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A B S T R A C T   

In recent decades, southernmost South America (50–56◦ S) has experienced marked climate change (regional 
warming, decreased precipitation, reduced snow cover, and increased frequency of heat waves) related to var
iations in atmospheric circulation over varied timescales. In this paper, we develop oxygen isotopes from tree- 
ring cellulose (δ18OTRC) as a proxy for climate and atmospheric circulation in order to extend the regional 
meteorological record to deeper time intervals. Our work focuses on Nothofagus forests in two areas: (i) decid
uous N. pumilio forest in the steppe transition zone near Punta Arenas and (ii) humid evergreen N. betuloides 
forest in the Navarino Island region. To investigate the potential for reconstructing palaeoclimate, δ18OTRC 
variations were correlated with local climate parameters as well as regional (Amundsen Sea Low, ASL) and 
hemispheric (Antarctic Oscillation, AAO) atmospheric circulation modes for the last 60 years. N. betuloides 
δ18OTRC variations show an overall positive trend, indicating isotopic enrichment over the study period, whereas 
no trend is recorded for the N. pumilio record. The strongest relationships with climate, together with the widest 
spatial representativeness, occur in the N. betuloides chronology during the growing season (spring to austral 
summer) and extend spatially from mid to high latitudes. In contrast, the sensitivity of the records is limited to 
summer months, and spatial correlations are much more limited. In addition, the N. betuloides record shows 
greater potential for reconstructing local climate features such as soil water (r = − 0.76), wind speed (r = 0.69), 
and precipitation (r = − 0.66), as well as regional (ASL, r = − 0.80) and hemispheric (AAO, r = 0.77) patterns of 
extratropical atmospheric circulation. Overall, we conclude that the N. betuloides record represents the most 
valuable tree-ring climate proxy for southernmost South America over past centuries.   

1. Introduction 

Openly exposed to the westerly winds, the southernmost part of 
South America, including southern Patagonia, Tierra del Fuego, and its 
adjacent islands, constitutes the most extensive portion of emerged land 
in the mid-latitude Southern Hemisphere. Since past and present climate 
variability in southernmost South America (SSA, 50–56◦ S) is not well 
documented, paleoclimatic studies in this region provide an opportunity 
to advance our understanding of mid-latitude climates and to establish 
the extent to which present-day climate is unusual in the context of local 

and regional natural climatic variability. 
Despite the scarce available information, substantial climatic 

changes have been documented in recent decades in SSA. A significant 
warming of 0.73 ◦C between 1960 and 2010 has been recorded at Punta 
Arenas at 53◦ S (Carrasco, 2013). This warming has been concurrent 
with an increase in the frequency of heat waves in response to more 
frequent subtropical warm air masses reaching higher latitudes in South 
America (Jacques-Coper et al., 2016). A 19% reduction in snow cover 
over the period 1972–2016 (45 years) has also been reported for the 
Brunswick Peninsula, west of Punta Arenas. This snow cover decline has 
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been attributed to long-term warming during the autumn-winter season 
(April–September) (Aguirre et al., 2018). Consistently, summer precip
itation records in Punta Arenas show a substantial negative trend over 
the last three decades (González-Reyes et al., 2017; Soto-Rogel et al., 
2020). 

The persistent trends in the average climate and the increase in 
extreme weather events during the last decades in South America are 
closely related to the interannual to decadal-scale climate variability, 
modulated by the El Niño-Southern Oscillation (ENSO, Aceituno, 1988), 
the Antarctic Oscillation (AAO, Garreaud et al., 2009), the Pacific 
Decadal Oscillation (PDO; Villalba et al., 2003; Vuille et al., 2015) and 
the South Pacific Pressure Dipole (Garreaud et al., 2021), among other 
modes of climate variability. The AAO, also known as the Southern 
Annular Mode (SAM), is the dominant mode of climate variability in the 
Southern Hemisphere related to changes in the strength and latitudinal 
position of the polar jet around Antarctica (Marshall, 2003). The AAO 
index is a measure of the variations in the meridional pressure gradient 
in the mid-latitudes of the Southern Hemisphere (Fogt and Marshall, 
2020). In recent decades, the AAO index has shown a predominantly 
positive trend, associated with warmer hemispheric temperatures and 
Antarctic stratospheric ozone depletion (Polvani et al., 2011). This 
steady trend, especially during the summer, has induced the movement 
of the Southern Hemisphere westerly winds (SHWW) towards higher 
latitudes. Consequently, precipitation in the western mid-latitude sector 
of South America has decreased as moisture transport from the Pacific to 
the continent has been reduced in recent decades (Garreaud et al., 2013, 
2021). 

Since the 1980s, sea level pressure (SLP) has been decreasing in the 
Amundsen-Bellingshausen Sea (West Antarctic coast) and increasing in 
the mid-latitudes of the South Pacific, consequently intensifying the 
pressure gradient across the region (Fogt et al., 2012; Garreaud et al., 
2021). The observed trends in the SLP, which are typically stronger in 
the austral winter, are associated with recently recorded climate 
changes in West Antarctica and South America (Raphael et al., 2016; 
Garreaud et al., 2021). Hosking et al. (2013) presented a set of clima
tological indices to characterize the dynamics of the Amundsen- 
Bellingshausen Sea (ASL) pressure low. Variations in the ASL are asso
ciated with global and hemispheric modes of climate variability (Turner 
et al., 2013; Raphael et al., 2016). Atmospheric variability in the 
Amundsen-Bellingshausen region, which is the highest in the Southern 
Hemisphere, is significantly related to the AAO and ENSO. Since the 
phase changes of the AAO result in mass exchange between the mid-and 
high latitudes of the Southern Hemisphere, the sea level pressure in the 
ASL is strongly influenced by the phase of the AAO. In the positive phase 
of the AAO, sea level pressure anomalies are negative at high latitudes, 
inducing a stronger polar jet in the troposphere and an increase in the 
zonal wind in the ASL region. During the period 1979–2008, the ASL low 
in January deepened by 1.7 hPa dec-1 in response to the persistent 
positive trend in the AAO (Turner et al., 2013). Raphael et al. (2016) 
reported that a significant relationship has been observed between the 
longitudinal position of the ASL and the zonal wind speed over the 
Southeast Pacific between 40◦ and 50◦ S. Moreover, Westerly winds are 
weaker when the ASL is located further west (Raphael et al., 2016). 
Despite these advances in the understanding of ASL dynamics, the in
fluence of the ASL on large-scale climate variations in the Southern 
Pacific Ocean has not yet been fully established (Fogt et al., 2012; 
Carrasco, 2021). 

