Uncertainty quantification of a fractured reservoir using distance-based method and streamline simulation

A Preliminary Study and Future Perspectives

Changhyup Park, Darryl Fenwick, Jef Caers, Marco Thiele
General Modeling Workflow

1. **Build models**
2. **Learn**
3. **Screen models**
4. **Model refinement**
5. **Model(s) for forecasting**

Sensitivity Runs
- Need more runs?
 - **Yes**: Make more models
 - **No**: Model(s) for forecasting

Model Parameters

5/4/2011
Can We Do Something New?

- Streamsim is exploring distance-based methods
 - Written workflows which employ distances
- Use distances to explore:
 - Sensitivity analysis
 - Uncertainty quantification
 - History matching
- Application to fractured reservoir
 - (client driven)
Classical Sensitivity Analysis

Regression

\[y = \beta_0 + \sum_{i=1}^{n} \beta_i x_i \]

Sensitivity of parameters on CumOil
Classical Sensitivity Analysis

Traditional sensitivity analysis:

• Continuous, scalar parameters

• Single response
 • Eg. FOPT @ 10 years

\[y = \beta_0 + \sum_{i=1}^{n} \beta_i x_i \]
Sensitivity Analysis

Challenges:

• Multiple responses
• Discrete parameters
 • Fault interpretations
 • Facies proportion cubes

• Stochastic “noise” in response
 • Spatial uncertainty
 • Geostatistically-derived properties
Sensitivity Analysis – Alternative?

- Sensitivity analysis in Metric Space - 832 Brugge runs
 - Color separation of runs → sensitive parameter
 - Mixing of colors → insensitive parameter
Synthetic Test Case

Reservoir property

<table>
<thead>
<tr>
<th></th>
<th>Fracture</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability (md)</td>
<td>10,000</td>
<td>100</td>
</tr>
<tr>
<td>Porosity (fraction)</td>
<td>0.02</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Well condition

- 5 injection wells / 5 producer
- Constant pressure at injection well: 50,000
- Constant production rate at production well: 10

Grid system

- # of grid: 100 x 100 x 1
- $\Delta x = \Delta y = 10$ ft

5/4/2011
DKM Workflow – Fractured Model

Model generation

Streamline simulation (StudioSL, DPSP model)

Distance matrix, \(d \)

Sensitivity (RSM)

ECLIPSE runs (720 DPSP models)

DKM (Distance Kernel Method) Clustering

Error in Quantiles (P10, P50, P90)
Parameterization

![Diagram showing two objects, O1 and O2, with parameterization details.

Table 1. Constraints used in generating the models

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Distribution</th>
<th>Fracture length</th>
<th>Volume proportion</th>
<th>Fracture orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of case</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Input variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density map(Fig 2(b))</td>
<td>Random dist.</td>
<td>Length of O_1</td>
<td>0.7: 0.3</td>
<td>Object 1, O_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$l_{1} = T(15,25,30)$</td>
<td>0.5:0.5</td>
<td>$T(30,60,90)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$l_{2} = T(3,4,5)$</td>
<td>0.3:0.7</td>
<td>$T(60,90,120)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$l_{1} = T(25,35,40)$</td>
<td></td>
<td>$T(90,120,150)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$l_{2} = T(4,5,6)$</td>
<td></td>
<td>$T(120,150,180)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T(0,90,180)$</td>
</tr>
<tr>
<td>Fixed value</td>
<td></td>
<td></td>
<td>2:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length of O_2</td>
<td>$O_2:O_2 = 2:1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$l_{1} = T(5,10,20)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$l_{2} = T(1,2,3)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ratio of O_1 and O_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T(0.5,10)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Streamline-Based Distance

<table>
<thead>
<tr>
<th>Distance measure</th>
<th>Number of data</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance measure 1</td>
<td>720</td>
<td>0.9703</td>
</tr>
<tr>
<td>Distance measure 2</td>
<td>258840</td>
<td>0.9238</td>
</tr>
<tr>
<td>Distance measure 3</td>
<td>720 x 9</td>
<td>0.9356</td>
</tr>
</tbody>
</table>
For this example, 3DSL is an excellent proxy for Eclipse run
Uncertainty Quantification
Sensitivity to # of Clusters

Examination of 2 different distances
Classical Sensitivity Analysis

- Distribution
- Fracture Size
- Fracture Proportion
- Orientation
Classical Sensitivity Analysis

\[y = \beta_0 + \sum_{i=1}^{n} \beta_i x_i \]
\[y = \beta_0 + \sum_{i=1}^{n} \beta_i x_i + \sum_{i=1}^{n} \sum_{j>i} \beta_{ij} x_i x_j \]

<table>
<thead>
<tr>
<th>Input parameter, (x) (Indicator in Fig. 10)</th>
<th>Normalized value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution map ((M))</td>
<td>Random map [-1], Density map [+1]</td>
</tr>
<tr>
<td>Length of object 1, (O_1) ((L))</td>
<td>Small: in Table [-1], Large [+1]</td>
</tr>
<tr>
<td>Volume proportion of fracture ((F))</td>
<td>Fracture volume proportion = (0.3, 0.5, 0.7) = [-1, 0, +1]</td>
</tr>
<tr>
<td>Fracture orientation ((O))</td>
<td>[-1, -0.6, -0.2, 0.2, 0.6, +1]</td>
</tr>
</tbody>
</table>

Sensitivity of parameters on Response

- \(O \)
- \(F \)
- \(L \)
- \(M \)
MDS Plot – Color by Parameter

Fracture Probability Map

Clear separation of points in MDS space

Fracture Size

Overlap of points in MDS space

5/4/2011
Takeaways

• DKM workflow implemented and run for synthetic DPSP case
 • Streamline simulation provided good distance measure
• Presented some general thoughts about sensitivity analysis using MDS space
 • Based upon point “separation” in plot
 • Visual information follows classical analysis