

What if a M~3.5 Earthquake Occurred in a CO₂ Reservoir?

A Magnitude 3 Earthquake Threatens Seal

Would it be prudent to leave CO₂ in place even after a small earthquake?

A Regional Solution?

Zhou et al. (2009)

Regional Perturbations Affect Regional Faults

Illinois Basin

Are the "Seismically Safe" Saline Aquifers?

Regional Carbon Sequestration Partnerships

Validation Phase CO₂ Storage Projects

	Partnership	Geologic Province/ Location	Geologic		Terrestrial
			Total CO ₂ Injection (metric tons CO ₂)	Approximate Depth (feet)	Estimated CO ₂ Storage Potential
1		Columbia Basin	0	2,500 - 4,000	
A B C	BIG SKY CARBON	North Central MT Eastern WY Region-wide			60 Mt over 20 years 30 Mt over 10 years 640–1,040 Mt over 80 years
2 3 4 5 6	MGSC	Illinois Basin-Loudon Field Illinois Basin-Mumford Hills Field Illinois Basin-Sugar Creek Field Illinois Basin* Illinois Basin	< 39 3,375 6,500 * 91	1,550 1,551 1,548 7,200 1,000	
7 8 9	The state	Appalachian Basin Cincinnati Arch Michigan Basin	< 50 1,000 60,000	5,900 - 8,300 3,200 - 3,500 3,200 - 3,500	
D E F	MRCSP MOVEST REGIONAL CARDON STOLESTINATION PART NERS HIP	Region-wide Region-wide Cambridge, MD			25 Mt over 20 years 100 Mt over 20 years TBD
10 11 12	PCOR	Alberta Basin–Zama Field Williston Basin–Norhwest Field Williston Basin	25,400 400 80	4,900 8,050 1,100	
G	Partnersnip	Great Plains wetlands complex (PPR)			14.4 Mt
13 14 15 15	Secarb Southeast Regional Carbon Sequestration Partnership	Gulf Coast-Cranfield Mississippi Coastal Plain Central Appalachian Black Warrior Basin	627,744 2,740 907 252	10,300-10,400 8,600 1,600 - 2,300 1,500 - 2,500	
17 18 19	SWD	Paradox Basin-Aneth Field Permian Basin-Sacroc Unit San Juan Basin	630,000 86,000 16,700	5,600 - 5,800 5,800 3,000	
H	SWP	Region-wide San Juan Basin Coal Fairway (Navajo City, NM)			TBD TBD
20	WEST COAST REGIONAL	Colorado Plateau	0	4,000	
J K	CARBON SEQUESTRATION PARTNERSHIP westcarb.org	Shasta County, CA Lake County, OR			4,600 Mt over 80 years (CA) 900 Mt over 80 years (OR)
* Site was moved to Development Phase injection					

2010 Carbon Sequestration Atlas of the United States and Canada

Yes, Poorly cemented Sediments That Deform Viscoplastically

Teapot Dome Field, Wyoming Depleted Reservoir/EOR

Teapot Dome Field

- 1300 wells total ~ 600 currently producing
- Over 100 years production data
- Target reservoirs for CO₂ injection 500' 8000'
- 9 oil and gas bearing formations,
 > 6 aquifers of varying salinity
 Recoverable reserves ~600 million
- barrels oil, 0.5 billion ft³ gas
- Excellent Seismic Data

- Declared Naval Petroleum Reserve (NPR-3) by Wilson administration in 1915. National scandal shut down of production for ~60 years
- Reopened in 1976
- 1977 became
 US DOE facility
- October 2003, Teapot Dome designated as the National Geological Carbon Storage Test Center

South Teapot Dome – Trap, Reservoir & Seal

Time structure map of Tensleep Fm.

Mean S_{Hmax} orientation N116°E

- 420 Consistent Observations of Stress Orientation
- Range of depths: 400 1800 m
- Tensleep Fm. ~1650 m

Strike-Slip/Normal Stress Magnitudes S_{Hmax} ≈ S_v > S_{hmin}

Chiaramonte, Zoback et al. (2008)

Very Low Slip Potential on S1 Fault

Required Critical Pressure Perturbation ~ 16 MPa

Corresponds to CO_2 column height of ~2300 m (den = 700 kg/m³) Tensleep average structural closure ~ 100m

Quantitative Risk Assessment

Normal Faulting Environment

99.9% cases Critical Pressure Pert. > 9 MPa 10,000 Monte Carlo Simulations

S2 Fault Area

Time structure map 2nd Wall Creek Fm (after McCutcheon, 2003)