Despite their vast territorial extension, the number of climatic re
cords in the sub-Antarctic regions is very low. Most of them are short and 
inhomogeneous. Therefore, knowledge of climate variability and its 
connection with the dominant atmospheric patterns remains fragmen
tary. To counter this deficiency, indirect records of climate variability 
are used to extend existing instrumental data into the past. Proxy records 
are useful to provide robust estimates of natural climate variability to 
determine the extent to which recent changes and trends are anomalous 
in the context of climate variability over the past centuries or millennia. 

Tree-ring records have been used previously to reconstruct past 
variations in SSA temperature. Boninsegna et al. (1989) developed the 
first reconstruction of Tierra del Fuego temperature for the interval 
1750–1984 using a combination of four N. pumilio and N. betuloides tree- 
ring chronologies. The reconstructed summer temperatures (from 
November to February) show relatively warm periods in the 18th and 
19th centuries and gradual warming in the last decades not statistically 
different from those observed in the past (Boninsegna et al., 1989). 
Based on seven chronologies of N. pumilio tree-ring widths, Aravena 
et al. (2002) developed a minimum temperature reconstruction for 
Punta Arenas covering the period 1829–1996. This reconstruction shows 
that annual minimum temperatures during most of the 19th century 
remained below average, increased to values close to the long-term 
mean during 1900–1960, followed by a clear positive trend with 
above-average temperatures from the 1960s onwards. More recently, 
Matskovsky et al. (2022) developed a new summer temperature recon
struction (December to February) over the interval 1765–2001 based on 
a combination of 16 N. pumilio and N. betuloides chronologies. This new 
temperature reconstruction indicates a century-long warm period be
tween 1765 and 1905, with brief cold episodes in the 1800s, 1850s- 
early, 1860s, and 1880s. Although these reconstructions share some 
tree-ring records, they differ in their assessment of temperature evolu
tion over the last 2.5 centuries (Matskovsky et al., 2022). Part of the 
differences observed in the reconstructions responds to the different 
periods (annual vs. summer) used to calibrate temperature variations 
with tree-ring records, as well as the target variable (minimum vs. mean 
temperature) of the reconstruction. Another important difference is 
given by the different spatial distributions of the chronologies used in 
the reconstructions. Boninsegna et al. (1989) used chronologies of 
N. pumilio and N. betuloides from the southeastern (Argentina) sector of 
Tierra del Fuego, Matskovsky et al. (2022) used records of both species 
but along the entire southern (Argentina and Chile) sector of the Island, 
while Aravena et al. (2002) reconstructed the annual minimum tem
perature of Punta Arenas using only N. pumilio records from the entire 
Chilean region of Magallanes. In addition, the different statistical ap
proaches used to develop the reconstructions may also contribute to the 
differences between these temperature reconstructions (Matskovsky 
et al., 2022). These results highlight the need to increase the number and 
type of proxy records available to obtain more reliable reconstructions 
of past climate in SSA. 

Oxygen isotopes measured in tree ring cellulose (δ18OTRC) have 
proven to be a powerful tool in paleoclimatology. Records of δ18OTRC 
have been successfully used to reconstruct past variations in precipita
tion (Treydte et al., 2006; Rinne et al., 2013; Foroozan et al., 2020; 
Wang et al., 2022), air temperature (Porter et al., 2014; Naulier et al., 
2015; Lavergne et al., 2016) and drought events (Kress et al., 2010; Xu 
et al., 2014; Labuhn et al., 2016; Nagavciuc et al., 2019; Zhu et al., 
2021). Similarly, δ18OTRC chronologies have provided valuable infor
mation on past variations of large-scale atmospheric circulation (Brie
nen et al., 2012; Lavergne et al., 2016; Nagavciuc et al., 2019; 
Pumijumnong et al., 2020; Meier et al., 2020; Balting et al., 2021). In the 
Southern Hemisphere, monthly and seasonal reconstructions of the AAO 
have recently been developed based on historical meteorological records 
(Fogt et al., 2009), tree-ring width chronologies, isotopic variations in 
Antarctic ice cores, and a combination of these proxies (Villalba et al., 
2012; Abram et al., 2014; Dätwyler et al., 2018). In addition, δ18OTRC of 
several Nothofagus species from SSA have also been used to reconstruct 
past variations in AAO variability (Meier et al., 2020). Recently, the 
combined use of δ18OTRC chronologies of N. betuloides and N. pumilio 
from SSA has allowed the development of a reliable reconstruction of the 
AAO for the last 150 years (Grießinger et al., 2018; Meier et al., 2020). 
The δ18OTRC of N. betuloides and N. pumilio constitute a highly recom
mended alternative for reconstructing climate variability in the high 
latitudes of South America (Lavergne et al., 2016; Grießinger et al., 
2018; Meier et al., 2020). It is worth mentioning that the dominant 
Nothofagus species in SSA forests can reach ages of >400–500 years 
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(Llancabure, 2011; Fuentes et al., 2019). Therefore, tree rings of these 
species provide a unique opportunity to extend the climatic information 
from instrumental records and characterize their temporal variations in 
the past centuries. 

