PAPER B

A NUMERICAL SOLUTION FOR THE SCALAR SCATTERING EQUATION USING A MOMENT METHOD WITH BILINEAR BASIS FUNCTIONS

Jerry M. Harris and Feng Yin

ABSTRACT

We present a new moment method of solving the acoustical scattering equation. We describe the formulation, the implementation, and numerical testing of the method. The main characteristic of this method is that a bilinear basis function is used instead of a pulse basis function to evaluate the Green function, total field, and scattering potential at any arbitrary point of the image region. In this way, the integral equation may be discretized to arbitrary fineness in order to increase the accuracy of the computations. From simulation tests, we find that this method is accurate and the number of unknowns can be greatly reduced compared with the pulse basis method to obtain the same accuracy. The simulation results show that the method is effective for forward modeling in the frequency domain and can be used to produce time domain seismograms with the Fourier transform.

INTRODUCTION

In recent years, several researchers have attempted wave equation tomography on field data with mixed results (Harris and Wang, 1993, Zhou and Schuster, 1993). Some used the time-domain waveform data to invert for velocity; others used the frequency domain wave field. In either domain, an estimate of the wave field in the inhomogeneous medium is required; thus an expensive forward computation is required. To avoid this expense, approximations such as the Ray-Born algorithms for forward modeling have been developed (Beydoun and Mendes, 1987), and one way propagation methods have been proposed (Freit and Fleck, 1978, Martin and Flatte, 1988, Thomson and Chapman, 1989, Wu and Huang, 1992, Wu, 1994). However, methods that employ the ray approximation as the propagator can not treat “wave” phenomena in inhomogeneous media. In addition, the Born approximation is not valid for large scale or large contrast heterogeneities, and methods that employ the one-way propagation operator can not treat multi-reflection wave. In order to model wave propagation and scattering in arbitrarily heterogeneous media which are an important part in wave equation inversion, full wave modeling methods are required. There are two types of useful methods: One is to solve the differential form of the wave equation, e.g., with finite difference methods (Pratt, 1988), finite element methods (Robert and Andreas, 1992), or boundary element methods (Barhe, 1982). Another is to solve the integral equation (Richmond, 1965, Bojarski, 1971, Chew and Lu, 1993), in which the moment methods using pulse basis functions (Richmond, 1965) are widely used. Finite difference methods are especially useful for large areas. Conventional moment methods are especially useful for modeling in smaller regions. Also, the Frechet derivative required for inversion can be easily derived from the integral formulation.
In geophysics, our ultimate goal is inversion of the acoustic fields for earth properties; therefore, we choose the integral approach to forward modeling. It is known that the conventional pulse basis functions used in moment methods do not produce accurate representation for pixel sizes larger than about 0.1 wavelength. For large scale imaging problems, we must use many pixels and invert a huge matrix in order to find the wave field accurately in the inhomogenous medium. This is the main problem of the moment method. Up to now, many authors have attempted to improve this method (Johnson, 1983, Steinberg, 1993, Zhuck, 1994). For examples, some use wavelet expansions in the method of moments to solve a one-dimensional scattering problem (Steigberg and Leviatan, 1993), but up to now wavelet methods can only be applied when the domain of integration is a straight line or curved line (Steinberg and Leviatan, 1993, Wang, 1995). When the domain of integration is a 2-D region, no results have been reported. Undoubtedly that this type of method will be very complicated to implement in the 2-D case. By exploiting the property that any solution is composed of fast and slow spatial variations, i.e., high and low frequency components, some another have applied multi-grid methods to the moment method to solve for the slow and fast modes in the solution by using iterative solvers at a coarse and fine grids, respectively (Kalbasi and Demarst, 1993). These methods greatly complicate the computation. In addition, by the observation that the integral equation used in the method of moment (MOM) is a convolution-type integral, the K-space method which uses FFT and the conjugate gradient method has been proposed in order to accelerate the computation and reduce the memory size requirement in solving the scattering integral equation (Bojarvski, 1971, 1982, 1985, Shozo and Bojarvski, 1988, Borup and Gandhi, 1984, 1985, Sarkar, Erument, Sadasaiva, 1986); but for each source, almost every parameter has to be calculated again. As we know, in seismic wave inversion, there are usually 200 sources and 200 receivers, therefore, we have to repeatedly apply this method many times. This will result in great time expense. The impedance matrix in MOM does not depend on the source and receiver positions; if we use a direct matrix method such as LU decomposition, the matrix can be used to solve for fields from multiple source positions using relatively inexpensive backsubstitutions. We can also solve for the Green's functions by putting a point source at the receiver positions and using the reciprocity principle. Therefore, the moment method or the methods of solving scattering integral equation with pulse basis function is still widely used as a forward modeling method in the wave equation inversion area (Chew and Wang, 1990; Thompson, Rodi, Cheng and Toksoz, 1992; Caorsi S., Gragnani, and Pastorino, 1993; Caorsi, et al, 1994, 1995, Moghaddam and Chew, 1993, Wang and Zheng, 1992, Silvatore, Gragnani and Pastosino, 1993). As mentioned above, in applications of the MOM to the solution of the integral equations of electromagnetic or acoustic waves, ten adjustable degrees of freedom per wavelength have been the norm even for the most benign configurations (Johnson, 1983; Herrmann, 1993). The reason most commonly given for the need to oversample is that the basis functions chosen to represent scattering sources are discontinuous or have discontinuous derivatives and consequently possess a rich high-frequency spectrum (Herrmann, 1990, 1993). In this paper, we present a new variation on the moment method that is more numerically efficient for the 2-D wave propagation in strongly heterogeneous media. In our method, we discretize the integral equation on a grid and interpolate between nodes using smooth bilinear basis functions instead of pulse basis functions. In this way, we can not only increase the accuracy of the calculation of wave field, but also reduce the number of unknowns representing the field. And as pointed out above, the Frechet derivative for non-linear wave equation inversion is very easily derived.

