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Abstract

The challenge of integrating data with very different support volumes is ad-
dressed. Based on the theory of block kriging and direct sequential simulation,
a C++ program bdsim (block data conditioned simulation) was developed within
SGEMS (Stanford Geostatistics Modeling Software). Several important implemen-
tation problems such as simulation path, data search and block covariance compu-
tation are discussed and solutions are proposed. The most critical issue in bdsim is
the computation of block-related covariances. The traditional integration approach
is not practical CPU-wise in presence of a large number of block data or blocks
of large size. An analytical and a Fast Fourier Transform (FFT) approaches are
proposed to improve computation efficiency. A curvilinear ray tomography test
case is used to test the performance of bdsim. Additional case applications such as

VSP, downscaling and conditioning to arbitrary-shaped block are also presented.
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1 Introduction

In earth sciences, data with different support volumes of large and small scales may be
presented and must be integrated. The large support data, such as tomographic data,
VSP data and remote sensing data, are hereafter called “block” data. The small support
data, such as core data and well data, are called point data. All block data are assumed
linear averages of the point values inside their respective support volumes. The goal of
this study is to generate stochastic images at the smallest point resolution conditioned
to both point and block data. The stochasticity of the images provides an uncertainty
assessment.

The methodology for block data conditioning and the implementation of the original
Fortran program visim (Volume data Incorporation Simulation) were presented in pre-
vious reports (Hansen et al. 2004, Liu 2005). In this report, the theory of block simple
kriging and direct sequential simulation algorithm is recalled briefly. Then, the develop-
ment of the new C++ program bdsim (Block Data conditioned Simulation) is presented.
As different from visim, several new techniques such as a user-friendly GUI, a better data
search and a fast block covariance calculation are implemented in bdsim to its improve
its efficiency.

In the original code visim, the traditional integration (discrete summation) method
is used for the block covariance calculation. This approach becomes too expensive as
the block discretization increases or the number of blocks increases as would be the case
in 3D applications . This traditional method is retained as an option in bdsim, but
it is complemented by the much faster analytical and Fast Fourier Transform (FFT)
approaches. bdsim can handle straight and curvilinear ray paths, and more generally any
data defined on any block shape. Beyond tomographic inversion, diverse applications of
bdsim are presented, such as Vertical Seismic Profile (VSP) inversion, grid downscaling

and arbitrary shape block data integration.
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2 Recall of theory

In this section, we recall the theory of block data conditioning (Journel & Huijbregts

1978, Tarantola 2005, Hansen et al. 2004, Liu 2005).

2.1 Block kriging

In block kriging, both block and point data are considered simultaneously.

Simple kriging estimation

Consider the SK estimation of the Z value at any location u in space (Deutsch & Journel

1998):
n(u)
Zsr(u) —mo(u) = Z_:l Aa(w) - [D(us) = mp(ua)] (1)

where Z%,(u) is the SK estimator of the unknown value Z(u) at location u

mo(u) = E{Z(u)} is the known expected value of the random variable Z(u)

Ao(1),a =1,--- n(u) are the SK weights which vary with u

D(u,), = 1,---,n(u) are the point or block data retained in the neighborhood of
location u for estimation of Z(u).

mp(u,) = E{D(u,)} is the known expected value of the datum random variable
D(u,). Under stationarity: mo(u) = mp(u,) =m, V u, D(u,)

Note that the number of data n(u) and their configuration vary with the location
u. The notation of Expression does not allow considering a single column vector of
estimators Z* — mg, because the data set retained in the kriging system changes for each
location u.

Each datum D(u,) is the linear average:
1
Dlua) = 1o / oy LelZ () A+ Ry, o (2)
Val| Jva(ua

where v,(u,) denotes the volume support of datum D(u,), Z(u’) is the point variable at
location u’ within the block support v,. The error term R, and the averaging function

L, are defined hereafter.
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Each datum D(u,) is seen as a spatial average of a known linear function L, (-) of point
values Z(u’). The averaging is typically limited to a finite volume v, centered at location
u,. The function L,(-), however, can vary from one datum D(u,) to another D(ug). For
examples: v, could be the 1D trace of a seismic ray; or v, could be limited to the single
point support "hard datum” at location u,, in which case, D(u,) = Z(u,) + R,. That
hard datum could be either an original hard sample Z(u,), or it could be a previously
simulated value D(u,) = Z"(u,) during a sequential simulation process. There are
always some noise R, in any data. The following assumptions are considered for the

noise term R,:

independent with the signal: R,1Z(u,),Vu (3)
spatial white noise: R,LRg,Va # [ (4)

Expression means homoscedasticity, i.e. the noise is independent of the true value
Z(u,) being measured. Expression(4) means that the errors are not correlated in space.
Even if R,, Rg relate to the same functional L, = Lg = L and correspond to different
locations u, # ug, the errors are assumed hereafter homoscedastic and uncorrelated

with:
e zero mean: F{R,} =0, Va

e known variance: Var{R,} = o%_, possibly different for each datum, which could

be obtained from a prior calibration of the different types of noise, hence
e known diagonal covariance matrix Cr = [Cov{R,, Rg}].

In this initial implementation, we consider that all data are noise free, i.e. R, = 0,Va.
The noise of the block data could be taken into account in future work (Goovaerts 1997,

p. 172).

Stationarity decision

We assume that the study property, say velocity, is stationary within the study area.

Thus, we have mgy(u) = mg, Yu.
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The expected value of D(u,), mp(u,) can then be simplified:

1

mp(u,) = E{D(u,)} = ol oo Lo(E{Z,, (W)} )du'+E{R,}
1 / /
= m ) Lo (mo(u’))du
= La(m6)

= my if the averaging function L, is the identity function(5)

The SK expression then reduces to:

n(u)

n(u)
Zgk(u) = Z:I Aa(u) - D(uq) + (1 - Z:l Aoc(u)) mo (6)

This is the standard stationary SK expression.

Data-to-data covariance matrix

K = [Cov{Da, D5}, ) xntu) = [C*DQDB} (7)

with:
C_’DOADB = COU{D(ua)> D(uﬁ)}
1
-t du’ / Cov{Z(W), Z(w")}du" + Cov{Ra, Rs} (8)
[Val -+ [v5] Jva(ua) vg(ug)
which is a known average covariance value, Vo, 3.

We could distinguish the two types of data. If the first volume in Expression
reduces to point support: D, = Z(u,). The point data Z(u,) is denoted as P, to
simplify the notation. The second integral Dg corresponds to a block support vg denoted:
Dy = Bg, where Bg is the block data over the vg. Thus the block-to-point covariance is
written as:

1 _
Cov{B,, Z(ug)} = ﬁ ( )C’ov{Z(u’), Z(ug)}du' +0 = CBops (9)
Va v(ug
since: Cov{R,, Z(ug)} = 0, per homoscedasticity.

