

Classifying Existing and Generating New

Training Image Patterns in Kernel Space

MEHRDAD HONARKHAH AND JEF CAERS

Stanford Center for Reservoir Forecasting

Stanford University

May 8, 2008

Abstract

Advent of Multiple-Point Geostatistics helped to integrate complex subsurface geological

structures and features into the model by the concept of training images. Initial algorithms such as

snesim generated geologically consistent realizations by using these training images to obtain the

distributional properties and probabilities needed in a stochastic simulation framework. Later on,

pattern-based geostatistical algorithms such as simpat and filtersim came along, in which patterns,

instead of covariances or probabilities, were used in an image construction process in order to

generate geologically realistic models. In these approaches, the training image which represents

the spatial continuity of the subsurface structure is used to construct a pattern database, and

consequently, the sequential simulation will be carried on by selecting a pattern from that database

and pasting it onto the simulation grid. One of the shortcomings of the present algorithms is the

lack of randomness, in other words, the strong similarity between the generated realizations and

the input training image patterns. Hence, the main issue for both simpat and filtersim is caused by

drawing from the same limited pattern database, no interpolation nor extrapolation is done. In this

study a whole different approach will be taken towards pattern analysis and generation. The main

purpose is to introduce a better pattern classification algorithm, by using distance methods. This

method is more flexible than the previous methods and can be tailored to any application at hand.

Additionally, we will also deal with the shortcomings of previous algorithms. That is, to generate

new patterns from the same training image, using the existing pattern database. In other words,

given a data event, the most similar pattern, which does not necessarily exist in the training image,

will be obtained. This new and promising pattern generation methodology will bring more

randomness into training images by spanning a more diverse and much bigger pattern space.

1 Introduction

Sequential simulation is one of the most popular methods for generating multiple

reservoir models constrained to geologic, seismic and production data. Algorithms such

as SGSIM and SISIM (Deutsch and Journel, 1998) have been developed and are widely

used in practice. These variogram-based techniques are simple, fast and robust. However,

outcrop analogs and geological structures such as channels, faults, and curvilinear shapes

can not be reproduced by these methods. By describing merely the correlation between

only two spatial locations, a variogram can not capture the complexity of features.

Moreover, it can not describe any strong connectivity within a reservoir. To overcome

these drawbacks, multiple point geostatistics (MPS) was introduced (Guardiano and

Srivastava, 1993). Training image replaces the variogram in multiple point geostatistics

as a measure for geological heterogeneity; it contains multiple point information and is

much more intuitive since one can observe, prior to any geostatistical estimation and

simulation, the patterns that will be reproduced in a set of models.

SNESIM was the first algorithm proposed for the application of MPS (Strebelle, 2000).

In this method, the conditional probability is sampled from the training image by looking

for replicates of the data event. In contrast to classical algorithms based only on two-

point variogram model, snesim allows reproduction of complex patterns. Such patterns

include the traditional two-point statistics which are also reproduced even though they are

not explicitly modeled. But one of the shortcomings of snesim is that the training image

needs to be categorical. Also, the snesim algorithm can only capture the stationary

features of the training image. However, most geological structures contain also non-

stationary features. These non-stationary patterns are unique and non-repetitive.

Additionally, any type of trend, such as vertical or areal proportion change needs to be

explicitly enforced.

Therefore, SIMPAT as an alternative pattern-based algorithm was proposed (Arpat,

2004). The sequential simulation method of SIMPAT replaces the traditional probability

framework of drawing from conditional probability distributions with the calculation of

similarity between patterns. The strong assumption of stationarity in the previous

methods is now somewhat reduced. This method was also improved by summarizing

multiple-point spatial patterns with a few general linear filters (Zhang, 2004). In this

method, called FilterSim, a low-dimensional representation of patterns was provided and

classification was carried out according to their filter scores. Hence, in filtersim, one

attempts to group local training image patterns into classes and identifies the most similar

class to the available conditioning data event. Randomness/variability is introduced

through randomly sampling a pattern from that class, and then, pasting it on the

realization. However, it should be kept in mind that these patterns originate from the

same training image which has a limited/finite pattern database. Hence, in both simpat

and filtersim, patterns are drawn from a pattern database, and no interpolation or

extrapolation is made. As a result, simulated realizations include only the patterns that

existed in the training image, and also, a strong similarity between the generated

realizations and the input training image patterns will be observed.

This paper consists of two parts. In the first part, a new methodology on pattern

classification will be introduced. The patterns in a training image will be analyzed using

the new concept of distance metrics. Distance methods are more general than the standard

(fixed) filters used in filtersim as they can be tailored to the application at hand. The

proposed methodology can be stated intuitively as follow: All the patterns in the training

image will be represented by points in a Euclidean space. Classification phase will then

be as straightforward as clustering these points into some groups. Undoubtedly,

clustering these points results in classifying their corresponding patterns. However, the

main advantage of our method lies in the way patterns are mapped into Euclidean space

and represented by a point. This transformation is done by calculating the distances

between available patterns, and then, using multi-dimensional scaling (MDS) to map

them as a point in Euclidean space. Hence, flexibility of the methodology comes into play

by the ability of choosing different distance methods for different applications. Moreover,

the better pattern classification is brought about by kernel k-means algorithm (relying on

the same distances), in which data are mapped into a higher dimensional space that

allows to get non-linear separation surfaces in the data.

The second part of the study focuses on generating a new pattern that does not exist in the

pattern database of the training image. This methodology introduces randomness in the

pattern database, and resolves the shortcomings inherent in the filtersim or simpat

algorithms. It is simply done by using the previous concepts. In other words, as the

patterns are now represented by a point in Euclidean space, this pattern generation

methodology can be intuitively seen as a random sampling of a point in that space.

Indeed, this point has to be mapped back into a pattern. In this study, three different

methods will be investigated for the pattern generation part. The resulting pattern will

automatically be constrained to have similar features as the patterns in the database.

The outline of this report goes as follow. Section 2 introduces the concept of distance

methods in similarity measurement, and different distance functions will be introduced

and analyzed. In section 3, multi-dimensional scaling method will be explained. In

Section 4 clustering algorithms will be discussed and the kernel method will be

introduced. In section 5 some pattern classification results using different distance

methods will be illustrated, and also the effect of pattern skipping will be analyzed on a

binary (sand/shale) case study. Finishing the classification part of the study, we will

proceed with the pattern generation phase in section 6, where simple random sampling in

kernel space will be introduced with some examples. Finally, the pattern generation

methodology with a morphological concept will be introduced and some examples will

also be provided to substantiate the merit of this paper.

2 Distance Methods

2.1 Notation

For clarity, this section introduces the required notation for explaining the proposed

algorithm on a binary (sand/shale) case. Some of the notations and definitions are

identical to the notations used by Arpat, 2004.

2.1.1 Training image

Define ()ti u as a value of the training image ti where u∈Gti and Gti is the rectangular

Cartesian grid descretizing the training image. The training image of interest, for now is a

binary (e.g. sand/shale) system. So, an indicator notation for ()Tti u is defined as follow:

()
0 if at , ti containing shale

1 if at , ti containing sand


= 


u
ti u

u

()Tti u indicates a specific multiple-point vector of ()ti u values within a template T

centered at node u, i.e., ()Tti u is the vector:

() () () () (){ }α= + + + +… …1 2, , , , ,
TT nti u ti u h ti u h ti u h ti u h

Where hα vectors are vectors defining the geometry of the nT nodes of template T and

α=1,…, nT.

2.1.2 Pattern

The processing of the training image ti is performed by scanning the training image using

a template T and storing the corresponding multiple-point ()Tti u vectors in a database.