From the numerical simulation, we observe that bilinear elements lead to a matrix with very similar properties as pulse basis matrix. Moreover it is just as easy to set up as the pulse basis function; and the linear system is just as easy to solve as that for pulse basis functions. We can get better accuracy for same amount of work using the two methods with the same pixel size, and we can use smaller impedance matrices derived by
setting the pixel size to be the wavelength divided by 6 for same accuracy as pulse method with the pixel size being the wavelength divided by 10. This great savings may enable us to use Gauss Elimination to solve linear system directly. Because the matrices derived from bilinear or pulse elements do not depend on the source and geophone position; when we apply Gauss Elimination to the matrix, we only need to do the LU factorization once, and this matrix decomposition can be used to solve for fields from multiple sources using relatively inexpensive backsubstitutions. We can also solve for the Green's functions by putting a point source at the receiver positions and using the reciprocity principle. The pulse basis method with a pixel size to obtain the same accuracy leads to a matrix which can be too large for Gauss Elimination. Therefore, the method developed here will be useful in wave field calculation in multi-source and multi-receiver system, such as cross-well imaging.

A NEW MOMENT METHOD FOR THE SCATTERING EQUATION

We restrict ourselves to the acoustic wave propagation in 2-D inhomogeneous media. In the frequency domain, we have

\[
(\nabla^2 + \frac{\omega^2}{c^2(r)})u(r, \omega) = -\delta(r - r_s),
\]

(1)

where, \(c(r)\) is the velocity of the compression wave, \(r\) is the position vector, \(r_s\) the source position, \(u(r, \omega)\) is the pressure field, and \(\omega\) is the angle frequency. We define the scattering potential in terms of the contrast in velocity to be

\[
M(r) = 1 - \frac{c_o^2}{c^2(r)}
\]

(2)

and write the total acoustic field as the sum of the incident and the scattered fields:

\[
u(r) = u^{inc}(r) + u^s(r).
\]

(3)

The integral equation corresponding to Eqn. (1) can be written

\[
u(r) = u^{inc}(r) - k^2 \int_{\Omega} M(r') u(r', \omega) G(k|\mathbf{r} - r'|) d\mathbf{r'}
\]

(4)

where \(k=\omega/c_o\), \(\Omega\) defines the inhomogeneous region or what we will call the object region. As shown in Figure 1, the object region is divided into \(R\) homogeneous areas, i.e., pixels, with \(N\) nodes, \(\Omega = \Omega_1 \cup \Omega_2 \cdots \cup \Omega_R, \Omega_i \cap \Omega_j (i \neq j)\).
We then have
\[u(r) = u^{nc}(r) - k^2 \sum_{r=1}^{g} \int_{\Omega} M(r') u(r', \omega) G(k|r - r'|)dr'. \] (5)

