Tetris :: Training Image Generator

* a SGeMS plugin

Alexandre Boucher
Jef Caers
Rahul Gupta
Addy Satija
Design Constraints

Aim:
- Allow complex parameterization of geometries and rules
- Strong core algorithm with expandable libraries
- Mix and match modules (increased combinatorial possibilities)

Avoid:
- Long procedural algorithm (no long list of *if - else*)
- Code repetitiveness (hard to maintain)
Modeling Dichotomy

Geo-object
- Define a geological entity
- A 3D volume
- Possibly complex geometry
- Unspecified location
- Unspecified relationships with other objects

Simulation
- Geo-object density
- Interactions between objects
- Stacking parameters
Building geo-object from elements

- A geo-object is a composition of elements
- An element is a unit of a larger ensemble (building blocks)
A flexible framework to build elements

Library of shapes

Modify shapes

Operations on Shape:

- shear(dx_dz, dy_dz)
- rotate(az, ax, ay)
- translate(dx, dy, dz)

Operations between Shapes:

- difference(Shape)
- merge(Shape)
- intersection(Shape)
Creating an element

There are no restrictions on the complexity of the element builder
Parameterization of the elements

Every parameter can be defined as a constant or a distribution.

Furthermore, parameters of the distribution can either be constant or be taken from a locally varying property (LVP).

Includes:

- Dimension of geo-objects
- Shearing, Rotation, Translation
- Moments of a distribution
Building complex Element

Union: 6 rotated and translated kernels
1 Sphere

Exponential Kernels
Gaussian Kernels
Creating a Geological Object

inner = HalfEllipsoid(20, 20, 20)
outer = HalfEllipsoid(30, 30, 15)

inner.intersection(outer)
outer.difference(inner)

Resulting geo-object
Asymmetrical mound with drapes

inner = HalfEllipsoid(10, 25, 40)
outer = HalfEllipsoid(30, 30, 35)
inner.shear(0, 0.3)
outer.shear(0, 0.5)

// Create the Drapes
drapes_top = HalfEllipsoid(40, 40, 15)
drapes_bot = HalfEllipsoid(35, 35, 9)

// Constraint by the envelope
inner.intersection(outer)
outer.difference(inner)

// Remove the core from the envelope
outer.difference(inner)
drapes.difference(inner)

// Remove the core from the drape
outer.difference(drapes)
drapes.difference(drapes_bot)

// Remove the drape from the envelope

outer.difference(drapes)
Faulted and Tilted Mound

// Create one Mound : inner and outer
inner.shear(-0.2, -0.5)
outer.shear(-0.2, -0.5)

// Create two Cuboids to partition the Mound
inner_faulted = Cuboid(80, 80, 50) // Partition inner
outer_faulted = Cuboid(80, 80, 50) // Partition outer

inner_faulted.translate(50, 0, 25)
inner_faulted.translate(50, 0, 25)
inner_faulted.intersection(inner)
outer_faulted.intersection(outer)
inner.difference(inner_faulted)
outer.difference(outer_faulted)

inner_faulted.rotate(0, 20, 0) // tilt
outer_faulted.rotate(0, 20, 0) // tilt
inner_faulted.translate(0, 7, 5) // throw
outer_faulted.translate(0, 7, 5) // throw
Building complex inner structures

Mimic the building of a carbonate mound through phases of accretion

The flank are debris
- steeper at the summit,
- gentler at the base

Build stochastically from 8 shapes and 12 operations

The structure can be saved in a file
Complex geological objects

Pre-configured geo-objects
Ensure geometrical and spatial relationships

Example Channel manager:
Manager that controls
crevasse splay placement
lobe placement

Example Carbonate Mound:
Manager that controls
Inner-outer-debris Element operations
Simulation parameters

- Stopping Criterion (*density*)
- Stacking (*simulate a set of object*)
- Positioning
 - Random
 - Intensity field
 - Bottom to Top (*simulate from the bottom to the top*)
- Interactions
 - No overlap (*Object1 never touches Object2*)
 - Attach (*Object1 touches Object2*)
 - Full Overlap (*Object1 is fully enclosed in Object2*)

Can be used with all object types
Positioning

Position the geological objects on the grid

- Random
- Intensity
- Bottom to Top
- Bottom to Top with intensity

independent of the objects: re-usable
Intensity field positioning
Bottom to top intensity positioning

Stochastic arrangement of six elements
- 2 (sheared) radial kernels for the core
- 3 half kernels for the debris

Contributor: Andre Jung, Tuebingen University,
Correlated spatially variable parameters

Anticline example:

- **Angles**
 - Outer Envelope Size
 - Inner Core Size

- **Shear**
 - Steeper angles:
 - Increased in shearing
 - Decreasing outer envelope
 - Fast decreasing of inner core size
Carbonate mounds on a anticline

More angular slopes:

- Increased in shearing
- Decreasing outer envelope size
- Fast decreasing of inner core size

MPS implications:

- Cannot be solved with a probability field
- The geometries characteristics are spatially dependent
Stacking objects

- Displacement vector \((dx, dy, dz)\)
- The displacement can be constant, spatially varying or stochastic
- Stack one geo-object type
- Build a sequence of stacked geo-objects
Stacking :: Geological objects
Interactions

- No overlap: Objects cannot touch
- Attach: up to 25% of the volume overlapped
- Full Overlap: 100% volume

If objects are stacked: interactions are applied on the stack
Remarks on locally varying parameters

Complexity and specificity is introduced through LVP

Consider the geological settings

Every parameter (geometries and interactions) can be locally variable

Kriging/Simulation are options to generate LVP

Danger of conflicting inputs

Need geologist involvement

Analog information as stored on database will be key in parameterizing the geo-objects
User’s perspective

Flexible / Expandable / Powerful Training Image Generator

User is shielded from the design through a User Interface

The UI can also be changed for local terminology

Need analog information in database
 • Object and Element parameterization
 • Locally varying parameters (LVP) fields

When the available shapes/rules are not sufficient:
 • new Positioning classes and/or
 • new Element classes
 • new Interaction classes
Boolean Simulator

- Currently testing as Object-based simulator for streamlines history matching (ppm)

- Perturb the intensity field driving the preferential locations of geo-objects

- Conditioning to hard data would require a new stopping criterion class
TODO list

- Expand elements library
- Stacking options
- Specialized objects library (e.g. turbidites)
- Additional checks for parameter consistency
- Expand interaction and positioning options
- Utility programs
Acknowledgements to Marco Pontiggia, Sergio Nardon and Giuseppe Serani at Eni for their support and valuable suggestions.

Questions?