Each such ()Tti u is called a pattern of the training image and the database is called the

pattern database and is denoted by patdbT. Once the patterns are stored in the pattern

database, they are considered to be location independent, i.e. the database does not store

the location u∈Gti of a pattern; only the content of the pattern is stored. Hence, k
th

pattern can be denoted like this:

() () () (){ }α= … …1 2, , , , ,
T

k k k k k

T T T T T npat pat h pat h pat h pat h

where
TPatk =1,…,n , and all

TPatn patterns are defined on the same template T.

2.1.3 Dissimilarity distance Matrix

Having a pattern database patdbT of a training image, the dissimilarity matrix can be

obtained by calculating the pair-wise distances between all available patterns. If we have

TPatn patterns in a training image, dissimilarity matrix ∆ will be a
T TPat Patn × n size

matrix, where each element δij of matrix ∆ will represent the distance between i
th

 and j
th

pattern. This distance is calculated using a dissimilarity distance function, which will be

defined later. By this definition, the dissimilarity matrix should be symmetric with zero-

diagonal elements.

2.2 Dissimilarity distance function

In the first part of the study, we want to classify the patterns in patdbT in similar groups,

called clusters. In other words, we want to match the patterns that are similar to each

other, in one cluster. To this end, we need a measure of similarity between the patterns.

This measure, which is a function that calculates the dissimilarity between the patterns, is

called the dissimilarity distance function. This concept was first introduced by Arpat

(2005), and Suzuki and Caers (2006).

This dissimilarity distance measure should have two properties:

• It should have a large discriminatory power.

• Its value should increase with the amount of difference between the two patterns.

For this reason, different distance functions of interest to our work are introduced and

analyzed according to the properties mentioned above.

2.2.1 Euclidean distance

Among all distance metrics, the Euclidean distance is the most commonly used one due

to its simplicity, as well as its convenient mathematical properties. Let ()m

Tpat u ,

()n

Tpat u be two patterns from the pattern database patdbT. The Euclidean distance

()Ed x, y is given by:

() () () ()()α α
α=

= −∑
2

1

,
Tn

m n m n

E T T T Td pat u pat u pat h pat h

As can be seen in formula above, the Euclidean distance is only a summation of the

pixel-wise differences. However, according to the analysis made in this study, this

distance function may not provide much discriminative power for complex patterns.

2.2.2 Hausdorff and Modified Hausdorff distances

In this distance function, each fixed-value ()α
k

Tpat h in a specific pattern ()k

Tpat u is

treated as a point in a set, the "shape" of the template. The Hausdorff measure provides a

means for determining the resemblance of one point set to another, by examining the

fraction of points in one set that lie near the points in the other set. In other words, the

Hausdorff distance is the minimum number r such that the closed r-neighborhood of any

point “a ” in A contains at least one point “ b ” of B and vice versa. For instance, if we

draw a sphere around each point in the first pattern, the minimum sphere radius that

results in covering all the points in the other pattern is the Hausdorff distance between the

patterns. This is visually illustrated in Figure 1. This measure is different from the

previous pixel-based matching because there is no pairing of pixels in the two patterns

being compared. Additionally, another distance function named the Modified Hausdorff

distance, is also a metric distance function used in our analysis. It is just a modification

made to the original formula in order to bring more discriminatory power to the distance

measure. For the formulation of the Hausdorff and Modified Hausdorff distance functions

refer to appendix A.

Figure 1: A visual depiction of Hausdorff distance. Left: Picking the largest of the minimum distances

between two shapes. Right: Intuitive visual meaning is to pick the smallest expansion of B to cover A.

2.2.3 Hough/Radon transform distance

These are two different distance methods that are based on the Hough transform and

Radon transform. Basically, the dissimilarity distance between two patterns is calculated

by taking the Euclidean distance between their corresponding transformations. For

clarity, a brief explanation for each of these transformations will be given here.

The Hough transform is a general technique for identifying the locations and orientations

of certain types of features, such as straight lines, in a pattern. The characteristics of each

line will be represented by two values of distance and angle (of a perpendicular line

drawn from origin to it). Hence, a line in a two-dimensional pattern will produce a point

in the Hough transform, where the coordinates are distance and angle.

Radon transform, or x-ray transform is to some extent similar to Hough transform. We

will not dive into details of these transformations, but generally speaking, they are able to

transform two-dimensional images with lines into a domain of possible line parameters,

where each line in the image will give a peak positioned at the corresponding line

parameter. An illustrative example of the result of applying these two transformations to

a simple pattern, consisting of a line, is given in Figure 2. For further information refer to

Deans, Stanley R., (1983).

θ

ρ

x

y

θ

ρ

π/2 π

R(θ, ρ)

Pattern Domain Radon Domain

Figure 2: An illustrative example of Radon/Hough transform. It can be observed that in both methods, a

line is mapped into another feature space and is denoted by a point.

2.2.4 Distance/Proximity transform

Many image analysis applications require the measurement of objects, the components of

objects or the relationship between objects. One technique that may be used in a wide

variety of applications is the distance transform or Euclidean distance map (Russ, 1995).

The aim of distance transform is to compute the distance of each point of a pattern to a

given subset of it. In a binary image consisting of only object and a background, the

distance transform assigns each pixel its distance to the closest object. This process of

converting a binary image to an approximate distance image is called distance

transformation (DT). Refer to Appendix A for the formulation of DT. In this study, the

“Chamfer 3-4 algorithm” is used to easily and efficiently calculate this distance transform

by approximating the Euclidean metric (Borgefores, 1986 and Borgefores, 1984).

Another useful transformation is the proximity transform, which is just an inverse

normalized transformation of the distance transform. So, after this transformation, each

node u of the pattern holds additional information about the values of the neighboring

nodes u+hα. A sample illustration of these two transformations is given in Figure 3.

Target Object

Increasing

distance

from the

target object

More

information

is included in

the

Background

according to

the shape of

the target

object

Near Far

(a) Pattern (b) Distance Transform (C) Proximity Distance Transform

Back Ground

Figure 3: illustration of distance transformation and proximity distance transformation on a pattern

In order to find the dissimilarity between two patterns in this method, the Euclidean

distance between the transformed patterns (instead of the patterns themselves) will be

measured. By doing so, more information on the neighboring nodes will be included in

distance measures.

It should be noted that the distance transform method, using chamfer’s algorithm, will

assign infinity to every pixel in a situation where the patterns only consist of background.

Instead, the maximum possible value of distance transform, ()⋅ −T2 n 1 , is manually

assigned to all the pixels of the pattern.

2.3 Distance Functions Comparison

One of the mostly used dissimilarity functions is the Euclidean distance or similarly the

Manhattan distance. According to the analysis made by Arpat (2004), dissimilarity

measurements using the Manhattan distance gives radically different results from the

perception of a human expert. In other words, it finds more similarity between somewhat

less dissimilar patterns (For further examples regarding this issue refer to Arpat, 2004).

Hence, in our study we will not use this dissimilarity measure.

Additionally, the classification obtained by distance transform method has a slightly

better performance than the one with proximity transform. Therefore, one may think that

proxy distance transform, which is just the inverse normalized outcome of distance

transform, is a poor dissimilarity measure for pattern classification. However, the same

argument of visual human expertise comes into play. To clarify the point, we have

analyzed some of the patterns in a training image (with dimensions of ×41 41 , using a

×9 9 template). Some of the results of dissimilarity measurements using proximity

transform and distance transform are shown in Figure 4. Visually speaking, a human

expert would categorize pairs of patterns with decreasing similarity as follows:

↔ ↔ ↔� � � � � �> >

with ↔ signifying similarity. However as visually observed in Figure 4, the distance

transform results are counter-intuitive to the human expert’s choice. On the other hand,

the proximity distance transform provides an evaluation more in line with our visual

intuition. This is clearly seen in the dissimilarity function values obtained with these two

methods.

Distance Distance

TransformTransform

Proximity Proximity

TransformTransform

AA BB CC AA BB CC

Figure 4: Distance transform and Proximity transform dissimilarity capabilities’ comparison, showing

correct similarity measurements between pairs of patterns for proximity transform, and wrong

measurements for distance transform.