In this context, the present study examined the climatic information 
contained in the δ18OTRC records of N. pumilio and N. betuloides from 
different environments in the SSA during the last six decades. The 
characterization of climate-proxy relationships over the period of 
instrumental data represents the first step in determining the viability of 
these isotopic records for reconstructing climate in past centuries. In this 
paper, we sought to determine the relationships between local climate 
variability (precipitation, temperature, wind speed, and soil water) and 
isotopic records derived from Nothofagus tree rings. In the second step, 
we established the relationships between our isotopic records and 
regional-hemispheric modes of climate variability, such as ASL and 
AAO. Our study lays the foundation for reconstructing the long-term 
variability of the dominant forcings of atmospheric circulation in SSA 
for the last hundred to thousand years. 

2. Study site 

2.1. Climatic conditions in southernmost South America 

Southernmost South America (SSA) includes the southern conti
nental part of Patagonia, Tierra del Fuego, and its adjacent islands 
(50–56◦ S; Fig. 1). The Andes Mountains act as an orographic barrier to 
the humid air masses coming from the Pacific Ocean, inducing precip
itation of up to 5000 mm/yr on the western slopes and <200 mm/yr in 
the eastern sector, only 50–100 km from the Andean peaks (Carrasco 
et al., 2002; González-Reyes et al., 2017; Viale et al., 2019). The strong 
precipitation gradient determines the presence of different biotic com
munities (Pisano, 1977) arranged from hyper-humid Magellanic peat
lands and evergreen forests (N. betuloides) through mixed (N. betuloides 
and N. pumilio) and deciduous (N. pumilio and N. antarctica) forests to the 
Magellanic steppe. Our study was conducted in the evergreen 
N. betuloides forest in Navarino Island (NC) and the deciduous N. pumilio 
forest near Punta Arenas (SKI; Fig. 1A and B). 

According to instrumental records from Punta Arenas (53◦ S, 70.8◦

W, Fig. 1C) and Puerto Williams (54.9◦ S, 67.6◦ W, Fig. 1D), the climate 
of the region is characterized as maritime-cold, with mean summer and 
winter temperatures of 11 and 2.2 ◦C in Punta Arenas and 9.6 and 2.3 ◦C 
in Puerto Williams, respectively. Precipitation in Punta Arenas (~400 
mm/year) is lower than in Navarino Island (~530 mm/year), but the 
mountainous topography introduces enormous variations in total 
amounts between relatively close sites. The marked difference in vege
tation between the two sites suggests that lower temperatures, particu
larly in summer, exacerbate differences in precipitation, with wetter 
forests on Navarino Island than those observed in the forest-steppe 
ecotone near Punta Arenas. Regional relative humidity in the winter 
season ranges between 77 and 85%, with an annual average of 72.6%. 
During the summer, relative humidity is lower (~65%) concurrent with 
higher temperatures. 

2.2. Tree samples 

Samples of the two Nothofagus species studied were collected during 
fieldwork in the austral summer of 2020 (Soto-Rogel et al., 2022). The 
SKI site at 550 m asl near Punta Arenas (53.153◦ S, 71.042◦ W) is 
covered by the deciduous N. pumilio forest with a mean height of 10 m. 
This site has a predominantly SE exposure, an average slope of 25◦, and 
podzolic soils surrounded by alpine meadows. The NC site is located on 
Navarino Island, separated >300 south of Punta Arenas. This site is 
dominated by the evergreen N. betuloides forest; It is at 350 m asl in the 
Ukika valley (54.998◦ S, 67.599◦ W), and the forest reach an average 
height of 17 m. The NC site has a western exposure with average slopes 
of 30–35◦ and podzolic soils. The NC site combines samples of the NCA 

and NCB sites in Soto-Rogel et al. (2022). 

2.3. α-cellulose extraction 

To develop the oxygen isotope chronologies, six individuals of 
N. pumilio from SKI and ten individuals of N. betuloides from NC were 
selected from a total of 26 and 39 trees, respectively (Soto-Rogel et al., 
2022). The main analytical criteria for selecting the samples for final 
δ18OTRC determination were 1) precise calendar age determination and 
accurate cross-dating, 2) tree ring width >0.3 mm, otherwise with a 
wood mass >3.5 mg, and 3) cores with good inter-series correlations. 

Annual rings from each sample were cut with a scalpel under a 
binocular microscope and stored individually. To extract α-cellulose, 
each sample was treated following the method described by Wieloch 
et al. (2011). To ensure complete intra-annual homogenization, the final 
α-cellulose samples were further homogenized using an ultrasound 
system (Laumer et al., 2009). The homogenized samples were placed in 
a freeze-drying analyzer for 72 h before isotopic analyses. Finally, ~200 
μg of each annual sample were individually packed in silver capsules for 
final δ18O determination using an isotope ratio mass spectrometer 
(Thermo Fisher Delta-V Advantage) coupled to an elemental analyzer 
(HekaTech). To ensure the reliability of the measurements, δ18O values 
were periodically calibrated with laboratory and international standard 
mean ocean water (SMOW), resulting in an overall analytical precision 
of >0.2‰. 