When \(r' \) is located in \(\Omega \), and the subscripted cartesian coordinates are used to denote the four nodes of the cell \(\Omega \), as shown in Figure 1. We use \((x, y)\) to denote a point within the cell and \(\Delta x \) and \(\Delta y \) the intervals in the x and y directions, respectively. When \(x_i \leq x \leq x_{i+1}, y_j \leq y \leq y_{j+1}, (1 \leq i \leq M_x, 1 \leq j \leq M_y) \), define

\[\rho_l = \begin{cases}
 f_1 & l = (j-1) \times M_x + i \\
 f_2 & l = (j-1) \times M_x + i + 1 \\
 f_3 & \text{when } l = (j-1) \times M_x + i + M_x \\
 f_4 & l = (j-1) \times M_x + i + M_x + 1 \\
 0 & l = \text{otherwise}
\end{cases} \] (6)

where \(M_x, M_y \) are the total number of the nodes in the x and y direction, respectively.

\[f_1 = 1 - \frac{(x - x_i)}{\Delta x} - \frac{(y - y_j)}{\Delta y} - \frac{(x - x_i)(y - y_j)}{\Delta x \Delta y} \] (7)

\[f_2 = \frac{(x - x_i)}{\Delta x} - \frac{(x - x_i)(y - y_j)}{\Delta x \Delta y} \] (8)

\[f_3 = \frac{(y - y_j)}{\Delta y} - \frac{(x - x_i)(y - y_j)}{\Delta x \Delta y} \] (9)

\[f_4 = \frac{(x - x_i)(y - y_j)}{\Delta x \Delta y} \] (10)
The field quantities \(M(r) \), \(u(r) \) and \(G(r; r', k) \) are expanded using the basis function \(\{ \rho_n(x, y) \} \). We have

\[
M(r) = \sum_{n=1}^{N} \rho_n \cdot M_n \tag{11}
\]

\[
u(r, k) = \sum_{n=1}^{N} \rho_n \cdot u_n \tag{12}
\]

\[
G(r; r', k) = \sum_{n=1}^{N} \rho_n \cdot G_{jn} \tag{13}
\]

where \(N \) is the total number of the nodes in the object area; \(O_n, u_n, \) and \(G_{jn} \) are the values at the nodes. Substituting Eqns (11)-(13) into Eqn. (5) we obtain

\[
\sum_{j=1}^{N} A_{jj} u_j + u_j = u_j^{inc} \quad (1 \leq j \leq N) \tag{14}
\]

where \(N \) is total number of the nodes,

\[
A_{jj} = \sum_{r} F_{jr} \tag{15}
\]

when \(n \neq j, n \neq j - 1, n \neq j - M_x - 1, n \neq j - M_x \), \(n = r + \text{integer}(r / (M_x - 1)) \),

\(\text{if mod}(r, M_x - 1) \neq 0, \ n = r + \text{integer}(r / (M_x - 1)) - 1 \), if \(\text{mod}(r, M_x - 1) = 0 \), we have (see Appendix 1)

\[
F_{jr} = B_{jn} \delta_{j,n} + C_{j,n+1} \delta_{j,n+1} + D_{j,n+M_x} \delta_{j,n+M_x} + E_{j,n+M_x+1} \delta_{j,n+M_x+1} \tag{16}
\]

\[
\delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \tag{17}
\]

where

\[
B_{jn} = \left(\frac{1}{16} Q_1(q_1)Q_2(q_1) + \frac{1}{4} [Q_1(q_2)Q_2(q_2) + Q_1(q_3)Q_2(q_3) + Q_1(q_2)Q_2(q_1)] + \frac{1}{4} [Q_1(q_4)Q_2(q_4) + Q_1(q_4)Q_2(q_3)] + \frac{1}{4} [Q_1(q_4)Q_2(q_4) + Q_1(q_4)Q_2(q_3)] \right) \Delta x \Delta y k^2
\]

\[
C_{j,n+1} = \left(\frac{1}{16} Q_1(q_1)Q_2(q_2) + \frac{1}{4} [Q_1(q_1)Q_2(q_1) + Q_1(q_4)Q_2(q_4) + Q_1(q_2)Q_2(q_1)] + \frac{1}{4} [Q_1(q_3)Q_2(q_3)] + \frac{1}{4} [Q_1(q_3)Q_2(q_3)] + Q_1(q_1)Q_2(q_2) + Q_1(q_4)Q_2(q_4)] \Delta x \Delta y \tag{18}
\]

\[
D_{j,n+M_x} = \left(\frac{1}{16} Q_1(q_1)Q_2(q_2) + \frac{1}{4} [Q_1(q_1)Q_2(q_1) + Q_1(q_4)Q_2(q_4) + Q_1(q_2)Q_2(q_1)] + Q_1(q_1)Q_2(q_2) + Q_1(q_4)Q_2(q_4)] \Delta x \Delta y \tag{19}
\]

