AGU Annual Meeting
December 19, 2008

What Does a CO₂ Plume Look Like: Implications for Geophysical Monitoring

Sally M. Benson
Energy Resources Engineering Department
Executive Director, Global Climate and Energy Project
Stanford University
Carbon Dioxide Capture and Geologic Storage is one Way to Reduce Emissions
Some Key Questions

- What fraction of the pore space is used for CO₂ storage?
- How far has the CO₂ move from the injection site?
- Has CO₂ leaked out of the storage reservoir?
- Geophysical monitoring is the primary tool used to answer these questions

So, what does a CO₂ plume look like?
Examples: Seismic Data Collected at Sleipner

From IPCC, 2005, after Chadwick, 2004
Frio Formation
Cross-well Seismic Data

From T. Daley, LBNL
Multi-Phase Flow Dynamics
Key to “What a Plume Looks Like”

At the pore scale, CO₂ occupies the large connected pores. Water occupies the small pores.

Micro-tomogram of a CO₂ and water-filled rock: From L. Tomutsa, LBNL
Schematic of Multi-Phase Flow Apparatus

- pressure transducer
- relief valve
- manual on/off valve
- electric on/off valve
- filter
- check valve
- 3-way valve

CO₂ tank

CO₂

CO₂

Brine

Brine

T°= 5°C

T°res

T°res

T° room

T° room

core holder

D

confining pressure

Pres

back pressure

Ppore

3-way valve

back pressure

brine

separator

T° room

T° room
Multi-Phase Flow Laboratory

Replicate *in situ* conditions
- Pressure
- Temperature
- Brine composition
Influence of Rock Heterogeneity

Low porosity layers have low CO$_2$ saturations

$S_{\text{CO}_2} = 41.40\%$

Waare C Sandstone
Influence of Heterogeneity and Structure

Low porosity units act as capillary barriers diverting CO$_2$ to the top of the core.

CO$_2$ Saturation

Porosity

CO$_2$ saturation

5 cm
Influence of Gravity

In “homogeneous cores”, gravity override diverts CO$_2$ to the top of the core, leaving the lower portions water saturated.

Berea sandstone – “Homogeneous”
Implications for Geophysical Modeling

- CO₂ saturations are variable at a hierarchy of spatial scales, from the pore scale to field scale
- CO₂ saturations are lower than expected when gravity override and heterogeneity are neglected
- Core-scale studies can elucidate primary factors that control small scale variations (10’s of cm)
- Conceptual models capturing realistic variability can be developed based on measurements and modeling at a hierarchy of scales