Similarly, if the two volumes in Expression reduce to point support, we have:

Cov{Z(u,), Z(ug)} = C{ug,ug} = Cp,p,, since Cov{R,, Rg} =0 (10)
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The previous data type distinction calls for blocking the data-to-data covariance matrix

K into submatrices, with: n(u) = ny(u) +ns(u), and n;(u) usually different from ny(u):

Kpr K
K=| 7 7" | =cow{D!, D} (11)
Kb Kpp

Note that the error variance Var{R2} affect only the diagonal of the matrices Kpp and

Kpp because all error cross covariances are equal to zero per the error model (3) and

(4).

Data-to-unknown covariance matrix

k = Cov {D', Z(u)} = |Cp.n)] (12)

n(u)x1
where P, denotes the point value to be estimated at location u. We can develop this

expression similarly to Equation(L1)). Again, we would distinguish the two types of data:
k = (13)

with:
kp = [Cov{Z(ua), Z(0)}] = [Cp,p]

kp = [Cov{Ba, Z(w)}] = [Cp.n,]

SK estimator Z%,(u), under stationarity

Zig(u) —my=A"-D = %:1) Ao (1) - [D(ug) — my (14)
with: i
A =[a(u),a=1,---,n()]ixnw : SK weights
D= P = Fa —mo . data of types P and B.

B Bg—mo
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SK system

Thus, we have:

A=Kk, Ziu)—my=k" -K' D

With:
‘ Pa — My
k - |: kP kB :| ( )7 D = Y
1xn(u —
Bﬁ Mo n(u)x1
|44 W
K- W — PP PB
Wkhy W
PB BB n(u)xn(u)
We write the SK estimator as:
. Wpp Wpp
Zige(w) = mo(w) + | kp Ky |- | D (16)
Wpg Wgs

SK variance

The SK or estimation variance is then written as:

ozx(0) =Var{Z(u) — Zi (1)} = Var{Z(un)} - A" -k
= C(0)—k'- k' k (17)
Wpp Wpep ‘ kp

= C(O) - { kp kp .

with: C(0) = Var{Z(u)} equal to the field stationary variance.

2.2 Direct sequential simulation

Sequential Gaussian Simulation is a robust and widely-used algorithm for simulation
of continuous reservoir properties within an homogeneous facies. However, one major
drawback of sgsim is that its multinormal assumption requires to transform the data into
normal space before simulation and perform back transform after simulation. The normal

score transform is a nonlinear transform, thus is not applicable to our case because it
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would undo the linear averaging characteristics of all block average data. Thus, we need
to work in the original space to preserve the linearity of block average. The solution is
the algorithm of direct sequential simulation (dssim), whereby simulation is performed
in the original data space and does not call for any multi-Gaussian assumption. We can
use any distribution type (uniform, log-normal, etc) for anyone of the local conditional
distributions as long as the conditional mean and variance identify the SK mean and
variance. In the present bdsim, the log-normal distribution is used since in most real
seismic cases the seismic properties have distributions close to being log-normal. The
theory of dssim can be found in Journel (1994).

The related problem of dssim is that the simulated results may not reproduce the
target histogram. Some post-processing, such as through the rank-preserving algorithm
trans (Deutsch & Journel 1998), could be used to approximate the target histogram.
Another solution (Soares 2001) consists of scaling the global target histogram to each
local SK mean and variance. This latter solution has been implemented in SGEMS dssim

code (Remy et al. 2007).

3 Implementation

The Block data conditioned simulation (bdsim) presented hereafter is based on the public
domain Stanford Geostatistics Modeling Software SGEMS (Remy 2004, Remy et al. 2007)
and the Geostatistical Template Library GsTL (Remy 2001). bdsim follows the same
programming styles as other geostatistical plug-in within SGEMS, such as sgsim and

cosgsim.

3.1 Tomography code

Seismic tomographic inversion is an application of block data conditioning. We recall
the goal of this application. In the process of data integration for reservoir modeling, we
may have to integrate valuable interwell tomographic information. Tomography data are
different from well data or other seismic data by their volume support. Well data are

quasi point-support data, each assumed representative of one grid node of the fine scale



3 IMPLEMENTATION 9

geocellular model being built, while crosswell tomography data are travel time (first ar-
rivals) averaged over a ray path that is typically not rectilinear and of uncertain geometry
(Sherrif & Geldart 1995). This is a type of block average data. Tomography data do not
provide high resolution local information, but they can detect major heterogeneities be-
tween wells. We aim at improving velocity images by incorporating crosswell tomography
data, then assessing the uncertainty of these images through stochastic simulation.

For the methodology presentation, only simple ray-tracing is used since the actual
geometry of the rays, straight or curvilinear, does not impact the application of bdsim.
Complex rays tracing can be built-in later as a plug-in into SGEMS using state-of-the-art
ray-tracing freeware.

bdsim was originally coded for tomographical data integration. For that application,
the block data are the seismic ray data. Some implementations are specific for this type
of block data. However, the bdsim code is more general and can be applied to any type

of block data conditioned simulation.

3.2 Flowchart

Figure [If gives a flowchart of the algorithm. Like all other SGEMS plug-ins, in bdsim,
there are two major functions, initialize() and execute(). The first one is used to
load input parameter values, load grids, point and block data, set up covariance model
parameters and set up the search neighborhood. The execution function is the essential
part of the algorithm. Two different simulation paths, random path and block-first path,
are allowed. Different search schemes are considered for point(P) and block(B) data. The
different left hand side covariances, Cp_ p,_, C_’Ba Bas» CP.Ps) C_’pa B, and éBa B, and right
hand side covariances Cp,p,, Cp,p,, are computed. The cokriging system is built and
solved. At each simulation node, we compute the kriging mean and variance, from which
a log-normal conditional cumulative distribution function (ccdf) is derived. A value is
then simulated by drawing from that distribution. There is no normal-score transform
involved because direct sequential simulation is used. The block data reproduction is

checked and an E-type map is produced if multiple realizations are generated.
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3.3 Simulation path

In most geostatistical simulation algorithms, the path visiting the grid to be simulated is
random determined by a random seed. The randomness of the simulation path allows to
explore the space of uncertainty through multiple different realizations. Thus, the fully
random path is one option of bdsim. An average block data give additional information at
locations located within that block. We may want to simulate those within-block nodes
first such that the additional block data information gets spread faster to other nodes
through sequential simulation.

More computation is involved with the previous block-first (partially random) path
than with the fully random path. Figure [2| gives an implementation flowchart for the
block-first simulation path. A block is randomly picked from the block data set. All
the nodes within that block are simulated first in a random sequence. Then we move
to the next informed block, perform point simulation within it, then move again until
all informed blocks are simulated. Finally all the remainder nodes are simulated along a
random path.