\[
E_{j,n+M_x+1} = \left(\frac{1}{16} Q_1(q_1)Q_2(q_2) + \frac{1}{4} [Q_1(q_1)Q_2(q_1) + Q_1(q_4)Q_2(q_4) + Q_1(q_2)Q_2(q_1)] + Q_1(q_1)Q_2(q_2) + Q_1(q_4)Q_2(q_4)] \Delta x \Delta y \tag{19}
\]
\[D_{j,n+M_x} = \left[\frac{1}{16} Q_1(q_3)Q_2(q_3) + \frac{1}{48} \left(Q_1(q_1)Q_2(q_1) + Q_1(q_4)Q_2(q_4) + Q_1(q_4)Q_2(q_3) \right) + \frac{1}{144} \left(Q_1(q_1)Q_2(q_2) + Q_1(q_2)Q_2(q_3) \right) \right] \Delta x \Delta y k^2 \] (20)

and

\[E_{j,n+M_x+1} = \left[\frac{1}{16} Q_1(q_4)Q_2(q_4) + \frac{1}{48} \left(Q_1(q_2)Q_2(q_2) + Q_1(q_3)Q_2(q_3) + Q_1(q_4)Q_2(q_4) \right) + \frac{1}{144} \left(Q_1(q_2)Q_2(q_3) \right) \right] \Delta x \Delta y k^2 \] (21)

where \(Q_i(q_i) = G_{j,i} \) and \(Q_i(q_i) = M_{q_i} \), and \(R = (M_x - 1) \times (M_y - 1) \), and the definitions of \(q_i \) are shown in Figure 1. When \(n = j, n = j-1, n = j - M_x - 1, n = j - M_y \), the Green functions have a singularity, but using the same method as in the paper (Richmond, 1965) for singularity processing, we have

\[F_{j,n} = \frac{i}{2} \left[\pi k a H_0^0(k a) + 2i \right] M_j \delta_{j,n} \] (22)

where \(a = \sqrt{\Delta x \cdot \Delta y / \pi} \). Thus, equation (14) can be written as

\[\Gamma U = U^{inc} \] (23)

where \(U = (u_1, u_2, \ldots, u_N)^t, U^{inc} = (u_1^{inc}, u_2^{inc}, \ldots, u_N^{inc})^t, \Gamma_{jl} = A_{jl}, (j \neq l), \Gamma_{jl} = A_{jl} + 1, (j = l) \)

Therefore, the total field can be obtained by solving equation (23) and we solve the linear system (23) for \(U \) using Gaussian Elimination; we will discuss the numerical solution of (23) in the next section.

After the total field is found, the scattering field at \(r_m \) outside the object region can be expressed as

\[u_m^{sc} = - \sum_{l=1}^{N} A_{ml} M_l \] (24)

where \(A_{ml} \) equals Eqn (14), and \(Q_1(q_i) = G_{m,q_i}, Q_2(q_i) = u_{q_i} \). Therefore, the scattering field in frequency domain can be derived by Eqn (24) and the waveform of the scattering can be derived by inverse Fourier transform of the frequency domain wave field.

NUMERICAL SIMULATIONS

We used our bilinear method to calculate the scattered fields for the two models shown in Figures 2a and 3a. The velocities, along with the geometry of the source and receiver positions, are denoted in the figures. 100 sources and 100 receivers are located at \(x=-30 \) m and \(x=+30 \) m at equal z-axis intervals of 1.6 m. This geometry corresponds to the
crosswell imaging experiment in borehole geophysics. We compare pulse basis simulations with the bilinear basis simulations. First, we discuss the properties of the matrices derived by the two different basis functions. When we use the same size model with \((Mx+1)^*(My+1)\) nodes, then we can establish two impedance matrices for the pulse element method and bilinear element method, which we call \(\Gamma_0, n_0 \times n_0\), where \(n_0 = Mx \times My\) for the pulse element method, and \(\Gamma, n \times n\), where \(n = (Mx + 1) \times (My + 1)\) for the bilinear element method. When we set the unknown number of elements in two different formulations to make \(n_0 = n\), then, \(\Gamma_0\) and \(\Gamma\) are very similar: (1) For model II, both of matrices we obtained from pulse elements and bilinear elements are very well conditioned; the condition numbers of bilinear element matrix and pulse element matrix are 4.3 and 5.8, respectively; and the matrix \(\Gamma\) for bilinear element is slightly better conditioned than \(\Gamma_0\); and \(\|\Gamma - \Gamma_0\|_2 / \|\Gamma_0\|_2 = 0.085\), which shows that the matrices are not dissimilar; and (2) the distribution of the singular values corresponding to both the largest and smallest singular values are also almost identical. Therefore, solving linear systems of the same size with \(\Gamma\) and \(\Gamma_0\) will be of equivalent difficulty whether we use Gauss Elimination with pivoting or an iterative method like generalized minimum residual method (GMRES) (Yousef and Schultz, 1986, Walker, 1989, Navarra, 1989), which is appropriate for non-singular matrices with no special properties such as symmetry or positive definitions. Since the matrix is dense, we don't expect iterative method will be better than Gauss elimination when you can use Gauss Elimination. We find that to obtained the desired accuracy, for example, in a cross well imaging system, the matrix for bilinear is not too big to use Gauss Elimination.

