

The Potential for Triggered Seismicity Associated with CO₂ Sequestration and Shale Gas Development

Mark D. Zoback Professor of Geophysics Stanford University

STANFORD UNIVERSITY

1. Enormous Scale of Carbon Capture and Storage and Shale Gas Development

2. The Critically-Stressed Crust and Assessing Fault Stability

3. CCS and the Potential Triggered Seismicity (Case Studies)

4. Shale Gas and Triggered Seismicity (Case Studies)

5. Assessing and Managing Seismic Risk Associated with CCS and Shale Gas Development

Strategies for Geologic Sequestration of CO₂

IPCC (2005)

Most Common Concern About CO₂ Sequestration

HUGE SCALE – Comparable to volumes oil and gas produced annually

HUGE COSTS – Carbon capture, pipelines, injection wells, monitoring systems

Sleipner Field

1996 to present Sleipner A Utsira Formation Sleipner T 1 Mt CO₂ injection/yr Sleibne Licen Seismic monitoring Gas from Sleipner West COTLAND CO₂ injection well CO, Utsira formation X~3500 er East uction and injection wells Fossil fuel emissions (GtC/y) ipner East Field 1 GT C/y wedges 14 -12 10 Stabilization 8 triangle 6 Continued 4 fossil fuel emissions 2 Pacala and Socolow (2004) 0 2030 2000 2010 2020 2040 2050 2060 Year

Most Common Concern About CO₂ Sequestration

HUGE SCALE – Comparable to volumes oil and gas produced annually

HUGE COSTS – Carbon capture, pipelines, injection wells, monitoring systems

Saline Aquifers in Well-Cemented Sedimentary Formations

LIMITED INJECTIVITY – Many saline aquifers will not have sufficient permeability to permit injection at high rates for long periods of time without significant pressure build up

NORTH AMERICAN SHALE PLAYS

North American Gas Supplies

	2009 Natural Gas Market ⁽¹⁾ (trillion cubic feet, dry basis)			Draw d Natural	Technically Recoverable
	Production	Consump- tion	Imports (Exports)	Gas Reserves ⁽²⁾ (trillion cubic feet)	Resources (trillion cubic feet)
North America United States ⁽⁴⁾	20.6	22.8	10%	272.5	862
Canada Mexico	5.63 1.77	3.01 2.15	(87%) 18%	62.0 12.0	388 681

North American Total Resource ~2300 TCF (85% Shale Gas) "100 years of Natural Gas" U.S. Consumption 23 TCF/y

Global Shale Gas Resources

Drilling/Completion Technology Key To Barnett Success

Cumulative Gutenberg-Richter: Well A-B "Simulfrac"

1. Enormous Scale of Carbon Capture and Storage and Shale Gas Development

- 2. The Critically-Stressed Crust and Assessing Fault Stability
- 3. CCS and the Potential Triggered Seismicity (Case Studies)
- 4. Shale Gas and Triggered Seismicity (Case Studies)

5. Assessing and Managing Seismic Risk Associated with CCS and Shale Gas Development

The Context of Concern: In Most Places, The Brittle Crust is in Frictional Failure Equilibrium

Brittle Failure in Critically-Stressed Crust Results From Creep in Lower Crust and Upper Mantle

The Context of Concern: In Most Places, The Brittle Crust is in Frictional Failure Equilibrium

1. Intraplate Earthquakes Occur Nearly Everywhere

Reservoir "Induced" Seismicity

2. Seismicity is Often Triggered by the Extremely Small Pressure Perturbation Associated with Reservoir Impoundment

3. Deep Borehole Stress Measurements

Highly Stress in Intraplate Areas Hydrostatic Pore Pressure

Differential stress, ΔS (MPa)

How Faulting Keeps the Crust Strong

Are Stress Magnitudes Lower in Stable Areas?

Reservoir Triggered Seismicity – No!

"Stable" Intraplate Regions are Critically-Stressed, But Deform Slowly

1. Enormous Scale of Carbon Capture and Storage and Shale Gas Development

2. The Critically-Stressed Crust and Assessing Fault Stability

- 3. CCS and the Potential Triggered Seismicity (Case Studies)
- 4. Shale Gas and Triggered Seismicity (Case Studies)

5. Assessing and Managing Seismic Risk Associated with CCS and Shale Gas Development

CO₂ Sequestration Research Projects

Powder River Basin

CBM ProductionECBM/Environment/SequestrationCollab. with Western Res. Foundation

Mountaineer, West Virginia

Deep aquifer injection
Point source - Coal Burning power plant
Collaboration with DOE, NETL, Battelle, AEP, BP, Schlumberger, Ohio Coal Development Office

Michigan Basin

Deep aquifer injectionPermeability enhancement

Teapot Dome

- •Depleted Oil and Gas Reservoir
- •Sequestration seal capacity
- •Collaboration with LLNL, DOE. RMOTSI

GCEP Stanford University GCEP Global Climate & Energy Project

- How Likely is the Change in Pressure Resulting from CO₂ Injection to:
 - Induce Slip on Reservoir Bounding Faults?
 - Induce Slip on Faults Within the Reservoir and Cap Rock?
 - Hydrofrac the Cap Rock?

Methodologies Used Widely in the Oil and Gas Industry

Wiprut and Zoback (2002)

- Case Studies
 - AEP Mountaineer Site, W. Virginia
 - Mt. Simon Sandstone, Illinois Basin
 - Teapot Dome, Wyoming

AEP Mountaineer Project: New Haven, WV

NY Times Sept. 21, 2009

Current Plans to Inject 100 ktons/y for 2-5 years

Regional Seismicity and CO₂ Point Sources

AEP Mountaineer Project

AEP Mountaineer CO₂ Emissions ~7 Mton/year

183 Coal burning plants in Ohio River Valley (emitting 700 Megatons of CO_2 /year)

Lucier, Zoback et al. (2006)

Reservoir Simulations with Hydraulic Fractures to Stimulate Injection

After CO₂ Injection for 30 Years

Slip on Optimally-Oriented Fault Planes

Optimally oriented strike-slip faults

Injection rate limited to 35,000 tons/year to avoid triggering slip on faults (3.5 Mpa)