2.4. Characteristics and evaluation of δ18OTRC-climate 

The consistency of the δ18OTRC chronologies was assessed by calcu
lating the mean correlation between all individual series (Rbar, Cook 
and Briffa, 1990) and the expressed population signal (EPS, Wigley 
et al., 1984). Both statistics assess how well the individual oxygen 
isotope time series represent a theoretically infinitely replicated popu
lation. At each site, individual records were averaged to obtain the final 
δ18OTRC chronology. The first-order autocorrelations for the SKI and NC 
isotope records are − 0.009 and 0.027, respectively. We calculated 
Pearson correlation coefficients between our isotopic chronologies and 
monthly or seasonal climate records to analyze species-specific re
sponses to climate. The climatic parameters used to assess proxy-climate 
relationships were precipitation (PREC), maximum and minimum tem
perature (TMAX and TMIN, respectively), wind speed (WS), relative 
humidity (RH), soil water (SW) and mean sea level pressure (MSL, 
Table 1). Climate data from Punta Arenas (53.00◦ S, 70.83◦ W) and 
Puerto Williams (54.93◦ S, 67.61◦ W), located 20 km and 8 km from SKI 
and NC, respectively, were used for comparisons. In addition to the 
station datasets (Table 1), we used monthly climate data from the ERA5 
(Hersbach et al., 2020; Bell et al., 2021) and ERA5-Land (Muñoz-Sabater 
et al., 2021) reanalyses with specific grids for SKI (53.15◦S, 70.04◦W) 
and NC (54.99◦S, 67.59◦W). Beck et al. (2021) noted that soil moisture 
information from the ERA5-Land model performs relatively well for 
regions in North America, Europe, Africa, and Australia. The ERA5-land 
soil moisture data quality has not been explicitly tested in South 
America. However, due to the lack of other reliable datasets with similar 
spatial resolution, we decided to use the ERA5-Land model dataset in 
our study. 

The climate imprints of different regional and hemispheric indices 
were investigated to study the influences of large-scale atmospheric 
circulation modes on the δ18OTRC chronologies (Table 2). The Amundsen 
Sea Low central pressure index is calculated from reanalysis data for an 
area west of the Antarctic Peninsula (60–80◦ S, 170–298◦ E). It starts in 
the year 1979 (ASL, Hosking et al., 2013). The AAO-CPC index is based 
on CPC reanalysis pressure fields at the 700 mb height from 20◦S to the 
south pole and starts in 1979 (Cpc, 2022). The AAO-Marshall index is 
based on pressure data from meteorological stations located around 40◦

S and 60◦ S and is available since 1957 (Marshall, 2003). The AAO- 
NCEP-NCAR is an index based on sea level pressure differences 
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Fig. 1. A) Mean sea-level pressure during spring-summer (September to February; Hersbach et al., 2020) over the South America-Antarctic Peninsula sector in the 
Southern Hemisphere. The locations of the mid-latitude high (H) and low (L) pressure centers and westerly winds are indicated (in black). The position of the 
Amundsen Sea Low (ASL) is also indicated. The black box in A corresponds to the study area in B. Orange, and green circles show the location of the δ18OTRC 
chronologies of N. pumilio and N. betuloides, respectively. The climate diagram includes data from C) Punta Arenas (puq) and D) Puerto Williams (ptw) weather 
stations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(NCEP-NCAR) between 40◦ and 65◦ S and starts in 1948 (Knmi, 2022). 
In addition, we calculated spatial correlation patterns between our 

δ18OTRC chronologies and climate fields from the ERA5 reanalysis 
(Hersbach et al., 2020). The climate variables used for comparisons were 
mean sea level pressure (MSL), wind speed (WS), precipitation (PREC), 
and maximum and minimum temperature (TMAX and TMIN) over the 
period 1960–2021 using the KNMI Climate Explorer (Trouet and van 
Oldenborgh, 2013; Knmi, 2022). 

3. Results 

3.1. Characteristics of the δ18OTRC chronologies 

Regional δ18OTRC records from the deciduous N. pumilio forest near 
Punta Arenas (SKI-δ18OTRC) and the evergreen N. betuloides forest on 
Navarino Island (NC-δ18OTRC) cover the period 1960 to 2019 (Fig. 2), 
with inter-series correlations (RBar) of r = 0.62 and r = 0.73, respec
tively. The isotopic variations of the SKI-δ18OTRC series range between 
25 and 30‰ (mean 27.09‰) and show no clear trend (Fig. 2A). In 
contrast, the NC-δ18OTRC series showed more significant variability 
ranging between 27 and 33‰ (mean 29.18‰) and a significant positive 
trend (p < 0.01; Fig. 2B). EPS values ranged from 0.90 (SKI) to 0.97 
(NC). Both statistics indicate good quality of the chronologies and 
adequate representation of the common signal in their respective pop
ulations (Cook and Briffa, 1990). 

3.2. Climate-δ18OTRC relationships 

Fig. 3A shows correlation coefficients between δ18OTRC records and 
several climatic variables, including precipitation, maximum tempera
ture, wind speed, and soil water content (estimated at different L1 and 
L2 depths). The chronologies for both species show negative 

relationships with precipitation and soil water content (at both L1 and 
L2) for the spring-summer months and positive relationships with 
maximum temperature and wind speed throughout the year. Significant 
positive correlations were also observed between NC and soil water 
during August and September (late austral winter and early spring). The 
most significant correlations occurred during the austral months of late 
winter-spring-summer (August to February) for NC and late spring- 
summer (November to February) for SKI. For the NC-δ18OTRC record, 
the highest relationships occurred with soil water content at L2 (7–28 
cm; Fig. 3E, October to February), r = − 0.76**, r2 = 0.58), followed by 
ERA5 wind speed (Fig. 3D, November to February, r = 0. 69**, r2 =

0.48), precipitation (Fig. 3B, November to January, r = − 0.66**, r2 =

0.44) and maximum temperature (Fig. 3C, October to December, r =
0.62**, r2 = 0.38). The SKI-δ18OTRC record was highly related to January 
(summer month) soil water content in the L2 layer (Fig. S1, January, r =
− 0.60**, r2 = 0.36), ERA summer precipitation (Fig. S1, November to 
January, r = − 0.56**), and to a lesser degree to maximum temperature 
conditions during the austral summer (December to February, r =
0.32*). No significant relationships were observed between SKI-δ18OTRC 
and wind speed (February, r = 0.25). 

