Tracking the onset of Phanerozoic-style redox-sensitive trace metal enrichments: New results from basal Ediacaran post-glacial strata in NW Canada

Austin J. Miller a, Justin V. Strauss b, Galen P. Halverson c, Francis A. Macdonald d, David T. Johnston d, Erik A. Sperling a,⁎

a Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
b Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
c Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, H3A 2A7, Canada
d Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA

A global rise in oxygen levels has been proposed to coincide with the Ediacaran to Cambrian radiation of animals, yet the precise timing and nature of this change remains unresolved. One hypothesis is that the ocean/atmosphere system became temporarily well-oxygenated in the earliest Ediacaran, directly following the Marinoan Snowball Earth glaciation (~635 Ma). The evidence for oxygenation is based on large enrichments of redox-sensitive trace elements in black shale from South China presumably deposited under a euxinic water column. These enrichments meet or exceed the bulk concentrations of redox-sensitive trace elements found in Phanerozoic shelf deposited under euxinic water columns. Here we test the early Ediacaran post-Snowball oxygenation hypothesis with new data from a high-resolution, multi-proxy geochemical and sedimentological study of three stratigraphic sections in the earliest Ediacaran Sheepbed Formation of the Mackenzie and Wernecke Mountains, NW Canada. Iron speciation data from all sections suggest that the local water column was dominantly ferruginous, with a notable exception of probable euxinic conditions recorded in part of one section. Redox-sensitive elements show no appreciable enrichments in the basal Sheepbed Formation, with maximum concentrations of molybdenum, vanadium, uranium and chromium only slightly above world average shale values. The lack of substantial enrichment within the Sheepbed Formation is consistent with results from coeval ferruginous strata in Svalbard. The dominance of local ferruginous conditions in NW Canada cannot alone account for the substantial elemental enrichments within the Sheepbed Formation is consistent with results from coeval ferruginous strata in Svalbard. The dominance of local ferruginous conditions in NW Canada cannot alone account for the substantial elemental enrichments within the Sheepbed Formation and samples deposited under euxinic conditions also lack Phanerozoic-style enrichments. These contrasting results from different localities highlight a need to further investigate the veracity of trace metal enrichments in all localities as representing global redox conditions as the results have important implications for the timing of oxygenation with respect to early animal evolution.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Ediacaran Period (ca. 635 Ma–541 Ma) witnessed a variety of profound environmental changes, including the termination of low-latitude Snowball Earth glaciations, large perturbations to the geochemical cycles of carbon and sulfur, and dynamic redox shifts in the Earth’s ocean/atmosphere system (Fike et al., 2006; Halverson et al., 2010; Lyons et al., 2014). During this pivotal time in Earth’s history, there was a radical shift in the fossil record from mostly microscopic prokaryotic assemblages to large, complex macrofossils in the mid- to late-Ediacaran and finally to the shelly animal fauna of the Cambrian (Xiao and Laflamme, 2009; Erwin et al., 2011). Although the relationship is not established with certainty, a rise in oxygen is commonly believed to have played a fundamental role in biological evolution through the Ediacaran-Cambrian transition, acting either directly in factors such as body size, or indirectly in allowing for the evolution of predators and a resulting predator-prey ‘arms race’ (Sperling et al., 2013a).

Geochemical redox proxies from global sedimentary successions have been used to reconstruct an array of temporal hypotheses for the timing of ocean/atmosphere oxygenation during the terminal Neoproterozoic. Initial studies, focused on iron speciation and sulfur isotopes (δ34S), proposed widespread oxygenation following the ca. 580 Ma Gaskiers glaciation (Canfield et al., 2007; Fike et al., 2006). In
contrast, more recent work focused on redox-sensitive element (RSE) enrichments from South China has promoted a more nuanced oxygenation history, where oxygen levels rose substantially in the earliest Ediacaran following the ca. 635 Ma Marinoan glaciation (Sahoo et al., 2012). This evidence lends support to the hypothesis that a post-glacial nutrient surplus fueled ocean oxygenation (Elle et al., 2007; Kirschvink et al., 2000; Kunzmann et al., 2013, 2015; Planavsky et al., 2010). The evidence for high oxygen levels (based on RSE enrichments; discussed below) abruptly disappears in the early Ediacaran (Sahoo et al., 2012), leading to the suggestion that this transitory first spike in oxygen levels was one of several transitory Ocean Oxygenation Events (OOEs) punctuating a generally reducing Ediacaran ocean (Sahoo et al., 2016).

Redox-sensitive elements have great utility in addressing the global areal extent of oxic conditions at the sediment-water interface. Many of these elements have relatively low crustal abundances and low riverine fluxes from oxidative weathering in surface environments (Emerson and Huested, 1991; Turekian and Wedepohl, 1961). These attributes, combined with their long residence times in seawater, allow them to be used to track the global ocean redox state (Emerson and Huested, 1991). For elements such as uranium, molybdenum, vanadium and chromium, deposition in sediment under reducing water columns is their most effective sink (Emerson and Huested, 1991; Tribovillard et al., 2006). Therefore, the major control on the RSE concentrations in seawater is the geographic extent of these sediment sinks, specifically the global proportion of reducing versus oxic conditions at the sediment-water interface (Algeo, 2004; Emerson and Huested, 1991; Gill et al., 2011; Morford and Emerson, 1999; Owens et al., 2016; Partin et al., 2013; Pearce et al., 2008; Reinhardt et al., 2013; Sahoo et al., 2012; Sahoo et al., 2016; Scott et al., 2008). If the area of reducing environments is expanded beyond a critical threshold, the sinks outpace the source flux, resulting in a net decrease of RSE concentrations in seawater (Fig. 1; Sahoo et al., 2012; Scott et al., 2008). Because authigenic sediment enrichment is positively correlated to seawater RSE concentrations (e.g., Algeo and Lyons, 2006; Scott et al., 2013a), sediment deposited under anoxic water columns during times of globally expansive reducing conditions will display comparatively low RSE enrichments. The opposite is also true—as oceans become well-oxygenated, seawater RSE concentrations should increase globally, resulting in a distinct fingerprint of high RSE enrichments in local anoxic sedimentary basins, akin to those recorded in Phanerozoic anoxic shale (i.e., ‘Phanerozoic-style’ enrichments; Fig. 1; Sahoo et al., 2012; Scott et al., 2008). Thus, RSE enrichments in strata known to be deposited under anoxic conditions can be informative about the global redox landscape.

In South China, an early Ediacaran pulse of RSE enrichments in Mo (to 172 mg/kg), V (to 6417 mg/kg), and U (to 33 mg/kg) was observed in black shale of Member II of the Doushantuo Formation, directly above Marinoan glacial deposits and the associated cap carbonate, and interpreted to represent ephemeral global ocean oxygenation (Sahoo et al., 2012). Multiple RSE concentration spikes up-section in the Doushantuo Formation at the Wuhe locality were used as evidence to suggest this post-Marinoan event was the first of several OOEs (Sahoo et al., 2016). Depleted pyrite sulfur isotope ratios from these same stratigraphic intervals were interpreted as the result of an expanded seawater sulfate reservoir, consistent with global oxygenation (Sahoo et al., 2012, 2016). These OOEs have been labeled sequentially through time, with the first post-Marinoan enrichment termed OOE-A. If the global ocean was well oxygenated during these OOEs, other localities worldwide—would either: 1) exhibit an oxic signature, or 2) be interpreted as anoxic and record similar patterns of ‘Phanerozoic-style’ enrichments in RSEs. Neither appears to be the case for data published to date from other coeval localities. For example, iron speciation data from Svalbard highlights a persistently ferruginous to sub-oxic shelf environment throughout the Neoproterozoic with muted Mo, V, and U concentrations (Kunzmann et al., 2015). Iron speciation data from the Wernecke Mountains of Yukon also show a dominantly ferruginous shelf environment at the beginning of the Ediacaran with muted Mo and V enrichments (Johnston et al., 2013). However, direct comparison of the RSE records in these studies with the basal Ediacaran record of South China is challenging due to differences in sampling density, poor temporal constraints on sampled sections, predominance of ferruginous conditions preserved in other Ediacaran successions (rather than euxinic conditions as in modern analogues), and the extremely condensed nature of the South China sections compared to normal marine shale successions.

