red points 
are plotted according to the result of fitting iso-ε contours to the database.   

increase anisotropy 
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Here, I solve Equations (2.1) and (2.2) simultaneously to determine M1 and M2 from 

Vp(0) and φ.  First I rearrange Equation (2.1) to obtain 

 

M1M2/(M2(1-φ)+φM1) = 2.65Vp(0)2-1.65φVp(0)2 = A .  (2.3) 

 

Now, I express the relationship between M1 and M2 using A: 

 

M1=(A-Aφ)M2/(M2-Aφ).     (2.4) 

 

I plug this relationship into Equation (2) to obtain the following equation:  

 

-2.3095M2
3+(35.525+2.3095Aφ)M2

2-(37.403+35.525Aφ-Aφ+A)M2+37.403Aφ=0. (2.5) 

 

Next, I rearrange this equation in the form of x3+ax2+bx+c=0 and solve it as shown below, 

where p, q, m, and n are intermediate products. 

 

a=(35.525+2.3095Aφ)/(-2.3095)           (2.6) 

b=-(37.403+35.525Aφ-Aφ+A)/(-2.3095) 

c=(37.403Aφ)/(-2.3095) 

p=b-(a2/3) 

q=2(a3/27)-(ab)/3+c 

m=(-q/2+sqrt(q2/4-p3/27))1/3

n=-1(abs(-q/2-sqrt(q2/4-p3/27)))1/3
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M2=-(m+n)-a/3 

 

Finally, I use regressions between M2 and ε to determine the ε value, assuming the 

minimum ε is zero.  These regressions are derived from the compiled database of brine-

saturated sandstone and shale as well.  Figure 2.9 exhibits these regressions for ε and γ.   

 

ε = -1.0428M2+3.621,  M2<3.2048,         (2.7) 

   = -0.0809M2+0.5383,  3.2048=<Μ2<5.9924, 

   = -0.0152M2+0.1446,  M2>=5.9924. 

 

Using Equations 2.3, 2.6 and 2.7, now we can determine ε from Vp(0) and φ.  

 

Figure 2.7:  The estimation result of the anisotropy parameter ε in the Vp(0) vs. porosity 
domain for brine-saturated sand and shale.  Right: actual ε vs. estimated ε.  The red 
line is the 1:1 trend. 
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The left chart of Figure 2.7 presents the calculated ε value for Vp(0), ranging from 1.5 

to 6 km/sec, and fractional porosity, between 0 and 0.4; the chart on the right exhibits the 

correlation between the actual ε and the estimated value.  In the right-hand side chart, the 

markers are color-coded by the effective pressure of their laboratory measurements in 

MPa.  Note that three to four linearly aligned markers with changing color in the chart are 

data measured on the same core sample but in different pressure conditions.  These data 

indicate that the influence of effective pressure is more or less parallel to the 1:1 line in 

the chart.  This shows that the pressure effect on ε is independent of this estimation 

method. 

I apply the same approach to estimate Thomsen’s anisotropy parameter γ from Vs(0) 

and  porosity as displayed in Figure 2.8.  I derive the equation below from a regression 

for iso-γ contours: 

 

A= 2.65Vs(0)2-1.65φVs(0)2.    (2.8) 

 

-5.6031M2
3+(24.278+5.6031Aφ)M2

2+(18.778-24.278Aφ+Aφ-A)M2-18.778Aφ=0.  (2.9) 

 

Then I solve the equation for M2, where p, q, m, and n are intermediate products. 

 

a=(24.278+5.6031Aφ)/(-5.6031),         (2.10) 

b=(18.778-24.278Aφ+Aφ-A)/(-5.6031), 

c=(-18.778Aφ)/(-5.6031), 

p=b-(a2/3), 
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q=2(a3/27)-(ab)/3+c, 

m=(-q/2+sqrt(q2/4-p3/27))1/3, 

n=-1(abs(-q/2-sqrt(q2/4-p3/27)))1/3, 

M2=-(m+n)-a/3. 

 

I find regressions between M2 and γ to determine the γ value, assuming the minimum 

γ is zero. 

 

γ = -1.3598M2+1.3284,  M2<0.8549,        (2.11) 

   = -0.1286M2+0.2759,  0.8549=<Μ2<1.8711, 

   = -0.0316M2+0.0944,  M2>=1.8711. 

 

Figure 2.8: Estimation result of the anisotropy parameter γ in the Vs(0) vs. porosity 
domain for brine-saturated sand and shale.  Right: actual γ vs. the estimated γ.  The 
red line is the 1:1 trend.   
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An alternative way to determine γ is direct regression from ε.  Wang (2002) provided 

a linear regression for his whole dataset as shown below: 

 

γ = -0.01049+0.9560ε.    (2.12) 

 

I derive a slightly different regression from the compiled dataset for brine-saturated 

sandstone and shale as follows: 

 

γ = -0.0282+1.2006ε.             (2.13) 

 

When sonic-log velocities are very low, around the lowest limit of the distribution of 

compiled data in Figure 2.4, it is better to use a direct regression to estimate γ, since the 

compiled dataset does not contain many data points in the low-velocity range; the data 

are broadly scattered in that range.  Figure 2.9 presents regressions between M2 and ε on 

the left, as well as M2 and γ on the right.  In this figure, sandstone is color-coded in 

yellow, siliceous shale in red, and shale in brown.   

At this point, we have Vp(0), Vs(0), ε, and γ, so that we can calculate the four 

stiffness constants of a TI medium, C11, C33, C44, and C66, by adding density information.  

Furthermore, to determine C13, I adopt a linear regression between C12 and C13 in the 

database for brine-saturated sandstone and shale.  Given this regression, we compute δ as 

follows: 

 

C33=Vp(0)2ρ,           (2.14) 
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C44=Vs(0)2ρ, 

C11=2εC33+C33, 

C66=2γC44+C44, 

C12=C11-2C66, 

C13=0.9749C12-2.3471, 

δ={(C13+C44)2-(C33-C44)2}/2C33(C33-C44). 

 

However, the result shows the highly scattered distribution of δ as displayed in Figure 

2.10.  The large estimation errors may induce significant miscalculation of velocity 

during anisotropy correction when the estimated δ is used. 

 

  Figure 2.9:  Regressions between epsilon and the M2 calculated for epsilon; also 
between gamma and the M2 calculated for gamma.  The color indicates lithology: 
yellow represents sand, red is siliceous shale, and brown is shale.  The blue lines 
indicate the employed regression lines to generate Figures 2.7 and 2.8. 
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Figure 2.10:  The estimation result of the anisotropy parameter δ for brine-saturated sand 
and shale.  The red line is the 1:1 trend. 

 

To clarify the contribution of the δ term, I compare the results of the velocity 

anisotropy correction for Vp with and without the δ term.  First, I determine the angle 

velocities for the dataset using Thomsen’s exact equation.  The first column of Figure 

2.11 shows the difference between the actual Vp at the given propagation angle and the 

Vp(0).  The horizontal axis of the histograms represents velocity difference in km/sec.  At 

higher angles, actual Vp is always higher than Vp(0).  Nevertheless, the velocity 

difference depends on the degree of velocity anisotropy of each rock sample.  The second 

column from the left corresponds to the difference between the actual Vp and the result of 

the anisotropy correction by Thomsen’s exact equation, using my estimated ε and δ.  

Most data are corrected into appropriate ranges, yet we observe slight miscorrection due 

to the estimation error of δ value for smaller angles.  The third and fourth column shows 

the differences between the actual Vp and the corrected results using Thomsen’s 
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approximation.  For the third column, I adopt the estimated ε and δ in the computation, 

whereas I omit the δ term of the equation for the fourth column. 

 

Figure 2.11:  Histograms of velocity differences.  From the left, first column: actual 
velocity at the angle, minus Vp(0); second column: actual velocity at the angle, 
minus estimated velocity by Thomsen’s exact equation with estimated ε and δ, third 
column: actual velocity minus estimated velocity by Thomsen’s approximation 
equation with estimated ε and δ; fourth column: actual velocity minus estimated 
velocity by Thomsen’s approximation equation without the δ term.   

 

Note that even though I omit the δ term of Thomsen’s approximation, the effect of the 

anisotropy correction remains almost the same.  Figure 2.12 shows the quantitative 

comparison of the histograms of Vp difference in terms of the mean and standard 

deviation of the distribution. 
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Figure 2.12:  Quantitative comparison of the histograms in Figure 2.11.  The left chart 
exhibits the mean of the Vp difference and the right chart shows standard deviation 
of the Vp difference.  The blue dots correspond to the first column from the left in 
Figure 2.11, black dots represent the second column, green dots represent the third 
column, and the red dots indicate the data from the fourth column.   

 

From these investigations, I conclude that the simple equation below corrects velocity 

anisotropy for Vp sufficiently well: 

Vp(θ) = Vp(0)[1+εsin4θ].      (2.15) 
 
For S-waves, in case of well deviation exceeding around 50°, I assume the logging 

device measures Vshorizontal, which is the fast Vs in this angle range.  Then, I employ 

Thomsen’s approximation equation for the correction of Vshorizonatal as follows: 

Vs(θ) =  Vs(0)[1+γsin2θ].     (2.16) 
 
Since I define a method for calculating anisotropy parameters from velocity and 

porosity as illustrated in Figures 2.7 and 2.8, we can derive a relationship among Vp(θ), 

porosity, and ε; or a relationship among Vs(θ), porosity, and γ, for any arbitrary deviation 

angles.  For an example of the P-wave case, I convert the vertical axis of the left chart in 
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Figure 2.7 from Vp(0) to Vp(θ), based on a well deviation angle θ, using the Equation 

(2.15).  Then, I determine ε corresponding to the sonic-log velocity, Vp(θ), and porosity 

from a well-log analysis.  In this way, I can determine the anisotropy parameters and 

calculate the normal incident velocities from the well-log information of any single well, 

as demonstrated in Figure 2.2.  I demonstrated the application of my method in the first 

section.  This method is empirical, so we may need to calibrate the trends when the 

laboratory measurements of velocities, porosity, and anisotropy parameters are available 

in a target area.  However, the method is robust and suitable for any practical use.  One 

important point of this method is that well-log velocities should be fluid-substituted to a 

brine-saturated condition before applying the anisotropy correction. 

 

2.5 Alternative methods 

 

Besides the approximation method discussed above, I examined several alternative 

methods, including different regression curves in the Vp(0)-porosity domain, utilizing 

density instead of porosity, and a neural-network approach.  Figure 2.13 exhibits the 

result from a neural network: it is trained with Vp and porosity from my database.  The 

correlation between actual ε and the estimated ε exhibits a better match than my method, 

as shown in the right chart of Figure 2.13.  However, when we simulate the distribution 

of ε in Vp(0)–porosity domain, we observe an irregular distribution of ε, due to an over-

fitting by the neural network, as shown in the left chart of Figure 2.13.  This roughness of 

the distribution causes unstable calculations of  ε in the application of this neural network 

to actual data. 
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Figure 2.13:  Estimation result of the anisotropy parameter ε by a neural network.  Right: 
Actual ε vs. the estimated ε.  The red line is the 1:1 trend. 

 

Li (2002) proposed a method to estimate the velocity anisotropy ε from Vp(0) and 

clay volume in the equation below: 

 

ε=(0.7Vclay(Vp(0)-Vpwater))/(Vpquartz-Vpwater-2.29Vclay).     (2.17) 

 

I examine this equation for well data in comparison with my method.  Figure 2.14 

demonstrates the result.  The resultant range of ε by Li’s method often extends to high 

values. This fact suggests that the equation by Li needs scale adjustment.  Furthermore, 

higher-velocity samples correspond to higher ε at the same clay volume in his method.  

This is because he used Vp(0) in the numerator in his equation.  The resultant trend of 

ε in the Vp(0)-porosity domain does not agree with observations from the experimental 
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dataset. In the laboratory measurements, we recognized that lower Vp(0) corresponds to 

higher ε in the same porosity range. 

 

Figure 2.14:  Comparison of estimation results of the anisotropy parameter ε in the Vp(0)-
porosity domain.  Left: the proposed method in this paper.  Right: the method by Li 
(2002).  The upper curve is the upper Hashin-Shtrikman bound of a quartz-water 
mixture with a critical porosity of 0.4.  The lower curve is the Reuss bound of a clay-
water mixture. 

 

 

2.6 Conclusions 

 

I developed estimation methods for velocity anisotropy parameters ε and γ from well-

log information of a single well.  To obtain the relationship between velocity, porosity, 

and anisotropy parameters, I used a regression method in the velocity-porosity domain 

for the compiled database of laboratory measurements, which consists of only brine-

saturated sandstone and shale.  The proposed methods estimate ε and γ within reasonable 

ranges, but I could not estimate δ  properly.  I examined Thomsen’s approximation 

equation for Vp(θ) without the δ term and validated it for computing ε and Vp(0) from 
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Vp(θ), porosity, and well-deviation angle from well logs.  I showed an application result, 

demonstrating its impact on AVO modeling.  The new method is most suitable when the 

deviation angle exceed about 50°, where Vp(θ) depends strongly on ε but not δ; in 

addition,  Vs(θ) corresponds to horizontal Vs.   

It is inappropriate to extend this method to very low velocity ranges, such as below 

the Reuss bound of a clay-water mixture. The compiled dataset does not include enough 

control points in such low velocity ranges. 

In the following chapters, I apply this correction method for velocity anisotropy to all 

the control wells in a case study dataset.  Therefore, the seismic data analyses in the 

following chapters are based on the anisotropy-corrected velocities. 
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Chapter 3 
 
 
 

Elastic-impedance analysis 
constrained by rock-physics bounds 
 
 
 
 
 
 
 
 
3.1 Abstract 

 

The reflection coefficient of seismic data is a function of the impedance contrast at a 

subsurface interface.  Hence, by applying seismic inversion, I can derive rock impedance 

from seismic data.  Impedance is more useful for reservoir characterization than interface 

responses such as seismic amplitude, since it is an interval property.  However, if it is 

possible to decompose the impedance into two fundamental properties, namely velocities 

and density, I can utilize the currently available rock-physics applications both to 

determine the rock trend in the Vp-ρ plane, and to derive quantitative rock properties, 

such as shale volume.  In this chapter, I present a method of impedance decomposition 

using three elastic impedance data derived from the seismic inversion of angle stacks.  I 

 36



discuss the effect of noise on the analysis as the most important reason that 

decomposition is difficult.  Then, I show an innovative method incorporating rock-

physics bounds as constraints for the analysis.  The method is applied to an actual dataset 

from an offshore oil field; I demonstrate the result of analysis for sand-body detection. 

 

3.2 Introduction 

 
Elastic impedance (EI) is the apparent seismic impedance at specific incident angles, 

which was derived by Connolly (1998, 1999) and Mukerji et al. (1998).  This elastic 

impedance is a function of P-wave velocity (Vp), S-wave velocity (Vs), density (ρ), and 

the incident angle (θ), based on the approximations of Zoeppritz’s equations (1919) by 

Aki and Richards (1980), and Shuey (1985).  Therefore, when we have elastic 

impedances for three different stack angles of the same seismic data, it is possible in 

principle to back-calculate Vp, Vs, and ρ from the three elastic impedances.  Very often, 

the maximum stack angle of seismic data is limited to be less than 30°, which is not wide 

enough to obtain stable calculation results.  Hence, except when we have long-offset 

seismic data with the offset angles beyond around 60°, it is generally impractical to 

calculate Vp, Vs, and ρ separately from the seismic data.   

Instead of calculating Vp, Vs, and ρ directly from elastic impedances, desired 

properties are most often estimated by establishing empirical relationships between the 

impedance and the rock properties at well locations using well-log data.  Whitcomb et al. 

(2002) introduced extended elastic impedance (EEI) in a modified form of elastic 

impedance using tanχ as an alternative for sin2θ of the incident angle.  Then, they 
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extended the linear trend of the impedance change as a function of sin2θ of the incident 

angle, from negative infinity at χ=-π/2 to positive infinity at χ=π/2, in place of a limited 

extension of the horizontal axis from 0 at θ=0 to 1 at θ=π/2.  In the same paper they 

demonstrated the lithology impedance and the fluid impedance for specific χ values.  

However, all indicators still represent impedance.  With this approach one cannot take 

advantage of well-known rock physics trends in the velocity-density or Vp-Vs domains.  

In this chapter, I explore the effect of random and offset-consistent noise as the 

source of miscalculation for deriving Vp, Vs and ρ.  Next, I develop a method to stabilize 

and improve the calculation, by applying constraints based on rock-physics bounds.  I 

validate the method by analyzing 3-D seismic data of an actual oil field; I demonstrate 

the result of delineating sand-body distribution by implementing the method. 

 

3.3 Noise effect in elastic-impedance analysis  

 

Elastic impedance is expressed in the formula below:  

( ) cbaVsVpEI ρθ = ,                                              (3.1) 

where  
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One way to think of elastic impedance is that contrast of EI(θ) at a layer boundary 

determines the reflectivity at that angle, analogous to the way that normal incidence 

reflectivity is determined by the contrast of acoustic impedance. 

Therefore, when I have three different elastic impedances corresponding to three 

seismic stack angles of θn, θm, and θf, the relation can be expressed in a matrix form: 
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Equation 3.2 is a general matrix form to relate three unknowns (lnVp, lnVs, ρ) to three 

measurements (lnEI(θn), lnEI(θm), lnEI(θf)), when all angles and K are known.  

Consequently, when three EIs are available from elastic impedance inversions of seismic 

data, it is possible in principle to calculate Vp, Vs, and ρ by multiplying the inverse 

matrix of the first matrix on the right-hand side in Equation 3.2 to both sides of the 

equation from the left; I obtain Equation 3.3: 
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The practical problem is that the matrix is poorly conditioned unless θn<<θm<<θf.   

As an example, I use a portion of the actual well-log data to calculate the exact EIs of 

three different angles ( 9°, 15° and 23.5°) according to the stack angles of the seismic 

data of the target oil field.  
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Figure 3.1: The result of inverse calculation for Vp and ρ from three EIs.  The left three 
columns show exact EIs in blue and data with 1% random noise added in the dashed 
red line.  The 4th and 6th columns from the left are actual Vp and ρ.  The 5th and 7th 
columns are comparisons between the actual data in blue and the back-calculated 
result in the dashed red line for Vp and ρ respectively.  The right-most column 
exhibits acoustic impedance in the same color scheme. 

 

After adding 1% random noise for all EIs, but different noise profiles for each EI, I 

back-calculate Vp, Vs, and ρ from the EIs by the inverse matrix method of Equation 3.3, 

Figure 3.1 shows the result.  In this figure the three columns on the left show EIs of the 

near, mid and far angles in blue for the original data, and as a dashed red line for the 1% 

noise-added data. Since the noise level is so small, we do not see a distinct separation 

between the two data sets.  The 4th and 6th columns are the actual logs of Vp and ρ, 

respectively.  The 5th and 7th columns present comparisons between the actual logs in 

blue and the inverse calculation results with noise-added data in dashed-red lines.  Note 

that the horizontal scale is logarithmic in these comparisons.  The results demonstrate that 

the miscalculations are very high, more than 0.1 to 10 times of the original data.  Since 

the calculations were performed on the three EIs, the errors in Vp and ρ are anti-
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correlated; where we calculate very high Vp, we have very low ρ, and vice versa.  The 

product of Vp and ρ, acoustic impedance, exhibits only small errors, as shown in the 

right- hand column of the same figure.  