The same analysis was also made for Hough and Radon transform distance functions. For

both, there was a mismatch with visual perception. However, their result are somewhat

accurate as the dissimilarity achieved was: ↔ ↔ ↔� � � � � �> > , which is a

slightly better result than the distance transform’s comparison. On these accounts, in

cases where there is no prior knowledge on the best distance function, we will choose

proximity transform as the one for performing classification.

3 Multidimensional scaling

The first purpose of the study is to classify the patterns of a training image. We

introduced a measure of similarity between patterns as a method to cluster patterns.

However, by just constructing the dissimilarity Matrix, ∆ , we can not easily achieve this

goal. We need a technique that can reveal the hidden structures underlying the patterns.

Multidimensional scaling (MDS) encompasses a collection of methods which allow

gaining insight in the underlying structure of relations between patterns by providing a

geometrical representation of their similarities. The main assumption in MDS is that the

patterns can be described by values along a set of dimensions that places these patterns as

points in multidimensional space and that the dissimilarity between the patterns is related

to the distances of the corresponding points in the multidimensional space. In other

words, the inter-point distances in MDS space are related to the obtained similarities by

some distance function. Additionally, MDS reveals the inner dimensions in the patterns

that can meaningfully describe them. This multidimensional representation is evidently

useful as a basis for building a mathematical model for categorization that we will later

use in pattern classification. Thus mathematically speaking, this technique translates the

dissimilarity matrix into a configuration of points in n-D Euclidean space (Borg and

Groenen, 1997).

In this study, we assume that the dissimilarity matrix displays metric properties. Hence,

classical MDS will be used. An illustration of an application of classical MDS is

represented in Figure 5. For illustration purposes, a 2D Euclidean space was chosen for

mapping of all the patterns in a training image. Assuming the distances to be a good

representation of the dissimilarities between patterns, points close to each other in 2D

Euclidean space coincide with similar patterns. This can be clearly verified in Figure 5.

Figure 5: Multidimensional scaling sample result using a 8 x 8 pattern template. Any two patterns that

are similar map as two close points in Euclidean space.

An important issue in MDS is choosing the number of dimensions for the scaling solution

(2D in Figure 5). A configuration with a high number of dimensions achieves very low

errors, but it can result in computationally expensive mathematical analysis later on. On

the other hand, a solution with too few dimensions might not reveal enough of the

structures in the data.

The methodology we used to select the dimensionality stems from the correlation

between the inter-point distances in Euclidean space and their corresponding dissimilarity

distance values. Here, we plot the correlation coefficient against the dimension. Ideally,

the choice of dimensionality gets visually obvious from the “elbow” in the plot where

after a certain number of dimensions, the correlation does not increase substantially. The

workflow for choosing the dimensionality of the MDS space is shown in Figure 6. An

example is also provided for this workflow in Figure 7, where a 64 dimensional pattern

(8 8× pattern template) can be represented in a lower 5-dimensional space with a

correlation coefficient of 0.9992, which means that the original dissimilarity distance can

be very accurately represented by a 5D Euclidean distance.

Use Classical Multi-

Dimensional Scaling to

Find the corresponding

Euclidean points

For each dimension dmds ,

from 1 to nPat: calculate

the distance Matrix ∆mds
using interpoint distances

in dmds-dimensional MDS

space

For all dimensions:

Find the correlation

coefficient between ∆mds
and the dissimilarity

distance Matrix ∆

Plot the correlation

coefficient with respect

to dimenionality.

Choose the appropriate

dimension

Figure 6: Workflow to choose an appropriate MDS space dimension using MDS

Correlation coefficient = 0.9992Correlation coefficient = 0.9992

MDS Dimension

C
o
rr
el
at
io
n
 C
o
ef
fi
ci
en
t

E
u
cl
id
ea
n
 d
is
ta
n
ce
s
in
 5
D

Dissimilarity distances

Figure 7: An example using a ×100 100 training image with a ×8 8 pattern template, using distance

transform as the dissimilarity measure. Plot shows an intact dimension reduction from 64 to 5

This procedure can also be automated by assuming a certain threshold for the correlation

coefficient value. For instance, assuming 98% for the correlation coefficient will be a

reasonable value, as a big dimension reduction is easily achieved according to different

experiments. In fact, this method can also be interpreted as a dimensionality reduction

algorithm applied on the original high-dimensional patterns.

4 Pattern clustering and Kernel method

4.1 Clustering methods

So far, we have mapped each pattern as a point in a low-dimensional space, where the

inner-point distances represent the dissimilarity between the patterns. Now, we can easily

classify the patterns by organizing the points into clusters. To this end, we will need to

employ clustering methods. Clustering will organize the collection of patterns in the

pattern database (represented by points in a multidimensional space) into clusters based

on similarity. Intuitively after clustering, patterns within a cluster will be more similar to

each other than patterns belonging to a different cluster. An illustrative example of

clustering is depicted in Figure 8. The input patterns, represented by points are shown in

Figure 8 (a), and the desired clusters are shown in Figure 8 (b). As can be observed,

points belonging to the same cluster are given the same label.

Figure 8: Clustering illustration

Before introducing the clustering methods, some notations employed in this research are

first provided for clarity.

4.1.1 Notation

Suppose that all patterns have been mapped into a d-dimensional MDS space as points.

Hence, we can now show each pattern by a data point kx in a d-dimensional row vector

as follow:

{ }= ∈…1 2, , , , d

k k k kdx x x x x R

A set of ()
TPatN = n points is then represented by Matrix { }= = …1, 2, ,kX x k N which is

represented as a N×d matrix as follow:

 
 
 =
 
 
 

�

�

� � � �

�

11 12 1

21 21 2

1 2

d

d

N N Nd

x x x

x x x
X

x x x

Here, the rows of X represents the coordinates of points in the MDS space. Also, d is

the MDS dimension, and N is the number of patterns in patdbT.

4.1.2 K-Means

One of the most popular methods for clustering is K-Means algorithm. In this method, a

class label il will be assigned to each data point ix , identifying the class that the

corresponding pattern belongs to. The set of all labels for a pattern set is { }1, , Nl l=� …

with { }1, ,il k∈ … where k is the number of clusters. This objective of this method is to

allocate each pattern (data point) to one of the k clusters in order to minimize the within-

cluster sum of squares:

∈

∑∑Minimize
i

k

p i
2

i=1 p A

x - v

Where iA is a set of patterns (data points) in the i -th cluster, and iv is the mean for

those points over cluster i . In k-means clustering iv is called the cluster prototype, i.e.

the cluster centers:

∈
∑
N

iN

pp=1

i p i

i

x
v = , x A

Where iN is the number of patterns in iA . It should be noted that the reason behind

choosing a Euclidean norm in the minimization phase of the algorithm is simply because

of the specific metric distance used in multidimensional scaling. In mapping the

dissimilarity distances between patterns to MDS space, we used Euclidean distance as the

metric measure for inter-point distances. Hence, the same Euclidean norm would be the

correct representation of the dissimilarities between patterns. Eventually by Using K-

Means algorithm, we can now classify patterns in different clusters.

4.1.3 Number of Clusters

One of the main issues in any classification is the decision that should be made by the

user on the number of clusters, prior to the algorithm. In order to automate this phase, and

most importantly, to find the most appropriate number of clusters, two different methods

will be introduced hereafter. In both methods, an index is used to validate the best

number of clusters.

In the first method, it is assumed that “good” clusters are those whose patterns are close

to each other compared to the next closest cluster. Accordingly, an index called

Silhouette is defined as follow:

()
()
i i

i i

b - a
S i =

max a , b

Where ia is the average distance from the i-th point to the other points in its cluster, and

ib is the minimum (over all clusters) of the average distance from the i-th point to the

points in another cluster. The silhouette value for each point is a measure of how similar

that point is to points in its own cluster compared to points in other clusters, and ranges

from -1 to +1. The average of this index for all the clusters is called Mean Silhouette

Index. As a result, the maximum value in “mean silhouette plot” will point out the

appropriate number of clusters.