The Ediacaran stratigraphic record in NW Canada provides an excellent location to test the transitory OOE framework proposed by Sahoo et al. (2012, 2016). Here, we present new multi-proxy geochemical data

![Figure 1](https://via.placeholder.com/150)

Fig. 1. A comparison of modern oxygenated and ancient poorly oxygenated ocean RSE cycling. The main RSE sinks are sediments deposited under reducing conditions. As anoxic conditions are rare in the modern ocean, the oceanic RSE inventory is high. Because authigenic RSE enrichment is a function of dissolved RSE levels, anoxic shale deposited in the modern (and much of the Phanerozoic) exhibit large RSE enrichments. Conversely, in ancient poorly oxygenated oceans, the areal extent of anoxic conditions can crash the dissolved RSE reservoirs in seawater. As a result, sediment deposited underneath an anoxic water column would exhibit muted enrichments. See Algeo (2004), Scott et al. (2008), Sahoo et al. (2012), and text for further discussion.

Please cite this article as: Miller, A.J., et al., Tracking the onset of Phanerozoic-style redox-sensitive trace metal enrichments: New results from basal Ediacaran post-glacial str..., Chem. Geol. (2017), http://dx.doi.org/10.1016/j.chemgeo.2017.03.010
from three basal Ediacaran sections of the Sheepbed Formation along a shelf-to-basin transition. Ultimately these data help to elucidate global marine redox conditions in the wake of one of the largest climatic perturbations in Earth’s history, the Marinoan glaciation, and help to further resolve the temporal history of Neoproterozoic oxygenation and its possible relationship (if any) to the evolving eukaryotic biota.

2. Background

2.1. Iron speciation

Using RSE enrichments to infer the global redox landscape requires independent evidence that the host strata were deposited under anoxic conditions. We reconstructed local redox conditions using the iron speciation proxy on fine-grained strata, which distinguishes betweenoxic, ferruginous, and euxinic depositional environments (Poulton and Canfield, 2011; Raiswell and Canfield, 1998). This redox proxy divides iron found in shale into two pools based on biogeochemical reactivity. The highly reactive (FeHR) pool comprises pyrite (FePy) and species that are reactive with sulfide on early diagenetic timescales, including iron carbonates, iron (oxyhydr)oxides and magnetite. The remainder of total iron (FeT) resides in the poorly reactive and unreactive pool, made up predominately of iron in phyllosilicate minerals. In the modern ocean, samples deposited under anoxic water column have a FeT/FeT 0.38, while samples deposited under anoxic water column generally have FeT/FeT > 0.38 (Raiswell and Canfield, 1998). Anoxic environments can be characterized by the presence of either excess free sulfide (i.e., euxinic) or ferrous iron (i.e., ferruginous). Where FeT/FeT > 0.38, ratios of FePy/FeHR > 0.7–0.8 indicate pyrite as the main constituent of the highly reactive iron pool, implying euxinic depositional conditions, whereas FePy/FeHR > 0.7–0.8 indicates deposition in a ferruginous environment with unsulfidized reactive iron (Anderson and Raiswell, 2004; März et al., 2008; Poulton and Canfield, 2011).

2.2. Redox-sensitive trace elements

RSEs concentrations within shale are governed by a balance of detrital and authigenic fluxes to the sediment, the latter being useful to reconstruct marine redox conditions. RSEs are generally soluble under anoxic conditions, but they become insoluble and/or complex with organic matter, sulfides, or other metals under reducing conditions, resulting in authigenic enrichments (Tribovillard et al., 2006). RSEs are conventionally normalized to biogeochemically conservative elements such as Al or Ti to account for variability in detrital flux (e.g., Calvert and Pedersen, 1993), as well as to total organic carbon (TOC) due to its influence on authigenic enrichments within the sediment. As the sequestration pathways (particularly with respect to sulfide presence) are important for interpreting RSEs as a global tracer, these mechanisms are reviewed below for Mo, V, U and Cr.

Molybdenum is conservative and present in high concentrations (~105 nM) in modern oxic seawater where it is present as the molybdate ion (MoO42–) (Morford et al., 2005). In oxic environments, Mo deposition is controlled by the slow adsorption onto Fe and Mn-oxhydroxides (Bertine and Turekian, 1973). In anoxic environments, when [H2S(total)] is ~1.1 μM there is a quantitative switch from MoO42– to tetrahemiolybdate (MoO5S3–), which increases particle reactivity and facilitates subsequent removal from the water column into the sediment (Erickson and Helz, 2000; Helz et al., 1996). The exact pathways of sequestration within the sediment column remains an area of active research, but observations of positive correlation between Mo and TOC suggest organic matter is associated with the dominant removal mechanism in euxinic settings (Algeo and Maynard, 2004; Chappaz et al., 2014). In the modern ocean, Mo requires euxinic conditions in the upper pore water or water column in order to develop significant authigenic enrichments (Dahl et al., 2013; Little et al., 2015; Scott and Lyons, 2012), which limits its utility as a paleo-redox proxy in pervasively ferruginous Neoproterozoic oceans (Canfield et al., 2008; Guibaud et al., 2015; Sperling et al., 2015).

Vanadium is quasi-conservative and exists in seawater at high concentrations (~35–45 nM) primarily as the vanadate ion species (HVO2– and H2VO2–) in modern oxic oceans (Huang et al., 2015). In these environments, V is tightly coupled to the redox cycling of Fe- and Mn-oxhydroxides. In mildly reducing conditions, vanadium reduction should occur in the low-Eh zone of denitrification prior to sulfate reduction (Piper and Isaacs, 1996). In such environments, V(V) is reduced to the V(IV) species that can be removed from the water column by adsorption processes and the formation of organo-metallic ligands. In the presence of H2S(total) in experimental studies, V(IV) is further reduced to V(III) that can be taken up by geoporphyrins or precipitate in a solid oxide phase (V2O5 or V(OH)3) (Wanty and Goldhaber, 1992). Thus, although V is expected to be enriched under anoxic but non-euxinic conditions, the stepwise reduction involving the presence of sulfide may allow for varying levels of enrichment between ferruginous and euxinic environments (Algeo and Maynard, 2004; Scott et al., 2017). In contrast to these experimental and ancient sedimentary geochemical studies, in some modern natural highly euxinic settings V may remain in the water column due to organic ligand complexation or other confounding biogeochemical factors (e.g., Algeo and Maynard, 2008; Emerson and Huested, 1991). Consequently more information is needed to truly understand the role of sulfide in vanadium cycling.