This simple calculation illustrates that it is extremely difficult to reliably derive Vp, 

Vs and ρ from EIs spanning a narrow range of angles.  Even 1% random noise may 

totally invalidate the calculation result.  This problem is the main reason why researchers 

prefer to use impedance data directly to estimate rock properties rather than decomposing 

the impedance into velocity and density. 

Next, let us change the noise scheme to offset-consistent noise.  In other words, I add 

exactly the same noise to each of three EIs at the same depth point.  Figure 3.2 

summarizes the calculation result of this scheme with a noise level of 10% of the original 

data.  The column allocation and the color code are the same as shown in Figure 3.1, 

except that I display the comparison of Vs in the right-most column instead of the 

acoustic impedance.  Since the noise level is 10 times higher than in the previous case, 

the separation between the original EI in blue and the noise-added EI in red is 

distinguishable in the left three columns.  However, the most remarkable difference from 

the previous result is in comparisons of Vp, Vs and ρ.  I observe an almost perfect match 

for Vp and Vs, with only small miscalculation for ρ.  This result suggests that the inverse 

calculation is not sensitive to noise consistent across the EIs.  Figure 3.3 demonstrates the 

calculation result for a higher level of offset-consistent noise.  In this case, the noise level 

is 25% of the original EI data.  Even at this high noise level, the calculated Vp does not 

exhibit any error, whereas I observe the highest errors in ρ and small errors in Vs. 
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Figure 3.2: The result of the inverse calculation for Vp, Vs and ρ from three EIs with 10% 
offset-consistent noise.  The column allocation and color code are the same as in 
Figure 3.1. The right-most column exhibits the Vs comparison.  Note the separation 
between the actual data in blue and the calculation result in red is minimal in Vp and 
the largest in ρ. 

re 3.3: The resuFigu lt of inverse calculation for Vp, Vs and ρ from three EIs with 25% 
offset-consistent noise. The column allocation and color code are the same as in 
Figure 3.1.  Note that despite the high noise level, Vp does not exhibit any estimation 
errors, whereas I observe the highest error in ρ and much smaller miscalculations in 
Vs. 
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3.4 Theoretical assessment of noise effect  
 

I investigated the inverse matrix calculation in general form to obtain a clear 

explanation for the observations discussed in the previous section.  First, I set K=0.25, 

which is equivalent to a Vp/Vs ratio equal to 2, to simplify the matrix form, which results 

in the following:   
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Then, using algebra to derive the inverse matrix in a 3 x 3 matrix form, eventually I 

obtain the inverse matrix with a scale factor of 1/A, as described in Equation 3.5: 
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The most significant finding related to this inverse matrix is the sum of each row. The 

sums end up with 0 for the first row, -0.5 for the second row and 1 for the third row, 

 43



respectively independent of the selection of stack angles.  Equation 3.6 summarizes the 

relationship in a simple form below: 
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Then, I express the inverse matrix calculation of noise-added EIs with the noise level δN 

as follows: 
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Therefore, when the noise is offset-consistent for all EIs, I notice that the noise effect of 

such offset-consistent noise is given in the following form by taking the relationship 

described in Equation 3.6 into account: 
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This result explains exactly what I observed in Figure 3.3, where Vp was not influenced 

by 25% offset-consistent noise on EIs, but the maximum noise effect is demonstrated in 

the determination of ρ and a small noise effect exists in Vs.  In the actual application, the 

noise effect follows an exponential, so that when ρ has e1=2.72 noise effect, Vs will 

exhibit e-0.5 =0.61 noise influence.  In other words, the effect of offset-consistent noise on 

Vs is about 22% of that for ρ. 

On the other hand, in the case of random noise, I expect all determinations of Vp, Vs 

and ρ to be influenced by noise as expressed below: 

( ) ( ) ( )( ).1ln1ln1ln1_ 321 NfiNmiNnii ddd
A

effectnoise δδδ +++++=             (3.9) 

 

In Equation 3.9 the most important point is the factor 1/A, which is given formulated 

in Equation 3.5.  This scale factor is a function of the three stack angles of seismic data.  

The value varies widely, depending on the selection of stack angles.  For example, 

assuming the seismic data with a near-stack angle of 5° and a far-stack angle of 45°, what 

is the optimal mid-stack angle to eliminate the influence of random noise for elastic-
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impedance analysis?  Figure 3.4 shows the scanning result of 1/A; I call it a noise 

enhancement factor, as a function of the middle-stack angle. 

  Figure 3.4: Scanning result for the optimal mid-stack angle of seismic data in terms of 
minimizing the effect of random noise on elastic-impedance analysis.  I assumed a 
near-stack angle of 5° and a far-stack angle of 45° for this case. 

 

Based on this scan result, we can determine that the optimal angle to minimize the 

random noise effect is about 33° for this case.  Note that the answer is not just the 

midpoint of near-offset angle and far-offset angle.  Another parameter affecting the 

calculation of 1/A is K=(Vs/Vp)2.  Figure 3.5 shows the results of the calculation for 1/A 

with varying Vp/Vs: 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, from the bottom to 
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the top.  Although the resultant curves shift the locations as increasing Vp/Vs, the angle 

for the minimum 1/A stays the same at 33°.   

Likewise, it is possible to quantitatively evaluate the design of long-offset seismic 

acquisition to reduce the effect of random noise.  When we have enough separation for 

the three stack angles, 1/A can be less than 1, which means that we can dilute the random 

noise effect by taking sufficiently long offset for seismic data.  In contrast to long-offset 

acquisition, 1/A will be greater than 100, when the three angles are very close together.  

Figure 3.5: The calculation result of noise enhancement factor varying K=(Vs/Vp)2.  
Vp/Vs changes from 3.0 to 1.0 by 0.2 increment from the top to the bottom.  A near-
stack angle of 5° and a far-stack angle of 45° are assumed.  Note that the minimum 
value of 1/A is obtained at 33° for all cases. 
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3.5 Possible sources of noise 

 

In the consideration of noise, there are many possible sources of noise in seismic data 

acquisition, data processing and inversion analysis.  Table 3.1 summarizes several 

sources and the category of noise.   

Acquisition system can induce noise at the same level for all offsets, in such case the 

wavelet of seismic source is distorted from the ideal shape for entire survey.  On the other 

hand, low energy shots and/or bad receiver responses happening occasionally are 

appeared to be random noise after the binning of 3-D data.  Likewise, noise derived from 

acquisition conditions, such as swelling or feathering, is added trace by trace inconsistent 

to incident angles.  This type of noise is categorized in random noise. 

In data processing, first consideration is the remaining influence of multiple.  For the 

case study dataset, the radon transform was used for suppressing multiple.  Consequently, 

amplitudes along hyperbolic events are preserved.  This means the energy of multiple 

remains only where the multiple signal across the hyperbolic events: the influence of 

remaining multiple is not offset-consistent.  Another important source of errors in data 

processing is velocity analysis.  When an inappropriate velocity model is assigned to 

some depth ranges, the velocity curve move-out the seismic data by inappropriate 

amounts, which depend on offset.  If the estimation error of velocity is small, the move-

out errors may occur in one direction, the resultant angle stack seismic data include both 

offset-consistent noise and random noise.  In contrast, if the estimation error of velocity is 

large, each angle stack exhibits different influence from the inappropriate velocity model.  

In this case, the influence is categorized in random noise.   
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The possible main sources of offset-consistent noise are in seismic inversion analysis.  

First one is low frequency model generated by the well-log data of control.  Low 

frequency model is indispensable to perform seismic inversion to provide a background 

trend of impedance change.  However, when the well-log data include distorted values of 

velocity and/or density, the unreasonable values affect the low frequency models for all 

stack angles since the all models are derived from the same well-log data.  In addition, in 

my case, I use a same wavelet to invert all seismic angle stacks since the angles are close 

enough (9°, 15°, 23.5°) and there is no significant difference among extracted wavelets 

for the three angles.  By this application, the errors in wavelet estimation uniformly affect 

the inversion results of all offset angles.  Note that using a common wavelet may induce 

offset-consistent noise but it reduces the risk of inducing random noise caused by 

employing different wavelets for different offset angles.  When different wavelets are 

used for different angle stacks, the mismatches between the estimated wavelets and the 

seismic data are fully random, which are appeared as random noise in the inversion 

results. 

Table 3.1: Summary of possible source and the category of noise. 
 

 Possible source of noise Offset-
consistent 

noise 

Random noise 

Acquisition system (source, receiver) X X 

A
cq

ui
si

tio
n 

Acquisition conditions (swelling, 
feathering)  X 

Remaining multiple influence  X 

Pr
oc

es
si

ng
 

Inappropriate velocity  model X X 

Errors in low frequency model X  

In
ve

rs
io

n 

Insufficient wavelet matching X X 
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3.6 Constraints for elastic-impedance analysis 

 

Based on the discussion about the effect of noise on elastic-impedance analysis, I 

notice that the precise balance among the three EIs, which is equivalent to eliminating the 

effect of random noise on the inverse-matrix calculation, is the key to deriving reasonable 

values of Vp, Vs and ρ.  I develop a method to restore balance among EIs from the noise-

distorted EIs of the seismic-inversion results.  

The first step is to find the least-squares linear fit in the lnEI-sin2θ plane.  Assuming 

the thickness of reservoir layer is thick enough relative to the seismic resolution, in 

smaller angles of seismic offset, up to around 30°, the reflection coefficient is expected to 

have a linear trend in the amplitude-sin2θ  plane; in other words, the reflection coefficient 

is half of the logarithmically scaled impedance response.  At each seismic data point, I 

apply least-squares fitting to the EIs in the lnEI-sin2θ plane to obtain the general trend as 

shown in Figure 3.6.  Deviations of the data from the straight line are considered to 

indicate random errors in the EIs.  The fit EI values are used in the subsequent 

interpretation. 

The second step is to apply rock-physics bounds to constrain the distribution of EIs 

within a theoretically reasonable range.  I examined well-log data in the target area to 

determine the constraining bounds for the actual dataset.  Figure 3.7 shows the rock-

physics bounds in the velocity-porosity planes.  The left chart shows the upper and lower 

modified Hashin-Shtrikman bounds computed for a mixture of mineral at φ=0 (zero 

porosity) with soft sediment at φc=0.4 (a critical porosity).  The green lines represent 

modified bounds for a quartz-water mixture; the red lines represent a mixture between the 
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average solid of the target field (Hill’s average of felspathic arenite) and water; the blue 

lines are for a clay-water mixture in the Vp-porosity plane.  I emphasize that these are 

modified bounds representing the soft sediment at φc=0.4 with mineral at φ=0.  The 

parameters used to calculate the bounds are summarized in Table 3.2. 

 
Table 3.2:  Summary of the parameters used to calculate the Hashin-Shtrikman bounds of 

sandstone. 
 

Material Bulk modulus (GPa) Shear modulus (GPa) Density 
(g/cm3) 

quartz 37 44.73 2.65 
average solid of the 

target field 35.64 28.17 2.66 

clay 23 8 2.58 

water 2.7416 0 1.0038 
mixture at critical  
porosity (φ=0.4) 4.3575 0.09 0.6ρsolid + 

0.4ρbrine
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Figure 3.6: The first step of an EI analysis method.  I apply a least-squares linear fitting 
to EIs in the lnEI-sin2θ  plane to obtain the general trend.  Three points and the linear 
trend are extracted from an application for the actual data set. 

Figure 3.7: Comparison between the modified Hashin-Shtrikman bounds of several 
schemes and the distribution of actual data.  The green lines represent a quartz-water 
mixture; the red lines indicate a mixture of water and the average solid of the target 
field; the blue lines represent a clay-water mixture.  The dashed lines in the Vs-
porosity plane are the transformed Hashin-Shtrikman bounds from the Vp-porosity 
plane using Equation 3.10 for black lines; Vp/Vs=1.6 for magenta lines; Vp/Vs=2.0 
for cyan lines.  All bounds have 0.4 as the critical porosity.  
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The data points in Figure 3.7 demonstrate well log data in the target area, color-coded 

by the shale volume in fractions.   

The right chart in Figure 3.7 exhibits the same modified bounds and data in the Vs-

porosity plane with three additional bound sets.  The black dashed lines indicate the Vs-

porosity bounds calculated from the Hashin-Shtrikman bounds in the Vp-porosity plane 

using modified Han’s equation for the Vp-Vs relation shown below, which gives us a 

good fit to the actual measurements in the study area: 

 

79.079.0 −= VpVs .                                             (3.10) 
 

The dashed magenta lines represent the transformed Hashin-Shtrikman bounds from the 

Vp-porosity plane, assuming that the Vp/Vs ratio is 1.6.  The dashed lines in cyan are the 

transformed Hashin-Shtrikman bounds from the Vp-porosity plane, assuming that Vp/Vs 

is equal to 2.0.  I used 0.09 GPa as the shear modulus at the critical porosity of water- 

saturated sandstone, which is compiled from the measurements of unconsolidated 

sandstone by Zimmer (2003).   

Next, given a porosity-ρ relation in the field, I converted the horizontal axis to density 

and generated Figure 3.8.  In addition, I show the Vp/Vs trend in terms of density change 

in Figure 3.9.  Since EI is a function of Vp, Vs and ρ with an incident angle of θ, the 

Vp/Vs trend is an important factor in selecting adequate rock-physics bounds to constrain 

the EI distribution.  Figure 3.10 shows several bounds and the actual well-log data 

distribution, color-coded by the shale volume, in the EI(23.5°)-EI(9°) plane.  Considering 

all the plots described above, the appropriate bounds I selected to limit distribution of EIs 

are the dashed black bound for the upper limit and the dashed magenta line for the lower 
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limit in the EI(23.5°)-EI(9°) plane.  Since the variation of EIs is mainly controlled by 

Vp/Vs, the selection of appropriate rock-physics bounds for constraints is equivalent to 

the selection of the relevant Vp-Vs relations.   

Once I choose the bounds, the seismic inversion results are crossplotted in the EIfar-

EInear plane, and all points in the plot are squeezed to lie between the upper and lower 

bounds in the direction orthogonal to the bound lines, keeping relative positions.  The 

details of this process is explained in the next.  Then I determine exactly the same relative 

locations between the bounds in EImid-EInear plane to obtain corrected EImid.  By doing 

this, I correct the three EI values to fall within the expected bounds, while preserving the 

relative difference of EI responses derived from seismic impedance inversion. 

 
Figure 3.8: Comparison between the modified Hashin-Shtrikman bounds of several 

schemes and a distribution of actual data. The representation scheme is same as 
Figure 3.7.  All modified bounds assume 0.4 for the critical porosity.  
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Figure 3.9: The modified Hashin-Shtrikman bounds of the schemes described in Figure 
3.7 in the crossplot between the Vp/Vs ratio and density.  The dashed lines 
correspond to the lower Hashin-Strikman bounds in the velocity-porosity plane; the 
solid lines are equivalent to the upper Hashin-Strikman bounds.  Note that the upper 
and lower Hashin-Strikman bounds are coincident when Vp/Vs is a constant value. 

Figure 3.10: Comparison between the modified Hashin-Shtrikman bounds in the schemes 
described in Figure 3.7 and the actual data distribution calculated from well-log data.  
The dashed lines correspond to the lower Hashin-Strikman bounds; the solid lines 
are equivalent to the upper Hashin-Strikman bounds in the velocity-porosity plane.  
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3.7 Validation of the method with a case study 

 
I applied the method described in the previous section to a dataset from an offshore 

oil field with four control wells, plus three angle stack seismic cubes with 9°, 15° and 

23.5° average offset angles.  The target reservoir is interpreted as blanket sandstone 

sheets in the depositional environment of braided river channel stacks in the early 

Jurassic age.  The well-log database includes all the standard logs from one vertical well 

and three deviated wells.  The velocity logs for the deviated wells are corrected in terms 

of velocity anisotropy by the method discussed in Chapter 2.  The Vs log is not available 

for all the wells, but I generate the Vs logs for necessary wells using Equation 3.10, since 

that equation gives us a good fit to the actual data of available Vp and Vs in this area, in a 

brine-saturated condition.  

Figure 3.11 compares the results of the inverse-matrix calculation applied to the 

seismic cubes without the rock physics constraints.  I compute Vp, ρ and Vs from the EIs 

derived from the seismic data at the location of a vertical well, with and without a least-

squares fit in the lnEI-sin2θ plane.  In the three columns on the left side, the red dashed 

lines display the resultant Vp, ρ and Vs computed from the EIs without any processing.  

The right three columns demonstrate the Vp, ρ and Vs calculated from the EIs extracted 

from a least-squares fit in the lnEI-sin2θ plane as illustrated in Figure 3.6.  In both cases, I 

show the actual Vp, ρ and Vs in blue lines.  The horizontal axes are in logarithmic scale.  

Note that the disagreement of the inverted Vp, ρ and Vs relative to the actual well-log 

data subsequent to the least-squares fit are one order of magnitude less than for the 

original EIs without the least-squares correction.  Furthermore, the shapes of the resultant 
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logs on the right are different from those on the left, suggesting that simply scaling the 

original results will never be equivalent to the least-squares processed results.  

Figure 3.11: The inverse-matrix calculation results at a vertical well location from the 
unprocessed seismically derived EIs, in red, in the left three columns.  The three 
right columns exhibit the calculation result from least-squares-fitted EIs in red.  The 
blue lines are the actual well-log data.  Note that the horizontal axes are logarithmic 
scale, but the range is one order smaller in the right half. 

 
The second step is performed in EIfar-EInear plane as in Figure 3.12.  First, I fix the 

EInear value, vertically compress the data variation of EIfar into the range of the-rock-

physics bounds, and find vertical displacements (dY).  Next, I fix the EIfar and 

horizontally compress the data scattering of EInear into the rock-physics bounds, to find 

horizontal displacements (dX).  Eventually, I employ trigonometric calculations to 

determine the diagonal shift (dx, dy) from the horizontal displacement (dX) and the 

vertical displacement (dY) in Equation 3.11.  
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 The crossplot of EIfar and EInear is displayed in Figure 3.12; red lines represent the 

employed rock-physics bounds; the blue lines are drawn to be parallel to the bounds 

whereas containing almost of the raw data.  After corrections are applied, the blue lines 

coincide with the red lines together with all the data points. 

Figure 3.12: The crossplot of the seismically derived EI data between EIfar and EInear 
before constraining with rock-physics bounds (after least-squares fit).  The red lines 
are the employed rock-physics bounds; the blue lines are lines parallel to the bounds, 
which will coincide with the red lines after the second step.  The color code is the 
two-way time of the seismic data point in millisecond. 

 

After applying the second step, I extracted the corrected EIs from the seismic along 

the vertical well and computed Vp, Vs and ρ by the inverse matrix method.  Figure 3.13 
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shows the results in red, with the actual well-log data in blue.  Since the analysis results 

are derived from the seismic inversion, I cannot obtain high resolution response at the top 

of the reservoir at an approximate depth of 2350m, due to the shoulder effect.  In 

addition, I observe a spiky miscalculation in ρ at 2500m and a small drift in Vs in the 

range from 2460m to 2500m.  However, the overall results are a significant improvement 

relative to the well data, so that we can grasp the trends of these three fundamental rock 

properties. 

The rock-physics constraints discussed above correct the random-noise-distorted EI 

values: random noise expands the data scattering in a direction perpendicular to the rock 

physics bounds in Figure 3.12.  On the other hand, offset-consistent noise alters the data 

location in a direction parallel to the rock physics bounds in Figure 3.12.  Therefore the 

effect of offset-consistent noise is not eliminated by my method.  It is suggested that the 

spiky miscalculations in ρ and Vs in Figure 3.13 are derived from offset-consistent noise. 

