7 What if a M~3.5 Earthquake
Occurred in a CO2 Reservoir?
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Would it be prudent to leave CO, in place even after a small earthquake?



A Regional Solution?
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Regional Perturbations Affect Regional Faults
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Regional Carbon Sequestration Partnerships
Validation Phase CO, Storage Projects

Geologic Terrestrial
Geologic Province/
Partnershi| 5
P Location Total CO, d
(metric tons CO,) Depth (feet) CO, Storage Potential
@ Columbia Basin 0 2,500 - 4,000
B  Bis.Sxx.Garson North Central MT 60 Mt over 20 years
E| Eastern WY 30 Mt over 10 years
' Region-wide 640-1,040 Mt over 80 years
@ llinois Basin-Loudon Fiekd <39 1,550
@ llinois Basin-Mumford Hills Field 3375 1,551
@ Ilinois Basin-Sugar Creek Field 6,500 1548
@ P Ilinois Basin® v 7,200
(¢ Iinois Basin 91 1,000
@ Appalachian Basin <50 5,900 - 8,300
@® Cinginnati Arch 1,000 3,200 - 3,500
Michigan Basin 60,000 3,200 - 3,500
[B] Region-wide 25 Mt over 20 years
Region-wide 100 Mt over 20 years
Cambridge, MD TBD
® Alberta Basin-Zama Field 25,400 4,900
@ — Willston Basin-Norhwest Field 400 8,050
@ P’\ () Wiliston Basin 80 1,100
3 Great Plains
wetlands complex (PPR) 1440
® Guif Coast-Cranfield 627,744 10,300-10,400
@ C AR B Mississippi Coastal Plain 2,740 8,600
® Central Appalachian 907 1,600 - 2,300
Regional Carbon
{15] Susrate arrsy Black Warrior Basin 252 1,500 - 2,500
@ Paradox Basin-Aneth Fleid 620,000 5,600 - 5,800
@ Permian Basin-Sacroc Unit 86,000 5,800
® w San Juan Basin 16,700 3,000
[H] Region-wide TBD
- San Juan Basin Coal T80
Fairway (Navajo City, NM)
@ Yo Colorado Plateau 0 4,000
Recioxat
CARBON
ko Shasta County, CA 4,600 Mt over 80 years (CA)
*~, westearb.org Lake County, OR 900 Mt over 80 years (OR)

* Site was moved to Development Phase injection.

Information current as of June 2010

Are the “Seismically Safe” Saline Aquifers?

Geologic Validation Phase CO, Storage Projects

WESTCARE,

Formation Types

- " @ Coalseam
= . @ Oil & Gas bearing
£
> @ saline formation

Terrestrial Validation Phase CO, Storage Projects

4

WESTCARB

Projects

Agricultural Soils

I soil Reclamation

[l Afforestation/Forest Treatment
I Regional Carbon Budget

B Wetlands Reclamation

2010 Carbon Sequestration Atlas of the United States and Canada



Yes, Poorly cemented Sediments
That Deform Viscoplastically
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Teapot Dome Field, Wyoming
Depleted Reservoir/EOR

Teapot Dome Field

* 1300 wells total ~ 600-currently
producing :

« Over 100 years production data

* Target reservoirs for CO, injection
500’ <8000 S
"9 oil dndggas bearing fermations,)
> 6 -aquifers of varying salinity
 Recoverablereserves ~600 million
barrels,oil ;0.5 b11110n ft3 > gas

. Excellent Seismic Da‘ta




Teapot Dome - History

* Declared Naval Petroleum Reserve (NPR-3) by Wilson administration
in 1915. National scandal shut down of production for ~60 years

* Reopened in 1976

* 1977 became e WA\
US DOE facility N H“.'a’H“v;":Y‘ |

{/ /zum /l
/”

* October 2003, Teapot Dome
designated as the National
Geological Carbon Storage
Test Center

Courtesy RMOTC



%) South Teapot Dome — Trap, Reservoir & Seal

Minnekhata

3-way closure bounded by S1 fault Anhydrite

Opeche Shale

eolian A SS
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dunes

Tensleep Fm  Goose Egg Fm

after (McCutcheon, 2003)

Time structure map of Tensleep Fm.
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after (Yin, 2005)