Uranium is conservative in euxinic environments, and is present as uranyl ions that often complex with carbonate ions to form UO2(CO3)3–, with a mean concentration in modern seawater of ~14 nM (Ku et al., 1977). Uranium is predominantly buried in sediments below low-oxygen to anoxic water columns (Anderson et al., 1989; Klinkhammer and Palmer, 1991). Modern studies suggest that uranium reduction does not readily occur in the water column (Anderson et al., 1989; Van der Weijden et al., 1990), but rather within reducing sediments through abiotic and biotic pathways (Bargar et al., 2013; Behrends and Van Cappellen, 2005; Hsi and Langmuir, 1985; Lovley and Phillips, 1992; Zheng et al., 2002). Precipitation within the sediment occurs through the formation of organo-metallic ligands with humic acid, sorption onto ferric iron hydroxides, or the direct formation of uraninite or metastable precursors (Hsi and Langmuir, 1985; Klinkhammer and Palmer, 1991; Zheng et al., 2002). Laboratory experiments have recently shown that hydrogen sulfide and ferrous iron both exhibit rapid rates of reduction kinetics resulting in the quantitative reduction of U(VI) to U(IV) (Massey et al., 2014; Stylo et al., 2015). Together these factors suggest U should be valuable in tracking global redox states under both euxinic and ferruginous conditions. However, use of U as a local and global redox proxy is complicated by strong controls from sedimentation rate and organic carbon burial. Thus, variation in uranium concentrations within ancient anoxic strata may not perfectly reflect changes in the overall redox landscape of the ocean (Calvert and Pedersen, 1993; Emerson and Huested, 1991; Klinkhammer and Palmer, 1991; McManus et al., 2005).

Chromium predominantly exists as the chromate ion (CrO42–) in oxic water columns, with minor concentrations of the reduced aquahydroxyl ion Cr(H2O)x(OH)2y (Calvert and Pedersen, 1993). Chromium reduction in mildly denitrifying conditions from Cr(IV) to Cr(III) forms Cr(OH)x2, Cr(OH)y, or (Cr, Fe)2(OH)z, which can complex with humic or fulvic acids and absorb to Fe- and Mn-oxhydroxides, generating authigenic enrichments (Algeo and Maynard, 2004; Tribovillard et al., 2006; Piper and Calvert, 2009). Euxinia is not necessary for Cr enrichment because it does not form an insoluble sulfide. Interpretations of chromium’s authigenic enrichment in sediment are complicated by its relatively large detrital flux relative to the overall enrichment levels (Tribovillard et al., 2006).
2.3. Geologic background

2.3.1. Regional stratigraphy and tectonostratigraphic framework

The ca. 780–540 Ma Windermere Supergroup (Young et al., 1979) of the Mackenzie and Wernecke Mountains, NW Canada, is an ~6 km-thick mixed siliciclastic-carbonate sedimentary succession that consists of, in stratigraphically ascending order, the Coates Lake, Rapitan, Hay Creek, and “upper” groups (Turner et al., 2011 and references therein, Fig. 2). In the Hay Creek Group, the upper Stelfox Member of the Ice Brook Formation has been correlated with Marinoan-age glacial deposits worldwide and is capped by the ca. 635 Ma Ravensthroat and Brook Formation, which were recently dated with Re-Os geochronology to 632.3 ± 5.9 Ma (Rooney et al., 2015). The Sheepbed Formation, which were recently dated with Re-Os geochronology to 632.3 ± 5.9 Ma (Rooney et al., 2015). The Sheepbed Formation is overlain by mixed siliciclastic and carbonate strata of the ‘June beds’ and Game trail and Blueflower formations, which contain Ediacara-type fossil impressions (Macdonald et al., 2013; Narbonne and Aitken, 1990; Narbonne et al., 2014). An unconformity at the top of the Risky Formation, the stratigraphically highest unit in the “upper group,” broadly marks the Ediacaran-Cambrian boundary (Narbonne and Aitken, 1995).

Traditionally, the Windermere Supergroup is thought to have been deposited along a thermally subsiding passive margin (e.g., Eisbacher, 1981; Narbonne and Aitken, 1995; Ross, 1991). For example, the Coates Lake and Rapitan groups have been characterized as rift-related deposits filling narrow extensional basins associated with the opening of the proto-Pacific Ocean (Ross, 1991), with a prominent transition to passive margin sedimentation coinciding with the basal Twitya Formation (Narbonne and Aitken, 1995; Ross, 1991). However, this tectonic model is complicated by the presence of synsedimentary faulting throughout the Hay Creek and “upper” groups in the Mackenzie Mountains (Aitken, 1991; Eisbacher, 1981, 1985; Jefferson and Parrish, 1989),

![Diagram of the Windermere Supergroup](image)

Fig. 2. (A) Generalized stratigraphy of the Windermere Supergroup, Wernecke and Mackenzie Mountains, Yukon and Northwest Territories. Illustrated stratigraphic height is schematic and varies across the region. Italics indicate informally named units. Column is modified from Strauss et al. (2015). U-Pb age on Little Dal Basalt is from Jefferson and Parrish (1989), U-Pb ages from base of Rapitan Group are from Macdonald et al. (2010), and Re-Os ages are from Rooney et al. (2014, 2015). Sections S1401/J1305, S1405/J1456, and J1452 span the basal Sheepbed Formation. Raven. - Ravensthroat, JB – June Beds, Gamet. - Game trail. (B) Regional map of Canada illustrating the study area. (C) Neoproterozoic exposure across the northern Canadian Cordillera, after Strauss et al. (2015). Stars indicate localities of this study and Goz Creek, the study locality of Johnston et al. (2013). Environments of deposition are assigned based on regional context and stratigraphic interpretations at each locality.

Please cite this article as: Miller, A.J., et al., Tracking the onset of Phanerozoic-style redox-sensitive trace metal enrichments: New results from basal Ediacaran post-glacial str..., Chem. Geol. (2017), http://dx.doi.org/10.1016/j.chemgeo.2017.03.010
and evidence of extensional tectonism and diachronous volcanism throughout upper Neoproterozoic and lower Cambrian strata in the southern Canadian and U.S. Cordillera (Colpron et al., 2002; Lund et al., 2003, 2010; Yonkee et al., 2014). Thus, a more complicated history of the Cordilleran margin is emerging, with topographic development and distinct rifting events in the Cryogenian and Ediacaran (Macdonald et al., 2013; Strauss et al., 2015; Yonkee et al., 2014).

The regional depositional environment is important for utilizing RSEs to distinguish global redox signals (e.g., Algeo and Lyons, 2006; Algeo and Rowe, 2012). For example, the isolation of basinal water masses from the open ocean can generate localized drawdown of RSEs due to hydrographic restriction. In NW Canada, the geometry and degree of connection of the basin in which the Sheepbed Formation was deposited is imperfectly understood. Nonetheless, pervasive slope deposits (Dalrymple and Narbonne, 1996; Narbonne and Aitken, 1995; MacNaughton et al., 2000), possible contourites in the June beds at Sekwi Brook (Dalrymple and Narbonne, 1996), and the continuity of Ediacaran shelf and slope deposits across ~900 km of strike-length suggest a substantially open marine margin.

2.3.2. Locality stratigraphic descriptions

The geochemistry of the basal Sheepbed Formation was studied in detail at a shelf locality at Stoneknife Creek, Northwest Territories, and at a newly described distal slope locality in the Rackla belt, Yukon (Fig. 2). A more stratigraphically expanded study of the Sheepbed Formation was conducted near its type section at Sheepbed Creek, Northwest Territories (Gabrielse et al., 1973), providing the first geochemical data on this time interval from sections in the southern Mackenzie Mountains. With the exception of samples from the basal Sheepbed Formation in the Rackla belt, samples exhibiting alteration or possible secondary pyrite were avoided during sampling.