The second method stems from the fact that, a good clustering yields clusters where

patterns have small within-cluster sum-of-squares [SSW] (and high between-cluster sum-

of-squares [SSB]). These statistics measure the dispersion of the data points in a cluster

and between the clusters, respectively. According to that, Calinski and Harabasz index is

one of the best candidates which provide excellent recovery in terms of selection of the

number of clusters (Milligan, G.W., & Cooper, M.C., 1985).

SSB
k -1Calinski Harabasz =CH=

SSW
N-k

Where N is the number of data points and k is the number of clusters. Here, the

maximum value determines the proposed number of clusters (Calinski and Harabasz,

1974).

A sample illustration of these formulations is given in Figure 9 for a 30 30× TI, and a

8 8× pattern template. As can be seen, both indexes provide 23 as the optimum number

of clusters. In this analysis, a maximum value should be assigned for the number of

clusters such that the search could be limited within that constraint.

15 16 18 20 22 24 26
0.33

0.34

0.35

0.36

15 16 18 20 22 24 26

390

400

410

[a][a] Silhouette (sil) index [b][b] Calinski Harabasz (CH) index
Figure 9: Silhouette and Calinski-Harabasz (CH) indexes indicating 23 as the best number of clusters

4.2 Kernel Methods

4.2.1 Definition

Considering the amount of available patterns in the pattern database of a training image,

we are interested in using simple, fast and efficient clustering algorithms such as K-

means method to classify them. K-means suffers from several drawbacks. For instance,

its results strongly depend on the initialization process and it cannot adapt to any cluster

shape. That is to say, in the case where data exhibit a complex structure (e.g. data are

non-linearly separable), a direct application of K-means is not suitable because of its

tendency to group data into globe-shaped clusters (MacKay, 2003). This misclassification

has a direct effect on the pattern recognition capability of our methodology. In order to

solve this problem, data will be mapped by a transformation ϕϕϕϕ into a new feature space F

where samples become linearly separable (Shawe-Taylor and Cristianini, 2004). In other

words, by mapping the data points to that higher dimensional space F, we can capture the

nonlinear relationship among the information provided by the data. A sample

representation of this process is shown in Figure 10 (Scholkopf and Smola, 2001) where

a non-linear dataset is linearized in feature space. As a consequence, in this feature space,

classical clustering algorithms such as K-Means will perform better, and so, a stronger

and more accurate pattern classification will result. We will next introduce the

formulation to achieve this non-linear transformation.

Figure 10: Kernel transformation, and the principal component in the linear kernel space

Generally, by transformation, we want the similarity between the data to be preserved in

the feature space. One particularly simple yet surprisingly useful notion of this similarity

- the one that we used in this study – was derived from embedding the patterns into a

Euclidean space and utilizing geometrical concepts. Likewise, this dissimilarity can be

measured by dot product in some high-dimensional feature space F. This leads to one of

the crucial ingredients of this formulation, “the kernel trick”, for the computation of this

dot product in the high-dimensional feature space using simple functions defined on pairs

of input patterns. Therefore, the patterns are first mapped into F

using ()→ �Φ : X F, x xφφφφ , and then compared using a dot product () ()k lx , xφ φφ φφ φφ φ .

However, to avoid working in potentially high-dimensional feature space F, one tries to

pick a feature space in which the dot product can be evaluated directly using a nonlinear

function ()K ⋅ in the input space, i.e. by means of a kernel trick.

() () ()k l k lK x , x = x , xφ φφ φφ φφ φ

The success of this approach is related to the fact that using a kernel is equivalent to

defining a feature space transform. In other words, the advantage of the kernel trick is

that instead of explicitly determining the coordinates of the data vectors in the feature

space, the distance computation in F can be efficiently performed in � (input space)

through a kernel function. Hence, ()k lK x , x is the inner product not of the coordinate

vectors kx and lx in R
d
 but of vectors ()φ kx and ()φ lx in higher dimensions. This

trick allows the formulation of nonlinear variants of any algorithm that can be cast in

terms of dot products, K-Means and PCA being the most prominent examples. Hence, the

solution to a better pattern classification can be obtained by using the Kernel K-means

algorithm (H. Maitre M. Campedel, 2005) as an alternative to K-Means.

The most frequently used kernel function, as used in our study, is the Gaussian radial

basis function, which is given by:

()
−

−
σ=

2

22,
k lX X

k lK x x e

The incorporation of this kernel function enables the K-Means algorithm to explore the

inherent data pattern in the new feature space F. An example of the beneficial result of

clustering using kernel k-means (in linear feature space) in comparison with k-means (in

non-linear Euclidean space) is depicted in Figure 11.

(a) K-Means: Linear seperation (b) Kernel K-Means: Non-linear seperation

Figure 11: (a) K-Means on dataset. The solid line indicates the linear separation line determined by K-

Means. (b) Kernel K-Means on dataset. The region delimited by black line identifies the first cluster

which has been properly separated from the second data cluster, identified by the gray line.

4.2.2 Number of Clusters

Similar to the previous case of K-Means, we need to find the most suitable number of

clusters automatically, without user interaction. However, as we are using the kernel k-

means method, another procedure should be undertaken to account for the feature space

transformation. In this procedure, the optimal number of clusters is selected on the basis

of minimum description length (MDL) principle (Rissanen, 1983), in a trade-off between

the likelihood of the model to the given data and the complexity of the model itself. In

order to understand intuitively the MDL principle we will provide an example for model

selection and overfitting.

Consider the points in Figure 12. We would like to learn how the y-values depend on the

x-values. To this end, we may want to fit a polynomial to the points. Straightforward

linear regression will provide the leftmost polynomial - a straight line that seems overly

simple: it does not capture the regularities in the data well. Since for any set of n points

there exists a polynomial of the (n − 1)st degree that goes exactly through all these points,

simply looking for the polynomial with the least error will give us a polynomial like the

one in the second picture. This polynomial seems overly complex: it reflects the random

fluctuations in the data rather than the general pattern underlying it. Instead of picking the

overly simple or the overly complex polynomial, it seems more reasonable to prefer a

relatively simple polynomial with small but nonzero error, as in the rightmost picture.

Intuitively, if one naively fits a high-degree polynomial to a small sample (set of data

points), then one obtains a very good fit to the data. Yet if one tests the inferred

polynomial on a second set of data coming from the same source, it typically fits this test

data very badly in the sense that there is a large distance between the polynomial and the

new data points. We say that the polynomial overfits the data. Indeed, all model selection

methods that are used in practice either implicitly or explicitly choose a tradeoff between

goodness-of-fit and complexity of the models involved. In practice, such tradeoffs lead to

much better predictions of test data than one would get by adopting the “simplest” (one

degree) or most “complex” (n−1 degree) polynomial. MDL provides one particular way

of achieving such a tradeoff.

Figure 12: A simple, complex and a tradeoff (third-degree) polynomial

An intuitive explanation of MDL aids in formulating a procedure for selecting an

appropriate amount of clusters. The MDL formulation for kernel k-means consists of

plotting a metric, KMDL, versus the number of clusters k as follow:

() () ()
=

 
= − + + + 

 
∑

2k
2l

l d
l 1 l

n
KMDL k n log k d 3d 2 log N 2

S

Where, N is the number of patterns
TPatn , d is the dimension of the points in the MDS

space, nl is the number of points in l-th cluster and Sl is the sum-squares distance from

patterns to their corresponding l-th cluster centroid. For interested reader, the

mathematical background of this formulation is presented in Appendix B. The minimum

value in the KMDL curve plotted with respect to the number of clusters k will provide

the appropriate number of clusters. Hence, using this number we can classify the patterns

in the feature space.