S1 Fault area - Stress Data

Mean S, ., orientation
N116°E

« 420 Consistent Observations of
Stress Orientation

* Range of depths: 400 — 1800 m

e Tensleep Fm. ~1650 m

Strike-Slip/Normal
Stress Magnitudes
SHmax ~ Sv > Shmin

Chiaramonte, Zoback et al. (2008)



Very Low Slip Potential on S1 Fault

Required Critical Pressure Perturbation ~ 16 MPa

Critical Pp Pert
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Corresponds to CO, column height of ~2300 m (den = 700 kg/m3)
Tensleep average structural closure ~ 100m



Slip Potential — Sensitivity Analysis

Quantitative Risk Assessment

Normal Faulting Environment
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99.9% cases Critical Pressure Pert. > 9 MPa

10,000 Monte Carlo Simulations



S2 Fault Area

Faults Shown in Next
Slide

Time structure map

2"d Wall Creek Fm
(after McCutcheon, 2003)




Slip Potential on S2 Faults

2nd Wall Creek - Critical Pressure Pert. ~ 0 MPa
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Outline of Presentation

1. Enormous Scale of Carbon Capture and Storage and Shale
Gas Development

2. The Critically-Stressed Crust and Assessing Fault Stability
3. CCS and the Potential Triggered Seismicity (Case Studies)

4. Shale Gas and Triggered Seismicity (Case Studies)

5. Assessing and Managing Seismic Risk Associated with
CCS and Shale Gas Development
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Propagation of a Hydraulic Fracture - 1
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Wells Are Drilled Parallel to S, .,
Shmin
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“Typical” Microearthquakes

Cumulative Gutenberg-Richter: Well A-B "Simulfrac"

-3.5 -3 2.5 2 15

100 - :

/Stage7 :

s ]

Tl |
A
2
a0

2 10

Stage!10

Stage 6 :

Stage 8 |

1 |
-3.5 -3 2.5 2 15

Vermylen and Zoback (2011) Magnitude

- 100

10



Normal
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Unusual Lineations, Distant Evants, Larger Egs.
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Left-Lateral Strike-Slip Movement

Stage 1
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Stage 3
Stage 4
Stage 5
Stage B
Stage 1
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Stage 5

L AR R

+* Note that the green lineation is
/ i at the right orientation for left-
lateral slip on a strike-slip fault
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Left-Lateral Strike-Slip Movement
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Earthquake Magnitude
W

Fault Size (m)

A magnitude 2.3 earthquake ’é‘
results in 1-10 mm of slip 14 2
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Earthquakes Triggered by Injection of
Flow-Back Water After Hydraulic Fracturing

DFW — 2009 Magnitude 2.2-3.3
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Frohlich et al. (2011)
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New Madrid Area
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Outline of Presentation

1. Enormous Scale of Carbon Capture and Storage and Shale
Gas Development

2. The Critically-Stressed Crust and Assessing Fault Stability
3. CCS and the Potential Triggered Seismicity (Case Studies)
4. Shale Gas and Triggered Seismicity (Case Studies)

5. Assessing and Manaqging Seismic Risk Associated with
CCS and Shale Gas Development




Managlng the Risk Associated with Triggered Earthquakes
Associated with Shale Gas Development*

1. Monitor Microseismicity
2. Avoid Faults, Limit Pressure Increases
3. Be Prepared to Abandon Some Injection Wells

Primary Need — A Risk Reduction Protocol for Response to Triggered Seismicity




Comprehensive Protocol for Risk Reduction

1. Framework understanding of stress state, pore pressure,
pre-existing faults

2. Real-time seismic monitoring

3. Mechanistic understanding of triggered seismicity
(triggering of well-oriented, critically-stressed faults or poorly-
oriented faults that are slipping only because of the large
pressure perturbation)

4. “If...then...” rules. For example, if an earthquake of M 2
occurs on a well-oriented fault to the stress field, injection
Should immediately cease.



Summary

1. Because of the enormous Scale of Carbon Capture and
Storage and Shale Gas Development, Triggered Earthquakes
Will be a Common Occurrence

2. Even small earthquakes at CO2 storage sites will cause
major problems

3.Triggered Seismicity Associated with Shale Gas
Development is a Manageable Problem

4.Managing Seismic Risk Associated Shale Gas Development
Requires Good Data, Good Understanding and an
Established Protocol for Risk Assessment and Response
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