2.3.2.1. Stoneknife Creek - J1452 - stratigraphic description. At Stoneknife Creek, the Ravensthoat cap carbonate consists of 7.4 m of finely laminated, buff-yellow peloidal dolostonegrainstone with 0.3–1.5 m-thick cuspate bedforms, overlain by 3.0 m of thin-bedded dolomudstone/dolostone packages in 0.5 m-thick coarsening-upwards cycles (Fig. 3). These strata are overlain by a 17.2 m-thick fining-upwards package of interbedded limy mudstone and very fine-grained grainstone with calcareous black shale of the Hayhook Formation. A transition from predominantly carbonate to siliciclastic detritus occurs at ~28 m with the replacement of interbedded grainstone units with ~0.5 cm thick quartz siltstone stringers, which we define as the base of the Sheepbed Formation. Laminae rich in pyrite were common in the transition into the Sheepbed and were avoided due to the possibility of post-depositional concentration (as in Sahoo et al., 2012).

2.3.2.2. Rackla - S1401/J1305 - stratigraphic description. Two parallel sections were measured ~100 m apart to document the diverse sedimentological characteristics of the Ravensthoat cap carbonate at this locality (see Supplemental information). This unit consists of a 2.6 m-thick, bright orange-yellow, very fine-grained dolostonegrainstone with local sheet-crack cements (Fig. 4). A silty limestone unit (up to 3.9 m thick) with gas fluorescence is locally present above the cap dolostone in section J1305, but disappears along strike toward section S1401. This unit is considered here to be a local equivalent of the Hayhook Formation (James et al., 2001; Macdonald et al., 2013). The Hayhook strata are overlain by jet-black shale of the Sheepbed Formation. Shale samples directly above the cap carbonate are bleached and have an orange and yellow hematite and limonite weathering rind, suggesting that the samples were likely altered. Nonetheless, this interval was sampled to determine if this zone exhibited RSE enrichments. Black shale samples above 6.6 m did not show field evidence of alteration.

2.3.2.3. Sheepbed Creek - S1405/J1456 - stratigraphic description. Over 400 m of Sheepbed strata were measured and sampled at the Sheepbed Creek type section (Fig. 5; See also Supplemental information). Here, the Ravensthoat and Hayhook Formations are transitional with the basal Sheepbed Formation, and the lithostratigraphic boundary is placed at 9.7 m, where carbonate units become dispersed and discontinuous. By 14 m the Sheepbed here is >70% shale and contains minor siltstone and fine sandstone horizons. The frequency of siltstone and sandstone horizons within the Sheepbed Formation increases in the upper part of the section locally, with a transition to sandstone- and siltstone-dominated facies at ~350 m. This progression is consistent with observations from other measured sections of the Sheepbed Formation (Dalrymple and Narbonne, 1996; Gabrielse et al., 1973; Macdonald et al., 2013; MacNaughton et al., 2008; Sperling et al., 2016).

3. Materials and methods

126 shale samples were collected from measured sections (see Supplemental information for GPS coordinates and relationship of parallel sections). Samples were washed, cleaned, and cut to small chips using a water saw with a diamond blade. Samples were then crushed to flour in a tungsten carbide grinding container, which does not introduce substantial contamination for the elements of interest (Hickson and Juras, 1986, Sperling et al., 2013b). Major elements were determined using a Spectro Xeps X-ray fluorescence spectrometer with a helium gas flush in the EM-1 lab at Stanford University. To determine trace element concentrations, samples went through a two-step digestion using HCl-HF-HNO₃ followed by aqua regia at Geotop, Montréal, Québec, before being measured on a Thermo Finnigan iCAP Q inductively coupled plasma mass spectrometer (ICP-MS) at McGill University. Iron in carbonate, (oxhydro)oxide, and mixed valence state (i.e., magnetite) iron pools were determined using sequential iron extraction following the methods outlined in Poulton and Canfield (2005). The amount of iron extracted was quantified using the ferrozine method described in Stookey (1970), which has similar reproducibility to flame AA or ICP-OES methods (Kunzmann et al., 2015). The amount of iron in the pyrite phase was determined through the chromium reducible sulfur method (CRS) of Canfield et al. (1986) and stoichiometric calculation from the captured sulfide. Fifteen samples chosen for their high Fe₂O₃/Fe₃O₄ ratios were tested for the presence of Acid Volatile Sulfide (AVS) using the hot acid extraction method of Rice et al. (1993), with no measureable AVS removed from any sample tested. An aliquot of each sample was decarbonated in 1 M HCl then analyzed for TOC content and organic carbon isotope ratios via combustion in a Carlo Erba Elemental Analyzer and measurement of the resulting gas on a Finnigan MAT Delta Plus at Stanford University in continuous flow mode. Samples with low organic carbon content and/or high carbonate content were decarbonated using a 3 M solution of HCl, rinsed three times with DI water, loaded in tin capsules and combusted in a Carlo Erba Elemental Analyzer in the EM-1 lab at Stanford University. A subset of samples was run using both methods with good agreement between datasets (Table S1). The precision of each geochemical analysis can be found in the Supplemental information (Table S2–S5).

4. Results

Iron speciation results, TOC, and concentrations of RSEs of shale samples are plotted alongside their respective stratigraphic logs in Figs. 3–6. Organic carbon δ¹³C values and RSE concentrations normalized to Al, Ti, and TOC are presented in the Supplemental information (Fig. S1–3). Raw data can be found in Supplemental information (Table S1).

4.1. Stoneknife Creek, Mackenzie Mountains – section J1452

Throughout the Stoneknife section, fine-grained samples are characterized by Fe₃O₄/Fe₂O₃ > 0.38, indicating a continuously anoxic water column (Fig. 3). A majority of samples exhibit Fe₃O₄/Fe₂O₃ ~ 0.70, with highly reactive iron occurring mostly in carbonate or pyrite phases. A
Fig. 3. Stratigraphic column of section J1452 at Stoneknife Creek, Northwest Territories. J1452 begins at the top of the Ice Brook Formation and continues through the Ravensthroat formation, Hayhook formation, and basal part of the Sheepbed Formation. From left to right data is plotted with relevant baseline values illustrated by vertical red lines; iron speciation highly reactive iron to total iron (FeHR/FeT; red line = 0.38), pyrite iron to highly reactive iron (FePy/FeHR; red band = 0.7–0.8), weight percent total organic carbon, vanadium (red line = 130 mg/kg), molybdenum (red line = 2.6 mg/kg), uranium (red line = 3.7 mg/kg), and chromium (red line = 90 mg/kg). Redox-sensitive elements (RSEs) are plotted as concentrations in mg/kg and the vertical red lines indicate world average shale values (Turekian and Wedepohl, 1961). These RSE concentrations are similar to those of upper continental crust (McLennan, 2001). RSE data points are colored based off interpretations of iron speciation data, which should represent local water conditions at the time of deposition (green - ferruginous, red - euxinic, blue - oxic). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Stratigraphic column of sections J1305 and S1401 in the Rackla belt, Wernecke Mountains, Yukon. These sections begin at the top of the Ice Brook Formation and measure through the Ravensthroat formation (RVN), Hayhook formation (H) and the basal part of the Sheepbed Formation. See Fig. 3 for information on geochemical plots and lithological symbols.