Following the climate-δ18OTRC relationships illustrated in Fig. 3, 
spatial patterns were estimated between the different climate variables 
from the ERA5 reanalysis and the isotopic records during the austral 
spring-summer season (October to February) for NC-δ18OTRC and during 
the austral summer (December to February) for SKI-δ18OTRC (Fig. 4). The 
NC-δ18OTRC chronology showed a close annular pattern with strong 
significant positive and negative relationships with sea level pressure at 
mid-latitudes and over Antarctica, respectively, resembling the sea level 
pressure pattern associated with the AAO in the Southern Hemisphere 
(MSL, Fig. 4A). A strong positive correlation pattern with wind speed 
(WS, Fig. 4B) was also observed throughout the Southern Ocean 
(somewhat similar to that recorded for precipitation, not shown). On the 

Table 1 
Geographical location of the meteorological stations and the ERA5 and ERA5-land grids used in this study. Climatic variables and periods are also indicated.  

Meteorological Station Lat (S) 
Long (W) 

Variable Period Source 

Punta Arenas 
(puq) 

53.00 
70.83 

MSL: mean sea level pressures (mb) 
PREC: precipitation (mm) 
RH: relative humidity (%) 
TMAX: maximum temperature (◦C) 
TMIN: minimum temperature (◦C) 
WS: wind speed (km/h) 

1968–2021 
1900–2021 
1967–2021 
1930–2021 
1930–2021 
1967–2021 

(Dmc, 2022) 

Puerto Williams 
(ptw) 

54.93 
67.61 

MSL: mean sea level pressures (mb) 
PREC: precipitation (mm) 
TMAX: maximum temperature (◦ C) 
TMIN: minimum temperature (◦C) 
WS: wind speed (km/h) 

1969–2021 
1970–2021 
1980–2021 
1980–2021 
1986–2021 

(Dmc, 2022) 

ERA5 ski 
(53.15, 71.04) 
nc 
(54.99, 67.59) 

MSL: mean sea level pressures (Pa) 
PREC: total precipitation (m) 
RH: relative humidity at 1000 hPa (%) 
2mT: temperature at 2 m(K) 
WS: wind speed at 10 m (m/s) 

1950–2021 (Hersbach et al., 2020; Bell et al., 2021) 

ERA5-Land ski 
(53.15, 71.04) 
nc 
(54.99, 67.59) 

SW L1: Soil water layer 1 (0–7 cm, m3/m3) 
SW L2: Soil water layer 2 (7–28 cm, m3/m3) 
SW L3: Soil water layer 3 (28–100 cm, m3/m3) 
SW L4: Soil water layer 4 (100–280 cm, m3/m3) 

1950–2021 (Muñoz-Sabater et al., 2021)  

Table 2 
Southern Hemisphere regional and hemispheric circulation indices/modes used to assess proxy-climate relationships.  

Index Methodology Period Source 

Amundsen Sea Low (ASL) Sea level pressures from NCEP reanalysis 1979–2021 (Hosking et al., 2013) 
http://scotthosking.com/asl_index 

CPC’s Antarctic Oscillation (AAO-CPC) Atmospheric pressures at 700 mb from reanalysis 1979–2021 (Cpc, 2022) 
Marshall’s Antarctic Oscillation (AAO-Marshal) Sea level pressures from weather stations 1957–2021 (Marshall, 2003) 
NCEP/NCAR’s Antarctic Oscillation (AAO-NCEPNCAR) Sea level pressures from NCEP/NCAR 1948–2021 (Knmi, 2022)  
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other hand, the SKI-δ18OTRC series displayed similar but weaker spatial 
correlation patterns than those observed with the NC-δ18OTRC record. 
The SKI-δ18OTRC showed patterns of significant positive correlation with 
sea level pressure at mid-latitudes in the vicinity of South America, Af
rica, New Zealand, the Indian Ocean, and a center of negative correla
tion over the Antarctic continent (Fig. 4C). Significant correlation 
patterns with wind speed are spatially limited to a small sector of the 
Southern Ocean off the west coast of the Antarctic Peninsula (Fig. 4D). 

3.3. Atmospheric circulation-δ18OTRC relationships 

Our δ18OTRC chronologies also showed strong relationships with 
regional (ASL) and large-scale (AAO) atmospheric circulation modes in the 
Southern Hemisphere (Fig. 5A). While the most significant relationships 
with NC occurred during the austral spring-summer months, for SKI, they 
were limited to the austral summer. Highly significant relationships were 
observed between NC-δ18OTRC chronology and the ASL index from mid- 
spring to early austral summer (Fig. 5B, October to January, r = −

0.80**, r2 = 0.64), consistent with highly significant correlations with 
Southern Hemisphere AAO indices for the same season; for example for 
AAO-CPC (Fig. 5C, October to January, r = 0.77**, r2 = 0.59), AAO- 
Marshall (Fig. 5D, October to February, r = 0.69**, r2 = 0.48) and 
AAO-NCEPNCAR (Fig. 5E, October to January, r = 0.69**, r2 = 0.48). In 
contrast, the SKI-δ18OTRC chronology exhibited comparatively weaker 
relationships with circulation modes, although significant relationships 
occurred during the austral summer for all indices, e.g., AAO-CPC (Fig. S1, 
December to February, r = 0.47**), AAO-Marshall (December to 
February, r = 0.35**), AAO-NCEPNCAR (December to February, r =
0.31**), ASL (Fig. S1, December to February, r = − 0.44**). 