Figure |3| shows different simulation paths in the 18-ray cases presented in SCRF
meeting, 2005 (Hansen et al. 2004, Liu 2005). The smaller (bluer) value means that the
node is simulated earlier. Comparing Figure with Figure [3(b)| we note that from
one realization to another the rays are picked in random sequence and the remainder
nodes are simulated in random sequence. Figure shows the fully random simulation

path.

3.4 Data search

In all geostatistical algorithms, one typically retain only the closest n data, either original
data or previously simulated values, to reduce the size of the kriging systems. The
measure of closeness to the simulation location is the variogram distance, which accounts
for possible anisotropy. For point data, it is done as follows. Given a simulation location
and its search ellipse (or ellipsoid), all nodes within the search ellipse are sorted according

to their variogram distances to the central location. Spiraling away from that center, grid
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nodes which carry point data are marked. If there is a datum or a previously simulated
value on that node, that information is put into the point data neighborhood. The
spiraling process is continued until we get the specified maximum number of conditioning
data or we pass the search range.

As for block or ray data search, it is also constrained by a maximum number of con-
ditioning rays and a ray search neighborhood. The previous point data search algorithm
is adapted to allows both point data and ray data to be searched simultaneously, see
Figure . The search starts from the simulation node (green dot in Figure . Then
the search path spirals away from the green dot. Ray 1 is treated first since one of its
nodes is found earlier than any node of the other two rays. Ray 2 and 3 are treated in
subsequent searches.

Before presenting the implementation of that ray search, it is useful to understand
how ray data are stored. In SGEMS, each node of the simulation grid is assigned an
identification number, denoted as node_id, see Figure 5 This allows to assign or retrieve
a property value at any location knowning its node_id. When we load the ray data and
create a ray object, we assign to each ray a ray identification number, denoted as ray_id.
For example in Figure[5| ray_id for ray 1 is 1. Then we can store a ray path by recording
all the node_id’s of the nodes along that ray into a ray_id set [21, 17, 18, 14, 15]. We
can also retrieve the ray(s) passing by any specific node by attaching the ray_id to the
node_id. For example, when we check node_id 6, we know that there is a ray, ray 2,
passing through it if the ray_id 2 has been attached to the node_id 6. Similarly, we can
retrieve ray 1 and ray 2 from node_id 18. In the C++ Standard Template Library(STL)
(Austern 1998), the container, multimap, can handle this situation. A multimap can
have two parameters, key and object, where key is used to map or look up the object.
The key can relate to one or multiple objects. This fits our purpose to find the ray_id
(considered as an object) from a given node_id (considered as key). In the initialize()
function of bdsim, a ray multimap is created, which stores the ray path(node_ids) and
ray average value information.

Figure [6] gives the flowchart for point and ray data search. Starting form the node to

be simulated, we move to the next closest node in terms of variogram distance until we
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move out of both point and ray search ellipses, or until we reach their input maximum
number of data. At each node location node_id, we perform two checks. One is whether
this node is informed by a hard datum or a previously simulated value. The second check
consists of going to the ray multimap to look up for ray(s) passing through the given
node_id. This tells us whether that node is informed by ray data, if yes, how many rays
and what they are. Ray data search is performed simultaneously to point data search.
For example, rays 1, 2 and 3 in Figure [4] are found and added to the ray neighborhood as
we visit their tangent point to the spiral. If we only want to retain the closest two rays,
only ray 1 and 2 are retained. Note that this ray search scheme not only gives us the
the rays within the search neighborhood but also sort them according to their distances
to the simulation node (green dot in Figure [4]). The details of the work flow is given in
Figure [0l In some situations, we may want to specify different anisotropic search ranges
for point and block data due to the different supports between point and block data or
the different configurations of the block data. The present version of bdsim allows to
specify different search ranges, which requires searching point and ray data separately.
However, the test results show that the data search is still fast because ray data are
searched the same way as the point data.

In order to honor any given block (ray) average data, all informed points within that
block must be included into the point data neighborhood (Liu 2005, Hansen et al. 2004).
Figure [7] shows the results of ray reproduction check for the 18-ray case study in the
previous report (Liu 2005). If we include all informed nodes along the passing ray(s), the
simulated ray average values are very close to the input ray data (Figure. Otherwise,
the block average data are not well reproduced, see Figure in which we only retain
the closest 20 informed points, whether or not they are located within the passing ray(s).
If there are several rays passing through any one node and these rays are very long, the
corresponding kriging matrix for this node becomes very large especially when most of
the nodes along the passing rays are simulated. The solution could consist in simulating
first the nodes intersected by more than one ray (Hansen et al. 2004) or cutting the long
rays into shorter ray segments and honor each of them separately. Additional work is

needed to investigate an acceptable compromise solution.
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3.5 Block covariance computation

This section relates to issues involved when computing block covariances.

There are 3 types of covariances: the point-point covariance Cpps, the point-to-block
covariance Cpp and the block-to-block covariance Czps. In the present bdsim implemen-
tation, we have abandoned the covariance-set method (Liu 2005, Remy 2001). The basic
idea of this covariance-set method is to build a 2x 2 table, which contains Cppr, Cpg, Crp
and Cpp, then chose one of the four according to the input data pair (point or block).
It turns out that this table can be easily replaced by using overloading functions in C++
(Lippman & LaJoie 1999). For example, when we call the function covariance(datal,
data?2) to compute the covariance between datal and data2, where datal and data2 are
either point data or block data, the overloading functions allow to automatically select

the proper covariance calculation equation based on the input data pair, datal and data2.

3.5.1 Traditional integration approach

Figure |8/ shows how Cpp and Cgp: are computed in the traditional integration approach,

based on the arithmetic average of the point covariance Cpps along the ray path:

_ 12
Crs = = Cpp
n —
i=1
n n'

Cpp = — Z Z CPiPJf (18)

1
i =1

where n is the number of nodes in block B and 7’ is the number of nodes in block B’.
Figure [9] gives the cokriging system and the number of computation elements for the
different covariance types. Since the covariance matrix on the left hand side is symmetric,
only the upper triangle elements need to be calculated. The basic calculation element
is the point-point covariance Cppr. The other two covariance types, Cpp and Cpgp, are
composites of this basic covariance, see Equation and Figure In Figure @, the
cokriging system is divided into 5 parts, Part I for Cpp, Part II for Cpp, Part III for
Cppr, Part IV for Cp,pr, and Part V for Cp,p, where Cp,pr and Cp,p are the unknow-
to-point and unknown-to-block covariances, respectively. We assume that there are n,

number of point data and ne number of ray data and the basic computation time of Cpps
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is At. We denote the number of point data in block i as INV;. We express the computation

time for each part in terms of At. If all rays are composed of the same number of nodes

N, the computations for the 5 parts are given in the following table.

