Aquatic Calcification as a Source of Carbon Dioxide

Michel Frankignoulle, Michel Pichon¹ and Jean-Pierre Gattuso²

Université de Liège, Laboratoire d'Océanologie, Institut de Chimie B6 B4000 Sart Tilman, Belgium.

Abstract

When calcification occurs in the aquatic environment, carbon dioxide is released into the surrounding water. Due to chemical equilibria of the inorganic carbon system, the release of CO_2 is not stoichiometric but depends on the buffering capacity of the water: the ratio *released CO_2/precipitated CaCO_3* (Ψ) is nearly 1 in freshwater and about 0.6 in seawater for present-day conditions. Calcification therefore favours the escape of CO_2 to the atmosphere and cannot be considered as a potential carbon dioxide sink in the *Global Change* context. On the other hand, marine calcification will present a positive feedback to the man-induced increase of atmospheric CO_2 and Ψ (seawater) would increase by about 20% for a doubling of the preindustrial atmospheric CO_2 level.

Introduction

Calcification is a major oceanic process through which carbon is stored in the open ocean (eg coccoliths), in shallow water (eg coral reefs) and in sediments. The total oceanic carbonate production is estimated to be 1000 Mt C yr⁻¹ (Morse and Mackenzie, 1990). The response of calcification to increasing atmospheric CO_2 level is sometimes

^{1.} Australian Institute of Marine Science, PMB 3, Townsville, 4810, Australia

^{2.} Observatoire Océanologique Européen, Centre Scientifique de Monaco, Avenue Saint-Martin, MC 98000 Monaco, Principality of Monaco.

misunderstood and several scenarios can be found in the literature. While calcification was suggested as a potential mechanism of CO_2 sequestration which could counteract anthropogenic CO_2 release to the atmosphere (Karube *et al*, 1992), it was also proposed as a mechanism explaining the increase of atmospheric CO_2 level during glacialinterglacial cycles (Berger, 1982, Opdyke and Walker, 1992). The purpose of this paper is to investigate the role of calcification on atmospheric CO_2 using chemical thermodynamics. We will demonstrate that this process is a source of CO_2 to the atmosphere.

Discussion

Calcification can be described by the following equation:

$$Ca^{2+} + 2HCO_3^{-} \rightarrow CaCO_3 + CO_2 + H_2O \tag{1}$$

which clearly shows that, for each mole of carbonate precipitated, one mole of dissolved CO_2 is released to the surrounding water. Of course this released CO_2 will further react with bases present in the system (in seawater, mainly carbonate and borate) to reach the equilibrium conditions imposed by associated chemical constants (Wollast *et al*, 1980, Frankignoulle and Gattuso, 1993). The final situation is determined by the following physico-chemical conditions which specify the aquatic system:

- if the system is closed (i.e. no exchange of carbon dioxide with the atmosphere), the partial pressure of CO_2 will increase and its final value will depend on the buffering capacity of the water (Riley and Skirrow, 1975).
- if the system is open to the atmosphere, the partial pressure of CO_2 in the water has to be kept constant and equal to the atmospheric pCO_2 value. This will induce a release of CO_2 to the atmosphere, the magnitude of which again depends on the buffering capacity of the water. Calcification then induces a new distribution of the inorganic carbon species between the phases involved with a net loss for the water and a gain in both the solid (calcite and/or aragonite) and the gas (atmosphere) phases.