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ABSTRACT
In crosswell experiments, the conjugate symmetry of the object spectrum already

exits, and it is not necessary to assume nonattenuative scattering. The conventional
diffraction tomography is modified to include the evanescent mode in the backpropagation
reconstruction to simultaneously invert wave fields for both the formation velocities and the
attenuation coefficients. The method permits one not only to extract information about
complex valued object function but also enables one to avoid discarding the data which
would otherwise be through away by gathers in the situation of "over-sampling". In
addition, by including attenuation, the inversion becomes more stable because of the
symmetrical mathematical operations embodied in the diffraction tomography and the
additional constraints from utilizing whole data set available. Forward modeling is carried
out by incorporating Biot-Gassmann theory into a self consistent dispersion and attenuation
model, and the velocity and attenuation are therefore, represented as the function of porosity,
fluid content and the composition of the rock.

INTRODUCTION

Diffraction tomography has its origins in geometric optics, is an inversion of the
monofrequency wave field based on a linearization of the acoustic wave equation, and has
notable similarities in its implementation to seismic migration. There are a number of
seismic inversion and imaging techniques that derive from linearization of wave equation by
Bron approximations. In this study we extend the technique of filtered backpropagation, as
developed by Devaney (1982, 1984), Harris (1987), Wu and Toksoz (1987) to crosswell
experiments in a dispersive and attenuative medium. For other configurations, such as
vertical seismic profile (VSP) and surface reflection profile (SRP), the coverage is obtained
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by making use of the conjugate symmetry of the spectrum of a real valued function. The
object function at any location is directly related to the local wave number, and is clearly real
valued only for non-attenuating media. In crosswell experiments however, the conjugate
symmetry of the object spectrum already exits, and it is not necessary to assume
nonattenuative scattering. By including attenuation mode, the diffraction tomography in
cross-well surveys can be used to extract information about complex valued object function,
which providing a tool for simultaneously inverting wave fields for both formation velocities
and the attenuation coefficients.

Assuming a linear visco-acoustic scattering model, i.e. including attenuation in the
medium parameterization, a Fourier backpropagation reconstruction method is developed.
The algorithm differs the conventional diffraction tomography in that the evanescent modes
are not eliminated in the calculations. This is important not only because the attenuation
coefficient can be recovered but also because the inversion becomes more stable as large
data set, which severs as additional constraints, is used in the computation. The forward
modeling is carried out by incorporated the Biot-Gassmann theory into a self consistent
dispersion and attenuation model. The velocity and attenuation can, therefore, be represented
as the function of porosity, fluid content and the composition of the rock. The results of the
synthetic data inversion is excellent comparing to the model. The structural content in the
reconstructed images of the field data is consistent with those of obtained with the
techniques of cross well reflection imaging (Lazarators, et. al 1992) and crosswell migration
(Mo, et. al, 1993). On the other hand, the values of the velocity and the attenuation
coefficient can not be trust since the large contrast between the inhomogeneities and the
background in the study area. A variable background method is needed and will be address
in another paper.

AN INVERSE SCATTERING MODEL OF A LOSSY MEDIUM
Consider an acoustic wave propagating in a linear visco medium. The corresponding
wave equation can be written as

2
V2P=b21-3-+ LoP

=22 1
ot ¢* or 1

where b is the attenuation coefficient and c is the propagation velocity. In frequency domain,
equation (1) becomes
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2

V2P(r,®) = (—iwb—%)P(r, ) Q)

let P= P° + P*; and assume Born approximation, we set up the following linear inverse

scattering model
P*(s5,8) = =[] {ikig0,(r) + ko0, (NIG(5,1)G(r,g)d’r 3)
where
o.(r)=(1—@) o (r)=(01- fg )
‘ b c*(r)

0 ?

are the real and imaginary part of the object function. In crosswell surveys the conjugate
symmetry already exits, and it is not necessary to assume nonattenuative scattering. For a
line source in the 2-D medium, the Green's function in equation (3) is the second kind and
zero order Hankel function, i.e.