To evaluate the consistency between our isotopic records and other 
proxies associated with AAO variations, we compare the temporal 
variation of the NC-δ18OTRC record with currently available AAO re
constructions (Fig. 6). Numerous above-average isotopic events in the 
NC-δ18OTRC are associated with predominantly positive AAO indices. 
The first austral summer AAO reconstruction was based solely on ring- 
width chronologies from South America and New Zealand (Villalba 
et al., 2012). Most tree-ring chronologies were located at mid-latitudes 
in the Southern Hemisphere, including Austrocedrus chilensis (37◦ S to 
43◦ S) and Araucaria Araucana (38 to 40◦ S) in South America and 
Halocarpus biformis (42◦ to 45◦ S) in New Zealand. Over the common 
interval 1960–2006, the AAO reconstruction and our δ18OTRC record are 
significantly correlated (r = 0.38**). Abram et al. (2014) provided the 
first-millennium annual AAO reconstruction based on a larger proxy 
dataset, including tree-ring records at mid-latitudes from South America 
and high-latitude δ2H in ice cores from the Antarctic Peninsula and 
Antarctic continental regions. These AAO reconstructions show the 
strongest relationships with the NC isotopic record (Fig. 6, r = 0.43**). 
Dätwyler et al. (2018) recently developed austral summer (DJF) and 
annual AAO reconstructions using four different methodological ap
proaches. The summer AAO reconstruction, including nine Australasian 
and South American tree-ring records, six Antarctic ice core records, 
four Australasian coral records, and one South American documentary 
record, significantly correlates to our NC isotopic series (r = 0.41**). In 
addition to these proxy-based AAO reconstructions, Fogt et al. (2009) 
used the longest instrumental sea-level pressure records in the Southern 
Hemisphere to extend the AAO series to the mid-nineteen century 
(Fig. 6, r = 0.43**). 

In a recent contribution, Meier et al. (2020) provide the first AAO 

Fig. 2. Inter-annual records of δ18OTRC (‰) in Nothofagus forests from SSA. A) The deciduous N. pumilio forest at the SKI site near Punta Arenas, and B) the evergreen 
N. betuloides forest at the NC site on Navarino Island. Dark lines indicate mean annual δ18OTRC values, and the shaded area represents the 95th and 5th percentiles. 
Dotted lines indicate linear trends (linear regression) of isotopic records. 

P. Soto-Rogel et al.                                                                                                                                                                                                                             



Palaeogeography, Palaeoclimatology, Palaeoecology 617 (2023) 111474

7

reconstruction based on δ18OTRC records from multi-Nothofagus species 
from southern South America (Fig. 6B). A stable oxygen isotope time 
series from Nothofagus betuloides was developed at the Schiaparelli 
Glacier (54.4◦ S) within the hyper-humid Austral Andes. This isotopic 
record was merged with a δ18OTRC-Nothofagus pumilio chronology from 
the Perito Moreno Glacier (50◦ S) (Grießinger et al., 2018) to developed 
an AAO reconstruction for the last 150 years. This reconstruction ex
plains 62% of the September–February AAO variations and shows an 
increasing trend towards more positive index values during recent de
cades (Meier et al., 2020). 

4. Discussion 

This study contributes two new annually-resolved δ18OTRC chronol
ogies from Nothofagus forests in southernmost South America (SSA). The 
SKI-δ18OTRC record from deciduous N. pumilio forests in the steppe-forest 
ecotone at Punta Arenas is the most southeastern isotopic site for this 
species. In contrast, the NC-δ18OTRC chronology from evergreen 
N. betuloides forests on Navarino Island is the southernmost tree-ring- 
based record worldwide. Both chronologies represent robust isotopic 
records with considerable replicate common signal (EPS > 0.90). 

At our study sites, δ18OTRC values generally increase with low soil 

water availability, mostly concurrent with strong wind speeds and high 
temperatures (Fig. 3 and Fig. S1). Such climatic conditions are associ
ated with the positive phase of AAO and low pressures in the ASL sector 
(Fig. 5). In contrast, lower δ18OTRC values are related to high soil 
moisture levels, the negative phase of AAO, and low ASL index values 
(Fig. 3, Fig. 5, and Fig. S1). This association suggests that supra-regional 
atmospheric circulation modes (AAO and ASL) and their associated 
climatic conditions are the main drivers of δ18OTRC variations in SSA. In 
addition, our study shows that droughts and wind speed promote 18O 
isotopic enrichment in SSA tree rings, results in agreement with models 
of 18O isotopic fractionation in tree rings (Barbour et al., 2002; Gessler 
et al., 2013, 2014; Roden et al., 2000), and consistent with previous 
studies of δ18OTRC in SSA (Tognetti et al., 2014; Lavergne et al., 2016; 
Grießinger et al., 2018; Meier et al., 2020). 

Positive relationships of δ18OTRC in Nothofagus forests with temper
ature and negative with precipitation have also been reported for South 
America by Lavergne et al. (2016), Grießinger et al., 2018, and Meier 
et al. (2020). Similarly, the strong AAO signal detected in our NC- 
δ18OTRC chronology is in good agreement with previous studies on the 
spatially consistent influence of AAO on tree δ18OTRC variations in SSA 
(Grießinger et al., 2018; Meier et al., 2020). Our results also provide the 
basis to support, for the first time, strong relationships between stable 

