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This report shows how to efficiently compute the gradient of the log likelihood function for a linear quadratic
estimator implemented by the Kalman filter.

Computing the maximum likelihood estimator requires an optimization algorithm. Gradient-based op-
timization algorithms generally greatly outperform non-gradient methods when a problem is differentiable:
even gradient calculations that are expensive relative to the objective evaluation are justified. Techniques
such as using multiple initial points can increase robustness to poor local optimizers. More generally, a
global optimization method—gradient-based or not—can be used to get close to a good solution, and then
a gradient-based optimization method can find the associated local optimizer.

The gradient can be computed by finite differences, in which case the forward computation must be done
for each parameter that is varied, or analytically, in which case the work involved in the calculation must be
considered.

In this report we use the adjoint method to compute the gradient using work that is a small factor—1
to 2—times the work to run the Kalman filter once if issues related to memory are not considered. Then
we show how to use a dynamic checkpointing algorithm to compute the gradient and the RTS smoother
efficiently given a fixed maximum amount of storage. A small increase in the number of computations is
traded for a large decrease in the maximum memory size.

1 The Kalman filter

We write the Kalman filter as follows. Time indices k are supressed whereever possible; a simple subscript
− indicates the subscripted quantity is from the previous time step, + from the next. It is customary and
useful to divide the operations into the prediction step:

xp = Fxf−

P p = FP f−F
T +Q

and the update or filter step:

z = y −Hxp

S = R+HP pHT

K = P pHS−1

xf = xp +Kz

P f = (I −KH)P p.

The data log likelihood is a function of log detS and zTS−1z; the usual log likelihood is

p ≡ log p̃(y|Y−) = −1

2
(No log 2π + log detS + zTS−1z), (1)

where Y− are the data up to the previous time index, y ∈ RNo , and p̃ is the probability density function.

1.1 Computations

We implement a square-root Kalman filter using the QR factorization. The prediction step is straightfor-
ward and uses a Cholesky factorization. The arguments are F , Q, xf−, and (P f−)c, which is the Cholesky

factorization of P f−. Let Ns be the number of states and No the number of observations. The prediction
step requires O(N3

s ) work.

function [ xp Ppc ] = k f q r s c p r e d i c t (F , Q, xf , Pfc )
% On input ,
% F i s the s t a t e t r a n s i t i o n matrix .
% Q i s the process covar iance .
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% xf = x k −1|k−1
% Pfc = cho l (P k−1|k−1).
% On output ,
% xp = x k | k−1
% Ppc = cho l (P k | k−1).

xp = F∗ xf ;
PfcFp = Pfc∗F ’ ;
% PfcFp ’∗PfcFp i s a s sured l y p . d . , so a s imple cho l works .
Pp = PfcFp ’∗PfcFp + Q;
Ppc = chol (Pp ) ;

end

For

A =

(
Rc 0

P pcH
T P pc

)
,

the Schur complement of (ATA)(1:No,1:No) in ATA is P f = P p−P fHTS−1HP p, where S = HP pHT +R.
Symmetric positive definiteness of the covariance matrices, and so numerical stability, is maintained because
the QR factorization of A yields a factor Ac such that P fc ≡ Ac(No + 1:No + Ns,No + 1:No + Ns), where
P f = (P fc )TP fc , and Sc ≡ Ac(1:No,1:No), where S = STc Sc. The QR factorization requires O((No + Ns)

3)
work.

function [ x f Pfc z Sc ] = k f q r s c upda t e (H, Rc , y , xp , Ppc )
% On input ,
% H i s the s t a t e −> obse rva t i on matrix .
% Rc i s cho l (R) , where R i s the ob se rva t i on covar iance matrix .
% y i s the vec to r o f o b s e r va t i on s .
% xp = x k | k−1
% Ppc = cho l (P k | k−1).
% On output ,
% x f = x k | k
% Pfc = cho l ( P k | k )
% z = y − H∗xp
% Sc = cho l (H P k | k−1 H’ + R) [ i f r eques t ed ] .