Please cite this article as: Miller, A.J., et al., Tracking the onset of Phanerozoic-style redox-sensitive trace metal enrichments: New results from basal Ediacaran post-glacial str..., Chem. Geol. (2017), http://dx.doi.org/10.1016/j.chemgeo.2017.03.010
notable exception is in the upper Hayhook and basal Sheepbed strata, where samples consistently have $F_{HR}/F_{T} > 0.70$. These changes likely represent a shift from deposition under a dominantly ferruginous environment to a period of stable euxinia before returning to ferruginous conditions in the upper part of the measured section. Vanadium, molybdenum, and uranium concentrations all exhibit similar patterns in relation to the world shale average (Turekian and Wedepohl, 1961), with consistent values at or just below average shale. Maximum enrichments of these elements occur in the euxinic interval but are muted, with maximum concentrations of 157, 4, and 7.1 mg/kg, respectively. Chromium exhibits a similar pattern of generally invariant concentration up-section, but all samples have lower concentrations than average shale, with a maximum of 81 mg/kg. TOC progressively increases stratigraphically upward throughout the measured section from 0.05 to 0.74 wt% at 28.6 m, coincident with the euxinic interval, before stabilizing around 0.5 wt% for the remainder of the section. RSEs remain at or below average shale values when normalized to Al and Ti (Fig. S1), and similarly RSEs normalized to TOC content do not show pronounced enrichments (Fig. S1). Titanium/Aluminum ratios, which can track mafic versus felsic provenance (Young and Nesbitt, 1998), are consistently low compared to average shale through the section, with an average value of 0.037 (Fig. S1). Organic carbon isotopes from the Stoneknife Creek section are invariant at $\delta^{13}C = -31\%$ (Fig. S1).

4.3. Sheepbed Creek – sections J1456/S1405

Samples from the Hayhook and basal Sheepbed Formations are enriched in highly reactive iron with $F_{HR}/F_{T} > 0.38$ and $F_{HR}/F_{T} < 0.38$ (Fig. 5), indicating deposition under a ferruginous water column. The highly reactive iron pool is dominated by iron oxides throughout the section. The abundance of iron oxides compared to Stoneknife Creek may indicate more sluggish early diagenetic processes at Sheepbed Creek, as iron carbonates and pyrite are the end products of iron reduction and sulfate reduction, respectively. From 77.2 to 105.8 m there is a shift to $F_{HR}/F_{T} < 0.38$, whereas samples between 105.8 and 179 m return to $F_{HR}/F_{T} > 0.38$. Above 179 m, F_{HR}/F_{T} values fluctuate below and above 0.38, potentially suggesting periods of transitory oxygenation. Vanadium, molybdenum, uranium, and chromium concentrations remain near world average shale concentrations until after ~75 m, where there is a rise in V and Mo concentrations to a maximum of 395 mg/kg and 8 mg/kg (respectively) before returning to concentrations similar to world average shale. Throughout the section, U and Cr concentrations remain relatively constant, with no noticeable variations in concentration despite interpreted differences in redox conditions from iron speciation and variations in V and Mo. Maximum values for U and Cr are 5.6 and 112 mg/kg respectively. TOC concentrations rise from 0.38 wt% in the basal samples to 1.86 wt% at ~100 m. TOC content then consistently decreases to 0.32 wt% at 294 m before spiking to 1.30 wt% in the uppermost part of the section. When RSEs are normalized to TOC, the inflection of enrichment at ~110 m becomes far less prominent (Fig. S3). Ti/Al is consistently below world average shale with an average of 0.034 (Fig. S3). Organic carbon isotopes at

Fig. 5. Stratigraphic column of sections J1456 and S1405 at Sheepbed Creek, Mackenzie Mountains, Northwest Territories, near the type section of the Sheepbed Formation (Gabrielse et al., 1973). These sections begin at the top of the Ice Brook Formation and measure through the Ravensthrout formation (R), Hayhook formation (H), and the Sheepbed Formation until beds begin to coarsen upwards at ~400 m. Note change in scale with respect to Figs. 2 and 3; this section represents a longer-term record of the Sheepbed Formation rather than a detailed study of the immediate post-Marinoan interval. See Fig. 3 for information on geochemical plots and lithological symbols.
this section start at approximately −31% and continuously decrease to −27% at the top of the section (Fig. S3).

5. Discussion

5.1. Age correlation between NW Canada and South China

Comparison of the geochemical data in NW Canada and evidence from OOE-A in South China is predicated on strata being correlative. A Re-Os date of 632.3 ± 5.9 Ma from the basal Sheepbed Fm. in NW Canada (Rooney et al., 2014) correlates well with the 632.5 ± 0.5 Ma ash bed dated near the base of Doushantuo II on the platform (Condon et al., 2005). However, while both formations were deposited directly above Marinoan-age glacial deposits, direct sample-to-sample correlation is unrealistic and poor temporal constraints in the overlying Ediacaran successions complicate anything beyond broad stratigraphic comparison.

In South China, correlations of Ediacaran strata between the inter- and slope of the margin are predominantly based on lithological similarities and identification of a few key units and lithology (Jiang et al., 2011; Sahoo et al., 2012). Regional correlation is critical as strata in the Three Gorges area (intrashelf) provide the more robust temporal framework (Condon et al., 2005; Jiang et al., 2011), while the slope sections host the geochemical signatures of the OOEs (Wuhu, Taoying, Yuanjia; Sahoo et al., 2012; Sahoo et al., 2016). Sahoo et al. (2012, 2016) followed the correlations of Jiang et al. (2011), who suggest Doushantuo members I–IV can be differentiated on the slope sections, and that the entire Ediacaran is preserved in these successions. However, these variably condensed lower slope sections (<100 m–120 m) are poorly exposed or destroyed (the Wuhe section is now under water and Yuanjia was buried in a mudslide), are riddled with slumps and subtle slide surfaces (Vernhet et al., 2006), and lack distinctive lithological units for robust regional correlation. An alternative correlation based on carbon isotope chemostratigraphy at the Wuhe section supports correlation of almost the entire section with members III and IV on the platform. Certainly, the carbon isotope patterns do not match between Jiulongwan and Wuhe in a straightforward manner if both sections represent the same section start at approximately −31% and continuously decrease to −27% at the top of the section (Fig. S3).

5.2. Possible biases affecting the early Ediacaran record in NW Canada

The shale geochemical record of earliest Ediacaran strata in NW Canada does not provide support for a transient OOE. Locally, iron speciation results suggest early Ediacaran samples were deposited under a persistently anoxic water column at Stoneknife Creek, Rackla, and Sheepbed Creek directly following the Marinoan glaciation (Figs. 3–5). These results are consistent with previously published iron speciation data from other localities in the region (Canfield et al., 2008; Johnston et al., 2013; Shen et al., 2008; Sperling et al., 2015). Geochemical evidence for localized ephemeral oxygenation does occur in some NW Canada localities during the Ediacaran (for instance at Sheepbed Creek in this study; see also Johnston et al., 2013; Sperling et al., 2016), but during the earliest Ediacaran the deeper waters facies appear to record anoxic conditions. In our data, the lack of ‘Phanerozoic-style’ RSE enrichments in strata along the NW Canadian margin imply limited marine RSE reservoirs, likely due to a large global expanse of anoxic conditions. Again, these results are consistent with other lower resolution datasets (Johnston et al., 2013; Kunzmann et al., 2015) that display muted RSE enrichments in shale deposited under ferruginous conditions during the earliest Ediacaran following the Marinoan Snowball Earth. Comparing early Ediacaran RSE concentrations from South China directly with that of NW Canada through standard boxplots, the two localities remain disparate in their levels of enrichment even after accounting for known factors that result in variability in the magnitude of enrichment (Fig. 6). Thus, there appears to be a discrepancy between multiple datasets from NW Canada and elsewhere with some published datasets from South China.