Part computation time if each block has N nodes
Part I (mthm A (mtm A

Part II ny Yoy N; At niny N /At

Part IIT | (N, 72, N; + N, 5572, N; + ... + Ny, Ny, ) At (natlinz \y A

Part IV ny A\t A\t

Part V Sz N At na N At

Building a cokriging system using the traditional integration approach is thus very

CPU demanding. For the typical 18-ray case test, we have an average of 20 point data and

8 ray data in each neighborhood. The computation time and their percent contribution

to the total time are shown below.

Part | computation time | Percentage (%)
Part 1 2104t 0.14

Part 11 10000A¢t 6.75

Part 111 137500A¢ 92.76

Part IV 204t 0.01

Part V 500At 0.34

92.8% of time is spent on computing Cgp and 98.5% time is spent on computing the

block-related covariances; this is the dominant part of the CPU cost of the whole simu-

lation process. Note that incorporating the 10 block data does not increase the size of

cokriging matrix dramatically. The covariance matrix only increases by 10 columns and

10 rows, which does not significantly affect the time taken to solve the kriging system.

This approach is not feasible in presence of a large number of blocks or large-size blocks.

It follows that one should focus on reducing the burden of computing the block-related

covariances.
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3.5.2 Fast Fourier Transfer approach

The FF'T approach is an every efficient block covariance calculation approach, especially
in presence of a large number of block data or blocks constituted by a large number of
discretization cells. Like the traditional integration method, this approach can handle
blocks with any arbitrary shape, see the associated SCRF 2006 report Calculation of
Average Covariance Using Fast Fourier Transform (FFT) (Liu et al. 2006) for extensive
details. Based on the recent work of Kyriakidis (Kyriakidis et al. 2005), a fast C++ code

for FF'T block average covariance calculation has been developed.

3.5.3 Analytical approach

Another solution to improve block covariance calculation is solving analytically the C
integrals as proposed very early by Journel (Journel & Huijbregts 1978). The idea is to
approximate all rays (straight or curvilinear) by a set of segments. Then the C for each

point-to-segment or segment-to-segment can be derived derived analytically.

Analytical derivation

Point-to-segment covariance Cpg There are typically two types of average Cpp
values, see Figure [10] Denote the point as O, the segment as AB, the projection O onto
the line AB is O'. Figure shows the case of O’ € AB and Figure shows the
case O' ¢ AB.

In Figure , the average value Cpp is written:

Cpp = C(O, AB) = Z;C(o, O'A) + Z;C(O, OB). withi=L+l  (19)

where C(0,0'A) =+ [ C(Va® + &) - dx = p(d, 1)
and C(0,0'B) = ¢(d,l,), assuming an isotropic covariance C(|h|).
If C(|h|) is not isotropic, C'(v/a2 + d?) is replaced by C(z,d).
The average covariance Cpp corresponding to Figure is written:

Lo~

[ _
C(0,0'A) — —2
I — L

Cpp = C(0, AB) = ——C(0,0'B) (20)
1 — 02
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with O'A=0'B+ AB and ||AB|| =1 — 12 > 0,
where C(O0,0'A) = ¢(d,l;) and C(O,0'B) = ¢(d, l5).

Segment-to-segment covariance Czp The average covariance between two segments
A1B; and Ay By (Figure can be calculated by averaging the corresponding point-to-

segment covariances of type Cpp:

- 1

C(AlBl, AQBQ) = Z C_Y(O, AQBQ) (21)
{A\B

h o= 1}
where each of the C(O, AyBs) is calculated as before. In a 3D case, the two segments

A1 B; and Ay B, are not necessarily coplanar, but the result still applies.

Basic integral to solve The basic integral to solve is that involved in Equation ,

in the isotropic case:
1
o(d,)) = 7 / OWE T+ &) - dr (22)
0

Consider first the isotropic linear variogram: v(h) = |h| or equivalently the pseudo-
covariance: C'(h) = C' — |h|, where C' is an arbitrary constant to be canceled out (for

example through ordinary kriging):

o(d,l) — }/Ol\/m-dx
_ ;l[xm + Pln(z + V2 + B2
;lwm + d*In(l + V12 + d2) — d*Ind)] (23)
Consider the numerical examples corresponding to Figure [10(a)| and Figure [LO(b)|

For Figure[10(a)] assuming l; =l = d = 1, for v(h) = |h| we have:

C(O,AB) =

;C(0,0’A) 4 ;é(o, O'B)
= o(1,1) = ;[\/§+ In(1 + v2)]
= 1.15

For Figure [10(b)|, assuming I, = 2 and [, = d = 1, we have:

C(0,AB) = 2x C(0,0'A)—C(0,0'B)



3 IMPLEMENTATION 17

= 2X90(172>_(p(171)
= 2><i(2><\/5+ln(2+\/5))—;(\/§+ln(1+\/§))
= 18

Implementation issues of the analytical approach

In order to evaluate the analytical C' expression , several implementation issues must

be addressed.

Distance of a point to a line The integral expression calls for the projection
distance d of a point onto a line, see Figure

In Figure [12] we have a segment AB of length [, defining a line L. The coordinate
vectors are, respectively, (A,, A,, A,) and (B,, By, B,). The point O has coordinates
(O4,0y,0,), and the point-to-line distance is denoted d. In both 2D and 3D cases, we
can use the cross-product to directly compute the distance between any point O and line
L. Consider the parallelogram defined by the vectors u = B — A and v = O — A. The
area of the parallelogram is |[v x u|. Consider the segment AB as the base and d as the

height of the parallelogram. It comes:

L 'u@v' _B-Ax©-4

For the 3D case, let u = (uy,uy,u,), where ux = B, — A,, uy, = B, — A, and
u, = B,—A,. Let v = (vx,Vy,V,), where vy = 0, —A,, vy, =0, — A, and v, = 0, — A,.