Having explained all the steps involved in the pattern classification process, next we

provide a case study on a training image example. In the next section, we will first

introduce the concept of pattern skipping. And then, by providing some means of pattern

classification validity index, different distance functions for dissimilarity measurement

will be investigated in the context of the final classification capability. Our results will be

compared with the FilterSim method.

5 Case Study

5.1 Pattern skipping Concept

Due to large amount of patterns in a training image, issues of memory and computational

burden may arise. This is mainly caused by the size of the pattern database,
TPatn , that

grows according to the size of training image and the template. Also, the distance

calculations between all the patterns imply at least
T

2

Pat
1 n

2
similarity calculations and

their storage. In this study, a new idea of pattern skipping is introduced to avoid this

drawback. Pattern skipping is the process of omitting some patterns from the pattern

database. This task is done by skipping the neighborhood patterns next to the one being

accepted into the pattern database. For instance, by having a skip size of 2 lags, every

other pattern is skipped. That is, if one pattern is located at location u as its center point,

the next pattern to be considered will be located at u+2h (h being the distance between

grid cells). An illustration of pattern skipping is given in Figure 13. By this method, the

size of the pattern database, and also, the dimensions of the dissimilarity matrix will be

reduced by a factor of (skip-size)
2
, which can significantly reduce the computational

time. This method does not pose any problem in pattern reproduction, because patterns

are usually just a translation of their neighboring patterns, hence very similar to each

other. By skipping similar existing patterns, the database would still cover almost every

possible pattern.

Figure 13: Showing training image of 9×9, scanned with a 3×3 template resulting in all possible

patterns. Concept of pattern skipping is shown for skip-sizes of 1 (None), 2 and 3

5.2 Training Image

The training image that was used in this study has binary sand/shale channel structures.

Figure 23 shows this training image. The workflow of the pattern classification part of

this study goes as follow:

1: Extract all existing patterns from the training image, with the specified template, and collect them in

the pattern database.
2: Construct the dissimilarity Matrix using a specific distance function.

3: Use MDS to map the patterns to points in a Euclidean space R
d
, with its dimension, d, chosen such

that the resulting Euclidean distance has a desired correlation coefficient with the original distance

function.

4: Map the data into the kernel space (implicit in algorithm).

5: K-means clustering in kernel space for pattern classification

6: Assess the goodness of classification (optional).

Here, we have used a 100×100 training image, with a template size of 8×8. The results

are shown in Figure 24 to Figure 28. Different skip-sizes and multiple-grid values were

tested as well as different distance functions. The classification result shown here is for

the case of distance transform method with 12-dimensional feature space and 25 clusters.

It is notable that by having 12 dimensions, which is a huge reduction from the original

64-dimensional pattern, a correlation coefficient of 0.99996 is obtained, as can be seen in

Figure 24.

The benefit of MDS space to feature space transformation is illustrated in Figure 25. As

one can observe, the unstructured scatter of data points in the Euclidean space are now

distributed in a more structures fashion in the feature space, shown using the first 3

principal components in that space.

Finally, the prototypes of the resulting clusters are shown in Figure 26. Prototypes are

pixel-wise averages of all the patterns in each cluster. Recall that if the classification was

successful, then the patterns within one cluster should be similar. Visually, this translates

to prototypes that are “sharp”, i.e. contain values close to zero or one. In other words, if

all the patterns in one cluster are exactly the same (perfect classification) the average

prototype will be exactly a sample pattern within the cluster, and as such, a very sharp

prototype (distinct black and white pixels) will result. On the other hand, suppose that a

cluster has two completely different patterns (any 1 pixel in one pattern will be zero in

the other one). In this case, the average prototype will have all the pixels equal to 0.5,

which results in gray prototypes, assuming a black-to-white colorbar. For instance,

cluster 23 in Figure 26 is considered sharp, while cluster 20 is not. According to these

qualitative visual concepts, we introduced a quantitative sharpness index which can help

in validating the classification accuracy. In simple words, if a pixel in a prototype is close

to 0.5, which indicates poor clustering, we rate it as zero and for the pixels close to 1 or

zero, which indicates similarity of the patterns within that cluster, we rate them as 1. The

sharpness index is then just an averaged sum of all these values. The formula for

sharpness index is as follow:

()
()

∈∈
∈

∑∑
ii

i

k LL L

T L

2× -1

Sharpness Index = SI = , where =
n n

0,1

k

Ti

i

pat uv

v

However, suppose that a pattern classification, with 25 clusters, resulted in 24 clusters

having only 1 pattern and the last cluster contains all the remaining patterns in the

database. This results in a high sharpness index, because the 24 perfect clusters, each

with SI=1, are averaged with one cluster having SI ≈ 0.5. Therefore, to compensate for

this situation, a weighted average of each pattern sharpness index is calculated, with the

weight being the number of patterns in each specific cluster. As a result of this, the

situation described above would result in a small sharpness index, indicating poor

classification. The following formula is therefore proposed:

∑
T clusters

1
weighted SI = WSI =

n

()
∈

 
  
 

∑
ii

T i

k LL

Pat L

n
× 2× -1 , where =

n n

k

T

i i

pat u

v v

One shortfall of this formula is produced by the pixel-wise averaging technique used in

obtaining the cluster prototypes. They utilize the same Euclidean distance comparison

method that was deemed unreliable. That is to say that a “sharp” prototype results from

averaging the patterns that are similar pixel-wise. This has a misleading effect when

comparing different distance functions for their final classification capability. To avoid

this misinterpretation, two other sharpness indexes were also calculated accordingly. For

both of them, the prototypes are obtained by averaging the proximity transformed

patterns, instead of the original patterns. In this way, each prototype would be more

informative of all the patterns within that cluster.

The results of all sharpness indexes for different distance methods are given in Figure 27.

In this figure, the x-axis represents skip-size in pattern skipping. To some extent, they all

give similar results. This is a satisfactory result in the sense that we are free to use any

distance method applicable to our study, and the results will reflect similar sharpness

indexes. The pattern database obtained from a multiple grid approach is also analyzed

and the classification results are plotted in Figure 28. This figure shows that when having

a greater pattern complexity (resulted from multiple gridding), the sharpness indexes for

different distance methods still remain the same. The decline in SI with patterns from

coarser grids is anticipated because of the fact that we have more diverse and dissimilar

patterns in the database.

5.3 FilterSim Comparison

The proposed algorithm in this study presents a very general and powerful technique for

pattern classification and analysis. However, being a new algorithm, a comparison with

the classification technique employed in the FilterSim algorithm is made. As mentioned

before, FilterSim uses 6 different filters to map the patterns into a 6-dimensional space,

where the pattern are classified according to their score values. On the other hand in this

analysis, only one measure - the dissimilarity between patterns - is used for pattern

classification. Another advantage is that by mapping the patterns to a lower dimensional

MDS space, different techniques such as k-means clustering, PCA and kernel mappings

can be easily applied on the data points. In order to judge the effectiveness of our

algorithm, a sample training image is chosen, and the pattern clustering capabilities of

both methods is compared in terms of sharpness indexes.

The training image used here is shown in Figure 29. As can be seen, this looks like the

previous one. However, the dimensions of this training image is reduced to 51×51 which

is almost half the previous one. The patterns are identified using a 9×9 template. The

reason of using a lower-resolution training image with the same template size as before is

that more dissimilarities will be introduced between the patterns in the database, and

hence, the more difficult it will become to classify them. This can help us observe the

differences more clearly. We have chosen 20 clusters for the final results. In Filtersim,

for the sake of comparison, the k-means algorithm is also used for classification.