Considering this discrepancy, one possibility is that the iron speciation proxy has failed to correctly differentiate between oxic and ferruginous conditions in NW Canada. Interpretations of ferruginous conditions are based on enrichments in reactive iron species under anoxic conditions and consistency in the iron cycle throughout geologic time. Although not observed in the published calibration set from the modern ocean (Raiswell and Canfield, 1998), it may be possible to get FeIII/FeT ratios > 0.38 and a false anoxic signal due to either a proportionally large detrital reactive-iron flux or proportionally small flux of detrital unreactive iron. Local calibration to the detrital source would be required to test this possibility. Differences between modern sediment baseline values analyzed using dithionite-only extractions and the sequential extraction methodology used here could also play a role (see discussion in Farrell et al., 2013). There are also some known cases of iron enrichment under oxic conditions in modern environments. In the Peruvian OMZ, an iron-shuttle is thought to enrich oxic sediments below the OMZ in (presumably) highly reactive iron phases derived from poorly oxygenated shelf sediments (Scholz et al., 2014). However there is no evidence for an OMZ-type setting in the Ediacaran of NW Canada. Thus, while an erroneous signal in the iron speciation data (specifically a ferruginous signal resulting from an oxygenated water column) would help bring the NW Canada and South China geochemical records into parity, the most parsimonious interpretation is that the elevated FeIII/FeT in the Sheepbed Formation are a result of an anoxic water column during deposition.

Another possibility is that the NW Canada RSE enrichments are affected by the paleohydrogeography, regional sedimentation patterns or post-depositional alteration. Isolation of the water mass during deposition of the Sheepbed Formation could result in muted enrichments in RSEs (e.g., Algeo and Lyons, 2006; Algeo and Rowe, 2012). As noted in
Section 2.3, the stratigraphic pattern of the “upper” Group suggests a substantially open margin, and unless future stratigraphic work alters this understanding, restriction is unlikely to be the primary driver of muted enrichments. RSE enrichments could be masked by rapid sedimentation resulting from turbidity currents and other mass-transport processes, which can limit the time of accumulation and therefore authigenic enrichment. However, these sedimentary controls on RSE enrichment also affect iron speciation (Poulton and Canfield, 2011), and the presence of enriched FeHR/FeT ratios in all investigated Sheepbed sections argues against this factor being relevant. Sheepbed Creek is the only locality where iron speciation results are interpreted as equivocal due to the presence of coarser beds in association with shale samples having FeHR/FeT < 0.38 (specifically between the interval of 77.2 m and 105.8 m, Fig. 5). The concordance of patterns in local redox signals throughout the Sheepbed Formation from sections across the basin further supports the conclusion that muted signals are not an artifact of localized sedimentation patterns (Canfield et al., 2008; Johnston et al., 2013; Sperling et al., 2015; this study).

Concentrations of RSEs can also be diluted by non-detrital sedimentary components, such as excessive calcium carbonate and silica precipitation. Petrographic analysis of a select group of samples did reveal the presence of authigenic carbonate, including rhombohedral dolomite, in many samples. RSEs were normalized to biogeochemically conservative elements (i.e., Al and Ti) to see through such effects and still showed no marked enrichment as compared to average shale (Figs. S1-S3). It is noteworthy that some of our samples have elevated Al concentrations above what is typically expected for shale (Turekian and Wedepohl, 1961). The Ti/Al ratios are thus consistently low compared to average shale through the earliest Ediacaran sections in NW Canada, which may suggest a predominantly felsic provenance, low aeolian input, a clay mineral dominated lithogenic component, and/or simply a spurious effect of Al enrichments from high production (Bertrand et al., 1996; Kryc et al., 2003; Murphy et al., 2000; Young and Nesbitt, 1998) (Figs. S1–S3). This is consistent with Nd isotope evidence that indicates a provenance dominated by old, evolved, continental crust at this time (Cox et al., 2016). However, there is no evidence of an especially unusual source terrane in NW Canada (Johnston et al., 2013).

The combination of low organic carbon input and/or preservation in the sediment is another potential driver of low RSE abundances. Geologically recent samples with high enrichments in RSEs are often associated with very elevated organic carbon content (Algeo and Lyons, 2006). However, samples from South China also exhibit relatively low TOC content in the basal Doushantuo (avg. 1.7 wt%, max. 4.1 wt% within OOE-A; Sahoo et al., 2012). The RSE/TOC ratios remain much lower for NW Canada compared to South China (Fig. 6; Figs. S1–S3 and Sahoo et al., 2012, 2016). Samples from the basal Sheepbed Formation in the euxinic interval at Stoneknife Creek have carbon/sulfur (C/S) ratios < 1, which is uncommon for euxinic deposition (Raiswell and Berner, 1985). Interestingly, many of the samples in the Doushantuo sections also have similar C/S ratios (Sahoo et al., 2012). At least in NW Canada, petrographic evidence suggests the elevated S values are not the result of epigenetic hydrothermal overprint (e.g., Leventhal, 1995). The reason for these relatively low C/S ratios in earliest Ediacaran sediments is presently unknown but may be related to differences in the type of organic carbon compared to the modern and later Phanerozoic (Raiswell and Berner, 1986) or to thermal maturation and loss of organic carbon (Raiswell and Berner, 1986, 1987). Neither case explains the trace metal discrepancies between the two regions.

All of the samples in this study were taken from outcrop (as with the Doushantuo Member II samples from South China; Sahoo et al., 2012), which could result in leaching of RSEs. However, active geomorphic processes in NW Canada provide relatively fresh outcrop with minimal vegetation, and the relatively cold climate of NW Canada stills aggressive chemical weathering. Furthermore, Perkins and Mason (2015) found weathered black shale did not show a significant difference in the primary concentration of Mo, Cr or V when compared to core and fresh outcrop. The consistent and generally invariant trends of Mo, Cr, V and U concentrations in most sections in our study further suggest the
muted nature of elemental enrichments is not an artifact of post-depositional weathering. In light of these considerations, and given that the lack of RSE enrichments in earliest Ediacaran strata from NW Canada matches similar data from Svalbard (Kunzmann et al., 2015), these data likely reflect primary Neoproterozoic marine geochemical processes. Below, we discuss two possibilities—muted enrichments under generally ferruginous conditions in NW Canada and over-enrichment in the Doushantu Formation of South China—that may explain the regional discrepancies.

5.3. Redox-state effects on RSE enrichment

The lack of enrichments in RSEs observed in earliest Ediacaran strata in NW Canada and Svalbard may ultimately be a result of dominantly ferruginous local water columns at the time of deposition. Specifically, such environments may not provide a sufficiently reducing environment to sequester RSEs. Our understanding of RSE sequestration in ferruginous environments is limited by the fact that in the modern ocean there are no true ferruginous basins. Nonetheless, current knowledge of these RSEs and their behavior suggests that Mo is the only one that directly requires free sulfide in either the water column or shallow pore waters in order to become significantly enriched within the sediment (Little et al., 2015; Tribovillard et al., 2006; note that vanadium may be an exception due to the role of sulfide in a two-step reduction—see Section 2.2). Indeed, Cr, V, and U should all be enriched in sediment deposited under ferruginous ocean conditions if the marine reservoir is not depleted in these elements (Bethrends and Van Cappellen, 2005; Brit and Wanty, 1991; Eary and Rai, 1989; Fendorf and Li, 1996; Massey et al., 2014; Partin et al., 2013b; Piper, 1994; Piper and Calvert, 2009; Rai et al., 1989; Reinhard et al., 2013; Stylo et al., 2015).