[ n m] = s ize (H) ;
A = [ f u l l (Rc) zeros (n ,m) ; Ppc∗H’ Ppc ] ;
[ ˜ , Pfc ] = qr (A, 0 ) ;
% I f reques ted , e x t r a c t cho l (S ) .
i f (nargout > 3)

Sc = Pfc ( 1 : n , 1 : n ) ;
mask = diag ( Sc < 0 ) ;
Sc (mask , : ) = −Sc (mask , : ) ;

end
% Extract the par t o f cho l (A) tha t i s cho l ( P k | k ) , ie , the
% f a c t o r i z a t i o n o f the Schur complement o f i n t e r e s t .
Pfc = Pfc (n+1:n+m, n+1:n+m) ;
mask = diag ( Pfc < 0 ) ;
Pfc (mask , : ) = −Pfc (mask , : ) ;
% Innovat ion
z = y − H∗xp ;
% Fi l t e r e d s t a t e
xf = xp + Pfc ’ ∗ ( Pfc ∗(H’ ∗ (Rc \ (Rc ’ \ z ) ) ) ) ;

end

2 The gradient

The gradient is obtained using Lagrange multipliers, one set for each Kalman filter relation at each time
index. Workers studying ODE- and PDE-constrained optimization and automatic differentiation call this
approach the adjoint method because in those settings it entails solving linear systems involving the adjoints
of the equations obtained from a linearization of the forward problem. The Lagrange multipliers are the
solution to the ajdoint problem, which evolves in the reverse time order of the forward problem.

The gradient is a total derivative. We write the total derivative of f with respect to the vector of
parameters a as daf and the partial derivative as fa.
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2.1 Small and large matrices

We shall need to calculate partial derivatives of matrix functions with respect to matrices, and so we need
to decide on a means to organize the operations.

A small matrix is one of the original matrices like F or Q.
The vectorization operation F (a line on top of F ) forms a vector that stacks the columns of F . The

unvectorization operation v does the opposite: it maps v to a square matrix, filling the columns sequentially;
v is undefined if v ∈ Rn and n is not a square number, but of course we avoid such a case here. In Matlab,
these operations are A(:) and n = sqrt(numel(A)); reshape(A,n,n).

A partial derivative of a scalar quantity with respect to multiple parameters forms a row vector. The
partial derivative of F with respect to Q is a large matrix in which row i corresponds to the partial derivatives
(F i)Q, a row vector.

As an example of these operations, for A ∈ RN×N , A ∈ RN2×1 and AA = I ∈ RN2×N2

.

Rewriting (log detC)C = C−1 using the vectorization operation yields (log detC)C = C−1
T

. Similarly,

(zTC−1z)C = −qqT
T

for q ≡ C−1z.
An alternative convention is to use index notation. For example, later we shall write

η̃
T
f
PP = η̃

T
Xf

PP =
1

2
(η̃ + η̃T )f

PP = ηT f
PP .

We can write this using index notation as

η̃ij(fij)Pp
mn

= η̃ijXijop(fop)Pp
mn

=
1

2
(η̃ij + η̃ji)(fij)Pp

mn
= ηij(fij)Pp

mn
.

Which form is preferable is a matter of taste. We prefer the first for two reasons. First, formulas are not
cluttered with indices. Second, operations map directly to BLAS level 2 and 3 routines. A formula using
index notation must eventually be transformed, at least implicitly, to one using vectorization notation when
it is programmed.

2.2 Symmetrization

Certain of the Lagrange multipliers can inherit the symmetry of the covariance matrices if the derivatives are
suitably arranged. Symmetry in these multipliers is very beneficial for numerical stability because analytical
symmetry allows us to enforce numerical symmetry, which stabilizes finite-precision computations; a square-
root Kalman filter uses the same idea as part of enforcing positive definiteness. The algebraic manipulations
necessary to obtain symmetry can be pushed to the final part of each calculation. We make some preliminary
observations for later use.

Let S ∈ ×RN×N be a symmetric matrix, and consider the total derivative daS. S has K = N(N + 1)/2
independent entries rather than N2. Let these independent degrees of freedom be σ ∈ RK×1, and write
S(σ). Then daS = Sσ daσ.

We can decompose Sσ into the product of two matrices X ∈ RN2×N2

, Y σ ∈ RN2×K : Sσ = XY σ, where
for square A, the symmetric large matrix X operates on A so that XA = 1

2 (A+AT ).

X can be written as 1
2 (I + T ), where AT = TA. T is symmetric. For if element (i, j) of TA is element

(m,n) of A, then element (m,n) of TA is element (i, j) of A.
Y σ is the same as the matrix Sσ except that any row corresponding to Sij for i > j (it could be defined

with the opposite inequality) is all zero.
Let f be a scalar function of S. Then

daf(S) = fS Sσ daσ = fS X Y σ daσ =
1

2
(fS + fS

T ) Y σ daσ.

If every column of a large matrix M is a symmetric small matrix when vectorized, then M = XM since
X is idempotent when acting on a vectorized symmetric matrix.