In addition, one main advantage of Gauss Elimination is that once we do the LU factorization, we can solve many linear systems with same matrix and many different right hand sides, while an iterative solver will be expensive for multi-source/multi-receiver systems because for different source or receiver, the wave field must be solve independently. Any method we can use for \(\Gamma_0\), we can also use for \(\Gamma\). For the same size of cell, the moment method with bilinear basis functions get better accuracy than that with pulse basis functions To get same accuracy, the moment method with bilinear basis functions requires a smaller matrix than for the pulse basis functions, as the following numerical experiments shown.

With pulse basis functions, we use 10 pixels per wavelength, while with the bilinear basis function we use only 6 nodes per wavelength. A comparison of the results is shown in Figures 2b-2f and 3b-3f.

Model I (Figure 2) consists of a rectangular block centered at \(x=1.6m, z=0.0\) m in an otherwise homogeneous medium. We plot in Figure 2b the magnitude of the amplitude at all receivers for the source at \(z=0.0\) m. If we assume that the more expensive pulse basis simulation is accurate (Johnson, 1983, Herrmann, 1993), then we find that the bilinear basis functions yield errors less than approximately 5.3% everywhere (Figure 2b). However, the bilinear basis simulation requires less memory to store the matrix for inversion than pulse basis simulation. Therefore, it can run greatly faster than the pulse basis simulation when solving the linear system (23) for the total field in the medium. Compared with pulse basis simulation, the larger the inhomogeneous region is, the faster the bilinear simulation is. Here, the bilinear simulation is about 60% faster than the pulse basis simulation. The real and imaginary parts of the computed scattered amplitudes for the 100x100 source-receiver positions are displayed in Figures 2c and 2d for the bilinear basis functions, and in Figures 2e and 2f for the pulse basis functions. The patterns of amplitudes are obviously very similar in both simulations.
Model II is more geological in origin (Figure 3a). A line plot of the amplitude for the source at z=80m is shown in Figure 3b, where again we have error of less than about 4.8%.

The real and imaginary amplitudes of the scattered wave field are displayed in Figures 3c and 3d for the bilinear basis functions and Figures 3e and 3f for the pulse basis functions. Again, as with Model I, there is excellent similarity between the two. For inversion, we often need to know the fields everywhere in the region. In Figures 4a to 4d, we display the total field magnitude at every pixel or node on the solution grid for a source at z=80m by using the bilinear basis function moment method and the pulse moment method. This comparison illustrates the uniformity of the results for regions both near and far away form the source.

Finally, we applied the inverse Fourier transform to the frequency domain scattered wave field of both Models I and II to obtain the time domain waveforms or seismograms. These are shown in Figures 5a and 5b for the one common shot gather for Model I and II, respectively. We used a Ricker wavelet (first derivative of a Gaussian) with a 300 Hz center frequency and nodes of $\Delta x = \Delta y = 1/6 \times \lambda_{\min}$. The seismogram for Model I shows the typical hyperbolic moveout of a diffraction from a small object embedded in a homogeneous medium. The seismogram for the layered model is more complicated, exhibiting clear reflections and diffractions.

CONCLUSIONS

We described a new moment method for evaluating the wave field in inhomogeneous media. We used a bilinear basis function to discretize the acoustic integral equation and compute the area integration for each small square cell instead of approximating the pixels with circular cells everywhere as with pulse basis functions, except in the singularities. With this method, the wave field can be calculated accurately for only 6 nodes per wavelength instead of 10 pixels per wavelength with the pulse basis function. As a result, the memory requirements and execution times for numerical implementation is significantly deceased, while the errors are usually less than 6%. If there are less than 6 nodes per wavelength in the bilinear simulation, the storage and execution time can be further reduced, but the simulation precision will be decreased also. In addition, the Frechet derivative for non-linear wave equation inversion is easy to derive from our bilinear basis simulation. Numerical simulations show our method is effective and very useful in solving forward scattering problem. Although bilinear basis element have been used previously in many other application, we have demonstrated here that their application to the method of moments, where the current standard method uses pulse basis functions, leads to discrete problems which are just as easy to set up and solve as with pulse basis functions; moreover the solution with bilinear elements are much more accurate for the same level of discretization, and thus are less expensive because we can use larger pixel sizes to obtain accuracy equivalent to the standard pulse basis function method.

