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Objectives: Conduct theoretical investigations into the effects of fluids and fractures on
anisotropic elastic constants, and consequent constraints on lithology that may be obtained from
seismic parameters.

Project Description: Seismic anisotropy, now widely recognized as a common feature of most
subsurface formations, may lead to significant distortions in conventional seismic processing,
such as errors in velocity analysis, mispositioning of reflectors, and misinterpretation of the
amplitude variation with offset (AVO) response. Seismi anisotropy can arise from aligned
fractures, stress-induced anisotropy, and intrinsic rock fabric anisotropy.  Furthermore,
geophysical characterization of fractured reservoirs via their elastic anisotropy is an extremely
important economical problem, in particular for the continental United States. In tight formation,
which can include sandstones, shales, carbonates, and coal, often the only practical means to
extract fluids is by exploiting the increased drainage provided by fractures. The practical
difficulties that must be overcome before effectively using these fractures include: Locating the
fracture zones, determining the position, orientation, spatial density, and connectivity of
fractures, and characterizing the spatial relationships of fractures to other reservoir
heterogeneities which might enhance or inhibit the fluid flow. It is also important to understand
the similarities and differences between fracture anisotropy ad stress-induced anisotropy.  Stress-
induced anisotropy is specially important for less consolidated sediments.  In this project, we are
developing theoretical models to describe anisotropy in sediments and rocks. Fluids play an
important role in the anisotropy. The presence of fluids is a key interpretation problem for the oil
and gas industry, in amplitude-versus-offset analysis and in fluid substitution modeling using
Gassmann’s equations.

Results from last year: A major portion of our activity this year was focused on laboratory
measurements of the signatures of stress-induced velocity anisotropy.  Details of the work are
given in the attached paper.  We give a brief summary of the results here.
Acoustic properties of rocks and soft sediments are commonly measured under hydrostatic
pressure in the laboratory.  However, the stress fields in the Earth are generally anisotropic.
Moreover, the mechanical properties of sands are sensitive to the stress field and can drastically
affect the borehole stability, and lead to shallow water flows, compaction, and subsidence.
Despite these facts, there is a void in the literature about how to extrapolate acoustic
measurements in sands under hydrostatic pressure to more realistic borehole and field stress
conditions
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As most of the acoustic measurements in rocks are measured in hydrostatic conditions and there
is non-studied equivalence of hydrostatic pressure and polyaxial stress experiments, one goal of
our project  is to compare compressional velocities in sand using hydrostatic and polyaxial
apparatus.  In order to find the equivalence between these apparatus, we simulate hydrostatic
conditions in the polyaxial apparatus. For instance, we designed and implemented a quasi-
hydrostatic stress test that consists in placing a sample under three orthogonal stresses of same
magnitude.
We measured Vp under hydrostatic and quasi-hydrostatic stress conditions.  We found that our
sand samples had depositional fabric anisotropy that is evidenced in the velocities of a quasi-
hydrostatic stress test.  We attribute this effect to layering perpendicular to the direction of
raining grains (sedimentation).  In addition, we compare the results with a previous uniaxial
strain test in the same sand.  This comparison corroborates that the acoustic anisotropy (just
mentioned) is not due entirely to stress.  Moreover, we compare our measurements with
hydrostatic data made in same sand at lower frequency, and also with other data made in finer
sand at lower frequency.  Our results indicate that velocities measured under hydrostatic pressure
are faster than the velocities measured under polyaxial stress.  Nevertheless, further study is
needed.

Plans for next year: During the next year we will continue our laboratory work on the sources
of anisotropy in soft sediments, with a series of experiments on uniaxial compaction under a
variety of conditions.  We will also use the results to theoretically explore the implications of
fabric and stress-induced anisotropy on interpretation of seismic data.  Most analysis at present is
done assuming isotropic rock and sediment models.  Preliminary results suggest that ignoring
anisotropy can introduce systematic errors into interpretation of the seismic signatures of pore
fluid and stress changes.
We will also continue with work on the rock physics signatures of fractured rock, and fluids,
attempting to develop procedures for exploring the realistic range of conditions that might be
encountered in a given field site.