The definition of cross-product gives:

u, u, u, Uy Uy, uy
uxv = , ,
Vy Vy V, Vx Vx Vy

= (uyV, — U,Vy, UVx — UxV,, UxVy — Uy Vy)

Thus the point-to-line distance d in the 3D case is:

luxv| \/(uyvz — u,Vy)? 4 (0, Vx — UxV,)? + (uxvy — uyvy)?

d=
|u’ \/ux2 + uy2 + uz2

(24)
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For the 2D case, the coordinates of the 3 points are A = (A4,,A4,,0),
B = (B,, By,0) and O = (0O,, 0,,0). The cross-product is then written as:

uxv = (ux,uy,0) X (vg,vy,0)
= (B,—A;,B,—A,,0) x (0, —A,,0,—A,,0)
(B, — Az) (B, — 4y)
(0 = As) (Oy — 4y)

= 10,0,

The point-to-line distance d in the 2D case is:

d = |11 X V| — |(Bac - Am)(Oy — Ay) — (By _ Ay)(Or - Am)| (25)
|u| \/(Bz - A:r)2 + (By - Ay)2

Approximation of curvilinear rays by ray segments All above analytical C' cal-
culations are based on segments. In a real situation, there may be curvilinear rays. We
propose to approximate any such curvilinear ray by a series of ray segments. In Figure
the curvilinear ray AB is approximated by 3 ray segments: AC, C'D and DB. Each of
the 3 point-to-ray segment average covariance can be analytically calculated as above,
then the point-to-full ray covariance can be retrieved by the proper weighted average.
A program independent of bdsim pre-processes curvilinear rays. The splitting of
the rays need careful thinking. Should the ray be splitted into equal length segments
or according to equal arc degree? How many segments should be considered? These
decisions may be left to the user with corresponding input parameters and their default

values.

Geometric anisotropy The classical correction for geometric anisotropy consists of a
prior angle rotation and affinity multiplication of the coordinates (z,d) (Journel 2005).

In Figure for a 2D case, we first rotate the horizontal axes X and Y into X’
and Y’ by an angle « to identify the azimuth angle of the anisotropy ellipse. Any point
O(0Oy, O,) is transformed into the point O'(O;, O, ) with:

@)

, :
. cosa  sina Oy

O?’J —sina  cosa 0,
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This transform does not change the length of any segment.

Next we stretch (or squeeze) the Y’ coordinate by multiplying it by the affinity ratio
A = ay/a; > 1 to transform the anisotropy ellipse into a isotropic circle; a; and as are
the long and short axes of the ellipse, respectively. The point O’ is then transformed into

O" with coordinates:

oy 10 O, COS (v sin av O,
= = (26)

O, 0 A O, —Asina Acosa O,
Equation (26| changes the node locations. For example O’ is moved to O” in Figure
Thus, lengths and distances are changed by this transform. Also right projection angles
are not preserved by this transform. Therefore, we cannot obtain the new point-to-ray
distance d” by merely transforming the original distance d. The solution is actually

much simpler: transform all grid nodes into isotropic field with equation ([26]), and then

compute all distances d” and covariances in that transformed space.

Block with arbitrary shape All expressions above relate to a curvilinear (1D) ray
data. How should a block with arbitrary shape be handled is still an open issue. Two
possible approaches could be considered. One is to approximate the blocks by a set of
lines, see Figure . The other is to resample the block by sparse point data to reduce
the CPU cost, see Figure [L5(b)}

This analytical approach has not been retained for coding within bdsim.

4 Tomographic inversion with curvilinear rays

In previous reports (Hansen et al. 2004, Liu 2005), we showed the tomographic inversion
results conditioned to straight rays. In a real application, seismic rays are bended and
curvilinear due to local heterogeneities. This curvilinear ray case is now considered.

For this study, we modify the previous reference field (Hansen et al. 2004, Liu 2005)
by multiplying the peanut-shaped heterogeneity by a factor 1.5 in order to better detect
it. Figure [16| shows the background velocity, the peanut with its higher values and the

final combined reference model. The mean of the combined model is 3.15. From this
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model we extracted 3 sets of curvilinear rays, see Figure . Figure gives the 10
lateral rays. Figure gives the 8 vertical rays. Figure gives the combination of
all 18 rays. Note that the highest ray average data correspond to the two central vertical
rays. Figure[l§| gives the parameter settings for the lateral ray case. The settings for the

other two cases are almost the same.

4.1 Different ray models

Figure shows the E-type (point-wise average of multiple realizations) built from 20
realizations for these three curvilinear ray configurations. The lateral rays tend to expand
the central ray high data value laterally (Figure , while the vertical rays tend to be
expanded vertically (Figure [19(c)). Since the lateral rays do not carry high value data,
they do not result in a crisp detection of the peanut. The two central high value vertical
rays result in a better detection. Combining both lateral and vertical rays, the peanut-
shaped heterogeneity is well detected, Figure Again, the means of the simulated
realizations are higher than that of the reference model. We should not expect to obtain
the peanut with an average value as high as the one in the reference model because of
the averaging effect of rays. Increasing the length of the ray path make the rays less

informative; the longer the ray paths, the smoother the E-type results.

4.2 Different simulation paths

In Figure , we compare the results using a fully random path and a ray-first path.
The differences appear negligible.

4.3 Number of data in neighborhood

Figure 21| gives the number of point data and ray data found within the neighborhood
of each node location. No matter which simulation path is used, the nodes along the
ray paths always have more point conditioning data because we include all closest n
point data in the point data neighborhood and all previously simulated data along any

ray passing through the simulation node. The red outliers (large number of found point
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data) in Figures for the random path case are higher than those for the ray-first case
(Figure ; see also the maximum value from their histograms in Figures and
21(d)} The reason is as follows. When we simulate a node located on ray(s), the point
data are of two different types, first are the data within the point search neighborhood,
second are previously simulated values along the ray(s) passing through the node. In
the ray-first case, when we simulate the nodes along the rays, those nodes that are not
located along any ray have not been simulated. Hence not many data of the first type
are found. In the random path case, when we simulate a node along a ray, nodes not
located along any ray may have been already simulated. Many point data of the second
type may be found. Thus the ray-first scheme leads to smaller size kriging systems when
simulating the nodes along rays. Also note that the outliers (red dots) in Figures
are located where rays cross each other because the more rays cross a simulation node,
the more previously simulated nodes along these crossing rays are included as data. A
solution is to simulate first the crossing nodes. The map of the number of block data
found within the block data neighborhood is the same for both random and ray-first
scheme (Figure 21(e)). In the central area of the simulation field, more ray data are
found within the search range. If we decrease the size of search neighborhood, see the
parameters in Figure [22] we observe more variation of the number of data found in the
neighborhood, compare Figures 23] and [2I] The mean number of data found decreases

due to the smaller search neighborhood.

4.4 Run time analysis

Analyzing the CPU time needed by different parts of program will help understanding
how the program works and improving the speed accordingly.
Figures 24(c)| and 24(d)| give the simulation time spent on each node when using all

18 rays. In the central part of the study area, simulation takes longer than in the edge.

This is because there are more conditioning ray data there. Figures[24(e)and [24(f)|shows

that the simulation time is not significantly influenced by the different simulation paths.
In order to understand the time spent in different stages, we decompose the total run

time into different parts. We always track the most expensive part, see the highlighted
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boxes in Figure 25] For example, Total run time is composed of initialize part and
execute part. If we use all 18 rays as conditioning data, initialize part costs 47ms
and execute part costs 99240ms. Thus we can neglect the first one. Again, we split
the execute part into search and estimation and keep tracking the dominant time-
consuming part. The flowchart of Figure [25| gives all the tracked parts and the percentage
of time they take.