A property of the Kronecker product is that (A⊗B)V = BV AT .
If A = AT , then (A ⊗ A)X = X(A ⊗ A). Proof: Let v ≡ V and similarly for u, and u ≡ Xv(=

1
2 (U + U

T
). First, (A⊗A)Xv = (A⊗A)u = AUA. Second, X(A⊗A)v = XAV A = 1

2 (AV A+ (AV A)T ) =
1
2A(V + V T )A = AUA, as in the first case.
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2.3 The Lagrangian

Let us consider a simple problem to illustrate the overall structure of the calculation. Suppose we have the
scalar function f(x, a), where x ∈ RN×1 and a is a vector of parameters, subject to g(x, a) = 0 and we
want daf . Define the Lagrangian L ≡ f(x, a) + λT g(x, a). As g(x, a) = 0, the total derivative daf = daL =
fa + fxdax + λT (ga + gxdax) = fa + λT ga + (fx + λT gx)dax. If λ is chosen so that fx + λT gx = 0, then
daf = fa + λT ga. λ is found by solving the adjoint equation gTx λ = −fTx .

2.3.1 The initial setup

The Lagrangian for the log likelihood is obtained by associated a vector or matrix of Lagrange multipliers
with each relation in the Kalman filter for each time index. First we encode the Kalman filter in a set of
equations:

b ≡ xp − Fxf− = 0

g ≡ P p − FP f−FT −Q = 0

s ≡ S −R−HP pHT = 0

c ≡ xf − xp −Kz = 0

f ≡ P f − (I −KH)P p = 0.

Then we define the Lagrangian; here it’s useful to make the T time indices k explicit:

L ≡
T∑
k=1

pk + λ̃
T

k sk + µ̃
T
k gk + η̃

T
k fk + βTk bk + γTk ck.

The tildes on λ̃, µ̃, and η̃ are meant to indicate that these multipliers will be replaced by undecorated versions
shortly when we symmetrize the problem. Next we obtain the total derivative with respect to a vector of
parameters a whose role is as yet unspecified. In what follows we suppress all time-index subscripts for the
current time index:

daL =

T∑
k=1

pSdaS + pxpdax
p+

λ̃
T

(sa + sSdaS + sPpdaP p)+

µ̃
T

(ga + gPpdaP p + g
P f

k−1
daP f k−1)+

η̃
T

(fa + fPpdaP p + f
P f daP f + fSdaS)+

βT (ba + bxpdax
p + bxf

k−1
dax

f
k−1)+

γT (ca + cxpdax
p + cxf dax

f + cPpdaP p + cSdaS),

where setting P f0 = 0 and xf0 = 0 allows all iterations to appear the same. Then we factor out the total
derivatives:

daL =

T∑
k=1

λ̃
T

sa + µ̃
T
ga + η̃

T
fa + βT ba + γT ca+

(pS + λ̃
T

sS + η̃
T
fS + γT cS) daS+

(λ̃
T

sPp + µ̃
T
gPp + η̃

T
fPp + γT cPp) daP p+

(η̃
T
f
P f + µ̃

T
k+1(gk+1)

P f ) daP f+

(pxp + βT bxp + γT cxp) dax
p+

(βTk+1(bk+1)xf + γT cxf ) dax
f ,

where µ̃T+1 = 0 and βT+1 = 0.
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2.3.2 Symmetrization

At this point we want to modify the problem so that the Lagrange multipliers λ, µ, and η are symmetric
matrices.

Later we shall show how to compute each partial derivative. For now we take it as given that each large
matrix with which the tilded multipliers are multiplied have one of the following three properties.

1. The large matrix is I. This is true of, for example, sS . Then λ̃
T

sSX = λ̃
T

IX = λ̃
T

X = λ
T

.

2. It has columns that are all vectorizations of small symmetric matrices. For example, in η̃
T
fPp , each

column of fPp is a vectorized small symmetric matrix. Therefore, fPp = XfPp , and similarly for the

others. Let λ̃ = Xλ̃ and similarly for µ and η. Then, for example, η̃
T
fPp = η̃

T
XfPp = ηT fPp .

3. If A is symmetric, then (A ⊗ A)X = X(A ⊗ A), as we showed earlier. Therefore, in the partial
derivatives of matrix-valued functions that use this operation, X can be shifted left.

Furthermore, we can assume quite sensibly that each of sa, fa, and ga are small symmetric matrices,
as otherwise varying the parameter a would cause a covariance matrix to become unsymmetric. Hence, for
example, sa = Xsa.

Next, recall that, for example, daS = SσXY
σdaσ for σ a vector of independent elements of the symmetric

matrix S. Corresponding to σ for S, we introduce ρ for P p and ζ for P f . Because S, P p, and P f are of the
same size, the same matrices X and Y σ relate the total derivative of the matrix to the total derivative of its
vector of independent elements.

