
Conditioning Simulation to Block Data with
Application to Tomography and

Downscaling

Yongshe Liu and Andre G. Journel

Stanford Center for Reservoir Forecasting
Petroleum Engineering Department

Stanford University

February 27, 2006

Abstract

The challenge of integrating data with very different support volumes is ad-

dressed. Based on the theory of block kriging and direct sequential simulation,

a C++ program bdsim (block data conditioned simulation) was developed within

SGEMS (Stanford Geostatistics Modeling Software). Several important implemen-

tation problems such as simulation path, data search and block covariance compu-

tation are discussed and solutions are proposed. The most critical issue in bdsim is

the computation of block-related covariances. The traditional integration approach

is not practical CPU-wise in presence of a large number of block data or blocks

of large size. An analytical and a Fast Fourier Transform (FFT) approaches are

proposed to improve computation efficiency. A curvilinear ray tomography test

case is used to test the performance of bdsim. Additional case applications such as

VSP, downscaling and conditioning to arbitrary-shaped block are also presented.

1

1 INTRODUCTION 2

1 Introduction

In earth sciences, data with different support volumes of large and small scales may be

presented and must be integrated. The large support data, such as tomographic data,

VSP data and remote sensing data, are hereafter called “block” data. The small support

data, such as core data and well data, are called point data. All block data are assumed

linear averages of the point values inside their respective support volumes. The goal of

this study is to generate stochastic images at the smallest point resolution conditioned

to both point and block data. The stochasticity of the images provides an uncertainty

assessment.

The methodology for block data conditioning and the implementation of the original

Fortran program visim (Volume data Incorporation Simulation) were presented in pre-

vious reports (Hansen et al. 2004, Liu 2005). In this report, the theory of block simple

kriging and direct sequential simulation algorithm is recalled briefly. Then, the develop-

ment of the new C++ program bdsim (Block Data conditioned Simulation) is presented.

As different from visim, several new techniques such as a user-friendly GUI, a better data

search and a fast block covariance calculation are implemented in bdsim to its improve

its efficiency.

In the original code visim, the traditional integration (discrete summation) method

is used for the block covariance calculation. This approach becomes too expensive as

the block discretization increases or the number of blocks increases as would be the case

in 3D applications . This traditional method is retained as an option in bdsim, but

it is complemented by the much faster analytical and Fast Fourier Transform (FFT)

approaches. bdsim can handle straight and curvilinear ray paths, and more generally any

data defined on any block shape. Beyond tomographic inversion, diverse applications of

bdsim are presented, such as Vertical Seismic Profile (VSP) inversion, grid downscaling

and arbitrary shape block data integration.

2 RECALL OF THEORY 3

2 Recall of theory

In this section, we recall the theory of block data conditioning (Journel & Huijbregts

1978, Tarantola 2005, Hansen et al. 2004, Liu 2005).

2.1 Block kriging

In block kriging, both block and point data are considered simultaneously.

Simple kriging estimation

Consider the SK estimation of the Z value at any location u in space (Deutsch & Journel

1998):

Z∗
SK(u)−m0(u) =

n(u)∑
α=1

λα(u) · [D(uα)−mD(uα)] (1)

where Z∗
SK(u) is the SK estimator of the unknown value Z(u) at location u

m0(u) = E{Z(u)} is the known expected value of the random variable Z(u)

λα(u), α = 1, · · · , n(u) are the SK weights which vary with u

D(uα), α = 1, · · · , n(u) are the point or block data retained in the neighborhood of

location u for estimation of Z(u).

mD(uα) = E{D(uα)} is the known expected value of the datum random variable

D(uα). Under stationarity: m0(u) = mD(uα) = m, ∀ u, D(uα)

Note that the number of data n(u) and their configuration vary with the location

u. The notation of Expression(1) does not allow considering a single column vector of

estimators Z∗−m0, because the data set retained in the kriging system changes for each

location u.

Each datum D(uα) is the linear average:

D(uα) =
1

|vα|

∫
vα(uα)

Lα(Z(u′))du′+Rα, ∀α (2)

where vα(uα) denotes the volume support of datum D(uα), Z(u′) is the point variable at

location u′ within the block support vα. The error term Rα and the averaging function

Lα are defined hereafter.

2 RECALL OF THEORY 4

Each datum D(uα) is seen as a spatial average of a known linear function Lα(·) of point

values Z(u′). The averaging is typically limited to a finite volume vα centered at location

uα. The function Lα(·), however, can vary from one datum D(uα) to another D(uβ). For

examples: vα could be the 1D trace of a seismic ray; or vα could be limited to the single

point support ”hard datum” at location uα, in which case, D(uα) = Z(uα) + Rα. That

hard datum could be either an original hard sample Z(uα), or it could be a previously

simulated value D(uα) = Z(l)(uα) during a sequential simulation process. There are

always some noise Rα in any data. The following assumptions are considered for the

noise term Rα:

independent with the signal: Rα⊥Z(uα),∀u (3)

spatial white noise: Rα⊥Rβ,∀α 6= β (4)

Expression(3) means homoscedasticity, i.e. the noise is independent of the true value

Z(uα) being measured. Expression(4) means that the errors are not correlated in space.

Even if Rα, Rβ relate to the same functional Lα = Lβ = L and correspond to different

locations uα 6= uβ, the errors are assumed hereafter homoscedastic and uncorrelated

with:

• zero mean: E{Rα} = 0, ∀α

• known variance: V ar{Rα} = σ2
Rα

, possibly different for each datum, which could

be obtained from a prior calibration of the different types of noise, hence

• known diagonal covariance matrix CR = [Cov{Rα, Rβ}].

In this initial implementation, we consider that all data are noise free, i.e. Rα = 0,∀α.

The noise of the block data could be taken into account in future work (Goovaerts 1997,

p. 172).

Stationarity decision

We assume that the study property, say velocity, is stationary within the study area.

Thus, we have m0(u) = m0, ∀u.

2 RECALL OF THEORY 5

The expected value of D(uα), mD(uα) can then be simplified:

mD(uα) = E{D(uα)} =
1

|vα|

∫
vα(uα)

Lα(E{Zvα(u′)})du′+E{Rα}

=
1

|vα|

∫
vα(uα)

Lα(m0(u
′))du′

= Lα(m′
0)

= m0 if the averaging function Lα is the identity function(5)

The SK expression (1) then reduces to:

Z∗
SK(u) =

n(u)∑
α=1

λα(u) ·D(uα) +

1−
n(u)∑
α=1

λα(u)

m0 (6)

This is the standard stationary SK expression.

Data-to-data covariance matrix

K = [Cov{Dα, Dβ}]n(u)×n(u) =
[
C̄DαDβ

]
(7)

with:

C̄DαDβ
= Cov{D(uα), D(uβ)}

=
1

|vα| · |vβ|

∫
vα(uα)

du′
∫

vβ(uβ)
Cov{Z(u′), Z(u′′)}du′′ + Cov{Rα, Rβ} (8)

which is a known average covariance value, ∀α, β.

We could distinguish the two types of data. If the first volume in Expression(8)

reduces to point support: Dα = Z(uα). The point data Z(uα) is denoted as Pα to

simplify the notation. The second integral Dβ corresponds to a block support vβ denoted:

Dβ = Bβ, where Bβ is the block data over the vβ. Thus the block-to-point covariance is

written as:

Cov{Bα, Z(uβ)} =
1

|vα|

∫
v(uα)

Cov{Z(u′), Z(uβ)}du′ + 0 = C̄BαPβ
(9)

since: Cov{Rα, Z(uβ)} = 0, per homoscedasticity.

Similarly, if the two volumes in Expression(8) reduce to point support, we have:

Cov{Z(uα), Z(uβ)} = C{uα,uβ} = CPαPβ
, since Cov{Rα, Rβ} = 0 (10)

2 RECALL OF THEORY 6

The previous data type distinction calls for blocking the data-to-data covariance matrix

K into submatrices, with: n(u) = n1(u)+n2(u), and n1(u) usually different from n2(u):

K =

 KPP KPB

Kt
PB KBB

 = Cov{Dt,D} (11)

Note that the error variance V ar{R2
α} affect only the diagonal of the matrices KPP and

KBB because all error cross covariances are equal to zero per the error model (3) and

(4).

Data-to-unknown covariance matrix

k = Cov
{
Dt, Z(u)

}
n(u)×1

=
[
C̄DαP0

]
(12)

where P0 denotes the point value to be estimated at location u. We can develop this

expression similarly to Equation(11). Again, we would distinguish the two types of data:

k =

 kP

kB

 (13)

with:

kP = [Cov {Z(uα), Z(u)}] = [CPαP0]

kB = [Cov {Bα, Z(u)}] =
[
C̄BαP0

]
.