5 Case studies

In this section, we will present the new applications of bdsim to VSP, downscaling and

irregular shape block data conditioning.

5.1 Vertical Seismic Profile (VSP)

VSP gives a high-resolution seismic image of the vicinity of the borehole. The sources are
located at or very close to the surface and the receivers are located along the borehole.
Because they are closely spaced through the area of interest, the seismic waves do not
have to travel far and thus undergo less attenuation. There are several types of VSP, such
as zero-offset VSP, offset VSP, directional VSP (Sherrif & Geldart 1995). We consider
here offset VSP, corresponding to a set of sources located away from the borehole location
with different offsets. Offset VSP can be used to detect heterogeneities, such a fault or
reef, on one side of the borehole and the information does not apply to other remote
areas. In this study, two different configurations are tested: vertical well and deviated

well. Both well data (hard data) and ray average data are used for conditioning.
5.1.1 VSP with vertical well

Reference field

A 2D background field (vertical section) is created with 40x50 cells. The cell di-
mension is 0.025km x 0.02km. The velocity map is populated with a velocity his-
togram from the Stanford V dataset (Mao 1999) and a variogram model v(h) = 0.1 +
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0.9Sph (\/((’}%)2 + (3“2)2> The resulting map and its histogram are given in Figures
126(a){ and [26(b)l Two high velocity heterogeneities (Figures [26(c)|and 26(d)) are added

into the previous background field. Figures [26(e)[ and [26(f)| give the resulting reference

velocity model and its histogram.

The left column data in the reference model is retained as well data, see Figure [27(a)
and its histogram in . Three sources, S1, S2 and S3, are located on the surface
and four receivers, R1, R2, R3 and R4, are located in the vertical well. The first arrival
rays are obtained by tracing straight lines between sources and receivers (Figure 27(c))).
Assume that the bottom of the reference field is a flat reflector. The reflected rays are
traced between sources S2 and S3 and receivers R1, R2 and R3 (Figure [27(e)). The
ray values are arithmetic averages of the point velocity values along the ray paths, see

Figures [27(d)] and R7(f)] Note that the ray values are neither very high nor very low

due to the averaging effect.

In practice, in order to detect water or gas intrusion, time-lapse VSP method could
be used. In the early stage of water or gas injection, the sources are put closer to the
well location since the fluid has not traveled far away. As the time lapses, sources are
continuously put further away from the well location to track the fluid flow. Three cases
are designed to mimic such time-lapse VSP application. In the first case, only the ray
data from the source S1 close to the well location is used (Figure 29(a)). Then the two
sources S1 and S2 are used (Figure . Last, all ray data from the three sources are
used (Figure . Figure [28| gives the basic bdsim parameter setting for these cases.

Results

For the first case, the values of the 4 ray data are low with mean 2.70 because their paths
do not interest the high value heterogeneities. The middle-left high value spot appearing
in the E-type map built from 20 simulated realizations (Figure 29(b)|) results from the
high value well data in that area. The E-type mean is lower than the reference mean

(2.83) because of the low value ray data. We do see some high value heterogeneity spots

at random locations in different realizations, see Figures [29(d)|and [29(f), which indicates
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high uncertainty away from the ray data constraint.

In the second case, some rays, such as the first arrivals of S2-R1 and S2-R3, carry
valuable high value information. The E-type map (Figure reveals the actual high
value heterogeneities on the top and middle-left of the section. The mean of E-type
velocity increases to 2.86. This indicates that the additional information from shot 2 is
valuable due to its better ray coverage of the field. The lower-right high value ball can
not be detected because no ray passes through it. In different realizations (Figures|30(d)|
and , the locations of the simulated high value heterogeneities reflect uncertainty
as they do not have the crisp edges of the reference high value heterogeneities.

In the third case, the ray coverage increases further as the ray data of shot 3 are in-
cluded. The simulated results are improved in the areas covered by shot 3 (Figure B1(b)).
Note that the middle-left high value spot expands toward the right side. Again, the lower-
right ball can not be seen, even though the simulated realization 2 (Figure reveals
the potential for high value heterogeneities in the lower right corner.

Because the reflected rays travel along longer paths than the first arrivals, their aver-
age velocity values are closer to the mean value of reference model (2.83), see Figure

In this sense, the reflected rays are not as informative as the first arrivals.

5.1.2 VSP with deviated well

VSP data with deviated well could give better results because it increases the coverage
areas of rays. In this study, we will test the deviated well case using another reference

velocity field.

Reference field

A 2D vertical field is created with 50x50 cells. The cell dimension is 0.02km x 0.04km.
Rectangular cells are used because in most practical geophysical situations, better reso-
lution is obtained in the vertical direction. The velocity map is populated with a velocity

histogram from the Stanford V dataset and the variogram model

o \> [ hy )\’
h) =0.1 . h = —Y
v(h) =0.140.9Sp J(L(}) + <0.5>
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The resulting background section and its histogram are given in Figures [32(a)| and
32(b)l Three high velocity heterogeneities (Figure [32(c)| and [32(d))) are added into that

background velocity field. Figures [32(e)| and [32(f) give the resulting overall reference

velocity model and its histogram.

A deviated well is drilled from the top left side of the field, see the well path and the

well data histogram in Figures [33(a){and [33(b)l Note that this well path misses all three

high value heterogeneities. Three sources, R1, R2 and S3, are located on the surface and
five receivers, R1, R2, R3, R4 and R5, are located along the deviated well. The rays
data are obtained by tracing straight lines between sources and receivers (Figure |33(c)]).

The ray values are listed in Figure [33(d)

Results

We consider the four cases corresponding to conditioning to shot 1 ray data (Figure7
shot 2 ray data (Figure , shot 3 ray data (Figure and, last, all shots ray
data (Figure ) Figure |34 gives the basic bdsim parameter setting for these tests.
The results are given in Figures [35] [36] 37 and 38l In each figure, we present the ray
configuration, the E-type map, one realization and the check for reproduction of ray data
values.