Different ways of comparison are introduced hereafter. The first one is the graphical

portrayal of the clustering results. This is achieved by showing the training image grid,

and then, assigning to each grid location u, a value which represents the cluster label that

the pattern, ()Tpat u , belongs to. Therefore, the resulting figure can be a way to visually

evaluate the classification method. Here, if such “cluster image” shows clear structures,

then this may indicate a good classification. The “cluster image” of a high-resolution

training image is given in Figure 30. One can note the analogy between the training

image and its corresponding cluster image. It mimics the trends of channels in the

training image, which justifies a good pattern classification. Evidently, for the lower

resolution training image, which is used here for classification comparisons, the cluster

image may not perfectly mimic the structures of the training image. However, the closer

they look to the high-resolution cluster image, the better the classification algorithm is.

The cluster images using our method and the FilterSim method are shown in Figure 31.

Accurately inspecting the structures in these figures, one can undoubtedly observe that

our algorithm achieves a better classification.

Besides these cluster representations, we can also look at the cluster prototypes. As

presented previously, the sharpness index of a prototype is a good measure for the

accuracy of pattern classification. To this account, Figure 32 and Figure 33 show the

prototypes of each cluster obtained by FilterSim and our method. The sharpness index of

each prototype is indicated below them. Visual perception indicates that a better

classification is obtained with our algorithm. Nevertheless, numerically speaking, Table 1

summarizes the average and weighted average sharpness indexes for each case. The huge

difference between these values substantiates the powerful classification capability of our

method in comparison with the method employed in FilterSim.

Table 1: FilterSim comparison with our method in terms of sharpness index

 Sharpness Index Weighted Sharpness Index

FilterSim Method 0.395735 0.399662

Proposed Algorithm 0.523792 0.523600

Concluding the effectiveness of our procedure, we are now going to introduce a method

for pattern generation in the following section.

6 Pattern Generation

Neither FilterSim, nor Simpat introduce or create patterns that are different from the

database. It is our opinion that any improvement on these algorithms has to start by

considering ways to extend the pattern database by generating new patterns. This is the

purpose of this section.

To this end, suppose that we have a data event. In previous algorithms, a search for the

most similar pattern to this data event will be performed. In FilterSim method, this search

normally starts by comparing the data event with all the prototypes. After finding the

most similar prototype to the data event, a pattern from that cluster is randomly selected

and pasted onto the simulation grid. In our method, we follow the same steps. However,

instead of randomly selecting one of the patterns within that cluster, a random pattern

will be generated. This new pattern does not exist in the pattern database, but it is similar

to the patterns in that specific cluster. The overall methodology on how this is done is

explained below and is also illustrated in Figure 14.

Figure 14: The methodology for random sampling and pattern generation process

1: Using a measure of similarity, obtain the most similar prototype to our data event.

2: Find the patterns within the cluster of that prototype.

3: Randomly sample a point from the multivariate distribution of the cluster points in kernel space.

4: map the sample point back into the feature space (MDS space) using the pre-image method.

5: Generate a new pattern using that point in MDS space by one of the following methods:

I : Morph the most similar patterns (being closest in MDS space) to the sampled point in

order to obtain a new pattern. (Presented in the next section)

II: Map the sampled point from MDS space back to the pattern space. (By solving the pre-

image problem from MDS space back to the initial pattern space)

6.1 Sampling

In order to clarify the proposed methodology in Figure 14 we present it on an example

dataset. Suppose that a cluster of patterns is shown in a 2-D MDS space by their

corresponding points. For consistency with the methodology, assume that these points

represent the class of patterns having a prototype most similar to our data event. Figure

15 shows these data points which are scattered non-linearly around a hypothetical circle.

As stated in the methodology, after finding the cluster, the next step in the pattern

generation algorithm is to randomly sample a point that would belong to the same cluster.

We expect the sampled data to be located within the span of the original dataset, for

instance in this sample test, around the perimeter of the circle. However, traditional

random sampling from this non-linear dataset would result in the sampled data to

unfavorably cover the whole area of the circle as shown in Figure 16. In order to

circumvent this obstacle, we have to sample from a better structured dataset. Indeed,

mapping the data from the MDS space to the feature space increases the linear

separability of the patterns within the transformed space and therefore simplifies the

associated data structure. Then, by using Kernel PCA, we can satisfactorily perform the

desired sampling with a linearly structured data.

Figure 15: Sample test dataset, a circular shape data points with standard deviation of 1 for noise

Figure 16: 100 randomly sampled data (red) from the original non-linear (circular) data points (black)

In this study, in order to sample a point, a multivariate normal distribution for data point

vectors is assumed. By using simple random sampling, we form a random vector from

prescribed probability distribution, and consequently, a randomly sampled point is

obtained. The algorithm has to consider also the correlation among the data. Otherwise,

the samples will be uncorrelated in the feature space, causing the same problem as was

shown for the MDS space. This is accomplished by using LU decomposition method

proposed by Davis (1987) to incorporate the correlation. However, the sampled point is

still in kernel space and to retrieve the new pattern, it needs to be mapped back into MDS

space. This reverse mapping process is called the pre-image problem (Schölkopf et al.,

2002). To summarize, by projecting the points to a high-dimensional feature space and

randomly sample a point in that space, and then, back-mapping it into the original MDS

space, we have a new point which corresponds to a new pattern. To illustrate the end

results, 80 data points using simple random sampling (with correlation) are generated on

the previous circle dataset and is shown in Figure 18. Their distribution follows the same

non-linear behavior inherent in the initial data, as desired.

Figure 17: data points in these plots are assumed to be in kernel space. Left figure: original data points,

showing linear behavior/ right figure: simple random sampling with correlation in the feature space.

KPCA → Sampling → Pre-image

Figure 18: Simple random sampling by: (1) mapping into kernel space, (2) random sampling, (3) back-

mapping into original input space

Having finished the random sampling part, we are now at the last step of the

methodology which is to use the sampled data point (in the MDS space) in order to

generate its corresponding pattern. In this study, only the first technique that was outlined

in the methodology is investigated and presented hereafter.

6.2 Pattern Generation

So far, we have presented a methodology for obtaining a new point in the MDS space.

This point belongs to a specific cluster whose corresponding prototype is closest to the

given data event. As mentioned before, patterns of a training image are represented by

points in the MDS space. Thus, a new randomly sampled point in this space should

represent a new pattern. In other words, there exists a pattern that if mapped to the MDS

space would result in that randomly sampled point. Hereafter, a back-mapping

methodology for finding the pattern, which corresponds to a point in MDS space, is

presented with some examples.

The idea behind back-mapping comes from the fact that the features in this new pattern

should comply with the features present in some other patterns in the database. However,

in order for this new pattern to be mapped to that specific point, it should have the same

features existing in the patterns closest to that point. In other words, the closest points to

our sampled point in the MDS space correspond to the patterns which have features

similar to the new pattern. On that account, the 3 closest points to the sampled point are

chosen for pattern generation. The methodology is provided below and is illustrated in

Figure 19.

Figure 19: New pattern generation methodology

1: Sample a new point in the MDS space (obtained according to the previous section).

2: Find the 3 closest points to the sampled data point.

3: Find the corresponding patterns and their relative distances to the sampled point.

4: Calculate the Radon Transform of the selected patterns.

5: Using inverse distance weighting of their radon transforms to obtain a new radon transformed

image.

6: Use inverse radon transform (Filtered back-projection algorithm) on this new image and apply a

threshold to obtain the new pattern.

It should be noted that the Radon transform captures the features in a pattern. Thus, by

averaging those radon transforms, the new transformed image conforms to the same

features. The Radon transform, as explained before, is a set of 1-D projections along

different angles. Therefore, assuming a 2-D pattern as a two-variable function ()f x, y ,

then the projection function ()R r,α can be written as:

() () () ()
∞ ∞

∞ ∞
   ∫ ∫- -

R r, α f x, y = f x, y δ r - xcosα - ysinα dxdy

where r is the perpendicular distance from a line to the origin and α is the angle formed

by the distance vector. The collection of all ()R r,α at all angles α is called the Radon

transform of the image ()f x, y . In order to reconstruct the pattern, we used what is

known as the Fourier Slice Theorem. According to this theorem, we can simply take the

2D inverse Fourier Transform to obtain the unknown pattern. More specifically, we can

apply an inverse radon transform to reconstruct the pattern. This inverse problem is called

filtered back-projection and is formulated as follow:

() () ()∞

∞
    ∫ ∫

π

ω,α
0 -

iω xcosα+ysinα
f x, y = c R f ω, α ω e dωdα�

where � is the Fourier Transform. This filtered back-projection is an explicit and

computationally efficient inversion algorithm for the two-dimensional Radon transform.