Putting these ideas together, we rewrite the gradient as

daL =

T∑
k=1

λ
T
sa + µT ga + ηT fa + βT ba + γT ca+

(pS + λ
T

+ ηT fS + γT cS) XY σdaσ+

(λ
T
sPp + µT + ηT fPp + γT cPp) XY ρdaρ+

(ηT + µTk+1(gk+1)
P f ) XY ζdaζ+

(pxp + βT bxp + γT cxp) dax
p+

(βTk+1(bk+1)xf + γT cxf ) dax
f .

The following algebraic manipulations were used:

1. In the first line, λ̃
T

sa = λ̃
T

Xsa = λ
T
sa, and similarly for µT ga and ηT fa.

2. In each of the first three parenthesized expressions, λ̃
T

sSX = λ̃
T

IX = λ̃
T

X = λ
T

and similarly for
µT and ηT by property 1 above.

3. In these same expressions, η̃
T
fPp = η̃

T
XfPp = ηT fPp by property 2 above.

4. In these same expressions, λ
T
X = λ

T
and similarly for µT and ηT , which allows us to keep X factored

out by property 2 above.

5. In these same expressions, η̃
T
fS = η̃

T
XfS = ηT fS and similarly for λ

T
sPp and µTk+1(gk+1)

P f by
property 3 above.

If we choose the Lagrange multipliers so that every expression in parentheses is 0, then the gradient

g ≡ da
T∑
k=1

q = daL =

T∑
k=1

λ
T
sa + µT ga + ηT fa + βT ba + γT ca. (2)

The steps to calculate the gradient are as follows:
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1. Set µT+1 = 0 and βT+1 = 0.

2. For k from T down to 1:

(a) Solve for ηk: ηT f
P f + µTk+1(gk+1)

P fX = 0

and for γk: βTk+1(bk+1)xf + γT cxf = 0.

(b) Solve for λk: pS + λ
T
sS + ηT fS + γT cS = 0.

(c) Solve for µk: λ
T
sPp + µT gPp + ηT fPp + γT cPpX = 0

and for βk: pxp + βT bxp + γT cxp = 0.

2.4 Computations

To be efficient, the gradient calculation must take at most a small constant of about 1 times the time to run
the Kalman filter. Recall that each step of the QR-based square-root Kalman filter requires O((Ns +No)

3)
work. We describe each computation necessary to calculate the gradient and find that the work per time
step is O(N2

sNo +NsN
2
o ) and so is efficient.

The simple partial derivatives are these:

sS = gPp = f
P f = I

bxp = cxf = I

(bk)xf
k−1

= −Fk

cxp = −I +KH.

Partial derivatives in the parameter a of course depend of the particular model.
Two operations necessary to compute certain partial derivatives are important to implement correctly.

They involve matrix-vector products with large matrices that either are numerically dense but have low-rank
structure or have many structural zeros. The first computes yT = νT (ABAT )A for B = BT , ν = νT . If

the small matrices A,B ∈ RN×N , then the large matrix (ABAT )A ∈ RN2×N2

. However, this large matrix
has many structural zeros. Taking advantage of these, the matrix-vector product can be implemented as
y = 2νAB, which is an O(m2n + mn2) operation for A ∈ Rm×n. As B = BT , (ABAT )Aij

is symmetric.
Hence each column of (ABAT )A is the vectorization of a symmetric small matrix, and so (ABAT )A = X =
(ABAT )A.

The second operation computes yT = νT (A⊗A), where ⊗ is the Kronecker product. If the small matrix
A is completely dense, then so is the large matrix A⊗A. Fortunately, the large matrix has low-rank structure
that again makes the matrix-vector product cubic rather than quartic in the size of A. The operation can
be implemented as y = AT νA, which is also an O(m2n + mn2) operation. We have already shown that if
A is symmetric, then X(A ⊗ A) = (A ⊗ A)X, a property necessary for symmetrization. We shall use the
operation yT = νT (A⊗A) frequently, and so we write A⊗(ν,A) ≡ νT (A⊗A).

Each term in which the Lagrange multiplier is a small matrix involves either the operation A⊗ for
symmetric A or a partial derivative of the form (ABAT )A. Hence the symmetrization of the terms in the
Lagrangian can be implemented in the manner we discussed.

Now we complete the calculations:

(zTC−1z)C = −qqT , where q = C−1z

νTC−1
C = −A⊗(ν, C−1)

νT (ABAT )B = A⊗(ν,A)

νT (AB−1AT )B = νT (AB−1AT )
B−1B−1

B = −A⊗(A⊗(ν,A), B−1).