SK estimator Z∗
SK(u), under stationarity

Z∗
SK(u)−m0 = Λt ·D =

n(u)∑
α=1

λα(u) · [D(uα)−m0] (14)

with:

Λt = [λα(u), α = 1, · · · , n(u)]1×n(u) : SK weights

D =

 P

B

 =

 Pα −m0

Bβ −m0

 : data of types P and B.

2 RECALL OF THEORY 7

SK system

K · Λ = k (15)

Thus, we have:

Λ = K−1 · k, Z∗
SK(u)−m0 = kT ·K−1 ·D

With:

kt =
[

kP kB

]
1×n(u)

, D =

 Pα −m0

Bβ −m0


n(u)×1

,

K−1 = W =

 WPP WPB

W t
PB WBB


n(u)×n(u)

We write the SK estimator as:

Z∗
SK(u) = m0(u) +

[
kP kB

]
·

 WPP WPB

W t
PB WBB

 ·D (16)

SK variance

The SK or estimation variance is then written as:

σ2
SK(u) = V ar {Z(u)− Z∗

SK(u)} = V ar {Z(u)} − Λt · k

= C(0)− kt · k−1 · k (17)

= C(0)−
[

kP kB

]
·

 WPP WPB

W t
PB WBB

 ·
 kP

kB


with: C(0) = V ar {Z(u)} equal to the field stationary variance.

2.2 Direct sequential simulation

Sequential Gaussian Simulation is a robust and widely-used algorithm for simulation

of continuous reservoir properties within an homogeneous facies. However, one major

drawback of sgsim is that its multinormal assumption requires to transform the data into

normal space before simulation and perform back transform after simulation. The normal

score transform is a nonlinear transform, thus is not applicable to our case because it

3 IMPLEMENTATION 8

would undo the linear averaging characteristics of all block average data. Thus, we need

to work in the original space to preserve the linearity of block average. The solution is

the algorithm of direct sequential simulation (dssim), whereby simulation is performed

in the original data space and does not call for any multi-Gaussian assumption. We can

use any distribution type (uniform, log-normal, etc) for anyone of the local conditional

distributions as long as the conditional mean and variance identify the SK mean and

variance. In the present bdsim, the log-normal distribution is used since in most real

seismic cases the seismic properties have distributions close to being log-normal. The

theory of dssim can be found in Journel (1994).

The related problem of dssim is that the simulated results may not reproduce the

target histogram. Some post-processing, such as through the rank-preserving algorithm

trans (Deutsch & Journel 1998), could be used to approximate the target histogram.

Another solution (Soares 2001) consists of scaling the global target histogram to each

local SK mean and variance. This latter solution has been implemented in SGEMS dssim

code (Remy et al. 2007).

3 Implementation

The Block data conditioned simulation (bdsim) presented hereafter is based on the public

domain Stanford Geostatistics Modeling Software SGEMS (Remy 2004, Remy et al. 2007)

and the Geostatistical Template Library GsTL (Remy 2001). bdsim follows the same

programming styles as other geostatistical plug-in within SGEMS, such as sgsim and

cosgsim.

3.1 Tomography code

Seismic tomographic inversion is an application of block data conditioning. We recall

the goal of this application. In the process of data integration for reservoir modeling, we

may have to integrate valuable interwell tomographic information. Tomography data are

different from well data or other seismic data by their volume support. Well data are

quasi point-support data, each assumed representative of one grid node of the fine scale

3 IMPLEMENTATION 9

geocellular model being built, while crosswell tomography data are travel time (first ar-

rivals) averaged over a ray path that is typically not rectilinear and of uncertain geometry

(Sherrif & Geldart 1995). This is a type of block average data. Tomography data do not

provide high resolution local information, but they can detect major heterogeneities be-

tween wells. We aim at improving velocity images by incorporating crosswell tomography

data, then assessing the uncertainty of these images through stochastic simulation.

For the methodology presentation, only simple ray-tracing is used since the actual

geometry of the rays, straight or curvilinear, does not impact the application of bdsim.

Complex rays tracing can be built-in later as a plug-in into SGEMS using state-of-the-art

ray-tracing freeware.

bdsim was originally coded for tomographical data integration. For that application,

the block data are the seismic ray data. Some implementations are specific for this type

of block data. However, the bdsim code is more general and can be applied to any type

of block data conditioned simulation.

3.2 Flowchart

Figure 1 gives a flowchart of the algorithm. Like all other SGEMS plug-ins, in bdsim,

there are two major functions, initialize() and execute(). The first one is used to

load input parameter values, load grids, point and block data, set up covariance model

parameters and set up the search neighborhood. The execution function is the essential

part of the algorithm. Two different simulation paths, random path and block-first path,

are allowed. Different search schemes are considered for point(P) and block(B) data. The

different left hand side covariances, CPαPα , C̄BαBα , CPαPβ
, C̄PαBβ

and C̄BαBβ
and right

hand side covariances CPαP0 , C̄BαP0 , are computed. The cokriging system is built and

solved. At each simulation node, we compute the kriging mean and variance, from which

a log-normal conditional cumulative distribution function (ccdf) is derived. A value is

then simulated by drawing from that distribution. There is no normal-score transform

involved because direct sequential simulation is used. The block data reproduction is

checked and an E-type map is produced if multiple realizations are generated.

3 IMPLEMENTATION 10

3.3 Simulation path

In most geostatistical simulation algorithms, the path visiting the grid to be simulated is

random determined by a random seed. The randomness of the simulation path allows to

explore the space of uncertainty through multiple different realizations. Thus, the fully

random path is one option of bdsim. An average block data give additional information at

locations located within that block. We may want to simulate those within-block nodes

first such that the additional block data information gets spread faster to other nodes

through sequential simulation.

More computation is involved with the previous block-first (partially random) path

than with the fully random path. Figure 2 gives an implementation flowchart for the

block-first simulation path. A block is randomly picked from the block data set. All

the nodes within that block are simulated first in a random sequence. Then we move

to the next informed block, perform point simulation within it, then move again until

all informed blocks are simulated. Finally all the remainder nodes are simulated along a

random path.

Figure 3 shows different simulation paths in the 18-ray cases presented in SCRF

meeting, 2005 (Hansen et al. 2004, Liu 2005). The smaller (bluer) value means that the

node is simulated earlier. Comparing Figure 3(a) with Figure 3(b), we note that from

one realization to another the rays are picked in random sequence and the remainder

nodes are simulated in random sequence. Figure 3(c) shows the fully random simulation

path.

3.4 Data search

In all geostatistical algorithms, one typically retain only the closest n data, either original

data or previously simulated values, to reduce the size of the kriging systems. The

measure of closeness to the simulation location is the variogram distance, which accounts

for possible anisotropy. For point data, it is done as follows. Given a simulation location

and its search ellipse (or ellipsoid), all nodes within the search ellipse are sorted according

to their variogram distances to the central location. Spiraling away from that center, grid

3 IMPLEMENTATION 11

nodes which carry point data are marked. If there is a datum or a previously simulated

value on that node, that information is put into the point data neighborhood. The

spiraling process is continued until we get the specified maximum number of conditioning

data or we pass the search range.

As for block or ray data search, it is also constrained by a maximum number of con-

ditioning rays and a ray search neighborhood. The previous point data search algorithm

is adapted to allows both point data and ray data to be searched simultaneously, see

Figure 4. The search starts from the simulation node (green dot in Figure 4). Then

the search path spirals away from the green dot. Ray 1 is treated first since one of its

nodes is found earlier than any node of the other two rays. Ray 2 and 3 are treated in

subsequent searches.

Before presenting the implementation of that ray search, it is useful to understand

how ray data are stored. In SGEMS, each node of the simulation grid is assigned an

identification number, denoted as node id, see Figure 5. This allows to assign or retrieve

a property value at any location knowning its node id. When we load the ray data and

create a ray object, we assign to each ray a ray identification number, denoted as ray id.

For example in Figure 5, ray id for ray 1 is 1. Then we can store a ray path by recording

all the node id ’s of the nodes along that ray into a ray id set [21, 17, 18, 14, 15]. We

can also retrieve the ray(s) passing by any specific node by attaching the ray id to the

node id. For example, when we check node id 6, we know that there is a ray, ray 2,

passing through it if the ray id 2 has been attached to the node id 6. Similarly, we can

retrieve ray 1 and ray 2 from node id 18. In the C++ Standard Template Library(STL)

(Austern 1998), the container, multimap, can handle this situation. A multimap can

have two parameters, key and object, where key is used to map or look up the object.