The level of the offset-consistent noise is not significant in this case since the red dashed 

lines capture the background trends of the well-log data in blue.  

In addition, the residual between actual seismic trace and synthetic seismogram 

increases by applying my method.  Any seismic-inversion algorithms minimize an 

objective function to find the best fit between the actual seismic and the inverted 

impedance using a wavelet.  However, my method re-expands the residual to restore a 

better balance among the three EIs. 
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Figure 3.13: The results of the inverse matrix calculation from our method fully applied 
to EIs in red at a well location.  The blue lines are the actual well-log data.  Note that 
the significantly improved good match between the seismic-analysis result and the 
well data compared to Figure 3.11.  

 

Once I obtain Vp, Vs and ρ separately, I can take advantage of numerous rock-physics 

tools.  One of the benefits of using these tools is to evaluate shale volume quantitatively 

from velocities and ρ, in order to detect the distribution of sand bodies from 3-D seismic 

data.  I generate the crossplots of Vp-ρ as well as Vs-ρ in Figure 3.14.  The larger circles 

in the figure are the points of resultant velocity-ρ derived from EI analysis of the seismic 

data at a well location.  I also plot well-log data color-coded by shale volume in small 

dots in the same figure.  Using the constant gradient indicated by the dashed line in the 

plots, I determine the shale volume from the intercept of the same gradient line through 

each data point.  I use the Vp-ρ plane since the Vs exhibits more errors in Figure 3.13. 
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Figure 3.14: The crossplot of Vp-ρ on the left and Vs-ρ on the right.  The dashed lines 

indicate the gradient used to determine shale volume in these plots.  The large circles 
are points derived from the EI analysis of seismic data; the points color-coded in 
shale volume are well-log data. 

 
In this process, the data location in the velocity-ρ plane is different depend on the 

fluid component in a rock.  Figure 3.15 shows an example of the location shift due to the 

fluid saturation determined for a well-log data.  The open circles represent the data 

location with in-situ fluid in the reservoir color-coded by water saturation (Sw), where the 

remaining fluid is 39.4°API oil (So=1-Sw).  Then, the solid markers correspond to the data 

location after fluid-substituted to 100% water-saturated condition by the Gassmann 

equation.  The solid lines are iso-shale-volume contours.  Note that the direction of the 

data shift by oil saturation is almost parallel to the iso-shale-contours, since oil saturation 

decreases both velocity and density.  Figure 3.16 compares the shale volume from the 

data location with in-situ fluid and that from the data location with 100% water.  As 

observed in the left chart, the data location with in-situ fluid gives us higher shale volume 

than that with 100% water.  However, the differences between the two results are mostly 

less than 10% in the shale volume as shown in the histogram in Figure 3.16. 
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Figure 3.15: The shift of data location due to fluid saturation for a well-log data in the 
Vp-ρ plane.  The open circles represent the data location with in-situ fluid.  The solid 
markers correspond to the data location after fluid-substituting to a water-saturated 
condition.  Both are color-coded by the initial water saturation.  Note the direction of 
data shift is parallel to the iso-shale-volume contours in the solid straight lines. 

 

Figure 3.16: The comparison between the shale volume from the data location with in-
situ fluid and that with 100% water.  The rock with in-situ fluid gives us higher shale 
volume than the rock with 100% water.  However, the differences between two 
results are less than 10% in shale volume as shown in a histogram. 
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Figure 3.17 compares the estimated shale volume with the shale volume from the CPI 

(computer processed interpretation) well-log analysis of the well. In this figure, the 

yellow trace is the shale volume by well-log analysis, whereas the green line is a mean 

filtered trace of the yellow data.  The magenta trace is the shale volume based on the Vp-

ρ plot in Figure 3.14; the red dashed trace is the resultant shale volume from the crossplot 

of Vs-ρ.  I capture the basic trend of the shale volume profile, although I miss the sharp 

boundary at the top of the reservoir around 2350m again; moreover there seem to be time 

shifts or phase rotation around 2460-2480m. Eventually, the complete computation 

sequence is applied to the 3-D seismic dataset.  In Figure 3.18, I compare the original 

seismic data of the near stack and the shale volume section derived from the EI analysis 

through the vertical well displayed in Figure 3.17.  The section is an east-west seismic 

line extracted from the 3-D seismic data.  The well-log data in red indicates the shale 

volume by log analysis, which is the same trace as the yellow trace shown in Figure 3.17.  

We cannot resolve the lithology in the amplitude section at the bottom of Figure 3.18.   

Figure 3.17: The comparison of shale volumes.  The yellow trace is the shale volume 
from well-log analysis; the green line represents a mean filtered version of the 
yellow trace.  The magenta line exhibits the shale volume determined in the crossplot 
between Vp and ρ, based on the EI analysis of the seismic data.  In addition, the red 
dashed line exhibits the shale volume estimated in the crossplot for Vs and ρ from 
the EI analysis.  
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Figure 3.18: Shale-volume section obtained by the elastic-impedance analysis constrained 

by rock-physics bounds at the top.  The bottom is the near-stack seismic section at 
the same location.  The well log in red indicates the shale volume from well-log 
analysis, 0 on the left end and 1 for the right-end.  Note that the top section 
demonstrates good agreement with the well log.  The wiggle traces in the top section 
are the same seismic data as the bottom section.  The color code in the top section is 
shale volume clipped in the range from 15% to 65%.  

 

In contrast to the bottom section, we recognize the sandstone layers clearly in the shale 

volume section at the top.  Moreover, the shale volume agrees well with the well-log 

analysis in red at the location of Well A, where the shale volume is 0 at the left end and 1 

at the right end.  For comparison, I superimposed the red wiggle traces in the top section, 

which are the same seismic traces as those in the bottom section.  The color code for the 

top section is clipped from 15% to 65% of the shale volume to emphasize the variation of 

lithology in the section. 
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Likewise, I present the comparison of the shale-volume section to the elastic- 

impedance section derived from the seismic inversion in Figure 3.19.  In this comparison, 

we notice that the impedance section does not manifest the lithology distribution.  We 

only recognize a subtle indication of the fact that higher impedances correspond to higher 

shale volume. 

I export the result of the elastic-impedance analysis constrained by rock-physics 

bounds into 3-D visualization software to understand the distribution of sand bodies.  

Figures 3.20 and 3.21 display the sand-body distribution.  Based only on geologic data, 

geologists in charge of this field interpreted that the reservoir is blanket sandstone of 

braided river channel stacks.  In Figures 3.20 and 3.21, we distinguish the sandstone 

distribution derived from the seismic data; the image agrees with the depositional 

environment given by the geologists.  Furthermore, I confirmed that the sand-volume 

profiles are consistent to the well log analysis results at all well locations of available 

wells.  I set the color code from 55% sand volume at the 127 side of the legend to 85% 

sand volume at the -128 end of the legend for these figures.  Then, I tune the transparency 

to illuminate the sandstone bodies which have more than 60% sand volume in Figure 

3.20.  The advantage of this approach is that we can assess the result in quantitative ways.  

In Figure 3.21, I change the transparency setting to highlight the sand bodies with more 

than 80% sand volume.  I detect the core parts of the channel stacks in this figure.  In 

fact, now we can recognize sand bodies, which exhibit similar shapes to longitudinal bars 

and/or meandering channels.  I observe several sets of parallel channels with crossing 

channels between those in Figure 3.21.  Also small streams seem to join the main 

channels from the side in the direction from NNE to SSW, which indicates the flow 
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direction of this braided-river system in Jurassic age.  The wide spread sandstone bodies 

are surrounding the core parts of the channel stacks as shown in Figure 3.20. 

Based on the observations in these figures, the channel stacks extend in a NNE-SSW 

direction.  Thus, I expect a higher rate of fluid flow in that direction, which is also 

suggested by reservoir engineering data of this producing oil field. 

 

 
Figure 3.19: The shale-volume section obtained by the elastic-impedance analysis 

constrained by rock-physics bounds at the top.  The elastic-impedance section of the 
near- stack seismic data is at the bottom.  This elastic-impedance data is one of the 
input data for the analysis.  There is tendency for higher impedances to correspond to 
higher shale.  However, the lithology distribution is not clear in the impedance 
section at the bottom.  
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Figure 3.20: The 3-D visualization of the resultant sand-body distribution.  The color 

code is sand volume, where 127 corresponds to 55%, and -128 indicates 85% 
averaged sand volume within the seismic resolution.  I set the transparency to 
illuminate the portion with more than 60% sand volume. The total width of the area 
is about 5km 

 
Figure 3.21: The 3-D visualization of the resultant sand-body distribution.  I set the 

transparency to illuminate the portion with more than 80% sand volume.  Note that 
there are sand bodies which exhibit shapes similar to longitudinal bars and/or 
meandering channels. 
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3.8 Comparison with unprocessed data 

hat if we do not apply the rock-physics constraints to control the data scatter?  

Fig

rm, 

ins

 

W

ures 3.22 and 3.23 give the answer to this question. Figure 3.22 shows the sandstone 

distribution derived from the EIs without any correction processes, but I just applied the 

exactly same inverse matrix calculation to determine Vp, Vs, ρ, then determine the shale 

volume using the data location in the Vp-ρ plane.  Note that the color code is still the 

fractional sand volume (1 - shale volume).  However, the minimum value at 127 on the 

dark blue end corresponds to -1010, and the scale is logarithmic due to the abnormal 

calculation results from the unprocessed EIs.  In this figure, which is equivalent to Figure 

3.20, we cannot observe any patterns to be considered fluvial deposits.  Likewise, even 

when we extract very sandy portions as shown in Figure 3.23, no pattern of sand bodies is 

mapped out.  This result indicates that the constraints based on the rock-physics bounds 

are indispensable for deriving appropriate results as shown in Figures 3.20 and 3.21.  

In many cases, simple seismic attributes--amplitude strength, wavelet fo

tantaneous phase, instantaneous frequency, and so on--work well to determine the 

lithology distribution.  Figure 3.24 shows the amplitude of the near-stack seismic of the 

case-study dataset.  I arrange the transparency of the display to highlight the reflectors of 

strong amplitude, both in the positive and negative directions.  We observe a pair of 

strong parallel reflectors near the compass symbol at the bottom left; these are 

correlatable to the sand bodies in Figure 3.21.  However, the extension of these channels 

to the northeast direction is not as clear as in Figure 3.21.   
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Figure 3.22: The 3-D visualization of the sand body distribution derived from 

unprocessed EIs.  The color code is sand volume, but 127 corresponds to -1010 due to 
the abnormal calculation results from the unprocessed inputs; the scale is 
logarithmic.  

 

 
Figure 3.23: The 3-D visualization of the sand-body distribution derived from 

unprocessed EIs.  This shows the result of extracting the portions of high sand 
content. Note that we cannot observe any clear sediment bodies.  
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Figure 3.24: The strong amplitude reflectors in the near-stack seismic data.  A pair of 

strong parallel reflectors at the bottom left are correlatable to the channels in Figure 
3.21.  However, the extension in the northeast direction is not as clear as in Figure 
3.21. 

 

Figure 3.25: The strong amplitude reflectors in the far-stack seismic data.  There are 
channel-like features around the center, but the reflectors are dimming out to the 
edge of the figure. 
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Further  3.24 

 seismic data of the far stack.  We 

obs

is difficult to obtain the total picture of lithology 

dis

3.9 Conclusions 

discussed the role of noise on the inverse-matrix calculation in Equation 3.3, when 

we 

more, in the extended area, the locations of strong amplitude in Figure

deviate from the channel distribution in Figure 3.21. 

Figure 3.25 exhibits the strong reflectors in the

erve channel-like features around the center of the figure, but the strong reflectors are 

not clear in the remaining area.   

These facts suggest that it 

tribution from the original seismic data, although each angle stack has some 

qualitative information about the lithology distribution.  We need to apply a processing 

sequence, such as the one I discussed in this chapter, to determine the lithology 

distribution in a quantitative manner. 

 

 

I 

derive Vp, Vs and ρ from the elastic impedances by the seismic inversion of angle- 

stack data.  The effect of offset-consistent noise is different from that of random noise.  In 

the case of offset-consistent noise, the noise effect appears most prominent in the 

calculation of ρ, but the effect on the computation of Vs is about 22% of the effect on ρ. 

Moreover, there is no effect on Vp determination.  However, if the noise occurs 

randomly, the effect occurs equally in the determinations of all three properties, Vp, Vs 

and ρ.  In addition, I observe the noise enhancement factor 1/A, as described in Equation 

3.5 for the effect of random noise.  Since the 1/A is a function of the three stack angles, if 

the angles have only small separations such as that of the far-stack angle which is less 
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than 30°, the effect of random noise will be enhanced on an exponential scale.  But the 

scale is less than 1 when the separations of stack angles are large enough, so that the far-

stack angle exceeds 60°.  Therefore, in this case, the effect of random noise is reduced by 

the inverse-matrix calculation.  To minimize the random-noise effect for elastic-

impedance analysis, the noise-enhancement factor 1/A is practical for finding the optimal 

combination of stack angles quantitatively.  

Based on the outcomes of noise effects, I developed a method to analyze elastic 

imp

an actual oil field, I demonstrate the result of a case study.  The 

com

scuss a sequence of calculations and analyses to derive 

the

edances to derive Vp, Vs and ρ, by eliminating the influence of noise.  This new 

method consists of two steps. In the first step, to obtain the general trend of EIs, I perform 

least-squares linear fitting of EIs in the lnEI-sin2θ plane.  Next, I apply rock- physics 

bounds to constrain the data distribution of the EIs in the EIfar-EInear plane.  This process 

restores the strict balance of the three EIs within the constraint of the applied rock-

physics bounds.  Given the resultant EIs, I calculate Vp, Vs and ρ by applying the inverse 

matrix in Equation 3.5. 

Using the dataset of 

puted Vp, Vs and ρ are processed one step further to detect subsurface sand bodies.  I 

successfully map out the distribution of fluvial sand bodies at a depth of 2400m; buried 

fluvial channels in Jurassic age. 

In the next chapter, I will di

 fluid saturation in a subsurface formation based on Vp, Vs, ρ and the shale volume 

determined in this chapter. 

 72



REFERENCES 

 

Aki, K. and Richards, P. G., 2002, Quantitative seismology second edition, University 

Science Books. 

Connolly, P., 1998, Calibration and inversion of non-zero offset seismic. 68th Ann. 

Internat. Mtg: Soc. of Expl. Geophys., 182-184.  

Connolly, P., 1999, Elastic impedance. The Leading Edge, 18, 438-452. 

Han, D-H., 1986, Effects of Porosity and Clay Content on Acoustic Properties of 

Sandstones and Unconsolidated Sediments. Ph.D. dissertation, Stanford University. 

Mavko, G., Mukerji, T. and Dvorkin, J., 1998, The Rock Physics Handbook, Tools for 

Seismic Analysis in Porous Media, Cambridge University Press. 

Mukerji, T., Jørstad, A., Mavko, G., and Granli, J., 1998, Near and far offset impedances: 

Seismic attributes for identifying lithofacies and pore fluids. Geophysical Research 

Letter, 25, 4557-4560. 

Shuey, R. T., 1985, A simplification of the Zoeppritz equations, Geophysics, 50, 609-614. 

Tsuneyama, F. and Mavko, G., 2005, Velocity anisotropy estimation for brine-saturated 

sandstone and shale. The Leading Edge, in press.  

Whitcombe, D., 2002, Elastic impedance normalization. Geophysics, 67, 60-62. 

Whitcombe, D., Connolly, P., Reagan, R.and Redshaw, T., 2002, Extended elastic 

impedance for fluid and lithology prediction. Geophysics, 67, 63-67.  

Zimmer, M, 2003, Seismic Velocities in Unconsolidated Sands: Measurements of 

Pressure, Sorting, and Compaction Effects. Ph.D. dissertation, Stanford University. 

 73



Zoeppritz, K., 1919, Erdbebenwellen VIIIB, On the reflection and propagation of seismic 

waves, Gottinger Nachrichten, I, 66-84. 

 74



 
 
 
 
 

Chapter 4 
 
 
 

Quantitative detection of fluid 
distribution using time-lapse seismic  
 
 
 
 
 
 
 
 
4.1 Abstract 

 

Although previous seismic monitoring studies have revealed several relationships 

between seismic responses and changes in reservoir rock properties, the quantitative 

evaluation of time-lapse seismic data remains a challenge.  In most cases of time-lapse 

seismic analysis, fluid changes are qualitatively detected by changes in amplitude 

strength, travel time, and/or Poisson’s ratio.  Reservoir pressure, another important target 

of time-lapse analysis, tends to induce time-lapse responses that are different from those 

of the fluid changes. 

I develop a workflow to determine the saturations of formation water, oil and gas 

from seismic data through a sequence of analyses and calculations, based on the three 
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elastic impedances at different angles derived from seismic inversion.  In Chapter 3, I 

discussed the preparation of this analysis in terms of determining Vp, Vs, ρ and the shale 

volume from the elastic impedances.  In this chapter, I present the subsequent steps, 

considering the pressure effect and the saturation scale of fluids for time-lapse seismic 

analysis.  Then, I demonstrate a deterministic approach to computing the fluid saturation 

to evaluate time-lapse seismic data.  In this approach, I derive the physical properties of 

the water-saturated sandstone reservoir, based on several inputs: Vp, Vs, ρ and the shale 

volume from seismic analysis; the average properties of sand grains; and formation water 

properties.  Next, by comparing the in-situ-fluid-saturated properties with the 100% 

formation-water-saturated reservoir properties, I determine the bulk modulus and the 

density of the fluid phase in the reservoir.  Solving three equations simultaneously 

(relating the saturations of water, oil and gas in terms of the bulk modulus, density and 

the total saturation) I compute the saturation of each fluid.  I use a real time-lapse seismic 

dataset from an offshore oil field in the Norwegian North Sea for this study.   

 

4.2 Introduction 

 

The Norwegian North Sea is an area where time-lapse seismic is commonly used to 

evaluate producing oil fields.  Several time-lapse seismic studies were published on the 

North Sea during the last decade.  These include studies of the Oseberg field (Johnstad et 

al., 1995, Rutledal et al., 2003), the Magnus field (Watts et al., 1996), the Gullfaks field 

(Sonneland et al., 1997, Veire et al., 1998), the Draugen field (Gabriels et al., 1999), the 

Statfjord field (Al-Najjar et al., 1999) and the Snorre field (Smith et al., 2001).  In the 
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latest case study of the Oseberg field (Rutledal et al., 2003), the authors state that the 

Poisson ratio generated from acoustic and elastic impedance inversions is the best 

qualitative indicator of the changes in subsurface fluid saturation relating to production; 

and the acoustic impedance is an appropriate parameter for discriminating lithologies in 

this field.  On the other hand, in the cases of the Draugen, Statfjord, and Snorre fields, the 

authors have confirmed that the time-lapse change of amplitude strength, rather than 

Poisson’s ratio (i.e., brightening or dimming) is the key response indicating the 

replacement of fluid by the production and injection activities in the fields.   

Despite the efforts described above, the quantitative analysis of time-lapse seismic to 

detect the change of fluid saturation remains a challenge because of the typically poor 

match between the model predictions and the actual seismic data.  There is uncertainty 

about which parameter most affects the seismic response.  For example, in the report of 

the Magnus field by Watts et al. (1996), reservoir pressure, rather than fluid replacement, 

was identified as the dominant cause of the amplitude change, whereas the opposite was 

found to be the case in the Oseberg field (Rutledal et al., 2003).   