G(s,r)= Hé2)(];0|s__r|), G(r,g)=H32)(IEOIr—gI)

where 0 is the complex wave number. Obviously, G(s,r) represent a cylindrical wave with

attenuation from the source to image location r and G(r,g) for a cylindrical wave fromr to
the receiver, as indicated in Figure 1.

source receiver

Fig. 1. The physical meaning of the G(s,r) and G(r,g)
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The Fourier transforms of G(s,r) and G(r,g) along s and g are

F{H(()Z) (]Eolr - gl )}(kg) ] .g_e_iyg (‘_1, )—ik‘z
£
and

F{H (Eols —-rh)k,) = .;_e-imz,—x)—ik,z

s

Taking Fourier transform of equation (3) along source and receiver lines, which
corresponding to plane wave decomposition, the spectrum of the scattering field is

~i(Ys%,—Y,%,) . .
PP x5k, k) = = [[ W0, (r) +ikgo,(re™ M 14 gz (4)
47,7,
where
Y2 =ki-k? vi=k—k

are complex horizontal wave number. If we let
kz=ks+kg x=i(YS—’J/g)

then equation (4) is a Laplace transform in x-direction and Fourier transform in z-direction.
Therefore, the object function can be evaluated via the inverse Laplace and Fourier
transforms, i.e.

~1
(2m)*i

a(r)= [ PG,k k)47, 7, ™ 0 1 g i, )

where
o(r)= kr200r (r) +ik;q0,(r)
Of course, this can be done only formally, because the numerical inverse Laplace transform

is unstable. Other algorithms are needed. A possible scenario is to discreatize the equation
(4) and use least square with constraints to form a linear system of equations. Since we are
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dealing with tomographic data set which is quite large usually, heavy computations are
involved to solve the linear system. In the following we will develop a Fourier
backpropagation reconstruction method.

FOURIER DIFFRACTION RECONSTRUCTION FOR A LOSSY MEDIUM
In this section, we modify conventional diffraction tomography to include the

evanescent mode in the backpropagation. This corresponds to allow wave numbers k kg
’

are larger or smaller than k) in the situation without attenuation. Denote Eo = o+ if and let
Y, = A, +iB,, we have

211/2
Ax=i[a2_[i;§_ks] \/\/1+(?:2—g—2ﬁ—_?)2+1 6
Bs=i[“2‘f’j§k3]"2\/\/1+<a—2;§“2ﬁ7> _1 )

Similarly let ¥, = A, +iB, and A4,, B, are obviously in the same form as that of 4; and B,
except that the subscripts are different, i.e.

2 _ 21/2

= T
2 21/2

B = _[ ﬂﬁk \/\/1+(—2—lgg—k—2) -1 ©)

Substitute the horizontal wave number ¥, and 7, into equation (4) we have

—HY X+ Y %) s . .
PS(xg,xs:kg,ks)?eW"H 3(x, z)e A ATk gy (10)

sig

Now consider the integral along variable x
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J' 5(x)e—(Bx—B,)1+i(Ag—A_,)xdx

—oo

which is equivalent to

~ —(B_ —B,)+i(A, —-A
J- o(s)e[ ( 8 ¢ )+i( " ,)]-‘ds:
[4

J‘ 5(5) o Bam R (A= ADYHI=(B, =B, )+ (A= A3 g
c

in the s plane. Choosing a path such that —(B, —B,)x — (A, — A)y =0 as indicated in
Figure 2, we have

~ —(B,—B,)+i(A, A
J. O(S)e[ (B, =B, )+i(A, ;)]Sds=
4

(A=A, +(B,—B,) . (11

—_ 2 - A 2 i
\/(Bg B)) +(4,—4) L?)(x)e (Ag~4,) dx

(B,—B,)

Since the attenuation of seismic wave is weak, the angle between the path s and axis x is
very small. Consequently o(s) = o(x)for finite x. For large x we assume 0(s)=0(x)=0,
as we only interested in finite borehole separation x.

S

|\\ g

Fig. 2. The integral path in s-plane

Substitute equation (11) into equation (10) we have

&) IJ(Bg —B,Y +(A,—A,)
4y.y A - A

sig

Ps(xg,xs;kg’ks) =- IJ] 5(X, Z)e_i(k'x+k'z)dXdZ (12)

where
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(A, —A) +(B,—-B)

KX
A - A,

K, =k +k

The object function can therefore, be evaluated via inverse Fourier transform, That is

_ f 47,7, (A, — A)
2n)*Y \[(B,—B,) +(4,—A,)

e"(?’;"ﬁ"’g"ﬁp-“(ks’ kg)e“"x"*’“”ljldksdk, (13)

where J is Jacobean transformation matrix.