The key can relate to one or multiple objects. This fits our purpose to find the ray id

(considered as an object) from a given node id (considered as key). In the initialize()

function of bdsim, a ray multimap is created, which stores the ray path(node ids) and

ray average value information.

Figure 6 gives the flowchart for point and ray data search. Starting form the node to

be simulated, we move to the next closest node in terms of variogram distance until we

3 IMPLEMENTATION 12

move out of both point and ray search ellipses, or until we reach their input maximum

number of data. At each node location node id, we perform two checks. One is whether

this node is informed by a hard datum or a previously simulated value. The second check

consists of going to the ray multimap to look up for ray(s) passing through the given

node id. This tells us whether that node is informed by ray data, if yes, how many rays

and what they are. Ray data search is performed simultaneously to point data search.

For example, rays 1, 2 and 3 in Figure 4 are found and added to the ray neighborhood as

we visit their tangent point to the spiral. If we only want to retain the closest two rays,

only ray 1 and 2 are retained. Note that this ray search scheme not only gives us the

the rays within the search neighborhood but also sort them according to their distances

to the simulation node (green dot in Figure 4). The details of the work flow is given in

Figure 6. In some situations, we may want to specify different anisotropic search ranges

for point and block data due to the different supports between point and block data or

the different configurations of the block data. The present version of bdsim allows to

specify different search ranges, which requires searching point and ray data separately.

However, the test results show that the data search is still fast because ray data are

searched the same way as the point data.

In order to honor any given block (ray) average data, all informed points within that

block must be included into the point data neighborhood (Liu 2005, Hansen et al. 2004).

Figure 7 shows the results of ray reproduction check for the 18-ray case study in the

previous report (Liu 2005). If we include all informed nodes along the passing ray(s), the

simulated ray average values are very close to the input ray data (Figure 7(a)). Otherwise,

the block average data are not well reproduced, see Figure 7(b) in which we only retain

the closest 20 informed points, whether or not they are located within the passing ray(s).

If there are several rays passing through any one node and these rays are very long, the

corresponding kriging matrix for this node becomes very large especially when most of

the nodes along the passing rays are simulated. The solution could consist in simulating

first the nodes intersected by more than one ray (Hansen et al. 2004) or cutting the long

rays into shorter ray segments and honor each of them separately. Additional work is

needed to investigate an acceptable compromise solution.

3 IMPLEMENTATION 13

3.5 Block covariance computation

This section relates to issues involved when computing block covariances.

There are 3 types of covariances: the point-point covariance CPP ′ , the point-to-block

covariance C̄PB and the block-to-block covariance C̄BB′ . In the present bdsim implemen-

tation, we have abandoned the covariance-set method (Liu 2005, Remy 2001). The basic

idea of this covariance-set method is to build a 2×2 table, which contains CPP ′ , C̄PB, C̄BP

and C̄BB′ , then chose one of the four according to the input data pair (point or block).

It turns out that this table can be easily replaced by using overloading functions in C++

(Lippman & LaJoie 1999). For example, when we call the function covariance(data1,

data2) to compute the covariance between data1 and data2, where data1 and data2 are

either point data or block data, the overloading functions allow to automatically select

the proper covariance calculation equation based on the input data pair, data1 and data2.

3.5.1 Traditional integration approach

Figure 8 shows how C̄PB and C̄BB′ are computed in the traditional integration approach,

based on the arithmetic average of the point covariance CPP ′ along the ray path:

C̄PB =
1

n

n∑
i=1

CPPi

C̄BB′ =
1

nn′

n∑
i=1

n′∑
j=1

CPiP ′
j

(18)

where n is the number of nodes in block B and n′ is the number of nodes in block B′.

Figure 9 gives the cokriging system and the number of computation elements for the

different covariance types. Since the covariance matrix on the left hand side is symmetric,

only the upper triangle elements need to be calculated. The basic calculation element

is the point-point covariance CPP ′ . The other two covariance types, CPB and CBB′ , are

composites of this basic covariance, see Equation(18) and Figure 8. In Figure 9, the

cokriging system is divided into 5 parts, Part I for CPP ′ , Part II for C̄PB, Part III for

C̄BB′ , Part IV for CP0P ′ , and Part V for C̄P0B, where CP0P ′ and C̄P0B are the unknow-

to-point and unknown-to-block covariances, respectively. We assume that there are n1

number of point data and n2 number of ray data and the basic computation time of CPP ′

3 IMPLEMENTATION 14

is 4t. We denote the number of point data in block i as Ni. We express the computation

time for each part in terms of 4t. If all rays are composed of the same number of nodes

N , the computations for the 5 parts are given in the following table.

Part computation time if each block has N nodes

Part I (n1+1)n1

2
4t (n1+1)n1

2
4t

Part II n1
∑n2

i=1 Ni4t n1n2N4t

Part III (N1
∑n2

i=1 Ni + N2
∑n2

i=2 Ni + ... + Nn2Nn2)4t (n2+1)n2

2
N4t

Part IV n14t n14t

Part V
∑n2

i=1 Ni4t n2N4t

Building a cokriging system using the traditional integration approach is thus very

CPU demanding. For the typical 18-ray case test, we have an average of 20 point data and

8 ray data in each neighborhood. The computation time and their percent contribution

to the total time are shown below.

Part computation time Percentage (%)

Part I 2104t 0.14

Part II 100004t 6.75

Part III 1375004t 92.76

Part IV 204t 0.01

Part V 5004t 0.34

92.8% of time is spent on computing C̄BB′ and 98.5% time is spent on computing the

block-related covariances; this is the dominant part of the CPU cost of the whole simu-

lation process. Note that incorporating the 10 block data does not increase the size of

cokriging matrix dramatically. The covariance matrix only increases by 10 columns and

10 rows, which does not significantly affect the time taken to solve the kriging system.

This approach is not feasible in presence of a large number of blocks or large-size blocks.

It follows that one should focus on reducing the burden of computing the block-related

covariances.

3 IMPLEMENTATION 15

3.5.2 Fast Fourier Transfer approach

The FFT approach is an every efficient block covariance calculation approach, especially

in presence of a large number of block data or blocks constituted by a large number of

discretization cells. Like the traditional integration method, this approach can handle

blocks with any arbitrary shape, see the associated SCRF 2006 report Calculation of

Average Covariance Using Fast Fourier Transform (FFT) (Liu et al. 2006) for extensive

details. Based on the recent work of Kyriakidis (Kyriakidis et al. 2005), a fast C++ code

for FFT block average covariance calculation has been developed.

3.5.3 Analytical approach

Another solution to improve block covariance calculation is solving analytically the C̄

integrals as proposed very early by Journel (Journel & Huijbregts 1978). The idea is to

approximate all rays (straight or curvilinear) by a set of segments. Then the C̄ for each

point-to-segment or segment-to-segment can be derived derived analytically.

Analytical derivation

Point-to-segment covariance C̄PB There are typically two types of average C̄PB

values, see Figure 10. Denote the point as O, the segment as AB, the projection O onto

the line AB is O′. Figure 10(a) shows the case of O′ ∈ AB and Figure 10(b) shows the

case O′ 6∈ AB.

In Figure 10(a), the average value C̄PB is written:

C̄PB = C̄(O,AB) =
l1
l
C̄(O, O′A) +

l2
l
C̄(O,O′B), with l = l1 + l2 (19)

where C̄(O,O′A) = 1
l1

∫ l1
0 C(

√
x2 + d2) · dx = ϕ(d, l1)

and C̄(O,O′B) = ϕ(d, l2), assuming an isotropic covariance C(|h|).

If C(|h|) is not isotropic, C(
√

x2 + d2) is replaced by C(x, d).

The average covariance C̄PB corresponding to Figure 10(b) is written:

C̄PB = C̄(O, AB) =
l1

l1 − l2
C̄(O,O′A)− l2

l1 − l2
C̄(O, O′B) (20)

3 IMPLEMENTATION 16

with O′A = O′B + AB and ||AB|| = l1 − l2 > 0,

where C̄(O,O′A) = ϕ(d, l1) and C̄(O,O′B) = ϕ(d, l2).