An impressive example of quantitative analysis of time-lapse seismic was recently 

demonstrated by Lumley et al. (2003) and Lumley (2004). They adopt two seismic 

attributes, the P-wave information content (Ap) and the S-wave information content (As), 

to generate a crossplot between the time-lapse differences of both attributes. Then they 

find the axes representing the changes in pressure and water saturation in the crossplot to 

derive the quantitative indicators of the changing properties. The method worked well in 

the Schienhallion and Gullfaks fields, yet the physical background of the method is not 

clearly illustrated.  
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I develop a deterministic process to derive fluid saturation from seismic and well log 

data; velocities, density and fluids saturation are calibrated to the time of seismic 

acquisition.  Therefore, I avoid confusion regarding the causes for the time-lapse changes 

in seismic responses. 

 

4.3 Pressure effect 

 

The two main causes of the time-lapse change in seismic responses are the changes in 

fluid saturation and/or effective pressure, due to the production of hydrocarbons.  First, 

using the result of core velocity measurements for the target oil field, I examine the effect 

of pressure change.  All the measurements are carried out on dry rock samples.  The 

velocity is measured under different effective pressures.  Figure 4.1 illustrates the 

pressure dependence of ratio between Vp measured at a specific effective pressure and Vp 

at the effective pressure of 30MPa.  The red line represents the approximated overall 

trend for Vp, which is given below:   

 
Vp(PeffectiveMPa)/Vp(30MPa) = 1 - 0.38 exp (- PeffectiveMPa/6).      (4.1) 

 
Likewise, I obtain an equation for the overall trend for Vs as follows: 

 
Vs(PeffectiveMPa)/Vs(30MPa) = 1 - 0.32 exp (-PeffectiveMPa/7).      (4.2) 

 
Given the equations above, I calculate the velocity change during time-lapse seismic 

acquisitions according to the pressure change in the field.  I use the formation pressure 

derived from the reservoir simulation for this analysis; and effective pressure (confining 
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pressure minus formation pressure) is calculated, assuming that the confining pressure 

from overburden formations remains constant.   

Figure 4.2 demonstrates the change in effective pressure during two seismic surveys.  

The solid markers represent the first survey; the empty markers denote the second survey.  

The effective pressure increases during production, since the formation pressure of the 

reservoir is reduced due to oil production.  Note that the different wells demonstrate 

different pressure ranges, but the pressure difference between the two seismic surveys at 

each well is almost identical, as shown in Figure 4.2.   

Next, I compute the velocity change corresponding to the pressure variation; I plot the 

calculation result in Figure 4.3.  In this field, the first time-lapse seismic data was 

acquired several years after the start of production, so the effective pressure was already 

high--more than 19 MPa--as shown in Figure 4.3.  This range of pressure corresponds 

very closely to the ceiling of the highest effective pressure in Figure 4.2.  As a result, the 

increase in effective pressure due to oil production does not significantly affect the 

velocity change.  Based on the result of this analysis, I conclude that the velocity changes 

due to pressure variation are less than 1% of the velocities observed in the first seismic 

survey.  Consequently, the effect of pressure change on velocity is negligible in this case, 

so we will not attempt to infer pressure change from the seismic data. 
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Figure 4.1: The ratio of Vp at specific effective pressures to Vp at 30MPa effective 
pressure.  I observe a very clear trend in the Vp ratio with effective pressure.   

 

Figure 4.2: Pressure change between two seismic acquisitions.  The solid markers 
represent the first seismic survey.  The empty markers correspond to the second 
survey.  Effective pressure, the difference between the overburden pressure and the 
formation pressure, increases during production, since the formation pressure of the 
reservoir declines due to oil production.  Note that the differences of effective 
pressure are almost identical, except for the green data. 
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Figure 4.3: The velocity changes corresponding to the pressure changes in Figure 4.2.  
The degree of the velocity change is less than the 1% change in the velocity in the 
first survey.  I convert the increase of effective pressure to the increase in velocity 
using Equations 4.1 and 4.2.  Solid markers represent  Vp, and empty markers denote 
Vs.   

 

4.4 Fluid-saturation scale  
 

The effect of the saturation scale of formation fluids on seismic responses was 

extensively discussed in Sengupta et al. (2003).  We usually adopt the fluid saturation, 

which is the output from the flow-simulator of a target field, to control seismic analysis.  

However, in general, the grid size of flow simulators extends several tens of meters, 

while seismic responses vary depending on the fluid saturation profile on a much smaller 

scale.  Consequently, unless we apply an appropriate downscaling technique, the seismic 

model based on the output of flow simulators may encounter significant errors.  Sengupta 

et al. (2003) presented a method for restoring the fine-scale profile of fluid saturation, 

using porosity as a guide for re-allocating gas saturation, the fluid that controlled the 
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seismic response in their case.   They constrained the total volume of free gas as a 

constant.  Then, they accumulated the gas into the intervals in which well-log analysis 

had identified high-porosity sandstone.  The corrected saturation profile was used to 

model seismic responses, and when the saturation profile was downscaled by an 

appropriate factor, the resultant amplitude strength in root mean squares matched the 

actual seismic data well.  I employ a similar approach; however, instead of using porosity 

as a guide for concentrating hydrocarbons, I adopt the original oil saturation before the 

production as an indicator of highly permeable zones as below: 

profileoriginalfluidprofiledownscaledfluid SS −− ∝ __  .        (4.3) 

I assume that the original oil saturation reflects the permeability of the each fine layer of 

sandstone better than porosity; since any fine layer with good permeability must have had 

the potential to accumulate more oil than the surrounding formations in the initial 

condition.   

For the downscaling, I keep the average saturation of the downscaled profile same as 

the saturation of a corresponding grid of the flow simulator as follows: 
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N
S  .  (4.4) 

Therefore, assuming an identical porosity distribution between the flow simulator and 

the downscaled saturation profile, I preserve the volume of fluid for any given intervals. 
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Figure 4.4: The generated fluid-saturation log of Well A for two seismic surveys in the 
two left columns.  The green line indicates formation-water saturation; the interval 
between the green line and the red line (or to the right end) corresponds to oil 
saturation.  The red line to the right end represents gas saturation.  The two right 
columns show calculated elastic impedances.  The color code is as follows: blue for 
the near stack; red for the mid stack; green for the far stack. 

 

The left two columns of Figure 4.4 illustrate the downscaled profile of fluid saturation 

for Well A.  The green lines indicate the saturation of formation-water, whereas the area 

to the right of the green line corresponds to hydrocarbon saturations.  In the hydrocarbon 

region, the interval to the right of the red line represents gas saturation, while the interval 

between the green and red lines, (or to the right of the green line when no red line exists) 

represents oil saturation.  The left-most column shows the fluid saturation profile for 

seismic acquisition in 1997, and the next column shows that of seismic survey in 2001.  

The right two columns show calculated elastic impedances (EI) of the two seismic 

acquisitions, where the blue lines are the EI of the near stack, red are the EI for the 

middle stack and green are the EI of the far stack.  I calculate all EIs based on the well-
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log velocities and density after correction for fluids saturation.  Note that despite the 

approximately 25% difference in oil saturation between 1997 and 2001 in the upper half 

of the reservoir, the EIs are not significantly different.  This result suggests that fluid 

substitution from oil to formation-water for saturation changes less than about 25 %, at 

around 2420 m in Figure 4.4, may be difficult to detect by seismic impedance analysis.  

 

4.5 Representative properties of the solid phase 

 

I use the Gassmann equations (Gassmann, 1951) to obtain the bulk modulus of the in-

situ formation fluid.  For this process, I need to determine the physical properties of the 

solid phase of the reservoir.  Figure 4.5 shows the mineral composition of more than one 

hundred samples from the reservoir, based on laboratory measurements.  As shown in the 

same figure, the reservoir sandstone is comprised of about 40-60% of quartz grains; 10-

20% of feldspar; and a small number of lithic fragments.  The sandstone is categorized as 

subarkose arenite to felspathic graywacke.  
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Figure 4.5: The mineral composition of the target sandstone reservoir.  The sandstone is 

comprised of 40-60% quartz; 10-20% feldspar; and a small number of lithic 
fragments. 

 

Figure 4.6 illustrates the crossplot of the calculated shear moduli and the bulk moduli 

of the core samples.  I use the Voigt-Reuss-Hill(VRH) average (Hill, 1952) to compute 

the two elastic moduli for multi-mineral composition.  Equation 4.5 shows VRH 

averaging, where “fi“ indicates the volume fraction of material (mineral or lithic 

fragment) “i”, and “Mi“ corresponds to a modulus of material “i”. 
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I exclude clay minerals from this calculation.  Then, I mix the average grain with clay 

according to the shale volume derived from the elastic impedance analysis of seismic 

data using the method in Chapter 3.  In Figure 4.6, the big yellow asterisk in the center is 
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the median value of all the data points.  I adopt these median values as the representative 

grain shear and bulk moduli of the sandstone reservoir. 

 

 
Figure 4.6: The crossplot of the calculated shear and bulk moduli of the sandstone in 

 

4.6 Workflow to determine fluid saturation  

e necessary inputs including: (1) Vp, Vs, ρ and shale 

volum

Figure 4.5.  I use the Hill average for multi-mineral compositions.  Clay is excluded 
from this calculation.  Then, I use the shale volume from the elastic-impedance 
analysis to vary the solid-phase properties by mixing the representative properties of 
sandstone and clay, based on the shale volume.  The color differences indicate 
different subunits in the reservoir.  The shapes of the markers correspond to different 
wells. 

 

At this point, I have prepared th

e from the EI analysis; (2) the average properties of the solid fraction and the 

properties of fluid phase.  Now, I apply a workflow as demonstrated in Figure 4.7.  In the 

input parameter box at the top left of the figure, all parameters are determined using an 
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elastic impedance analysis, discussed in Chapter 3.  In fact, I estimated all of these 

parameters twice, one for the 1997 vintage and one for the 2001 vintage.  Then I 

averaged the rock-frame properties (shale volume, porosity, bulk density of water-

saturated rock, bulk modulus of dry rock) from both vintages.  The advantage of this 

coupling is to reduce the artifacts during the further analysis, as discussed in Johnston et 

al. (2003) and Gouveia et al. (2004).  The subsequent analysis of fluid change has a 

common rock model using the consistent frame properties. 

The representative properties of the solid phase in the top right box were discussed in 

the previous section.  In addition, the properties of formation-water are calculated by the 

method of Batzle and Wang (1992), using laboratory measurements of the formation-

water.  I summarize the solid properties and the fluid properties in Table 4.1. 

 
Figure 4.7: The workflow to derive the density and bulk modulus of in-situ-fluid.  The 

input data at the top right is described in this paper.  The sequence of computations 
to determine the final targets is explained step by step in this section.  The input data 
in the top left box is discussed in Chapter 3.   
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Table 4.1: The parameters of the solids and fluids. 
 

*Oil API 39.4°API, GOR 116.7, gas gravity 0.806, water salinity 31,000ppm, pore 
pressure 38MPa, reservoir temperature 90°C. 

  Bulk modulus 
(GPa) 

Shear Modulus 
(GPa) 

Density 
(g/cm3) 

Average grain 
(fraction=1-Vshale) 

38.13 34.93 2.67 Solid phase 
(fraction=1-φ) Clay 

(fraction=Vshale) 
23 8 2.58 

Formation_water 2.7416 0 1.0038 

Oil 0.7637 0 0.7136 
Fluid phase 

(fraction=φ) 
Gas 0.1217 0 0.2865 

 

I describe the workflow step by step as follows: 

1. I obtain the bulk modulus, shear modulus, bulk density and shale volume of the 

in-situ-fluid-saturated rock at every data point in the seismic cube from the 

result (Vp, Vs, ρ) of the EI analysis as shown in the top left box of Figure 4.12. 

2. I find porosity (φ) by a linear transform with bulk density (ρ) as below: 

φ=-0.5401ρ+1.4350.     (4.6) 

This equation corresponds to the red line in Figure 4.8, which is the average 

trend of the target reservoir calculated from well-log data.  Then using the 

estimated porosity, I derive a 100% formation-water-saturated bulk rock 

density using the properties in Table 4.1.  For this step, since I employ an 

average trend in red in Figure 4.8, the points with higher water saturation on 

the cyan line side in the same figure are assigned lower porosity than actual.  

Likewise, the points with higher oil saturation on the green line side are 

assigned higher porosity than the actual data.  The deviation from the actual 

porosity is summarized on the right in the Figure 4.8.  The standard deviation 
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of the histogram is 6.9% (of the actual porosity): if porosity is 0.20, the 

deviation for this point is plus or minus 0.0138.  

Figure 4.8: Average trend between porosity and bulk density from the well-log data of 
the target reservoir.  The red line represents the employed linear regression.  The 
cyan line corresponds to the trend for 100% water saturated condition and the green 
line corresponds to 100% oil saturated trend.  The histogram on the right exhibits the 
estimation errors of porosity induced by an averaged trend. 

 

3. I derive a 100% formation-water-saturated Vs by combining the 100% 

formation-water-saturated density and the rock shear modulus.  Since shear 

modulus is less sensitive to the saturation fluid, I determine Vs first and 

transform it to Vp in the next step. 

4. For simplicity, since I only need the relative difference in the internal fluid 

saturation, I use a linear relation between Vp and Vs for the 100% formation-

water-saturated condition and compute Vp for 100% formation-water 

saturation.  I find the following equation is a good regression for a well-log 

data from case study area: 

Vs=0.79Vp-0.79.     (4.7) 
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Getting the proper Vp for full formation-water saturation depends very much 

on the Vp-Vs relation.  I explore the Vp-Vs relations for reservoir rocks in 

Chapter 5. 

5. I process the result to calculate a rock bulk modulus for the 100% formation-

water-saturated condition.   

6. Given the physical properties of the solid phase and the formation-water, as 

summarized in Table 4.1, I employ Gassmann’s equation in Equation 4.8 to 

calculate the dry rock bulk modulus of at each seismic data location. 

φ
φ

−−+

⎟
⎠

⎜
⎝=

−

−

1
solid

saturatedwater

water

solid

solid
water

saturatedwater

dry

K
K

K
K

K
K

φ
φ

−⎟
⎞

⎜
⎛

−+1solid K
K

K
,        (4.8) 

where,  

Kdry is the bulk modulus of dry rock, 

Kwater-saturated is the bulk modulus of formation-water-saturated 

rock, 

   Ksolid is the bulk modulus of the solid phase  

         (mixture of the average grain and clay) 

   Kwater is the bulk modulus of the formation-water 

   φ is porosity 

 

7. I derive the bulk modulus of the in-situ fluid, using the rearranged Gassmann’s 

relation given below: 
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where,  

Kfluid is the bulk modulus of the in-situ fluid 

Ksolid is the bulk modulus of the solid phase  

         (mixture of average grain and clay) 

Kfluid-saturated is the bulk modulus of the in-situ-fluid-saturated rock  

Kdry is the bulk modulus of the dry rock 

   φ is the porosity . 

 

8. On the other hand, it is a simple process to find the density of the in-situ fluid 

from the ρfluid-saturated (bulk density in the in-situ-fluid-saturated condition); 

ρwater-saturated (the bulk density in the condition of 100% formation-water-

saturated); ρwater (the density of the formation water) and φ (porosity) as 

follows:  

φ
ρρ

ρρ saturatedfluidsaturatedwater
waterfluid

−− −
−= ,      (4.10) 

where,  

ρfluid is the bulk density of the in-situ fluid, 

ρwater is the bulk density of the formation water, 
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ρwater-saturated is the bulk density of the formation-water-saturated 

rock, 

   ρfluid-saturated is the bulk density of the in-situ-fluid-saturated rock, 

   φ is the porosity. 

 

9. There are three possible fluids in the reservoir: namely, formation-water, crude 

oil and gas.  The laboratory analysis of the crude oil supplies us with all the 

parameters to derive the properties of the oil and the segregated gas from the 

oil, using the method of Batzle and Wang (1992) in the reservoir condition. 

10. Now, I can form simultaneous equations in terms of the saturations of these 

three fluids.  First, I use Wood’s equation (Wood, 1941) to demonstrate the 

relationship between the bulk moduli of the three fluids, assuming a 

homogeneous mixing scheme as below: 

gas

gas

oil

oil

water

water

fluidsituin K
S

K
S

K
S

K
++=

−−

1  .      (4.11) 

 
In this equation, “S” refers to the saturation of each fluid; “K” represents the 

bulk modulus of each fluid.  Second, I equate the density of the in-situ fluid to 

the sum of each fluid as follows, where “ρ” corresponds to the density of each 

fluid: 

gasgasoiloilwaterwaterfluidsituin SSS ρρρρ ++=−−  .    (4.12) 
 

Then, to balance the total saturation of the three fluids, I require 
 

gasoilwater SSS ++=1  .           (4.13) 
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Here, I rearrange the above-mentioned relations into the matrix form given in 

Equation 4.14:   
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I solve it to obtain the saturations of the three fluids using Equation 4.15: 
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11. Likewise, I solve the matrix form expressed in Equation 4.16:   
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Unlike Equation 4.15, this matrix form represents a patchy saturation of the 

three fluids.  In other words, I assume heterogeneous distribution of three fluids 

due to spatial variation of relative permeability and wettability in this case. 

12. Finally, comparing the outputs from Equations 4.15 and 4.16 to the results of 

well-log analysis at a well location, I determine the optimal weights to average 

the homogeneous saturation (Equation 4.15) and patchy saturation (Equation 

4.16).  Figure 4.9 demonstrates the result for the range of weighting factors.   I 

calibrate the saturations extracted from the seismic data with the workflow just 

described, by comparing them with known saturation as a well.  Eventually, I 
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adopt 0.5 as the weighting factor to compute the averaged saturation of three 

fluids in the case study. 

Figure 4.9: The calculated results of fluid saturation using different fractions of the 
saturation scale: homogeneous saturation represented in Equation 4.15 and patchy 
saturation given in Equation 4.16.  For all columns, the thin lines represent the fluid 
saturation by well-log analysis, whereas the thick lines with open circles correspond 
to the results derived from seismic-data analysis. 

 

Figure 4.10 shows the resultant fluid saturation from the seismic data analysis 

compared to the fluid saturation by well-log analysis.  The erroneous spikes at 2465m 

and 2540m are induced by the skewed density input derived from miscalculations in the 

elastic-impedance analysis (Figure 4.13).  In addition, a subtle problem is that because of 

the seismic resolution, the low water saturation at very top part of the reservoir is not 

 94



visible.  However except for these portions, the overall result of the calculation of fluid 

saturation from seismic data demonstrates good agreement to the well-log analysis.  The 

most points from the well-log analysis fall within 0.15 deviations of the seismic analysis 

result. 

I adopt the fluid saturation from the seismic data for the portion of the reservoir with 

sandstone volume higher than 50% and for porosity higher than 10%.  The purpose of 

these thresholds is to eliminate unreasonable saturations derived from the shaly sequence 

due to the mismatch between lithology and the averaged sandstone properties. Likewise, I 

dispose of the portion with very low porosity, where Gassmann’s equations are extremely 

sensitive to the pore fluids, and fluid changes are not likely to occur.   