Fig. 3. A) Relationships between δ18OTRC chronologies of N. pumilio (SKI, orange color) and N. betuloides (NC, green color) with precipitation and maximum 
temperature at Punta Arenas (puq) and Puerto Williams (ptw), respectively, and the ERA5 reanalysis. Wind speed and soil water content (SW) at L1 (0–7 cm) and L2 
(7–28 cm) were taken from the ERA5 reanalysis. Correlations are presented for 12 months, from the previous May to the current April, and for different seasons 
(spring, SON: September to November, summer, DJF: December to February, autumn, MAM: March to May, late spring, OND: October to December, early summer, 
NDJ: November to January, long summer, NDJF: November to February and late spring-early summer ONDJF: October to February). Significant correlations are 
indicated: p < 0.05 (*) and p < 0.01 (**). The most significant relationships between climate at Puerto Williams (ptw) and NC-δ18OTRC, highlighted in black-bordered 
boxes in A, are shown in the right panels for B) precipitation, C) maximum temperature, D) wind speed, and E) soil water. Correlation coefficients (r) and explained 
variance (r2 in parentheses) are indicated in each panel. Gray bordered boxes in A indicate the most significant relationships between Punta Arenas climate (puq) and 
SKI-δ18OTRC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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isotopes in Nothofagus forests and soil water content at different depths. 
The δ18OTRC in SKI and NC was strongly negatively related to soil water 
dynamics at depths between 0 and 7 cm and 7–28 cm (L1 and L2 levels, 
respectively). Consistent with these results, Soto-Rogel et al. (2022) 
reported significant positive relationships between N. betuloides ring 
width on Navarino Island and precipitation during the spring-summer 
months (September to February). These observations would indicate 
that the isotopic composition of soil water is an important factor regu
lating the δ18O signal in N. betuloides rings. 

We also report the novelty of strong positive correlations between 
the NC-δ18OTRC chronology and wind speed. Previously, Soto-Rogel 
et al. (2022) reported negative correlations between wind speed and the 
N. betuloides ring width on Navarino Island. The NC site is directly 
exposed to strong southwesterly winds from the Southern Ocean. Meier 
et al. (2020) indicated that a higher proportion of heavy 18O isotopes in 
the N. betuloides forest near the Schiaparelli glacier would be due to 
increased evaporation, which could be induced by the prevailing high 
wind speeds during the austral summer. Also, strong wind speeds 
negatively affect photosynthesis through reduced stomatal conductance 
(Smith and Ennos, 2003; Iogna et al., 2013). 

In this contribution, we also document differences in the sensitivity 
of δ18OTRC records to climatic variations. Variations of NC-δ18OTRC in 
the evergreen N. betuloides forest on Navarino Island are strongly 
dependent on variations in local climate parameters (precipitation, 
maximum temperature, wind speed, soil water at different depths, 
Fig. 3) and atmospheric forcings (AAO and ASL, Fig. 5) that induce these 
variations. In contrast, the SKI-δ18OTRC record of deciduous N. pumilio at 
Punta Arenas showed weaker relationships with the local climate. While 
the SKI-δ18OTRC record provides some potential as a proxy for precipi
tation and soil water dynamics during summer, isotopic variations in 
evergreen N. betuloides are more strongly related to climatic variations 
over a more extended period in the growing season (austral spring- 
summer, Fig. 3). While SKI showed comparatively limited spatial cor
relation during summer, NC spatial patterns showed greater spatial 
representativeness with stronger relationships during the spring and 
summer seasons. These differences in isotopic response could be 
explained by species- and site-specific characteristics. Previous studies 
report that differences in responses to climate among species of the 

genus Nothofagus are related to different physiological strategies of 
adaptation to drought (Bucci et al., 2012; Soliani et al., 2021). Decid
uous Nothofagus, such as N. pumilio, exhibit anisohydric behavior, 
keeping their stomata open for CO2 uptake under water stress conditions 
and, consequently, continue to lose water by transpiration (Bahamonde 
et al., 2019; Varela et al., 2010). In contrast, in evergreen Nothofagus, the 
coordination of different stress strategies, either within leaves or be
tween leaves and conducting tissue in trunks and branches, allows 
evergreen species to optimize carbon assimilation during dry periods 
(Bucci et al., 2019). Although there are no specific studies on the 
response of N. betuloides to water deficit, Bucci et al. (2019) indicate that 
evergreen Nothofagus species (such as N. dombeyi) are more resistant to 
drought, with a capacity comparable to xeric tree species of the Andean- 
Patagonian forest such as Austrocedrus chilensis and Maytenus boaria. 

Site conditions could also be another factor associated with differ
ences in δ18OTRC responses to climate. Csank et al. (2016) recorded 
significant differences in δ18OTRC between sites, while Marshall and 
Monserud (2006) observed that differences in δ18OTRC between indi
vidual trees were more significant than between species. In southern 
Patagonia, N. betuloides trees exposed to high water stress induced by 
warmer and drier summers show marked reductions in tree growth 
induced by a decrease in stomatal conductance (Soto-Rogel et al., 2022). 
Srur et al. (2008) observed that radial growth of Nothofagus pumilio in 
mesic forests of the southern Patagonian Andes benefits from wet and 
relatively cold conditions. These authors observed that in drier sites, the 
photosynthetic rate is severely limited by water deficits, so the reduction 
in radial growth is not compensated by increased water use efficiency. 
We hypothesize that N. betuloides at the NC site uses mainly meteoric 
water and thus maintains a high relationship with the local climate 
parameters, connected with regional (ASL) and hemispheric (AAO) 
modes of circulation. In contrast, N. pumilio from SKI would use a 
mixture of groundwater and meteoric water, so the 18O climate signal is 
weaker than the NC site. These differences reinforce the importance of 
attending to the analysis of stable isotope composition (δ13CTRC and 
δ18OTRC) to the topographic and hydrological conditions of the sampling 
sites (Belmecheri et al., 2022). However, we do not rule out that species 
differences and site conditions interact with each other to modulate 
stable isotope-climate relationships. 