Segment-to-segment covariance C̄BB The average covariance between two segments

A1B1 and A2B2 (Figure 11) can be calculated by averaging the corresponding point-to-

segment covariances of type C̄PB:

C̄(A1B1, A2B2) =
1

l1

∑
O∈{A1B1}

C̄(O,A2B2) (21)

where each of the C̄(O, A2B2) is calculated as before. In a 3D case, the two segments

A1B1 and A2B2 are not necessarily coplanar, but the result (21) still applies.

Basic integral to solve The basic integral to solve is that involved in Equation (19),

in the isotropic case:

ϕ(d, l) =
1

l

∫ l

0
C(
√

x2 + d2) · dx (22)

Consider first the isotropic linear variogram: γ(h) = |h| or equivalently the pseudo-

covariance: C(h) = C − |h|, where C is an arbitrary constant to be canceled out (for

example through ordinary kriging):

ϕ(d, l) =
1

l

∫ l

0

√
x2 + d2 · dx

=
1

2l
[x
√

x2 + d2 + d2ln(x +
√

x2 + d2)]|x=l
x=0

=
1

2l
[l
√

l2 + d2 + d2ln(l +
√

l2 + d2)− d2lnd] (23)

Consider the numerical examples corresponding to Figure 10(a) and Figure 10(b).

For Figure 10(a), assuming l1 = l2 = d = 1, for γ(h) = |h| we have:

C̄(O,AB) =
1

2
C̄(O,O′A) +

1

2
C̄(O,O′B)

= ϕ(1, 1) =
1

2
[
√

2 + ln(1 +
√

2)]

= 1.15

For Figure 10(b), assuming l1 = 2 and l2 = d = 1, we have:

C̄(O,AB) = 2× C̄(O,O′A)− C̄(O,O′B)

3 IMPLEMENTATION 17

= 2× ϕ(1, 2)− ϕ(1, 1)

= 2× 1

4
(2×

√
5 + ln(2 +

√
5))− 1

2
(
√

2 + ln(1 +
√

2))

= 1.8

Implementation issues of the analytical approach

In order to evaluate the analytical C̄ expression (23), several implementation issues must

be addressed.

Distance of a point to a line The integral expression (23) calls for the projection

distance d of a point onto a line, see Figure 10-11.

In Figure 12, we have a segment AB of length l, defining a line L. The coordinate

vectors are, respectively, (Ax, Ay, Az) and (Bx, By, Bz). The point O has coordinates

(Ox, Oy, Oz), and the point-to-line distance is denoted d. In both 2D and 3D cases, we

can use the cross-product to directly compute the distance between any point O and line

L. Consider the parallelogram defined by the vectors u = B − A and v = O − A. The

area of the parallelogram is |v × u|. Consider the segment AB as the base and d as the

height of the parallelogram. It comes:

d =
|u× v|
|u|

=
|(B − A)× (O − A)|

l

For the 3D case, let u = (ux,uy,uz), where ux = Bx − Ax, uy = By − Ay and

uz = Bx−Az. Let v = (vx,vy,vz), where vx = Ox−Ax, vy = Oy−Ay and vz = Ox−Az.

The definition of cross-product gives:

u× v =


∣∣∣∣∣∣∣
uy uz

vy vz

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
uz ux

vz vx

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
ux uy

vx vy

∣∣∣∣∣∣∣


= (uyvz − uzvy,uzvx − uxvz,uxvy − uyvx)

Thus the point-to-line distance d in the 3D case is:

d =
|u× v|
|u|

=

√
(uyvz − uzvy)2 + (uzvx − uxvz)2 + (uxvy − uyvx)2√

ux
2 + uy

2 + uz
2

(24)

3 IMPLEMENTATION 18

For the 2D case, the coordinates of the 3 points are A = (Ax, Ay, 0),

B = (Bx, By, 0) and O = (Ox, Oy, 0). The cross-product is then written as:

u× v = (ux,uy, 0)× (vx,vy, 0)

= (Bx − Ax, By − Ay, 0)× (Ox − Ax, Oy − Ay, 0)

=

0, 0,

∣∣∣∣∣∣∣
(Bx − Ax) (By − Ay)

(Ox − Ax) (Oy − Ay)

∣∣∣∣∣∣∣


The point-to-line distance d in the 2D case is:

d =
|u× v|
|u|

=
|(Bx − Ax)(Oy − Ay)− (By − Ay)(Ox − Ax)|√

(Bx − Ax)2 + (By − Ay)2
(25)

Approximation of curvilinear rays by ray segments All above analytical C̄ cal-

culations are based on segments. In a real situation, there may be curvilinear rays. We

propose to approximate any such curvilinear ray by a series of ray segments. In Figure 13,

the curvilinear ray AB is approximated by 3 ray segments: AC, CD and DB. Each of

the 3 point-to-ray segment average covariance can be analytically calculated as above,

then the point-to-full ray covariance can be retrieved by the proper weighted average.

A program independent of bdsim pre-processes curvilinear rays. The splitting of

the rays need careful thinking. Should the ray be splitted into equal length segments

or according to equal arc degree? How many segments should be considered? These

decisions may be left to the user with corresponding input parameters and their default

values.

Geometric anisotropy The classical correction for geometric anisotropy consists of a

prior angle rotation and affinity multiplication of the coordinates (x, d) (Journel 2005).

In Figure 14, for a 2D case, we first rotate the horizontal axes X and Y into X ′

and Y ′ by an angle α to identify the azimuth angle of the anisotropy ellipse. Any point

O(Ox, Oy) is transformed into the point O′(O′
x, O

′
y) with:

 O′
x

O′
y

 =

 cos α sin α

− sin α cos α


 Ox

Oy



4 TOMOGRAPHIC INVERSION WITH CURVILINEAR RAYS 19

This transform does not change the length of any segment.

Next we stretch (or squeeze) the Y ′ coordinate by multiplying it by the affinity ratio

λ = a1/a1 > 1 to transform the anisotropy ellipse into a isotropic circle; a1 and a2 are

the long and short axes of the ellipse, respectively. The point O′ is then transformed into

O′′ with coordinates: O′′
x

O′′
y

 =

 1 0

0 λ


 O′

x

O′
y

 =

 cos α sin α

−λ sin α λ cos α


 Ox

Oy

 (26)

Equation (26) changes the node locations. For example O′ is moved to O′′ in Figure 14.

Thus, lengths and distances are changed by this transform. Also right projection angles

are not preserved by this transform. Therefore, we cannot obtain the new point-to-ray

distance d′′ by merely transforming the original distance d. The solution is actually

much simpler: transform all grid nodes into isotropic field with equation (26), and then

compute all distances d′′ and covariances in that transformed space.

Block with arbitrary shape All expressions above relate to a curvilinear (1D) ray

data. How should a block with arbitrary shape be handled is still an open issue. Two

possible approaches could be considered. One is to approximate the blocks by a set of

lines, see Figure 15(b). The other is to resample the block by sparse point data to reduce

the CPU cost, see Figure 15(b).

This analytical approach has not been retained for coding within bdsim.

4 Tomographic inversion with curvilinear rays

In previous reports (Hansen et al. 2004, Liu 2005), we showed the tomographic inversion

results conditioned to straight rays. In a real application, seismic rays are bended and

curvilinear due to local heterogeneities. This curvilinear ray case is now considered.

For this study, we modify the previous reference field (Hansen et al. 2004, Liu 2005)

by multiplying the peanut-shaped heterogeneity by a factor 1.5 in order to better detect

it. Figure 16 shows the background velocity, the peanut with its higher values and the

final combined reference model. The mean of the combined model is 3.15. From this

4 TOMOGRAPHIC INVERSION WITH CURVILINEAR RAYS 20

model we extracted 3 sets of curvilinear rays, see Figure 17. Figure 17(b) gives the 10

lateral rays. Figure 17(c) gives the 8 vertical rays. Figure 17(d) gives the combination of

all 18 rays. Note that the highest ray average data correspond to the two central vertical

rays. Figure 18 gives the parameter settings for the lateral ray case. The settings for the

other two cases are almost the same.

4.1 Different ray models

Figure 19 shows the E-type (point-wise average of multiple realizations) built from 20

realizations for these three curvilinear ray configurations. The lateral rays tend to expand

the central ray high data value laterally (Figure 19(a)), while the vertical rays tend to be

expanded vertically (Figure 19(c)). Since the lateral rays do not carry high value data,

they do not result in a crisp detection of the peanut. The two central high value vertical

rays result in a better detection. Combining both lateral and vertical rays, the peanut-

shaped heterogeneity is well detected, Figure 19(e). Again, the means of the simulated

realizations are higher than that of the reference model. We should not expect to obtain

the peanut with an average value as high as the one in the reference model because of

the averaging effect of rays. Increasing the length of the ray path make the rays less

informative; the longer the ray paths, the smoother the E-type results.