For vectors v and b,

(vTAb)A = vbT

(vTA−1b)A = (vTA−1b)A−1

T
A−1

A = −A⊗(vbT , A−1).
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Finally, we uses these calculations to implement the remaining partial derivatives:

µTk+1(gk+1)
P f

k

= −µTk+1(Fk+1P
f
k F

T
k+1)

P
f
k

= −A⊗(µk+1, Fk+1)

βTk+1(bk+1)xf
k

= −βTk+1F

ηT fS = ηT (P pHTS−1HP p)S = −A⊗(A⊗(η, P pHT ), S−1)

γT cS = −γTP pHTS−1z = A⊗((γTP pHT )T zT , S−1)

ηT fPp = ηT (−I + (P pHTS−1HP p)Pp = −ηT + 2ηP pV TV , V = S−T
c H

λ
T
sPp = −λT (HP pHT )Pp = A⊗(λ,H)

γT cPp = −γT (P pHTS−1z)Pp = −γHTS−1z

γT cxp = −γT + γTP pV TV

pzzxp = −pzH.

If p is the log likelihood of the normal distribution and q = S−1z,

pS = −1

2
((log detS)S + (zTS−1z)S) = −1

2
(S−1

T
− qqT

T
) (3)

pz = −zTS−1. (4)

2.5 Code

We provide a Matlab implementation of these calculations. First, the individual computations follow.

function p = Calc vt kronAA (v , A, vissym )
% For v = v ’ i f vissym , genera l v otherwise , compute
% p = v ( : ) ’ ∗ kron (A,A) ;
% e f f i c i e n t l y . This s t r a i g h t f o rwa rd ver s ion i s O(Nˆ2 Mˆ2) fo r [M N] =
% s i z e (A) . The e f f i c i e n t ver s ion tha t f o l l ow s i s O(mˆ2 n + nˆ2 m) .

[m n ] = s ize (A) ;
i f ( vissym )

v = reshape (v , m, m) ;
v = v − diag (diag ( v ) ) / 2 ;
p = A’∗ triu ( v )∗A;
p = p + p ’ ;

else
p = A’ ∗ ( reshape (v , m, m)∗A) ;

end
p = p ( : ) ’ ;

end

function v = Calc vt invC C (v , Ci )
% For C = R’ R, re turn
% z ( : ) ’ inv (C) C .

v = −Calc vt kronAA (v , Ci , f a l s e ) ;
end

function v = Calc vt ABAt B (v , A)
% For B = B’ , v = v ’ , re turn
% v ( : ) ’ (A B A’ ) B .

v = Calc vt kronAA (v ( : ) , A, t rue ) ;
end

function v = Calc vtAb A (v , b)
% Return (v ’ A b ) A .

v = v ( : ) ∗ b ( : ) ’ ;
end

function v = Calc vtinvAb A (v , Ai , b )
% Return (v ’ inv (A) b ) A fo r A = A’ .

n = s ize (Ai , 1 ) ;
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v = Calc vtAb A (v ( : ) , b ) ;
v = reshape ( Calc vt invC C (v ( : ) , Ai ) , n , n ) ;

end

function v = Calc vt AinvBAt B (v , A, Bi )
% For B = B’ , v = v ’ , Bi = inv (B) , re turn
% v ( : ) ’ (A inv (B) A’ ) B .

% v ’ (A inv (B) A’ ) B = v ’ [ (A inv (B) A’ ) inv (B) ] [ inv (B) B ]
v = Calc vt kronAA (v , A, t rue ) ;
v = −Calc vt kronAA (v , Bi , t rue ) ;

end

function p = Calc vt ABAt A (v , A, B)
% For B = B’ , v = v ’ , re turn
% v ( : ) ’ (A B A’ ) A .
% This i s an O(mˆ2 n + m nˆ2) opera t ion fo r [m n ] = s i z e (A) .

m = s ize (A, 1 ) ;
v = reshape (v , m, m) ;
% I f v were unsymmetric , we would use t h i s :
% p = (v ’ + v )∗A∗B;
p = 2∗v∗A∗B;
p = p ( : ) ’ ;

end

function A = Sym (A)
% Return (A + A’ ) / 2 .

n = sqrt ( numel (A) ) ;
A = reshape (A, n , n ) ;
A = (A + A’ ) / 2 ;
A = A( : ) ’ ;

end

Putting these together, one step of the adjoint calculation is implemented as follows.