ACKNOWLEDGMENTS

This work was supported by the Seismic Tomography Project of Stanford University, a research consortium sponsored by companies of the oil and gas industry.

REFERENCES
Beydoun, W.B. and M. Mendes, Elastic ray Born t^2 migration / inversion, Geophys, J., 97, 151-160
Bojarski, N.N., The k-space formulation of the scattering problem in the time domain, J Acous Soc. AM, 72(2), 570-584, 1982
Johnson, Steven A. and Michael L. Tracy, Inverse Scattering solution by a sinc basis, multiple source, moment method --Part I : Theory, Ultrasonic Imaging 5, 361-375, 1983
LEE Robert, and Cangellaris Andreas C., A study of discretization Error in the finit
element approximation of wave solutions. IEEE Transactions on Atennas and
Moghadam, Maha , and Weng Cho Chew, Study of some practical issues in inversion
with the Born Iterative method using Time-Domain Data, IEEE Transactions on
Martin, J.M., and Flatte, S.M., Intensity images and statistics from numerical simulation
of wave propagation in 3-D radom media: Applied Optics, 27, 2111-2126, 1988
Navarra Antonio, An application of GMRES to indefinite linear problems in meteorology,
Zhuck, Nickolay P and Alexander G. Yarovoy, Two-dimensional scattering from an
inhomogeneous dielectric cylinder embedded in a stratified medium: Case of TM
Pratt, R.G., Frequency-domain elastic wave modeling by finite differences: A tool for
crosshole seismic imaging, Geophysics 55: 626-623, 1990
Richmond, J.H., Scattering by a dielectric cylinder of arbitrary cross section shape, IEEE
Sarkar Tapan K., Arvas Ercumen , and Rao Sadasiva M., Application of FFT and the
conjugation gridnt method for the solution of electromagnetic radiation from
electrically large and small conducting bodies, IEEE transactions on atennas and
propagation, Vol. AP-34, No.33, 635-640,1986
Shozo Koshigoe, Bojarski, N.N., The k-space formulation of the acoustic scattering
Sivatore Caorsi, Gian Luigi Gragnani, and Matteo Pastorino, Reconstruction of Fielectric
permittivity distributions in arbitrary 2-D inhomogeneous biological bodies by a
multiview microwave numerical method, IEEE transactions on medical imaging, Vol.
12, No.2, 1993
Steilberg B.Z. and Leviatan Yehuda , On the use of Wavelet expansions in the method of
moments, IEEE Transaction on antennas and propagation, vol. 41, no.5, 1993
Tomography Applied to Crosshole Seismic Data, Geotomography, Vol. 2, 445-
456,1992(The Proceedings of The Second SEGJ/SEG International Symposium on
Geotomography)
Thomson, D.J., and Chapman, N.R., , A wide angle algorithm for the parabolic equation:
Walker F. Homer, Implementations of the GMRES method, Computer Physics
Communications 53, 311-320, 1989
Wang Gaofeng, Hybrid wavelet expansion and boundary element analysis
of electromagnetic scattering from conducting objects, IEEE Transactions on Atennas
Wang Weiyan and Zhang Shourong, Unrelated Illumination Method for electromagnetie
inverse scattering of inhomogeneous lossy dielectric bodies, IEEE Transactions on
Wu, R.S., 1994, Wide-angle elastic wave one-way propagation in heterogeneous media
Wu, R.S. and Huang, L.J., 1992, Scattered field calculation in heterogeneous media using
phase-screen propagator, Expanded Abstracts of the technical program, SEG 62th
Annual Meeting, 1289-1292.
Youcef saad and Martin H. Schultz, GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM J. SCI. STAT. COMPUT., Vo. 7,
No. 3, 1986
Zhou Changxli and Gerard T. schuster, Waveform Inversion of Subwell velocity,
Expanded Abstract of 63rd Annual Meeting of Society of Exploration of
Appendix 1