4.2 Different simulation paths

In Figure 20 , we compare the results using a fully random path and a ray-first path.

The differences appear negligible.

4.3 Number of data in neighborhood

Figure 21 gives the number of point data and ray data found within the neighborhood

of each node location. No matter which simulation path is used, the nodes along the

ray paths always have more point conditioning data because we include all closest n

point data in the point data neighborhood and all previously simulated data along any

ray passing through the simulation node. The red outliers (large number of found point

4 TOMOGRAPHIC INVERSION WITH CURVILINEAR RAYS 21

data) in Figures 21(a) for the random path case are higher than those for the ray-first case

(Figure 21(c)); see also the maximum value from their histograms in Figures 21(b) and

21(d). The reason is as follows. When we simulate a node located on ray(s), the point

data are of two different types, first are the data within the point search neighborhood,

second are previously simulated values along the ray(s) passing through the node. In

the ray-first case, when we simulate the nodes along the rays, those nodes that are not

located along any ray have not been simulated. Hence not many data of the first type

are found. In the random path case, when we simulate a node along a ray, nodes not

located along any ray may have been already simulated. Many point data of the second

type may be found. Thus the ray-first scheme leads to smaller size kriging systems when

simulating the nodes along rays. Also note that the outliers (red dots) in Figures 21(a)

are located where rays cross each other because the more rays cross a simulation node,

the more previously simulated nodes along these crossing rays are included as data. A

solution is to simulate first the crossing nodes. The map of the number of block data

found within the block data neighborhood is the same for both random and ray-first

scheme (Figure 21(e)). In the central area of the simulation field, more ray data are

found within the search range. If we decrease the size of search neighborhood, see the

parameters in Figure 22, we observe more variation of the number of data found in the

neighborhood, compare Figures 23 and 21. The mean number of data found decreases

due to the smaller search neighborhood.

4.4 Run time analysis

Analyzing the CPU time needed by different parts of program will help understanding

how the program works and improving the speed accordingly.

Figures 24(c) and 24(d) give the simulation time spent on each node when using all

18 rays. In the central part of the study area, simulation takes longer than in the edge.

This is because there are more conditioning ray data there. Figures 24(e)and 24(f) shows

that the simulation time is not significantly influenced by the different simulation paths.

In order to understand the time spent in different stages, we decompose the total run

time into different parts. We always track the most expensive part, see the highlighted

5 CASE STUDIES 22

boxes in Figure 25. For example, Total run time is composed of initialize part and

execute part. If we use all 18 rays as conditioning data, initialize part costs 47ms

and execute part costs 99240ms. Thus we can neglect the first one. Again, we split

the execute part into search and estimation and keep tracking the dominant time-

consuming part. The flowchart of Figure 25 gives all the tracked parts and the percentage

of time they take.

5 Case studies

In this section, we will present the new applications of bdsim to VSP, downscaling and

irregular shape block data conditioning.

5.1 Vertical Seismic Profile (VSP)

VSP gives a high-resolution seismic image of the vicinity of the borehole. The sources are

located at or very close to the surface and the receivers are located along the borehole.

Because they are closely spaced through the area of interest, the seismic waves do not

have to travel far and thus undergo less attenuation. There are several types of VSP, such

as zero-offset VSP, offset VSP, directional VSP (Sherrif & Geldart 1995). We consider

here offset VSP, corresponding to a set of sources located away from the borehole location

with different offsets. Offset VSP can be used to detect heterogeneities, such a fault or

reef, on one side of the borehole and the information does not apply to other remote

areas. In this study, two different configurations are tested: vertical well and deviated

well. Both well data (hard data) and ray average data are used for conditioning.

5.1.1 VSP with vertical well

Reference field

A 2D background field (vertical section) is created with 40×50 cells. The cell di-

mension is 0.025km × 0.02km. The velocity map is populated with a velocity his-

togram from the Stanford V dataset (Mao 1999) and a variogram model γ(h) = 0.1 +

5 CASE STUDIES 23

0.9Sph

(√(
hx

0.6

)2
+
(

hy

0.2

)2
)

. The resulting map and its histogram are given in Figures

26(a) and 26(b). Two high velocity heterogeneities (Figures 26(c) and 26(d)) are added

into the previous background field. Figures 26(e) and 26(f) give the resulting reference

velocity model and its histogram.

The left column data in the reference model is retained as well data, see Figure 27(a)

and its histogram in 27(b). Three sources, S1, S2 and S3, are located on the surface

and four receivers, R1, R2, R3 and R4, are located in the vertical well. The first arrival

rays are obtained by tracing straight lines between sources and receivers (Figure 27(c)).

Assume that the bottom of the reference field is a flat reflector. The reflected rays are

traced between sources S2 and S3 and receivers R1, R2 and R3 (Figure 27(e)). The

ray values are arithmetic averages of the point velocity values along the ray paths, see

Figures 27(d) and 27(f). Note that the ray values are neither very high nor very low

due to the averaging effect.

In practice, in order to detect water or gas intrusion, time-lapse VSP method could

be used. In the early stage of water or gas injection, the sources are put closer to the

well location since the fluid has not traveled far away. As the time lapses, sources are

continuously put further away from the well location to track the fluid flow. Three cases

are designed to mimic such time-lapse VSP application. In the first case, only the ray

data from the source S1 close to the well location is used (Figure 29(a)). Then the two

sources S1 and S2 are used (Figure 30(a)). Last, all ray data from the three sources are

used (Figure 31(a)). Figure 28 gives the basic bdsim parameter setting for these cases.

Results

For the first case, the values of the 4 ray data are low with mean 2.70 because their paths

do not interest the high value heterogeneities. The middle-left high value spot appearing

in the E-type map built from 20 simulated realizations (Figure 29(b)) results from the

high value well data in that area. The E-type mean is lower than the reference mean

(2.83) because of the low value ray data. We do see some high value heterogeneity spots

at random locations in different realizations, see Figures 29(d) and 29(f), which indicates

5 CASE STUDIES 24

high uncertainty away from the ray data constraint.

In the second case, some rays, such as the first arrivals of S2-R1 and S2-R3, carry

valuable high value information. The E-type map (Figure 30(b)) reveals the actual high

value heterogeneities on the top and middle-left of the section. The mean of E-type

velocity increases to 2.86. This indicates that the additional information from shot 2 is

valuable due to its better ray coverage of the field. The lower-right high value ball can

not be detected because no ray passes through it. In different realizations (Figures 30(d)

and 30(f)), the locations of the simulated high value heterogeneities reflect uncertainty

as they do not have the crisp edges of the reference high value heterogeneities.

In the third case, the ray coverage increases further as the ray data of shot 3 are in-

cluded. The simulated results are improved in the areas covered by shot 3 (Figure 31(b)).

Note that the middle-left high value spot expands toward the right side. Again, the lower-

right ball can not be seen, even though the simulated realization 2 (Figure 31(f)) reveals

the potential for high value heterogeneities in the lower right corner.

Because the reflected rays travel along longer paths than the first arrivals, their aver-

age velocity values are closer to the mean value of reference model (2.83), see Figure 27.

In this sense, the reflected rays are not as informative as the first arrivals.

5.1.2 VSP with deviated well

VSP data with deviated well could give better results because it increases the coverage

areas of rays. In this study, we will test the deviated well case using another reference

velocity field.

Reference field

A 2D vertical field is created with 50×50 cells. The cell dimension is 0.02km× 0.04km.

Rectangular cells are used because in most practical geophysical situations, better reso-

lution is obtained in the vertical direction. The velocity map is populated with a velocity

histogram from the Stanford V dataset and the variogram model

γ(h) = 0.1 + 0.9Sph


√√√√(hx

1.0

)2

+

(
hy

0.5

)2


5 CASE STUDIES 25

The resulting background section and its histogram are given in Figures 32(a) and

32(b). Three high velocity heterogeneities (Figure 32(c) and 32(d)) are added into that

background velocity field. Figures 32(e) and 32(f) give the resulting overall reference

velocity model and its histogram.

A deviated well is drilled from the top left side of the field, see the well path and the

well data histogram in Figures 33(a) and 33(b). Note that this well path misses all three

high value heterogeneities. Three sources, R1, R2 and S3, are located on the surface and

five receivers, R1, R2, R3, R4 and R5, are located along the deviated well. The rays

data are obtained by tracing straight lines between sources and receivers (Figure 33(c)).