function [ lambda mu eta beta gamma] = k f g rad ( . . .
Fp1 ,H, Sc , Si , p S , p z , z ,Pp ,mup1 , betap1 )

% [ lambda mu eta be ta gamma] = k f g rad (F, Fp1 ,H, Sc , Si , p S , p z , z ,Pp ,mup1 , betap1 )
% Carry out one time s t ep o f computing the grad i en t o f p (S) wrt to the
% hyperparameters .
% p(S) i s something l i k e a l o g l i k e l i h o o d .
% S = Sc ’∗ Sc , where Sc i s from k f q r s c upda t e .
% Si = inv (S ) . Ca l l Si = k f g rad Ca lc invC (Sc ) to ge t Si .
% F, Fp1 , H are the usua l Kalman f i l t e r matr ices . Fp1 i s F at the next time
% index .
% p S i s the p a r t i a l d e r i v a t i v e o f p wrt S . You w i l l l i k e l y use
% Si = k f g rad Ca lc invC (Sc )
% kf grad Calc LogDetC C ( Si )
% k f g rad Ca l c z t invCz C ( z , Sc )
% to compute p S , where z = y − H∗xp . For example , i f p i s j u s t the usua l l o g
% l i k e l i h o o d so that , n e g l e c t i n g a constant term ,
% p = − 1/2 l o g ( det (S )) − 1/2 z ’ inv (S) z ,
% then
% p S = −0.5∗ kf grad Calc LogDetC C ( Si ) − 0.5∗ k f g rad Ca l c z t invCz C (Sc , z ) .
% p z i s the p a r t i a l d e r i v a t i v e o f p wrt z = y − H∗xp . For p as above ,
% p z = −Sc \ ( z ’ / Sc ) ’ % = inv (S) z .
% mup1 , betap1 are mu and be ta from s t ep k+1, where t h i s i s cu r r en t l y s t ep
% k . Set mu = zeros (Nˆ2 ,1) and be ta = zeros (N,1 ) f o r the f i r s t c a l l to t h i s
% func t ion .
% Pp i s the pred i c t i on−s t ep covar iance matrix .
% The outputs lambda and mu are used to c a l c u l a t e the g rad i en t . The t o t a l
% d e r i v a t i v e wrt hyperparameter a i s
% sum {k = 1}ˆN −lambda k ’ R a ( : ) − mu k ’ Q a ( : ) ,
% where R a , Q a are p a r t i a l d e r i v a t i v e s o f R and Q. In many cases , R a and Q a
% are almost e n t i r e l y zero and the nonzero s t r u c t u r e i s known ; i t ’ s important to
% take advantage o f t he se f a c t s in order to make the grad i en t computation
% e f f i c i e n t .

[ no ns ] = s ize (H) ;
ns2 = ns ˆ2 ;
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no2 = no ˆ2 ;
vec = @(x ) x ( : ) ;
% Solve
% eta k ’ f {Pf k } + mu {k+1} ’ g {Pf k } = 0
% for e ta .
eta = Calc vt ABAt B (mup1 , Fp1 ) ; % −mu {k+1} ’ g Pf
% Not needed because Calc vt ABAt B take s care o f i t i m p l i c i t l y :
% eta = Sym( eta ) ;
% So lve
% be t a {k+1} ’ ( b {k+1}) { x f k } + gamma k ’ c { x f k } = 0
% for gamma.
gamma = betap1 ( : ) ’ ∗Fp1 ; % −b e t a {k+1} ’ b x f
% So lve
% p {S k} + lambda k ’ s {S k} + eta k ’ f {S k} + gamma k ’ c {S k} = 0
% for lambda .
lambda = −p S ( : ) ’ + . . .

−Calc vt AinvBAt B ( eta , Pp∗H’ , S i ) + . . . % −eta ’ f S
vec ( Calc vtinvAb A ( (gamma∗Pp)∗H’ , Si , z ) ) ’ ; % −gamma’ c S

lambda = Sym( lambda ) ;
% Solve
% lambda k ’ s {Pp k} + mu k ’ g {Pp k} + eta k ’ f {Pp k} +
% gamma k ’ c {Pp k} = 0
% for mu.
V = Sc ’ \ H;
S i z = Sc \ ( z ’ / Sc ) ’ ;
mu = eta − Calc vt ABAt A ( eta , Pp , V’∗V) + . . . % −eta ’ f Pp

Calc vt ABAt B ( lambda , H) + . . . % −lambda ’ s Pp
vec ( Calc vtAb A (gamma, H’∗ S i z ) ) ’ ; % −gamma c Pp

mu = Sym(mu) ;
% Solve
% p { x f k } + beta k ’ b { xp k } + gamma k ’ c { xp k } = 0
% for be ta .
beta = gamma − ( (gamma∗Pp)∗V’ ) ∗V + . . . % −gamma’ c xp

p z ( : ) ’ ∗H; % −p z z xp
end

3 Storage associated with the adjoint method

A practical loss of speed could result from having apparently to store at least the factorization of each P pk ;
for large problems, such storage makes disk I/O necessary.