Slip Potential on S2 Faults

 2^{nd} Wall Creek \rightarrow Critical Pressure Pert. ~ 0 MPa

Corresponds to CO_2 column height of ~0 m

1. Enormous Scale of Carbon Capture and Storage and Shale Gas Development

- 2. The Critically-Stressed Crust and Assessing Fault Stability
- 3. CCS and the Potential Triggered Seismicity (Case Studies)
- 4. Shale Gas and Triggered Seismicity (Case Studies)

5. Assessing and Managing Seismic Risk Associated with CCS and Shale Gas Development

North American Shale Gas Development

Microearthquakes Increase Permeability of Shale

Cumulative Gutenberg-Richter: Well A-B "Simulfrac"

Vermylen and Zoback (2011)

Relationship Between Stress State and Fault Slip

Unusual Lineations, Distant Evants, Larger Eqs.

PROPRIETARY DATA

Left-Lateral Strike-Slip Movement

Left-Lateral Strike-Slip Movement

The Great Blackpool, England Earthquake of 2011

Earthquakes Triggered by Injection of Flow-Back Water After Hydraulic Fracturing

Frohlich et al. (2011)

1. Enormous Scale of Carbon Capture and Storage and Shale Gas Development

2. The Critically-Stressed Crust and Assessing Fault Stability

3. CCS and the Potential Triggered Seismicity (Case Studies)

4. Shale Gas and Triggered Seismicity (Case Studies)

5. <u>Assessing and Managing Seismic Risk Associated with</u> <u>CCS and Shale Gas Development</u>

Managing the Risk Associated with Triggered Earthquakes Associated with Shale Gas Development*

- 1. Monitor Microseismicity
- 2. Avoid Faults, Limit Pressure Increases
- 3. Be Prepared to Abandon Some Injection Wells

Primary Need – A Risk Reduction Protocol for Response to Triggered Seismicity

1. Framework understanding of stress state, pore pressure, pre-existing faults

2. Real-time seismic monitoring

3. Mechanistic understanding of triggered seismicity (triggering of well-oriented, critically-stressed faults or poorlyoriented faults that are slipping only because of the large pressure perturbation)

4. "If...then..." rules. For example, *if an earthquake of M 2 occurs on a well-oriented fault to the stress field, injection should immediately cease.*

1. Because of the enormous Scale of Carbon Capture and Storage and Shale Gas Development, Triggered Earthquakes Will be a Common Occurrence

2. Even small earthquakes at CO2 storage sites will cause major problems

3.Triggered Seismicity Associated with Shale Gas Development is a Manageable Problem

4.Managing Seismic Risk Associated Shale Gas Development Requires Good Data, Good Understanding and an Established Protocol for Risk Assessment and Response

- Chang, C. and M.D. Zoback, Viscous rheology and the state of stress in unconsolidated sands, in *SPE/ISRM Rock Mechanics in Petroleum Engineering*, Soc. of Petroleum Eng., Richardson, TX., pp. 465-474, 1998.
- Chiaramonte, L., M. D. Zoback, J. Friedmann and V. Stamp, Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization, *Environmental Geology*, DOI 10.1007/s00254-007-0948-7, 2007.
- Frohlich, C. Hayward, C., Stump, B. and Power, E., Bull. Seis. Soc. Amer., **191**, 1, 327-340, 2011.
- Lucier, A., M. D. Zoback, N. Gupta and T.S. Ramakrishnan, Geomechanical aspects of CO2 sequestration in a deep saline reservoir in the Ohio River Valley region, *Environmental Geology*, 13 (2), 85-103, 2006.
- Townend, J. and M.D. Zoback, How faulting keeps the crust strong, *Geology*, 28 #5 pp . 399-402, 2000.
- Vermylen, J. and M.D. Zoback, Hydraulic fracturing, microseismic magnitudes and stress evolution in the Barnett Shale, Texas, USA, SPE 140507, SPE Hydraulic Fracturing Technology Conference and Exhibition, held in The Woodlands, Texas, USA 24-26, January 2011.
- Wiprut, D. and M.D. Zoback, Fault reactivation and fluid flow along a previously dormant normal fault in the Norwegian North Sea, *Geology*, v. 28 #7, pp. 595-598, 2000.
- Zoback, M.D., J. Townend and B. Grollimund, Steady-state failure equilibrium and deformation of intraplate lithosphere, International Geological Review, *44*, 383-401, 2003.

Zoback, M.D., *Reservoir Geomechanics*, Cambridge Press, 449 pp., 2007.