The ray values are listed in Figure 33(d).

Results

We consider the four cases corresponding to conditioning to shot 1 ray data (Figure 35(a)),

shot 2 ray data (Figure 36(a)), shot 3 ray data (Figure 37(a)) and, last, all shots ray

data (Figure 38(a))). Figure 34 gives the basic bdsim parameter setting for these tests.

The results are given in Figures 35, 36, 37 and 38. In each figure, we present the ray

configuration, the E-type map, one realization and the check for reproduction of ray data

values.

In case 1, the high value ray S1R4 is bounded by the lower value rays S1R5 and

S1R3 and the lower value deviated well data. This creates a well bounded ellipse-shaped

high value area in the E-type map (Figure 35(b)). In case 2, the values of the 5 rays are

close with the highest one being at the far right S2R5. The E-type map (Figure 36(b))

shows that the red area spreads over a large area starting around ray S2R5. In case 3,

there is one lower value ray S3R2 among other higher value rays. This results into the red

high value area being cut into two parts in the E-type map (Figure 37(b)). Conditioning

to all rays in case 4, we get three reasonably separate high value areas (Figure 38(b))

centered around the actual three heterogeneities of the reference field (Figure 32(e)).

This results from the high value data carried by rays S1R4, S2R5, S3R4 and S2R1,

and the edges created by the low value rays S3R2, S1R1, S1R5. The E-type mean

is close to the reference global mean 3.0. Again uncertainty is assessed by the different

5 CASE STUDIES 26

realizations (Figures 35(d), 36(d), 37(d), 38(d)). The ray data are well reproduced in

all cases, see Figure 35(f), 36(f), 37(f), and 38(f).

5.2 Downscaling conditioned to point data

In many applications in earth sciences, we have data on different supports, small or large.

We want to obtain a grid model defined on the smallest (point) support conditioned to

all data of any support. This is known as the process of downscaling. The algorithm and

code bdsim can address this problem if we consider the large support grid data as block

data.

Reference field

The reference field built for the vertical well VSP case is used again, see Figure 39(a)

and 39(b). In this field, a 2× 5 coarse grid of block values is obtained by arithmetically

averaging the corresponding fine grid cell values (Figure 39(c)). The values of the 10

blocks are listed in Figure 39(d). The two column of fine scale data on the left and right

sides of the reference field are retained as well hard data, see locations in Figure 39(e)

and the histogram in Figure 39(f).

The basic bdsim parameter settings for this study are given in Figure 40.

Results

Figure 41(a) gives the E-type map built from 20 simulated realizations. Since both the

well data and all 10 block data are used for conditioning, the middle-left and lower-left

high value heterogeneities are detected. The overall spatial distribution of the reference

field (Figure 39(a)) is reflected in the E-type map. Note the averaging effect due to the

block data: the values of the heterogeneities in the E-type map are not as high as those

in the reference field. The smaller the support volume of the block data, the less smooth

is the E-type image.

The different simulated realizations (Figures 41(c) and 41(e)) show less fluctuations

than those seen in the VSP case studies because the 10 block data provide a full coverage

5 CASE STUDIES 27

of the study area. The mean of the simulated velocity in each realization of Figures 41(d)

and 41(f) equals the mean of reference model 2.83 which is also the mean of all block

data. This is because each of the block data is approximately reproduced (Figure 41(g)),

hence the global mean is also reproduced.

This particular downscaling using the traditional integration covariance calculation

approach is slow because there is a larger number of blocks in this case than in the other

case studies. This problem is solved by using the FFT covariance method proposed in

the second paper (Liu et al. 2006).

5.3 Conditioning to arbitrary shape blocks

Using the reference velocity field with a peanut heterogeneity in its center (Figure 42(a)

and 42(b)), we extracted 5 block data of very different shapes, the four SCRF letters

and a happy face in the center. These block ”paths” and average values are shown

in Figure 42(c) and 42(d). Using the bdsim parameter settings given in Figure 43, we

perform simulation conditioned to the two bounding well data and the 5 average block

values. Figure 44 gives two simulated realizations and the E-type map obtained from

20 realizations. From the E-type map, we can clearly identify the central high value

discontinuity and the general pattern of high and low values of the reference field. The

two realizations show fuzzy patterns, but both with a high value central part. The

realization means (3.1, 3.2) are a bit higher than the reference mean 2.98 because the

block data have a higher mean of 3.2.

The results for this block case are better than those obtained from the 18-ray case

(Hansen et al. 2004, Liu 2005) because the five block data provide a full coverage with

resolution superior to that of a ray crossing both high and low-valued areas.

We also tried different simulation paths, fully random or partially random (ray-first),

see Figure 45. Their results turn out quite similar. In the ray-first case, we get a slightly

better image because the ray information is used earlier in the simulation path, that

information then conditions better the simulation at subsequent nodes. Both schemes

reproduce well the ray data values.

In the present version of bdsim, we can handle three types of conditioning data: point

6 CONCLUSIONS 28

data only, block data only and simultaneously point and block data. If we only uses

point data, bdsim is not different from the traditional point support direct sequential

simulation algorithm and code dssim (Remy et al. 2007). Figure 46 gives the results for

different data conditioning. If we condition only to point data (the 2 wells), the high

value discontinuity between the wells is not revealed, Figure 46(c). If we condition only

to block data, even though the central peanut is identified, the upper right and lower left

high value areas informed by well data are not revealed, Figure 46(e). If we condition

to both well data and the central block data (smiling face) only, we get the good result

of Figure 46(g). This confirms how critical an informative block datum is, as opposed

to many non-informative blocks. The best result is obtained by conditioning to all wells

and 5 block data, see Figure 46(i), but the improvement is only marginal.

6 Conclusions

Different approaches to simulation conditioned to block data were implemented in the

code bdsim to improve its efficiency. Fully random and ray-first simulation path schemes

are provided as two options. Theoretically, the ray-first scheme is preferable, although

the differences were not found to be significant in our preliminary test results. The

proposed scheme to search block and point data in the same manner makes the data

search faster. More than 98% of CPU time is used for block-related covariance calculation

in the present bdsim due to the slow traditional block covariance calculation approach.

Analytical and FFT block covariance methods were proposed and will be implemented

into bdsim. In the mean time, a standalone FFT block covariance C++ code has been

developed and is presented in the companion SCRF 2006 paper Calculation of Average

Covariance Using Fast Fourier Transform (FFT). The test results show that bdsim is

a general program for simulation with any type of block data conditioning, such as

tomography data, VSP, downscaling and arbitrary shape block data conditioning. The

results honor both point data and block data and provide both an LS estimate (E-type)

and an uncertainty assessment. One drawback is that the present bdsim alone can not

reproduce a target histogram; this issue can be addressed by either a rank-preserving

7 FUTURE WORK 29

post processing of each simulated realization through a program such as the Gslib trans

(Deutsch & Journel 1998), or by rescaling the target histogram to be the local SK mean

and variance (Soares 2001).

7 Future work

The following items will be considered and implemented in future

• Integrate the newly developed standalone FFT block covariance program into

bdsim.

• Implement a 3D code and provide 3D test case studies.

• Implement the local scaling of conditional distributions to allow reproduction of a

target histogram.

• Implement Ordinary kriging approach in bdsim.

• Implement the analytical block covariance computing approach, and perform com-

parison tests.

• Apply bdsim to case study of tomographic and VSP inversion using more difficult

synthetic data or real seismic data with curvilinear ray tracing.

• Explore new applications of bdsim.

• Find a faster way to import ray data into SGEMS and improve the GUI accordingly.

8 Acknowledgments

We would like to thank Dr. Youli Quan of the Geophysics department at Stanford

University for his discussions and advices on the test case design. Also we would like to

express gratitudes to Dr. Thomas Mejer Hansen at University of Copenhagen, Denmark,

Professor Albert Tarantola at Institut de Physique du Globe de Paris, France for their

8 ACKNOWLEDGMENTS 30

suggestions. Professor Phaedon Kyriakidis provided the original Matlab code for FFT

calculation of block covariances.

REFERENCES 31

References

Austern, M. H. (1998), Generic Programming and the STL, Addison Wesley Longman,

Inc.

Deutsch, C. V. & Journel, A. G. (1998), GSLIB: Geostatistical Software Library and

User’s Guide, second edn, Oxford Press, N. Y.

Goovaerts, P. (1997), Geostatistics for Natural Resources Evaluation, Oxford Press, N.

Y.