Figure 4.10: The resultant fluid saturation for Well A obtained by solving the 
simultaneous equations.  For all columns, the thin lines represent the fluid saturation 
by well-log analysis, whereas the thick lines with open circles correspond to the 
results derived from seismic-data analysis.  The dashed orange lines show 0.15 
deviations from the seismically derived saturation.  The erroneous spikes at 2465m 
and 2540m are induced by the skewed density input derived from the miscalculations 
in the elastic-impedance analysis.   
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4.7 Sensitivity analysis 

 

Before applying the workflow to actual seismic data, I discuss the sensitivity analysis 

of the input parameters.   

First, I generate a simple rock model with the average grain and fluid properties of the 

target field summarized in Table 4.2.  Assuming the 100% water-saturated Vp and Vs are 

3.0 km/sec and 1.58 km/sec, respectively, I calculate the exact values of Vp, Vs and ρ for 

the fluid-saturation profile presented by the solid lines in Figure 4.11, using Gassmann’s 

equation.  Then, I employ Vp, Vs and ρ as inputs for my workflow, with an altered 

parameter to retrieve the fluid saturation.  This practice corresponds to the application of 

the workflow with a misestimated parameter, where the discrepancy between the 

resultant saturation and the initial model shows how sensitive the altered parameter is to 

the resultant saturation from the workflow. 

Table 4.2: The parameters to generate a model for sensitivity analysis. 
 

 

  Bulk modulus 
(GPa) 

Shear Modulus 
(GPa) 

Density 
(g/cm3) 

Average grain 
(fraction=0.9) 

38.13 34.93 2.67 

Clay  
(fraction=0.1) 

23 8 2.58 Solid phase 
(Total solid=0.8) 

Quartz 37 44.73 2.65 

Water 2.7416 0 1.0038 

Oil 0.7637 0 0.7136 
Fluid phase 
(Porosity=0.2) 

Gas 0.1217 0 0.2865 
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4.7.1 Fluid saturation scale 

The left three columns of Figure 4.11 compare the inversely calculated fluid 

saturation to the initial model.  I assumed 100% patchy saturation for the initial model in 

this case.  The triangles represent the saturation retrieved by my workflow with a 100% 

patchy saturation scheme in the inverse calculation.  The circles show the result with 99% 

  Figure 4.11: The sensitivity analysis of the fluid-saturation scale to the result of t
workflow.  The solid lines are the fluid saturation of the initial model.  The left th

patchy saturation and the crosses show the result with 98% patchy saturation.   

he 
ree 

 

columns represent the calculation results for the initial model of 100% patchy 
saturation.  I used the following schemes of saturation scale in the inverse 
calculation: 100% patchy saturation for the triangles; 99% patchy saturation for the 
circles; 98% patchy saturation for the crosses.  The right three columns show the 
calculation results for the initial model of the equally mixed saturation-scale schemes.  
I employed the following schemes in the inverse calculation: 100% patchy saturation 
for the triangles; 50% patchy saturation and 50% homogenous saturation for the 
circles; 100% homogenous saturation for the crosses. 
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Two important observations from these results are that (1) the exact fraction of the 

saturation scale in the inverse calculation does not give the best match to the initial 

model, and (2) all the calculation results demonstrate more errors in the portion of higher 

gas saturation. In this case, the circles match the best to the initial model. 

In the right three columns in Figure 4.11, I show the calculation results of my 

workflow for the initial model of the equally mixed homogeneous saturation and patchy 

saturation.  The triangles represent the calculation result with a 100% patchy saturation 

scheme in the inverse calculation; the circles correspond to the result with the equally 

mixed fluid saturation; the crosses represent the result with 100% homogeneous 

saturation.  Again we recognize that the exact fraction of the saturation scale is not 

necessary to obtain the optimal result.  In addition, the largest disagreement between the 

calculation result and the model is observed at the top of the sequence, where the gas 

saturation is the highest.  

These disagreements are induced by the steps 10 and 11 discussed in section 4.6. 

Since the bulk modulus and density of gas are very small relative to those of liquids, the 

inverse matrix calculation is dominated by the gas terms, and the resultant saturation is 

distorted more where the gas saturation is higher.  Furthermore, in the case of a mixed 

scheme of fluid saturation scales, we need to solve Equations 4.15 and 4.16 separately 

after dividing the total bulk modulus into the portions of homogeneous saturation and 

patchy saturation.  However, in practice, we never know the fractions.  Therefore, I am 

solving the saturation with one scheme for the total bulk modulus, and averaging the 

results afterwards.  This method gives a good approximation, but it is difficult to obtain 

the exact saturation.  The best way to obtain the optimal result with this workflow is to 
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calibrate the calculation result with the well-log analysis result first, for determining the 

weighting factor discussed in the step 12 in section 4.6. 

For further discussions, I use the same initial model as the left three columns in 

Figure 4.11 and adopt the circles in those columns as the base case of the workflow. 

 

4.7.2 Velocity and bulk density 

Figure 4.12 shows the sensitivity analysis of velocity and bulk density.  In the left 

three columns I present the result of velocity sensitivity, where the triangles are obtained 

from the inverse calculation with Vp and Vs, 5% lower than the initial model; the crosses 

show the calculation result with Vp and Vs, 5% higher than the model.  In case of the 

lower velocity assumption, we observe higher errors near the bottom, where the 

workflow calculates some degree of oil saturation due to the lower-than-actual bulk 

moduli derived from the lower velocity.  However, the saturation in the remaining 

portions stays almost the same,since the altered velocity cannot be compensated by the 

change in water saturation when the fractional oil saturation exceeds 0.5. 

The influence of misestimated density on the resultant saturation is more severe.  The 

right three columns in Figure 4.12 present the sensitivity analysis of density. I obtain the 

triangles using a 1% reduced density for the workflow; the crosses correspond to a 1% 

increased density. We observe that the deviation from the base case for the density 

sensitivity is much higher than that of the velocity sensitivity. Furthermore, the influence 

of the altered density is almost equal for the resultant saturation of oil and gas, but 

smaller for the water saturation.  From the discussions above, we notice that the 

estimation of density is more important for calculating the appropriate fluid saturation, 
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and a 1% error in the density value induces a miscalculation of fluid saturation about 0.3.  

In addition, density is the most difficult property to determine from the seismic data.   

However, in practice, the density obtained from the elastic-impedance analysis is the 

average value of an interval, corresponding to the seismic wavelength. Therefore, I obtain 

a reasonable value as long as the density value stays in the range of the local perturbation 

of the corresponding well-log data.   

Figure 4.12: The analysis of sensitivity of the velocity and bulk density to the result of 
the workflow.  The solid lines are the fluid saturation of the initial model.  The left 
three columns show the sensitivity analysis for velocity.  The circles represent the 
base case; the triangles present the resultant saturation calculated from the workflow 
with 5% lower Vp and Vs as inputs; the crosses represent the saturation calculated 
from the workflow with 5% higher Vp and Vs.  The right three columns show the 
sensitivity analysis of density.  The circles correspond to the base case; the triangles 
present the saturation calculated using the workflow with 1% lower density; the 
crosses represent the calculation result from the workflow with 1% higher density. 
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Figure 4.13 shows the Vp, ρ and Vs from the elastic-impedance analysis discussed in 

Chapter 3.  The estimated density in the dashed red line in the middle column is well 

controlled in the perturbation of the well log in the blue line, except at several depth 

points.  The most prominent error is observed at 2500m, but this is a shaly portion that is 

100% water-wet. Besides it, 2465m and 2540m exhibit higher deviation from the well log.  

We notice that the spiky miscalculations of the fluid saturation in Figure 4.10 at the same 

depth points are derived from the erroneous estimations of density. 

Figure 4.13: The estimated Vp, ρ and Vs by the elastic-impedance analysis discussed in 
Chapter 3.  The blue lines represent the actual well logs; the dashed red lines show 
the results of the seismic-data analysis.  Note that most points on the red lines are 
within the local perturbations of the well logs.  
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4.7.3 Porosity and shale volume 

Porosity and shale volume are determined from the calculations using the velocity 

and density derived from the elastic-impedance analysis.  Thus, in general, the range of 

estimation errors for porosity and shale volume are slightly higher than that of the 

velocity and density themselves.  Figure 4.14 shows the sensitivity analysis for porosity 

in the left half and for shale volume in the right half.   The sensitivity analysis of porosity 

shows a result similar to the sensitivity analysis of density, but the deviation from the 

base case is about 1/6 of the result for density in Figure 4.12.  In the case study in this 

chapter, I calculate porosity directly from density using 

φ=-0.5401ρ +1.4350.    (4.17) 

Therefore, when I underestimate the density, the corresponding porosity will be 

higher than the actual value.  The effect of lower density is opposite to that of higher 

porosity on the saturation calculated by the workflow.  This relation compensates the 

influence of the erroneous input of density.  In the left three columns in Figure 4.14, the 

triangles represent the saturation calculated by the workflow with 3% smaller porosity; 

the crosses represent the calculation result from the workflow with 3% higher porosity.  

The workflow is less sensitive to the misestimation of the shale volume, as shown in 

the right half of Figure 4.14.  The triangles represent the result of the workflow assuming 

no clay, which is equivalent to a 100% reduction of the shale volume from the initial 

model (reduce from 0.1 to 0.)  Likewise, the crosses are obtained from the workflow with 

a 100% increased shale volume from the initial model.  Both cases demonstrate only 

small deviations from the base case.  The result indicates that 100% errors in the 

estimation of shale volume result in only about 0.1 change in the resultant fluid saturation. 
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Figure 4.14: The analysis of porosity and shale-volume sensitivity to the result of the 
workflow.  The left half shows the sensitivity analysis of porosity: the triangles are 
the result of 3% smaller porosity; the crosses are the result of 3% higher porosity.  
The right half shows the sensitivity analysis of shale volume: the triangles represent 
the result of 100% reduced shale volume; the crosses represent the result of 100% 
higher shale volume. 

 

4.7.4 Fluid and solid properties 

The bulk moduli, shear moduli and densities of fluids and solids are determined based 

on the laboratory measurements.  The left half of Figure 4.15 shows the sensitivity 

analysis of the fluid properties.  I obtain the asterisks by rounding the fluid parameters in 

Table 4.2 to the first decimal point in the workflow.  This precision is sufficient to derive 

the appropriate saturation as shown in Figure 4.15. 

The right half of Figure 4.15 exhibits the sensitivity of the solid properties.  The 

asterisks are derived from the workflow with the properties of quartz, instead using the 
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properties of the average mineral of the target reservoir.  The maximum deviation from 

the initial model is about 0.16 at the bottom, where the formation is 100% water saturated.  

As shown in Figure 4.6, the properties of quartz is located out of the chart for this case-

study dataset, therefore, the expected errors for most points in this chart are much smaller 

than this extreme case.   

In addition, the triangles are obtained by the workflow using Castagna’s regression 

between Vp and Vs as follows in step 4: 

Vs=0.804Vp-0.856.    (4.18) 

The water-saturated Vp and Vs of the initial model are determined following Han’s 

regression as shown below: 

Vs=0.79Vp-0.79.     (4.19) 

Using other relations between Vp and Vs for the workflow has a similar effect to 

employing inappropriate solid properties.  To avoid the occurrence of such errors, we 

need to determine the best relation between Vp and Vs from laboratory measurements 

and/or well-log data.   

We need many kinds of input parameters to derive the fluid saturation of a reservoir 

from the seismic data.  Each parameter shows different behaviors and degrees of 

sensitivity to the workflow.  Thus, it is useful to calculate the saturation using several 

different schemes of input parameters.  Nevertheless, since the combined effect of all 

parameters is difficult to estimate, matching the result to the well-log analysis is the most 

effective way to obtain the optimal calibrations of the input parameters.   
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Figure 4.15: The sensitivity analysis of the fluid and solid properties to the result of the 
workflow.  The left half shows the sensitivity analysis of fluid properties: the 
asterisks represent the fluid properties in Table 4.2 after rounding to the first decimal 
point in the workflow.  The right half shows the sensitivity analysis of solid 
properties: the triangles represent the pure quartz assumption for the grains; the 
asterisks represent Castagna’s regression of Vp-Vs instead of using Han’s regression.  

 

For this matching process, optimizing the weighting factor for mixing the two fluid 

saturation scales, discussed in the step 12, is the most practical way to control the overall 

profile. 

 

4.8 Implementation of the workflow on time-lapse seismic 

 

I apply the workflow to a time-lapse seismic dataset from an actual producing oil 

field.  The target reservoir is a blanket sandstone deposited under a braided-river 

environment in the early Jurassic.  There are two vintages of seismic data available, 
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which were acquired in 1997 and 2001.  Each set consists of three angle stacks, for which 

I used the elastic impedance to derive Vp, Vs, ρ and shale volume in Chapter 3. 

First, I show a comparison of the time-lapse seismic data in Figure 4.16.  The top 

section represents an east-west line from the 1997 data, and the bottom section 

corresponds to the same line from the 2001 data.  The two data sets are processed in a 

sequence specifically designed to match the time-lapse seismic.  The red line in the 

sections is the interpreted horizon of the near top reservoir, and the black trace indicates 

the sonic log of Well A, which is a vertical well drilled in this section.   

 
Figure 4.16: A comparison of the time-lapse seismic data for a case study.  The thin red 

horizon represents the near top reservoir.  The black trace indicates the sonic log of 
Well A.  We observe a slight change in seismic amplitude along the horizon at the 
down flank, but it is impossible to quantitatively discuss the fluid displacement from 
the change. 
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Comparing two near-stack sections, we observe slight changes in amplitude in several 

portions, especially around the horizon at the down flank of the tilted structure.  However, 

it is impossible to quantitatively evaluate the fluid displacement from the change in 

amplitude. 

Another way to compare time-lapse seismic in terms of fluid displacement is to 

calculate the amplitude difference between the near stack and far stack.  Since Poisson’s 

ratio is a good indicator of the change in formation fluid, the amplitude difference often 

provides information of the fluid change.  Figure 4.17 exhibits the comparison of the 

amplitude difference: the top section for 1997 and the bottom section for 2001.   

 
Figure 4.17: A comparison of the time-lapse seismic data in the amplitude difference 

between the near and far stacks.  We observe a subtle change in the amplitude 
difference along the horizon at the down flank, but there is no way to discuss the 
fluid displacement quantitatively. 
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As in Figure 4.16, we observe subtle changes in the amplitude difference along the 

horizon at the down flank, but still cannot discuss the fluid displacement in a quantitative 

way. 

Next, I show the oil saturation section derived from the angle stacks through my 

workflow.  The top of Figure 4.18 represents the oil saturation section calculated from the 

seismic data acquired in 1997, and the bottom section is the section for the 2001 seismic 

data.  I limit the calculation area within the reservoir so we only see the result inside the 

reservoir.  Comparing the two sections, we now clearly recognize the fluid displacement.  

In the upper half for the down flank, there were several pockets of higher oil saturation in 

red in 1997.   

 
Figure 4.18: A comparison of the oil-saturation sections calculated from time-lapse 

seismic data: the top represents 1997; the bottom represents 2001.  We observe (1) 
the clear reduction of oil saturation near the top reservoir at the down flank and (2) a 
big body of bypassed oil in green in the middle of the reservoir.  The color code is 
fractional oil saturation calculated according to my workflow. 
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In contrast, all such higher oil saturation pockets have disappeared in the oil 

satu

nd formation-water, respectively.   

reduction of gas saturation near the top reservoir at the down flank.  The color code 
is fractional gas saturation from 0 to 0.2. 

ration section of 2001.  The two sections explicitly demonstrate that (1) oil in the top 

subunit of the reservoir at the down flank was effectively produced in 4 years of 

production, and (2) a big body of high oil saturation, shown in green in the middle of the 

reservoir, remains as a bypassed oil accumulation, even in 2001.  In addition, the flat 

bottom of the high oil saturation in a sand body ranging from crossline numbers 6046 to 

6096 at 2440 msec corresponds to the flat spot in the seismic sections in Figure 4.17.  

This agreement proves the validity of the workflow. 

Figures 4.19 and 4.20 show the saturation of gas a

 

 
Figure 4.19: A comparison of the gas-saturation sections calculated from time-lapse 

seismic data: the top represents 1997; the bottom represents 2001.  We observe the 
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In the b c data 

and the bot lt for the 2001 seismic data.   

The highest gas saturation is less than 0.2 as shown in Figure 4.19, and the saturation 

in 2001 is smaller than that in 1997.  This saturation reduction is obvious at the down 

flank, where the decrease in oil saturation is prominent as well. 

The change in water saturation sections is the inverse image of the oil saturation.  In 

Figure 4.20, I use the inverse color code of Figure 4.18, therefore the image is almost 

identical to Figure 4.18.  Note that the spiky miscalculations discussed in Figure 4.10 

appear as dots in the sections, due to the discontinuous nature of the errors. 

oth figures, the top section represents the analysis result of the 1997 seismi

tom section corresponds to the resu

 
Figure 4.20: A comparison of the water-saturation sections calculated from time-lapse 

seismic data: the top represents 1997; the bottom represents 2001.  The image is 
almost identical to Figure 4.18, since the gas saturation is almost negligible, and I 
use the inverse of the color code from Figure 4.18.  
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Finally, I apply the workflow to the whole volume of seismic data to calculate fluid 

saturation from the time-lapse seismic dataset, and display the results in a perspective 

view.  Figures 4.21 and 4.22 show the oil saturation in 1997 and 2001, respectively.  The 

limits of the color code range from 1.0 at 127 to 0 at -128, in fractional saturation.  Some 

higher oil saturation bodies in red in the upper half of Figure 4.21 disappeared in Figure 

4.22 after 4 years of oil production.   

I display the gas saturation images from the time-lapse seismic data in Figures 4.23 

and 4.24.  Likewise, Figures 4.25 and 4.26 show the water saturation calculated from the 

time-lapse seismic.  We can quantitatively detect the fluid saturation in a reservoir from 

the seismic data by applying the new workflow discussed in this chapter; a sequence of 

deterministic computations based on the known rock-physics theories. 

An  from 

the time-la er left portion of Figures 4.21 and 

4.22, I observe the location shift of higher oil saturation in red near the compass.  

Similarly, patchy higher oil saturation portions in red around the center of Figures 4.21 

and 4.22 are changing the locations.  Moreover, in this area, overall oil saturation 

increases after 4 years production in contrast to the reduction of oil saturation in the west 

of the structure.  The structure is a tilted fault block dipping towards northwest; therefore, 

it is possible to increase oil saturation in up-dip side, around the center of the figures.  

However, when we consider the uncertainty in the resultant saturation, plus or minus 0.15 

as discussed in Figure 4.10, the oil saturation in the up-dip side can be unchanged and the 

reduction of oil saturation in the down flank may be more harsh: we need to aware of a 

possible slide scale up to plus or minus 0.15 in saturation for the result of the workflow. 

obvious question about the result is the reliability of the saturation derived

pse seismic data.  When I compare the low
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Figure 4.21: The distribution of oil saturation derived from the seismic data acquired in 
1997.  The color code is in fractional saturation from 1.0 at 127 to 0.0 at -128. 

 

Figure 4.22: The distribution of oil saturation derived from the seismic data acquired in 
2001.  The color code is in fractional saturation from 1.0 at 127 to 0.0 at -128.  Note 
that some higher-oil-saturation bodies in red in Figure 4.21 disappeared after 4 years 
of production. 
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Figure 4.23: The distribution of gas saturation derived from the seismic data acquired in 
1997.  The color code is in fractional saturation from 1.0 at 127 to 0.0 at -128.   