Having this algorithm, we can easily reconstruct the pattern that has a specified Radon

transformation. Indeed, a threshold value is also chosen according to the proportions in

the 3 original patterns, in order to transform the resulting continuous pattern into a binary

one.

The effectiveness of this methodology to generate new patterns will be shown here with

an example. Three patterns are first selected from one of the pattern clusters, as shown in

Figure 20. Next, according to the position of the sampled point to the corresponding

patterns in MDS space, new patterns are generated. For illustration purposes, only the

points lying between each pair of patterns is considered in this example. As a

consequence, by traversing the line between each two points, a new set of patterns can be

constructed. Also, we expect these new patterns to smoothly morph from one pattern to

the other. An illustration of this methodology is provided in Figure 21 and Figure 22. The

first figure shows the locations considered for the sampled points, and the second one

shows the smooth transition from one pattern to the other one.

Figure 20: Three different patterns selected as the basis for pattern generation.

Figure 21: Red points indicate the sampled points in MDS space used in pattern generation algorithm.

Figure 22: Transitional new patterns generated between the original ones, showing smooth morphing

from one pattern to the next one. New generated patterns have similar features as their neighboring

patterns.

Conclusions and Future Work

Different algorithms for building geologically realistic reservoir models have been

proposed before. They all suffer from some shortcomings such as poor pattern

classification, similarity of the generated realizations to the training image, and most

importantly being restricted in their applications. In this paper, a new methodology has

been proposed. Distance-based methods are used in the context of patterns in a training

image. According to this, by using different distance functions, pattern analysis can be

easily tailored to the application at hand. In other words, the pair-wise distances between

all of the patterns are calculated according to a specific dissimilarity distance function.

Then by using the calculated dissimilarities, patterns are mapped into a lower-

dimensional MDS space, where all sorts of mathematical algorithms can be applied on

their corresponding points, instead of the patterns themselves. On this account, Kernel

methods are used to map them into a higher-dimensional feature space where the non-

linear structure inherent in the data points can be easily captured. Finally, patterns are

classified by applying clustering methods in this space. The proposed methodology

provides a better pattern classification in comparison to the algorithm used in the

FilterSim.

Additionally in the previous methods, during the sequential simulation, patterns were

selected from the pattern database of a training image and patched on the simulation grid.

In this study, a new pattern generation algorithm is proposed. According to this, patterns

which are pasted on the simulation grid may no longer exist in the pattern database. In

other words, more randomness is introduced by generating new patterns that have similar

features as the patterns in the training image. To this end, a new point is randomly

sampled in the feature space. Then, by back-mapping it to the original MDS space a point

in the non-structured dataset will be obtained. This new point should correspond to a

pattern. Hence, by using Radon and inverse Radon transformations, a new pattern is

generated such that it will be mapped to the exact same point in the MDS space. The

generated pattern is then pasted on the grid, bringing less resemblance between the

simulated realizations with the input training image. A sample illustration of the pattern

generation algorithm, by using three closest patterns, demonstrated the effectiveness of

the proposed methodology.

The methodology is in its initial phase and needs more improvements. Some of the future

works can be briefly stated as follow:

• Distance-based methods should also be applied in the context of continuous

variables, additional to the categorical case presented here.

• In the pattern generation algorithm, soft/hard data conditioning should be taken

into account.

• Finally, a comparison in a simulation framework should be made with the

previous methods in order to see the accuracy and the amount of randomness

introduced by the methodology.

Figure 23: Training Image used in this study having 100 100× dimensions with 8 8× template

Figure 24: Dissimilarity Matrix (left figure) and the correlation between dissimilarity distance and MDS

distances being 0.99996 (right figure)

Kernel Transform

Figure 25: patterns represented by points in the Euclidean space (MDS space) with their final classified

results shown in different colors (left figure), and feature space representation of the same points having

more linear behavior in a higher-dimensional space, but shown in 3 dimensions (right figure)

Figure 26: Cluster prototypes for all 25 clusters, more sharpness means better clustering

0,515

0,52

0,525

0,53

0,535

0,54

0,545

0,55

0,555

0,56

0,565

0 0,5 1 1,5 2 2,5 3 3,5

Skip Size

W
e
ig

h
te

d
 P

ro
x
im

it
y
 T

ra
n

s
fo

rm
 I

n
d

e
x

DT

Radon

Hough

M Hausdorff

0,5

0,505

0,51

0,515

0,52

0,525

0,53

0,535

0,54

0,545

0,55

0,555

0 0,5 1 1,5 2 2,5 3 3,5

Skip Size

P
ro

x
im

it
y
 T

ra
n

s
fo

rm
 I

n
d

e
x
In

d
e
x

DT

Radon

Hough

M Hausdorff

0,73

0,74

0,75

0,76

0,77

0,78

0,79

0,8

0,81

0 0,5 1 1,5 2 2,5 3 3,5

Skip Size

w
ie

g
h

te
d

 s
u

m
 o

f
s
h

a
rp

n
e
s
s
 s

 DT

Radon

Hough

M Hausdorff

0,77

0,775

0,78

0,785

0,79

0,795

0,8

0,805

0,81

0,815

0,82

0,825

0 0,5 1 1,5 2 2,5 3 3,5

Skip Size

w
ie

g
h

te
d

 s
u

m
 o

f
s
h

a
rp

n
e
s
s
 s

 DT

Radon

Hough

M Hausdorff

Average Sharpness Index Weighted Average Sharpness Index

Average Sharpness Index (Proximity) Weighted Avrg. Sharpness (Proximity)

Figure 27: different sharpness indexes results for different distance methods: distance transform, Radon

transform, Hough transform and Modified Hausdorff; and for different step-sizes (presented on x-axis).

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

1 2 3

Multiple Grids

A
v
e
ra

g
e
 S

h
a
rp

n
e
s
s

distance

Radon

Hough

Haussdorff

Figure 28: Effect of multiple-grid on classification results, showing similar behavior for all methods

Figure 29: 51 51× Training Image used for FilterSim comparison with 9 9× template

Each Pattern is

represented by a

specific color

according to the

cluster label that it

belongs to

Figure 30: Original 100 100× training image, and its corresponding clustering representation

Our AlgorithmOur Algorithm FilterSimFilterSim

Figure 31: Cluster image of patterns in our case (left figure) and FilterSim (right figure)

Figure 32: FilterSim classification results; each sub-figure shows the prototype of each cluster

Figure 33: Better classification results of our algorithm (improved sharpness of the results in

comparison to FilterSim shown above); each sub-figure shows the prototype of each cluster

References

G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics and

Image Processing, 34(3):344–371, June 1986.

G. Borgefores, “An improved version of the chamfer matching algorithm,” in 7th Int.

Conf, Pattern Recognition , Montreal, P.Q.,Canada, pp. 1175-1177, 1984.

Calinski, R.B., & Harabasz, J. (1974). A dendrite method for cluster analysis.

Communications in Statistics, 3, 1-27.

David J. C. MacKay. Information Theory, Inference, and Learning Algorithms.

Cambridge University Press, 2003.

Davis, M.W., 1987. Production of conditional simulations via the LU triangular

decomposition of the covariance matrix. Mathematical Geology 19, 91-98.

Deans, Stanley R. (1983). The Radon Transform and Some of Its Applications. New

York: John Wiley & Sons.