Hansen, T. M., Liu, Y., Journel, A. G. & Tarantola, A. (2004), Geostatistical tomography,

Technical report, Stanford Center for reservoir forecasting.

Journel, A. G. (2005), Geostatistics for spatial phenomena, in ‘Stanford University course

reader’.

Journel, A. G. & Huijbregts, C. J. (1978), Mining Geostatistics, first edn, Academic

Press, London.

Kyriakidis, P. C., Schneider, P. & Goodchild, M. F. (2005), Fast geostatistical areal

interpolation.

Lippman, S. B. & LaJoie, J. (1999), C++ Primer, third edn, Addison Wesley Longman.

Liu, Y. (2005), Crosswell tomographic inversion with block kriging, in ‘the 18th SCRF

annual meeting report’.

Liu, Y., Jiang, Y. & Kyriakidis, P. (2006), Calculation of average covariance using Fast

Fourier Transform (fft), in ‘the 19th SCRF annual meeting report’.

Mao, S. (1999), Multiple layer surface mapping with seismic data and well data, PhD

thesis, Stanford University, Stanford, California.

Remy, N. (2001), Gstl: The geostatistical template library in c++, Master’s thesis,

Stanford University.

Remy, N. (2004), S-GEMS, A Geostatistical Earth Modeling Library and Software, PhD

thesis, Stanford University.

Remy, N., Journel, A. G., Boucher, A. & Wu, J. (2007), Stanford Geostatistics Modeling

Software, first edn.

Sherrif, R. E. & Geldart, L. P. (1995), Exploration Seismology, second edn, Cambridge

REFERENCES 32

University Press, Cambridge.

Soares, A. (2001), ‘Direct sequential simulation and cosimulation’, Mathematical Geology

33, 911–926.

Tarantola, A. (2005), Inverse Problem Theory and Model Parameter Estimation, SIAM,

Philadelphia.

FIGURES 33

• Load input parameter values
• Load grid, point and block data
• Set up covariance model parameters
• Set up search neighborhood parameters
• Set up kriging parameters

Initialization

Loop over all realizations

Define a simulation path (fully random or block-first)

Loop over all nodes along simulation path

Is it informed (hard data)?Y

Search close point and block data

Compute iiC (PPC ,)BBC , ijC (PBC ,), '' BBPP CC and Pb0 , Bb0

N

Build cokriging system

Solve cokriging system for kriging mean and variance

Obtain log-normal ccdf

Draw a value and assign it as simulated value for this node

Complete nodes?

Y

N

Check block data reproduction

Complete all realizations?

Y

N

Generate E-type if multiple realizations

End

Figure 1: bdsim flowchart

FIGURES 34

Create an empty simulation sequence vector V

Shuffle the block index

Pick the first block

Shuffle nodes within block and append that
sequence to the end of V

Complete all blocks?

Move to next block

N

Reshuffle remainder nodes and append that
sequence to the end of V

Obtain block-first simulation path

Y

Figure 2: Flowchart of the block-first simulation path

FIGURES 35

(a) Color code of simulation sequence (ray-first

case). The ray data locations are simulated

first with each ray randomly selected. Within

each ray, the nodes are simulated in random se-

quence.

(b) Color code of simulation sequence, with a

larger color bar scale than Figure 3(a) (ray-first

case). The nodes not located on any ray are

simulated later in random sequence.

(c) Fully random simul. path

Figure 3: Color code of simulation sequence (The color indicates the order of visit)

FIGURES 36

Ray 2

Ray 3

Ray 1

Figure 4: Spiraling search for point and ray data search

1 2 3 4 5

21 22 23 24
25

16 17 18 19 20

11
12

13 14 15

6 7 8 9 10

Ray 1

Ray 2

Figure 5: Ray path on the simulation grid

FIGURES 37

Start search from simulation node location u

Is there ray data at u

Move to the next closest node 'u

Y

N

Is 'u within search ellipse?

Put 'u into point data neighborhood

Y

Is node 'u informed?
and PP Nn < ?

Notations: Pn : number of point neighbors found; Rn : number of ray neighbors found;

PN : maximum number of point neighbors; RN : maximum number of ray neighbors.

Y

any ray passing 'u ?
and RR Nn < ?

N

Put passing ray(s) into ray data neighborhood

PP Nn < or RR Nn < ?

Complete searching

N

Y

N

Y

N

Figure 6: Point and ray data search flowchart

FIGURES 38

(a) Ray data are reproduced if we include all the informed values within the passing ray(s) into the data

neighborhood

(b) Ray data are not reproduced if we only use a maximum number (say 20) of point data within the

search neighborhood

Figure 7: Check for ray data reproduction for the 18-ray case

FIGURES 39

P

B

1P 2P 3P 4P 5P

Point-Block covariance PBC :

1

1
i

n

PB PP
i

C C
n =

= ∑

where n is the number of points iP in block B

'B

'1P '2P '3P '4P '5P

B

…
…

1P 2P 3P 4P 5P

…
…

…
…

Block-Block covariance 'BBC :

∑∑
= =

=
n

i

n

j
PPBB ji

C
nn

C
1

'

1
'' '

1

where n is the number of points iP in block B ,
'n is the number of points 'jP in block 'B ,

Figure 8: Computation of point-block and block-block covariance

Compute 'BBC
2

)1(22 nn + times

Compute PPC
0

 1n times

Compute
0P BC 2n times

I II

III

IV

V

1 1 1 1 1 11 2 0 11

1 01 1 1 1 2 11

11 1 1 2

12 2

n n

n n n n n nn

n

nn n

P P P P P B P B P PP

P P P B P B P PP

BB B B B

BB B

C C C C C

C C C C

C C

C

λ

λ

λ

λ

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

0 1

0 2n

P B

P B

C

C

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

Compute PBC 21 nn × times Compute C 'PP 2
)1(11 nn + times

Figure 9: Cokriging system

FIGURES 40

O 'O

B

A

d 2l

1l x

(a) Case O′ ∈ AB

O
'O

B

A

d

2l

1l

(b) Case O′ 6∈ AB

Figure 10: Point-to-segment covariance calculation C̄PB

O

2l

1l

1A

2A

1B

2B

d

Figure 11: Segment-to-segment covariance calculation C̄BB

FIGURES 41

),,(zyx OOOO

d
v

l

u
L

),,(zyx AAAA),,(zyx BBBB

Figure 12: Point to line distance

O

curvilinear ray

approx. segments

A

B
C

D

Figure 13: Approximation of a curvilinear ray by ray segments

FIGURES 42

Y

X

'X'Y

α

)'(OO

''O

Figure 14: Coordinate transform from anisotropy to isotropy

(a) Approximation by line

(b) Approximation by point

Figure 15: Approximation of a block with arbitrary shape

FIGURES 43

(a) Background velocity

(b) Histogram of background velocity

(c) Increased peanut velocity

(d) Histogram of peanut velocity

(e) Combined velocity model

(f) Histogram of combined velocity model

Figure 16: Model resulting from increasing the peanut values by 1.5 times

FIGURES 44

(a) Reference velocity model

(b) Extracted lateral ray average data

(c) Extracted vertical ray average data

(d) Both lateral and vertical ray average data

Figure 17: 3 ray data configurations (The color indicates the values of velocity)

FIGURES 45

Figure 18: Parameter settings for lateral ray case

FIGURES 46

(a) E-type of the lateral ray case

(b) Hist. of E-type of the lateral ray case

(c) E-type of the vertical ray case

(d) Hist. of E-type of the lateral ray case

(e) E-type of the all ray case

(f) Hist. of E-type of the lateral ray case

Figure 19: Results of the 3 curvilinear ray configurations averaged from 20 simulated

realizations

FIGURES 47

(a) E-type using all rays with random path

(b) Hist. of E-type values

(c) E-type with ray-first

(d) Hist. of E-type values

(e) Ray reproduction in random sequence case

(f) Ray reproduction in ray-first sequence case

Figure 20: Comparison of the E-type from random path and ray-first path

FIGURES 48

(a) No. of point data per node(random path)

(b) Histogram of left figure

(c) No. of point data per node(ray-first path)

(d) Histogram of left figure

(e) No. of ray data per node

(f) Histogram of left figure

Figure 21: Point and ray data found per node (all rays case). The color indicates the

number of point or ray data found within each node neighborhood.