When inserting equations (11) - (13) into the integration in equation (5), we have

\[
\int_{x_i}^{x_i+\Delta x} \int_{y_i}^{y_i+\Delta y} M(r')G(kr-r')U(r', \omega)dr' = \int_{x_i}^{x_i+\Delta x} \int_{y_i}^{y_i+\Delta y} \left(\sum_{n=1}^{N} \rho_n M_n \cdot \left(\sum_{m=1}^{N} \rho_m M_m + \rho_{n+M_x} M_{n+M_x} + \rho_{n+M_x+1} M_{n+M_x+1} \right) \right) \cdot \left(\rho_n G_n + \rho_{n+1} G_{n+1} + \rho_{n+M_x} G_{n+M_x} + \rho_{n+M_x+1} G_{n+M_x+1} \right) \cdot \left(\rho_n \mu_n + \rho_{n+1} \mu_{n+1} + \rho_{n+M_x} \mu_{n+M_x} + \rho_{n+M_x+1} \mu_{n+M_x+1} \right) dx'dy'
\]

where \(n = (j-1) \cdot M_x + i \) Define

\(Q_1 = G_1, Q_2 = M_x, l = q_1, l+1 = q_2, l+M_x = q_3, l+M_x+1 = q_4 \), we have

\[
\int_{x_i}^{x_i+\Delta x} \int_{y_i}^{y_i+\Delta y} M(r')G(kr-r')U(r', \omega)dr' = \int_{x_i}^{x_i+\Delta x} \int_{y_i}^{y_i+\Delta y} \left[(\rho(q_1)\rho(q_1)Q_1(q_1)Q_2(q_1) + \rho(q_2)\rho(q_1)Q_1(q_2)Q_2(q_1) + \rho(q_3)\rho(q_1)Q_1(q_3)Q_2(q_1) + \rho(q_4)\rho(q_1)Q_1(q_4)Q_2(q_1)) \cdot \left(\rho(q_1)Q_1(q_2)Q_2(q_1) + \rho(q_2)Q_2(q_2) + \rho(q_3)Q_2(q_3) + \rho(q_4)Q_2(q_4) \right) \right] \cdot \left(\rho(q_1)u(q_1) + \rho(q_2)u(q_2) + \rho(q_3)u(q_3) + \rho(q_4)u(q_4) \right) \cdot dx'dy'
\]