Gomez-Hernandez J.J., Journel A.G.: Joint sequential simulation of multiGaussian fields.

(1993) Geostatistics Troia '92. Vol. 1,, pp. 85-94.

D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, "Comparing images using

the Hausdorff distance", IEEE Trans. PAMI, vol. 15, pp. 850-863, 1993.

Iman, R.L., Conover, W.J., 1982. A distribution-free approach to inducing rank

correlation among input variables. Communications in Statistics B11, 311-334.

I. O. Kyrgyzov, O. O. Kyrgyzov, H. Maître and M. Campedel. Kernel MDL to Determine

the Number of Clusters, MLDM, pp. 203-217, 2007.

G. McLachlan and D. Peel, Finite Mixture Models. John Wiley & Sons, 2000.

H. Maitre M. Campedel, E. Moulines and M. Datcu. Feature selection for satellite image

indexing. In ESA-EUSC: Image Information Mining, 2005.

Milligan, G.W., & Cooper, M.C. (1985). An examination of procedures for determining

the number of clusters in a data set. Psychometrika, 50, 159-179.

Pebesma, E.J., Heuvelink, G.B.M., 1999. Latin hypercube sampling of Gaussian random

fields. Technometrics 41, 303-312.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge

University Press, 2004.

Rissanen, K.: A universal Prior for integers and Estimation by Minimum decription

Length. Ann, Stat. 11 (1983) 416-431.

Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA,

2001.

Ross, Sheldon M. 1990. A Course in Simulation. New York: Macmillan.

J.C. Russ, “Image Processing Handbook”, 2nd edition, CRC Press, Boca Raton, Florida

(1995).

Suzuki, S., Caers, J. [2006] History matching with an uncertain geological scenario. SPE

Annual Technical Conference and Exhibition, SPE 102154.

Appendix A

Hausdorff distance

Having the definitions outlined in the text, the distance between two patterns ()m

T αPat h

and ()n

T βPat h is defined as the Euclidean distance:

() ()m n

T α T β α βd Pat h ,Pat h = h - h

The distance between a point ()m

T αPat h and a set of point ()n

TPat u is commonly defined

as:

() () () ()∈n n
T β T

m n

T α T α βPat h Pat u
d Pat h ,Pat u =min h - h

Hence, having these notations, Hausdorff distance between two point sets (patterns)

()m

TPat u and ()n

TPat u is defined (according to Huttenlocher, 1993) as:

() () () () () () 
 
 α β

m n m n m n

H T T T α T T T α
all h all h

d Pat u ,Pat u =max max d Pat h ,Pat u ,max d Pat u ,Pat h

As by this definition, the Hausdorff distance can result in limited number of results;

therefore their power in pattern similarity measurement will be diminished. Hence,

Hausdorff distance is modified using the formula below:

() () () () () ()
 
  
 

∑ ∑
αm n

m n m n m n

MHD T T T α T T T β

all h all hβT T

1 1
d Pat u ,Pat u =max d Pat h ,Pat u , d Pat u ,Pat h

n n

Distance Transform

Let the pixels of a pattern ()k

TPat u be subdivided into two categories of object pixel

(()k

T ObPat h =1 , shale/black) and background pixel (()k

T BgPat h = 0 , sand/white).

() { }∈k

TPat u Ob,Bg

The distance transform of this pattern, ()()k

DT TE Pat u labels each background pixel of

this binary pattern with the distance between the pixel and the nearest object pixel.

Mathematically it is written like this:

()()
()

()() ()
∀

 ∈



∀ ∈ ∈

k

T β
k

DT T
k k

α β T β T α
α

0 Pat h Ob
E Pat u =

min h - h , Pat h Ob Pat h Bg

where i is the Euclidean distance metric. Hence, after transformation, each white node

(()k

T ObPat h = 0) of the pattern is mapped into a continuous value denoting its distance to

the target object (Arpat, 2004).

Appendix B

The idea behind this formulation is the assumption that the pattern data point x

belonging to the cluster l follows the multivariate mixture normal distribution, known as

Gaussian mixture models (GMM). First, before formulating MDL, mixture models are

going to be introduced.

According to previous notations, patterns in Euclidean space are represented by a N×d

matrix X, where each row represents a pattern. This set of rows, ix , are modeled by a

finite mixture model consisting of two parts:

1. The prior probability ()∈i l lP x l θ = α that every pattern ix is a member of only

one mixture component (cluster) l , { }l = 1,…,k , where α =l ln N (ln denoting

the number of patterns belonging to the cluster l);

2. The conditional probability modeling each cluster l by the parametrized

probability density function (pdf) ()l i lP x θ , where lθ denotes the parameter set.

Now let ()l i lP x θ denote the class-probability of observing pattern ix conditional to ix

belonging to the cluster l . The finite mixture model expresses the probability of

observing the pattern ix as a sum of pdf:

() ()∑
k

i l l i l

l=1

P x θ = α P x θ

For the Gaussian mixture model, we have to use the multivariate Gaussian distribution

defined as follow:

() ()
() ()

()

− 
 
 

− − µ − µ

θ = µ =
π

1

1 22

1

2

,
2

T
i l l i l

l i l i l l D

l

x x

e
P x x�

⁄

⁄
⁄

Where lµ and l⁄ are the mean and covariance matrix of the th
l cluster, respectively.

These estimates are obtained as:

=

µ = ∑
1

1 ln

l l

ll

x
n

() ()
=

= − µ − µ∑
1

1 ln
T

l l l l l

ll

x x
n

⁄

where ∈lx l .

And with the assumption that patterns are data instances ix are independently distributed,

the joint probability (probability of observing data x or likelihood function) is the

product of the individual instance probabilities:

() ()
==

θ = α θ∑∏
11

N k

l l i l

li

P x P x

The purpose of pattern classification is to simplify their representation in the feature

space by replacing each pattern by a generic class which is likely to express all the

properties of the patterns. However, when substituting a pattern by its model, an error is

introduced. The more complex the model, the less the error. The model complexity is

well expressed by the number of parameters needed to build the model. In the mixture of

Gaussians case where every cluster is given by its mean and its covariance matrix, the

more clusters are used, the more complex the model is, and the less error between data

and model. A method to choose the optimal number of clusters consists in selecting the

number that provides the shortest description when representing the patterns using

models and the errors to the model. This method, named Minimum Description Length

(MDL), is defined like this (Rissanen, 1984):

() ()
θ

− θ +
,

1
min log log

2
p N�

�
� ,

where ()θlogp � is the log-likelihood of the mixture model and ()
1
log

2
N� is the

penalty function with � parameters. This is the most commonly used selection criterion.

By substituting the mixture normal distribution for ()log p � Q and finding � , we will

arrive at this equation for MDL:

() () ()
=

 
= − + + +  

 
∑

2
2

1

log 3 2 log 2
k

l
l

l l

n
MDL k n k d d N

⁄

This MDL depends on the determinants of l⁄ matrices which describe the model to data

error. This is the error function for sample ix being represented by the th
l cluster (for

instance, the distance between ix and the mean of the cluster l). Subsequently, for kernel

k-means this error can be determined in the original space X, as well as in the feature

space F after kernel transformation. The simplest error function is the Euclidean distance

which can be calculated using kernel K. Therefore, the sum-squares distance from

patterns to their corresponding th
l cluster centroid, as given by (Shawe-Taylor and

Cristianini, 2004) is:

() ()
⊆ ⊆

 
= − 

⋅  
∑ ∑

1 1
, ,l k k k m

k l m ll l

S K X X K X X
n d n

If we supposing that the variances of a cluster are equal for each dimension, the

determinant of the covariance matrix l⁄ will be,

= d

l lS⁄

Hence, by substituting this determinant we can get the MDL formulation for kernel k-

means algorithm as below:

() () ()
=

 
= − + + + 

 
∑

2
2

1

log 3 2 log 2
k

l
l d

l l

n
KMDL k n k d d N

S

