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Strategies for Geologic Sequestration of CO,

Overview of Geological Storage Options — Droduced oil or gas

1 Depleted oil and gas reservoirs Reseessessesesses B InjcctediCO?
2 Use of CO, in enhanced oil and gas recovery : % Stored CO
3 Deep saline formations — (a) offshore (b) onshore 2
4 Use of CO, in enhanced coal bed methane recovery

IPCC (2005)



Most Common Concern About CO, Sequestration

Overview of Geological Storage Options —— Doduced oil or gas

1 Depleted oil and gas reservoirs

2 Use of CO, in enhanced oil and gas recovery

3 Deep saline formations — (a) offshore (b) onshore
4 Use of CO, in enhanced coal bed methane recovery

Injected CO,
TUE3SE stored CO,

HUGE SCALE — Comparable to volumes oil and gas producdannually

HUGE COSTS — Carbon capture, pipelines, injection wells,
monitoring systems
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Most Common Concern About CO, Sequestration

Overview of Geological Storage Options e— Droduced oil or gas

1 Depleted oil and gas reservoirs

2 Use of CO, in enhanced oil and gas recovery

3 Deep saline formations — (a) offshore (b) onshore
4 Use of CO, in enhanced coal bed methane recovery

Injected CO,
58 Stored CO,

HUGE SCALE — Comparable to volumes oil and gas producd annually

HUGE COSTS — Carbon capture, pipelines, injection wells,
monitoring systems




Saline Aquifers in Well-Cemented
Sedimentary Formations

Overview of Geological Storage Options —— Doduced oil or gas

1 Depleted oil and gas reservoirs

2 Use of CO, in enhanced oil and gas recovery

3 Deep saline formations — (a) offshore (b) onshore
4 Use of CO, in enhanced coal bed methane recovery

Injected CO,
TUE3SE stored CO,

| 2km S

LIMITED INJECTIVITY — Many saline aquifers will not have sufficient
permeability to permit injection at high rates for long periods
of time without significant pressure build up




Horn River Basin/

@ OIL SHALE PLAY
@ GAS SHALE PLAY

0 600
MILES




North American Gas Supplies

2009 Natural Gas Market"” Technically

(trillion cubic feet, dry basis) Recoverable

Proved Natural Shale Gas

Gas Reserves® Resources

Consump- Imports (trillion cubic (trillion cubic

Production tion (Exports) feet) feet)
North America

United States” 20.6 22.8 10% 272.5 862
Canada 5.63 3.01 (87%) 62.0 388
Mexico 1.77 2.15 18% 12.0 681

North American Total Resource
~2300 TCF (85% Shale Gas)
“100 years of Natural Gas”
U.S. Consumption 23 TCF/y

EIA, April 2011
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Drilling/Completion Technology
Key To Barnett Success

Gas Productoin (B cf)

Barnett Shale Production and Well Count (1993- 2009)
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Horizontal Drilling and Multi-Stage
Slick-Water Hydraulic Fracturing
Induces Microearthquakes (M ~ -1 to M~ -3)
To Create a Permeable Fracture Network

L

4
(a) (b) (c)
Vertical Horizontal Horizontal
Well Longitudinal Transverse

Microseismic

Hydraulic Fractures



Microearthquakes in Barnett Shale

Cumulative Gutenberg-Richter: Well A-B "Simulfrac"
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Earthquake Magnitude

A magnitude -2 earthquake
results in < 0.1 mm of slip

Fault Size (m)

on a fault about 1 m in length 1108
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The Context of Concern: In Most Places, The
Brittle Crust is in Frictional Failure Equilibrium

Brittle Failure in Critically-Stressed Crust Results
From Creep in Lower Crust and Upper Mantle

<

Plate-driving
forces ~ 3 X 10°Nm "
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The Context of Concern: In Most Places, The
Brittle Crust is in Frictional Failure Equilibrium

1. Intraplate Earthquakes Occur Nearly Everywhere
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2. Seismicity is Often Triggered by the Extremely
Small Pressure Perturbation Associated with
Reservoir Impoundment



3. Deep Borehole Stress Measurements
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Highly Stress in Intraplate Areas
Hydrostatic Pore Pressure

Differential stress, AS (MPa)
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How Faulting Keeps the Crust Strong

Approximate depth (km)



Reservoir Triggered Seismicity — No!



“Stable” Intraplate Regions are
Critically-Stressed, But Deform Slowly
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Brittle Failure in Critically-Stressed Crust Caused
By Creep in Lower Crust and Upper Mantle
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CO, Sequestration
Research Projects

Powder River Basin
*CBM Production
ECBM/Environment/Sequestration
*Collab. with Western Res. Foundation

Mountaineer, West Virginia
*Deep aquifer injection
*Point source - Coal Burning power plant L :
*Collaboration with DOE, NETL, Battelle, / Michigan
AEP, BP, Schlumberger, Ohio Coal N A (Aquifer)

Development Office 24 e~ !
A\« West Virginia ///'

/7 e Powder.iver ®  (Aquifer)
Michigan Basin VS Rl
*Deep aqgifér injection == >/ :
Permeabilitiy enhancement (Tgflp;;fg;:‘; / 5
Teapot Dome -

*Depleted Oil and Gas Reservoir
*Sequestration seal capacity e, ‘
Collaboration with LLNL, DOE. RMOTSI *

S Stanford University
GCEP Global Climate & Energy Project



Geomechanics and CO,

» How Likely is the Change in Pressure Resulting
from CO, Injection to:

Induce Slip on Reservoir Bounding Faults?

Induce Slip on Faults Within the Reservoir and Cap
Rock?

Hydrofrac the Cap Rock?

Abandoned Well ~ #% A Injection Well %

CO, Plume

Storage Aquifer




Methodologies Used Widely
in the Oil and Gas Industry
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Geomechanics and CO,

» (Case Studies

« AEP Mountaineer Site, W. Virginia
 Mt. Simon Sandstone, lllinois Basin

« Teapot Dome, Wyoming

Abandoned Well % A Injection Well “’n

Mper,
CO, Plume Meable Caproc




AEP Mountaineer Project: New Haven, WV

NY Times Sept. 21, 2009

Current Plans to Inject 100 ktons/y for 2-5 years
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Demonstration CO,
Capture Facility

plants in Ohio
River Valley
(emitting 700
Megatons of
CO,/year)

Mountaineer Power Plant

AEP Mountaineer
CO, Emissions
~7 Mton/year

Lucier, Zoback et al. (2006)



Reservoir Simulations with
Hydraulic Fractures to Stimulate Injection

Geostatistics based
on data from a
Single well



After CO, Injection for 30 Years

CO» Saturation

Permeability x 10 Base Permeabilit

CO3 Saturation [%] N

26 28 30 32 34 36 38 40 42 |

Formation Pressure [MPa]

Note that the pressure front moves ahead of CO, front




Slip on Optimally-Oriented Fault Planes

CRITICAL INJECTION

as a function of fracture pole orientation
(lower hemisphere)

Nearly vertical
conjugate faults

S
P, Increase to P [MPa] | | d to 35.000
njection rate limited to 35,
H 1 31 H tons/year to avoid triggering