 

 
re 4.24: The distribution of gas saturation derived from the seismic data acquired in 
2001.  The color code is in fractional saturation from 1.0 at 127 to 0.0 at -128.   

Figu
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Figure 4.25: The distribution of water saturation derived from the seismic data acquired 
in 1997.  The color code is in fractional saturation from 1.0 at 127 to 0.0 at -128.   

 

Figure 4.26: The distribution of water saturation derived from the seismic data acquired 
in 2001.  The color code is in fractional saturation from 1.0 at 127 to 0.0 at -128.   
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4.9 Co

laborat y in with a 

clay according to the shale volume derived from the elastic-impedance analysis discussed 

in Chapter 3.  This process provides us the solid-phase properties for further analyses.  

Given the solid properties and the properties of the formation fluids measured in the 

laboratory, I demonstrate a deterministic workflow to calculate the bulk modulus and 

density of the in-situ fluid in the reservoir from the seismic data.  The workflow is 

summarized in Figure 4.7.   

Then I analyze the sensitivity of each input parameter.  I find that the most sensitive 

parameter is bulk density, which is the most unstable output in the elastic-impedance 

analysis.  The best way to optimize the result of the workflow is to use the weighting 

factor for mixing two different saturation scales to control the overall calculation result.  

nclusions 

 

Combining several rock-physics analytic methods and transforms, I have established 

a workflow to obtain the fluid saturation in a reservoir by processing seismic data. 

First, the pressure change during oil production and the fluid saturation scale are 

considered. I use the output from the flow simulator of the field as input for the analyses 

of the pressure change and of the fluid saturation scale of the time-lapse seismic data.  I 

conclude that the pressure has less than 1% effect on the velocity.  Thus, I neglect the 

effect of pressure change in the case study.  The fluid saturation scale is discussed in a 

method similar to Sengupta et al. (2003); I generate time-lapse well-log data for the 

control wells using the initial oil saturation as an oil accumulation indicator.   

Next, I calculate the average moduli of sandstone grains for the reservoir using 

or measurements.  Then, I mix the properties of the average sand gra
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For this process, we need to find the optimal weighting factor that matches the seismic 

analysis result to the fluid saturation derived from well-log analysis at well locations.  

Finally, I apply the workflow to the time-lapse seismic data of an offshore oil field. In 

the results, I show a clear image of the fluid displacement in the reservoir after 4 years of 

oil production and delineate a remaining oil body.  However, the estimated values of the 

fluid saturation from the workflow are bearing the uncertainty ranging around plus or 

minus 0.15 in this case study.  Such uncertainty range will expand when the rock-frame 

stiffness increases and the seismic data becomes more insensitive to the fluid in the 

reservoir. 

I demonstrate that we can enhance the potential of rock-physics theories by carefully 
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choosin g the 

knowledge of geophysics, geology, and reservoir engineering very carefully is a key to 

obtain successful results. 

g the input data.  For the analysis of time-lapse seismic, integratin
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Chapter 5 
 
 
 

Exploring Vp-Vs relations: Approach 
from effective medium theories  
 
 
 
 
 
 
 
 
5.1 Abstract 

 

Several empirical relations between Vp and Vs have been proposed for the lithologies 

of oil and gas reservoirs.  Although recent technology supplies us an improved sonic log 

tool to measure Vs as well as Vp, often the Vs measurement is distorted due to the very 

sensitive nature of S-waves to borehole conditions.  In addition, the difficulty of picking 

the first breaks of S-waves often makes the quality of the Vs log insufficient for seismic 

analysis.  On the other hand, the demand for Vs information is expanding since the Vp/Vs 

ratio (or Poisson’s ratio calculated from the Vp/Vs ratio) is key to characterizing 

subsurface lithology and/or estimating the formation fluids in the reservoir, by analyzing 

the AVO response of the seismic data. 
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In Chapter 5, I present a theoretical approach for understanding rock Vp-Vs relations 

using the Hashin-Shtrikman bounds and effective-medium theories.   To find the bounds 

of the Vp/Vs ratio, I adopt the upper and lower Hashin-Shtrikman bounds of the mixture 

of a rock and brine.  For any mixture, the upper Hashin-Shtrikman bound corresponds to 

the lowest Vp/Vs bound and the lower Hashin-Shtrikman bound is equivalent to the 

highest Vp/Vs bound. 

Then, I compare the Vp-Vs relations calculated by a model with tubular pores by 

Mavko (1980) and a self-consistent inclusion model of spheroid pores by Berryman 

(1995).  I explore the Vp-Vs relations of the computed results in the crossplot domain 

among Vp, Vs and porosity.  The Vp-Vs trend of sandstone is represented better by the 

model with tubular pores.   

I discuss that the location in the crossplots is an indicator of the pore shape.  I show 

that a modified Reuss bound provides a good approximation of the Vp-Vs relation of a 

rock comprised of grains, and that the upper Hashin-Shtrikman bound resembles 

Castagna’s trend for carbonates.  

 

5.2 Introduction 

 

The most widely used empirical Vp-Vs relations have been published by Castagna et 

al. (1993), for rock types including sandstone, mudrock, limestone and dolomite. In 

general, Castagna’s regressions provide us reasonable results in terms of calculating Vs 

from the measured Vp in most practical cases. Xu and White (1995) demonstrated a 

method to determine the Vp-Vs relation of shaly sandstone by mixing two inclusion 
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models with different aspect ratios, which represent the sandstone and shale portions.  

Jørstad et al. (1999) compared the method by Xu and White (1995) to linear regressions 

using a dataset from the North Sea. They concluded that the inclusion models need to be 

calibrated well by well, whereas the simple regression tuned to the target wells provide 

good prediction of Vs from the measured Vp in their data. However, there is no 

systematic explanation why a linear regression works well in most cases. 

One way to discuss the Vp-Vs relation is by deriving velocities using an effective-

medium theory. As quoted in Mavko et al. (1998), the best bounds, defined as giving the 

narrowest possible range in the velocity-porosity plane without specifying anything about 

the geometries of constituents, are the Hashin-Shtrikman bounds.  These bounds give us 

the upper and lower limits of the data distribution for bulk and shear moduli as a function 

of the volume fractions of mixing materials.  I adopt the Hashin-Shtrikman bounds to 

explore Vp-Vs relations for rock-fluid mixtures.  

 

5.3 The Hashin-Shtrikman Bounds 

 

The Hashin-Shtrikman bounds represent a geometrically defined mixture of two 

materials, which are allocated outside and inside of concentric spheres.  The spheres are 

in various sizes so that the visual image of the upper bound is randomly sized spherical 

pores in a chunk of rock.  The lower bound can be visualized as variously sized spheres 

suspended in another material.  However, since the lower bound is identical to the Reuss 

bound when the shear modulus of one of the two materials is 0, the lower bound can be 

considered as horizontally stacked layers of the two materials. 
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The upper (+) and lower (-) Hashin-Shtrikman bounds are given by the following: 
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where  
   K1 is the bulk modulus of material 1, 
  K2 is the bulk modulus of material 2, 
  µ1 is the shear modulus of material 1, 
  µ2 is the shear modulus of material 2, 
  f1 is the volume fraction of material 1, 
  f2 is the volume fraction of material 2. 
 
In addition, I calculate the density of a mixture of the two materials as follows: 

2211 ρρρ ffbulk += .                                                      (5.2) 
 

Then, I compute Vp, Vs, porosity (=volume fraction of a fluid) and density for the 

Hashin-Shtrikman bounds of a mixture. 

 Now, I calculate the upper and lower Hashin-Shtrikman bounds for brine-saturated 

sandstone. But the shear modulus of brine is 0; thus, I obtain 0 for the shear modulus of 

the mixture.  This means Vs is 0 for the lower bound, except for the 100% solid point.  To 

obtain a practical limit of the lowest Vs, I investigate the laboratory measurement of loose 

sand by Zimmer (2004).  He measured the Vs for brine-saturated Galveston beach sand at 

critical porosity of 0.4336 under a confining pressure of 0.1 MPa and obtained Vs≈0.2 

Km/sec.  I employ this velocity as a realistic lowest Vs at critical porosity and calculate 

the equivalent shear modulus, µ=0.09 GPa.  Then, to obtain Vp=1.5 Km/sec at the critical 
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porosity, the bulk modulus is determined to be K=4.3575 GPa.  For future discussions, I 

assume the critical porosity to be 0.4.  Table 5.1 summarizes the parameters used to 

calculate the Hashin-Shtrikman bounds for sandstone and shale.  

 
Table 5.1:  Summary of the parameters used to calculate the Hashin-Shtrikman bounds of 

sandstone. 

Material Bulk modulus (GPa) Shear modulus (GPa) Density 
(g/cm3) 

quartz 37 44.73 2.65 
clay 23 8 2.58 
brine 2.7416 0 1.0038 

mixture at critical  
porosity (=0.4) 4.3575 0.09 0.6ρsolid + 

0.4ρbrine

 
Figure 5.1 presents the resultant bounds in the Vp-porosity plane on the left and the 

Vs-porosity plane on the right.  The solid lines represent the upper Hashin-Shtrikman 

bound and the dashed lines represent the lower Hashin-Shtrikman bound.  All bounds in 

following figures are displayed with this convention.  Then, I convert all the bounds into 

the Vp-Vs plane as shown in Figure 5.2, where we observe the upper Hashin-Shtrikman 

bounds and the lower Hashin-Shtrikman bounds. Note that the upper Hashin-Shtrikman 

bound corresponds to the lower Vp/Vs bound, and vice versa.  The black lines indicate 

two constant values for Vp/Vs: the dashed line corresponds to 1.5 and the solid line 

represents 2.0.  Comparing the bounds to these Vp/Vs lines, we recognize that the upper 

Hashin-Shtrikman bound is the lowest Vp/Vs bound and the lower Hashin-Shtrikman 

bound is the highest Vp/Vs bound for any mixtures.  I plot the regression line by Castagna 

et al. (1993) for brine-saturated sandstones in the yellow circles in Figure 5.2. 

 

 124



Figure 5.1: The upper and lower Hashin-Shtrikman bounds in the Vp-porosity plane on 
the left and the same bounds in the Vs-porosity plane on the right.  The green lines 
represent a quartz-brine mixture, and the blue lines correspond to a clay-brine 
mixture.  The solid lines correspond to the upper Hashin-Shtrikman bounds and the 
dashed lines correspond to the lower Hashin-Shtrikman bound.  

Figure 5.2: The upper and lower Hashin-Shtrikman bounds in Vp-Vs plane.  The green 
and blue lines are equivalent to those in Figure 5.1.  The black lines indicate constant 
Vp/Vs: the dashed line is Vp/Vs=1.5; the solid line corresponds to Vp/Vs=2.  The 
yellow circles represent the regression line for brine-saturated sandstones by 
Castagna et al. (1993).  Note that Castagna’s regression is located between the solid 
green line and the solid blue line. 
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Castagna’s empirical regression locates in between the upper Hashin-Shtrikman bound 

for quartz-brine mixture and the upper Hashin-Shtrikman bound of a clay-brine mixture.   

The intuitive interpretation of this result is that the regression line by Castagna represents 

intermediate trends between the upper Hashin-Shtrikman bounds for quartz-brine and 

clay-brine mixtures in both the Vp-porosity and Vs-porosity planes, therefore the resultant 

Vp-Vs trend also falls between those end members in the Vp-Vs plane.  In general, most 

sandstones fall between the upper Hashin-Shtrikman bounds of quartz-brine and clay-

brine mixtures. Castagna’s regression is one of the best averaged Vp-Vs trends for brine-

saturated, quartz-dominated sandstones. 

 

5.4 Vp-Vs relation of sandstone 

 

5.4.1 Stiff-sand and soft-sand models  

 I have demonstrated the correlation of the locations for the Hashin-Shtrikman bounds 

in the velocity-porosity plane and in the Vp-Vs plane.  Next, I explore the relation of data 

locations in the two planes for the soft-sand model and the stiff-sand models introduced 

by Dvorkin and Nur (1996).   They theoretically derived these effective-medium models , 

based on the contact stiffness of a sphere pack, which are derived from the Hertz-Mindlin 

model.  The soft-sand model is given in a form of a modified lower Hashin-Shtrikman 

bound as follows:  
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where 

K is the bulk modulus, 

µ is the shear modulus, 

φ is the volume fraction of porosity, 

ν is the Poisson’s ratio, 

n is the coordination number, the number of average contacts per grain, 

P is the differential pressure in MPa, 

Fd is the fudge factor to control shear contact stiffness, > 1 to reduce the stiffness. 

 

The stiff-sand model is a modified upper Hashin-Shtrikman bound, expressed below: 
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where KHM and µHM are the same as in Equation 5.3. 

Employing the resultant bulk modulus and shear modulus of a dry rock from 

Equations 5.3 and 5.4, I calculate the brine-saturated Vp and Vs as a function of porosity, 

using Gassmann’s equation.  Figure 5.3 exhibit a series of soft and stiff sandstone models.  

I used 0.1 MPa as a confining pressure and 6 for a coordination number in the 

calculations.  In addition, to fit the results within the Hashin-Shtrikman bounds, I applied 

a porosity-dependent velocity scale as detailed below:  

scaled_velocity = (1–0.3φ/φcritical)velocity,   where φ < φcritical .            (5.5) 

This velocity scale reduces Vp and Vs rapidly as porosity increases, but keeps Vp/Vs ratio 

of the model trends since I apply exactly the same scale to both Vp and Vs. 

In Figure 5.3, the dashed magenta lines represent the stiff-sand models with a fudge 

factor (defined in Equation 5.3) of 1.0; the dashed cyan lines indicate the soft-sand model 

with the same fudge factor.  Next, I change the fudge factor to 0.2, and obtain the red 

solid lines, which represent the stiff-sand model; the black lines show the soft-sand model 

with this fudge factor.  For each different setting, I vary the solid-phase composition from 

100% quartz to 100% clay with 20% exchange steps in this two-mineral system.  
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Figure 5.3: Stiff-sand models in the solid red lines and the dashed magenta lines; soft- 
sand models in the solid black lines and the dashed cyan lines, based on the Hertz-
Mindlin contact stiffness.  The red solid lines and the black solid lines are calculated 
with a fudge factor=0.2, whereas the dashed magenta lines and the cyan lines are 
calculated with a fudge factor=1.  Each set has five lines, ranging from 100% quartz 
at the top to 100% clay at the bottom.  I applied a porosity-dependent velocity scale. 

Figure 5.4: Vp-Vs plot of the stiff-sand and soft-sand models in Figure 5.3.  The black 
lines indicate constant Vp/Vs: the dashed line for Vp/Vs=1.5 and the solid line for 
Vp/Vs=2.  The yellow circles represent the regression line for brine-saturated 
sandstones by Castagna et al. (1993). 
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Consequently, there are five lines for each setting.  These lines range from pure 

quartz at the top to pure clay at the bottom in the figure. 

Next, I transform all the lines into the Vp-Vs plane as shown in Figure 5.4.  

Comparing this chart to the previous figure, we recognize that if a trend locates close to 

the upper Hashin-Shtrikman bound in the Vp-porosity plane, the trend will be situated 

near the upper Hashin-Shtrikman bound in the Vp-Vs plane as well.  I interpret this result 

in relation to the pore shape.  For any fixed porosity, a higher Vp close to the upper 

Hashin-Shtrikman bound means that the pore shape is almost spherical, which is the 

stiffest pore shape of a mixture.  This pore shape gives us the lowest Vp/Vs ratio for the 

mixture due to its high Vs value.  In contrast, the lower Hashin-Shtrikman bound is 

coincident with the Reuss bound, when the shear modulus for one material of a mixture is 

0. This fact indicates that very low Vp near the bounds, a rock texture is described by a 

scheme of a horizontal stack of two materials.  Approaching the Reuss scheme of a 

mixture of solid and fluid, Vs reduces rapidly toward 0.  As a result, Vp/Vs increases 

toward the maximum value at the lower bound of the mixture. 

From the discussions above, we recognize that location relative to the Hashin-

Shtrikman bounds is a good tool to investigate Vp-Vs relations of a rock.  Since most 

sandstones fall between the upper Hashin-Shtrikman bound of a quartz-brine mixture and 

the upper bound of a clay-brine mixture, I evaluate a general trend of sandstone using the 

upper Hashin-Shtrikman bound.   

I gradually vary the constituents of the solid phase from 100% quartz to 100% clay in 

10% exchange steps.  Next, I employ Hill’s average to calculate the elastic moduli of a 

dry rock, and I brine-saturate the rock using Gassmann’s equation.  I adopt the same rock 
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properties as in Table 5.1.  Eventually, I calculate the upper Hashin-Shtrikman bounds for 

the mixtures with the solids of the different volume fractions and brine.   

Figure 5.5 displays the result of this practice.  The data are color-coded by the 

calculated Vp/Vs ratio.  As we expect given the previous discussions, the data clearly 

show that the higher our Vp is, due to the higher quartz content, the lower Vp/Vs ratio we 

obtain at a fixed porosity.  Note that when I take a fixed Vp, the Vp/Vs ratio reduces as it 

approaches the upper Hashin-Shtrikman bound at the highest porosity allowed for the 

mixture.  In this sense, Vs is not a function only of Vp, but is influenced by porosity as 

well.  Having Vp, Vs, porosity and clay volume for all the points, I plot the same data in 

the Vp-Vs plane, color-coded by porosity as shown in Figure 5.6.  I regress all the points 

to derive the linear equation of Vs as a function of Vp and I get the following relation: 

Vs = 0.7937Vp–0.7890.    (5.6) 

This result remarkably resembles Han’s regression (1986), which is based on 

ultrasonic laboratory measurements: 

Vs = 0.7936Vp–0.7868.    (5.7) 

Both equations cross validate each other. Furthermore, these regressions are virtually 

equivalent to the regression by Castagna et al. (1993) below: 

Vs = 0.8042Vp–0.8559.     (5.8) 
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Figure 5.5: The calculation results of the upper Hashin-Shtrikman bound for the mixtures 
with different quartz contents.  I use Hill’s average to calculate the dry-rock elastic 
moduli, ranging from 100% quartz to 100% clay in 10% intervals.  All data are 
brine-saturated using Gassmann’s equation. 

Figure 5.6: Vp-Vs plot of the data in Figure 5.5, color-coded by porosity.  Note that I 
adopt critical porosity at 0.4.  We recognize iso-porosity trends. 
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5.4.2 Effective elastic moduli of a rock with tubular pores 

Mavko (1980) discussed the effective elastic moduli of a crystalline rock with 

randomly oriented tubular melts along the mineral junctions.  When a volume fraction of 

the melts is large, this situation is similar to a rock comprised of grains with connecting 

tubular pores.  I adopt the two models with the extreme shapes of the cross section of 

each tube.  The shapes are calculated in the x-y plane by the following equations using 

ε=0 and ε=∞: 
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where, R is a constant and the θ varies from 0 to 2π.  The shape for ε=0 is a three-

sided hypotrochoid, whereas the shape for ε=∞ is a perfect circle.  Then the effective 

moduli of a dry rock for ε=0 are expressed as below: 
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where  

K is the bulk modulus, 

µ is the shear modulus, 

φ is the volume fraction of porosity (=volume fraction of melt), 

ν is the Poisson’s ratio. 