In case 1, the high value ray S1R4 is bounded by the lower value rays SIR5 and
S1R3 and the lower value deviated well data. This creates a well bounded ellipse-shaped
high value area in the E-type map (Figure . In case 2, the values of the 5 rays are
close with the highest one being at the far right S2R5. The E-type map (Figure
shows that the red area spreads over a large area starting around ray S2R5. In case 3,
there is one lower value ray S3R2 among other higher value rays. This results into the red
high value area being cut into two parts in the E-type map (Figure . Conditioning
to all rays in case 4, we get three reasonably separate high value areas (Figure |38(b))
centered around the actual three heterogeneities of the reference field (Figure [32(e))).
This results from the high value data carried by rays S1R4, S2R5, S3R4 and S2R1,
and the edges created by the low value rays S3R2, S1IR1, S1R5. The E-type mean

is close to the reference global mean 3.0. Again uncertainty is assessed by the different
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realizations (Figures [35(d)}, [36(d)}, [37(d)}, [38(d)| ). The ray data are well reproduced in
all cases, see Figure |35(f)} 36(f)} 37(f)} and [38(f)]

5.2 Downscaling conditioned to point data

In many applications in earth sciences, we have data on different supports, small or large.
We want to obtain a grid model defined on the smallest (point) support conditioned to
all data of any support. This is known as the process of downscaling. The algorithm and
code bdsim can address this problem if we consider the large support grid data as block

data.

Reference field

The reference field built for the vertical well VSP case is used again, see Figure
and In this field, a 2 x 5 coarse grid of block values is obtained by arithmetically
averaging the corresponding fine grid cell values (Figure |39(c)). The values of the 10
blocks are listed in Figure [39(d)] The two column of fine scale data on the left and right
sides of the reference field are retained as well hard data, see locations in Figure

and the histogram in Figure [39(f)
The basic bdsim parameter settings for this study are given in Figure

Results

Figure gives the E-type map built from 20 simulated realizations. Since both the
well data and all 10 block data are used for conditioning, the middle-left and lower-left
high value heterogeneities are detected. The overall spatial distribution of the reference
field (Figure [39(a))) is reflected in the E-type map. Note the averaging effect due to the
block data: the values of the heterogeneities in the E-type map are not as high as those
in the reference field. The smaller the support volume of the block data, the less smooth

is the E-type image.

The different simulated realizations (Figures [41(c) and 41(e)|) show less fluctuations

than those seen in the VSP case studies because the 10 block data provide a full coverage
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of the study area. The mean of the simulated velocity in each realization of Figures
and equals the mean of reference model 2.83 which is also the mean of all block
data. This is because each of the block data is approximately reproduced (Figure ,
hence the global mean is also reproduced.

This particular downscaling using the traditional integration covariance calculation
approach is slow because there is a larger number of blocks in this case than in the other
case studies. This problem is solved by using the FF'T covariance method proposed in

the second paper (Liu et al. 2006).

5.3 Conditioning to arbitrary shape blocks

Using the reference velocity field with a peanut heterogeneity in its center (Figure
and [{42(b))), we extracted 5 block data of very different shapes, the four SCRF letters

and a happy face in the center. These block "paths” and average values are shown

in Figure [42(c)| and [42(d)] Using the bdsim parameter settings given in Figure 3] we

perform simulation conditioned to the two bounding well data and the 5 average block
values. Figure gives two simulated realizations and the E-type map obtained from
20 realizations. From the E-type map, we can clearly identify the central high value
discontinuity and the general pattern of high and low values of the reference field. The
two realizations show fuzzy patterns, but both with a high value central part. The
realization means (3.1, 3.2) are a bit higher than the reference mean 2.98 because the
block data have a higher mean of 3.2.

The results for this block case are better than those obtained from the 18-ray case
(Hansen et al. 2004, Liu 2005) because the five block data provide a full coverage with
resolution superior to that of a ray crossing both high and low-valued areas.

We also tried different simulation paths, fully random or partially random (ray-first),
see Figure 45| Their results turn out quite similar. In the ray-first case, we get a slightly
better image because the ray information is used earlier in the simulation path, that
information then conditions better the simulation at subsequent nodes. Both schemes
reproduce well the ray data values.

In the present version of bdsim, we can handle three types of conditioning data: point
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data only, block data only and simultaneously point and block data. If we only uses
point data, bdsim is not different from the traditional point support direct sequential
simulation algorithm and code dssim (Remy et al. 2007). Figure 46| gives the results for
different data conditioning. If we condition only to point data (the 2 wells), the high
value discontinuity between the wells is not revealed, Figure . If we condition only
to block data, even though the central peanut is identified, the upper right and lower left
high value areas informed by well data are not revealed, Figure . If we condition
to both well data and the central block data (smiling face) only, we get the good result
of Figure . This confirms how critical an informative block datum is, as opposed
to many non-informative blocks. The best result is obtained by conditioning to all wells

and 5 block data, see Figure [46(i)| but the improvement is only marginal.

6 Conclusions

Different approaches to simulation conditioned to block data were implemented in the
code bdsim to improve its efficiency. Fully random and ray-first simulation path schemes
are provided as two options. Theoretically, the ray-first scheme is preferable, although
the differences were not found to be significant in our preliminary test results. The
proposed scheme to search block and point data in the same manner makes the data
search faster. More than 98% of CPU time is used for block-related covariance calculation
in the present bdsim due to the slow traditional block covariance calculation approach.
Analytical and FFT block covariance methods were proposed and will be implemented
into bdsim. In the mean time, a standalone FFT block covariance C++ code has been
developed and is presented in the companion SCRF 2006 paper Calculation of Average
Covariance Using Fast Fourier Transform (FFT). The test results show that bdsim is
a general program for simulation with any type of block data conditioning, such as
tomography data, VSP, downscaling and arbitrary shape block data conditioning. The
results honor both point data and block data and provide both an LS estimate (E-type)
and an uncertainty assessment. One drawback is that the present bdsim alone can not

reproduce a target histogram; this issue can be addressed by either a rank-preserving
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post processing of each simulated realization through a program such as the Gslib trans
(Deutsch & Journel 1998), or by rescaling the target histogram to be the local SK mean

and variance (Soares 2001).