One might think that an alternative is to reverse the per-step computations and thereby have only to
store a small amount of data independent of the number of time steps. However, reversing the Kalman filter
is numerically unstable; moreover, numerical tests show loss of stability occurs quickly, so it seems unlikely a
simple method of stabilizing the computation (e.g., adding a factor times identity to a covariance matrix that
has lost definiteness) will work in general. The key observation is that the forward covariance computations
can be written as

P p = FP f−F
T +Q

(P f )−1 = (P p)−1 +HTR−1H.

Hence the forward computations include summing two positive definite (pd) matrices and taking the inverse
of the sum of the inverses of two pd matrices. These operations are inherently stable because in both cases
two pd matrices are summed; regardless of their values, as long as they are pd, the outputs are pd, and so
the computations are stable. Reversing these operations requires something like these operations:

(P p)−1 = (P f )−1 −HTR−1H

P f− = F−1(P p −Q)F−T .

In both steps a pd matrix is subtracted from another. Indefiniteness can result due to finite precision
arithmetic even if the true result is pd. Moreover, if R, say, is sufficiently large relative to (P f )−1, then
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(P p)−1 actually is indefinite in exact arithmetic. Hence these computations on their own need not produce
pd outputs: even in exact arithmetic, external knowledge must be provided to prove that the output matrices
are pd.

A better alternative is to use a checkpointing procedure; the problem of finding the gradient of the like-
lihood computed by a Kalman filter fulfills the conditions that make Griewank’s revolve provably optimal.
As an example, if one has 3650 time steps and memory to hold only 100 covariance matrices, revolve re-
quires extra forward computations that produce a slowdown of less than a factor of 2; with just 10 matrices,
less than 5. This factor should be multiplied with the factor associated with the adjoint computation. Hence
it is quite likely that we can in practice compute the gradient in between 4 and 10 times as long as running
the basic Kalman filter with no storage.

We can use this same procedure when running the RTS smoother.
Greiwank’s program revolve was downloaded from TOMS and a mex interface written. We compared

two versions of the gradient calculation. Our experience is that in general the non-checkpointing version
with disk I/O is faster than the checkpointing version using main memory but number of checkpoints less
than the number of time steps. Hence we believe the only reasons to use the checkpointing version are (1)
the amount of disk storage necessary is greater one has or (2) I/O is particularly slow relative to FLOPS
and memory access.

4 An example

The package kfgs contains these Matlab routines and routines to compute the Kalman filter, smoother, and
likelihood gradient. We show an example of usage. First, create a random problem using this routine:

function p = RandProb (m, n , nt )
% m sta t e s , n observa t ions , nt time s t ep s .

p .F = randn(m) ;
p .H = randn(n , m) ;
p . Pp0 = randn(m) ; p . Pp0 = p . Pp0 ’∗p . Pp0 ; p . Pp0c = chol (p . Pp0 ) ;
p . x0 = randn(m, 1 ) ;
p .Y = randn(n , nt ) ;
p .Q = randn(m) ; p .Q = p .Q’∗p .Q;
p .R = randn(n ) ; p .R = p .R’∗p .R; p . Rc = chol (p .R) ;

end

Create a problem instance:

% Set up a random problem . p ho ld s F, H, Q, R, e t c .
Ns = 10 ; % number o f s t a t e s
No = 5 ; % number o f ob s e r va t i ons
Nt = 100 ; % number o f time s t e p s
Nstack = 20 ; % number o f checkpo in t s l o t s
p = RandProb (Ns , No , Nt ) ;

In this example problem, we will consider two cases: first, the gradient of the log-likelihood function
with respect to the diagonal elements of R and Q; second, the gradient with respect to a scalar multiple
of R and another of Q. In this second case of only two optimization variables, a finite-difference gradient
approximation is just as efficient or more efficient than kfgs, but it is meant only as illustration. In the
first case, for most values of Ns and No, kfgs is far more efficient than a finite-difference gradient. In this
example, control this choice as follows:

% 1 or 2 . Test d i f f e r e n t types o f parameter i za t ions .
p . g r ad t e s t = 2 ;