However, the formulation above is not self-consistent, consequently the resultant 

moduli are high all way down to 100% porosity.  Assuming that the moduli of a dry rock 
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are close to the moduli of the solid, we can derive a pseudo-self-consistent version of the 

equations for the lower porosity range (personal communication with Dr. Mavko.)  For 

the derivation, first we replace the solid modulus in the second term on the right side with 

the modulus of the dry rock and we get 
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Next, we move the term to the left side and rearrange the equations to obtain the 

expressions below: 
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Using the calculated moduli of a dry rock made of 100% quartz, I compute the 

velocity of the rock in a brine-saturated condition using Gasmann’s equation.  Figure 5.7 

shows the results in the Vp-porosity and Vs-porosity planes.  The red circles represent a 

rock with tubular pores which have circular cross section; the purple triangles represent a 

rock with tubular pores for which the cross section of the tubes is a three-sided 

hypotrochoid.  The trend curves in the planes are similar to the lower Hashin-Shtrikman 

bounds.   

Figure 5.8 shows the same data in the Vp-Vs plane.  The trend of the red circles is 

very close to Castagna’s regression for sandstone in the yellow circles.  This result 

suggests that the general trend of sandstone is represented well by the tubular pore model 

with circular cross sections. 

 134



Figure 5.7: The trends of a rock with tubular pores by a modified Mavko’s equation in 
the velocity-porosity plane.  The red circles represents that the cross section of tubes 
with perfectly circular cross sections, and the purple triangles represents tubes with 
three-sided hypotrochoid cross sections. 

Figure 5.8: The trends of a rock with tubular pores by a modified Mavko’s equation in 
the Vp-Vs plane.  The red circles represent tubes with perfectly circular cross 
sections, and the purple triangles represent tubes with three-sided hypotrochoid cross 
sections.  Note that the trend of the red circles is very close to Castagna’s regression 
for sandstone in the yellow circles. 
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5.4.3 Self-consistent inclusion model of spheroid pores 

Kuster and Toksöz (1974) derived expressions for the effective moduli of a mixture 

consisting of a host rock and inclusion materials as follows: 
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where  

K*
KT is the effective bulk modulus of the mixture, 

Km is the bulk modulus of the host rock, 

µ*
KT is the effective shear modulus of the mixture, 

µm is the shear modulus of the host rock, 

xi is the volume fraction of the ith inclusion, 

Ki is the bulk modulus of the ith inclusion, 

µi is the shear modulus of the ith inclusion. 

The coefficient Pmi and Qmi are the scalars calculated by the aspect ratio of pores 

(α=length of short semi-axis/length of long semi-axis; less than 1 for oblate spheroids) 

and the properties of the constituents.  I describe the calculation sequence for a two phase 

mixture below: 
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where, 
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Berryman (1995) introduced a way to derive a self-consistent approximation of the 

elastic moduli of the inclusion model by the iterative calculation that follows: 
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xi Ki − KSC
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     (5.15) 

where  

K*
SC is the self-consistent effective bulk modulus of the mixture, 

µ*
SC is the self-consistent effective shear modulus of the mixture. 

The scalars P*mi and Q*mi are calculated by Equation 5.14, using the bulk and shear 

moduli of a tentative result in the iterative computation, and updated in the each iteration 

step.  I set the program to terminate computation when the difference of two consecutive 

calculation results is less than 10-6 times the solid modulus.   

I use the properties of quartz and brine in Table 5.1 to calculate the velocity trends for 

a rock whose pores have aspect ratios of 0.001, 0.01, 0.03, 0.06, 0.1, 0.2, and 1.0.  Figure 

5.9 shows the calculation results in the red lines.  Likewise, Figure 5.10 shows the same 

data in the Vp-Vs plane.  Although the trends in the velocity-porosity plane are clearly 

separated, the trends corresponding to the α higher than 0.06 are located very close to 

each other in the Vp-Vs plane.  Furthermore, none of the trends in the red lines resembles 

Castagna’s regression, shown in the yellow circles.  This result indicates that the self-

consistent model of the spheroid inclusions with fixed aspect ration is not appropriate to 

predict the Vp-Vs trend of sandstone.  According to the result of Xu and White (1995), 

the original inclusion model by Kuster and Toksöz (1974) works well to describe the 

trend of sandstone and shale.  To estimate Vp-Vs relation of sandstone, the original 

inclusion theory is much more effective than a self-consistent version of the model, when 

we assume a fixed aspect ratio. 
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Figure 5.9: The calculation results of a self-consistent inclusion model in the red lines.  
The numbers indicate the aspect ratios of the pores used in the calculation. 

Figure 5.10: The same data as in Figure 5.9 in the Vp-Vs plane.  Note that relative 
position to the Hashin-Shtrikman bounds correlates to that in Figure 5.9.  However, 
the trends of α higher than 0.06 are not separable in the Vp-Vs plane. 
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5.4.4 Comparison of the theoretical trends with laboratory measurements 

To observe the validity of the effective moduli derived from theoretical models, I plot 

the results of the tubular-pore model and the inclusion model with the laboratory 

measurement by Han (1986).  Figure 5.11 shows the model trends and the measurement 

with a confining pressure of 5MPa in the velocity-porosity plane.  The laboratory data are 

color-coded by the shale volume.  I expand the Hashin-Shtrikman bounds in green and 

blue to a critical porosity of 0.6 instead of 0.4 in this figure.  The black solid line 

corresponds to the red circles in Figure 5.7 and the black dashed line represents the 

purple triangles in Figure 5.7.  Comparing the two charts in Figure 5.11, we notice that 

the data locations relative to the model trends are very consistent in both charts.   

As shown in Figure 5.12, the data locations relative to the model trends are more 

scattered in the Vp-Vs plane.  Yet, we recognize the samples of higher shale volume in 

reddish colors are plotted between the dashed and solid black lines in both Figures 5.11 

and 5.14.  A similar constraint cannot be obtained from the trend of the inclusion model. 

It seems that the trends with curves similar to the lower Hashin-Shtrikman bound, 

which is equivalent to the Reuss bound, provide us a better control of Vp-Vs relations of 

sandstone. 

 Figures 5.13 and 5.14 display the same panels for Han’s data with a confining 

pressure of 40MPa.  I expected a better correlation of the relative locations for the data to 

the model trends.  However, the result is almost the same as the dataset at 5MPa.  

Moreover, in case of 40MPa, the reddish points tend to show higher velocity than the 

solid black line in Figure 5.13, although the data stay between the two black lines in 

Figure 5.14.  This suggests that we need to modify the model for a higher pressure. 
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Figure 5.11: Comparison of the trends from effective-medium models with the laboratory 
measurement by Han (1986) with a confining pressure of 5MPa.  The measurement 
data are color-coded by the shale volume. 

Figure 5.12: The same data as in Figure 5.11 in the Vp-Vs plane.  Note that the data in 
reddish colors are located in between the solid and dashed black lines, as in Figure 
5.11.  

 141



Figure 5.13: Comparison of the trends from effective medium models with the laboratory 
measurement by Han (1986) at a confining pressure of 40MPa.  The measurement 
data are color-coded by the shale volume. 

Figure 5.14: The same data as in Figure 5.11 in the Vp-Vs plane.  Note that the data in 
reddish colors are located between the solid and dashed black lines, although the data 
exhibit velocities around the solid black line in Figure 5.13. 
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5.4.5 Modified Reuss bound 

Since the trend similar to the lower Hashin-Shtrikman bound seems to represent well 

the Vp-Vs relation of sandstone.  I generate a series of modified Reuss bounds to compare 

with the laboratory data.  In this practice, I adopt the upper Hashin-Shtrikman bound 

calculated with the properties in Table 5.1.  Then, I stretch it in the porosity axis to the 

maximum porosity at 1.  Therefore, the Vp and Vs at 100% porosity point are 1.5 km/sec 

and 0.2 km/sec, respectively.  Next, I extract Vp and Vs at the porosity points 0.95, 0.90, 

0.85, 0.80, 0.75, 0.70, 0.64, and 0.60 on the upper Hashin-Shtrikman bound.  Employing 

the recorded velocities, I calculate the modified Reuss bounds between the quartz-mineral 

point and each extracted porosity point.   

Figure 5.15 shows the modified Reuss bound in red with Han’s data: the solid circles 

represent the data at 5MPa confining pressure; the open circles represent the data at 

40MPa confining pressure; both sets are color-coded by the shale volume.   

First, most samples are located within the range of the red lines, the top red line 

corresponding to the modified Reuss bound at 0.6 porosity, and the bottom red line 

corresponding to the porosity point at 0.95.  Second, in both charts, the sample locations 

relative to the modified Reuss bounds are very consistent.   

Furthermore, the same bounds in the Vp-Vs plane exhibit similarly good locations 

relative to the samples, considering small measurement errors, as shown in Figure 5.16.  I 

demonstrate the consistency of the locations among the three crossplot planes, when we 

determine the appropriate properties of the end points for the bounds.   
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Figure 5.15: Comparison of the trends of modified Reuss bounds with the laboratory 
measurement by Han (1986): the solid circles represent the data at 5MPa confining 
pressure; the open circles are for 40MPa.  The measurement data are color-coded by 
the shale volume.   

Figure 5.16: The same data as in Figure 5.15 in the Vp-Vs plane.  Note that the locations 
of measurement data relative to the modified Reuss bounds are consistent with the 
relative locations in Figure 5.15 for most of the data.  The measurement data are 
color-coded by the shale volume. 
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Note that since the location in the Vp-Vs plane is independent of porosity, the 

selection of the end points of the bounds in the velocity-porosity plane is critically 

important for comparing with measurement data.  We obtain exactly the same locations 

in the Vp-Vs plane, as long as the shapes of the bounds in the velocity-porosity planes 

stay constant, even if the porosity range violates the reasonable limit of the mixture.  

Furthermore, we have to be careful about the effect of saturation fluid.  Any fluid more 

compressible than brine pulls down the model trends toward the lower Hashin-Shtrikman 

bound in the velocity-porosity plane.  On the other hand, in the same case, the model 

trends will move toward the upper Hashin-Shtrikman bound in the Vp-Vs plane because 

Vp is more reduced than Vs.   

Figure 5.17 compares the modified Reuss bounds with Castagna’s regressions for 

sandstone in the yellow circles and the mudrock line in the cyan circles.  The purple 

asterisks show Han’s regression for sandstone from Equation 5.7. 

As I discussed above, most sandstone is in the range of the red lines.  Therefore, both 

Castagna’s regression and Han’s regression are appropriate linear averages for sandstone 

as shown in Figure 5.17.  Moreover, the location of the mudrock line agrees with the 

location of the shaly sandstone data in reddish colors in Figure 5.16.  These consistencies 

of my findings about the data locations in the three crossplot planes with the known Vp-

Vs relations prove the validity of my approach. 

We recognize the stiffness of the pore, or the shape of pore, is a key factor controlling 

the location in the velocity-porosity plane, so it controls the Vp-Vs relation.  The stiffest 

pore shape, a sphere, gives us the upper Hashin-Shtrikman bound, which is equivalent to 

the lowest Vp/Vs trend in the Vp-Vs plane.  For any sandstone, an inter-granular pore 
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shape mimicking randomly oriented tubes exhibits a velocity trend between the upper and 

lower Hashin-Shtrikman bounds.  Moreover, the distribution is limited inside the range 

between the red lines in Figures 5.15 and 5.16.  Therefore, a linear regression can 

represent well an averaged Vp-Vs relation for sandstone and shaly sand.  When samples 

consist of the higher shale volume, the regression line will move towards the top red line 

in Figure 5.17, according to the trend location in the velocity-porosity plane.  By contrast, 

when samples have been highly cemented, we need to move the regression line down 

closer to the bottom red line in Figure 5.17. 

Figure 5.17: Comparison of the modified Reuss bounds in red with known Vp-Vs 
relations.  The yellow circles represent Castagna’s regression for sandstone; the cyan 
circles represent Castagna’s mudrock trend; the purple asterisks correspond to Han’s 
regression for sandstone. 
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5.5 Vp-Vs relation of carbonates 

 

I expand the stiffness assumption at the critical porosity point in Table 5.1 to 

carbonates as well.  Figure 5.18 shows the upper and lower Hashin-Shtrikman bounds for 

a limestone-brine mixture in red and a dolomite-brine mixture in purple.  Table 5.2 

summarizes the properties of calcite (mineral to compose limestone) and dolomite.  In 

general, carbonates do not display obvious grains, except grainstone facies of limestone.  

Instead, the rock frame is rigidly connected as a matrix-supported scheme of the internal 

texture.  Consequently, the pore shape of carbonates is closer to a sphere or a fat ellipsoid 

with a lower aspect ratio.  Considering this stiff nature of pores in carbonates, I anticipate 

the actual samples to fall in the area very close to the upper Hashin-Shtrikman bounds of 

the carbonate-brine mixture.   

 
Table 5.2:  Summary of the parameters used to calculate the Hashin-Shtrikman bounds of 

carbonates. 

Mineral Bulk modulus (GPa) Shear modulus (GPa) Density 
(g/cm3) 

calcite 70.76 30.34 2.71 
dolomite 80.23 48.77 2.87 
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Figure 5.18: The upper and lower Hashin-Shtrikman bounds of carbonates in the Vp-
porosity plane on the left and the same bounds in the Vs-porosity plane on the right.  
The red lines represent a limestone-brine mixture and the purple lines a dolomite-
brine mixture.  The solid lines indicate the upper Hashin-Shtrikman bounds and the 
dashed lines correspond to the lower Hashin-Shtrikman bounds.  

Figure 5.19: The upper and lower Hashin-Shtrikman bounds of carbonate-brine mixtures 
in the Vp-Vs plane. The red lines represent a limestone-brine mixture and the purple 
lines a dolomite-brine mixture.  The red circles and purple squares represent 
Castagna’s regressions for these lithologies.  Note that Castagna’s regressions agree 
with the upper Hashin-Shtrikman bound for the lithology. 
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Figure 5.19 shows the Vp-Vs plots of the upper and lower Hashin-Shtrikman bounds 

of the limestone and dolomite in Figure 5.18.  The red circles represent Castagna’s 

polynomial regression for limestone given in Equation 5.16, and the purple squares 

represent Castagna’s linear regression for dolomite in the Vp range higher than 3.5 

km/sec. 

 
Vs = -0.05508Vp2+1.01677Vp-1.03049.                (5.16) 

 

  Applying polynomial regression to the upper Hashin-Shtrikman bound of a 

limestone-brine mixture, I obtain the expression below: 

  

Vs = -0.0412Vp2+0.9202Vp-0.8888 .    (5.17) 
 
The result is very close to Castagna’s regression.  Both equations cross-validate each 

other. 

Castagna et al. (1993) found that the empirical regression of a dolomite-brine mixture 

is a linear line for the higher velocities, but the data in the lower velocity range were not 

available for the regression.  Therefore, the Vp-Vs relation of brine-saturated dolomite in 

lower velocity range remains undefined.  Based on the calculated data of the upper 

Hashin-Shtrikman bound of the mixture, I derive a polynomial regression similar to that 

of limestone, shown below:  

 
Vs = -0.023Vp2+0.8452Vp-0.7609.   (5.18) 

 

The result coincides with the solid purple line in Figure 5.19, and the line agrees very 

well with Castagna’s regression in the higher velocity range.  In the higher velocity range, 
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the Vp-Vs relation of dolomite-brine mixture seems to fit a linear trend, because the 

Vp/Vs ratio of dolomite is smaller than that of calcite.  However, the trend will curve in 

the low velocity range, similar to the trend for limestone.  The degree of the curvature for 

the upper Hashin-Shtrikman bound in the Vp-Vs plane is controlled by the Vp/Vs ratio of 

the mineral point; where the mineral point exhibits a Vp/Vs ratio closer to 1, the upper 

bound becomes straight. 

 Tsuneyama et al. (2003) demonstrated a new trend for limestone, which represents 

grainstone facies defined as grain supported, and limy mud lacking limestone, having 

almost a sphere-pack internal texture.  Figure 5.20 presents the grainstone trend as a 

dotted red line with the well log data scattered over the chart in the blue dots.  In the 

microscope photo at the bottom of Figure 5.20, we observe that the grainstone has a 

texture similar to sandstone, where the dominant pore shape is an inter-granular type.  In 

contrast, general limestone in the top photo of Figure 5.20 exhibits a pore shape like an 

isolated hole.   

Now, it is clear that the red dotted trend in Figure 5.20 corresponds to the trend of the 

red circles in Figure 5.8, which represents a solid-fluid mixture in a form of sphere-pack.  

This trend of a sphere-pack form seems almost straight in the Vp-Vs plane for any 

minerals, due to the character of the deviation from the upper Hashin-Shtrikman bound 

for the mixture.  
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Figure 5.20: A trend of the Vp-Vs relation for grainstone facies of limestone (dotted red 
line).  The photo on the lower right shows the grainstone; the photo on the left above 
shows typical limestone.  Note that the axes are the reverse of the convention in 
previous figures.  

 

5.6 Conclusions 

 

 I discussed a method to investigate Vp-Vs relations using the Hashin-Shtrikman 

bounds and several effective-medium theories of solid-fluid mixtures.  The comparison of 

the location of the model trends in the velocity-porosity plane with that in the Vp-Vs 

plane is a key idea to interpret the location as an indicator of the rock texture. 

The linear regressions for sandstone by Castagna et al. (1993) and Han (1986) were 

compared with the results of the theoretical approach.  The results cross-validated each 

other, since all equations are virtually identical in the Vp-Vs plane.   

I investigated the trend curves of several effective-medium theories in the crossplot 

planes.  The general trend of sandstone is represented well by the modified Mavko’s 

equation (Equation 5.12) for the tubular-pore model.  The self-consistent inclusion model 
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by Berryman (1995) is not appropriate to predict the Vp-Vs trend of sandstone when we 

fix the aspect ratio of pores.  The original inclusion model by Kuster and Toksöz (1974) 

is better for investigating the Vp-Vs relation in case of a fixed aspect ratio.  A modified 

Reuss bound seemed best for finding an appropriate trend of the relations among Vp, Vs 

and porosity. 

A key factor controlling the location in the velocity-porosity plane is the stiffness of 

pore, or the shape of pore.  Therefore, it controls the Vp-Vs relation as well.  The stiffest 

pore shape, a sphere, gives us the upper Hashin-Shtrikman bound, which is equivalent to 

the lowest Vp/Vs trend in the Vp-Vs plane.  Likewise, the softest pore shape, a flat film, 

gives us the lower Hashin-Shtrikman bound or the Reuss bound, which is equivalent to 

the highest Vp/Vs trend. For sandstone, an inter-granular pore shape mimicked by 

randomly oriented tubes exhibits the general Vp-Vs trend very well. 

 In contrast, carbonates have pores more like isolated spheres in well bounded matrix. 

Therefore, the trend in the velocity-porosity and Vp-Vs planes are identical to the upper 

Hashin-Shtrikman bound. The bound has curved nature in the Vp-Vs plane.  This is why 

the general Vp-Vs relation of limestone is approximated best by a polynomial expression. 

The trend for dolomite was found to exhibit a character similar to the trend of limestone.  

I introduced a polynomial equation for a dolomite-brine mixture to extend Castangna’s 

regression into the range of lower velocity, which the empirical regression did not cover 

due to insufficient data in that range.  In relation to the dominant pore shape, I explained 

the linear trend for the grainstone facies of limestone, demonstrated in Tsuneyama et al. 