Equation (13) differs conventional diffraction tomography in that it includes the
evanescent modes. This is important in two aspects: 1) the algorithm is more stable since
evanescent mode acting as a constraint; 2) we do not have to throw away the data which
usually are large gathers.

THE SPECTRUM COVERAGE OF THE ATTENUATIVE SCATTERING
Most of physical process we interested can be described with following formal

differential operator
1 9°
L=V2_c_2?+g (14)

In frequency domain, the relation of the wave number and frequency is

2
k()= —V‘"C+g (15)

or equivalently, the relation between the phase and group velocity is

(0]
€, = Cp—a— (16)
@’ +g
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These relations are so called dispersion equations and generally are nonlinear as indicated in
Figure 3. From the differential operator (14) we can see that dispersion/attenuation can be
caused by the nature of the medium, inhomogeneities and the geometrical dimension of the

AK tan'1cg

-1
tan C¢

W
>

Fig. 3. Dispersion relation. ¢, is the phase velocity and ¢, group velocity

problem. In the case of the scattering model we discussed

oP 1 9%P
VP=b—+
ot ¢? or

In frequency domain

2
—(k2 + 2Pk, k,, ) = (~ib — 2Pk, k,, )
C

and the dispersion equation is

(02

K2+ k2 = (iob+2) a”n
C

In equation (17), the relation of the components of the wave vectors reflects the different
modes of the propagation. For example, if b in equation (17) is zero, then

2
k=2 k2 k =+ n=0,1,...
c L
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where £, is set as an independent variable. For the certain cutoff of the vertical wave number
2

(6] . . .
k, =k, 2—-, the propagation in horizontal switch to evanescent mode because the
c

(4

horizontal wave number &, becomes pure imaginary, as shown in Figure 4.

propagation

W

evanescent

k

c

>k,
Fig. 4 The propagation and evanescent regions for lossless medium

In cross-well geometry, the horizontal and vertical wave vectors are K, = 7, — Yer
and K, =k, +k, respectively, where y2 =k, —k?, and y>=ki —k}. For |k I<k, or
Ik, 1< k, , the spectrum coverage of the propagation wave is the shadow area shown in Figure

5a which is relatively small. However, for all possible values of k, and kg, i.e. include

evanescent modes, the spectrum coverage is the shadow area shown Fig. 5b which is larger
than that of Sa.

(a) (b)

Fig. 5 The coverage of the scattering field spectrum: (a) only for propagation mode,
(b) for both of propagation and evanescent modes
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In conventional diffraction we assume nonattenuative scattering, i.e. when lkg or Ikgl
is large than kg, the data is discarded in the name of over sampling. We believe first the
discarded data are important in terms of constraining the inversion and should be utilized;
second in some case we have to consider attenuation and it is inevitable to deal with complex
wave number. In a lossy medium

2
k, =,/‘°—2+iwb—k3 (18)
C

The propagation and the evanescent modes always coexist, since the dispersion/attenuation
is not solely the results of geometrical dimension of the wave propagation but also the
property of the medium.

A SELF CONSISTENT DISPERSION AND ATTENUATION MODEL

In this section, Biot-Gassmann theory is cooperated into a self consistent dispersion
and attenuation model. Therefore the velocity and attenuation can be represented as the
function of porosity, fluid content and the composition of the rock. Assuming the creep
function satisfy a power law of the time, i.e.

/)" I MTA+2y) t20

= 19
v ={ 0 £ <0 (19)
and constant Q model. The velocity and 1/Q can be derived as (Kjartansson, 1979),
v=y, (Z)al-)" cos—g— Y 1/Q =tan(xy) (20)

1]

where ¥ is to be determined. The are a lot of debt about what value of the 'y could be.