\[
= \int_{x_i}^{x_i+\Delta x} \int_{y_i}^{y_i+\Delta y} \left[(\rho(q_1)\rho(q_1)Q_1(q_1)Q_2(q_1) + \rho(q_2)\rho(q_1)Q_1(q_2)Q_2(q_1) + \rho(q_3)\rho(q_1)Q_1(q_3)Q_2(q_1) + \rho(q_4)\rho(q_1)Q_1(q_4)Q_2(q_1)) \cdot \left(\rho(q_1)Q_1(q_2)Q_2(q_1) + \rho(q_2)Q_2(q_2) + \rho(q_3)Q_2(q_3) + \rho(q_4)Q_2(q_4) \right) \right] \cdot \left(\rho(q_1)u(q_1) + \rho(q_2)u(q_2) + \rho(q_3)u(q_3) + \rho(q_4)u(q_4) \right) \cdot dx'dy'
\]
\[
\begin{align*}
\Delta y_i \cdot \Delta y_j = \int_{x_i}^{x_i+\Delta x_i} \int_{y_i}^{y_i+\Delta y_i} & \left[(\rho(q_1)\rho(q_1)\Omega_1(q_1)\Omega_1(q_1))Q_1(q_1)Q_2(q_1) + \rho(q_2)\rho(q_1)\Omega_1(q_2)Q_1(q_2)Q_2(q_2) \right. \\
& + \rho(q_3)\rho(q_1)\Omega_1(q_3)Q_1(q_3)Q_2(q_3) + \rho(q_4)\rho(q_1)\Omega_1(q_4)Q_1(q_4)Q_2(q_4) \right] \cdot u(q_1) \\
+ & \left[(\rho(q_1)\rho(q_1)\Omega_1(q_1)\Omega_1(q_1))Q_1(q_1)Q_2(q_1) + \rho(q_2)\rho(q_1)\Omega_1(q_2)Q_1(q_2)Q_2(q_2) \right. \\
& + \rho(q_3)\rho(q_1)\Omega_1(q_3)Q_1(q_3)Q_2(q_3) + \rho(q_4)\rho(q_1)\Omega_1(q_4)Q_1(q_4)Q_2(q_4) \right] \cdot u(q_2) \\
+ & \left[(\rho(q_1)\rho(q_1)\Omega_1(q_1)\Omega_1(q_1))Q_1(q_1)Q_2(q_1) + \rho(q_2)\rho(q_1)\Omega_1(q_2)Q_1(q_2)Q_2(q_2) \right. \\
& + \rho(q_3)\rho(q_1)\Omega_1(q_3)Q_1(q_3)Q_2(q_3) + \rho(q_4)\rho(q_1)\Omega_1(q_4)Q_1(q_4)Q_2(q_4) \right] \cdot u(q_3) \\
+ & \left[(\rho(q_1)\rho(q_1)\Omega_1(q_1)\Omega_1(q_1))Q_1(q_1)Q_2(q_1) + \rho(q_2)\rho(q_1)\Omega_1(q_2)Q_1(q_2)Q_2(q_2) \right. \\
& + \rho(q_3)\rho(q_1)\Omega_1(q_3)Q_1(q_3)Q_2(q_3) + \rho(q_4)\rho(q_1)\Omega_1(q_4)Q_1(q_4)Q_2(q_4) \right] \cdot u(q_4) \\
\end{align*}
\]
\[(\rho(q_1)\rho(q_2)\rho(q_4)\mathcal{Q}_1(q_1)\mathcal{Q}_2(q_2) + \rho(q_2)\rho(q_2)\rho(q_4)\mathcal{Q}_1(q_2)\mathcal{Q}_2(q_2)) \cdot \\
+ \rho(q_3)\rho(q_2)\rho(q_4)\mathcal{Q}_1(q_3)\mathcal{Q}_2(q_2) + \rho(q_4)\rho(q_2)\rho(q_4)\mathcal{Q}_1(q_4)\mathcal{Q}_2(q_2)) \cdot \\
(\rho(q_1)\rho(q_3)\rho(q_4)\mathcal{Q}_1(q_1)\mathcal{Q}_2(q_3) + \rho(q_2)\rho(q_3)\rho(q_4)\mathcal{Q}_1(q_2)\mathcal{Q}_2(q_3)) \cdot \\
+ \rho(q_3)\rho(q_3)\rho(q_4)\mathcal{Q}_1(q_3)\mathcal{Q}_2(q_3) + \rho(q_4)\rho(q_3)\rho(q_4)\mathcal{Q}_1(q_4)\mathcal{Q}_2(q_3)) \cdot \\
(\rho(q_4)\rho(q_4)\rho(q_4)\mathcal{Q}_1(q_4)\mathcal{Q}_2(q_4) + \rho(q_2)\rho(q_4)\rho(q_4)\mathcal{Q}_1(q_2)\mathcal{Q}_2(q_4)) \cdot \\
+ \rho(q_3)\rho(q_4)\rho(q_4)\mathcal{Q}_1(q_3)\mathcal{Q}_2(q_4) + \rho(q_4)\rho(q_4)\rho(q_4)\mathcal{Q}_1(q_4)\mathcal{Q}_2(q_4)) \cdot u(q_4) \} \cdot dx'dy' \\
= B_{q_1}u(q_1) + C_{q_2}u(q_2) + D_{q_3}u(q_3) + E_{q_4}u(q_4)
\]

the definitions of $B_{q_1}, C_{q_2}, D_{q_3}, E_{q_4}$ are shown by equations (18)-(21)
Figure 2: (a) Synthetic model I. (b) The amplitudes of the received scattered fields for the bilinear and pulse basis functions moment methods, where dot and dense lines denote the results of the bilinear and pulse basis function moments methods, respectively, and the source is located at (0,0); (c) and (d) display the real and imaginary parts of the computed scattered amplitudes for the 100 x 100 source-receiver positions for the bilinear basis functions, the results in (e) and (f) are for the pulse basis functions.
Figure 3: (a) Synthetic model II. (b) The amplitudes of the received scattered fields for the bilinear and pulse basis functions moment methods, where dot and dense lines denote the results of the bilinear and pulse basis function moments methods, respectively, and the source is located at (0,0); (c) and (d) display the real and imaginary parts of the computed scattered amplitudes for the 100 x 100 source-receiver positions for the linear basis functions, the results in (e) and (f) are for the pulse basis functions.
Figure 4: (a) and (b) are the real and imaginary part of the total field of model II in the object region derived by the binary basis function moment method, respectively; (c) and (d) are the real and imaginary part of the total field of model II in the object region derived by the pulse basis function moment method, respectively, and in the (a) - (d), the position of the source is (-30,80).
Figure 5: (a) The waveform of the scattered field by model I. (b) The waveform of the scattered field by model II.