(2003). 
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The approach discussed in this chapter is applicable for a mixture of two arbitrarily 

selected materials, where fluid is not necessarily brine.  Given appropriate parameters for 

a particular reservoir rock, we can investigate the Vp-Vs relation to obtain the optimal 

method to estimate Vs from the measured Vp and porosity.  Furthermore, we can use the 

crossplots for diagnosing the reliability of the Vs measurement. 

For a long time, Vp-Vs relations have relied almost exclusively on several empirical 

relationships.  This chapter presented theoretical assessments for the validity of several 

known regressions.  I discussed how we should consider modifying the known relations 

depending on the character of the pores in the target rock.   

Since the approach is closely related to the pore shapes in a rock, further studies in 

this direction may lead to a way to determine permeability from the measured velocity 

and porosity. 
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Appendix A Matlab code for the grid preparation of velocity- 

anisotropy estimation 
 
%%%%% preparation of input %%%%% 
phi=linspace(0,0.4,401); 
phi=phi'; 
one=ones(1,451); 
grid_phi_vp=phi*one; 
grid_phi_vp=grid_phi_vp'; 
one=ones(1,351); 
grid_phi_vs=phi*one; 
grid_phi_vs=grid_phi_vs'; 
vp0=linspace(1.5,6,451); 
vp0=vp0'; 
vp0=-1*(sort(-1*vp0)); 
one=ones(1,401); 
grid_vp0=vp0*one; 
vs0=linspace(0.5,4.0,351); 
vs0=vs0'; 
vs0=-1*(sort(-1*vs0)); 
grid_vs0=vs0*one; 
clear phi one vp0 vs0 
  
%%%%% generate grid for epsilon %%%%% 
eps_A=2.65.*(grid_vp0.^2)-1.65.*(grid_phi_vp).*(grid_vp0.^2); 
eps_a=(35.525+2.3095.*eps_A.*grid_phi_vp)./(-2.3095); 
eps_b=-(37.403+35.525.*eps_A.*grid_phi_vp-

eps_A.*grid_phi_vp+eps_A)./(-2.3095); 
eps_c=(37.403.*eps_A.*grid_phi_vp)./(-2.3095); 
eps_p=eps_b-((eps_a.^2)./3); 
eps_q=2.*((eps_a.^3)./27)-(eps_a.*eps_b)./3+eps_c; 
eps_m=(-eps_q./2+sqrt((eps_q.^2)./4-(eps_p.^3)./27)).^(1/3); 
eps_n=-1.*((abs(-eps_q./2-sqrt((eps_q.^2)./4-

(eps_p.^3)./27))).^(1/3)); 
eps_m2=(-(eps_m+eps_n)-eps_a./3); 
eps_m1=-2.3095.*eps_m2.^2+35.525.*eps_m2-37.403; 
grid_eps=(-1.0428.*eps_m2+3.621).*(eps_m2<3.2048)+(-

0.0809.*eps_m2+0.5383).*(eps_m2<5.9924).*(eps_m2>=3.20
48)+(-0.0152.*eps_m2+0.1446).*(eps_m2>=5.9924); 

grid_eps=grid_eps.*(grid_eps>=0); 
clear eps_A eps_a eps_b eps_c eps_p eps_q eps_m eps_n eps_m2 

eps_m1 
  
%%%%% generate grid for gamma %%%%% 
gam_A=2.65.*(grid_vs0.^2)-1.65.*grid_phi_vs.*(grid_vs0.^2); 
gam_a=(24.278+5.6031.*gam_A.*grid_phi_vs)./(-5.6031); 
gam_b=(18.778-24.278.*gam_A.*grid_phi_vs+gam_A.*grid_phi_vs-

gam_A)./(-5.6031); 
gam_c=(-18.778.*gam_A.*grid_phi_vs)./(-5.6031); 
gam_p=gam_b-((gam_a.^2)./3); 
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gam_q=2.*((gam_a.^3)./27)-(gam_a.*gam_b)./3+gam_c; 
gam_m=(-gam_q./2+sqrt((gam_q.^2)./4-(gam_p.^3)./27)).^(1/3); 
gam_n=-1.*((abs(-gam_q./2-sqrt((gam_q.^2)./4-

(gam_p.^3)./27))).^(1/3)); 
gam_m2=(-(gam_m+gam_n)-gam_a./3); 
gam_m1=-5.6031.*gam_m2.^2+24.278.*gam_m2+18.778; 
grid_gam=(-0.0316.*gam_m2+0.0944).*(gam_m2>=1.8711)+(-

0.1286.*gam_m2+0.2759).*(1.8711>gam_m2).*(gam_m2>=0.85
49)+(-1.3598.*gam_m2+1.3284).*(gam_m2<0.8549); 

grid_gam=grid_gam.*(grid_gam>=0); 
clear gam_A gam_a gam_b gam_c gam_p gam_q gam_m gam_n gam_m2 

gam_m1 
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Appendix B  Matlab code for the estimation of velocity anisotropy 
 
tail=length(input_logs(:,1)); 
for n=1:1:tail; 
vp=input_Vp_brine(n,1)*(input_Vp_brine(n,1)>=1.5)+6*(input_Vp_bri

ne(n,1)<1.5); %% low velocity<1.5 to 6  
theta=input_deviation_angle(n,1); 
phi=round(1000*input_porosity(n,1))/1000;  %% set decimal point 
i0=phi*1000+1; 
vp_theta=grid_vp0(:,i0).*(1+grid_eps(:,i0).*(sin(pi*theta/180)^4)

); 
vp=vp*(min(vp_theta)<=vp)+min(vp_theta)*(min(vp_theta)>vp); 
i1=find(vp_theta(:,1)<=vp); 
i2=i1(1,:); 
output_eps(n,1)=grid_eps(i2,i0); 
output_Vp_brine0(n,1)=(vp)./(1+output_eps(n,1)*(sin(pi*theta/180)

^4)); 
end 
 
%%%%% edit this code to estimate gamma, or use a linear relation 
%%%%% between epsilon and gamma 
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Appendix C HRS code for elastic-impedance analysis constrained 
 by rock-physics bounds 
 
/##### unit conversion m/sec*g/cc -> km/sec*g/cc #####/ 
y1=log(EI97near/1000); 
y2=log(EI97mid/1000); 
y3=log(EI97far/1000); 
/##### least squares linear fit #####/ 
x1=0.024471741; 
x2=0.066987298; 
x3=0.15900082; 
B=x1^2+x2^2+x3^2; 
C=y1+y2+y3; 
D=x1*y1+x2*y2+x3*y3; 
a=(3*D-C*(x1+x2+x3))/(3*B-(x1+x2+x3)^2); 
b=(B*C-D*(x1+x2+x3))/(3*B-(x1+x2+x3)^2); 
EIn1=exp(a*x1+b); 
EIm1=exp(a*x2+b); 
EIf1=exp(a*x3+b); 
/##### apply rock-physics bounds #####/ 
EIf2=(EIf1-(0.8077*EIn1+0.15))*((0.689*EIn1+1.8466)-

(0.8077*EIn1+0.6415))/((0.689*EIn1+2.6)-
(0.8077*EIn1+0.15))+(0.8077*EIn1+0.6415); 

EIn2=(EIn1-(EIf1-2.6)/0.689)*((EIf1-0.6415)/0.8077-(EIf1-
1.8466)/0.689)/((EIf1-0.15)/0.8077-(EIf1-
2.6)/0.689)+(EIf1-1.8466)/0.689; 

dEIn=EIn1-EIn2; 
dEIf=EIf1-EIf2; 
X=(dEIn*(dEIf^2))/(dEIn^2+dEIf^2); 
Y=((dEIn^2)*dEIf)/(dEIn^2+dEIf^2); 
EIn3=EIn1-X; 
EIf3=EIf1-Y; 
EIm3=(EIf3-(0.8077*EIn3+0.6415))*((0.8934*EIn3+0.6030)-

(0.9267*EIn3+0.2414))/((0.689*EIn3+1.8466)-
(0.8077*EIn3+0.6415))+(0.9267*EIn3+0.2414); 

/##### solve inverse matrix equation & final scaling #####/ 
Vp=0.95*(exp(133.8317*log(EIn3)-

195.6696*log(EIm3)+61.8380*log(EIf3))); 
Vs=0.95*(exp(151.2873*log(EIn3)-

216.6207*log(EIm3)+64.8335*log(EIf3))); 
Rho=1.05*(exp(-132.0151*log(EIn3)+194.7416*log(EIm3)-

61.7266*log(EIf3))); 
/##### compute shale volume #####/ 
Vpg=4.0; 
b1=3-Vpg*2.5; 
b2=2.6-Vpg*2.1; 
Vsho=(b2-(Vp-Vpg*Rho))/(b2-b1); 
sc1=0; 
sc2=0.6; 
Vsh97=1-(sc2-Vsho)/(sc2-sc1); 
Vsh97; 
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Appendix D HRS code for the computation of fluid saturation: 
(1) calculation of common rock-frame properties 

 
/*########################*/ 
/*#                      #*/ 
/*# Computation for 1997 #*/ 
/*#                      #*/ 
/*########################*/ 
/*======================================*/ 
/* Compute elastic moduli and porosity  */ 
/*======================================*/ 
Vshm=0.5*(Vsh97vp+Vsh01vp); 
Gsat97=Vs97*Vs97*Rho97; 
Gdry97=Gsat97; 
Ksat97=Vp97*Vp97*Rho97-4/3*Gsat97; 
Phi97=-0.5401*Rho97+1.4350; 
/*===========================================*/ 
/* Porosity cut-off, indicator1 & indicator2 */ 
/*===========================================*/ 
Low_por=0.001; 
indicator1 = Phi97; 
indicator2 = Phi97; 
index=0; 
while( index < numsamples(Phi97)) 
{  
  if(Phi97[index] < Low_por) 
     { 
       indicator1[index] = 0; 
       indicator2[index] = 0.001; 
     } 
  else      
       indicator1[index] = 1; 
       indicator2[index] = 0;    
index = index +1; 
} 
Phi97=Phi97*indicator1+indicator2; 
/*=================================================*/ 
/* Water-saturated rock consists of average solid  */ 
/*=================================================*/  
Rho97ww=(1-Phi97)*(2.67*(1-Vshm)+2.58*Vshm)+Phi97*1.0038; 
Vs97ww=sqrt(Gsat97/Rho97ww); 
Vp97ww=Vs97ww/0.79+1; 
Ksat97ww=Vp97ww*Vp97ww*Rho97ww-4/3*Gsat97; 
Kmnrl=0.5*((1-Vshm)*38.13+Vshm*23)+0.5*(1/((1-

Vshm)/38.13+Vshm/23)); 
/*=======================================================*/ 
/* Compute the bulk modulus and density of in-situ fluid */ 
/*=======================================================*/  
Kdry97=Kmnrl*(1-(1-Phi97)*Ksat97ww/Kmnrl-

Phi97*Ksat97ww/2.7416)/(1+Phi97-Phi97*Kmnrl/2.7416-
Ksat97ww/Kmnrl); 
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/*########################*/ 
/*#                      #*/ 
/*# Computation for 2001 #*/ 
/*#                      #*/ 
/*########################*/ 
/*======================================*/ 
/* Compute elastic moduli and porosity  */ 
/*======================================*/ 
Gsat01=Vs01*Vs01*Rho01; 
Gdry01=Gsat01; 
Ksat01=Vp01*Vp01*Rho01-4/3*Gsat01; 
Phi01=-0.5401*Rho01+1.4350; 
/*===========================================*/ 
/* Porosity cut-off, indicator1 & indicator2 */ 
/*===========================================*/ 
Low_por=0.001; 
indicator1 = Phi01; 
indicator2 = Phi01; 
index=0; 
while( index < numsamples(Phi01)) 
{  
  if(Phi01[index] < Low_por) 
     { 
       indicator1[index] = 0; 
       indicator2[index] = 0.001; 
     } 
  else      
       indicator1[index] = 1; 
       indicator2[index] = 0;    
index = index +1; 
} 
Phi01=Phi01*indicator1+indicator2; 
/*=================================================*/ 
/* Water-saturated rock consists of average solid  */ 
/*=================================================*/  
Rho01ww=(1-Phi01)*(2.67*(1-Vshm)+2.58*Vshm)+Phi01*1.0038; 
Vs01ww=sqrt(Gsat01/Rho01ww); 
Vp01ww=Vs01ww/0.79+1; 
Ksat01ww=Vp01ww*Vp01ww*Rho01ww-4/3*Gsat01; 
Kmnrl=0.5*((1-Vshm)*38.13+Vshm*23)+0.5*(1/((1-

Vshm)/38.13+Vshm/23)); 
/*=======================================================*/ 
/* Compute the bulk modulus and density of in-situ fluid */ 
/*=======================================================*/  
Kdry01=Kmnrl*(1-(1-Phi01)*Ksat01ww/Kmnrl-

Phi01*Ksat01ww/2.7416)/(1+Phi01-Phi01*Kmnrl/2.7416-
Ksat01ww/Kmnrl); 

/*#####################################*/ 
/*#                                   #*/ 
/*# Computation for common rock frame #*/ 
/*#                                   #*/ 
/*#####################################*/ 
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Phim=0.5*(Phi97+Phi01); 
Rhomww=0.5*(Rho97ww+Rho01ww); 
Kdrym=0.5*(Kdry97+Kdry01); 
/*==================*/ 
/* output selection */ 
/*==================*/ 
Rhomww; 

 162



Appendix E  HRS code for the computation of fluid saturation: 
(2) calculation of fluid saturation 

 
/*========================================*/ 
/* Compute K and density of in-situ fluid */ 
/*========================================*/ 
Gsat97=Vs97*Vs97*Rho97; 
Ksat97=Vp97*Vp97*Rho97-4/3*Gsat97; 
Kmnrl=0.5*((1-Vshm)*38.13+Vshm*23)+0.5*(1/((1-
Vshm)/38.13+Vshm/23)); 
Kf97=Phim*Kmnrl*(Ksat97/(Kmnrl-Ksat97)-Kdrym/(Kmnrl-
Kdrym))/(1+Phim*(Ksat97/(Kmnrl-Ksat97)-Kdrym/(Kmnrl-Kdrym))); 
Rhof97=1.0038-(Rhomww-Rho97)/Phim; 
Kf97rcp=1/Kf97; 
/*============================================*/ 
/* Solve inverse matrix for fluids saturation */ 
/*============================================*/ 
Sw97h=0.2668*Kf97rcp+4.3142*Rhof97-3.4279; 
So97h=-0.4480*Kf97rcp-4.9043*Rhof97+5.0863; 
Sg97h=0.1813*Kf97rcp+0.5900*Rhof97-0.6584; 
Sw97a=0.6486*Kf97-0.9750*Rhof97+0.2004; 
So97a=-1.0894*Kf97+3.9789*Rhof97-1.0074; 
Sg97a=0.4407*Kf97-3.0039*Rhof97+1.8070; 
/*==================================================*/ 
/* Mix saturation-scale hw: weight for fine-mixture */ 
/*==================================================*/ 
hw=0.5; 
Sw97=hw*Sw97h+(1-hw)*Sw97a; 
So97=hw*So97h+(1-hw)*So97a; 
Sg97=hw*Sg97h+(1-hw)*Sg97a; 
/*====================================*/ 
/* Cut-off for Sfluid (-2<=Sfluid<=2) */ 
/*====================================*/ 
/******/ 
/* Sw */ 
/******/ 
Low_Sw=-2; 
High_Sw=2; 
indicatorSw = Sw97h; 
index=0; 
while( index < numsamples(Sw97h) ) 
{  
 if( Sw97h[index] >= Low_Sw && 
     Sw97h[index] <= High_Sw && 
     Sw97a[index] >= Low_Sw && 
     Sw97a[index] <= High_Sw ) 
   { 
     indicatorSw[index] = 1; 
   } 
 else 
     indicatorSw[index] = 0; 
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index = index +1; 
} 
Sw97=indicatorSw*Sw97+(1-indicatorSw); 
/******/ 
/* So */ 
/******/ 
Low_So=-2; 
High_So=2; 
indicatorSo = So97h; 
index=0; 
while( index < numsamples(So97h) ) 
{  
 if( So97h[index] >= Low_So && 
     So97h[index] <= High_So && 
     So97a[index] >= Low_So && 
     So97a[index] <= High_So ) 
   { 
     indicatorSo[index] = 1; 
   } 
 else 
     indicatorSo[index] = 0; 
index = index +1; 
} 
So97=indicatorSo*So97; 
/******/ 
/* Sg */ 
/******/ 
Low_Sg=-2; 
High_Sg=2; 
indicatorSg = Sg97h; 
index=0; 
while( index < numsamples(Sg97h) ) 
{  
 if( Sg97h[index] >= Low_Sg && 
     Sg97h[index] <= High_Sg && 
     Sg97a[index] >= Low_Sg && 
     Sg97a[index] <= High_Sg ) 
   { 
     indicatorSg[index] = 1; 
   } 
 else 
     indicatorSg[index] = 0; 
index = index +1; 
} 
Sg97=indicatorSg*Sg97; 
/*=============================================================*/ 
/* Cut-off (Negative values of Porosity & Shale volume),       */ 
/*          indicator3           */ 
/*=============================================================*/ 
Low_Rhof=0; 
Low_Kf=0; 
Low_Phi=0.1; 
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Up_Vshm=0.5; 
indicator3 = Sw97; 
index = 0; 
while( index < numsamples(Sw97) ) 
{ 
 if( Rhof97[index] > Low_Rhof && 
     Kf97[index]  > Low_Kf && 
     Phim[index] >= Low_Phi && 
     Vshm[index] < Up_Vshm ) 
   { 
      indicator3[index] = 1; 
   } 
 else 
      indicator3[index] = 0; 
index = index +1; 
} 
Sw97=indicator3*Sw97+(1-indicator3); 
So97=indicator3*So97; 
Sg97=indicator3*Sg97; 
/*=================================*/ 
/* Cut-off negative Sw, indicator4 */ 
/*=================================*/ 
Low_Sw=0; 
indicator4 = Sw97; 
index = 0; 
while( index < numsamples(Sw97) ) 
{ 
 if( Sw97[index] < Low_Sw ) 
   { 
      indicator4[index] = 0; 
   } 
 else 
      indicator4[index] = 1; 
index = index +1; 
} 
Sw97=indicator4*Sw97+(1-indicator4); 
/*=================================*/ 
/* Cut-off negative So, indicator5 */ 
/*=================================*/ 
Low_So=0; 
indicator5 = So97; 
index = 0; 
while( index < numsamples(So97) ) 
{ 
 if( So97[index] < Low_So ) 
   { 
      indicator5[index] = 0; 
   } 
 else 
      indicator5[index] = 1; 
index = index +1; 
} 
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So97=indicator5*So97; 
/*=================================*/ 
/* Cut-off negative Sg, indicator6 */ 
/*=================================*/ 
Low_Sg=0; 
indicator6 = Sg97; 
index = 0; 
while( index < numsamples(Sg97) ) 
{ 
 if( Sg97[index] < Low_Sg ) 
   { 
      indicator6[index] = 0; 
   } 
 else 
      indicator6[index] = 1; 
index = index +1; 
} 
Sg97=indicator6*Sg97; 
/*============================*/ 
/* Balance fluids saturation  */ 
/*============================*/  
Sw97=Sw97/(Sw97+So97+Sg97); 
So97=So97/(Sw97+So97+Sg97); 
Sg97=Sg97/(Sw97+So97+Sg97); 
/*==================*/ 
/* Output selection */ 
/*==================*/  
So97; 
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