In this study, we propose to incorporate the Gassmann and Boit's velocity limits into
the above velocity dispersion equation. consequently, Y can be determined in terms of wave

property in porous media. Velocities at high and low frequency limits are
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— v LNy T — (Drry U
v, =V cos v, =V, cos 21
1 O(wo) 2 Y n = Vol 0) > Y (21)

Notice that the frequency range here is from zero to the frequency at which nonlinear effects
occur. The velocity limits vj and vy, is estimated from Boit-Gassmann theory (Biot, 1956a,
Gassmann, 1951, Winkler, 1985)

1 \2
pvy = (k, —k,) +k, + AN (22)
Pk l-®—k, [k + Dk, [ k] 3
pvi=N (23)
, A+[A*—4B(PR-0*)]"?
pcvph =
2B (24)
pYa = N (25)

(1-D)p, +(1-1/ a)@p,

where
& = porosity
ks = bulk modulus of the solid material
kf = bulk modulus of the fluid
kp = bulk modulus of the dry frame
N = shear modulus of the dry frame
Pc = bulk density of fluid-saturated rock
ps = density of the solid material
pf = density of the fluid

Substitute above limit velocities in to equation (21), the Y, and ¥, is solved.
Therefore the complex velocity (20) is represent as the function of porosity, fluid content
and the composition of the rock. With the input displayed in Table 1, and the velocities at
frequency 1000 Hz are calculated as shown in Table 2.
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Table 1.
thickness @ PO ko vp (dry)  vs(dry) Pt kf
~ 0.084 2650 38 5480 2990 1000 2.51
60 0.10 2650 38 4510 2770 1000 2.51
~ 0.084 2650 38 5480 2990 1000 2.51
Table 2. Frequency = 1000 Hz
thickness vp Qp Qs
~ 5447 2949 566.33 81.63
60 4563 2732 217098  782.75
~ 5447 2957 566.33 851.63

With the obtained velocities and Q's above, we can calculate the acoustic fields in

the composite medium according to linear visco-acoustic equation (1) or (2). The forward

modeling is calculated with program VESPA and directly output in frequency domain.

NUMERICAL EXAMPLES
In this section, we test the reconstruction algorithm developed above with the

examples both of synthetic and field data. The first example consists of a 1-D three layer

model. The corresponding total field and reference field in frequency domain is shown in

figure 6, where the fields are averaged in the frequency range of 950 to 1050 Hz. It is

interesting to notice that the inhomgeneity shows up in frequency domain more clear than in

time domain.
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Fig. 6. Total field and background in frequency domain

(a) total field and (b) incident field

freq=1000 Hz

v=12000 ft/s

v=12500 ft/s

(b)

Fig. 7 Reconstruction with synthetic data. (a) 1-D velocity model
(b)reconstruction of the velocity, and (c) 1-d Q model and
(d) reconstruction of the attenuation coefficient.
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The inversion results are indicated in Figure 7. We can see from Figure 7b that
while velocity are reconstructed almost perfect regarding to the discontinuities, the image of
the attenuation coefficient in Figure 7d is smear out at the boundaries comparing with
Figure 7¢

The second example is the inversion with the field data from a West Texas test site.
We are aware that in the area being studied the velocity contrast is strong and the Born

1650 —

1750 —

1850 —

1950 —

2050 —

2150 —

(a) (b) (c)

Fig. 8 Inversion of the field data from West Texas. (a) the reconstruction of the

velocity, (b) the well log in suit, and (c) the reconstruction of the attenuation coefficient.
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approximation of a constant background is not valid. This issue will be addressed in other
related studies. Here, as a tentative test, a homogeneous background is applied in the Figure
8. As we can see the structural content in the reconstructed images is comparable to those of
obtained with the techniques of cross well reflection imaging (Lazaratos, et. al, 1992) and
the crosswell migration (Mo, 1993). On the other hand, the values of the velocity and the
attenuation coefficient can not be trust since the large contrast between the inhomogeneities
and the background, since the weak inhomogeneity inverse model is valiant at first place.

CONCLUSIONS

By incorporating Biot-Gassmann theory into a self consistent dispersion and
attenuation model, and the velocity and attenuation can be represented as the function of
porosity, fluid content and the composition of the rock. By including evanescent mode in
the inversion, the algorithm not only permit diffraction tomography in cross-well surveys to
be used to extract information about complex valued object function and simultaneously
invert wave fields for both formation velocities and the attenuation coefficients, but also

enable one to avoid discarding the data Which would otherwise be through away by large
number of gathers in the situation of "over-sampling". In addition, by including attenuation,

the inversion becomes more stable because of the symmetrical mathematical operations
embodied in the diffraction tomography and the additional constraints from utilizing whole
data set available. The inversion results from the synthetic and field data indicate that the
algorithm is robust and efficient. The structural content in the reconstructed images of the
field is comparable to those of obtained with the techniques of cross well reflection imaging
and crosswell migration.
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