We use checkpointing with checkpoints stored in memory. Initialize the memory buffer:

r = k f r cd ( ’ i n i t ’ , ’mem’ ) ;

The core routines are kf loglik grad and kf loglik grad cp, where the first stores data for all time steps
and the second uses checkpointing. Each requires the memory buffer, a function handle that we describe in
a moment, and problem size data. The checkpointing version additionally requires the maximum permitted
buffer size. (In Matlab, type help function-name for all these routines for usage details.)
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[ f g ] = k f l o g l i k g r a d c p ( . . .
r , @( vararg in ) k l f n (p , vararg in { : } ) , Ns , Nt , . . .
Nstack ∗(Ns+1)∗Ns ∗8 ) ;

An optional function handle that is called at each time step allows the client access to all the data, e.g., for
recording.

kl fn implements the client’s state-space model. It returns data at the request of dfgs. key indicates
the type of data. tidx is the time index (starting at 1). varargin contains input data associated with key.

function varargout = k l f n (p , key , t idx , vara rg in )
switch ( key )

case ’ i ’
% I n i t i a l cond i t i ons .
varargout ( 1 : 2 ) = {p . x0 p . Pp0c } ;

case ’ f ’
% State−space t r an s i t i o n matrix .
varargout {1} = p .F ;

case ’ fq ’
% State−space t r an s i t i o n matrix and process covar iance .
varargout ( 1 : 2 ) = {p .F p .Q} ;

case ’h ’
% Observat ion matrix .
varargout {1} = p .H;

case ’ hry ’
% Observat ion matrix , cho l ( ob se rva t i on covar iance ) , o b s e r va t i ons at
% time index t i d x .
varargout ( 1 : 3 ) = {p .H p .Rc p .Y( : , t idx ) } ;

case ’ l l ’
% Contr ibut ion to log− l i k e l i h o o d at time index t i d x .
[ Sc z ] = dea l ( vara rg in { 1 : 2 } ) ;
q = z ’ / Sc ;
varargout {1} = −sum( log (diag ( Sc ) ) ) − 0 .5∗ q∗q ’ ;

case ’p ’
% Par t i a l d e r i v a t i v e s o f the log− l i k e l i h o o d term at time index t i d x
% with r e spec t to S = R + H Pp H’ and z = y − H xp .
[ Sc S i z ] = dea l ( vara rg in { 1 : 3 } ) ;
p S = −0.5∗( kf grad Calc LogDetC C ( Si ) + kf grad Ca lc z t invCz C ( z , Sc ) ) ;
p z = −Sc \ ( z ’ / Sc ) ’ ;
varargout = {p S p z } ;

case ’ g ’
% Contr ibut ion o f the term for time index t i d x to the grad i en t o f the
% log− l i k e l i h o o d func t i on .
% I f t i d x == 1 , there was no p r ed i c t i on and so no Q. However , t he re was
% a f i l t e r ( ’ update ’ ) .
[ lambda mu] = dea l ( vara rg in { 1 : 2 } ) ;
switch (p . g r ad t e s t )

case 1
% Gradient wrt to d iagona l e lements o f R and Q.
[m n ] = s ize (p .H) ;
i f ( t idx > 1) mu1 = diag ( reshape (mu, n , n ) ) ;
else mu1 = zeros (n , 1 ) ; end
varargout {1} = −[mu1 ; diag ( reshape ( lambda , m, m) ) ] . ’ ;

case 2
% Gradient wrt a s ca l a r mu l t i p l e o f R and Q.
i f ( t idx > 1) mu1 = mu( : ) ’ ∗ p .Q( : ) ;
else mu1 = 0 ; end
varargout {1} = −[mu1 , lambda ( : ) ’ ∗ p .R ( : ) ] ;

end
end

end
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Keys i, f, fq, h, and hry return data for the state-space model. Key ll implements (1) and key p implements
(3) and (4). The routines kf grad Calc LogDetC C and kf grad Calc ztinvCz C are available in kfgs for
convenience in this and similar calculations. Finally, key g implements (2). This calculation is the most
complicated. In most problems, parameters (sometimes called hyperparameter) are used only in Q and
R; hence only Lagrange multipliers λ and µ are used. Equations s = 0 (associated with λ) and g = 0
(from Section 2.3.1) respectively involve −R and −Q. Therefore, for a parameter a, the partial derivatives
sa = −Ra and ga = −Qa in (2), and the other terms are 0. The form of Ra depends on how R depends on
a; the example shows two cases. In the second, R ≡ aR̂, where R̂ is constant, and so Ra = R̂, and similarly
for Q. In the first case, each diagonal element is a parameter.
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