Fig. 4. Spatial correlation patterns between 
the ERA5 reanalysis and the two δ18OTRC 
chronologies (NC and SKI). The first column 
shows the spatial correlations between NC- 
δ18OTRC (green circle: A and B) and ERA5 
mean sea level pressure and wind speed 
during the austral spring-summer (October 
to February). The second column shows the 
spatial correlations between SKI-δ18OTRC 
(orange circle: C and D) and ERA5 mean sea- 
level pressure and wind speed during the 
austral summer (December to February). 
Dashed and solid white lines indicate sig
nificant correlations at the p < 0.05 and p <
0.01, respectively. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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Our NC-δ18OTRC chronology of the evergreen N. betuloides forest in 
Navarino Island was able to reproduce with high fidelity the interannual 
variations of the local climate parameters and atmospheric circulation 
indices such as the Amundsen Sea Low (ASL) and Antarctic Oscillation 
(AAO) during the spring-summer season. The ASL index has been pro
posed to measure the large-scale interannual sea level pressure in the 
southeastern Pacific Ocean (Hosking et al., 2013). The potential tem
poral extension of our tree-ring-based isotopic record on Navarino Island 
over the last 400–500 years would offer the unique opportunity to 
characterize the evolution of sea-level pressure variations in this sector 
of the South Pacific under different global thermal conditions, such as 
the Little Ice Age and the current global warming. This information is 
highly relevant for assessing the ability of climate models to reproduce 
interannual to multi-decadal climate changes in this sector of the South 
Pacific Ocean, which exhibits high atmospheric variability (Garreaud 
et al., 2021). 

ASL variations have also been related to other atmospheric circula
tion indices such as the AAO and SOI (Southern Oscillation; Fogt et al., 
2012). Low ASL pressure values coincide with positive AAO anomalies 
and La Niña events (positive SOI; Turner et al., 2013). Long-term re
constructions of the ASL would allow assessing the stability in climate 
teleconnections between the ASL and both tropical and high-latitude 
atmospheric forcings. Depending on the intensity of the forcing 

anomalies and their tropical-extratropical interactions, climate events of 
different magnitudes will impact the SSA local climate (Garreaud, 
2018). 

Although past AAO variations have previously been reconstructed 
using δ18OTRC from a combination of two Nothofagus species (Meier 
et al., 2020) or multiple proxy records, including δ2H variations in ice 
cores (Abram et al., 2014), our work is the first to demonstrate the high 
potential of Nothofagus betuloides to provide robust AAO reconstructions 
based solely on interannual variations of δ18OTRC in the annual rings of 
this species. Given the considerable longevity of N. betuloides (Llanca
bure, 2011; Fuentes et al., 2019), annual variations of δ18OTRC of 
N. betuloides provide excellent material to reconstruct the dominant 
oscillatory modes of climate variability at high SH latitudes over the last 
400 years. 

5. Conclusions 

Two 60-year δ18OTRC chronologies from the evergreen N. betuloides 
and deciduous N. pumilio have been developed to determine their re
lationships with local and large-scale circulation modes in the Southern 
Hemisphere. According to our analyses, the new chronologies capture a 
large percentage of the total spring-summer variations in temperature, 
precipitation, and wind speed, which modulate other site conditions 

Fig. 5. A) Relationships between Southern Hemisphere (SH) atmospheric circulation indices (AAO-CPC, AAO-Marshall, AAO-NCEPNCAR, and ASL) and δ18OTRC 
chronologies (SKI, orange color; NC, green color). Correlations are presented for 12 consecutive months from May to April, and different seasonal means (SON: 
September to November, DJF: December to February, MAM: March to May, ONDJ: October to January, and ONDJF: October to February). Significant correlations are 
indicated: p < 0.05 (*) and p < 0.01 (**). The most significant relationships between SH circulation indices and the NC-δ18OTRC, highlighted in black-bordered boxes 
in A, are shown in the right panels for B) ASL, C) AAO-CPC, D) AAO-Marshall, and E) AAO-NCEPNCAR. Correlation coefficients (r) and explained variance (r2 in 
parentheses) are indicated in each panel. Boxes with gray borders in A indicate the most significant relationships between SH and SKI-δ18OTRC circulation indices. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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such as local soil water content. On regional to hemispheric scales, 
isotopic chronologies are strongly related to ASL and AAO atmospheric 
circulation modes. We observed that interannual variations in the 
δ18OTRC chronology of the evergreen N. betuloides show more robust 
relationships with climate during a longer spring-summer growing 
season (October to February) than those observed for the deciduous 
species. The δ18OTRC record of N. pumilio is significantly, but weaker, 
related to summer climatic conditions (December to February). We as
sume that differences in climatic sensitivity among species reflect 
species-specific characteristics and specificities of site conditions. In our 
study, the higher groundwater use by the deciduous N. pumilio could 
mask the relationships between δ18O and climate. Consequently, species 
and site attributes may induce differences in the climatic sensitivity of 
isotopic records. 

Our results show that the isotopic composition of the evergreen 
N. betuloides forest on Navarino Island represents a valuable proxy for 
reconstructing climate in southern South America and the Southern 
Hemisphere for the last 4–5 centuries (Llancabure, 2011; Fuentes et al., 
2019). However, further research is needed to unravel differences in the 
climatic sensitivity of deciduous N. pumilio and evergreen N. betuloides 
forests, as well as to examine the full potential of both tree-ring isotopic 
records for climate reconstructions. 

In comparison to other regions, particularly in the Northern 

Hemisphere, the number of stable isotope records in SSA is reduced, 
suggesting the need to develop additional δ18OTRC records to validate 
our results and provide a geographically extended network of sites that 
would warranty solid reconstructions of past climate variability at 
different spatial scales in SSA. In addition, it is necessary to complement 
our study with stable carbon isotopes (δ13CTRC) to model soil-plant- 
atmosphere relationships, which may provide information on the 
ecophysiological strategies of SSA forests under recent and future 
climate changes. 
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