FIGURES 49

SSmmaallll sseeaarrcchh nneeiigghhbboorrhhoooodd LLaarrggee sseeaarrcchh nneeiigghhbboorrhhoooodd

Figure 22: Parameter change from large search neighborhood to small search neighbor-

hood

FIGURES 50

(a) No. of point data per node(random path)

(b) Histogram of left figure

(c) No. of point data per node(ray-first path)

(d) Histogram of left figure

(e) No. of ray data per node

(f) Histogram of left figure

Figure 23: Point and ray data neighborhood per node with smaller search neighbor-

hood(both lateral and vertical rays case). The color indicates the number of point or ray

data found within each node neighborhood.

FIGURES 51

(a) Simul. path (random path)

(b) Simul. path (ray-first, path)

(c) Simul. time per node(random path)

(d) Simul. time per node(ray-first path)

(e) Hist. of Simul. time per node(random path)

(f) Hist. of Simul. time per node(ray-first path)

Figure 24: The simulation paths and simulation time per node (random or ray-first

path, conditioning to all rays). The color indicates the order of simulation in the top

two figures. The color indicates the simulation time in millisecond (ms) in the middle

two figures.

FIGURES 52

Total run time (100%)

Initialize (0.05%) execute (99.95%)

search (1.2%) estimate (98.75%)

solve system (0.64%) build system (98.11%)

point-to-point cov.

(0.26%)

point-to-block cov.
block-to-block cov.

(97.85%)

Figure 25: Flowchart for tracking simulation time (the highlighted parts are the domi-

nant ones)

FIGURES 53

(a) Background velocity

(b) Histogram of background velocity

(c) Two high velocity heterogeneities

(d) Histogram of high value velocity

(e) Combined velocity model

(f) Histogram of combined velocity model

Figure 26: Reference field for vertical well VSP case study

FIGURES 54

(a) Well location

(b) Histogram of the well

S1 S2 S3

R1

R2

R3

R4

(c) The first arrival ray path

Ray # Ray value
S1-R1 2.5586

S1-R2 2.6234

S1-R3 2.8864

S1-R4 2.7317

S2-R1 3.0720

S2-R2 2.8700

S2-R3 3.1925

S2-R4 2.9829

S3-R1 3.1792

S3-R2 2.8008

S3-R3 3.0391

S3-R4 2.6802

(d) Average velocities along first arrivals

S2 S3

R1

R2

R3

(e) Reflected ray path

Ray # Ray value
S2-R1 2.8055

S2-R2 2.8312

S2-R3 2.7869

S3-R1 2.6796

S3-R2 2.7137

S3-R3 2.5677

(f) Average velocities along reflected rays

Figure 27: The configuration of well and ray paths in vertical well VSP

FIGURES 55

Figure 28: Parameter settings for the VSP case

FIGURES 56

S1

R1

R2

R3

R4

(a) Ray configuration

(b) E-type

(c) Histogram of E-type

(d) Realization 1

(e) Histogram of real. 1

(f) Realization 2

(g) Histogram of real. 2

Figure 29: Results conditioned to the first shot ray data

FIGURES 57

S1 S2

R1

R2

R3

R4

(a) Ray configuration

(b) E-type

(c) Histogram of E-type

(d) Realization 1

(e) Histogram of real. 1

(f) Realization 2

(g) Histogram of real. 2

Figure 30: Results conditioned to the first two shots ray data

FIGURES 58

S1 S2 S3

R1

R2

R3

R4

S2 S3

R1

R2

R3

(a) Ray configuration

(b) E-type

(c) Histogram of E-type

(d) Realization 1

(e) Histogram of real. 1

(f) Realization 2

(g) Histogram of real. 2

Figure 31: Results conditioned to all 3 shots ray data

FIGURES 59

(a) Background velocity

(b) Histogram of background velocity

(c) Three high velocity heterogeneities

(d) Histogram of high value velocity

(e) Combined velocity model

(f) Histogram of combined velocity model

Figure 32: Reference field for deviated well VSP study

FIGURES 60

(a) Well location

(b) Histogram of the well data

S1 S2 S3

R1

R2
R3

R4 R5

(c) All ray paths(the bottom curve is well path)

Ray # Ray value
S1-R1 2.5289

S1-R2 3.2715

S1-R3 3.4473

S1-R4 4.3283

S1-R5 3.0627

S2-R1 3.2197

S2-R2 3.3121

S2-R3 3.1840

S2-R4 3.2247

S2-R5 3.7289

S3-R1 3.4413

S3-R2 2.7325

S3-R3 3.3631

S3-R4 3.8255

S3-R5 3.1974

(d) Average velocities along ray paths

Figure 33: The configuration of well and ray paths in deviated well VSP case

FIGURES 61

Figure 34: Parameter settings for the deviated well VSP case

FIGURES 62

R1

R2
R3

R4 R5

S1

(a) Ray configuration

(b) E-type

(c) Histogram of E-type

(d) One realization

(e) Histogram of the realization

(f) Ray reproduction check

Figure 35: Results conditioned to shot 1 ray data

FIGURES 63

R2

R3
R4 R5

S2

R1

(a) Ray configuration

(b) E-type

(c) Histogram of E-type

(d) One realization

(e) Histogram of the realization

(f) Ray reproduction check

Figure 36: Results conditioned to shot 2 ray data

FIGURES 64

R3

R2

R4

S3

R1

R5

(a) Ray configuration

(b) E-type

(c) Histogram of E-type

(d) One realization

(e) Histogram of the realization

(f) Ray reproduction check

Figure 37: Results conditioned to shot 3 ray data

FIGURES 65

S1 S2 S3

R1

R2
R3

R4 R5

(a) Ray configuration

(b) E-type

(c) Histogram of E-type

(d) One realization

(e) Histogram of the realization

(f) Ray reproduction check

Figure 38: Results conditioned to all 3 shots ray data

FIGURES 66

(a) Reference velocity model

(b) Histogram of reference model

10

8

6

4

2

9

7

5

3

1

(c) The blocks

Block # Ray value
1 2.6821

2 2.9647

3 2.5554

4 2.6035

5 3.7382

6 2.6208

7 2.4777

8 2.5926

9 2.4393

10 3.5818

(d) The values of blocks

(e) Well data

(f) Histogram of well data

Figure 39: The reference model and data for the downscaling case study

FIGURES 67

Figure 40: Parameter settings for the downcaling case

FIGURES 68

(a) E-type

(b) Histogram of E-type

(c) Realization 1

(d) Histogram of real. 1

(e) Realization 2

(f) Histogram of real. 2

(g) Block data reproduction check

Figure 41: Downscaling results

FIGURES 69

(a) Reference velocity model

(b) Histogram of reference velocity model

Block 0 Block 1

Block 2

Block 3

Block 4
well well 0

0

1

2

3

4

5

6

7

8

9

1

1

(c) Five blocks extracted from the reference model

Block# Average value
0 3.0105
1 3.1865
2 4.2222
3 2.9620
4 2.7925

(d) The average values of the five blocks

Figure 42: Reference model and five block average data

FIGURES 70

Figure 43: Parameter settings for the 5-block case

FIGURES 71

(a) Realization 1

(b) Histogram of Realization 1

(c) Realization 2

(d) Histogram of Realization 2

(e) E-type from 20 realizations

(f) Histogram of E-type

Figure 44: Realizations and E-type of the 5-block case

FIGURES 72

(a) E-type (fully random path)

(b) E-type (ray-first path)

(c) Histogram of E-type (fully random path)

(d) Histogram of E-type (ray-first path)

(e) Ray production check (fully random path)

(f) Ray production check (ray-first path)

Figure 45: Results for different simulation paths for the 5-block case

FIGURES 73

(a) Reference model

(b) Histogram of reference model

(c) E-type (only hard data)

(d) Histogram of E-type (only hard data)

(e) E-type (only block data)

(f) Histogram of E-type (only block data)

(g) E-type (well + central block)

(h) Histogram of E-type (well + central block)

(i) E-type (well + all block data)

(j) Histogram of E-type (well + all block data)

Figure 46: Comparison of E-types resulting from different sets of conditioning data

	Introduction
	Recall of theory
	Block kriging
	Direct sequential simulation

	Implementation
	Tomography code
	Flowchart
	Simulation path
	Data search
	Block covariance computation
	Traditional integration approach
	Fast Fourier Transfer approach
	Analytical approach

	Tomographic inversion with curvilinear rays
	Different ray models
	Different simulation paths
	Number of data in neighborhood
	Run time analysis

	Case studies
	Vertical Seismic Profile (VSP)
	VSP with vertical well
	VSP with deviated well

	Downscaling conditioned to point data
	Conditioning to arbitrary shape blocks

	Conclusions
	Future work
	Acknowledgments

