DC Resistivity
DC Resistivity

Reminder:

Ohm’s Law – $V = I \cdot R$

where
- $V =$ voltage
- $I =$ current
- $R =$ resistance
DC Resistivity

We measure resistivity not resistance:

Resistivity $\rho = \frac{R A}{L}$

Resistance, R

Area, A

Length, L
DC Resistivity

Current flow in the Earth:

Assuming homogeneous resistivity in the Earth!
DC Resistivity

Current flow in the Earth:

<table>
<thead>
<tr>
<th>Current Path</th>
<th>% of Total Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
</tr>
</tbody>
</table>

Still with that homogeneous Earth!
DC Resistivity

Current flow in the Earth:
DC Resistivity

Current flow in the Earth:

Electrode Spacing = 10 m

Electrode Spacing = 25 m

Electrode Spacing = 50 m

Electrode Spacing = 75 m
DC Resistivity

Current flow in the Earth:

For the arrangement below: \(\rho_a = 2\pi aR \)

Where R is the resistance \(\frac{V(P+) - V(P-)}{I} \)
DC Resistivity

Electrode configurations:

General

Wenner

Dipole-dipole

Schlumberger
DC Resistivity

Electrode configurations:

Choice of configuration to use

• Type of structure to be imaged
 Sensitivity of configuration to vertical and lateral variations in resistivity
 Depth of investigation required
 Resolution required

• Sensitivity and type of resistivity meter
 Number of channels

• Signal strength
 Background noise level
DC Resistivity

Electrode configuration sensitivity:

Dipole Dipole
DC Resistivity

Electrode configuration sensitivity:

a) Wenner alpha array
b) Wenner beta array
c) Wenner gamma array
DC Resistivity

Electrode configuration sensitivity:

Wenner-Schlumberger array sensitivity sections

- $n = 1$
- $n = 2$
- $n = 4$

Sensitivity Values (x 0.01)

- 2048
- 1024
- 512
- 256
- 128
- 64
- 32
- 16
- 8
- 4
- 2
- 0
- -2
- -4
- -8
- -16
- -32
- -64
- -128
- -256
- -512
- -1024
- -2048
DC Resistivity

Electrode configuration sensitivity:

Pole Pole
DC Resistivity Imaging:
Developments in multi-electrode systems has led to widespread use of imaging.

A series of measurements are collected at multiple electrode separations (i.e. different survey depths)
DC Resistivity

Applications:

A pseudo section is produced using measured apparent resistivity's.
These data may be inverted to determine a resistivity model that is consistent with the data.
Note that the pseudo section doesn’t always show a structure that resembles the subsurface.

DC Resistivity

Synthetic model

Wenner array pseudosection

Dipole-dipole array pseudosection
Note that the pseudo section doesn’t always show a structure that resembles the subsurface.
DC Resistivity

Sources of noise and errors:

- Electrode polarization
- Contact Resistance
- Proximity to electrical conductors: buried pipes, chain link fences, etc will act as current sinks
DC Resistivity

Electrode Polarization - possible solutions:
DC Resistivity

Contact resistance – possible solutions
DC Resistivity

Instruments:
DC Resistivity

Applications:

Data collection speed will depend on:

- Number of channels in resistivity meter,
- Source frequency (i.e. duration of current injection),
- Stacking requirements

Single channel systems may only be capable of around 400 to 500 measurements per hour. Multi-channel systems can make around 2000 measurements per hour or faster.
DC Resistivity

Applications:

Line 03 – Pole-Pole array

Log_{10} Resistivity (Ωm)

-2.0 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

bedrock alluvial sediments
DC Resistivity

Applications:
DC Resistivity

Applications: Continuous surface imaging for land and marine surveys
DC Resistivity

Applications: Continuous surface imaging for land and marine surveys
DC Resistivity

Applications: Capacitively Couple Resistivity
DC Resistivity

Applications: Capacitively Couple Resistivity
DC Resistivity

Applications: Borehole surveys

Electrodes in two (or more) boreholes can be used to improve resolution with depth – cross-borehole electrical resistivity tomography (ERT)

Stainless steel mesh, copper and lead are common electrode materials.
DC Resistivity

Applications: Borehole surveys

Numerous different types of measurement schemes are possible.
DC Resistivity

Applications: Borehole surveys
DC Resistivity

Applications: Borehole surveys

Can be combined with surface based electrodes to improve resolution
Recall the expected response of the voltage measurement:
DC Resistivity

Induced Polarization

In practice, there is a charge up and charge down response.

This forms the basis of time domain induced polarization measurements.
DC Resistivity

Induced Polarization

Seigel (1959) defined the apparent chargeability as:

\[ma = \frac{V_p}{V_s} \]

Vp is the primary voltage and Vs is the secondary voltage
DC Resistivity

Induced Polarization

\[m_a = \frac{1}{(t_2 - t_1)} \frac{1}{V_p} \int_{t_1}^{t_2} V(t) \, dt \quad \text{(units mV/V)} \]
DC Resistivity

Induced Polarization: macro

Zone ore concentrate

Applied current

Polarisation current
DC Resistivity

Induced Polarization: micro

Grain polarization

Electrolytic polarization
DC Resistivity

Induced Polarization

Vault area IP January 2000

After Kemna, Binley & Slater (2004)
DC Resistivity

Modeling:

Forward Modeling -
Calculating the resistances that would theoretically be ‘measured’ for a given resistivity distribution

Inverse Modeling –
Calculating the resistivity distribution that is ‘consistent’ with the observed (measured) resistances
DC Resistivity

Modeling:

Forward Modeling -

Calculating the resistances that would theoretically be ‘measured’ for a given resistivity distribution

Data (d) \rightarrow \text{Model (m)}
DC Resistivity

Modeling:

Inverse Modeling –

Calculating the resistivity distribution that is ‘consistent’ with the observed (measured) resistances.