Consistent with this interpretive framework, significant enrichments in V and Cr are observed in the Doushantu Formation in samples that exhibit no geochemical signatures of deposition under a euxinic water column (Fig. 6; Sahoo et al., 2012, 2016). More importantly, the samples from Stonelknife Creek covering the Hayhook/Sheepbed transition (Fig. 3) have iron speciation ratios that arguably suggest a transient period of euxinia, but without pronounced enrichments in any RSE. Considering these facts, a redox-state hypothesis is not our preferred explanation for the regional discrepancy, but it is acknowledged that due to our current limited understanding of natural ferruginous depositional settings this hypothesis must remain valid.

5.4. The RSE record of the Doushantu Formation

While it is possible that ferruginous depositional conditions may explain muted RSE enrichments in the basal Sheepbed Formation, an alternative possibility to explain the discrepancy is either primary or secondary processes resulting in over-enrichment in the Doushantu Formation. Indeed, various geochemical aspects of the Doushantu strata recording the OOE-A are difficult to reconcile with straightforward authigenic enrichment from seawater carrying modern dissolved trace metal inventories. For instance, many of the samples in the Doushantu have contrasting trace metal signals, with near-crustal concentrations of Mo and slightly elevated U in samples having extreme enrichments in V (OOE A & B; Sahoo et al., 2012; Sahoo et al., 2016), or conversely enrichments of Mo typical of euxinic environments but low concentrations of both U and V (OOE C; Sahoo et al., 2016). Large enrichments of these RSEs in sulfidic systems should broadly covary rather than behave independently. Complicated oceanographic patterns involving water masses sequentially moving through different redox environments could help to explain contrasting enrichment patterns (e.g., Fu et al., 2016 for the ore-grade early Cambrian Ni-Mo horizon in South China), but such processes are not the norm in most Phanerozoic or modern settings. Furthermore, there is little stratigraphic reproducibility of the OOE-A horizon across the South China paleo-margin. For example, other outcrops of the Doushantu do not exhibit enrichments in RSEs directly above the cap carbonate in samples interpreted as deposited under euxinic conditions (Han and Fan, 2015; Li et al., 2010). While some of these discordant results have been attributed to localized basin isolation on the shelf (Och et al., 2015), others are harder to dismiss in the current interpretive frameworks (Han and Fan, 2015).

The OOE intervals in South China are also characterized by enrichments of RSEs (and RSEs in particular mineral phases) that are much larger than those observed in euxinic Phanerozoic shale. While OOE-interval bulk rock U and Mo concentrations are within the ‘normal’ range for Phanerozoic black shale, pyrite Mo concentrations are up to ~6000-8000 mg/kg (Sahoo, 2015), much higher than Phanerozoic shale where pyrite Mo levels are almost all <1000 mg/kg (Large et al., 2014). Bulk rock vanadium and rhenium (another RSE) are also extremely enriched in the Doushantu Formation. In the Wuhe section, V is enriched up to 3.0 wt% (~30,000 mg/kg) within the purported OOE’s (reported in supplement to Sahoo et al., 2016 but not plotted in their Fig. 2). Such enrichments in V have never been observed in sediments from modern reducing environments and are several times larger than “hyper-enriched” samples from the Phanerozoic that fall between 0.1 and 1 wt% (1000–10,000 mg/kg; Scott et al., 2013b; Scott et al., 2017). Rheinium concentrations range up to 3585 μg/kg in OOE-A, 1640 μg/kg in OOE-B and 1063 μg/kg in OOE-C (Sahoo, 2015; Sahoo et al., 2016). These Re concentrations are up to 10 times more enriched than those recorded in the most enriched Phanerozoic black shale samples (Harris et al., 2013; Selby, 2007; Xu et al., 2009) and up to 100 times more enriched than modern anoxic settings (Colden et al., 1993). These magnitudes of enrichment likely require processes above and beyond a large seawater RSE reservoir. While it may be correct to exclude some of these extremely enriched samples (as in Sahoo et al., 2016), their intimate (bracketing) stratigraphic relationship with the samples providing the prima facie evidence of the OOE’s raises questions about the source of enrichment for all of the examined strata.

One possible explanation for these enrichments is provenance. The basal Doushantu Formation at Jiulongwan contains abundant saponite (Ca0.53(Mg,Fe)1.02(Si4Al)O10(OH2)·n(H2O)) relative to other clay mineral assemblages (Bristow et al., 2009; Huang et al., 2013). Huang et al. (2013) recently interpreted this saponite to be the detrital weathering product of a mafic to ultramafic provenance. Because these mafic sources are presumably enriched in V and Cr relative to granitic sources (Rudnick and Gao, 2003; Turekian and Wedepohl, 1961), sedimentary provenance may have played an important role in these excessive enrichments (note though that Sahoo, 2015 suggested this was not the case for the detrital phase at the main investigated Wuhe section based on Ti/Al ratios). If the detrital component accounts for a large part of the signal, this would be most evident in the more proximal sections (i.e., Three Gorges area), but contrary to this prediction, V concentrations in these sections are depleted compared to world average shale in Doushantu member II (Och et al., 2015). Regarding provenance influences on authigenic enrichments, there are modern areas, such as the island of Java in Indonesia, where rivers are sourced from primarily volcanic material. Here, riverine flux of V is between 230 and 280 nmol/L, an order of magnitude greater than the world average of 15 nmol/L (Shiller and Boyle, 1987), but there does not appear to be an effect on local seawater concentrations beyond the delta (Van der Sloot et al., 1989). It is unlikely then that a mafic source would provide sufficient dissolved V from a riverine flux to impart such high concentrations to basinal Doushantu Formation strata if the margin was substantially open and able to mix effectively with ocean water. Consequently, while provenance may have played a secondary role or interacted with other factors, we do not regard it to be the fundamental driver of the enrichments observed in the Doushantu Formation. Among primary drivers, the greatly condensed nature of the Doushantu Formation is the most likely player in these RSE enrichments. Sedimentary condensation in an anoxic environment would have allowed authigenic enrichment to occur over an extended period.
resulting in greater abundances when compared to modern analogues that predominantly feature high sedimentation rates (Algeo and Lyons, 2006; Lehmann et al., 2016). In this scenario, stratigraphic variation in RSE enrichments would no longer track dynamic global ocean oxygenation, but rather localized sedimentation rates. Black shale intervals within the Doushantuo Formation are also often characterized by phosphanodules and hardgrounds, including fist-sized phosphate/pyrite concretions (Hohl, 2015; Jiang et al., 2011; Sahoo et al., 2016).

The Doushantuo is not unique in exhibiting both phosphorite deposits and extreme enrichments in RSEs such as V and U. Indeed, some of the highest enrichments in RSEs in shale are found in the Permian Phosphaia Formation (Breit and Wannty, 1991) and the early Cambrian Niutitang Fm. (Lehmann et al., 2016). This relationship could be because francolite, a common mineral in phosphorite, possesses an open structure that permits numerous substitutions of trace elements and/or absorption of these metals onto the crystal surface, resulting in higher enrichments of V, U and Mo (Jarvis et al., 1994). Recent work also suggests a potential link between sulfur-oxidizing bacteria and the formation of the Doushantuo’s phosphorite deposits, which may have also had a secondary effect of developing enrichments in RSEs within these sediments (Bailey et al., 2013). More work on the relationship between RSEs and phosphorite is necessary to determine if these deposits are a driving factor in the abnormal enrichments observed in the Doushantuo.

