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ABSTRACT

Problems of two-dimensional tomographic inversion are commonly formulated with
orthogonal basis functions such as rectangular homogeneous pixels. In order to represent
the so-called "high resolution" tomogram, a large number of small pixels are often used. In
order to stabilize the inversion algorithm or to reduce unsightly discontinuities, the pixel
model is often smoothed after inversion. My contention is that 2-D transmission
tomography should be used only for "low resolution" imaging, that is, resolution of greater
than 1 wavelength. When a high resolution result is required, e.g., < 1 wavelength, one
should look to including more than transmission data, for example reflection traveltimes,
reflection amplitudes and diffractions. The low resolution tomogram should be smoothly
heterogeneous and described by as few parameters as possible, thus insuring a stable and
robust inversion. In this paper, I propose using a lattice parameterization for slowness
field. The use of lattices is not new to forward models but are rarely used in the
tomography. In my implementation, slowness values between nodes of the lattice are
found by bi-linear interpolation. I show that certain simplifying approximations reduce the

inversion based on the lattice to string algorithm.

INTRODUCTION

For consistently, parameterization of the inverse model should match that of your
forward model. If square orthogonal pixels are used for the inverse model, then square
orthogonal pixels should be used in the forward model. The advantages of this model was
emphasized by Michelena and Harris [1991]. A common mistake found in many
tomography algorithms is to define the forward model on a grid and the inverse model with
homogeneous pixels. This inconsistency affects the rate of convergence, accuracy, and
stability of the tomography algorithm. This subtle but importance difference in the two

models is illustrated in Figure 1. Let's review the models.
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The pixel model: Slowness is defined everywhere within homogeneous blocks of finite
size. The block homogeneous pixel result in a discontinuous representation of the field.
Pixel values are often smoothed to reduce the unsightly roughness. Semi-continuous

variations over a large area require many small pixels.

The lattice model: Slowness is defined at regularly spaced nodes. Between nodes, the
slowness is obtained using bi-linear interpolation. The result is a smoothly varying
slowness field. Continuous variations can be easily represented by a few nodes, even for a
large region. Nodes may be irregularly spaced, non-uniform in either dimension, or

adapted to the geometry of a structural feature.
FORWARD MODELING

For crosswell, the lattice model is especially useful. Variations between wells may be
modeled with just a few interwell nodes, thus yielding a largely over-determined system of
linear equations. See (7) below. Smooth variations in regions of the size of several
wavelengths are easily implemented, thereby asking tomography to provide only the low
resolution image but to do so with high confidence. The one-dimensional continuous

model illustrated in Figure 2 is described by only 2 nodes.

As discussed by Harris [1992], ray theory is most often used to model traveltimes for
crosswell tomography. A general ray equation for heterogeneous, isotropic, linear, elastic
media can be derived from the wave equation or from Fermat's Principle. The ray

equation can be written compactly as
d| . dr
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where S(r) = V_l(r) is the slowness, i.e., reciprocal of the velocity, VS is gradient of the
slowness, ¢ is the increment of length along the ray path. Once a ray path connecting
points a and b is found by solving (1), a traveltime is obtained by integrating the slowness

along the path:

b
t= j S(r)d¢ )
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Pixel Model: slowness is uniform inside block

Lattice Model: slowness defined at nodes
bi-linear interpolation used between nodes

Figure 1. Lattice and pixel parameterization for forward and inverse models.
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Figure 2. This one-dimensional vertical gradient is defined by two nodes: one at the top of
10 kft/s and one at the bottom of 20/kft/s. Values in between are calculated with a bi-linear
interpolator.
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In practice, the forward model traveltime is obtained by discretizing (2) in the following

way:
Mj
tj= > SinAl 3)
m=1

where S jm are a set of "interpolated” slowness values along the jth ray path and M; is the
number of equi-spaced steps of length A¢ along the ray path. S jm 18 interpolated from the

lattice using N-term interpolation:
Sim = . dijm S; )

where the Sj's are the values of slowness at the N nodes of the lattice and the djjm's are the
interpolation coefficients. In practice, I use bi-linear interpolation from the four nearest

nodes. Substituting (4) into (3) gives the model traveltime equation suitable for inversion:
t j = 2 Wl_] Si (5 )
The elements Wjj comprise the projection matrix made up from the bi-linear coefficients:

MJ'
m=1

INVERSE MODELING

Now, because the forward model (5) is expressly written in terms of the lattice
nodes, the inverse model should be parameterized in terms of unknown coefficients for the
lattice nodes. Many authors have used this nodal representation in the forward model, but
then turn around and use rectangular pixels for the inverse model [e.g., McMechan]. The
inverse problem is the find the set of slownesses {S;} satisfying (5) when a set of

traveltimes {tj} are known and the elements of the projection matrix Wij; are computed:



Harris - Lattice parameterization E-6
= WyS i=1,2, .., M (7)

where M is the number of traveltimes and N the number of unknowns. When bi-linear
interpolation is used, [Wj;] is sparse. Typically, M may be very large as 60,000 and N as
large as 10,000 or more; therefore the matrix [Wijil is large and sparse. In such cases, the
system of equations (5) may be solved using Kaczmarz method of projections [Tanabe,
1971]. This method is implemented with the following algebraic solver:

. . t: —1T;
sP =8y J i w, (8)

]
> Wik
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where t; is the observed traveltime and 7; is the calculated traveltime in the (j-1) model.
According to (8), updates to the model are made one ray at a time, i.e., ART. In practice,
we update the model only once for all rays (SIRT). The SIRT solver is implemented in the
TIMS program called LATTICE.

The problem of calculating the elements is illustrated in Figure 3. The coefficients
djjm must be found for each point along the ray. It would appear that the calculation of the
elements of the projection matrix would be an expensive part of the algorithm. While it is
not prohibitively expensive in comparison to ray tracing, there is nevertheless a cost. In

. e M,
computing the elements, it is important that the accuracy be such that the Zi:’IWij =L;.

) mth step along ray
IIJth I_a‘},ll

\ L L
W >
s \d
ijm
L e S:

Figure 3. Slowness along the ray path is calculated by interpolation of values from the four
neighboring nodes. When node spacing is small, a nearest neighbor approximation can be
used and the lattice model reduces to the string model.
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Under certain conditions, e.g., when the lattice spacing is small, a reasonable
approximation is to use the slowness from the nearest neighbor. In such situations, all the
interpolation coefficients are zero except for one and the matrix elements Wij; =A¢ for the
ART solver (8) becomes

. : t, — 1T, . .
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Eqn. (9) is precisely the solver implemented in strings [Harris, 1991]; therefore, strings is

simply a special case that is appropriate for small lattice spacing.
SUMMARY

A lattice parameterization is proposed for traveltime tomography. Coarse lattices
offer the advantage of generating smooth continuously varying models that are
parameterized by a few coefficients. Inversion for lattice parameters may result in a
significantly over-determined systems of equations, thus leading to robust and stable
algorithms. Lattices, with bi-linear interpolation between nodes, are often used in forward
models and should be used for inverse models as well. Under certain special conditions,
reconstruction techniques based on the lattice model reduces exactly to the strings
algorithm. The inversion code LATTICE has been implemented and is undergoing test on
synthetic and field data. I have discussed the uniform lattice with regularly spaced nodes.
Work is underway to generate a non-uniform lattice, perhaps adaptively adjusted for

iterative tomography.
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