7 Future work

The following items will be considered and implemented in future

e Integrate the newly developed standalone FFT block covariance program into

bdsim.
e Implement a 3D code and provide 3D test case studies.

e Implement the local scaling of conditional distributions to allow reproduction of a

target histogram.
e Implement Ordinary kriging approach in bdsim.

e Implement the analytical block covariance computing approach, and perform com-

parison tests.

e Apply bdsim to case study of tomographic and VSP inversion using more difficult

synthetic data or real seismic data with curvilinear ray tracing.
e Explore new applications of bdsim.

e Find a faster way to import ray data into SGEMS and improve the GUI accordingly.
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(b) Ray data are not reproduced if we only use a maximum number (say 20) of point data within the
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Figure 7: Check for ray data reproduction for the 18-ray case
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Figure 9: Cokriging system
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Figure 10: Point-to-segment covariance calculation Cpg

Figure 11: Segment-to-segment covariance calculation Cpp
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Figure 1/: Coordinate transform from anisotropy to isotropy

(a) Approximation by line (b) Approximation by point

Figure 15: Approximation of a block with arbitrary shape
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(a) Reference velocity model (b) Extracted lateral ray average data

(c) Extracted vertical ray average data (d) Both lateral and vertical ray average data

Figure 17: 3 ray data configurations (The color indicates the values of velocity)
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Data count: 1600
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Variance: 0.500185
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Lower quartile: 2.69148
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(a) E-type of the lateral ray case (b) Hist. of E-type of the lateral ray case
Data count: 1600
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Upper quartile: 3.88728
Median: 3.28562
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(c) E-type of the vertical ray case (d) Hist. of E-type of the lateral ray case
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(e) E-type of the all ray case (f) Hist. of E-type of the lateral ray case

Figure 19: Results of the 3 curvilinear ray configurations averaged from 20 simulated

realizations
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(e) Ray reproduction in random sequence case (f) Ray reproduction in ray-first sequence case

Figure 20: Comparison of the E-type from random path and ray-first path
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(c) No. of point data per node(ray-first path)

(e) No. of ray data per node

(b) Histogram of left figure

(d) Histogram of left figure

(f) Histogram of left figure
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Figure 21: Point and ray data found per node (all rays case). The color indicates the

number of point or ray data found within each node neighborhood.
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Figure 22: Parameter change from large search neighborhood to small search neighbor-

hood



FIGURES 50

a8

21,87

E5.33

Datacount 1600
0 Mean 261975

49 Variance: 378.21

32,67 "

16.33

(b) Histogram of left figure

04 Datacount 1600

261019
182720

(d) Histogram of left figure

5.833

4,667

2.333

1.167
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Figure 23: Point and ray data neighborhood per node with smaller search neighbor-
hood(both lateral and vertical rays case). The color indicates the number of point or ray

data found within each node neighborhood.
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(c) Simul. time per node(random path)

Datacount 1600
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Figure 24: The simulation paths and simulation time per node (random or ray-first

path, conditioning to all rays ). The color indicates the order of simulation in the top

two figures. The color indicates the simulation time in millisecond (ms) in the middle

two figures.
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Figure 25: Flowchart for tracking simulation time ( the highlighted parts are the domi-

nant ones )
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Figure 26: Reference field for vertical well VSP case study
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Figure 27: The configuration of well and ray paths in vertical well VSP
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Figure 29: Results conditioned to the first shot ray data



FIGURES

S1 S2

R1
R2
R3

R4

(a) Ray configuration

0.4
Datacount 2000

. . Mean 286247
variane: 0.158155
Masirnurn: 427087
Upper quartile: 310808

o 28427
Lower quartie: 250094
Minimum 190877

0.08

002 -

(c) Histogram of E-type

Datacount 2000

[IEE SRS - Mean, 264302
variance: 0.7667
Maximurn: 573711

o014 Unper guartile: 31726
Median 258334
Lower quartle: 201516
winimum; 0453057

PYTE B

0.14 ===
5 J ! s000
oz ot —
- ! 0.836403
4.5 — B
] o114
04 —---r------- (SIS - - -- o s -
h 2102
4 4 225355
.08 vz -
3.5 ]
006
: T A 5 1115 1 R
2.5 00z
. 0

(f) Realization 2 (g) Histogram of real. 2

Figure 30: Results conditioned to the first two shots ray data



FIGURES

s1 s2 s3
3.2
RL
3.083
2.987
R2 2.85
2.733
R3 2.617
2.5
R4

(a) Ray configuration

(f) Realization 2

S2 S3
3.2
1 3,083
2.967
E 2.85
2.733
[ 2,617
..l_. . E 2.5
CiE
Data count: 2000
cia Mear 277503
Variance 0168111
[8H Madmum: 422007 |
Upner quartile: 287661
fedian 171245
L ||| e Lower quartie: 251109 |
Minimur 185783
CE
(&3
&
(=
[ - -
T T T
5 H 15 i

Datacount 2000

Mean: 264622

Variance: 0.788002

Mamurm 58311

Upper quartile: 3.21774
&

edian 2
Lower quartile: 2.03413
Minimurm, 0383376

(e) Histogram of real. 1

002+

Datacount 2000

.| Mean 280336
Variance: 0.725973

Maximurm 581573
Upper quarile: 34236

Median 274415
Lower quartle: 216298
Minirmurn 0647489

(g) Histogram of real. 2
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Figure 32: Reference field for deviated well VSP study
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Figure 33: The configuration of well and ray paths in deviated well VSP case



FIGURES

simu_grid

deviated_allrays

zimu_grid

well_wel

7

14071783

Fiay First

7

Simple Kriging [SK)

3

Figure 34: Parameter settings for the deviated well VSP case
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(f) Ray reproduction check

Figure 35: Results conditioned to shot 1 ray data

(e) Histogram of the realization

62



FIGURES

SZ 3.87

R 3.3
R2 2.79
R3 - -

R4 R5

2.2
01
Datacount 2500
Mean 300204
Variance: 0257456
Madmum: 441315
a0 e s Upper quartile: 341375
— Median 299203
] __ Lower quartle: 255737
| Minimum 198338
4.413 1
06
4.008
3.603
ane
3.138
2.733 002 4
2.388
o
1.983 H a5 3 35 .

(b) E-type (c) Histogram of E-type

Datacount 2500

Mean 281523
o - L Variance: 0636115
Maimurn 555117

Upper quartle: 3.39558
Median 274979
Lowsr quartie: 221642
Minirmurm 0.768614

4,413 —

&
&
2

4.008

heck ray reproduction:
| input | estimated | est. error(%)
R 31 30 3 30 30 30 30 0 30 30 30 20 0 00 30 30 20 e D0 30 2 0 e D0 30 2 e e I D0 0 e M 0 0 06 0 0 0 G E D DE DE DE E D D E K
3.2197 3.2488 | -0.9047
3.3121 3.3051 09.2104
3.1840 3.2035 -0.6120
3.2247 3.2253 -0.0182
3.7289 3.7334 | -0.1215

o e 30 0 20 30 3eE e 3 30 I S e 3 3 30 e D0 DM D D D8 D D 0 30E D0 e 3 D 0 0 N D R

(f) Ray reproduction check

Figure 36: Results conditioned to shot 2 ray data
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Figure 37: Results conditioned to shot 3 ray data
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Figure 38: Results conditioned to all 3 shots ray data
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Figure 39: The reference model and data for the downscaling case study
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Figure 40: Parameter settings for the downcaling case
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Figure 41: Downscaling results
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Figure 43: Parameter settings for the 5-block case
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Figure 45: Results for different simulation paths for the 5-block case
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Figure 46: Comparison of E-types resulting from different sets of conditioning data
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