Considering secondary processes, hydrothermal or basinal fluids have demonstrably altered some primary geochemical signals, especially in Member I, at multiple localities (Bristow et al., 2011; Derkowski et al., 2013; Hohl, 2015; Rodler et al., 2016). Shale is generally considered resistant to hydrothermal alteration due to its low permeability, but the juxtaposition of more permeable conglomerate and carbonate facies of the Nantuo Formation and Doushantuo Member I directly below the thin shale interval (Member II) hosting the RSE enrichments could result in localized post-depositional alteration and preferential fluid migration. This may also explain why the RSE enrichments tail off so dramatically in the first few meters of Doushantuo Member II. Both the trace metal and Fe-S relationships of Doushantuo Member II have been considered primary and not altered by hydrothermal processes based on the presence of framboidal pyrite (Sahoo et al., 2012), but similarly sized framboids can also be formed in low-grade metamorphic or hydrothermal settings (Scott et al., 2009), and framboids only make up a small proportion of the pyrite population at these sites (Wang et al., 2012).

We note that these possible primary and secondary processes have not been determined to affect the actual sections hosting the evidence for an OOE in the earliest Ediacaran. Rather than point to any specific process, in the preceding paragraph we highlight the geochemical complexity of the Doushantuo Formation and suggest possibilities that may explain 1) the contrasting signals between trace metals, and 2) Eo-enrichments well beyond those known from the Phanerozoic or modern settings. This complexity does not necessarily refute the OOE hypothesis, which is also supported by sulfur isotopic evidence in the Doushantuo and other localities (Kunzmann et al., 2017; Sahoo et al., 2012, 2016). The most straightforward test of the OOE hypothesis would be to find the same signal at other global localities. Given pervasive ferruginous conditions in the Neoproterozoic (Canfield et al., 2008; Guilbaud et al., 2015; Sperling et al., 2015), further study of additional localities will likely result in the same impasse reached here, specifically in determining whether the observed discrepancy is due to differences in sedimentation rates and water column conditions (ferruginous versus euxinic), or to the unique geochemistry of the Doushantuo Formation. An alternative approach to test the OOE hypothesis throughout the Ediacaran will be to develop a more robust age model for the Doushantuo Formation and perform detailed microstratigraphic studies of the geochemistry and early/late-stage diagenesis of the high-RSE intervals. Such studies will inform modeling attempts to explain samples with non-standard enrichment patterns (for instance several weight-

percent V but near-crustal Mo) and are crucial for a better understanding of Ediacaran paleoenvironmental evolution. Furthermore, comparative studies of RSE enrichments in ferruginous Phanerozoic shale will help disentangle the various controls on enrichment and test whether the RSE levels seen in the Sheepbed Formation are an expected consequence of a Phanerozoic-level seawater trace metal inventory under locally ferruginous conditions.

6. Conclusion

Our geochemical analyses of the basal Sheepbed Formation (earliest Ediacaran) in NW Canada reveal an anoxic water column at two shelf localities and one slope setting. With the exception of a brief euxinic interval recorded at Stoneknife Creek, iron speciation analyses suggest the local water column was predominantly ferruginous, which is consistent with previous studies from this region (Canfield et al., 2008; Johnston et al., 2013; Shen et al., 2008). Redox-sensitive element concentrations at all studied localities are consistently low compared to shale deposited under anoxic conditions in the Phanerozoic: specifically, at, or below, average shale values. These data contrast sharply with evidence from the coeval but extremely condensed slope sections of the Doushantuo Formation at Wuhe, Taoying and Yuanjia, South China (Sahoo et al., 2012, 2016). There, the base of the Ediacaran sections—as well as several other horizons throughout the Wuhe section—record trace metal enrichments that reach, or in cases considerably exceed, trace metal enrichments in Phanerozoic black shale, and have been interpreted as recording widespread ocean oxygenation.

The NW Canada—South China comparison raises a quandary for unlocking the seawall redox landscape at the sediment–water interface as represented by the shale RSE record. Shale from the Doushantuo Formation is ostensibly closer to well-studied Modern and Phanerozoic euxinic analogues, but based on extreme RSE abundances and incongruous enrichment patterns, is unlikely to be simply recording the seawater trace metal inventory. An alternative hypothesis proposed here is that the high-RSE intervals in the Doushantuo Formation reflect some combination of primary and/or secondary processes that have resulted in Phanerozoic-level (or greater) enrichments despite relatively low Ediacaran seawater trace metal reservoirs. On the other hand, muted enrichments in NW Canada may be due to limited trace metal uptake under ferruginous conditions. Sustained low RSE enrichments during the likely euxinic interval at Stoneknife Creek, as well as our current understanding of U, V and Cr behavior (all of which should be enriched under ferruginous conditions), do however argue against this possibility. Nonetheless, given our limited knowledge of trace metal cycling under ferruginous conditions, it remains possible the muted NW Canada enrichments may be an expected result of profoundly different sedimentation rates and redox–state.

Compared to the Doushantuo, the view from NW Canada is likely more representative of Neoproterozoic oceans worldwide (e.g., Kunzmann et al., 2015), but these results are more difficult to interpret through the lens of geochemists’ normal euxinic analogues. In light of this, correct accounting for depositional redox state in future analyses of RSE dynamics through time may be particularly crucial. We suggest the basic sedimentological character of the earliest Ediacaran stratigraphic record may provide our best clue to marine dissolved oxygen concentrations during this interval of Earth’s history. Following the Marinoan glaciation, black shale deposition was globally ubiquitous (Arnaud and Halverson, 2011). Where this black shale has been investigated geochemically, it shows evidence for deposition under anoxic water column (Canfield et al., 2008; Guan et al., 2014; Johnston et al., 2013; Kunzmann et al., 2015; Shen et al., 2008; Sahoo et al., 2012, 2016; this study). The sheer abundance of earliest Ediacaran anoxic basins strongly contrasts with the modern ocean—where anoxia is exceedingly rare—and on intuitive grounds argues against a fully oxygenated ocean–atmosphere system at that time.

Please cite this article as: Miller, A.J., et al., Tracking the onset of Phanerozoic-style redox-sensitive trace metal enrichments: New results from basal Ediacaran post-glacial str..., Chem. Geol. (2017), http://dx.doi.org/10.1016/j.chemgeo.2017.03.010
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.chemgeo.2017.03.010.

Acknowledgements

Funding was provided by a National Science Foundation Grant (EAR 1324095 awarded to DTJ), the Rocky Mountain Association of Geologists Philip McKenna Scholarship (AJM), NASA Astrobiology Institute Foundations of Complex Life Team (DTJ, FAM), an NSERC Discover Grant (GPH), and an Agouron Institute Geobiology Postdoctoral Fellowship (JVS). We thank Erin Beirne, Marcus Kunzmann, Timothy Gibson, David Mucciarone, Douglas Turner and Peter Crockford for help in the laboratory, and Thomas Algeo, Maurice Colpron, Timothy Gibson, Kim Lau, David Moynihan, Paul Myrow, and Clint Scott for helpful discussions and reviews. We thank Hendrik Falck for considerable help in coordinating logistics and support and North American Tungsten Corporation for allowing access to their facilities and airstrip. We would also like to thank the Aurora Research Institute, license #2761 in 2014 for research permission at our field site at Sheepbed Creek and license #15480 for permission at Stoneknife Creek. We thank Trans North, Horizon and Summit helicopters for safe flying.

References

Please note that the text provided is a natural language representation of the content in the image. This does not include any formatting or layout elements that may be present in the original document.